1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/compiler.h> 10 #include <linux/module.h> 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/vmalloc.h> 14 #include <linux/sort.h> 15 #include <linux/rbtree.h> 16 #include <linux/delay.h> 17 #include <linux/random.h> 18 #include <linux/reboot.h> 19 #include <crypto/hash.h> 20 #include <crypto/skcipher.h> 21 #include <linux/async_tx.h> 22 #include <linux/dm-bufio.h> 23 24 #define DM_MSG_PREFIX "integrity" 25 26 #define DEFAULT_INTERLEAVE_SECTORS 32768 27 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 28 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 29 #define DEFAULT_BUFFER_SECTORS 128 30 #define DEFAULT_JOURNAL_WATERMARK 50 31 #define DEFAULT_SYNC_MSEC 10000 32 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 33 #define MIN_LOG2_INTERLEAVE_SECTORS 3 34 #define MAX_LOG2_INTERLEAVE_SECTORS 31 35 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 36 #define RECALC_SECTORS 8192 37 #define RECALC_WRITE_SUPER 16 38 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 39 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 40 41 /* 42 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 43 * so it should not be enabled in the official kernel 44 */ 45 //#define DEBUG_PRINT 46 //#define INTERNAL_VERIFY 47 48 /* 49 * On disk structures 50 */ 51 52 #define SB_MAGIC "integrt" 53 #define SB_VERSION_1 1 54 #define SB_VERSION_2 2 55 #define SB_VERSION_3 3 56 #define SB_VERSION_4 4 57 #define SB_SECTORS 8 58 #define MAX_SECTORS_PER_BLOCK 8 59 60 struct superblock { 61 __u8 magic[8]; 62 __u8 version; 63 __u8 log2_interleave_sectors; 64 __u16 integrity_tag_size; 65 __u32 journal_sections; 66 __u64 provided_data_sectors; /* userspace uses this value */ 67 __u32 flags; 68 __u8 log2_sectors_per_block; 69 __u8 log2_blocks_per_bitmap_bit; 70 __u8 pad[2]; 71 __u64 recalc_sector; 72 }; 73 74 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 75 #define SB_FLAG_RECALCULATING 0x2 76 #define SB_FLAG_DIRTY_BITMAP 0x4 77 #define SB_FLAG_FIXED_PADDING 0x8 78 79 #define JOURNAL_ENTRY_ROUNDUP 8 80 81 typedef __u64 commit_id_t; 82 #define JOURNAL_MAC_PER_SECTOR 8 83 84 struct journal_entry { 85 union { 86 struct { 87 __u32 sector_lo; 88 __u32 sector_hi; 89 } s; 90 __u64 sector; 91 } u; 92 commit_id_t last_bytes[0]; 93 /* __u8 tag[0]; */ 94 }; 95 96 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 97 98 #if BITS_PER_LONG == 64 99 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 100 #else 101 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 102 #endif 103 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 104 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 105 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 106 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 107 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 108 109 #define JOURNAL_BLOCK_SECTORS 8 110 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 111 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 112 113 struct journal_sector { 114 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 115 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 116 commit_id_t commit_id; 117 }; 118 119 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 120 121 #define METADATA_PADDING_SECTORS 8 122 123 #define N_COMMIT_IDS 4 124 125 static unsigned char prev_commit_seq(unsigned char seq) 126 { 127 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 128 } 129 130 static unsigned char next_commit_seq(unsigned char seq) 131 { 132 return (seq + 1) % N_COMMIT_IDS; 133 } 134 135 /* 136 * In-memory structures 137 */ 138 139 struct journal_node { 140 struct rb_node node; 141 sector_t sector; 142 }; 143 144 struct alg_spec { 145 char *alg_string; 146 char *key_string; 147 __u8 *key; 148 unsigned key_size; 149 }; 150 151 struct dm_integrity_c { 152 struct dm_dev *dev; 153 struct dm_dev *meta_dev; 154 unsigned tag_size; 155 __s8 log2_tag_size; 156 sector_t start; 157 mempool_t journal_io_mempool; 158 struct dm_io_client *io; 159 struct dm_bufio_client *bufio; 160 struct workqueue_struct *metadata_wq; 161 struct superblock *sb; 162 unsigned journal_pages; 163 unsigned n_bitmap_blocks; 164 165 struct page_list *journal; 166 struct page_list *journal_io; 167 struct page_list *journal_xor; 168 struct page_list *recalc_bitmap; 169 struct page_list *may_write_bitmap; 170 struct bitmap_block_status *bbs; 171 unsigned bitmap_flush_interval; 172 int synchronous_mode; 173 struct bio_list synchronous_bios; 174 struct delayed_work bitmap_flush_work; 175 176 struct crypto_skcipher *journal_crypt; 177 struct scatterlist **journal_scatterlist; 178 struct scatterlist **journal_io_scatterlist; 179 struct skcipher_request **sk_requests; 180 181 struct crypto_shash *journal_mac; 182 183 struct journal_node *journal_tree; 184 struct rb_root journal_tree_root; 185 186 sector_t provided_data_sectors; 187 188 unsigned short journal_entry_size; 189 unsigned char journal_entries_per_sector; 190 unsigned char journal_section_entries; 191 unsigned short journal_section_sectors; 192 unsigned journal_sections; 193 unsigned journal_entries; 194 sector_t data_device_sectors; 195 sector_t meta_device_sectors; 196 unsigned initial_sectors; 197 unsigned metadata_run; 198 __s8 log2_metadata_run; 199 __u8 log2_buffer_sectors; 200 __u8 sectors_per_block; 201 __u8 log2_blocks_per_bitmap_bit; 202 203 unsigned char mode; 204 int suspending; 205 206 int failed; 207 208 struct crypto_shash *internal_hash; 209 210 /* these variables are locked with endio_wait.lock */ 211 struct rb_root in_progress; 212 struct list_head wait_list; 213 wait_queue_head_t endio_wait; 214 struct workqueue_struct *wait_wq; 215 216 unsigned char commit_seq; 217 commit_id_t commit_ids[N_COMMIT_IDS]; 218 219 unsigned committed_section; 220 unsigned n_committed_sections; 221 222 unsigned uncommitted_section; 223 unsigned n_uncommitted_sections; 224 225 unsigned free_section; 226 unsigned char free_section_entry; 227 unsigned free_sectors; 228 229 unsigned free_sectors_threshold; 230 231 struct workqueue_struct *commit_wq; 232 struct work_struct commit_work; 233 234 struct workqueue_struct *writer_wq; 235 struct work_struct writer_work; 236 237 struct workqueue_struct *recalc_wq; 238 struct work_struct recalc_work; 239 u8 *recalc_buffer; 240 u8 *recalc_tags; 241 242 struct bio_list flush_bio_list; 243 244 unsigned long autocommit_jiffies; 245 struct timer_list autocommit_timer; 246 unsigned autocommit_msec; 247 248 wait_queue_head_t copy_to_journal_wait; 249 250 struct completion crypto_backoff; 251 252 bool journal_uptodate; 253 bool just_formatted; 254 bool recalculate_flag; 255 bool fix_padding; 256 257 struct alg_spec internal_hash_alg; 258 struct alg_spec journal_crypt_alg; 259 struct alg_spec journal_mac_alg; 260 261 atomic64_t number_of_mismatches; 262 263 struct notifier_block reboot_notifier; 264 }; 265 266 struct dm_integrity_range { 267 sector_t logical_sector; 268 sector_t n_sectors; 269 bool waiting; 270 union { 271 struct rb_node node; 272 struct { 273 struct task_struct *task; 274 struct list_head wait_entry; 275 }; 276 }; 277 }; 278 279 struct dm_integrity_io { 280 struct work_struct work; 281 282 struct dm_integrity_c *ic; 283 bool write; 284 bool fua; 285 286 struct dm_integrity_range range; 287 288 sector_t metadata_block; 289 unsigned metadata_offset; 290 291 atomic_t in_flight; 292 blk_status_t bi_status; 293 294 struct completion *completion; 295 296 struct gendisk *orig_bi_disk; 297 u8 orig_bi_partno; 298 bio_end_io_t *orig_bi_end_io; 299 struct bio_integrity_payload *orig_bi_integrity; 300 struct bvec_iter orig_bi_iter; 301 }; 302 303 struct journal_completion { 304 struct dm_integrity_c *ic; 305 atomic_t in_flight; 306 struct completion comp; 307 }; 308 309 struct journal_io { 310 struct dm_integrity_range range; 311 struct journal_completion *comp; 312 }; 313 314 struct bitmap_block_status { 315 struct work_struct work; 316 struct dm_integrity_c *ic; 317 unsigned idx; 318 unsigned long *bitmap; 319 struct bio_list bio_queue; 320 spinlock_t bio_queue_lock; 321 322 }; 323 324 static struct kmem_cache *journal_io_cache; 325 326 #define JOURNAL_IO_MEMPOOL 32 327 328 #ifdef DEBUG_PRINT 329 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 330 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 331 { 332 va_list args; 333 va_start(args, msg); 334 vprintk(msg, args); 335 va_end(args); 336 if (len) 337 pr_cont(":"); 338 while (len) { 339 pr_cont(" %02x", *bytes); 340 bytes++; 341 len--; 342 } 343 pr_cont("\n"); 344 } 345 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 346 #else 347 #define DEBUG_print(x, ...) do { } while (0) 348 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 349 #endif 350 351 static void dm_integrity_prepare(struct request *rq) 352 { 353 } 354 355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 356 { 357 } 358 359 /* 360 * DM Integrity profile, protection is performed layer above (dm-crypt) 361 */ 362 static const struct blk_integrity_profile dm_integrity_profile = { 363 .name = "DM-DIF-EXT-TAG", 364 .generate_fn = NULL, 365 .verify_fn = NULL, 366 .prepare_fn = dm_integrity_prepare, 367 .complete_fn = dm_integrity_complete, 368 }; 369 370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 371 static void integrity_bio_wait(struct work_struct *w); 372 static void dm_integrity_dtr(struct dm_target *ti); 373 374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 375 { 376 if (err == -EILSEQ) 377 atomic64_inc(&ic->number_of_mismatches); 378 if (!cmpxchg(&ic->failed, 0, err)) 379 DMERR("Error on %s: %d", msg, err); 380 } 381 382 static int dm_integrity_failed(struct dm_integrity_c *ic) 383 { 384 return READ_ONCE(ic->failed); 385 } 386 387 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 388 unsigned j, unsigned char seq) 389 { 390 /* 391 * Xor the number with section and sector, so that if a piece of 392 * journal is written at wrong place, it is detected. 393 */ 394 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 395 } 396 397 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 398 sector_t *area, sector_t *offset) 399 { 400 if (!ic->meta_dev) { 401 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 402 *area = data_sector >> log2_interleave_sectors; 403 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 404 } else { 405 *area = 0; 406 *offset = data_sector; 407 } 408 } 409 410 #define sector_to_block(ic, n) \ 411 do { \ 412 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 413 (n) >>= (ic)->sb->log2_sectors_per_block; \ 414 } while (0) 415 416 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 417 sector_t offset, unsigned *metadata_offset) 418 { 419 __u64 ms; 420 unsigned mo; 421 422 ms = area << ic->sb->log2_interleave_sectors; 423 if (likely(ic->log2_metadata_run >= 0)) 424 ms += area << ic->log2_metadata_run; 425 else 426 ms += area * ic->metadata_run; 427 ms >>= ic->log2_buffer_sectors; 428 429 sector_to_block(ic, offset); 430 431 if (likely(ic->log2_tag_size >= 0)) { 432 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 433 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 434 } else { 435 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 436 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 437 } 438 *metadata_offset = mo; 439 return ms; 440 } 441 442 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 443 { 444 sector_t result; 445 446 if (ic->meta_dev) 447 return offset; 448 449 result = area << ic->sb->log2_interleave_sectors; 450 if (likely(ic->log2_metadata_run >= 0)) 451 result += (area + 1) << ic->log2_metadata_run; 452 else 453 result += (area + 1) * ic->metadata_run; 454 455 result += (sector_t)ic->initial_sectors + offset; 456 result += ic->start; 457 458 return result; 459 } 460 461 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 462 { 463 if (unlikely(*sec_ptr >= ic->journal_sections)) 464 *sec_ptr -= ic->journal_sections; 465 } 466 467 static void sb_set_version(struct dm_integrity_c *ic) 468 { 469 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 470 ic->sb->version = SB_VERSION_4; 471 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 472 ic->sb->version = SB_VERSION_3; 473 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 474 ic->sb->version = SB_VERSION_2; 475 else 476 ic->sb->version = SB_VERSION_1; 477 } 478 479 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 480 { 481 struct dm_io_request io_req; 482 struct dm_io_region io_loc; 483 484 io_req.bi_op = op; 485 io_req.bi_op_flags = op_flags; 486 io_req.mem.type = DM_IO_KMEM; 487 io_req.mem.ptr.addr = ic->sb; 488 io_req.notify.fn = NULL; 489 io_req.client = ic->io; 490 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 491 io_loc.sector = ic->start; 492 io_loc.count = SB_SECTORS; 493 494 if (op == REQ_OP_WRITE) 495 sb_set_version(ic); 496 497 return dm_io(&io_req, 1, &io_loc, NULL); 498 } 499 500 #define BITMAP_OP_TEST_ALL_SET 0 501 #define BITMAP_OP_TEST_ALL_CLEAR 1 502 #define BITMAP_OP_SET 2 503 #define BITMAP_OP_CLEAR 3 504 505 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 506 sector_t sector, sector_t n_sectors, int mode) 507 { 508 unsigned long bit, end_bit, this_end_bit, page, end_page; 509 unsigned long *data; 510 511 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 512 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 513 (unsigned long long)sector, 514 (unsigned long long)n_sectors, 515 ic->sb->log2_sectors_per_block, 516 ic->log2_blocks_per_bitmap_bit, 517 mode); 518 BUG(); 519 } 520 521 if (unlikely(!n_sectors)) 522 return true; 523 524 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 525 end_bit = (sector + n_sectors - 1) >> 526 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 527 528 page = bit / (PAGE_SIZE * 8); 529 bit %= PAGE_SIZE * 8; 530 531 end_page = end_bit / (PAGE_SIZE * 8); 532 end_bit %= PAGE_SIZE * 8; 533 534 repeat: 535 if (page < end_page) { 536 this_end_bit = PAGE_SIZE * 8 - 1; 537 } else { 538 this_end_bit = end_bit; 539 } 540 541 data = lowmem_page_address(bitmap[page].page); 542 543 if (mode == BITMAP_OP_TEST_ALL_SET) { 544 while (bit <= this_end_bit) { 545 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 546 do { 547 if (data[bit / BITS_PER_LONG] != -1) 548 return false; 549 bit += BITS_PER_LONG; 550 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 551 continue; 552 } 553 if (!test_bit(bit, data)) 554 return false; 555 bit++; 556 } 557 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 558 while (bit <= this_end_bit) { 559 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 560 do { 561 if (data[bit / BITS_PER_LONG] != 0) 562 return false; 563 bit += BITS_PER_LONG; 564 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 565 continue; 566 } 567 if (test_bit(bit, data)) 568 return false; 569 bit++; 570 } 571 } else if (mode == BITMAP_OP_SET) { 572 while (bit <= this_end_bit) { 573 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 574 do { 575 data[bit / BITS_PER_LONG] = -1; 576 bit += BITS_PER_LONG; 577 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 578 continue; 579 } 580 __set_bit(bit, data); 581 bit++; 582 } 583 } else if (mode == BITMAP_OP_CLEAR) { 584 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 585 clear_page(data); 586 else while (bit <= this_end_bit) { 587 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 588 do { 589 data[bit / BITS_PER_LONG] = 0; 590 bit += BITS_PER_LONG; 591 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 592 continue; 593 } 594 __clear_bit(bit, data); 595 bit++; 596 } 597 } else { 598 BUG(); 599 } 600 601 if (unlikely(page < end_page)) { 602 bit = 0; 603 page++; 604 goto repeat; 605 } 606 607 return true; 608 } 609 610 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 611 { 612 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 613 unsigned i; 614 615 for (i = 0; i < n_bitmap_pages; i++) { 616 unsigned long *dst_data = lowmem_page_address(dst[i].page); 617 unsigned long *src_data = lowmem_page_address(src[i].page); 618 copy_page(dst_data, src_data); 619 } 620 } 621 622 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 623 { 624 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 625 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 626 627 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 628 return &ic->bbs[bitmap_block]; 629 } 630 631 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 632 bool e, const char *function) 633 { 634 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 635 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 636 637 if (unlikely(section >= ic->journal_sections) || 638 unlikely(offset >= limit)) { 639 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 640 function, section, offset, ic->journal_sections, limit); 641 BUG(); 642 } 643 #endif 644 } 645 646 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 647 unsigned *pl_index, unsigned *pl_offset) 648 { 649 unsigned sector; 650 651 access_journal_check(ic, section, offset, false, "page_list_location"); 652 653 sector = section * ic->journal_section_sectors + offset; 654 655 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 656 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 657 } 658 659 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 660 unsigned section, unsigned offset, unsigned *n_sectors) 661 { 662 unsigned pl_index, pl_offset; 663 char *va; 664 665 page_list_location(ic, section, offset, &pl_index, &pl_offset); 666 667 if (n_sectors) 668 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 669 670 va = lowmem_page_address(pl[pl_index].page); 671 672 return (struct journal_sector *)(va + pl_offset); 673 } 674 675 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 676 { 677 return access_page_list(ic, ic->journal, section, offset, NULL); 678 } 679 680 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 681 { 682 unsigned rel_sector, offset; 683 struct journal_sector *js; 684 685 access_journal_check(ic, section, n, true, "access_journal_entry"); 686 687 rel_sector = n % JOURNAL_BLOCK_SECTORS; 688 offset = n / JOURNAL_BLOCK_SECTORS; 689 690 js = access_journal(ic, section, rel_sector); 691 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 692 } 693 694 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 695 { 696 n <<= ic->sb->log2_sectors_per_block; 697 698 n += JOURNAL_BLOCK_SECTORS; 699 700 access_journal_check(ic, section, n, false, "access_journal_data"); 701 702 return access_journal(ic, section, n); 703 } 704 705 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 706 { 707 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 708 int r; 709 unsigned j, size; 710 711 desc->tfm = ic->journal_mac; 712 713 r = crypto_shash_init(desc); 714 if (unlikely(r)) { 715 dm_integrity_io_error(ic, "crypto_shash_init", r); 716 goto err; 717 } 718 719 for (j = 0; j < ic->journal_section_entries; j++) { 720 struct journal_entry *je = access_journal_entry(ic, section, j); 721 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 722 if (unlikely(r)) { 723 dm_integrity_io_error(ic, "crypto_shash_update", r); 724 goto err; 725 } 726 } 727 728 size = crypto_shash_digestsize(ic->journal_mac); 729 730 if (likely(size <= JOURNAL_MAC_SIZE)) { 731 r = crypto_shash_final(desc, result); 732 if (unlikely(r)) { 733 dm_integrity_io_error(ic, "crypto_shash_final", r); 734 goto err; 735 } 736 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 737 } else { 738 __u8 digest[HASH_MAX_DIGESTSIZE]; 739 740 if (WARN_ON(size > sizeof(digest))) { 741 dm_integrity_io_error(ic, "digest_size", -EINVAL); 742 goto err; 743 } 744 r = crypto_shash_final(desc, digest); 745 if (unlikely(r)) { 746 dm_integrity_io_error(ic, "crypto_shash_final", r); 747 goto err; 748 } 749 memcpy(result, digest, JOURNAL_MAC_SIZE); 750 } 751 752 return; 753 err: 754 memset(result, 0, JOURNAL_MAC_SIZE); 755 } 756 757 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 758 { 759 __u8 result[JOURNAL_MAC_SIZE]; 760 unsigned j; 761 762 if (!ic->journal_mac) 763 return; 764 765 section_mac(ic, section, result); 766 767 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 768 struct journal_sector *js = access_journal(ic, section, j); 769 770 if (likely(wr)) 771 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 772 else { 773 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 774 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 775 } 776 } 777 } 778 779 static void complete_journal_op(void *context) 780 { 781 struct journal_completion *comp = context; 782 BUG_ON(!atomic_read(&comp->in_flight)); 783 if (likely(atomic_dec_and_test(&comp->in_flight))) 784 complete(&comp->comp); 785 } 786 787 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 788 unsigned n_sections, struct journal_completion *comp) 789 { 790 struct async_submit_ctl submit; 791 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 792 unsigned pl_index, pl_offset, section_index; 793 struct page_list *source_pl, *target_pl; 794 795 if (likely(encrypt)) { 796 source_pl = ic->journal; 797 target_pl = ic->journal_io; 798 } else { 799 source_pl = ic->journal_io; 800 target_pl = ic->journal; 801 } 802 803 page_list_location(ic, section, 0, &pl_index, &pl_offset); 804 805 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 806 807 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 808 809 section_index = pl_index; 810 811 do { 812 size_t this_step; 813 struct page *src_pages[2]; 814 struct page *dst_page; 815 816 while (unlikely(pl_index == section_index)) { 817 unsigned dummy; 818 if (likely(encrypt)) 819 rw_section_mac(ic, section, true); 820 section++; 821 n_sections--; 822 if (!n_sections) 823 break; 824 page_list_location(ic, section, 0, §ion_index, &dummy); 825 } 826 827 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 828 dst_page = target_pl[pl_index].page; 829 src_pages[0] = source_pl[pl_index].page; 830 src_pages[1] = ic->journal_xor[pl_index].page; 831 832 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 833 834 pl_index++; 835 pl_offset = 0; 836 n_bytes -= this_step; 837 } while (n_bytes); 838 839 BUG_ON(n_sections); 840 841 async_tx_issue_pending_all(); 842 } 843 844 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 845 { 846 struct journal_completion *comp = req->data; 847 if (unlikely(err)) { 848 if (likely(err == -EINPROGRESS)) { 849 complete(&comp->ic->crypto_backoff); 850 return; 851 } 852 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 853 } 854 complete_journal_op(comp); 855 } 856 857 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 858 { 859 int r; 860 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 861 complete_journal_encrypt, comp); 862 if (likely(encrypt)) 863 r = crypto_skcipher_encrypt(req); 864 else 865 r = crypto_skcipher_decrypt(req); 866 if (likely(!r)) 867 return false; 868 if (likely(r == -EINPROGRESS)) 869 return true; 870 if (likely(r == -EBUSY)) { 871 wait_for_completion(&comp->ic->crypto_backoff); 872 reinit_completion(&comp->ic->crypto_backoff); 873 return true; 874 } 875 dm_integrity_io_error(comp->ic, "encrypt", r); 876 return false; 877 } 878 879 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 880 unsigned n_sections, struct journal_completion *comp) 881 { 882 struct scatterlist **source_sg; 883 struct scatterlist **target_sg; 884 885 atomic_add(2, &comp->in_flight); 886 887 if (likely(encrypt)) { 888 source_sg = ic->journal_scatterlist; 889 target_sg = ic->journal_io_scatterlist; 890 } else { 891 source_sg = ic->journal_io_scatterlist; 892 target_sg = ic->journal_scatterlist; 893 } 894 895 do { 896 struct skcipher_request *req; 897 unsigned ivsize; 898 char *iv; 899 900 if (likely(encrypt)) 901 rw_section_mac(ic, section, true); 902 903 req = ic->sk_requests[section]; 904 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 905 iv = req->iv; 906 907 memcpy(iv, iv + ivsize, ivsize); 908 909 req->src = source_sg[section]; 910 req->dst = target_sg[section]; 911 912 if (unlikely(do_crypt(encrypt, req, comp))) 913 atomic_inc(&comp->in_flight); 914 915 section++; 916 n_sections--; 917 } while (n_sections); 918 919 atomic_dec(&comp->in_flight); 920 complete_journal_op(comp); 921 } 922 923 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 924 unsigned n_sections, struct journal_completion *comp) 925 { 926 if (ic->journal_xor) 927 return xor_journal(ic, encrypt, section, n_sections, comp); 928 else 929 return crypt_journal(ic, encrypt, section, n_sections, comp); 930 } 931 932 static void complete_journal_io(unsigned long error, void *context) 933 { 934 struct journal_completion *comp = context; 935 if (unlikely(error != 0)) 936 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 937 complete_journal_op(comp); 938 } 939 940 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 941 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 942 { 943 struct dm_io_request io_req; 944 struct dm_io_region io_loc; 945 unsigned pl_index, pl_offset; 946 int r; 947 948 if (unlikely(dm_integrity_failed(ic))) { 949 if (comp) 950 complete_journal_io(-1UL, comp); 951 return; 952 } 953 954 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 955 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 956 957 io_req.bi_op = op; 958 io_req.bi_op_flags = op_flags; 959 io_req.mem.type = DM_IO_PAGE_LIST; 960 if (ic->journal_io) 961 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 962 else 963 io_req.mem.ptr.pl = &ic->journal[pl_index]; 964 io_req.mem.offset = pl_offset; 965 if (likely(comp != NULL)) { 966 io_req.notify.fn = complete_journal_io; 967 io_req.notify.context = comp; 968 } else { 969 io_req.notify.fn = NULL; 970 } 971 io_req.client = ic->io; 972 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 973 io_loc.sector = ic->start + SB_SECTORS + sector; 974 io_loc.count = n_sectors; 975 976 r = dm_io(&io_req, 1, &io_loc, NULL); 977 if (unlikely(r)) { 978 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 979 if (comp) { 980 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 981 complete_journal_io(-1UL, comp); 982 } 983 } 984 } 985 986 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 987 unsigned n_sections, struct journal_completion *comp) 988 { 989 unsigned sector, n_sectors; 990 991 sector = section * ic->journal_section_sectors; 992 n_sectors = n_sections * ic->journal_section_sectors; 993 994 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 995 } 996 997 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 998 { 999 struct journal_completion io_comp; 1000 struct journal_completion crypt_comp_1; 1001 struct journal_completion crypt_comp_2; 1002 unsigned i; 1003 1004 io_comp.ic = ic; 1005 init_completion(&io_comp.comp); 1006 1007 if (commit_start + commit_sections <= ic->journal_sections) { 1008 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1009 if (ic->journal_io) { 1010 crypt_comp_1.ic = ic; 1011 init_completion(&crypt_comp_1.comp); 1012 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1013 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1014 wait_for_completion_io(&crypt_comp_1.comp); 1015 } else { 1016 for (i = 0; i < commit_sections; i++) 1017 rw_section_mac(ic, commit_start + i, true); 1018 } 1019 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1020 commit_sections, &io_comp); 1021 } else { 1022 unsigned to_end; 1023 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1024 to_end = ic->journal_sections - commit_start; 1025 if (ic->journal_io) { 1026 crypt_comp_1.ic = ic; 1027 init_completion(&crypt_comp_1.comp); 1028 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1029 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1030 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1031 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1032 reinit_completion(&crypt_comp_1.comp); 1033 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1034 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1035 wait_for_completion_io(&crypt_comp_1.comp); 1036 } else { 1037 crypt_comp_2.ic = ic; 1038 init_completion(&crypt_comp_2.comp); 1039 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1040 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1041 wait_for_completion_io(&crypt_comp_1.comp); 1042 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1043 wait_for_completion_io(&crypt_comp_2.comp); 1044 } 1045 } else { 1046 for (i = 0; i < to_end; i++) 1047 rw_section_mac(ic, commit_start + i, true); 1048 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1049 for (i = 0; i < commit_sections - to_end; i++) 1050 rw_section_mac(ic, i, true); 1051 } 1052 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1053 } 1054 1055 wait_for_completion_io(&io_comp.comp); 1056 } 1057 1058 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1059 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1060 { 1061 struct dm_io_request io_req; 1062 struct dm_io_region io_loc; 1063 int r; 1064 unsigned sector, pl_index, pl_offset; 1065 1066 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1067 1068 if (unlikely(dm_integrity_failed(ic))) { 1069 fn(-1UL, data); 1070 return; 1071 } 1072 1073 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1074 1075 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1076 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1077 1078 io_req.bi_op = REQ_OP_WRITE; 1079 io_req.bi_op_flags = 0; 1080 io_req.mem.type = DM_IO_PAGE_LIST; 1081 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1082 io_req.mem.offset = pl_offset; 1083 io_req.notify.fn = fn; 1084 io_req.notify.context = data; 1085 io_req.client = ic->io; 1086 io_loc.bdev = ic->dev->bdev; 1087 io_loc.sector = target; 1088 io_loc.count = n_sectors; 1089 1090 r = dm_io(&io_req, 1, &io_loc, NULL); 1091 if (unlikely(r)) { 1092 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1093 fn(-1UL, data); 1094 } 1095 } 1096 1097 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1098 { 1099 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1100 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1101 } 1102 1103 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1104 { 1105 struct rb_node **n = &ic->in_progress.rb_node; 1106 struct rb_node *parent; 1107 1108 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1109 1110 if (likely(check_waiting)) { 1111 struct dm_integrity_range *range; 1112 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1113 if (unlikely(ranges_overlap(range, new_range))) 1114 return false; 1115 } 1116 } 1117 1118 parent = NULL; 1119 1120 while (*n) { 1121 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1122 1123 parent = *n; 1124 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1125 n = &range->node.rb_left; 1126 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1127 n = &range->node.rb_right; 1128 } else { 1129 return false; 1130 } 1131 } 1132 1133 rb_link_node(&new_range->node, parent, n); 1134 rb_insert_color(&new_range->node, &ic->in_progress); 1135 1136 return true; 1137 } 1138 1139 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1140 { 1141 rb_erase(&range->node, &ic->in_progress); 1142 while (unlikely(!list_empty(&ic->wait_list))) { 1143 struct dm_integrity_range *last_range = 1144 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1145 struct task_struct *last_range_task; 1146 last_range_task = last_range->task; 1147 list_del(&last_range->wait_entry); 1148 if (!add_new_range(ic, last_range, false)) { 1149 last_range->task = last_range_task; 1150 list_add(&last_range->wait_entry, &ic->wait_list); 1151 break; 1152 } 1153 last_range->waiting = false; 1154 wake_up_process(last_range_task); 1155 } 1156 } 1157 1158 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1159 { 1160 unsigned long flags; 1161 1162 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1163 remove_range_unlocked(ic, range); 1164 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1165 } 1166 1167 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1168 { 1169 new_range->waiting = true; 1170 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1171 new_range->task = current; 1172 do { 1173 __set_current_state(TASK_UNINTERRUPTIBLE); 1174 spin_unlock_irq(&ic->endio_wait.lock); 1175 io_schedule(); 1176 spin_lock_irq(&ic->endio_wait.lock); 1177 } while (unlikely(new_range->waiting)); 1178 } 1179 1180 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1181 { 1182 if (unlikely(!add_new_range(ic, new_range, true))) 1183 wait_and_add_new_range(ic, new_range); 1184 } 1185 1186 static void init_journal_node(struct journal_node *node) 1187 { 1188 RB_CLEAR_NODE(&node->node); 1189 node->sector = (sector_t)-1; 1190 } 1191 1192 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1193 { 1194 struct rb_node **link; 1195 struct rb_node *parent; 1196 1197 node->sector = sector; 1198 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1199 1200 link = &ic->journal_tree_root.rb_node; 1201 parent = NULL; 1202 1203 while (*link) { 1204 struct journal_node *j; 1205 parent = *link; 1206 j = container_of(parent, struct journal_node, node); 1207 if (sector < j->sector) 1208 link = &j->node.rb_left; 1209 else 1210 link = &j->node.rb_right; 1211 } 1212 1213 rb_link_node(&node->node, parent, link); 1214 rb_insert_color(&node->node, &ic->journal_tree_root); 1215 } 1216 1217 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1218 { 1219 BUG_ON(RB_EMPTY_NODE(&node->node)); 1220 rb_erase(&node->node, &ic->journal_tree_root); 1221 init_journal_node(node); 1222 } 1223 1224 #define NOT_FOUND (-1U) 1225 1226 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1227 { 1228 struct rb_node *n = ic->journal_tree_root.rb_node; 1229 unsigned found = NOT_FOUND; 1230 *next_sector = (sector_t)-1; 1231 while (n) { 1232 struct journal_node *j = container_of(n, struct journal_node, node); 1233 if (sector == j->sector) { 1234 found = j - ic->journal_tree; 1235 } 1236 if (sector < j->sector) { 1237 *next_sector = j->sector; 1238 n = j->node.rb_left; 1239 } else { 1240 n = j->node.rb_right; 1241 } 1242 } 1243 1244 return found; 1245 } 1246 1247 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1248 { 1249 struct journal_node *node, *next_node; 1250 struct rb_node *next; 1251 1252 if (unlikely(pos >= ic->journal_entries)) 1253 return false; 1254 node = &ic->journal_tree[pos]; 1255 if (unlikely(RB_EMPTY_NODE(&node->node))) 1256 return false; 1257 if (unlikely(node->sector != sector)) 1258 return false; 1259 1260 next = rb_next(&node->node); 1261 if (unlikely(!next)) 1262 return true; 1263 1264 next_node = container_of(next, struct journal_node, node); 1265 return next_node->sector != sector; 1266 } 1267 1268 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1269 { 1270 struct rb_node *next; 1271 struct journal_node *next_node; 1272 unsigned next_section; 1273 1274 BUG_ON(RB_EMPTY_NODE(&node->node)); 1275 1276 next = rb_next(&node->node); 1277 if (unlikely(!next)) 1278 return false; 1279 1280 next_node = container_of(next, struct journal_node, node); 1281 1282 if (next_node->sector != node->sector) 1283 return false; 1284 1285 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1286 if (next_section >= ic->committed_section && 1287 next_section < ic->committed_section + ic->n_committed_sections) 1288 return true; 1289 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1290 return true; 1291 1292 return false; 1293 } 1294 1295 #define TAG_READ 0 1296 #define TAG_WRITE 1 1297 #define TAG_CMP 2 1298 1299 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1300 unsigned *metadata_offset, unsigned total_size, int op) 1301 { 1302 do { 1303 unsigned char *data, *dp; 1304 struct dm_buffer *b; 1305 unsigned to_copy; 1306 int r; 1307 1308 r = dm_integrity_failed(ic); 1309 if (unlikely(r)) 1310 return r; 1311 1312 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1313 if (IS_ERR(data)) 1314 return PTR_ERR(data); 1315 1316 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1317 dp = data + *metadata_offset; 1318 if (op == TAG_READ) { 1319 memcpy(tag, dp, to_copy); 1320 } else if (op == TAG_WRITE) { 1321 memcpy(dp, tag, to_copy); 1322 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1323 } else { 1324 /* e.g.: op == TAG_CMP */ 1325 if (unlikely(memcmp(dp, tag, to_copy))) { 1326 unsigned i; 1327 1328 for (i = 0; i < to_copy; i++) { 1329 if (dp[i] != tag[i]) 1330 break; 1331 total_size--; 1332 } 1333 dm_bufio_release(b); 1334 return total_size; 1335 } 1336 } 1337 dm_bufio_release(b); 1338 1339 tag += to_copy; 1340 *metadata_offset += to_copy; 1341 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1342 (*metadata_block)++; 1343 *metadata_offset = 0; 1344 } 1345 total_size -= to_copy; 1346 } while (unlikely(total_size)); 1347 1348 return 0; 1349 } 1350 1351 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic) 1352 { 1353 int r; 1354 r = dm_bufio_write_dirty_buffers(ic->bufio); 1355 if (unlikely(r)) 1356 dm_integrity_io_error(ic, "writing tags", r); 1357 } 1358 1359 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1360 { 1361 DECLARE_WAITQUEUE(wait, current); 1362 __add_wait_queue(&ic->endio_wait, &wait); 1363 __set_current_state(TASK_UNINTERRUPTIBLE); 1364 spin_unlock_irq(&ic->endio_wait.lock); 1365 io_schedule(); 1366 spin_lock_irq(&ic->endio_wait.lock); 1367 __remove_wait_queue(&ic->endio_wait, &wait); 1368 } 1369 1370 static void autocommit_fn(struct timer_list *t) 1371 { 1372 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1373 1374 if (likely(!dm_integrity_failed(ic))) 1375 queue_work(ic->commit_wq, &ic->commit_work); 1376 } 1377 1378 static void schedule_autocommit(struct dm_integrity_c *ic) 1379 { 1380 if (!timer_pending(&ic->autocommit_timer)) 1381 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1382 } 1383 1384 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1385 { 1386 struct bio *bio; 1387 unsigned long flags; 1388 1389 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1390 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1391 bio_list_add(&ic->flush_bio_list, bio); 1392 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1393 1394 queue_work(ic->commit_wq, &ic->commit_work); 1395 } 1396 1397 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1398 { 1399 int r = dm_integrity_failed(ic); 1400 if (unlikely(r) && !bio->bi_status) 1401 bio->bi_status = errno_to_blk_status(r); 1402 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1403 unsigned long flags; 1404 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1405 bio_list_add(&ic->synchronous_bios, bio); 1406 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1407 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1408 return; 1409 } 1410 bio_endio(bio); 1411 } 1412 1413 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1414 { 1415 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1416 1417 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1418 submit_flush_bio(ic, dio); 1419 else 1420 do_endio(ic, bio); 1421 } 1422 1423 static void dec_in_flight(struct dm_integrity_io *dio) 1424 { 1425 if (atomic_dec_and_test(&dio->in_flight)) { 1426 struct dm_integrity_c *ic = dio->ic; 1427 struct bio *bio; 1428 1429 remove_range(ic, &dio->range); 1430 1431 if (unlikely(dio->write)) 1432 schedule_autocommit(ic); 1433 1434 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1435 1436 if (unlikely(dio->bi_status) && !bio->bi_status) 1437 bio->bi_status = dio->bi_status; 1438 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1439 dio->range.logical_sector += dio->range.n_sectors; 1440 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1441 INIT_WORK(&dio->work, integrity_bio_wait); 1442 queue_work(ic->wait_wq, &dio->work); 1443 return; 1444 } 1445 do_endio_flush(ic, dio); 1446 } 1447 } 1448 1449 static void integrity_end_io(struct bio *bio) 1450 { 1451 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1452 1453 bio->bi_iter = dio->orig_bi_iter; 1454 bio->bi_disk = dio->orig_bi_disk; 1455 bio->bi_partno = dio->orig_bi_partno; 1456 if (dio->orig_bi_integrity) { 1457 bio->bi_integrity = dio->orig_bi_integrity; 1458 bio->bi_opf |= REQ_INTEGRITY; 1459 } 1460 bio->bi_end_io = dio->orig_bi_end_io; 1461 1462 if (dio->completion) 1463 complete(dio->completion); 1464 1465 dec_in_flight(dio); 1466 } 1467 1468 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1469 const char *data, char *result) 1470 { 1471 __u64 sector_le = cpu_to_le64(sector); 1472 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1473 int r; 1474 unsigned digest_size; 1475 1476 req->tfm = ic->internal_hash; 1477 1478 r = crypto_shash_init(req); 1479 if (unlikely(r < 0)) { 1480 dm_integrity_io_error(ic, "crypto_shash_init", r); 1481 goto failed; 1482 } 1483 1484 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1485 if (unlikely(r < 0)) { 1486 dm_integrity_io_error(ic, "crypto_shash_update", r); 1487 goto failed; 1488 } 1489 1490 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1491 if (unlikely(r < 0)) { 1492 dm_integrity_io_error(ic, "crypto_shash_update", r); 1493 goto failed; 1494 } 1495 1496 r = crypto_shash_final(req, result); 1497 if (unlikely(r < 0)) { 1498 dm_integrity_io_error(ic, "crypto_shash_final", r); 1499 goto failed; 1500 } 1501 1502 digest_size = crypto_shash_digestsize(ic->internal_hash); 1503 if (unlikely(digest_size < ic->tag_size)) 1504 memset(result + digest_size, 0, ic->tag_size - digest_size); 1505 1506 return; 1507 1508 failed: 1509 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1510 get_random_bytes(result, ic->tag_size); 1511 } 1512 1513 static void integrity_metadata(struct work_struct *w) 1514 { 1515 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1516 struct dm_integrity_c *ic = dio->ic; 1517 1518 int r; 1519 1520 if (ic->internal_hash) { 1521 struct bvec_iter iter; 1522 struct bio_vec bv; 1523 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1524 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1525 char *checksums; 1526 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1527 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1528 unsigned sectors_to_process = dio->range.n_sectors; 1529 sector_t sector = dio->range.logical_sector; 1530 1531 if (unlikely(ic->mode == 'R')) 1532 goto skip_io; 1533 1534 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1535 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1536 if (!checksums) { 1537 checksums = checksums_onstack; 1538 if (WARN_ON(extra_space && 1539 digest_size > sizeof(checksums_onstack))) { 1540 r = -EINVAL; 1541 goto error; 1542 } 1543 } 1544 1545 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) { 1546 unsigned pos; 1547 char *mem, *checksums_ptr; 1548 1549 again: 1550 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1551 pos = 0; 1552 checksums_ptr = checksums; 1553 do { 1554 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1555 checksums_ptr += ic->tag_size; 1556 sectors_to_process -= ic->sectors_per_block; 1557 pos += ic->sectors_per_block << SECTOR_SHIFT; 1558 sector += ic->sectors_per_block; 1559 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1560 kunmap_atomic(mem); 1561 1562 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1563 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE); 1564 if (unlikely(r)) { 1565 if (r > 0) { 1566 DMERR_LIMIT("Checksum failed at sector 0x%llx", 1567 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1568 r = -EILSEQ; 1569 atomic64_inc(&ic->number_of_mismatches); 1570 } 1571 if (likely(checksums != checksums_onstack)) 1572 kfree(checksums); 1573 goto error; 1574 } 1575 1576 if (!sectors_to_process) 1577 break; 1578 1579 if (unlikely(pos < bv.bv_len)) { 1580 bv.bv_offset += pos; 1581 bv.bv_len -= pos; 1582 goto again; 1583 } 1584 } 1585 1586 if (likely(checksums != checksums_onstack)) 1587 kfree(checksums); 1588 } else { 1589 struct bio_integrity_payload *bip = dio->orig_bi_integrity; 1590 1591 if (bip) { 1592 struct bio_vec biv; 1593 struct bvec_iter iter; 1594 unsigned data_to_process = dio->range.n_sectors; 1595 sector_to_block(ic, data_to_process); 1596 data_to_process *= ic->tag_size; 1597 1598 bip_for_each_vec(biv, bip, iter) { 1599 unsigned char *tag; 1600 unsigned this_len; 1601 1602 BUG_ON(PageHighMem(biv.bv_page)); 1603 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1604 this_len = min(biv.bv_len, data_to_process); 1605 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1606 this_len, !dio->write ? TAG_READ : TAG_WRITE); 1607 if (unlikely(r)) 1608 goto error; 1609 data_to_process -= this_len; 1610 if (!data_to_process) 1611 break; 1612 } 1613 } 1614 } 1615 skip_io: 1616 dec_in_flight(dio); 1617 return; 1618 error: 1619 dio->bi_status = errno_to_blk_status(r); 1620 dec_in_flight(dio); 1621 } 1622 1623 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1624 { 1625 struct dm_integrity_c *ic = ti->private; 1626 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1627 struct bio_integrity_payload *bip; 1628 1629 sector_t area, offset; 1630 1631 dio->ic = ic; 1632 dio->bi_status = 0; 1633 1634 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1635 submit_flush_bio(ic, dio); 1636 return DM_MAPIO_SUBMITTED; 1637 } 1638 1639 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1640 dio->write = bio_op(bio) == REQ_OP_WRITE; 1641 dio->fua = dio->write && bio->bi_opf & REQ_FUA; 1642 if (unlikely(dio->fua)) { 1643 /* 1644 * Don't pass down the FUA flag because we have to flush 1645 * disk cache anyway. 1646 */ 1647 bio->bi_opf &= ~REQ_FUA; 1648 } 1649 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1650 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1651 (unsigned long long)dio->range.logical_sector, bio_sectors(bio), 1652 (unsigned long long)ic->provided_data_sectors); 1653 return DM_MAPIO_KILL; 1654 } 1655 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1656 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1657 ic->sectors_per_block, 1658 (unsigned long long)dio->range.logical_sector, bio_sectors(bio)); 1659 return DM_MAPIO_KILL; 1660 } 1661 1662 if (ic->sectors_per_block > 1) { 1663 struct bvec_iter iter; 1664 struct bio_vec bv; 1665 bio_for_each_segment(bv, bio, iter) { 1666 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1667 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1668 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1669 return DM_MAPIO_KILL; 1670 } 1671 } 1672 } 1673 1674 bip = bio_integrity(bio); 1675 if (!ic->internal_hash) { 1676 if (bip) { 1677 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1678 if (ic->log2_tag_size >= 0) 1679 wanted_tag_size <<= ic->log2_tag_size; 1680 else 1681 wanted_tag_size *= ic->tag_size; 1682 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1683 DMERR("Invalid integrity data size %u, expected %u", 1684 bip->bip_iter.bi_size, wanted_tag_size); 1685 return DM_MAPIO_KILL; 1686 } 1687 } 1688 } else { 1689 if (unlikely(bip != NULL)) { 1690 DMERR("Unexpected integrity data when using internal hash"); 1691 return DM_MAPIO_KILL; 1692 } 1693 } 1694 1695 if (unlikely(ic->mode == 'R') && unlikely(dio->write)) 1696 return DM_MAPIO_KILL; 1697 1698 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1699 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1700 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1701 1702 dm_integrity_map_continue(dio, true); 1703 return DM_MAPIO_SUBMITTED; 1704 } 1705 1706 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1707 unsigned journal_section, unsigned journal_entry) 1708 { 1709 struct dm_integrity_c *ic = dio->ic; 1710 sector_t logical_sector; 1711 unsigned n_sectors; 1712 1713 logical_sector = dio->range.logical_sector; 1714 n_sectors = dio->range.n_sectors; 1715 do { 1716 struct bio_vec bv = bio_iovec(bio); 1717 char *mem; 1718 1719 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1720 bv.bv_len = n_sectors << SECTOR_SHIFT; 1721 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1722 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1723 retry_kmap: 1724 mem = kmap_atomic(bv.bv_page); 1725 if (likely(dio->write)) 1726 flush_dcache_page(bv.bv_page); 1727 1728 do { 1729 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1730 1731 if (unlikely(!dio->write)) { 1732 struct journal_sector *js; 1733 char *mem_ptr; 1734 unsigned s; 1735 1736 if (unlikely(journal_entry_is_inprogress(je))) { 1737 flush_dcache_page(bv.bv_page); 1738 kunmap_atomic(mem); 1739 1740 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1741 goto retry_kmap; 1742 } 1743 smp_rmb(); 1744 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1745 js = access_journal_data(ic, journal_section, journal_entry); 1746 mem_ptr = mem + bv.bv_offset; 1747 s = 0; 1748 do { 1749 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1750 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1751 js++; 1752 mem_ptr += 1 << SECTOR_SHIFT; 1753 } while (++s < ic->sectors_per_block); 1754 #ifdef INTERNAL_VERIFY 1755 if (ic->internal_hash) { 1756 char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1757 1758 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1759 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1760 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1761 (unsigned long long)logical_sector); 1762 } 1763 } 1764 #endif 1765 } 1766 1767 if (!ic->internal_hash) { 1768 struct bio_integrity_payload *bip = bio_integrity(bio); 1769 unsigned tag_todo = ic->tag_size; 1770 char *tag_ptr = journal_entry_tag(ic, je); 1771 1772 if (bip) do { 1773 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1774 unsigned tag_now = min(biv.bv_len, tag_todo); 1775 char *tag_addr; 1776 BUG_ON(PageHighMem(biv.bv_page)); 1777 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1778 if (likely(dio->write)) 1779 memcpy(tag_ptr, tag_addr, tag_now); 1780 else 1781 memcpy(tag_addr, tag_ptr, tag_now); 1782 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1783 tag_ptr += tag_now; 1784 tag_todo -= tag_now; 1785 } while (unlikely(tag_todo)); else { 1786 if (likely(dio->write)) 1787 memset(tag_ptr, 0, tag_todo); 1788 } 1789 } 1790 1791 if (likely(dio->write)) { 1792 struct journal_sector *js; 1793 unsigned s; 1794 1795 js = access_journal_data(ic, journal_section, journal_entry); 1796 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1797 1798 s = 0; 1799 do { 1800 je->last_bytes[s] = js[s].commit_id; 1801 } while (++s < ic->sectors_per_block); 1802 1803 if (ic->internal_hash) { 1804 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1805 if (unlikely(digest_size > ic->tag_size)) { 1806 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1807 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1808 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1809 } else 1810 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1811 } 1812 1813 journal_entry_set_sector(je, logical_sector); 1814 } 1815 logical_sector += ic->sectors_per_block; 1816 1817 journal_entry++; 1818 if (unlikely(journal_entry == ic->journal_section_entries)) { 1819 journal_entry = 0; 1820 journal_section++; 1821 wraparound_section(ic, &journal_section); 1822 } 1823 1824 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1825 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1826 1827 if (unlikely(!dio->write)) 1828 flush_dcache_page(bv.bv_page); 1829 kunmap_atomic(mem); 1830 } while (n_sectors); 1831 1832 if (likely(dio->write)) { 1833 smp_mb(); 1834 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1835 wake_up(&ic->copy_to_journal_wait); 1836 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1837 queue_work(ic->commit_wq, &ic->commit_work); 1838 } else { 1839 schedule_autocommit(ic); 1840 } 1841 } else { 1842 remove_range(ic, &dio->range); 1843 } 1844 1845 if (unlikely(bio->bi_iter.bi_size)) { 1846 sector_t area, offset; 1847 1848 dio->range.logical_sector = logical_sector; 1849 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1850 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1851 return true; 1852 } 1853 1854 return false; 1855 } 1856 1857 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1858 { 1859 struct dm_integrity_c *ic = dio->ic; 1860 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1861 unsigned journal_section, journal_entry; 1862 unsigned journal_read_pos; 1863 struct completion read_comp; 1864 bool need_sync_io = ic->internal_hash && !dio->write; 1865 1866 if (need_sync_io && from_map) { 1867 INIT_WORK(&dio->work, integrity_bio_wait); 1868 queue_work(ic->metadata_wq, &dio->work); 1869 return; 1870 } 1871 1872 lock_retry: 1873 spin_lock_irq(&ic->endio_wait.lock); 1874 retry: 1875 if (unlikely(dm_integrity_failed(ic))) { 1876 spin_unlock_irq(&ic->endio_wait.lock); 1877 do_endio(ic, bio); 1878 return; 1879 } 1880 dio->range.n_sectors = bio_sectors(bio); 1881 journal_read_pos = NOT_FOUND; 1882 if (likely(ic->mode == 'J')) { 1883 if (dio->write) { 1884 unsigned next_entry, i, pos; 1885 unsigned ws, we, range_sectors; 1886 1887 dio->range.n_sectors = min(dio->range.n_sectors, 1888 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 1889 if (unlikely(!dio->range.n_sectors)) { 1890 if (from_map) 1891 goto offload_to_thread; 1892 sleep_on_endio_wait(ic); 1893 goto retry; 1894 } 1895 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 1896 ic->free_sectors -= range_sectors; 1897 journal_section = ic->free_section; 1898 journal_entry = ic->free_section_entry; 1899 1900 next_entry = ic->free_section_entry + range_sectors; 1901 ic->free_section_entry = next_entry % ic->journal_section_entries; 1902 ic->free_section += next_entry / ic->journal_section_entries; 1903 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 1904 wraparound_section(ic, &ic->free_section); 1905 1906 pos = journal_section * ic->journal_section_entries + journal_entry; 1907 ws = journal_section; 1908 we = journal_entry; 1909 i = 0; 1910 do { 1911 struct journal_entry *je; 1912 1913 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 1914 pos++; 1915 if (unlikely(pos >= ic->journal_entries)) 1916 pos = 0; 1917 1918 je = access_journal_entry(ic, ws, we); 1919 BUG_ON(!journal_entry_is_unused(je)); 1920 journal_entry_set_inprogress(je); 1921 we++; 1922 if (unlikely(we == ic->journal_section_entries)) { 1923 we = 0; 1924 ws++; 1925 wraparound_section(ic, &ws); 1926 } 1927 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 1928 1929 spin_unlock_irq(&ic->endio_wait.lock); 1930 goto journal_read_write; 1931 } else { 1932 sector_t next_sector; 1933 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1934 if (likely(journal_read_pos == NOT_FOUND)) { 1935 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 1936 dio->range.n_sectors = next_sector - dio->range.logical_sector; 1937 } else { 1938 unsigned i; 1939 unsigned jp = journal_read_pos + 1; 1940 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 1941 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 1942 break; 1943 } 1944 dio->range.n_sectors = i; 1945 } 1946 } 1947 } 1948 if (unlikely(!add_new_range(ic, &dio->range, true))) { 1949 /* 1950 * We must not sleep in the request routine because it could 1951 * stall bios on current->bio_list. 1952 * So, we offload the bio to a workqueue if we have to sleep. 1953 */ 1954 if (from_map) { 1955 offload_to_thread: 1956 spin_unlock_irq(&ic->endio_wait.lock); 1957 INIT_WORK(&dio->work, integrity_bio_wait); 1958 queue_work(ic->wait_wq, &dio->work); 1959 return; 1960 } 1961 if (journal_read_pos != NOT_FOUND) 1962 dio->range.n_sectors = ic->sectors_per_block; 1963 wait_and_add_new_range(ic, &dio->range); 1964 /* 1965 * wait_and_add_new_range drops the spinlock, so the journal 1966 * may have been changed arbitrarily. We need to recheck. 1967 * To simplify the code, we restrict I/O size to just one block. 1968 */ 1969 if (journal_read_pos != NOT_FOUND) { 1970 sector_t next_sector; 1971 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1972 if (unlikely(new_pos != journal_read_pos)) { 1973 remove_range_unlocked(ic, &dio->range); 1974 goto retry; 1975 } 1976 } 1977 } 1978 spin_unlock_irq(&ic->endio_wait.lock); 1979 1980 if (unlikely(journal_read_pos != NOT_FOUND)) { 1981 journal_section = journal_read_pos / ic->journal_section_entries; 1982 journal_entry = journal_read_pos % ic->journal_section_entries; 1983 goto journal_read_write; 1984 } 1985 1986 if (ic->mode == 'B' && dio->write) { 1987 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 1988 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 1989 struct bitmap_block_status *bbs; 1990 1991 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 1992 spin_lock(&bbs->bio_queue_lock); 1993 bio_list_add(&bbs->bio_queue, bio); 1994 spin_unlock(&bbs->bio_queue_lock); 1995 queue_work(ic->writer_wq, &bbs->work); 1996 return; 1997 } 1998 } 1999 2000 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2001 2002 if (need_sync_io) { 2003 init_completion(&read_comp); 2004 dio->completion = &read_comp; 2005 } else 2006 dio->completion = NULL; 2007 2008 dio->orig_bi_iter = bio->bi_iter; 2009 2010 dio->orig_bi_disk = bio->bi_disk; 2011 dio->orig_bi_partno = bio->bi_partno; 2012 bio_set_dev(bio, ic->dev->bdev); 2013 2014 dio->orig_bi_integrity = bio_integrity(bio); 2015 bio->bi_integrity = NULL; 2016 bio->bi_opf &= ~REQ_INTEGRITY; 2017 2018 dio->orig_bi_end_io = bio->bi_end_io; 2019 bio->bi_end_io = integrity_end_io; 2020 2021 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2022 generic_make_request(bio); 2023 2024 if (need_sync_io) { 2025 wait_for_completion_io(&read_comp); 2026 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2027 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2028 goto skip_check; 2029 if (ic->mode == 'B') { 2030 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2031 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2032 goto skip_check; 2033 } 2034 2035 if (likely(!bio->bi_status)) 2036 integrity_metadata(&dio->work); 2037 else 2038 skip_check: 2039 dec_in_flight(dio); 2040 2041 } else { 2042 INIT_WORK(&dio->work, integrity_metadata); 2043 queue_work(ic->metadata_wq, &dio->work); 2044 } 2045 2046 return; 2047 2048 journal_read_write: 2049 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2050 goto lock_retry; 2051 2052 do_endio_flush(ic, dio); 2053 } 2054 2055 2056 static void integrity_bio_wait(struct work_struct *w) 2057 { 2058 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2059 2060 dm_integrity_map_continue(dio, false); 2061 } 2062 2063 static void pad_uncommitted(struct dm_integrity_c *ic) 2064 { 2065 if (ic->free_section_entry) { 2066 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2067 ic->free_section_entry = 0; 2068 ic->free_section++; 2069 wraparound_section(ic, &ic->free_section); 2070 ic->n_uncommitted_sections++; 2071 } 2072 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2073 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2074 ic->journal_section_entries + ic->free_sectors)) { 2075 DMCRIT("journal_sections %u, journal_section_entries %u, " 2076 "n_uncommitted_sections %u, n_committed_sections %u, " 2077 "journal_section_entries %u, free_sectors %u", 2078 ic->journal_sections, ic->journal_section_entries, 2079 ic->n_uncommitted_sections, ic->n_committed_sections, 2080 ic->journal_section_entries, ic->free_sectors); 2081 } 2082 } 2083 2084 static void integrity_commit(struct work_struct *w) 2085 { 2086 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2087 unsigned commit_start, commit_sections; 2088 unsigned i, j, n; 2089 struct bio *flushes; 2090 2091 del_timer(&ic->autocommit_timer); 2092 2093 spin_lock_irq(&ic->endio_wait.lock); 2094 flushes = bio_list_get(&ic->flush_bio_list); 2095 if (unlikely(ic->mode != 'J')) { 2096 spin_unlock_irq(&ic->endio_wait.lock); 2097 dm_integrity_flush_buffers(ic); 2098 goto release_flush_bios; 2099 } 2100 2101 pad_uncommitted(ic); 2102 commit_start = ic->uncommitted_section; 2103 commit_sections = ic->n_uncommitted_sections; 2104 spin_unlock_irq(&ic->endio_wait.lock); 2105 2106 if (!commit_sections) 2107 goto release_flush_bios; 2108 2109 i = commit_start; 2110 for (n = 0; n < commit_sections; n++) { 2111 for (j = 0; j < ic->journal_section_entries; j++) { 2112 struct journal_entry *je; 2113 je = access_journal_entry(ic, i, j); 2114 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2115 } 2116 for (j = 0; j < ic->journal_section_sectors; j++) { 2117 struct journal_sector *js; 2118 js = access_journal(ic, i, j); 2119 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2120 } 2121 i++; 2122 if (unlikely(i >= ic->journal_sections)) 2123 ic->commit_seq = next_commit_seq(ic->commit_seq); 2124 wraparound_section(ic, &i); 2125 } 2126 smp_rmb(); 2127 2128 write_journal(ic, commit_start, commit_sections); 2129 2130 spin_lock_irq(&ic->endio_wait.lock); 2131 ic->uncommitted_section += commit_sections; 2132 wraparound_section(ic, &ic->uncommitted_section); 2133 ic->n_uncommitted_sections -= commit_sections; 2134 ic->n_committed_sections += commit_sections; 2135 spin_unlock_irq(&ic->endio_wait.lock); 2136 2137 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2138 queue_work(ic->writer_wq, &ic->writer_work); 2139 2140 release_flush_bios: 2141 while (flushes) { 2142 struct bio *next = flushes->bi_next; 2143 flushes->bi_next = NULL; 2144 do_endio(ic, flushes); 2145 flushes = next; 2146 } 2147 } 2148 2149 static void complete_copy_from_journal(unsigned long error, void *context) 2150 { 2151 struct journal_io *io = context; 2152 struct journal_completion *comp = io->comp; 2153 struct dm_integrity_c *ic = comp->ic; 2154 remove_range(ic, &io->range); 2155 mempool_free(io, &ic->journal_io_mempool); 2156 if (unlikely(error != 0)) 2157 dm_integrity_io_error(ic, "copying from journal", -EIO); 2158 complete_journal_op(comp); 2159 } 2160 2161 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2162 struct journal_entry *je) 2163 { 2164 unsigned s = 0; 2165 do { 2166 js->commit_id = je->last_bytes[s]; 2167 js++; 2168 } while (++s < ic->sectors_per_block); 2169 } 2170 2171 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2172 unsigned write_sections, bool from_replay) 2173 { 2174 unsigned i, j, n; 2175 struct journal_completion comp; 2176 struct blk_plug plug; 2177 2178 blk_start_plug(&plug); 2179 2180 comp.ic = ic; 2181 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2182 init_completion(&comp.comp); 2183 2184 i = write_start; 2185 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2186 #ifndef INTERNAL_VERIFY 2187 if (unlikely(from_replay)) 2188 #endif 2189 rw_section_mac(ic, i, false); 2190 for (j = 0; j < ic->journal_section_entries; j++) { 2191 struct journal_entry *je = access_journal_entry(ic, i, j); 2192 sector_t sec, area, offset; 2193 unsigned k, l, next_loop; 2194 sector_t metadata_block; 2195 unsigned metadata_offset; 2196 struct journal_io *io; 2197 2198 if (journal_entry_is_unused(je)) 2199 continue; 2200 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2201 sec = journal_entry_get_sector(je); 2202 if (unlikely(from_replay)) { 2203 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2204 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2205 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2206 } 2207 } 2208 get_area_and_offset(ic, sec, &area, &offset); 2209 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2210 for (k = j + 1; k < ic->journal_section_entries; k++) { 2211 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2212 sector_t sec2, area2, offset2; 2213 if (journal_entry_is_unused(je2)) 2214 break; 2215 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2216 sec2 = journal_entry_get_sector(je2); 2217 get_area_and_offset(ic, sec2, &area2, &offset2); 2218 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2219 break; 2220 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2221 } 2222 next_loop = k - 1; 2223 2224 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2225 io->comp = ∁ 2226 io->range.logical_sector = sec; 2227 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2228 2229 spin_lock_irq(&ic->endio_wait.lock); 2230 add_new_range_and_wait(ic, &io->range); 2231 2232 if (likely(!from_replay)) { 2233 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2234 2235 /* don't write if there is newer committed sector */ 2236 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2237 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2238 2239 journal_entry_set_unused(je2); 2240 remove_journal_node(ic, §ion_node[j]); 2241 j++; 2242 sec += ic->sectors_per_block; 2243 offset += ic->sectors_per_block; 2244 } 2245 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2246 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2247 2248 journal_entry_set_unused(je2); 2249 remove_journal_node(ic, §ion_node[k - 1]); 2250 k--; 2251 } 2252 if (j == k) { 2253 remove_range_unlocked(ic, &io->range); 2254 spin_unlock_irq(&ic->endio_wait.lock); 2255 mempool_free(io, &ic->journal_io_mempool); 2256 goto skip_io; 2257 } 2258 for (l = j; l < k; l++) { 2259 remove_journal_node(ic, §ion_node[l]); 2260 } 2261 } 2262 spin_unlock_irq(&ic->endio_wait.lock); 2263 2264 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2265 for (l = j; l < k; l++) { 2266 int r; 2267 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2268 2269 if ( 2270 #ifndef INTERNAL_VERIFY 2271 unlikely(from_replay) && 2272 #endif 2273 ic->internal_hash) { 2274 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2275 2276 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2277 (char *)access_journal_data(ic, i, l), test_tag); 2278 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2279 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2280 } 2281 2282 journal_entry_set_unused(je2); 2283 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2284 ic->tag_size, TAG_WRITE); 2285 if (unlikely(r)) { 2286 dm_integrity_io_error(ic, "reading tags", r); 2287 } 2288 } 2289 2290 atomic_inc(&comp.in_flight); 2291 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2292 (k - j) << ic->sb->log2_sectors_per_block, 2293 get_data_sector(ic, area, offset), 2294 complete_copy_from_journal, io); 2295 skip_io: 2296 j = next_loop; 2297 } 2298 } 2299 2300 dm_bufio_write_dirty_buffers_async(ic->bufio); 2301 2302 blk_finish_plug(&plug); 2303 2304 complete_journal_op(&comp); 2305 wait_for_completion_io(&comp.comp); 2306 2307 dm_integrity_flush_buffers(ic); 2308 } 2309 2310 static void integrity_writer(struct work_struct *w) 2311 { 2312 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2313 unsigned write_start, write_sections; 2314 2315 unsigned prev_free_sectors; 2316 2317 /* the following test is not needed, but it tests the replay code */ 2318 if (READ_ONCE(ic->suspending) && !ic->meta_dev) 2319 return; 2320 2321 spin_lock_irq(&ic->endio_wait.lock); 2322 write_start = ic->committed_section; 2323 write_sections = ic->n_committed_sections; 2324 spin_unlock_irq(&ic->endio_wait.lock); 2325 2326 if (!write_sections) 2327 return; 2328 2329 do_journal_write(ic, write_start, write_sections, false); 2330 2331 spin_lock_irq(&ic->endio_wait.lock); 2332 2333 ic->committed_section += write_sections; 2334 wraparound_section(ic, &ic->committed_section); 2335 ic->n_committed_sections -= write_sections; 2336 2337 prev_free_sectors = ic->free_sectors; 2338 ic->free_sectors += write_sections * ic->journal_section_entries; 2339 if (unlikely(!prev_free_sectors)) 2340 wake_up_locked(&ic->endio_wait); 2341 2342 spin_unlock_irq(&ic->endio_wait.lock); 2343 } 2344 2345 static void recalc_write_super(struct dm_integrity_c *ic) 2346 { 2347 int r; 2348 2349 dm_integrity_flush_buffers(ic); 2350 if (dm_integrity_failed(ic)) 2351 return; 2352 2353 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2354 if (unlikely(r)) 2355 dm_integrity_io_error(ic, "writing superblock", r); 2356 } 2357 2358 static void integrity_recalc(struct work_struct *w) 2359 { 2360 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2361 struct dm_integrity_range range; 2362 struct dm_io_request io_req; 2363 struct dm_io_region io_loc; 2364 sector_t area, offset; 2365 sector_t metadata_block; 2366 unsigned metadata_offset; 2367 sector_t logical_sector, n_sectors; 2368 __u8 *t; 2369 unsigned i; 2370 int r; 2371 unsigned super_counter = 0; 2372 2373 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2374 2375 spin_lock_irq(&ic->endio_wait.lock); 2376 2377 next_chunk: 2378 2379 if (unlikely(READ_ONCE(ic->suspending))) 2380 goto unlock_ret; 2381 2382 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2383 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2384 if (ic->mode == 'B') { 2385 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2386 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2387 } 2388 goto unlock_ret; 2389 } 2390 2391 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2392 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2393 if (!ic->meta_dev) 2394 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2395 2396 add_new_range_and_wait(ic, &range); 2397 spin_unlock_irq(&ic->endio_wait.lock); 2398 logical_sector = range.logical_sector; 2399 n_sectors = range.n_sectors; 2400 2401 if (ic->mode == 'B') { 2402 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2403 goto advance_and_next; 2404 } 2405 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2406 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2407 logical_sector += ic->sectors_per_block; 2408 n_sectors -= ic->sectors_per_block; 2409 cond_resched(); 2410 } 2411 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2412 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2413 n_sectors -= ic->sectors_per_block; 2414 cond_resched(); 2415 } 2416 get_area_and_offset(ic, logical_sector, &area, &offset); 2417 } 2418 2419 DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors); 2420 2421 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2422 recalc_write_super(ic); 2423 if (ic->mode == 'B') { 2424 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2425 } 2426 super_counter = 0; 2427 } 2428 2429 if (unlikely(dm_integrity_failed(ic))) 2430 goto err; 2431 2432 io_req.bi_op = REQ_OP_READ; 2433 io_req.bi_op_flags = 0; 2434 io_req.mem.type = DM_IO_VMA; 2435 io_req.mem.ptr.addr = ic->recalc_buffer; 2436 io_req.notify.fn = NULL; 2437 io_req.client = ic->io; 2438 io_loc.bdev = ic->dev->bdev; 2439 io_loc.sector = get_data_sector(ic, area, offset); 2440 io_loc.count = n_sectors; 2441 2442 r = dm_io(&io_req, 1, &io_loc, NULL); 2443 if (unlikely(r)) { 2444 dm_integrity_io_error(ic, "reading data", r); 2445 goto err; 2446 } 2447 2448 t = ic->recalc_tags; 2449 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2450 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2451 t += ic->tag_size; 2452 } 2453 2454 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2455 2456 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2457 if (unlikely(r)) { 2458 dm_integrity_io_error(ic, "writing tags", r); 2459 goto err; 2460 } 2461 2462 advance_and_next: 2463 cond_resched(); 2464 2465 spin_lock_irq(&ic->endio_wait.lock); 2466 remove_range_unlocked(ic, &range); 2467 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2468 goto next_chunk; 2469 2470 err: 2471 remove_range(ic, &range); 2472 return; 2473 2474 unlock_ret: 2475 spin_unlock_irq(&ic->endio_wait.lock); 2476 2477 recalc_write_super(ic); 2478 } 2479 2480 static void bitmap_block_work(struct work_struct *w) 2481 { 2482 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2483 struct dm_integrity_c *ic = bbs->ic; 2484 struct bio *bio; 2485 struct bio_list bio_queue; 2486 struct bio_list waiting; 2487 2488 bio_list_init(&waiting); 2489 2490 spin_lock(&bbs->bio_queue_lock); 2491 bio_queue = bbs->bio_queue; 2492 bio_list_init(&bbs->bio_queue); 2493 spin_unlock(&bbs->bio_queue_lock); 2494 2495 while ((bio = bio_list_pop(&bio_queue))) { 2496 struct dm_integrity_io *dio; 2497 2498 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2499 2500 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2501 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2502 remove_range(ic, &dio->range); 2503 INIT_WORK(&dio->work, integrity_bio_wait); 2504 queue_work(ic->wait_wq, &dio->work); 2505 } else { 2506 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2507 dio->range.n_sectors, BITMAP_OP_SET); 2508 bio_list_add(&waiting, bio); 2509 } 2510 } 2511 2512 if (bio_list_empty(&waiting)) 2513 return; 2514 2515 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2516 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2517 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2518 2519 while ((bio = bio_list_pop(&waiting))) { 2520 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2521 2522 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2523 dio->range.n_sectors, BITMAP_OP_SET); 2524 2525 remove_range(ic, &dio->range); 2526 INIT_WORK(&dio->work, integrity_bio_wait); 2527 queue_work(ic->wait_wq, &dio->work); 2528 } 2529 2530 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2531 } 2532 2533 static void bitmap_flush_work(struct work_struct *work) 2534 { 2535 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2536 struct dm_integrity_range range; 2537 unsigned long limit; 2538 struct bio *bio; 2539 2540 dm_integrity_flush_buffers(ic); 2541 2542 range.logical_sector = 0; 2543 range.n_sectors = ic->provided_data_sectors; 2544 2545 spin_lock_irq(&ic->endio_wait.lock); 2546 add_new_range_and_wait(ic, &range); 2547 spin_unlock_irq(&ic->endio_wait.lock); 2548 2549 dm_integrity_flush_buffers(ic); 2550 if (ic->meta_dev) 2551 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL); 2552 2553 limit = ic->provided_data_sectors; 2554 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2555 limit = le64_to_cpu(ic->sb->recalc_sector) 2556 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2557 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2558 } 2559 /*DEBUG_print("zeroing journal\n");*/ 2560 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2561 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2562 2563 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2564 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2565 2566 spin_lock_irq(&ic->endio_wait.lock); 2567 remove_range_unlocked(ic, &range); 2568 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2569 bio_endio(bio); 2570 spin_unlock_irq(&ic->endio_wait.lock); 2571 spin_lock_irq(&ic->endio_wait.lock); 2572 } 2573 spin_unlock_irq(&ic->endio_wait.lock); 2574 } 2575 2576 2577 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2578 unsigned n_sections, unsigned char commit_seq) 2579 { 2580 unsigned i, j, n; 2581 2582 if (!n_sections) 2583 return; 2584 2585 for (n = 0; n < n_sections; n++) { 2586 i = start_section + n; 2587 wraparound_section(ic, &i); 2588 for (j = 0; j < ic->journal_section_sectors; j++) { 2589 struct journal_sector *js = access_journal(ic, i, j); 2590 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2591 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2592 } 2593 for (j = 0; j < ic->journal_section_entries; j++) { 2594 struct journal_entry *je = access_journal_entry(ic, i, j); 2595 journal_entry_set_unused(je); 2596 } 2597 } 2598 2599 write_journal(ic, start_section, n_sections); 2600 } 2601 2602 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2603 { 2604 unsigned char k; 2605 for (k = 0; k < N_COMMIT_IDS; k++) { 2606 if (dm_integrity_commit_id(ic, i, j, k) == id) 2607 return k; 2608 } 2609 dm_integrity_io_error(ic, "journal commit id", -EIO); 2610 return -EIO; 2611 } 2612 2613 static void replay_journal(struct dm_integrity_c *ic) 2614 { 2615 unsigned i, j; 2616 bool used_commit_ids[N_COMMIT_IDS]; 2617 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2618 unsigned write_start, write_sections; 2619 unsigned continue_section; 2620 bool journal_empty; 2621 unsigned char unused, last_used, want_commit_seq; 2622 2623 if (ic->mode == 'R') 2624 return; 2625 2626 if (ic->journal_uptodate) 2627 return; 2628 2629 last_used = 0; 2630 write_start = 0; 2631 2632 if (!ic->just_formatted) { 2633 DEBUG_print("reading journal\n"); 2634 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2635 if (ic->journal_io) 2636 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2637 if (ic->journal_io) { 2638 struct journal_completion crypt_comp; 2639 crypt_comp.ic = ic; 2640 init_completion(&crypt_comp.comp); 2641 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2642 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2643 wait_for_completion(&crypt_comp.comp); 2644 } 2645 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2646 } 2647 2648 if (dm_integrity_failed(ic)) 2649 goto clear_journal; 2650 2651 journal_empty = true; 2652 memset(used_commit_ids, 0, sizeof used_commit_ids); 2653 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2654 for (i = 0; i < ic->journal_sections; i++) { 2655 for (j = 0; j < ic->journal_section_sectors; j++) { 2656 int k; 2657 struct journal_sector *js = access_journal(ic, i, j); 2658 k = find_commit_seq(ic, i, j, js->commit_id); 2659 if (k < 0) 2660 goto clear_journal; 2661 used_commit_ids[k] = true; 2662 max_commit_id_sections[k] = i; 2663 } 2664 if (journal_empty) { 2665 for (j = 0; j < ic->journal_section_entries; j++) { 2666 struct journal_entry *je = access_journal_entry(ic, i, j); 2667 if (!journal_entry_is_unused(je)) { 2668 journal_empty = false; 2669 break; 2670 } 2671 } 2672 } 2673 } 2674 2675 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2676 unused = N_COMMIT_IDS - 1; 2677 while (unused && !used_commit_ids[unused - 1]) 2678 unused--; 2679 } else { 2680 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2681 if (!used_commit_ids[unused]) 2682 break; 2683 if (unused == N_COMMIT_IDS) { 2684 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2685 goto clear_journal; 2686 } 2687 } 2688 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2689 unused, used_commit_ids[0], used_commit_ids[1], 2690 used_commit_ids[2], used_commit_ids[3]); 2691 2692 last_used = prev_commit_seq(unused); 2693 want_commit_seq = prev_commit_seq(last_used); 2694 2695 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2696 journal_empty = true; 2697 2698 write_start = max_commit_id_sections[last_used] + 1; 2699 if (unlikely(write_start >= ic->journal_sections)) 2700 want_commit_seq = next_commit_seq(want_commit_seq); 2701 wraparound_section(ic, &write_start); 2702 2703 i = write_start; 2704 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2705 for (j = 0; j < ic->journal_section_sectors; j++) { 2706 struct journal_sector *js = access_journal(ic, i, j); 2707 2708 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2709 /* 2710 * This could be caused by crash during writing. 2711 * We won't replay the inconsistent part of the 2712 * journal. 2713 */ 2714 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2715 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2716 goto brk; 2717 } 2718 } 2719 i++; 2720 if (unlikely(i >= ic->journal_sections)) 2721 want_commit_seq = next_commit_seq(want_commit_seq); 2722 wraparound_section(ic, &i); 2723 } 2724 brk: 2725 2726 if (!journal_empty) { 2727 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2728 write_sections, write_start, want_commit_seq); 2729 do_journal_write(ic, write_start, write_sections, true); 2730 } 2731 2732 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2733 continue_section = write_start; 2734 ic->commit_seq = want_commit_seq; 2735 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2736 } else { 2737 unsigned s; 2738 unsigned char erase_seq; 2739 clear_journal: 2740 DEBUG_print("clearing journal\n"); 2741 2742 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2743 s = write_start; 2744 init_journal(ic, s, 1, erase_seq); 2745 s++; 2746 wraparound_section(ic, &s); 2747 if (ic->journal_sections >= 2) { 2748 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2749 s += ic->journal_sections - 2; 2750 wraparound_section(ic, &s); 2751 init_journal(ic, s, 1, erase_seq); 2752 } 2753 2754 continue_section = 0; 2755 ic->commit_seq = next_commit_seq(erase_seq); 2756 } 2757 2758 ic->committed_section = continue_section; 2759 ic->n_committed_sections = 0; 2760 2761 ic->uncommitted_section = continue_section; 2762 ic->n_uncommitted_sections = 0; 2763 2764 ic->free_section = continue_section; 2765 ic->free_section_entry = 0; 2766 ic->free_sectors = ic->journal_entries; 2767 2768 ic->journal_tree_root = RB_ROOT; 2769 for (i = 0; i < ic->journal_entries; i++) 2770 init_journal_node(&ic->journal_tree[i]); 2771 } 2772 2773 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 2774 { 2775 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 2776 2777 if (ic->mode == 'B') { 2778 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 2779 ic->synchronous_mode = 1; 2780 2781 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2782 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2783 flush_workqueue(ic->commit_wq); 2784 } 2785 } 2786 2787 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 2788 { 2789 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 2790 2791 DEBUG_print("dm_integrity_reboot\n"); 2792 2793 dm_integrity_enter_synchronous_mode(ic); 2794 2795 return NOTIFY_DONE; 2796 } 2797 2798 static void dm_integrity_postsuspend(struct dm_target *ti) 2799 { 2800 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2801 int r; 2802 2803 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 2804 2805 del_timer_sync(&ic->autocommit_timer); 2806 2807 WRITE_ONCE(ic->suspending, 1); 2808 2809 if (ic->recalc_wq) 2810 drain_workqueue(ic->recalc_wq); 2811 2812 if (ic->mode == 'B') 2813 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2814 2815 queue_work(ic->commit_wq, &ic->commit_work); 2816 drain_workqueue(ic->commit_wq); 2817 2818 if (ic->mode == 'J') { 2819 if (ic->meta_dev) 2820 queue_work(ic->writer_wq, &ic->writer_work); 2821 drain_workqueue(ic->writer_wq); 2822 dm_integrity_flush_buffers(ic); 2823 } 2824 2825 if (ic->mode == 'B') { 2826 dm_integrity_flush_buffers(ic); 2827 #if 1 2828 /* set to 0 to test bitmap replay code */ 2829 init_journal(ic, 0, ic->journal_sections, 0); 2830 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2831 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2832 if (unlikely(r)) 2833 dm_integrity_io_error(ic, "writing superblock", r); 2834 #endif 2835 } 2836 2837 WRITE_ONCE(ic->suspending, 0); 2838 2839 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2840 2841 ic->journal_uptodate = true; 2842 } 2843 2844 static void dm_integrity_resume(struct dm_target *ti) 2845 { 2846 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2847 int r; 2848 DEBUG_print("resume\n"); 2849 2850 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 2851 DEBUG_print("resume dirty_bitmap\n"); 2852 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 2853 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2854 if (ic->mode == 'B') { 2855 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 2856 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 2857 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 2858 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 2859 BITMAP_OP_TEST_ALL_CLEAR)) { 2860 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2861 ic->sb->recalc_sector = cpu_to_le64(0); 2862 } 2863 } else { 2864 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 2865 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 2866 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 2867 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2868 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2869 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2870 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2871 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2872 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2873 ic->sb->recalc_sector = cpu_to_le64(0); 2874 } 2875 } else { 2876 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 2877 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) { 2878 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2879 ic->sb->recalc_sector = cpu_to_le64(0); 2880 } 2881 init_journal(ic, 0, ic->journal_sections, 0); 2882 replay_journal(ic); 2883 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2884 } 2885 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2886 if (unlikely(r)) 2887 dm_integrity_io_error(ic, "writing superblock", r); 2888 } else { 2889 replay_journal(ic); 2890 if (ic->mode == 'B') { 2891 int mode; 2892 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2893 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 2894 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2895 if (unlikely(r)) 2896 dm_integrity_io_error(ic, "writing superblock", r); 2897 2898 mode = ic->recalculate_flag ? BITMAP_OP_SET : BITMAP_OP_CLEAR; 2899 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, mode); 2900 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, mode); 2901 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, mode); 2902 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2903 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2904 } 2905 } 2906 2907 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 2908 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2909 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 2910 DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors); 2911 if (recalc_pos < ic->provided_data_sectors) { 2912 queue_work(ic->recalc_wq, &ic->recalc_work); 2913 } else if (recalc_pos > ic->provided_data_sectors) { 2914 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 2915 recalc_write_super(ic); 2916 } 2917 } 2918 2919 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 2920 ic->reboot_notifier.next = NULL; 2921 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 2922 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 2923 2924 #if 0 2925 /* set to 1 to stress test synchronous mode */ 2926 dm_integrity_enter_synchronous_mode(ic); 2927 #endif 2928 } 2929 2930 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 2931 unsigned status_flags, char *result, unsigned maxlen) 2932 { 2933 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2934 unsigned arg_count; 2935 size_t sz = 0; 2936 2937 switch (type) { 2938 case STATUSTYPE_INFO: 2939 DMEMIT("%llu %llu", 2940 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 2941 (unsigned long long)ic->provided_data_sectors); 2942 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 2943 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector)); 2944 else 2945 DMEMIT(" -"); 2946 break; 2947 2948 case STATUSTYPE_TABLE: { 2949 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 2950 watermark_percentage += ic->journal_entries / 2; 2951 do_div(watermark_percentage, ic->journal_entries); 2952 arg_count = 3; 2953 arg_count += !!ic->meta_dev; 2954 arg_count += ic->sectors_per_block != 1; 2955 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 2956 arg_count += ic->mode == 'J'; 2957 arg_count += ic->mode == 'J'; 2958 arg_count += ic->mode == 'B'; 2959 arg_count += ic->mode == 'B'; 2960 arg_count += !!ic->internal_hash_alg.alg_string; 2961 arg_count += !!ic->journal_crypt_alg.alg_string; 2962 arg_count += !!ic->journal_mac_alg.alg_string; 2963 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 2964 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start, 2965 ic->tag_size, ic->mode, arg_count); 2966 if (ic->meta_dev) 2967 DMEMIT(" meta_device:%s", ic->meta_dev->name); 2968 if (ic->sectors_per_block != 1) 2969 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 2970 if (ic->recalculate_flag) 2971 DMEMIT(" recalculate"); 2972 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 2973 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 2974 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 2975 if (ic->mode == 'J') { 2976 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 2977 DMEMIT(" commit_time:%u", ic->autocommit_msec); 2978 } 2979 if (ic->mode == 'B') { 2980 DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 2981 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 2982 } 2983 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 2984 DMEMIT(" fix_padding"); 2985 2986 #define EMIT_ALG(a, n) \ 2987 do { \ 2988 if (ic->a.alg_string) { \ 2989 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 2990 if (ic->a.key_string) \ 2991 DMEMIT(":%s", ic->a.key_string);\ 2992 } \ 2993 } while (0) 2994 EMIT_ALG(internal_hash_alg, "internal_hash"); 2995 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 2996 EMIT_ALG(journal_mac_alg, "journal_mac"); 2997 break; 2998 } 2999 } 3000 } 3001 3002 static int dm_integrity_iterate_devices(struct dm_target *ti, 3003 iterate_devices_callout_fn fn, void *data) 3004 { 3005 struct dm_integrity_c *ic = ti->private; 3006 3007 if (!ic->meta_dev) 3008 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3009 else 3010 return fn(ti, ic->dev, 0, ti->len, data); 3011 } 3012 3013 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3014 { 3015 struct dm_integrity_c *ic = ti->private; 3016 3017 if (ic->sectors_per_block > 1) { 3018 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3019 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3020 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3021 } 3022 } 3023 3024 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3025 { 3026 unsigned sector_space = JOURNAL_SECTOR_DATA; 3027 3028 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3029 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3030 JOURNAL_ENTRY_ROUNDUP); 3031 3032 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3033 sector_space -= JOURNAL_MAC_PER_SECTOR; 3034 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3035 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3036 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3037 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3038 } 3039 3040 static int calculate_device_limits(struct dm_integrity_c *ic) 3041 { 3042 __u64 initial_sectors; 3043 3044 calculate_journal_section_size(ic); 3045 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3046 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3047 return -EINVAL; 3048 ic->initial_sectors = initial_sectors; 3049 3050 if (!ic->meta_dev) { 3051 sector_t last_sector, last_area, last_offset; 3052 3053 /* we have to maintain excessive padding for compatibility with existing volumes */ 3054 __u64 metadata_run_padding = 3055 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3056 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3057 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3058 3059 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3060 metadata_run_padding) >> SECTOR_SHIFT; 3061 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3062 ic->log2_metadata_run = __ffs(ic->metadata_run); 3063 else 3064 ic->log2_metadata_run = -1; 3065 3066 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3067 last_sector = get_data_sector(ic, last_area, last_offset); 3068 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3069 return -EINVAL; 3070 } else { 3071 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3072 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3073 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3074 meta_size <<= ic->log2_buffer_sectors; 3075 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3076 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3077 return -EINVAL; 3078 ic->metadata_run = 1; 3079 ic->log2_metadata_run = 0; 3080 } 3081 3082 return 0; 3083 } 3084 3085 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3086 { 3087 unsigned journal_sections; 3088 int test_bit; 3089 3090 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3091 memcpy(ic->sb->magic, SB_MAGIC, 8); 3092 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3093 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3094 if (ic->journal_mac_alg.alg_string) 3095 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3096 3097 calculate_journal_section_size(ic); 3098 journal_sections = journal_sectors / ic->journal_section_sectors; 3099 if (!journal_sections) 3100 journal_sections = 1; 3101 3102 if (!ic->meta_dev) { 3103 if (ic->fix_padding) 3104 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3105 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3106 if (!interleave_sectors) 3107 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3108 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3109 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3110 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3111 3112 ic->provided_data_sectors = 0; 3113 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3114 __u64 prev_data_sectors = ic->provided_data_sectors; 3115 3116 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3117 if (calculate_device_limits(ic)) 3118 ic->provided_data_sectors = prev_data_sectors; 3119 } 3120 if (!ic->provided_data_sectors) 3121 return -EINVAL; 3122 } else { 3123 ic->sb->log2_interleave_sectors = 0; 3124 ic->provided_data_sectors = ic->data_device_sectors; 3125 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3126 3127 try_smaller_buffer: 3128 ic->sb->journal_sections = cpu_to_le32(0); 3129 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3130 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3131 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3132 if (test_journal_sections > journal_sections) 3133 continue; 3134 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3135 if (calculate_device_limits(ic)) 3136 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3137 3138 } 3139 if (!le32_to_cpu(ic->sb->journal_sections)) { 3140 if (ic->log2_buffer_sectors > 3) { 3141 ic->log2_buffer_sectors--; 3142 goto try_smaller_buffer; 3143 } 3144 return -EINVAL; 3145 } 3146 } 3147 3148 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3149 3150 sb_set_version(ic); 3151 3152 return 0; 3153 } 3154 3155 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3156 { 3157 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3158 struct blk_integrity bi; 3159 3160 memset(&bi, 0, sizeof(bi)); 3161 bi.profile = &dm_integrity_profile; 3162 bi.tuple_size = ic->tag_size; 3163 bi.tag_size = bi.tuple_size; 3164 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3165 3166 blk_integrity_register(disk, &bi); 3167 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3168 } 3169 3170 static void dm_integrity_free_page_list(struct page_list *pl) 3171 { 3172 unsigned i; 3173 3174 if (!pl) 3175 return; 3176 for (i = 0; pl[i].page; i++) 3177 __free_page(pl[i].page); 3178 kvfree(pl); 3179 } 3180 3181 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3182 { 3183 struct page_list *pl; 3184 unsigned i; 3185 3186 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3187 if (!pl) 3188 return NULL; 3189 3190 for (i = 0; i < n_pages; i++) { 3191 pl[i].page = alloc_page(GFP_KERNEL); 3192 if (!pl[i].page) { 3193 dm_integrity_free_page_list(pl); 3194 return NULL; 3195 } 3196 if (i) 3197 pl[i - 1].next = &pl[i]; 3198 } 3199 pl[i].page = NULL; 3200 pl[i].next = NULL; 3201 3202 return pl; 3203 } 3204 3205 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3206 { 3207 unsigned i; 3208 for (i = 0; i < ic->journal_sections; i++) 3209 kvfree(sl[i]); 3210 kvfree(sl); 3211 } 3212 3213 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3214 struct page_list *pl) 3215 { 3216 struct scatterlist **sl; 3217 unsigned i; 3218 3219 sl = kvmalloc_array(ic->journal_sections, 3220 sizeof(struct scatterlist *), 3221 GFP_KERNEL | __GFP_ZERO); 3222 if (!sl) 3223 return NULL; 3224 3225 for (i = 0; i < ic->journal_sections; i++) { 3226 struct scatterlist *s; 3227 unsigned start_index, start_offset; 3228 unsigned end_index, end_offset; 3229 unsigned n_pages; 3230 unsigned idx; 3231 3232 page_list_location(ic, i, 0, &start_index, &start_offset); 3233 page_list_location(ic, i, ic->journal_section_sectors - 1, 3234 &end_index, &end_offset); 3235 3236 n_pages = (end_index - start_index + 1); 3237 3238 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3239 GFP_KERNEL); 3240 if (!s) { 3241 dm_integrity_free_journal_scatterlist(ic, sl); 3242 return NULL; 3243 } 3244 3245 sg_init_table(s, n_pages); 3246 for (idx = start_index; idx <= end_index; idx++) { 3247 char *va = lowmem_page_address(pl[idx].page); 3248 unsigned start = 0, end = PAGE_SIZE; 3249 if (idx == start_index) 3250 start = start_offset; 3251 if (idx == end_index) 3252 end = end_offset + (1 << SECTOR_SHIFT); 3253 sg_set_buf(&s[idx - start_index], va + start, end - start); 3254 } 3255 3256 sl[i] = s; 3257 } 3258 3259 return sl; 3260 } 3261 3262 static void free_alg(struct alg_spec *a) 3263 { 3264 kzfree(a->alg_string); 3265 kzfree(a->key); 3266 memset(a, 0, sizeof *a); 3267 } 3268 3269 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3270 { 3271 char *k; 3272 3273 free_alg(a); 3274 3275 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3276 if (!a->alg_string) 3277 goto nomem; 3278 3279 k = strchr(a->alg_string, ':'); 3280 if (k) { 3281 *k = 0; 3282 a->key_string = k + 1; 3283 if (strlen(a->key_string) & 1) 3284 goto inval; 3285 3286 a->key_size = strlen(a->key_string) / 2; 3287 a->key = kmalloc(a->key_size, GFP_KERNEL); 3288 if (!a->key) 3289 goto nomem; 3290 if (hex2bin(a->key, a->key_string, a->key_size)) 3291 goto inval; 3292 } 3293 3294 return 0; 3295 inval: 3296 *error = error_inval; 3297 return -EINVAL; 3298 nomem: 3299 *error = "Out of memory for an argument"; 3300 return -ENOMEM; 3301 } 3302 3303 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3304 char *error_alg, char *error_key) 3305 { 3306 int r; 3307 3308 if (a->alg_string) { 3309 *hash = crypto_alloc_shash(a->alg_string, 0, 0); 3310 if (IS_ERR(*hash)) { 3311 *error = error_alg; 3312 r = PTR_ERR(*hash); 3313 *hash = NULL; 3314 return r; 3315 } 3316 3317 if (a->key) { 3318 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3319 if (r) { 3320 *error = error_key; 3321 return r; 3322 } 3323 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3324 *error = error_key; 3325 return -ENOKEY; 3326 } 3327 } 3328 3329 return 0; 3330 } 3331 3332 static int create_journal(struct dm_integrity_c *ic, char **error) 3333 { 3334 int r = 0; 3335 unsigned i; 3336 __u64 journal_pages, journal_desc_size, journal_tree_size; 3337 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3338 struct skcipher_request *req = NULL; 3339 3340 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3341 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3342 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3343 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3344 3345 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3346 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3347 journal_desc_size = journal_pages * sizeof(struct page_list); 3348 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3349 *error = "Journal doesn't fit into memory"; 3350 r = -ENOMEM; 3351 goto bad; 3352 } 3353 ic->journal_pages = journal_pages; 3354 3355 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3356 if (!ic->journal) { 3357 *error = "Could not allocate memory for journal"; 3358 r = -ENOMEM; 3359 goto bad; 3360 } 3361 if (ic->journal_crypt_alg.alg_string) { 3362 unsigned ivsize, blocksize; 3363 struct journal_completion comp; 3364 3365 comp.ic = ic; 3366 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0); 3367 if (IS_ERR(ic->journal_crypt)) { 3368 *error = "Invalid journal cipher"; 3369 r = PTR_ERR(ic->journal_crypt); 3370 ic->journal_crypt = NULL; 3371 goto bad; 3372 } 3373 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3374 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3375 3376 if (ic->journal_crypt_alg.key) { 3377 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3378 ic->journal_crypt_alg.key_size); 3379 if (r) { 3380 *error = "Error setting encryption key"; 3381 goto bad; 3382 } 3383 } 3384 DEBUG_print("cipher %s, block size %u iv size %u\n", 3385 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3386 3387 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3388 if (!ic->journal_io) { 3389 *error = "Could not allocate memory for journal io"; 3390 r = -ENOMEM; 3391 goto bad; 3392 } 3393 3394 if (blocksize == 1) { 3395 struct scatterlist *sg; 3396 3397 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3398 if (!req) { 3399 *error = "Could not allocate crypt request"; 3400 r = -ENOMEM; 3401 goto bad; 3402 } 3403 3404 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3405 if (!crypt_iv) { 3406 *error = "Could not allocate iv"; 3407 r = -ENOMEM; 3408 goto bad; 3409 } 3410 3411 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3412 if (!ic->journal_xor) { 3413 *error = "Could not allocate memory for journal xor"; 3414 r = -ENOMEM; 3415 goto bad; 3416 } 3417 3418 sg = kvmalloc_array(ic->journal_pages + 1, 3419 sizeof(struct scatterlist), 3420 GFP_KERNEL); 3421 if (!sg) { 3422 *error = "Unable to allocate sg list"; 3423 r = -ENOMEM; 3424 goto bad; 3425 } 3426 sg_init_table(sg, ic->journal_pages + 1); 3427 for (i = 0; i < ic->journal_pages; i++) { 3428 char *va = lowmem_page_address(ic->journal_xor[i].page); 3429 clear_page(va); 3430 sg_set_buf(&sg[i], va, PAGE_SIZE); 3431 } 3432 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3433 3434 skcipher_request_set_crypt(req, sg, sg, 3435 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3436 init_completion(&comp.comp); 3437 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3438 if (do_crypt(true, req, &comp)) 3439 wait_for_completion(&comp.comp); 3440 kvfree(sg); 3441 r = dm_integrity_failed(ic); 3442 if (r) { 3443 *error = "Unable to encrypt journal"; 3444 goto bad; 3445 } 3446 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3447 3448 crypto_free_skcipher(ic->journal_crypt); 3449 ic->journal_crypt = NULL; 3450 } else { 3451 unsigned crypt_len = roundup(ivsize, blocksize); 3452 3453 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3454 if (!req) { 3455 *error = "Could not allocate crypt request"; 3456 r = -ENOMEM; 3457 goto bad; 3458 } 3459 3460 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3461 if (!crypt_iv) { 3462 *error = "Could not allocate iv"; 3463 r = -ENOMEM; 3464 goto bad; 3465 } 3466 3467 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3468 if (!crypt_data) { 3469 *error = "Unable to allocate crypt data"; 3470 r = -ENOMEM; 3471 goto bad; 3472 } 3473 3474 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3475 if (!ic->journal_scatterlist) { 3476 *error = "Unable to allocate sg list"; 3477 r = -ENOMEM; 3478 goto bad; 3479 } 3480 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3481 if (!ic->journal_io_scatterlist) { 3482 *error = "Unable to allocate sg list"; 3483 r = -ENOMEM; 3484 goto bad; 3485 } 3486 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3487 sizeof(struct skcipher_request *), 3488 GFP_KERNEL | __GFP_ZERO); 3489 if (!ic->sk_requests) { 3490 *error = "Unable to allocate sk requests"; 3491 r = -ENOMEM; 3492 goto bad; 3493 } 3494 for (i = 0; i < ic->journal_sections; i++) { 3495 struct scatterlist sg; 3496 struct skcipher_request *section_req; 3497 __u32 section_le = cpu_to_le32(i); 3498 3499 memset(crypt_iv, 0x00, ivsize); 3500 memset(crypt_data, 0x00, crypt_len); 3501 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3502 3503 sg_init_one(&sg, crypt_data, crypt_len); 3504 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3505 init_completion(&comp.comp); 3506 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3507 if (do_crypt(true, req, &comp)) 3508 wait_for_completion(&comp.comp); 3509 3510 r = dm_integrity_failed(ic); 3511 if (r) { 3512 *error = "Unable to generate iv"; 3513 goto bad; 3514 } 3515 3516 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3517 if (!section_req) { 3518 *error = "Unable to allocate crypt request"; 3519 r = -ENOMEM; 3520 goto bad; 3521 } 3522 section_req->iv = kmalloc_array(ivsize, 2, 3523 GFP_KERNEL); 3524 if (!section_req->iv) { 3525 skcipher_request_free(section_req); 3526 *error = "Unable to allocate iv"; 3527 r = -ENOMEM; 3528 goto bad; 3529 } 3530 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3531 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3532 ic->sk_requests[i] = section_req; 3533 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3534 } 3535 } 3536 } 3537 3538 for (i = 0; i < N_COMMIT_IDS; i++) { 3539 unsigned j; 3540 retest_commit_id: 3541 for (j = 0; j < i; j++) { 3542 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3543 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3544 goto retest_commit_id; 3545 } 3546 } 3547 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3548 } 3549 3550 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3551 if (journal_tree_size > ULONG_MAX) { 3552 *error = "Journal doesn't fit into memory"; 3553 r = -ENOMEM; 3554 goto bad; 3555 } 3556 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3557 if (!ic->journal_tree) { 3558 *error = "Could not allocate memory for journal tree"; 3559 r = -ENOMEM; 3560 } 3561 bad: 3562 kfree(crypt_data); 3563 kfree(crypt_iv); 3564 skcipher_request_free(req); 3565 3566 return r; 3567 } 3568 3569 /* 3570 * Construct a integrity mapping 3571 * 3572 * Arguments: 3573 * device 3574 * offset from the start of the device 3575 * tag size 3576 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3577 * number of optional arguments 3578 * optional arguments: 3579 * journal_sectors 3580 * interleave_sectors 3581 * buffer_sectors 3582 * journal_watermark 3583 * commit_time 3584 * meta_device 3585 * block_size 3586 * sectors_per_bit 3587 * bitmap_flush_interval 3588 * internal_hash 3589 * journal_crypt 3590 * journal_mac 3591 * recalculate 3592 */ 3593 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3594 { 3595 struct dm_integrity_c *ic; 3596 char dummy; 3597 int r; 3598 unsigned extra_args; 3599 struct dm_arg_set as; 3600 static const struct dm_arg _args[] = { 3601 {0, 9, "Invalid number of feature args"}, 3602 }; 3603 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3604 bool should_write_sb; 3605 __u64 threshold; 3606 unsigned long long start; 3607 __s8 log2_sectors_per_bitmap_bit = -1; 3608 __s8 log2_blocks_per_bitmap_bit; 3609 __u64 bits_in_journal; 3610 __u64 n_bitmap_bits; 3611 3612 #define DIRECT_ARGUMENTS 4 3613 3614 if (argc <= DIRECT_ARGUMENTS) { 3615 ti->error = "Invalid argument count"; 3616 return -EINVAL; 3617 } 3618 3619 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3620 if (!ic) { 3621 ti->error = "Cannot allocate integrity context"; 3622 return -ENOMEM; 3623 } 3624 ti->private = ic; 3625 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3626 3627 ic->in_progress = RB_ROOT; 3628 INIT_LIST_HEAD(&ic->wait_list); 3629 init_waitqueue_head(&ic->endio_wait); 3630 bio_list_init(&ic->flush_bio_list); 3631 init_waitqueue_head(&ic->copy_to_journal_wait); 3632 init_completion(&ic->crypto_backoff); 3633 atomic64_set(&ic->number_of_mismatches, 0); 3634 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 3635 3636 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3637 if (r) { 3638 ti->error = "Device lookup failed"; 3639 goto bad; 3640 } 3641 3642 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3643 ti->error = "Invalid starting offset"; 3644 r = -EINVAL; 3645 goto bad; 3646 } 3647 ic->start = start; 3648 3649 if (strcmp(argv[2], "-")) { 3650 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3651 ti->error = "Invalid tag size"; 3652 r = -EINVAL; 3653 goto bad; 3654 } 3655 } 3656 3657 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 3658 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 3659 ic->mode = argv[3][0]; 3660 } else { 3661 ti->error = "Invalid mode (expecting J, B, D, R)"; 3662 r = -EINVAL; 3663 goto bad; 3664 } 3665 3666 journal_sectors = 0; 3667 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3668 buffer_sectors = DEFAULT_BUFFER_SECTORS; 3669 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 3670 sync_msec = DEFAULT_SYNC_MSEC; 3671 ic->sectors_per_block = 1; 3672 3673 as.argc = argc - DIRECT_ARGUMENTS; 3674 as.argv = argv + DIRECT_ARGUMENTS; 3675 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 3676 if (r) 3677 goto bad; 3678 3679 while (extra_args--) { 3680 const char *opt_string; 3681 unsigned val; 3682 unsigned long long llval; 3683 opt_string = dm_shift_arg(&as); 3684 if (!opt_string) { 3685 r = -EINVAL; 3686 ti->error = "Not enough feature arguments"; 3687 goto bad; 3688 } 3689 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 3690 journal_sectors = val ? val : 1; 3691 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 3692 interleave_sectors = val; 3693 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 3694 buffer_sectors = val; 3695 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 3696 journal_watermark = val; 3697 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 3698 sync_msec = val; 3699 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 3700 if (ic->meta_dev) { 3701 dm_put_device(ti, ic->meta_dev); 3702 ic->meta_dev = NULL; 3703 } 3704 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 3705 dm_table_get_mode(ti->table), &ic->meta_dev); 3706 if (r) { 3707 ti->error = "Device lookup failed"; 3708 goto bad; 3709 } 3710 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 3711 if (val < 1 << SECTOR_SHIFT || 3712 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 3713 (val & (val -1))) { 3714 r = -EINVAL; 3715 ti->error = "Invalid block_size argument"; 3716 goto bad; 3717 } 3718 ic->sectors_per_block = val >> SECTOR_SHIFT; 3719 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 3720 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 3721 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 3722 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 3723 r = -EINVAL; 3724 ti->error = "Invalid bitmap_flush_interval argument"; 3725 } 3726 ic->bitmap_flush_interval = msecs_to_jiffies(val); 3727 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 3728 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 3729 "Invalid internal_hash argument"); 3730 if (r) 3731 goto bad; 3732 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 3733 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 3734 "Invalid journal_crypt argument"); 3735 if (r) 3736 goto bad; 3737 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 3738 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 3739 "Invalid journal_mac argument"); 3740 if (r) 3741 goto bad; 3742 } else if (!strcmp(opt_string, "recalculate")) { 3743 ic->recalculate_flag = true; 3744 } else if (!strcmp(opt_string, "fix_padding")) { 3745 ic->fix_padding = true; 3746 } else { 3747 r = -EINVAL; 3748 ti->error = "Invalid argument"; 3749 goto bad; 3750 } 3751 } 3752 3753 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 3754 if (!ic->meta_dev) 3755 ic->meta_device_sectors = ic->data_device_sectors; 3756 else 3757 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 3758 3759 if (!journal_sectors) { 3760 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 3761 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 3762 } 3763 3764 if (!buffer_sectors) 3765 buffer_sectors = 1; 3766 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 3767 3768 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 3769 "Invalid internal hash", "Error setting internal hash key"); 3770 if (r) 3771 goto bad; 3772 3773 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 3774 "Invalid journal mac", "Error setting journal mac key"); 3775 if (r) 3776 goto bad; 3777 3778 if (!ic->tag_size) { 3779 if (!ic->internal_hash) { 3780 ti->error = "Unknown tag size"; 3781 r = -EINVAL; 3782 goto bad; 3783 } 3784 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 3785 } 3786 if (ic->tag_size > MAX_TAG_SIZE) { 3787 ti->error = "Too big tag size"; 3788 r = -EINVAL; 3789 goto bad; 3790 } 3791 if (!(ic->tag_size & (ic->tag_size - 1))) 3792 ic->log2_tag_size = __ffs(ic->tag_size); 3793 else 3794 ic->log2_tag_size = -1; 3795 3796 if (ic->mode == 'B' && !ic->internal_hash) { 3797 r = -EINVAL; 3798 ti->error = "Bitmap mode can be only used with internal hash"; 3799 goto bad; 3800 } 3801 3802 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 3803 ic->autocommit_msec = sync_msec; 3804 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 3805 3806 ic->io = dm_io_client_create(); 3807 if (IS_ERR(ic->io)) { 3808 r = PTR_ERR(ic->io); 3809 ic->io = NULL; 3810 ti->error = "Cannot allocate dm io"; 3811 goto bad; 3812 } 3813 3814 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 3815 if (r) { 3816 ti->error = "Cannot allocate mempool"; 3817 goto bad; 3818 } 3819 3820 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 3821 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 3822 if (!ic->metadata_wq) { 3823 ti->error = "Cannot allocate workqueue"; 3824 r = -ENOMEM; 3825 goto bad; 3826 } 3827 3828 /* 3829 * If this workqueue were percpu, it would cause bio reordering 3830 * and reduced performance. 3831 */ 3832 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3833 if (!ic->wait_wq) { 3834 ti->error = "Cannot allocate workqueue"; 3835 r = -ENOMEM; 3836 goto bad; 3837 } 3838 3839 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 3840 if (!ic->commit_wq) { 3841 ti->error = "Cannot allocate workqueue"; 3842 r = -ENOMEM; 3843 goto bad; 3844 } 3845 INIT_WORK(&ic->commit_work, integrity_commit); 3846 3847 if (ic->mode == 'J' || ic->mode == 'B') { 3848 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 3849 if (!ic->writer_wq) { 3850 ti->error = "Cannot allocate workqueue"; 3851 r = -ENOMEM; 3852 goto bad; 3853 } 3854 INIT_WORK(&ic->writer_work, integrity_writer); 3855 } 3856 3857 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 3858 if (!ic->sb) { 3859 r = -ENOMEM; 3860 ti->error = "Cannot allocate superblock area"; 3861 goto bad; 3862 } 3863 3864 r = sync_rw_sb(ic, REQ_OP_READ, 0); 3865 if (r) { 3866 ti->error = "Error reading superblock"; 3867 goto bad; 3868 } 3869 should_write_sb = false; 3870 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 3871 if (ic->mode != 'R') { 3872 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 3873 r = -EINVAL; 3874 ti->error = "The device is not initialized"; 3875 goto bad; 3876 } 3877 } 3878 3879 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 3880 if (r) { 3881 ti->error = "Could not initialize superblock"; 3882 goto bad; 3883 } 3884 if (ic->mode != 'R') 3885 should_write_sb = true; 3886 } 3887 3888 if (!ic->sb->version || ic->sb->version > SB_VERSION_4) { 3889 r = -EINVAL; 3890 ti->error = "Unknown version"; 3891 goto bad; 3892 } 3893 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 3894 r = -EINVAL; 3895 ti->error = "Tag size doesn't match the information in superblock"; 3896 goto bad; 3897 } 3898 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 3899 r = -EINVAL; 3900 ti->error = "Block size doesn't match the information in superblock"; 3901 goto bad; 3902 } 3903 if (!le32_to_cpu(ic->sb->journal_sections)) { 3904 r = -EINVAL; 3905 ti->error = "Corrupted superblock, journal_sections is 0"; 3906 goto bad; 3907 } 3908 /* make sure that ti->max_io_len doesn't overflow */ 3909 if (!ic->meta_dev) { 3910 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 3911 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 3912 r = -EINVAL; 3913 ti->error = "Invalid interleave_sectors in the superblock"; 3914 goto bad; 3915 } 3916 } else { 3917 if (ic->sb->log2_interleave_sectors) { 3918 r = -EINVAL; 3919 ti->error = "Invalid interleave_sectors in the superblock"; 3920 goto bad; 3921 } 3922 } 3923 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3924 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) { 3925 /* test for overflow */ 3926 r = -EINVAL; 3927 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors"; 3928 goto bad; 3929 } 3930 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 3931 r = -EINVAL; 3932 ti->error = "Journal mac mismatch"; 3933 goto bad; 3934 } 3935 3936 try_smaller_buffer: 3937 r = calculate_device_limits(ic); 3938 if (r) { 3939 if (ic->meta_dev) { 3940 if (ic->log2_buffer_sectors > 3) { 3941 ic->log2_buffer_sectors--; 3942 goto try_smaller_buffer; 3943 } 3944 } 3945 ti->error = "The device is too small"; 3946 goto bad; 3947 } 3948 3949 if (log2_sectors_per_bitmap_bit < 0) 3950 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 3951 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 3952 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 3953 3954 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 3955 if (bits_in_journal > UINT_MAX) 3956 bits_in_journal = UINT_MAX; 3957 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 3958 log2_sectors_per_bitmap_bit++; 3959 3960 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 3961 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 3962 if (should_write_sb) { 3963 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 3964 } 3965 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 3966 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 3967 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 3968 3969 if (!ic->meta_dev) 3970 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 3971 3972 if (ti->len > ic->provided_data_sectors) { 3973 r = -EINVAL; 3974 ti->error = "Not enough provided sectors for requested mapping size"; 3975 goto bad; 3976 } 3977 3978 3979 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 3980 threshold += 50; 3981 do_div(threshold, 100); 3982 ic->free_sectors_threshold = threshold; 3983 3984 DEBUG_print("initialized:\n"); 3985 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 3986 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 3987 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 3988 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 3989 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 3990 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 3991 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 3992 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 3993 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT); 3994 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 3995 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 3996 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 3997 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors, 3998 (unsigned long long)ic->provided_data_sectors); 3999 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4000 DEBUG_print(" bits_in_journal %llu\n", (unsigned long long)bits_in_journal); 4001 4002 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4003 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4004 ic->sb->recalc_sector = cpu_to_le64(0); 4005 } 4006 4007 if (ic->internal_hash) { 4008 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4009 if (!ic->recalc_wq ) { 4010 ti->error = "Cannot allocate workqueue"; 4011 r = -ENOMEM; 4012 goto bad; 4013 } 4014 INIT_WORK(&ic->recalc_work, integrity_recalc); 4015 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 4016 if (!ic->recalc_buffer) { 4017 ti->error = "Cannot allocate buffer for recalculating"; 4018 r = -ENOMEM; 4019 goto bad; 4020 } 4021 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 4022 ic->tag_size, GFP_KERNEL); 4023 if (!ic->recalc_tags) { 4024 ti->error = "Cannot allocate tags for recalculating"; 4025 r = -ENOMEM; 4026 goto bad; 4027 } 4028 } 4029 4030 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4031 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 4032 if (IS_ERR(ic->bufio)) { 4033 r = PTR_ERR(ic->bufio); 4034 ti->error = "Cannot initialize dm-bufio"; 4035 ic->bufio = NULL; 4036 goto bad; 4037 } 4038 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4039 4040 if (ic->mode != 'R') { 4041 r = create_journal(ic, &ti->error); 4042 if (r) 4043 goto bad; 4044 4045 } 4046 4047 if (ic->mode == 'B') { 4048 unsigned i; 4049 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4050 4051 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4052 if (!ic->recalc_bitmap) { 4053 r = -ENOMEM; 4054 goto bad; 4055 } 4056 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4057 if (!ic->may_write_bitmap) { 4058 r = -ENOMEM; 4059 goto bad; 4060 } 4061 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4062 if (!ic->bbs) { 4063 r = -ENOMEM; 4064 goto bad; 4065 } 4066 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4067 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4068 struct bitmap_block_status *bbs = &ic->bbs[i]; 4069 unsigned sector, pl_index, pl_offset; 4070 4071 INIT_WORK(&bbs->work, bitmap_block_work); 4072 bbs->ic = ic; 4073 bbs->idx = i; 4074 bio_list_init(&bbs->bio_queue); 4075 spin_lock_init(&bbs->bio_queue_lock); 4076 4077 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4078 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4079 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4080 4081 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4082 } 4083 } 4084 4085 if (should_write_sb) { 4086 int r; 4087 4088 init_journal(ic, 0, ic->journal_sections, 0); 4089 r = dm_integrity_failed(ic); 4090 if (unlikely(r)) { 4091 ti->error = "Error initializing journal"; 4092 goto bad; 4093 } 4094 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4095 if (r) { 4096 ti->error = "Error initializing superblock"; 4097 goto bad; 4098 } 4099 ic->just_formatted = true; 4100 } 4101 4102 if (!ic->meta_dev) { 4103 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4104 if (r) 4105 goto bad; 4106 } 4107 if (ic->mode == 'B') { 4108 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4109 if (!max_io_len) 4110 max_io_len = 1U << 31; 4111 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4112 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4113 r = dm_set_target_max_io_len(ti, max_io_len); 4114 if (r) 4115 goto bad; 4116 } 4117 } 4118 4119 if (!ic->internal_hash) 4120 dm_integrity_set(ti, ic); 4121 4122 ti->num_flush_bios = 1; 4123 ti->flush_supported = true; 4124 4125 return 0; 4126 4127 bad: 4128 dm_integrity_dtr(ti); 4129 return r; 4130 } 4131 4132 static void dm_integrity_dtr(struct dm_target *ti) 4133 { 4134 struct dm_integrity_c *ic = ti->private; 4135 4136 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4137 BUG_ON(!list_empty(&ic->wait_list)); 4138 4139 if (ic->metadata_wq) 4140 destroy_workqueue(ic->metadata_wq); 4141 if (ic->wait_wq) 4142 destroy_workqueue(ic->wait_wq); 4143 if (ic->commit_wq) 4144 destroy_workqueue(ic->commit_wq); 4145 if (ic->writer_wq) 4146 destroy_workqueue(ic->writer_wq); 4147 if (ic->recalc_wq) 4148 destroy_workqueue(ic->recalc_wq); 4149 vfree(ic->recalc_buffer); 4150 kvfree(ic->recalc_tags); 4151 kvfree(ic->bbs); 4152 if (ic->bufio) 4153 dm_bufio_client_destroy(ic->bufio); 4154 mempool_exit(&ic->journal_io_mempool); 4155 if (ic->io) 4156 dm_io_client_destroy(ic->io); 4157 if (ic->dev) 4158 dm_put_device(ti, ic->dev); 4159 if (ic->meta_dev) 4160 dm_put_device(ti, ic->meta_dev); 4161 dm_integrity_free_page_list(ic->journal); 4162 dm_integrity_free_page_list(ic->journal_io); 4163 dm_integrity_free_page_list(ic->journal_xor); 4164 dm_integrity_free_page_list(ic->recalc_bitmap); 4165 dm_integrity_free_page_list(ic->may_write_bitmap); 4166 if (ic->journal_scatterlist) 4167 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4168 if (ic->journal_io_scatterlist) 4169 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4170 if (ic->sk_requests) { 4171 unsigned i; 4172 4173 for (i = 0; i < ic->journal_sections; i++) { 4174 struct skcipher_request *req = ic->sk_requests[i]; 4175 if (req) { 4176 kzfree(req->iv); 4177 skcipher_request_free(req); 4178 } 4179 } 4180 kvfree(ic->sk_requests); 4181 } 4182 kvfree(ic->journal_tree); 4183 if (ic->sb) 4184 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4185 4186 if (ic->internal_hash) 4187 crypto_free_shash(ic->internal_hash); 4188 free_alg(&ic->internal_hash_alg); 4189 4190 if (ic->journal_crypt) 4191 crypto_free_skcipher(ic->journal_crypt); 4192 free_alg(&ic->journal_crypt_alg); 4193 4194 if (ic->journal_mac) 4195 crypto_free_shash(ic->journal_mac); 4196 free_alg(&ic->journal_mac_alg); 4197 4198 kfree(ic); 4199 } 4200 4201 static struct target_type integrity_target = { 4202 .name = "integrity", 4203 .version = {1, 4, 0}, 4204 .module = THIS_MODULE, 4205 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4206 .ctr = dm_integrity_ctr, 4207 .dtr = dm_integrity_dtr, 4208 .map = dm_integrity_map, 4209 .postsuspend = dm_integrity_postsuspend, 4210 .resume = dm_integrity_resume, 4211 .status = dm_integrity_status, 4212 .iterate_devices = dm_integrity_iterate_devices, 4213 .io_hints = dm_integrity_io_hints, 4214 }; 4215 4216 static int __init dm_integrity_init(void) 4217 { 4218 int r; 4219 4220 journal_io_cache = kmem_cache_create("integrity_journal_io", 4221 sizeof(struct journal_io), 0, 0, NULL); 4222 if (!journal_io_cache) { 4223 DMERR("can't allocate journal io cache"); 4224 return -ENOMEM; 4225 } 4226 4227 r = dm_register_target(&integrity_target); 4228 4229 if (r < 0) 4230 DMERR("register failed %d", r); 4231 4232 return r; 4233 } 4234 4235 static void __exit dm_integrity_exit(void) 4236 { 4237 dm_unregister_target(&integrity_target); 4238 kmem_cache_destroy(journal_io_cache); 4239 } 4240 4241 module_init(dm_integrity_init); 4242 module_exit(dm_integrity_exit); 4243 4244 MODULE_AUTHOR("Milan Broz"); 4245 MODULE_AUTHOR("Mikulas Patocka"); 4246 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4247 MODULE_LICENSE("GPL"); 4248