1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/device-mapper.h> 11 #include <linux/dm-io.h> 12 #include <linux/vmalloc.h> 13 #include <linux/sort.h> 14 #include <linux/rbtree.h> 15 #include <linux/delay.h> 16 #include <linux/random.h> 17 #include <crypto/hash.h> 18 #include <crypto/skcipher.h> 19 #include <linux/async_tx.h> 20 #include "dm-bufio.h" 21 22 #define DM_MSG_PREFIX "integrity" 23 24 #define DEFAULT_INTERLEAVE_SECTORS 32768 25 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 26 #define DEFAULT_BUFFER_SECTORS 128 27 #define DEFAULT_JOURNAL_WATERMARK 50 28 #define DEFAULT_SYNC_MSEC 10000 29 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 30 #define MIN_LOG2_INTERLEAVE_SECTORS 3 31 #define MAX_LOG2_INTERLEAVE_SECTORS 31 32 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 33 34 /* 35 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 36 * so it should not be enabled in the official kernel 37 */ 38 //#define DEBUG_PRINT 39 //#define INTERNAL_VERIFY 40 41 /* 42 * On disk structures 43 */ 44 45 #define SB_MAGIC "integrt" 46 #define SB_VERSION 1 47 #define SB_SECTORS 8 48 #define MAX_SECTORS_PER_BLOCK 8 49 50 struct superblock { 51 __u8 magic[8]; 52 __u8 version; 53 __u8 log2_interleave_sectors; 54 __u16 integrity_tag_size; 55 __u32 journal_sections; 56 __u64 provided_data_sectors; /* userspace uses this value */ 57 __u32 flags; 58 __u8 log2_sectors_per_block; 59 }; 60 61 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 62 63 #define JOURNAL_ENTRY_ROUNDUP 8 64 65 typedef __u64 commit_id_t; 66 #define JOURNAL_MAC_PER_SECTOR 8 67 68 struct journal_entry { 69 union { 70 struct { 71 __u32 sector_lo; 72 __u32 sector_hi; 73 } s; 74 __u64 sector; 75 } u; 76 commit_id_t last_bytes[0]; 77 /* __u8 tag[0]; */ 78 }; 79 80 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 81 82 #if BITS_PER_LONG == 64 83 #define journal_entry_set_sector(je, x) do { smp_wmb(); ACCESS_ONCE((je)->u.sector) = cpu_to_le64(x); } while (0) 84 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 85 #elif defined(CONFIG_LBDAF) 86 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32((x) >> 32); } while (0) 87 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 88 #else 89 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32(0); } while (0) 90 #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo) 91 #endif 92 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 93 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 94 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 95 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 96 97 #define JOURNAL_BLOCK_SECTORS 8 98 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 99 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 100 101 struct journal_sector { 102 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 103 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 104 commit_id_t commit_id; 105 }; 106 107 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 108 109 #define METADATA_PADDING_SECTORS 8 110 111 #define N_COMMIT_IDS 4 112 113 static unsigned char prev_commit_seq(unsigned char seq) 114 { 115 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 116 } 117 118 static unsigned char next_commit_seq(unsigned char seq) 119 { 120 return (seq + 1) % N_COMMIT_IDS; 121 } 122 123 /* 124 * In-memory structures 125 */ 126 127 struct journal_node { 128 struct rb_node node; 129 sector_t sector; 130 }; 131 132 struct alg_spec { 133 char *alg_string; 134 char *key_string; 135 __u8 *key; 136 unsigned key_size; 137 }; 138 139 struct dm_integrity_c { 140 struct dm_dev *dev; 141 unsigned tag_size; 142 __s8 log2_tag_size; 143 sector_t start; 144 mempool_t *journal_io_mempool; 145 struct dm_io_client *io; 146 struct dm_bufio_client *bufio; 147 struct workqueue_struct *metadata_wq; 148 struct superblock *sb; 149 unsigned journal_pages; 150 struct page_list *journal; 151 struct page_list *journal_io; 152 struct page_list *journal_xor; 153 154 struct crypto_skcipher *journal_crypt; 155 struct scatterlist **journal_scatterlist; 156 struct scatterlist **journal_io_scatterlist; 157 struct skcipher_request **sk_requests; 158 159 struct crypto_shash *journal_mac; 160 161 struct journal_node *journal_tree; 162 struct rb_root journal_tree_root; 163 164 sector_t provided_data_sectors; 165 166 unsigned short journal_entry_size; 167 unsigned char journal_entries_per_sector; 168 unsigned char journal_section_entries; 169 unsigned short journal_section_sectors; 170 unsigned journal_sections; 171 unsigned journal_entries; 172 sector_t device_sectors; 173 unsigned initial_sectors; 174 unsigned metadata_run; 175 __s8 log2_metadata_run; 176 __u8 log2_buffer_sectors; 177 __u8 sectors_per_block; 178 179 unsigned char mode; 180 bool suspending; 181 182 int failed; 183 184 struct crypto_shash *internal_hash; 185 186 /* these variables are locked with endio_wait.lock */ 187 struct rb_root in_progress; 188 wait_queue_head_t endio_wait; 189 struct workqueue_struct *wait_wq; 190 191 unsigned char commit_seq; 192 commit_id_t commit_ids[N_COMMIT_IDS]; 193 194 unsigned committed_section; 195 unsigned n_committed_sections; 196 197 unsigned uncommitted_section; 198 unsigned n_uncommitted_sections; 199 200 unsigned free_section; 201 unsigned char free_section_entry; 202 unsigned free_sectors; 203 204 unsigned free_sectors_threshold; 205 206 struct workqueue_struct *commit_wq; 207 struct work_struct commit_work; 208 209 struct workqueue_struct *writer_wq; 210 struct work_struct writer_work; 211 212 struct bio_list flush_bio_list; 213 214 unsigned long autocommit_jiffies; 215 struct timer_list autocommit_timer; 216 unsigned autocommit_msec; 217 218 wait_queue_head_t copy_to_journal_wait; 219 220 struct completion crypto_backoff; 221 222 bool journal_uptodate; 223 bool just_formatted; 224 225 struct alg_spec internal_hash_alg; 226 struct alg_spec journal_crypt_alg; 227 struct alg_spec journal_mac_alg; 228 }; 229 230 struct dm_integrity_range { 231 sector_t logical_sector; 232 unsigned n_sectors; 233 struct rb_node node; 234 }; 235 236 struct dm_integrity_io { 237 struct work_struct work; 238 239 struct dm_integrity_c *ic; 240 bool write; 241 bool fua; 242 243 struct dm_integrity_range range; 244 245 sector_t metadata_block; 246 unsigned metadata_offset; 247 248 atomic_t in_flight; 249 blk_status_t bi_status; 250 251 struct completion *completion; 252 253 struct block_device *orig_bi_bdev; 254 bio_end_io_t *orig_bi_end_io; 255 struct bio_integrity_payload *orig_bi_integrity; 256 struct bvec_iter orig_bi_iter; 257 }; 258 259 struct journal_completion { 260 struct dm_integrity_c *ic; 261 atomic_t in_flight; 262 struct completion comp; 263 }; 264 265 struct journal_io { 266 struct dm_integrity_range range; 267 struct journal_completion *comp; 268 }; 269 270 static struct kmem_cache *journal_io_cache; 271 272 #define JOURNAL_IO_MEMPOOL 32 273 274 #ifdef DEBUG_PRINT 275 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 276 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 277 { 278 va_list args; 279 va_start(args, msg); 280 vprintk(msg, args); 281 va_end(args); 282 if (len) 283 pr_cont(":"); 284 while (len) { 285 pr_cont(" %02x", *bytes); 286 bytes++; 287 len--; 288 } 289 pr_cont("\n"); 290 } 291 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 292 #else 293 #define DEBUG_print(x, ...) do { } while (0) 294 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 295 #endif 296 297 /* 298 * DM Integrity profile, protection is performed layer above (dm-crypt) 299 */ 300 static struct blk_integrity_profile dm_integrity_profile = { 301 .name = "DM-DIF-EXT-TAG", 302 .generate_fn = NULL, 303 .verify_fn = NULL, 304 }; 305 306 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 307 static void integrity_bio_wait(struct work_struct *w); 308 static void dm_integrity_dtr(struct dm_target *ti); 309 310 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 311 { 312 if (!cmpxchg(&ic->failed, 0, err)) 313 DMERR("Error on %s: %d", msg, err); 314 } 315 316 static int dm_integrity_failed(struct dm_integrity_c *ic) 317 { 318 return ACCESS_ONCE(ic->failed); 319 } 320 321 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 322 unsigned j, unsigned char seq) 323 { 324 /* 325 * Xor the number with section and sector, so that if a piece of 326 * journal is written at wrong place, it is detected. 327 */ 328 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 329 } 330 331 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 332 sector_t *area, sector_t *offset) 333 { 334 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 335 336 *area = data_sector >> log2_interleave_sectors; 337 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 338 } 339 340 #define sector_to_block(ic, n) \ 341 do { \ 342 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 343 (n) >>= (ic)->sb->log2_sectors_per_block; \ 344 } while (0) 345 346 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 347 sector_t offset, unsigned *metadata_offset) 348 { 349 __u64 ms; 350 unsigned mo; 351 352 ms = area << ic->sb->log2_interleave_sectors; 353 if (likely(ic->log2_metadata_run >= 0)) 354 ms += area << ic->log2_metadata_run; 355 else 356 ms += area * ic->metadata_run; 357 ms >>= ic->log2_buffer_sectors; 358 359 sector_to_block(ic, offset); 360 361 if (likely(ic->log2_tag_size >= 0)) { 362 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 363 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 364 } else { 365 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 366 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 367 } 368 *metadata_offset = mo; 369 return ms; 370 } 371 372 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 373 { 374 sector_t result; 375 376 result = area << ic->sb->log2_interleave_sectors; 377 if (likely(ic->log2_metadata_run >= 0)) 378 result += (area + 1) << ic->log2_metadata_run; 379 else 380 result += (area + 1) * ic->metadata_run; 381 382 result += (sector_t)ic->initial_sectors + offset; 383 return result; 384 } 385 386 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 387 { 388 if (unlikely(*sec_ptr >= ic->journal_sections)) 389 *sec_ptr -= ic->journal_sections; 390 } 391 392 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 393 { 394 struct dm_io_request io_req; 395 struct dm_io_region io_loc; 396 397 io_req.bi_op = op; 398 io_req.bi_op_flags = op_flags; 399 io_req.mem.type = DM_IO_KMEM; 400 io_req.mem.ptr.addr = ic->sb; 401 io_req.notify.fn = NULL; 402 io_req.client = ic->io; 403 io_loc.bdev = ic->dev->bdev; 404 io_loc.sector = ic->start; 405 io_loc.count = SB_SECTORS; 406 407 return dm_io(&io_req, 1, &io_loc, NULL); 408 } 409 410 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 411 bool e, const char *function) 412 { 413 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 414 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 415 416 if (unlikely(section >= ic->journal_sections) || 417 unlikely(offset >= limit)) { 418 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n", 419 function, section, offset, ic->journal_sections, limit); 420 BUG(); 421 } 422 #endif 423 } 424 425 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 426 unsigned *pl_index, unsigned *pl_offset) 427 { 428 unsigned sector; 429 430 access_journal_check(ic, section, offset, false, "page_list_location"); 431 432 sector = section * ic->journal_section_sectors + offset; 433 434 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 435 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 436 } 437 438 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 439 unsigned section, unsigned offset, unsigned *n_sectors) 440 { 441 unsigned pl_index, pl_offset; 442 char *va; 443 444 page_list_location(ic, section, offset, &pl_index, &pl_offset); 445 446 if (n_sectors) 447 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 448 449 va = lowmem_page_address(pl[pl_index].page); 450 451 return (struct journal_sector *)(va + pl_offset); 452 } 453 454 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 455 { 456 return access_page_list(ic, ic->journal, section, offset, NULL); 457 } 458 459 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 460 { 461 unsigned rel_sector, offset; 462 struct journal_sector *js; 463 464 access_journal_check(ic, section, n, true, "access_journal_entry"); 465 466 rel_sector = n % JOURNAL_BLOCK_SECTORS; 467 offset = n / JOURNAL_BLOCK_SECTORS; 468 469 js = access_journal(ic, section, rel_sector); 470 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 471 } 472 473 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 474 { 475 n <<= ic->sb->log2_sectors_per_block; 476 477 n += JOURNAL_BLOCK_SECTORS; 478 479 access_journal_check(ic, section, n, false, "access_journal_data"); 480 481 return access_journal(ic, section, n); 482 } 483 484 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 485 { 486 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 487 int r; 488 unsigned j, size; 489 490 desc->tfm = ic->journal_mac; 491 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 492 493 r = crypto_shash_init(desc); 494 if (unlikely(r)) { 495 dm_integrity_io_error(ic, "crypto_shash_init", r); 496 goto err; 497 } 498 499 for (j = 0; j < ic->journal_section_entries; j++) { 500 struct journal_entry *je = access_journal_entry(ic, section, j); 501 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 502 if (unlikely(r)) { 503 dm_integrity_io_error(ic, "crypto_shash_update", r); 504 goto err; 505 } 506 } 507 508 size = crypto_shash_digestsize(ic->journal_mac); 509 510 if (likely(size <= JOURNAL_MAC_SIZE)) { 511 r = crypto_shash_final(desc, result); 512 if (unlikely(r)) { 513 dm_integrity_io_error(ic, "crypto_shash_final", r); 514 goto err; 515 } 516 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 517 } else { 518 __u8 digest[size]; 519 r = crypto_shash_final(desc, digest); 520 if (unlikely(r)) { 521 dm_integrity_io_error(ic, "crypto_shash_final", r); 522 goto err; 523 } 524 memcpy(result, digest, JOURNAL_MAC_SIZE); 525 } 526 527 return; 528 err: 529 memset(result, 0, JOURNAL_MAC_SIZE); 530 } 531 532 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 533 { 534 __u8 result[JOURNAL_MAC_SIZE]; 535 unsigned j; 536 537 if (!ic->journal_mac) 538 return; 539 540 section_mac(ic, section, result); 541 542 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 543 struct journal_sector *js = access_journal(ic, section, j); 544 545 if (likely(wr)) 546 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 547 else { 548 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 549 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 550 } 551 } 552 } 553 554 static void complete_journal_op(void *context) 555 { 556 struct journal_completion *comp = context; 557 BUG_ON(!atomic_read(&comp->in_flight)); 558 if (likely(atomic_dec_and_test(&comp->in_flight))) 559 complete(&comp->comp); 560 } 561 562 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 563 unsigned n_sections, struct journal_completion *comp) 564 { 565 struct async_submit_ctl submit; 566 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 567 unsigned pl_index, pl_offset, section_index; 568 struct page_list *source_pl, *target_pl; 569 570 if (likely(encrypt)) { 571 source_pl = ic->journal; 572 target_pl = ic->journal_io; 573 } else { 574 source_pl = ic->journal_io; 575 target_pl = ic->journal; 576 } 577 578 page_list_location(ic, section, 0, &pl_index, &pl_offset); 579 580 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 581 582 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 583 584 section_index = pl_index; 585 586 do { 587 size_t this_step; 588 struct page *src_pages[2]; 589 struct page *dst_page; 590 591 while (unlikely(pl_index == section_index)) { 592 unsigned dummy; 593 if (likely(encrypt)) 594 rw_section_mac(ic, section, true); 595 section++; 596 n_sections--; 597 if (!n_sections) 598 break; 599 page_list_location(ic, section, 0, §ion_index, &dummy); 600 } 601 602 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 603 dst_page = target_pl[pl_index].page; 604 src_pages[0] = source_pl[pl_index].page; 605 src_pages[1] = ic->journal_xor[pl_index].page; 606 607 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 608 609 pl_index++; 610 pl_offset = 0; 611 n_bytes -= this_step; 612 } while (n_bytes); 613 614 BUG_ON(n_sections); 615 616 async_tx_issue_pending_all(); 617 } 618 619 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 620 { 621 struct journal_completion *comp = req->data; 622 if (unlikely(err)) { 623 if (likely(err == -EINPROGRESS)) { 624 complete(&comp->ic->crypto_backoff); 625 return; 626 } 627 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 628 } 629 complete_journal_op(comp); 630 } 631 632 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 633 { 634 int r; 635 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 636 complete_journal_encrypt, comp); 637 if (likely(encrypt)) 638 r = crypto_skcipher_encrypt(req); 639 else 640 r = crypto_skcipher_decrypt(req); 641 if (likely(!r)) 642 return false; 643 if (likely(r == -EINPROGRESS)) 644 return true; 645 if (likely(r == -EBUSY)) { 646 wait_for_completion(&comp->ic->crypto_backoff); 647 reinit_completion(&comp->ic->crypto_backoff); 648 return true; 649 } 650 dm_integrity_io_error(comp->ic, "encrypt", r); 651 return false; 652 } 653 654 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 655 unsigned n_sections, struct journal_completion *comp) 656 { 657 struct scatterlist **source_sg; 658 struct scatterlist **target_sg; 659 660 atomic_add(2, &comp->in_flight); 661 662 if (likely(encrypt)) { 663 source_sg = ic->journal_scatterlist; 664 target_sg = ic->journal_io_scatterlist; 665 } else { 666 source_sg = ic->journal_io_scatterlist; 667 target_sg = ic->journal_scatterlist; 668 } 669 670 do { 671 struct skcipher_request *req; 672 unsigned ivsize; 673 char *iv; 674 675 if (likely(encrypt)) 676 rw_section_mac(ic, section, true); 677 678 req = ic->sk_requests[section]; 679 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 680 iv = req->iv; 681 682 memcpy(iv, iv + ivsize, ivsize); 683 684 req->src = source_sg[section]; 685 req->dst = target_sg[section]; 686 687 if (unlikely(do_crypt(encrypt, req, comp))) 688 atomic_inc(&comp->in_flight); 689 690 section++; 691 n_sections--; 692 } while (n_sections); 693 694 atomic_dec(&comp->in_flight); 695 complete_journal_op(comp); 696 } 697 698 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 699 unsigned n_sections, struct journal_completion *comp) 700 { 701 if (ic->journal_xor) 702 return xor_journal(ic, encrypt, section, n_sections, comp); 703 else 704 return crypt_journal(ic, encrypt, section, n_sections, comp); 705 } 706 707 static void complete_journal_io(unsigned long error, void *context) 708 { 709 struct journal_completion *comp = context; 710 if (unlikely(error != 0)) 711 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 712 complete_journal_op(comp); 713 } 714 715 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 716 unsigned n_sections, struct journal_completion *comp) 717 { 718 struct dm_io_request io_req; 719 struct dm_io_region io_loc; 720 unsigned sector, n_sectors, pl_index, pl_offset; 721 int r; 722 723 if (unlikely(dm_integrity_failed(ic))) { 724 if (comp) 725 complete_journal_io(-1UL, comp); 726 return; 727 } 728 729 sector = section * ic->journal_section_sectors; 730 n_sectors = n_sections * ic->journal_section_sectors; 731 732 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 733 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 734 735 io_req.bi_op = op; 736 io_req.bi_op_flags = op_flags; 737 io_req.mem.type = DM_IO_PAGE_LIST; 738 if (ic->journal_io) 739 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 740 else 741 io_req.mem.ptr.pl = &ic->journal[pl_index]; 742 io_req.mem.offset = pl_offset; 743 if (likely(comp != NULL)) { 744 io_req.notify.fn = complete_journal_io; 745 io_req.notify.context = comp; 746 } else { 747 io_req.notify.fn = NULL; 748 } 749 io_req.client = ic->io; 750 io_loc.bdev = ic->dev->bdev; 751 io_loc.sector = ic->start + SB_SECTORS + sector; 752 io_loc.count = n_sectors; 753 754 r = dm_io(&io_req, 1, &io_loc, NULL); 755 if (unlikely(r)) { 756 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 757 if (comp) { 758 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 759 complete_journal_io(-1UL, comp); 760 } 761 } 762 } 763 764 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 765 { 766 struct journal_completion io_comp; 767 struct journal_completion crypt_comp_1; 768 struct journal_completion crypt_comp_2; 769 unsigned i; 770 771 io_comp.ic = ic; 772 io_comp.comp = COMPLETION_INITIALIZER_ONSTACK(io_comp.comp); 773 774 if (commit_start + commit_sections <= ic->journal_sections) { 775 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 776 if (ic->journal_io) { 777 crypt_comp_1.ic = ic; 778 crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp); 779 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 780 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 781 wait_for_completion_io(&crypt_comp_1.comp); 782 } else { 783 for (i = 0; i < commit_sections; i++) 784 rw_section_mac(ic, commit_start + i, true); 785 } 786 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 787 commit_sections, &io_comp); 788 } else { 789 unsigned to_end; 790 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 791 to_end = ic->journal_sections - commit_start; 792 if (ic->journal_io) { 793 crypt_comp_1.ic = ic; 794 crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp); 795 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 796 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 797 if (try_wait_for_completion(&crypt_comp_1.comp)) { 798 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 799 crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp); 800 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 801 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 802 wait_for_completion_io(&crypt_comp_1.comp); 803 } else { 804 crypt_comp_2.ic = ic; 805 crypt_comp_2.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_2.comp); 806 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 807 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 808 wait_for_completion_io(&crypt_comp_1.comp); 809 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 810 wait_for_completion_io(&crypt_comp_2.comp); 811 } 812 } else { 813 for (i = 0; i < to_end; i++) 814 rw_section_mac(ic, commit_start + i, true); 815 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 816 for (i = 0; i < commit_sections - to_end; i++) 817 rw_section_mac(ic, i, true); 818 } 819 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 820 } 821 822 wait_for_completion_io(&io_comp.comp); 823 } 824 825 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 826 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 827 { 828 struct dm_io_request io_req; 829 struct dm_io_region io_loc; 830 int r; 831 unsigned sector, pl_index, pl_offset; 832 833 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 834 835 if (unlikely(dm_integrity_failed(ic))) { 836 fn(-1UL, data); 837 return; 838 } 839 840 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 841 842 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 843 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 844 845 io_req.bi_op = REQ_OP_WRITE; 846 io_req.bi_op_flags = 0; 847 io_req.mem.type = DM_IO_PAGE_LIST; 848 io_req.mem.ptr.pl = &ic->journal[pl_index]; 849 io_req.mem.offset = pl_offset; 850 io_req.notify.fn = fn; 851 io_req.notify.context = data; 852 io_req.client = ic->io; 853 io_loc.bdev = ic->dev->bdev; 854 io_loc.sector = ic->start + target; 855 io_loc.count = n_sectors; 856 857 r = dm_io(&io_req, 1, &io_loc, NULL); 858 if (unlikely(r)) { 859 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 860 fn(-1UL, data); 861 } 862 } 863 864 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 865 { 866 struct rb_node **n = &ic->in_progress.rb_node; 867 struct rb_node *parent; 868 869 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 870 871 parent = NULL; 872 873 while (*n) { 874 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 875 876 parent = *n; 877 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 878 n = &range->node.rb_left; 879 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 880 n = &range->node.rb_right; 881 } else { 882 return false; 883 } 884 } 885 886 rb_link_node(&new_range->node, parent, n); 887 rb_insert_color(&new_range->node, &ic->in_progress); 888 889 return true; 890 } 891 892 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 893 { 894 rb_erase(&range->node, &ic->in_progress); 895 wake_up_locked(&ic->endio_wait); 896 } 897 898 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 899 { 900 unsigned long flags; 901 902 spin_lock_irqsave(&ic->endio_wait.lock, flags); 903 remove_range_unlocked(ic, range); 904 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 905 } 906 907 static void init_journal_node(struct journal_node *node) 908 { 909 RB_CLEAR_NODE(&node->node); 910 node->sector = (sector_t)-1; 911 } 912 913 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 914 { 915 struct rb_node **link; 916 struct rb_node *parent; 917 918 node->sector = sector; 919 BUG_ON(!RB_EMPTY_NODE(&node->node)); 920 921 link = &ic->journal_tree_root.rb_node; 922 parent = NULL; 923 924 while (*link) { 925 struct journal_node *j; 926 parent = *link; 927 j = container_of(parent, struct journal_node, node); 928 if (sector < j->sector) 929 link = &j->node.rb_left; 930 else 931 link = &j->node.rb_right; 932 } 933 934 rb_link_node(&node->node, parent, link); 935 rb_insert_color(&node->node, &ic->journal_tree_root); 936 } 937 938 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 939 { 940 BUG_ON(RB_EMPTY_NODE(&node->node)); 941 rb_erase(&node->node, &ic->journal_tree_root); 942 init_journal_node(node); 943 } 944 945 #define NOT_FOUND (-1U) 946 947 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 948 { 949 struct rb_node *n = ic->journal_tree_root.rb_node; 950 unsigned found = NOT_FOUND; 951 *next_sector = (sector_t)-1; 952 while (n) { 953 struct journal_node *j = container_of(n, struct journal_node, node); 954 if (sector == j->sector) { 955 found = j - ic->journal_tree; 956 } 957 if (sector < j->sector) { 958 *next_sector = j->sector; 959 n = j->node.rb_left; 960 } else { 961 n = j->node.rb_right; 962 } 963 } 964 965 return found; 966 } 967 968 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 969 { 970 struct journal_node *node, *next_node; 971 struct rb_node *next; 972 973 if (unlikely(pos >= ic->journal_entries)) 974 return false; 975 node = &ic->journal_tree[pos]; 976 if (unlikely(RB_EMPTY_NODE(&node->node))) 977 return false; 978 if (unlikely(node->sector != sector)) 979 return false; 980 981 next = rb_next(&node->node); 982 if (unlikely(!next)) 983 return true; 984 985 next_node = container_of(next, struct journal_node, node); 986 return next_node->sector != sector; 987 } 988 989 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 990 { 991 struct rb_node *next; 992 struct journal_node *next_node; 993 unsigned next_section; 994 995 BUG_ON(RB_EMPTY_NODE(&node->node)); 996 997 next = rb_next(&node->node); 998 if (unlikely(!next)) 999 return false; 1000 1001 next_node = container_of(next, struct journal_node, node); 1002 1003 if (next_node->sector != node->sector) 1004 return false; 1005 1006 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1007 if (next_section >= ic->committed_section && 1008 next_section < ic->committed_section + ic->n_committed_sections) 1009 return true; 1010 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1011 return true; 1012 1013 return false; 1014 } 1015 1016 #define TAG_READ 0 1017 #define TAG_WRITE 1 1018 #define TAG_CMP 2 1019 1020 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1021 unsigned *metadata_offset, unsigned total_size, int op) 1022 { 1023 do { 1024 unsigned char *data, *dp; 1025 struct dm_buffer *b; 1026 unsigned to_copy; 1027 int r; 1028 1029 r = dm_integrity_failed(ic); 1030 if (unlikely(r)) 1031 return r; 1032 1033 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1034 if (unlikely(IS_ERR(data))) 1035 return PTR_ERR(data); 1036 1037 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1038 dp = data + *metadata_offset; 1039 if (op == TAG_READ) { 1040 memcpy(tag, dp, to_copy); 1041 } else if (op == TAG_WRITE) { 1042 memcpy(dp, tag, to_copy); 1043 dm_bufio_mark_buffer_dirty(b); 1044 } else { 1045 /* e.g.: op == TAG_CMP */ 1046 if (unlikely(memcmp(dp, tag, to_copy))) { 1047 unsigned i; 1048 1049 for (i = 0; i < to_copy; i++) { 1050 if (dp[i] != tag[i]) 1051 break; 1052 total_size--; 1053 } 1054 dm_bufio_release(b); 1055 return total_size; 1056 } 1057 } 1058 dm_bufio_release(b); 1059 1060 tag += to_copy; 1061 *metadata_offset += to_copy; 1062 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1063 (*metadata_block)++; 1064 *metadata_offset = 0; 1065 } 1066 total_size -= to_copy; 1067 } while (unlikely(total_size)); 1068 1069 return 0; 1070 } 1071 1072 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic) 1073 { 1074 int r; 1075 r = dm_bufio_write_dirty_buffers(ic->bufio); 1076 if (unlikely(r)) 1077 dm_integrity_io_error(ic, "writing tags", r); 1078 } 1079 1080 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1081 { 1082 DECLARE_WAITQUEUE(wait, current); 1083 __add_wait_queue(&ic->endio_wait, &wait); 1084 __set_current_state(TASK_UNINTERRUPTIBLE); 1085 spin_unlock_irq(&ic->endio_wait.lock); 1086 io_schedule(); 1087 spin_lock_irq(&ic->endio_wait.lock); 1088 __remove_wait_queue(&ic->endio_wait, &wait); 1089 } 1090 1091 static void autocommit_fn(unsigned long data) 1092 { 1093 struct dm_integrity_c *ic = (struct dm_integrity_c *)data; 1094 1095 if (likely(!dm_integrity_failed(ic))) 1096 queue_work(ic->commit_wq, &ic->commit_work); 1097 } 1098 1099 static void schedule_autocommit(struct dm_integrity_c *ic) 1100 { 1101 if (!timer_pending(&ic->autocommit_timer)) 1102 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1103 } 1104 1105 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1106 { 1107 struct bio *bio; 1108 unsigned long flags; 1109 1110 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1111 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1112 bio_list_add(&ic->flush_bio_list, bio); 1113 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1114 1115 queue_work(ic->commit_wq, &ic->commit_work); 1116 } 1117 1118 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1119 { 1120 int r = dm_integrity_failed(ic); 1121 if (unlikely(r) && !bio->bi_status) 1122 bio->bi_status = errno_to_blk_status(r); 1123 bio_endio(bio); 1124 } 1125 1126 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1127 { 1128 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1129 1130 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1131 submit_flush_bio(ic, dio); 1132 else 1133 do_endio(ic, bio); 1134 } 1135 1136 static void dec_in_flight(struct dm_integrity_io *dio) 1137 { 1138 if (atomic_dec_and_test(&dio->in_flight)) { 1139 struct dm_integrity_c *ic = dio->ic; 1140 struct bio *bio; 1141 1142 remove_range(ic, &dio->range); 1143 1144 if (unlikely(dio->write)) 1145 schedule_autocommit(ic); 1146 1147 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1148 1149 if (unlikely(dio->bi_status) && !bio->bi_status) 1150 bio->bi_status = dio->bi_status; 1151 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1152 dio->range.logical_sector += dio->range.n_sectors; 1153 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1154 INIT_WORK(&dio->work, integrity_bio_wait); 1155 queue_work(ic->wait_wq, &dio->work); 1156 return; 1157 } 1158 do_endio_flush(ic, dio); 1159 } 1160 } 1161 1162 static void integrity_end_io(struct bio *bio) 1163 { 1164 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1165 1166 bio->bi_iter = dio->orig_bi_iter; 1167 bio->bi_bdev = dio->orig_bi_bdev; 1168 if (dio->orig_bi_integrity) { 1169 bio->bi_integrity = dio->orig_bi_integrity; 1170 bio->bi_opf |= REQ_INTEGRITY; 1171 } 1172 bio->bi_end_io = dio->orig_bi_end_io; 1173 1174 if (dio->completion) 1175 complete(dio->completion); 1176 1177 dec_in_flight(dio); 1178 } 1179 1180 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1181 const char *data, char *result) 1182 { 1183 __u64 sector_le = cpu_to_le64(sector); 1184 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1185 int r; 1186 unsigned digest_size; 1187 1188 req->tfm = ic->internal_hash; 1189 req->flags = 0; 1190 1191 r = crypto_shash_init(req); 1192 if (unlikely(r < 0)) { 1193 dm_integrity_io_error(ic, "crypto_shash_init", r); 1194 goto failed; 1195 } 1196 1197 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1198 if (unlikely(r < 0)) { 1199 dm_integrity_io_error(ic, "crypto_shash_update", r); 1200 goto failed; 1201 } 1202 1203 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1204 if (unlikely(r < 0)) { 1205 dm_integrity_io_error(ic, "crypto_shash_update", r); 1206 goto failed; 1207 } 1208 1209 r = crypto_shash_final(req, result); 1210 if (unlikely(r < 0)) { 1211 dm_integrity_io_error(ic, "crypto_shash_final", r); 1212 goto failed; 1213 } 1214 1215 digest_size = crypto_shash_digestsize(ic->internal_hash); 1216 if (unlikely(digest_size < ic->tag_size)) 1217 memset(result + digest_size, 0, ic->tag_size - digest_size); 1218 1219 return; 1220 1221 failed: 1222 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1223 get_random_bytes(result, ic->tag_size); 1224 } 1225 1226 static void integrity_metadata(struct work_struct *w) 1227 { 1228 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1229 struct dm_integrity_c *ic = dio->ic; 1230 1231 int r; 1232 1233 if (ic->internal_hash) { 1234 struct bvec_iter iter; 1235 struct bio_vec bv; 1236 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1237 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1238 char *checksums; 1239 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1240 char checksums_onstack[ic->tag_size + extra_space]; 1241 unsigned sectors_to_process = dio->range.n_sectors; 1242 sector_t sector = dio->range.logical_sector; 1243 1244 if (unlikely(ic->mode == 'R')) 1245 goto skip_io; 1246 1247 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1248 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1249 if (!checksums) 1250 checksums = checksums_onstack; 1251 1252 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) { 1253 unsigned pos; 1254 char *mem, *checksums_ptr; 1255 1256 again: 1257 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1258 pos = 0; 1259 checksums_ptr = checksums; 1260 do { 1261 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1262 checksums_ptr += ic->tag_size; 1263 sectors_to_process -= ic->sectors_per_block; 1264 pos += ic->sectors_per_block << SECTOR_SHIFT; 1265 sector += ic->sectors_per_block; 1266 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1267 kunmap_atomic(mem); 1268 1269 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1270 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE); 1271 if (unlikely(r)) { 1272 if (r > 0) { 1273 DMERR("Checksum failed at sector 0x%llx", 1274 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1275 r = -EILSEQ; 1276 } 1277 if (likely(checksums != checksums_onstack)) 1278 kfree(checksums); 1279 goto error; 1280 } 1281 1282 if (!sectors_to_process) 1283 break; 1284 1285 if (unlikely(pos < bv.bv_len)) { 1286 bv.bv_offset += pos; 1287 bv.bv_len -= pos; 1288 goto again; 1289 } 1290 } 1291 1292 if (likely(checksums != checksums_onstack)) 1293 kfree(checksums); 1294 } else { 1295 struct bio_integrity_payload *bip = dio->orig_bi_integrity; 1296 1297 if (bip) { 1298 struct bio_vec biv; 1299 struct bvec_iter iter; 1300 unsigned data_to_process = dio->range.n_sectors; 1301 sector_to_block(ic, data_to_process); 1302 data_to_process *= ic->tag_size; 1303 1304 bip_for_each_vec(biv, bip, iter) { 1305 unsigned char *tag; 1306 unsigned this_len; 1307 1308 BUG_ON(PageHighMem(biv.bv_page)); 1309 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1310 this_len = min(biv.bv_len, data_to_process); 1311 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1312 this_len, !dio->write ? TAG_READ : TAG_WRITE); 1313 if (unlikely(r)) 1314 goto error; 1315 data_to_process -= this_len; 1316 if (!data_to_process) 1317 break; 1318 } 1319 } 1320 } 1321 skip_io: 1322 dec_in_flight(dio); 1323 return; 1324 error: 1325 dio->bi_status = errno_to_blk_status(r); 1326 dec_in_flight(dio); 1327 } 1328 1329 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1330 { 1331 struct dm_integrity_c *ic = ti->private; 1332 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1333 struct bio_integrity_payload *bip; 1334 1335 sector_t area, offset; 1336 1337 dio->ic = ic; 1338 dio->bi_status = 0; 1339 1340 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1341 submit_flush_bio(ic, dio); 1342 return DM_MAPIO_SUBMITTED; 1343 } 1344 1345 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1346 dio->write = bio_op(bio) == REQ_OP_WRITE; 1347 dio->fua = dio->write && bio->bi_opf & REQ_FUA; 1348 if (unlikely(dio->fua)) { 1349 /* 1350 * Don't pass down the FUA flag because we have to flush 1351 * disk cache anyway. 1352 */ 1353 bio->bi_opf &= ~REQ_FUA; 1354 } 1355 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1356 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1357 (unsigned long long)dio->range.logical_sector, bio_sectors(bio), 1358 (unsigned long long)ic->provided_data_sectors); 1359 return DM_MAPIO_KILL; 1360 } 1361 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1362 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1363 ic->sectors_per_block, 1364 (unsigned long long)dio->range.logical_sector, bio_sectors(bio)); 1365 return DM_MAPIO_KILL; 1366 } 1367 1368 if (ic->sectors_per_block > 1) { 1369 struct bvec_iter iter; 1370 struct bio_vec bv; 1371 bio_for_each_segment(bv, bio, iter) { 1372 if (unlikely((bv.bv_offset | bv.bv_len) & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1373 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1374 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1375 return DM_MAPIO_KILL; 1376 } 1377 } 1378 } 1379 1380 bip = bio_integrity(bio); 1381 if (!ic->internal_hash) { 1382 if (bip) { 1383 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1384 if (ic->log2_tag_size >= 0) 1385 wanted_tag_size <<= ic->log2_tag_size; 1386 else 1387 wanted_tag_size *= ic->tag_size; 1388 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1389 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size); 1390 return DM_MAPIO_KILL; 1391 } 1392 } 1393 } else { 1394 if (unlikely(bip != NULL)) { 1395 DMERR("Unexpected integrity data when using internal hash"); 1396 return DM_MAPIO_KILL; 1397 } 1398 } 1399 1400 if (unlikely(ic->mode == 'R') && unlikely(dio->write)) 1401 return DM_MAPIO_KILL; 1402 1403 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1404 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1405 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1406 1407 dm_integrity_map_continue(dio, true); 1408 return DM_MAPIO_SUBMITTED; 1409 } 1410 1411 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1412 unsigned journal_section, unsigned journal_entry) 1413 { 1414 struct dm_integrity_c *ic = dio->ic; 1415 sector_t logical_sector; 1416 unsigned n_sectors; 1417 1418 logical_sector = dio->range.logical_sector; 1419 n_sectors = dio->range.n_sectors; 1420 do { 1421 struct bio_vec bv = bio_iovec(bio); 1422 char *mem; 1423 1424 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1425 bv.bv_len = n_sectors << SECTOR_SHIFT; 1426 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1427 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1428 retry_kmap: 1429 mem = kmap_atomic(bv.bv_page); 1430 if (likely(dio->write)) 1431 flush_dcache_page(bv.bv_page); 1432 1433 do { 1434 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1435 1436 if (unlikely(!dio->write)) { 1437 struct journal_sector *js; 1438 char *mem_ptr; 1439 unsigned s; 1440 1441 if (unlikely(journal_entry_is_inprogress(je))) { 1442 flush_dcache_page(bv.bv_page); 1443 kunmap_atomic(mem); 1444 1445 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1446 goto retry_kmap; 1447 } 1448 smp_rmb(); 1449 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1450 js = access_journal_data(ic, journal_section, journal_entry); 1451 mem_ptr = mem + bv.bv_offset; 1452 s = 0; 1453 do { 1454 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1455 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1456 js++; 1457 mem_ptr += 1 << SECTOR_SHIFT; 1458 } while (++s < ic->sectors_per_block); 1459 #ifdef INTERNAL_VERIFY 1460 if (ic->internal_hash) { 1461 char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)]; 1462 1463 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1464 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1465 DMERR("Checksum failed when reading from journal, at sector 0x%llx", 1466 (unsigned long long)logical_sector); 1467 } 1468 } 1469 #endif 1470 } 1471 1472 if (!ic->internal_hash) { 1473 struct bio_integrity_payload *bip = bio_integrity(bio); 1474 unsigned tag_todo = ic->tag_size; 1475 char *tag_ptr = journal_entry_tag(ic, je); 1476 1477 if (bip) do { 1478 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1479 unsigned tag_now = min(biv.bv_len, tag_todo); 1480 char *tag_addr; 1481 BUG_ON(PageHighMem(biv.bv_page)); 1482 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1483 if (likely(dio->write)) 1484 memcpy(tag_ptr, tag_addr, tag_now); 1485 else 1486 memcpy(tag_addr, tag_ptr, tag_now); 1487 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1488 tag_ptr += tag_now; 1489 tag_todo -= tag_now; 1490 } while (unlikely(tag_todo)); else { 1491 if (likely(dio->write)) 1492 memset(tag_ptr, 0, tag_todo); 1493 } 1494 } 1495 1496 if (likely(dio->write)) { 1497 struct journal_sector *js; 1498 unsigned s; 1499 1500 js = access_journal_data(ic, journal_section, journal_entry); 1501 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1502 1503 s = 0; 1504 do { 1505 je->last_bytes[s] = js[s].commit_id; 1506 } while (++s < ic->sectors_per_block); 1507 1508 if (ic->internal_hash) { 1509 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1510 if (unlikely(digest_size > ic->tag_size)) { 1511 char checksums_onstack[digest_size]; 1512 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1513 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1514 } else 1515 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1516 } 1517 1518 journal_entry_set_sector(je, logical_sector); 1519 } 1520 logical_sector += ic->sectors_per_block; 1521 1522 journal_entry++; 1523 if (unlikely(journal_entry == ic->journal_section_entries)) { 1524 journal_entry = 0; 1525 journal_section++; 1526 wraparound_section(ic, &journal_section); 1527 } 1528 1529 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1530 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1531 1532 if (unlikely(!dio->write)) 1533 flush_dcache_page(bv.bv_page); 1534 kunmap_atomic(mem); 1535 } while (n_sectors); 1536 1537 if (likely(dio->write)) { 1538 smp_mb(); 1539 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1540 wake_up(&ic->copy_to_journal_wait); 1541 if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1542 queue_work(ic->commit_wq, &ic->commit_work); 1543 } else { 1544 schedule_autocommit(ic); 1545 } 1546 } else { 1547 remove_range(ic, &dio->range); 1548 } 1549 1550 if (unlikely(bio->bi_iter.bi_size)) { 1551 sector_t area, offset; 1552 1553 dio->range.logical_sector = logical_sector; 1554 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1555 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1556 return true; 1557 } 1558 1559 return false; 1560 } 1561 1562 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1563 { 1564 struct dm_integrity_c *ic = dio->ic; 1565 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1566 unsigned journal_section, journal_entry; 1567 unsigned journal_read_pos; 1568 struct completion read_comp; 1569 bool need_sync_io = ic->internal_hash && !dio->write; 1570 1571 if (need_sync_io && from_map) { 1572 INIT_WORK(&dio->work, integrity_bio_wait); 1573 queue_work(ic->metadata_wq, &dio->work); 1574 return; 1575 } 1576 1577 lock_retry: 1578 spin_lock_irq(&ic->endio_wait.lock); 1579 retry: 1580 if (unlikely(dm_integrity_failed(ic))) { 1581 spin_unlock_irq(&ic->endio_wait.lock); 1582 do_endio(ic, bio); 1583 return; 1584 } 1585 dio->range.n_sectors = bio_sectors(bio); 1586 journal_read_pos = NOT_FOUND; 1587 if (likely(ic->mode == 'J')) { 1588 if (dio->write) { 1589 unsigned next_entry, i, pos; 1590 unsigned ws, we, range_sectors; 1591 1592 dio->range.n_sectors = min(dio->range.n_sectors, 1593 ic->free_sectors << ic->sb->log2_sectors_per_block); 1594 if (unlikely(!dio->range.n_sectors)) 1595 goto sleep; 1596 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 1597 ic->free_sectors -= range_sectors; 1598 journal_section = ic->free_section; 1599 journal_entry = ic->free_section_entry; 1600 1601 next_entry = ic->free_section_entry + range_sectors; 1602 ic->free_section_entry = next_entry % ic->journal_section_entries; 1603 ic->free_section += next_entry / ic->journal_section_entries; 1604 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 1605 wraparound_section(ic, &ic->free_section); 1606 1607 pos = journal_section * ic->journal_section_entries + journal_entry; 1608 ws = journal_section; 1609 we = journal_entry; 1610 i = 0; 1611 do { 1612 struct journal_entry *je; 1613 1614 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 1615 pos++; 1616 if (unlikely(pos >= ic->journal_entries)) 1617 pos = 0; 1618 1619 je = access_journal_entry(ic, ws, we); 1620 BUG_ON(!journal_entry_is_unused(je)); 1621 journal_entry_set_inprogress(je); 1622 we++; 1623 if (unlikely(we == ic->journal_section_entries)) { 1624 we = 0; 1625 ws++; 1626 wraparound_section(ic, &ws); 1627 } 1628 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 1629 1630 spin_unlock_irq(&ic->endio_wait.lock); 1631 goto journal_read_write; 1632 } else { 1633 sector_t next_sector; 1634 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1635 if (likely(journal_read_pos == NOT_FOUND)) { 1636 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 1637 dio->range.n_sectors = next_sector - dio->range.logical_sector; 1638 } else { 1639 unsigned i; 1640 unsigned jp = journal_read_pos + 1; 1641 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 1642 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 1643 break; 1644 } 1645 dio->range.n_sectors = i; 1646 } 1647 } 1648 } 1649 if (unlikely(!add_new_range(ic, &dio->range))) { 1650 /* 1651 * We must not sleep in the request routine because it could 1652 * stall bios on current->bio_list. 1653 * So, we offload the bio to a workqueue if we have to sleep. 1654 */ 1655 sleep: 1656 if (from_map) { 1657 spin_unlock_irq(&ic->endio_wait.lock); 1658 INIT_WORK(&dio->work, integrity_bio_wait); 1659 queue_work(ic->wait_wq, &dio->work); 1660 return; 1661 } else { 1662 sleep_on_endio_wait(ic); 1663 goto retry; 1664 } 1665 } 1666 spin_unlock_irq(&ic->endio_wait.lock); 1667 1668 if (unlikely(journal_read_pos != NOT_FOUND)) { 1669 journal_section = journal_read_pos / ic->journal_section_entries; 1670 journal_entry = journal_read_pos % ic->journal_section_entries; 1671 goto journal_read_write; 1672 } 1673 1674 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 1675 1676 if (need_sync_io) { 1677 read_comp = COMPLETION_INITIALIZER_ONSTACK(read_comp); 1678 dio->completion = &read_comp; 1679 } else 1680 dio->completion = NULL; 1681 1682 dio->orig_bi_iter = bio->bi_iter; 1683 1684 dio->orig_bi_bdev = bio->bi_bdev; 1685 bio->bi_bdev = ic->dev->bdev; 1686 1687 dio->orig_bi_integrity = bio_integrity(bio); 1688 bio->bi_integrity = NULL; 1689 bio->bi_opf &= ~REQ_INTEGRITY; 1690 1691 dio->orig_bi_end_io = bio->bi_end_io; 1692 bio->bi_end_io = integrity_end_io; 1693 1694 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 1695 bio->bi_iter.bi_sector += ic->start; 1696 generic_make_request(bio); 1697 1698 if (need_sync_io) { 1699 wait_for_completion_io(&read_comp); 1700 integrity_metadata(&dio->work); 1701 } else { 1702 INIT_WORK(&dio->work, integrity_metadata); 1703 queue_work(ic->metadata_wq, &dio->work); 1704 } 1705 1706 return; 1707 1708 journal_read_write: 1709 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 1710 goto lock_retry; 1711 1712 do_endio_flush(ic, dio); 1713 } 1714 1715 1716 static void integrity_bio_wait(struct work_struct *w) 1717 { 1718 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1719 1720 dm_integrity_map_continue(dio, false); 1721 } 1722 1723 static void pad_uncommitted(struct dm_integrity_c *ic) 1724 { 1725 if (ic->free_section_entry) { 1726 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 1727 ic->free_section_entry = 0; 1728 ic->free_section++; 1729 wraparound_section(ic, &ic->free_section); 1730 ic->n_uncommitted_sections++; 1731 } 1732 WARN_ON(ic->journal_sections * ic->journal_section_entries != 1733 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors); 1734 } 1735 1736 static void integrity_commit(struct work_struct *w) 1737 { 1738 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 1739 unsigned commit_start, commit_sections; 1740 unsigned i, j, n; 1741 struct bio *flushes; 1742 1743 del_timer(&ic->autocommit_timer); 1744 1745 spin_lock_irq(&ic->endio_wait.lock); 1746 flushes = bio_list_get(&ic->flush_bio_list); 1747 if (unlikely(ic->mode != 'J')) { 1748 spin_unlock_irq(&ic->endio_wait.lock); 1749 dm_integrity_flush_buffers(ic); 1750 goto release_flush_bios; 1751 } 1752 1753 pad_uncommitted(ic); 1754 commit_start = ic->uncommitted_section; 1755 commit_sections = ic->n_uncommitted_sections; 1756 spin_unlock_irq(&ic->endio_wait.lock); 1757 1758 if (!commit_sections) 1759 goto release_flush_bios; 1760 1761 i = commit_start; 1762 for (n = 0; n < commit_sections; n++) { 1763 for (j = 0; j < ic->journal_section_entries; j++) { 1764 struct journal_entry *je; 1765 je = access_journal_entry(ic, i, j); 1766 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1767 } 1768 for (j = 0; j < ic->journal_section_sectors; j++) { 1769 struct journal_sector *js; 1770 js = access_journal(ic, i, j); 1771 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 1772 } 1773 i++; 1774 if (unlikely(i >= ic->journal_sections)) 1775 ic->commit_seq = next_commit_seq(ic->commit_seq); 1776 wraparound_section(ic, &i); 1777 } 1778 smp_rmb(); 1779 1780 write_journal(ic, commit_start, commit_sections); 1781 1782 spin_lock_irq(&ic->endio_wait.lock); 1783 ic->uncommitted_section += commit_sections; 1784 wraparound_section(ic, &ic->uncommitted_section); 1785 ic->n_uncommitted_sections -= commit_sections; 1786 ic->n_committed_sections += commit_sections; 1787 spin_unlock_irq(&ic->endio_wait.lock); 1788 1789 if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 1790 queue_work(ic->writer_wq, &ic->writer_work); 1791 1792 release_flush_bios: 1793 while (flushes) { 1794 struct bio *next = flushes->bi_next; 1795 flushes->bi_next = NULL; 1796 do_endio(ic, flushes); 1797 flushes = next; 1798 } 1799 } 1800 1801 static void complete_copy_from_journal(unsigned long error, void *context) 1802 { 1803 struct journal_io *io = context; 1804 struct journal_completion *comp = io->comp; 1805 struct dm_integrity_c *ic = comp->ic; 1806 remove_range(ic, &io->range); 1807 mempool_free(io, ic->journal_io_mempool); 1808 if (unlikely(error != 0)) 1809 dm_integrity_io_error(ic, "copying from journal", -EIO); 1810 complete_journal_op(comp); 1811 } 1812 1813 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 1814 struct journal_entry *je) 1815 { 1816 unsigned s = 0; 1817 do { 1818 js->commit_id = je->last_bytes[s]; 1819 js++; 1820 } while (++s < ic->sectors_per_block); 1821 } 1822 1823 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 1824 unsigned write_sections, bool from_replay) 1825 { 1826 unsigned i, j, n; 1827 struct journal_completion comp; 1828 struct blk_plug plug; 1829 1830 blk_start_plug(&plug); 1831 1832 comp.ic = ic; 1833 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1834 comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp); 1835 1836 i = write_start; 1837 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 1838 #ifndef INTERNAL_VERIFY 1839 if (unlikely(from_replay)) 1840 #endif 1841 rw_section_mac(ic, i, false); 1842 for (j = 0; j < ic->journal_section_entries; j++) { 1843 struct journal_entry *je = access_journal_entry(ic, i, j); 1844 sector_t sec, area, offset; 1845 unsigned k, l, next_loop; 1846 sector_t metadata_block; 1847 unsigned metadata_offset; 1848 struct journal_io *io; 1849 1850 if (journal_entry_is_unused(je)) 1851 continue; 1852 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 1853 sec = journal_entry_get_sector(je); 1854 if (unlikely(from_replay)) { 1855 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 1856 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 1857 sec &= ~(sector_t)(ic->sectors_per_block - 1); 1858 } 1859 } 1860 get_area_and_offset(ic, sec, &area, &offset); 1861 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 1862 for (k = j + 1; k < ic->journal_section_entries; k++) { 1863 struct journal_entry *je2 = access_journal_entry(ic, i, k); 1864 sector_t sec2, area2, offset2; 1865 if (journal_entry_is_unused(je2)) 1866 break; 1867 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 1868 sec2 = journal_entry_get_sector(je2); 1869 get_area_and_offset(ic, sec2, &area2, &offset2); 1870 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 1871 break; 1872 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 1873 } 1874 next_loop = k - 1; 1875 1876 io = mempool_alloc(ic->journal_io_mempool, GFP_NOIO); 1877 io->comp = ∁ 1878 io->range.logical_sector = sec; 1879 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 1880 1881 spin_lock_irq(&ic->endio_wait.lock); 1882 while (unlikely(!add_new_range(ic, &io->range))) 1883 sleep_on_endio_wait(ic); 1884 1885 if (likely(!from_replay)) { 1886 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 1887 1888 /* don't write if there is newer committed sector */ 1889 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 1890 struct journal_entry *je2 = access_journal_entry(ic, i, j); 1891 1892 journal_entry_set_unused(je2); 1893 remove_journal_node(ic, §ion_node[j]); 1894 j++; 1895 sec += ic->sectors_per_block; 1896 offset += ic->sectors_per_block; 1897 } 1898 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 1899 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 1900 1901 journal_entry_set_unused(je2); 1902 remove_journal_node(ic, §ion_node[k - 1]); 1903 k--; 1904 } 1905 if (j == k) { 1906 remove_range_unlocked(ic, &io->range); 1907 spin_unlock_irq(&ic->endio_wait.lock); 1908 mempool_free(io, ic->journal_io_mempool); 1909 goto skip_io; 1910 } 1911 for (l = j; l < k; l++) { 1912 remove_journal_node(ic, §ion_node[l]); 1913 } 1914 } 1915 spin_unlock_irq(&ic->endio_wait.lock); 1916 1917 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 1918 for (l = j; l < k; l++) { 1919 int r; 1920 struct journal_entry *je2 = access_journal_entry(ic, i, l); 1921 1922 if ( 1923 #ifndef INTERNAL_VERIFY 1924 unlikely(from_replay) && 1925 #endif 1926 ic->internal_hash) { 1927 char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)]; 1928 1929 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 1930 (char *)access_journal_data(ic, i, l), test_tag); 1931 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 1932 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 1933 } 1934 1935 journal_entry_set_unused(je2); 1936 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 1937 ic->tag_size, TAG_WRITE); 1938 if (unlikely(r)) { 1939 dm_integrity_io_error(ic, "reading tags", r); 1940 } 1941 } 1942 1943 atomic_inc(&comp.in_flight); 1944 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 1945 (k - j) << ic->sb->log2_sectors_per_block, 1946 get_data_sector(ic, area, offset), 1947 complete_copy_from_journal, io); 1948 skip_io: 1949 j = next_loop; 1950 } 1951 } 1952 1953 dm_bufio_write_dirty_buffers_async(ic->bufio); 1954 1955 blk_finish_plug(&plug); 1956 1957 complete_journal_op(&comp); 1958 wait_for_completion_io(&comp.comp); 1959 1960 dm_integrity_flush_buffers(ic); 1961 } 1962 1963 static void integrity_writer(struct work_struct *w) 1964 { 1965 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 1966 unsigned write_start, write_sections; 1967 1968 unsigned prev_free_sectors; 1969 1970 /* the following test is not needed, but it tests the replay code */ 1971 if (ACCESS_ONCE(ic->suspending)) 1972 return; 1973 1974 spin_lock_irq(&ic->endio_wait.lock); 1975 write_start = ic->committed_section; 1976 write_sections = ic->n_committed_sections; 1977 spin_unlock_irq(&ic->endio_wait.lock); 1978 1979 if (!write_sections) 1980 return; 1981 1982 do_journal_write(ic, write_start, write_sections, false); 1983 1984 spin_lock_irq(&ic->endio_wait.lock); 1985 1986 ic->committed_section += write_sections; 1987 wraparound_section(ic, &ic->committed_section); 1988 ic->n_committed_sections -= write_sections; 1989 1990 prev_free_sectors = ic->free_sectors; 1991 ic->free_sectors += write_sections * ic->journal_section_entries; 1992 if (unlikely(!prev_free_sectors)) 1993 wake_up_locked(&ic->endio_wait); 1994 1995 spin_unlock_irq(&ic->endio_wait.lock); 1996 } 1997 1998 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 1999 unsigned n_sections, unsigned char commit_seq) 2000 { 2001 unsigned i, j, n; 2002 2003 if (!n_sections) 2004 return; 2005 2006 for (n = 0; n < n_sections; n++) { 2007 i = start_section + n; 2008 wraparound_section(ic, &i); 2009 for (j = 0; j < ic->journal_section_sectors; j++) { 2010 struct journal_sector *js = access_journal(ic, i, j); 2011 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2012 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2013 } 2014 for (j = 0; j < ic->journal_section_entries; j++) { 2015 struct journal_entry *je = access_journal_entry(ic, i, j); 2016 journal_entry_set_unused(je); 2017 } 2018 } 2019 2020 write_journal(ic, start_section, n_sections); 2021 } 2022 2023 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2024 { 2025 unsigned char k; 2026 for (k = 0; k < N_COMMIT_IDS; k++) { 2027 if (dm_integrity_commit_id(ic, i, j, k) == id) 2028 return k; 2029 } 2030 dm_integrity_io_error(ic, "journal commit id", -EIO); 2031 return -EIO; 2032 } 2033 2034 static void replay_journal(struct dm_integrity_c *ic) 2035 { 2036 unsigned i, j; 2037 bool used_commit_ids[N_COMMIT_IDS]; 2038 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2039 unsigned write_start, write_sections; 2040 unsigned continue_section; 2041 bool journal_empty; 2042 unsigned char unused, last_used, want_commit_seq; 2043 2044 if (ic->mode == 'R') 2045 return; 2046 2047 if (ic->journal_uptodate) 2048 return; 2049 2050 last_used = 0; 2051 write_start = 0; 2052 2053 if (!ic->just_formatted) { 2054 DEBUG_print("reading journal\n"); 2055 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2056 if (ic->journal_io) 2057 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2058 if (ic->journal_io) { 2059 struct journal_completion crypt_comp; 2060 crypt_comp.ic = ic; 2061 crypt_comp.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp.comp); 2062 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2063 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2064 wait_for_completion(&crypt_comp.comp); 2065 } 2066 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2067 } 2068 2069 if (dm_integrity_failed(ic)) 2070 goto clear_journal; 2071 2072 journal_empty = true; 2073 memset(used_commit_ids, 0, sizeof used_commit_ids); 2074 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2075 for (i = 0; i < ic->journal_sections; i++) { 2076 for (j = 0; j < ic->journal_section_sectors; j++) { 2077 int k; 2078 struct journal_sector *js = access_journal(ic, i, j); 2079 k = find_commit_seq(ic, i, j, js->commit_id); 2080 if (k < 0) 2081 goto clear_journal; 2082 used_commit_ids[k] = true; 2083 max_commit_id_sections[k] = i; 2084 } 2085 if (journal_empty) { 2086 for (j = 0; j < ic->journal_section_entries; j++) { 2087 struct journal_entry *je = access_journal_entry(ic, i, j); 2088 if (!journal_entry_is_unused(je)) { 2089 journal_empty = false; 2090 break; 2091 } 2092 } 2093 } 2094 } 2095 2096 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2097 unused = N_COMMIT_IDS - 1; 2098 while (unused && !used_commit_ids[unused - 1]) 2099 unused--; 2100 } else { 2101 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2102 if (!used_commit_ids[unused]) 2103 break; 2104 if (unused == N_COMMIT_IDS) { 2105 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2106 goto clear_journal; 2107 } 2108 } 2109 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2110 unused, used_commit_ids[0], used_commit_ids[1], 2111 used_commit_ids[2], used_commit_ids[3]); 2112 2113 last_used = prev_commit_seq(unused); 2114 want_commit_seq = prev_commit_seq(last_used); 2115 2116 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2117 journal_empty = true; 2118 2119 write_start = max_commit_id_sections[last_used] + 1; 2120 if (unlikely(write_start >= ic->journal_sections)) 2121 want_commit_seq = next_commit_seq(want_commit_seq); 2122 wraparound_section(ic, &write_start); 2123 2124 i = write_start; 2125 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2126 for (j = 0; j < ic->journal_section_sectors; j++) { 2127 struct journal_sector *js = access_journal(ic, i, j); 2128 2129 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2130 /* 2131 * This could be caused by crash during writing. 2132 * We won't replay the inconsistent part of the 2133 * journal. 2134 */ 2135 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2136 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2137 goto brk; 2138 } 2139 } 2140 i++; 2141 if (unlikely(i >= ic->journal_sections)) 2142 want_commit_seq = next_commit_seq(want_commit_seq); 2143 wraparound_section(ic, &i); 2144 } 2145 brk: 2146 2147 if (!journal_empty) { 2148 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2149 write_sections, write_start, want_commit_seq); 2150 do_journal_write(ic, write_start, write_sections, true); 2151 } 2152 2153 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2154 continue_section = write_start; 2155 ic->commit_seq = want_commit_seq; 2156 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2157 } else { 2158 unsigned s; 2159 unsigned char erase_seq; 2160 clear_journal: 2161 DEBUG_print("clearing journal\n"); 2162 2163 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2164 s = write_start; 2165 init_journal(ic, s, 1, erase_seq); 2166 s++; 2167 wraparound_section(ic, &s); 2168 if (ic->journal_sections >= 2) { 2169 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2170 s += ic->journal_sections - 2; 2171 wraparound_section(ic, &s); 2172 init_journal(ic, s, 1, erase_seq); 2173 } 2174 2175 continue_section = 0; 2176 ic->commit_seq = next_commit_seq(erase_seq); 2177 } 2178 2179 ic->committed_section = continue_section; 2180 ic->n_committed_sections = 0; 2181 2182 ic->uncommitted_section = continue_section; 2183 ic->n_uncommitted_sections = 0; 2184 2185 ic->free_section = continue_section; 2186 ic->free_section_entry = 0; 2187 ic->free_sectors = ic->journal_entries; 2188 2189 ic->journal_tree_root = RB_ROOT; 2190 for (i = 0; i < ic->journal_entries; i++) 2191 init_journal_node(&ic->journal_tree[i]); 2192 } 2193 2194 static void dm_integrity_postsuspend(struct dm_target *ti) 2195 { 2196 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2197 2198 del_timer_sync(&ic->autocommit_timer); 2199 2200 ic->suspending = true; 2201 2202 queue_work(ic->commit_wq, &ic->commit_work); 2203 drain_workqueue(ic->commit_wq); 2204 2205 if (ic->mode == 'J') { 2206 drain_workqueue(ic->writer_wq); 2207 dm_integrity_flush_buffers(ic); 2208 } 2209 2210 ic->suspending = false; 2211 2212 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2213 2214 ic->journal_uptodate = true; 2215 } 2216 2217 static void dm_integrity_resume(struct dm_target *ti) 2218 { 2219 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2220 2221 replay_journal(ic); 2222 } 2223 2224 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 2225 unsigned status_flags, char *result, unsigned maxlen) 2226 { 2227 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2228 unsigned arg_count; 2229 size_t sz = 0; 2230 2231 switch (type) { 2232 case STATUSTYPE_INFO: 2233 result[0] = '\0'; 2234 break; 2235 2236 case STATUSTYPE_TABLE: { 2237 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 2238 watermark_percentage += ic->journal_entries / 2; 2239 do_div(watermark_percentage, ic->journal_entries); 2240 arg_count = 5; 2241 arg_count += ic->sectors_per_block != 1; 2242 arg_count += !!ic->internal_hash_alg.alg_string; 2243 arg_count += !!ic->journal_crypt_alg.alg_string; 2244 arg_count += !!ic->journal_mac_alg.alg_string; 2245 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start, 2246 ic->tag_size, ic->mode, arg_count); 2247 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 2248 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 2249 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 2250 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 2251 DMEMIT(" commit_time:%u", ic->autocommit_msec); 2252 if (ic->sectors_per_block != 1) 2253 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 2254 2255 #define EMIT_ALG(a, n) \ 2256 do { \ 2257 if (ic->a.alg_string) { \ 2258 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 2259 if (ic->a.key_string) \ 2260 DMEMIT(":%s", ic->a.key_string);\ 2261 } \ 2262 } while (0) 2263 EMIT_ALG(internal_hash_alg, "internal_hash"); 2264 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 2265 EMIT_ALG(journal_mac_alg, "journal_mac"); 2266 break; 2267 } 2268 } 2269 } 2270 2271 static int dm_integrity_iterate_devices(struct dm_target *ti, 2272 iterate_devices_callout_fn fn, void *data) 2273 { 2274 struct dm_integrity_c *ic = ti->private; 2275 2276 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 2277 } 2278 2279 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 2280 { 2281 struct dm_integrity_c *ic = ti->private; 2282 2283 if (ic->sectors_per_block > 1) { 2284 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2285 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2286 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 2287 } 2288 } 2289 2290 static void calculate_journal_section_size(struct dm_integrity_c *ic) 2291 { 2292 unsigned sector_space = JOURNAL_SECTOR_DATA; 2293 2294 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 2295 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 2296 JOURNAL_ENTRY_ROUNDUP); 2297 2298 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 2299 sector_space -= JOURNAL_MAC_PER_SECTOR; 2300 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 2301 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 2302 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 2303 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 2304 } 2305 2306 static int calculate_device_limits(struct dm_integrity_c *ic) 2307 { 2308 __u64 initial_sectors; 2309 sector_t last_sector, last_area, last_offset; 2310 2311 calculate_journal_section_size(ic); 2312 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 2313 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->device_sectors || initial_sectors > UINT_MAX) 2314 return -EINVAL; 2315 ic->initial_sectors = initial_sectors; 2316 2317 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 2318 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT; 2319 if (!(ic->metadata_run & (ic->metadata_run - 1))) 2320 ic->log2_metadata_run = __ffs(ic->metadata_run); 2321 else 2322 ic->log2_metadata_run = -1; 2323 2324 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 2325 last_sector = get_data_sector(ic, last_area, last_offset); 2326 2327 if (ic->start + last_sector < last_sector || ic->start + last_sector >= ic->device_sectors) 2328 return -EINVAL; 2329 2330 return 0; 2331 } 2332 2333 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 2334 { 2335 unsigned journal_sections; 2336 int test_bit; 2337 2338 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 2339 memcpy(ic->sb->magic, SB_MAGIC, 8); 2340 ic->sb->version = SB_VERSION; 2341 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 2342 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 2343 if (ic->journal_mac_alg.alg_string) 2344 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 2345 2346 calculate_journal_section_size(ic); 2347 journal_sections = journal_sectors / ic->journal_section_sectors; 2348 if (!journal_sections) 2349 journal_sections = 1; 2350 ic->sb->journal_sections = cpu_to_le32(journal_sections); 2351 2352 if (!interleave_sectors) 2353 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 2354 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 2355 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 2356 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 2357 2358 ic->provided_data_sectors = 0; 2359 for (test_bit = fls64(ic->device_sectors) - 1; test_bit >= 3; test_bit--) { 2360 __u64 prev_data_sectors = ic->provided_data_sectors; 2361 2362 ic->provided_data_sectors |= (sector_t)1 << test_bit; 2363 if (calculate_device_limits(ic)) 2364 ic->provided_data_sectors = prev_data_sectors; 2365 } 2366 2367 if (!ic->provided_data_sectors) 2368 return -EINVAL; 2369 2370 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 2371 2372 return 0; 2373 } 2374 2375 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 2376 { 2377 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 2378 struct blk_integrity bi; 2379 2380 memset(&bi, 0, sizeof(bi)); 2381 bi.profile = &dm_integrity_profile; 2382 bi.tuple_size = ic->tag_size; 2383 bi.tag_size = bi.tuple_size; 2384 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 2385 2386 blk_integrity_register(disk, &bi); 2387 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 2388 } 2389 2390 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl) 2391 { 2392 unsigned i; 2393 2394 if (!pl) 2395 return; 2396 for (i = 0; i < ic->journal_pages; i++) 2397 if (pl[i].page) 2398 __free_page(pl[i].page); 2399 kvfree(pl); 2400 } 2401 2402 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic) 2403 { 2404 size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list); 2405 struct page_list *pl; 2406 unsigned i; 2407 2408 pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO); 2409 if (!pl) 2410 return NULL; 2411 2412 for (i = 0; i < ic->journal_pages; i++) { 2413 pl[i].page = alloc_page(GFP_KERNEL); 2414 if (!pl[i].page) { 2415 dm_integrity_free_page_list(ic, pl); 2416 return NULL; 2417 } 2418 if (i) 2419 pl[i - 1].next = &pl[i]; 2420 } 2421 2422 return pl; 2423 } 2424 2425 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 2426 { 2427 unsigned i; 2428 for (i = 0; i < ic->journal_sections; i++) 2429 kvfree(sl[i]); 2430 kfree(sl); 2431 } 2432 2433 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl) 2434 { 2435 struct scatterlist **sl; 2436 unsigned i; 2437 2438 sl = kvmalloc(ic->journal_sections * sizeof(struct scatterlist *), GFP_KERNEL | __GFP_ZERO); 2439 if (!sl) 2440 return NULL; 2441 2442 for (i = 0; i < ic->journal_sections; i++) { 2443 struct scatterlist *s; 2444 unsigned start_index, start_offset; 2445 unsigned end_index, end_offset; 2446 unsigned n_pages; 2447 unsigned idx; 2448 2449 page_list_location(ic, i, 0, &start_index, &start_offset); 2450 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset); 2451 2452 n_pages = (end_index - start_index + 1); 2453 2454 s = kvmalloc(n_pages * sizeof(struct scatterlist), GFP_KERNEL); 2455 if (!s) { 2456 dm_integrity_free_journal_scatterlist(ic, sl); 2457 return NULL; 2458 } 2459 2460 sg_init_table(s, n_pages); 2461 for (idx = start_index; idx <= end_index; idx++) { 2462 char *va = lowmem_page_address(pl[idx].page); 2463 unsigned start = 0, end = PAGE_SIZE; 2464 if (idx == start_index) 2465 start = start_offset; 2466 if (idx == end_index) 2467 end = end_offset + (1 << SECTOR_SHIFT); 2468 sg_set_buf(&s[idx - start_index], va + start, end - start); 2469 } 2470 2471 sl[i] = s; 2472 } 2473 2474 return sl; 2475 } 2476 2477 static void free_alg(struct alg_spec *a) 2478 { 2479 kzfree(a->alg_string); 2480 kzfree(a->key); 2481 memset(a, 0, sizeof *a); 2482 } 2483 2484 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 2485 { 2486 char *k; 2487 2488 free_alg(a); 2489 2490 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 2491 if (!a->alg_string) 2492 goto nomem; 2493 2494 k = strchr(a->alg_string, ':'); 2495 if (k) { 2496 *k = 0; 2497 a->key_string = k + 1; 2498 if (strlen(a->key_string) & 1) 2499 goto inval; 2500 2501 a->key_size = strlen(a->key_string) / 2; 2502 a->key = kmalloc(a->key_size, GFP_KERNEL); 2503 if (!a->key) 2504 goto nomem; 2505 if (hex2bin(a->key, a->key_string, a->key_size)) 2506 goto inval; 2507 } 2508 2509 return 0; 2510 inval: 2511 *error = error_inval; 2512 return -EINVAL; 2513 nomem: 2514 *error = "Out of memory for an argument"; 2515 return -ENOMEM; 2516 } 2517 2518 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 2519 char *error_alg, char *error_key) 2520 { 2521 int r; 2522 2523 if (a->alg_string) { 2524 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC); 2525 if (IS_ERR(*hash)) { 2526 *error = error_alg; 2527 r = PTR_ERR(*hash); 2528 *hash = NULL; 2529 return r; 2530 } 2531 2532 if (a->key) { 2533 r = crypto_shash_setkey(*hash, a->key, a->key_size); 2534 if (r) { 2535 *error = error_key; 2536 return r; 2537 } 2538 } 2539 } 2540 2541 return 0; 2542 } 2543 2544 static int create_journal(struct dm_integrity_c *ic, char **error) 2545 { 2546 int r = 0; 2547 unsigned i; 2548 __u64 journal_pages, journal_desc_size, journal_tree_size; 2549 unsigned char *crypt_data = NULL; 2550 2551 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 2552 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 2553 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 2554 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 2555 2556 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 2557 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 2558 journal_desc_size = journal_pages * sizeof(struct page_list); 2559 if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) { 2560 *error = "Journal doesn't fit into memory"; 2561 r = -ENOMEM; 2562 goto bad; 2563 } 2564 ic->journal_pages = journal_pages; 2565 2566 ic->journal = dm_integrity_alloc_page_list(ic); 2567 if (!ic->journal) { 2568 *error = "Could not allocate memory for journal"; 2569 r = -ENOMEM; 2570 goto bad; 2571 } 2572 if (ic->journal_crypt_alg.alg_string) { 2573 unsigned ivsize, blocksize; 2574 struct journal_completion comp; 2575 2576 comp.ic = ic; 2577 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0); 2578 if (IS_ERR(ic->journal_crypt)) { 2579 *error = "Invalid journal cipher"; 2580 r = PTR_ERR(ic->journal_crypt); 2581 ic->journal_crypt = NULL; 2582 goto bad; 2583 } 2584 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 2585 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 2586 2587 if (ic->journal_crypt_alg.key) { 2588 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 2589 ic->journal_crypt_alg.key_size); 2590 if (r) { 2591 *error = "Error setting encryption key"; 2592 goto bad; 2593 } 2594 } 2595 DEBUG_print("cipher %s, block size %u iv size %u\n", 2596 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 2597 2598 ic->journal_io = dm_integrity_alloc_page_list(ic); 2599 if (!ic->journal_io) { 2600 *error = "Could not allocate memory for journal io"; 2601 r = -ENOMEM; 2602 goto bad; 2603 } 2604 2605 if (blocksize == 1) { 2606 struct scatterlist *sg; 2607 SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt); 2608 unsigned char iv[ivsize]; 2609 skcipher_request_set_tfm(req, ic->journal_crypt); 2610 2611 ic->journal_xor = dm_integrity_alloc_page_list(ic); 2612 if (!ic->journal_xor) { 2613 *error = "Could not allocate memory for journal xor"; 2614 r = -ENOMEM; 2615 goto bad; 2616 } 2617 2618 sg = kvmalloc((ic->journal_pages + 1) * sizeof(struct scatterlist), GFP_KERNEL); 2619 if (!sg) { 2620 *error = "Unable to allocate sg list"; 2621 r = -ENOMEM; 2622 goto bad; 2623 } 2624 sg_init_table(sg, ic->journal_pages + 1); 2625 for (i = 0; i < ic->journal_pages; i++) { 2626 char *va = lowmem_page_address(ic->journal_xor[i].page); 2627 clear_page(va); 2628 sg_set_buf(&sg[i], va, PAGE_SIZE); 2629 } 2630 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 2631 memset(iv, 0x00, ivsize); 2632 2633 skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, iv); 2634 comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp); 2635 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2636 if (do_crypt(true, req, &comp)) 2637 wait_for_completion(&comp.comp); 2638 kvfree(sg); 2639 r = dm_integrity_failed(ic); 2640 if (r) { 2641 *error = "Unable to encrypt journal"; 2642 goto bad; 2643 } 2644 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 2645 2646 crypto_free_skcipher(ic->journal_crypt); 2647 ic->journal_crypt = NULL; 2648 } else { 2649 SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt); 2650 unsigned char iv[ivsize]; 2651 unsigned crypt_len = roundup(ivsize, blocksize); 2652 2653 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 2654 if (!crypt_data) { 2655 *error = "Unable to allocate crypt data"; 2656 r = -ENOMEM; 2657 goto bad; 2658 } 2659 2660 skcipher_request_set_tfm(req, ic->journal_crypt); 2661 2662 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 2663 if (!ic->journal_scatterlist) { 2664 *error = "Unable to allocate sg list"; 2665 r = -ENOMEM; 2666 goto bad; 2667 } 2668 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 2669 if (!ic->journal_io_scatterlist) { 2670 *error = "Unable to allocate sg list"; 2671 r = -ENOMEM; 2672 goto bad; 2673 } 2674 ic->sk_requests = kvmalloc(ic->journal_sections * sizeof(struct skcipher_request *), GFP_KERNEL | __GFP_ZERO); 2675 if (!ic->sk_requests) { 2676 *error = "Unable to allocate sk requests"; 2677 r = -ENOMEM; 2678 goto bad; 2679 } 2680 for (i = 0; i < ic->journal_sections; i++) { 2681 struct scatterlist sg; 2682 struct skcipher_request *section_req; 2683 __u32 section_le = cpu_to_le32(i); 2684 2685 memset(iv, 0x00, ivsize); 2686 memset(crypt_data, 0x00, crypt_len); 2687 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 2688 2689 sg_init_one(&sg, crypt_data, crypt_len); 2690 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, iv); 2691 comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp); 2692 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2693 if (do_crypt(true, req, &comp)) 2694 wait_for_completion(&comp.comp); 2695 2696 r = dm_integrity_failed(ic); 2697 if (r) { 2698 *error = "Unable to generate iv"; 2699 goto bad; 2700 } 2701 2702 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 2703 if (!section_req) { 2704 *error = "Unable to allocate crypt request"; 2705 r = -ENOMEM; 2706 goto bad; 2707 } 2708 section_req->iv = kmalloc(ivsize * 2, GFP_KERNEL); 2709 if (!section_req->iv) { 2710 skcipher_request_free(section_req); 2711 *error = "Unable to allocate iv"; 2712 r = -ENOMEM; 2713 goto bad; 2714 } 2715 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 2716 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 2717 ic->sk_requests[i] = section_req; 2718 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 2719 } 2720 } 2721 } 2722 2723 for (i = 0; i < N_COMMIT_IDS; i++) { 2724 unsigned j; 2725 retest_commit_id: 2726 for (j = 0; j < i; j++) { 2727 if (ic->commit_ids[j] == ic->commit_ids[i]) { 2728 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 2729 goto retest_commit_id; 2730 } 2731 } 2732 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 2733 } 2734 2735 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 2736 if (journal_tree_size > ULONG_MAX) { 2737 *error = "Journal doesn't fit into memory"; 2738 r = -ENOMEM; 2739 goto bad; 2740 } 2741 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 2742 if (!ic->journal_tree) { 2743 *error = "Could not allocate memory for journal tree"; 2744 r = -ENOMEM; 2745 } 2746 bad: 2747 kfree(crypt_data); 2748 return r; 2749 } 2750 2751 /* 2752 * Construct a integrity mapping 2753 * 2754 * Arguments: 2755 * device 2756 * offset from the start of the device 2757 * tag size 2758 * D - direct writes, J - journal writes, R - recovery mode 2759 * number of optional arguments 2760 * optional arguments: 2761 * journal_sectors 2762 * interleave_sectors 2763 * buffer_sectors 2764 * journal_watermark 2765 * commit_time 2766 * internal_hash 2767 * journal_crypt 2768 * journal_mac 2769 * block_size 2770 */ 2771 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 2772 { 2773 struct dm_integrity_c *ic; 2774 char dummy; 2775 int r; 2776 unsigned extra_args; 2777 struct dm_arg_set as; 2778 static struct dm_arg _args[] = { 2779 {0, 9, "Invalid number of feature args"}, 2780 }; 2781 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 2782 bool should_write_sb; 2783 __u64 threshold; 2784 unsigned long long start; 2785 2786 #define DIRECT_ARGUMENTS 4 2787 2788 if (argc <= DIRECT_ARGUMENTS) { 2789 ti->error = "Invalid argument count"; 2790 return -EINVAL; 2791 } 2792 2793 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 2794 if (!ic) { 2795 ti->error = "Cannot allocate integrity context"; 2796 return -ENOMEM; 2797 } 2798 ti->private = ic; 2799 ti->per_io_data_size = sizeof(struct dm_integrity_io); 2800 2801 ic->in_progress = RB_ROOT; 2802 init_waitqueue_head(&ic->endio_wait); 2803 bio_list_init(&ic->flush_bio_list); 2804 init_waitqueue_head(&ic->copy_to_journal_wait); 2805 init_completion(&ic->crypto_backoff); 2806 2807 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 2808 if (r) { 2809 ti->error = "Device lookup failed"; 2810 goto bad; 2811 } 2812 2813 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 2814 ti->error = "Invalid starting offset"; 2815 r = -EINVAL; 2816 goto bad; 2817 } 2818 ic->start = start; 2819 2820 if (strcmp(argv[2], "-")) { 2821 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 2822 ti->error = "Invalid tag size"; 2823 r = -EINVAL; 2824 goto bad; 2825 } 2826 } 2827 2828 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) 2829 ic->mode = argv[3][0]; 2830 else { 2831 ti->error = "Invalid mode (expecting J, D, R)"; 2832 r = -EINVAL; 2833 goto bad; 2834 } 2835 2836 ic->device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 2837 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 2838 ic->device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 2839 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 2840 buffer_sectors = DEFAULT_BUFFER_SECTORS; 2841 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 2842 sync_msec = DEFAULT_SYNC_MSEC; 2843 ic->sectors_per_block = 1; 2844 2845 as.argc = argc - DIRECT_ARGUMENTS; 2846 as.argv = argv + DIRECT_ARGUMENTS; 2847 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 2848 if (r) 2849 goto bad; 2850 2851 while (extra_args--) { 2852 const char *opt_string; 2853 unsigned val; 2854 opt_string = dm_shift_arg(&as); 2855 if (!opt_string) { 2856 r = -EINVAL; 2857 ti->error = "Not enough feature arguments"; 2858 goto bad; 2859 } 2860 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 2861 journal_sectors = val; 2862 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 2863 interleave_sectors = val; 2864 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 2865 buffer_sectors = val; 2866 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 2867 journal_watermark = val; 2868 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 2869 sync_msec = val; 2870 else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 2871 if (val < 1 << SECTOR_SHIFT || 2872 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 2873 (val & (val -1))) { 2874 r = -EINVAL; 2875 ti->error = "Invalid block_size argument"; 2876 goto bad; 2877 } 2878 ic->sectors_per_block = val >> SECTOR_SHIFT; 2879 } else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 2880 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 2881 "Invalid internal_hash argument"); 2882 if (r) 2883 goto bad; 2884 } else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 2885 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 2886 "Invalid journal_crypt argument"); 2887 if (r) 2888 goto bad; 2889 } else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 2890 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 2891 "Invalid journal_mac argument"); 2892 if (r) 2893 goto bad; 2894 } else { 2895 r = -EINVAL; 2896 ti->error = "Invalid argument"; 2897 goto bad; 2898 } 2899 } 2900 2901 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 2902 "Invalid internal hash", "Error setting internal hash key"); 2903 if (r) 2904 goto bad; 2905 2906 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 2907 "Invalid journal mac", "Error setting journal mac key"); 2908 if (r) 2909 goto bad; 2910 2911 if (!ic->tag_size) { 2912 if (!ic->internal_hash) { 2913 ti->error = "Unknown tag size"; 2914 r = -EINVAL; 2915 goto bad; 2916 } 2917 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 2918 } 2919 if (ic->tag_size > MAX_TAG_SIZE) { 2920 ti->error = "Too big tag size"; 2921 r = -EINVAL; 2922 goto bad; 2923 } 2924 if (!(ic->tag_size & (ic->tag_size - 1))) 2925 ic->log2_tag_size = __ffs(ic->tag_size); 2926 else 2927 ic->log2_tag_size = -1; 2928 2929 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 2930 ic->autocommit_msec = sync_msec; 2931 setup_timer(&ic->autocommit_timer, autocommit_fn, (unsigned long)ic); 2932 2933 ic->io = dm_io_client_create(); 2934 if (IS_ERR(ic->io)) { 2935 r = PTR_ERR(ic->io); 2936 ic->io = NULL; 2937 ti->error = "Cannot allocate dm io"; 2938 goto bad; 2939 } 2940 2941 ic->journal_io_mempool = mempool_create_slab_pool(JOURNAL_IO_MEMPOOL, journal_io_cache); 2942 if (!ic->journal_io_mempool) { 2943 r = -ENOMEM; 2944 ti->error = "Cannot allocate mempool"; 2945 goto bad; 2946 } 2947 2948 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 2949 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 2950 if (!ic->metadata_wq) { 2951 ti->error = "Cannot allocate workqueue"; 2952 r = -ENOMEM; 2953 goto bad; 2954 } 2955 2956 /* 2957 * If this workqueue were percpu, it would cause bio reordering 2958 * and reduced performance. 2959 */ 2960 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 2961 if (!ic->wait_wq) { 2962 ti->error = "Cannot allocate workqueue"; 2963 r = -ENOMEM; 2964 goto bad; 2965 } 2966 2967 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 2968 if (!ic->commit_wq) { 2969 ti->error = "Cannot allocate workqueue"; 2970 r = -ENOMEM; 2971 goto bad; 2972 } 2973 INIT_WORK(&ic->commit_work, integrity_commit); 2974 2975 if (ic->mode == 'J') { 2976 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 2977 if (!ic->writer_wq) { 2978 ti->error = "Cannot allocate workqueue"; 2979 r = -ENOMEM; 2980 goto bad; 2981 } 2982 INIT_WORK(&ic->writer_work, integrity_writer); 2983 } 2984 2985 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 2986 if (!ic->sb) { 2987 r = -ENOMEM; 2988 ti->error = "Cannot allocate superblock area"; 2989 goto bad; 2990 } 2991 2992 r = sync_rw_sb(ic, REQ_OP_READ, 0); 2993 if (r) { 2994 ti->error = "Error reading superblock"; 2995 goto bad; 2996 } 2997 should_write_sb = false; 2998 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 2999 if (ic->mode != 'R') { 3000 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 3001 r = -EINVAL; 3002 ti->error = "The device is not initialized"; 3003 goto bad; 3004 } 3005 } 3006 3007 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 3008 if (r) { 3009 ti->error = "Could not initialize superblock"; 3010 goto bad; 3011 } 3012 if (ic->mode != 'R') 3013 should_write_sb = true; 3014 } 3015 3016 if (ic->sb->version != SB_VERSION) { 3017 r = -EINVAL; 3018 ti->error = "Unknown version"; 3019 goto bad; 3020 } 3021 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 3022 r = -EINVAL; 3023 ti->error = "Tag size doesn't match the information in superblock"; 3024 goto bad; 3025 } 3026 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 3027 r = -EINVAL; 3028 ti->error = "Block size doesn't match the information in superblock"; 3029 goto bad; 3030 } 3031 if (!le32_to_cpu(ic->sb->journal_sections)) { 3032 r = -EINVAL; 3033 ti->error = "Corrupted superblock, journal_sections is 0"; 3034 goto bad; 3035 } 3036 /* make sure that ti->max_io_len doesn't overflow */ 3037 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 3038 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 3039 r = -EINVAL; 3040 ti->error = "Invalid interleave_sectors in the superblock"; 3041 goto bad; 3042 } 3043 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3044 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) { 3045 /* test for overflow */ 3046 r = -EINVAL; 3047 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors"; 3048 goto bad; 3049 } 3050 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 3051 r = -EINVAL; 3052 ti->error = "Journal mac mismatch"; 3053 goto bad; 3054 } 3055 r = calculate_device_limits(ic); 3056 if (r) { 3057 ti->error = "The device is too small"; 3058 goto bad; 3059 } 3060 if (ti->len > ic->provided_data_sectors) { 3061 r = -EINVAL; 3062 ti->error = "Not enough provided sectors for requested mapping size"; 3063 goto bad; 3064 } 3065 3066 if (!buffer_sectors) 3067 buffer_sectors = 1; 3068 ic->log2_buffer_sectors = min3((int)__fls(buffer_sectors), (int)__ffs(ic->metadata_run), 31 - SECTOR_SHIFT); 3069 3070 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 3071 threshold += 50; 3072 do_div(threshold, 100); 3073 ic->free_sectors_threshold = threshold; 3074 3075 DEBUG_print("initialized:\n"); 3076 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 3077 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 3078 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 3079 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 3080 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 3081 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 3082 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 3083 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 3084 DEBUG_print(" device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors); 3085 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 3086 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 3087 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 3088 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors, 3089 (unsigned long long)ic->provided_data_sectors); 3090 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 3091 3092 ic->bufio = dm_bufio_client_create(ic->dev->bdev, 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 3093 1, 0, NULL, NULL); 3094 if (IS_ERR(ic->bufio)) { 3095 r = PTR_ERR(ic->bufio); 3096 ti->error = "Cannot initialize dm-bufio"; 3097 ic->bufio = NULL; 3098 goto bad; 3099 } 3100 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 3101 3102 if (ic->mode != 'R') { 3103 r = create_journal(ic, &ti->error); 3104 if (r) 3105 goto bad; 3106 } 3107 3108 if (should_write_sb) { 3109 int r; 3110 3111 init_journal(ic, 0, ic->journal_sections, 0); 3112 r = dm_integrity_failed(ic); 3113 if (unlikely(r)) { 3114 ti->error = "Error initializing journal"; 3115 goto bad; 3116 } 3117 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3118 if (r) { 3119 ti->error = "Error initializing superblock"; 3120 goto bad; 3121 } 3122 ic->just_formatted = true; 3123 } 3124 3125 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 3126 if (r) 3127 goto bad; 3128 3129 if (!ic->internal_hash) 3130 dm_integrity_set(ti, ic); 3131 3132 ti->num_flush_bios = 1; 3133 ti->flush_supported = true; 3134 3135 return 0; 3136 bad: 3137 dm_integrity_dtr(ti); 3138 return r; 3139 } 3140 3141 static void dm_integrity_dtr(struct dm_target *ti) 3142 { 3143 struct dm_integrity_c *ic = ti->private; 3144 3145 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3146 3147 if (ic->metadata_wq) 3148 destroy_workqueue(ic->metadata_wq); 3149 if (ic->wait_wq) 3150 destroy_workqueue(ic->wait_wq); 3151 if (ic->commit_wq) 3152 destroy_workqueue(ic->commit_wq); 3153 if (ic->writer_wq) 3154 destroy_workqueue(ic->writer_wq); 3155 if (ic->bufio) 3156 dm_bufio_client_destroy(ic->bufio); 3157 mempool_destroy(ic->journal_io_mempool); 3158 if (ic->io) 3159 dm_io_client_destroy(ic->io); 3160 if (ic->dev) 3161 dm_put_device(ti, ic->dev); 3162 dm_integrity_free_page_list(ic, ic->journal); 3163 dm_integrity_free_page_list(ic, ic->journal_io); 3164 dm_integrity_free_page_list(ic, ic->journal_xor); 3165 if (ic->journal_scatterlist) 3166 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 3167 if (ic->journal_io_scatterlist) 3168 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 3169 if (ic->sk_requests) { 3170 unsigned i; 3171 3172 for (i = 0; i < ic->journal_sections; i++) { 3173 struct skcipher_request *req = ic->sk_requests[i]; 3174 if (req) { 3175 kzfree(req->iv); 3176 skcipher_request_free(req); 3177 } 3178 } 3179 kvfree(ic->sk_requests); 3180 } 3181 kvfree(ic->journal_tree); 3182 if (ic->sb) 3183 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 3184 3185 if (ic->internal_hash) 3186 crypto_free_shash(ic->internal_hash); 3187 free_alg(&ic->internal_hash_alg); 3188 3189 if (ic->journal_crypt) 3190 crypto_free_skcipher(ic->journal_crypt); 3191 free_alg(&ic->journal_crypt_alg); 3192 3193 if (ic->journal_mac) 3194 crypto_free_shash(ic->journal_mac); 3195 free_alg(&ic->journal_mac_alg); 3196 3197 kfree(ic); 3198 } 3199 3200 static struct target_type integrity_target = { 3201 .name = "integrity", 3202 .version = {1, 0, 0}, 3203 .module = THIS_MODULE, 3204 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 3205 .ctr = dm_integrity_ctr, 3206 .dtr = dm_integrity_dtr, 3207 .map = dm_integrity_map, 3208 .postsuspend = dm_integrity_postsuspend, 3209 .resume = dm_integrity_resume, 3210 .status = dm_integrity_status, 3211 .iterate_devices = dm_integrity_iterate_devices, 3212 .io_hints = dm_integrity_io_hints, 3213 }; 3214 3215 int __init dm_integrity_init(void) 3216 { 3217 int r; 3218 3219 journal_io_cache = kmem_cache_create("integrity_journal_io", 3220 sizeof(struct journal_io), 0, 0, NULL); 3221 if (!journal_io_cache) { 3222 DMERR("can't allocate journal io cache"); 3223 return -ENOMEM; 3224 } 3225 3226 r = dm_register_target(&integrity_target); 3227 3228 if (r < 0) 3229 DMERR("register failed %d", r); 3230 3231 return r; 3232 } 3233 3234 void dm_integrity_exit(void) 3235 { 3236 dm_unregister_target(&integrity_target); 3237 kmem_cache_destroy(journal_io_cache); 3238 } 3239 3240 module_init(dm_integrity_init); 3241 module_exit(dm_integrity_exit); 3242 3243 MODULE_AUTHOR("Milan Broz"); 3244 MODULE_AUTHOR("Mikulas Patocka"); 3245 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 3246 MODULE_LICENSE("GPL"); 3247