xref: /openbmc/linux/drivers/md/dm-integrity.c (revision dbe156207532d7fe1581765d5a47198e1c6119a3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26 
27 #include "dm-audit.h"
28 
29 #define DM_MSG_PREFIX "integrity"
30 
31 #define DEFAULT_INTERLEAVE_SECTORS	32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34 #define DEFAULT_BUFFER_SECTORS		128
35 #define DEFAULT_JOURNAL_WATERMARK	50
36 #define DEFAULT_SYNC_MSEC		10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS	3
39 #define MAX_LOG2_INTERLEAVE_SECTORS	31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
41 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER		16
43 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45 #define DISCARD_FILLER			0xf6
46 #define SALT_SIZE			16
47 
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54 
55 /*
56  * On disk structures
57  */
58 
59 #define SB_MAGIC			"integrt"
60 #define SB_VERSION_1			1
61 #define SB_VERSION_2			2
62 #define SB_VERSION_3			3
63 #define SB_VERSION_4			4
64 #define SB_VERSION_5			5
65 #define SB_SECTORS			8
66 #define MAX_SECTORS_PER_BLOCK		8
67 
68 struct superblock {
69 	__u8 magic[8];
70 	__u8 version;
71 	__u8 log2_interleave_sectors;
72 	__le16 integrity_tag_size;
73 	__le32 journal_sections;
74 	__le64 provided_data_sectors;	/* userspace uses this value */
75 	__le32 flags;
76 	__u8 log2_sectors_per_block;
77 	__u8 log2_blocks_per_bitmap_bit;
78 	__u8 pad[2];
79 	__le64 recalc_sector;
80 	__u8 pad2[8];
81 	__u8 salt[SALT_SIZE];
82 };
83 
84 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
85 #define SB_FLAG_RECALCULATING		0x2
86 #define SB_FLAG_DIRTY_BITMAP		0x4
87 #define SB_FLAG_FIXED_PADDING		0x8
88 #define SB_FLAG_FIXED_HMAC		0x10
89 
90 #define	JOURNAL_ENTRY_ROUNDUP		8
91 
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR		8
94 
95 struct journal_entry {
96 	union {
97 		struct {
98 			__le32 sector_lo;
99 			__le32 sector_hi;
100 		} s;
101 		__le64 sector;
102 	} u;
103 	commit_id_t last_bytes[];
104 	/* __u8 tag[0]; */
105 };
106 
107 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108 
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
119 
120 #define JOURNAL_BLOCK_SECTORS		8
121 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123 
124 struct journal_sector {
125 	struct_group(sectors,
126 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
128 	);
129 	commit_id_t commit_id;
130 };
131 
132 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133 
134 #define METADATA_PADDING_SECTORS	8
135 
136 #define N_COMMIT_IDS			4
137 
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142 
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145 	return (seq + 1) % N_COMMIT_IDS;
146 }
147 
148 /*
149  * In-memory structures
150  */
151 
152 struct journal_node {
153 	struct rb_node node;
154 	sector_t sector;
155 };
156 
157 struct alg_spec {
158 	char *alg_string;
159 	char *key_string;
160 	__u8 *key;
161 	unsigned int key_size;
162 };
163 
164 struct dm_integrity_c {
165 	struct dm_dev *dev;
166 	struct dm_dev *meta_dev;
167 	unsigned int tag_size;
168 	__s8 log2_tag_size;
169 	sector_t start;
170 	mempool_t journal_io_mempool;
171 	struct dm_io_client *io;
172 	struct dm_bufio_client *bufio;
173 	struct workqueue_struct *metadata_wq;
174 	struct superblock *sb;
175 	unsigned int journal_pages;
176 	unsigned int n_bitmap_blocks;
177 
178 	struct page_list *journal;
179 	struct page_list *journal_io;
180 	struct page_list *journal_xor;
181 	struct page_list *recalc_bitmap;
182 	struct page_list *may_write_bitmap;
183 	struct bitmap_block_status *bbs;
184 	unsigned int bitmap_flush_interval;
185 	int synchronous_mode;
186 	struct bio_list synchronous_bios;
187 	struct delayed_work bitmap_flush_work;
188 
189 	struct crypto_skcipher *journal_crypt;
190 	struct scatterlist **journal_scatterlist;
191 	struct scatterlist **journal_io_scatterlist;
192 	struct skcipher_request **sk_requests;
193 
194 	struct crypto_shash *journal_mac;
195 
196 	struct journal_node *journal_tree;
197 	struct rb_root journal_tree_root;
198 
199 	sector_t provided_data_sectors;
200 
201 	unsigned short journal_entry_size;
202 	unsigned char journal_entries_per_sector;
203 	unsigned char journal_section_entries;
204 	unsigned short journal_section_sectors;
205 	unsigned int journal_sections;
206 	unsigned int journal_entries;
207 	sector_t data_device_sectors;
208 	sector_t meta_device_sectors;
209 	unsigned int initial_sectors;
210 	unsigned int metadata_run;
211 	__s8 log2_metadata_run;
212 	__u8 log2_buffer_sectors;
213 	__u8 sectors_per_block;
214 	__u8 log2_blocks_per_bitmap_bit;
215 
216 	unsigned char mode;
217 
218 	int failed;
219 
220 	struct crypto_shash *internal_hash;
221 
222 	struct dm_target *ti;
223 
224 	/* these variables are locked with endio_wait.lock */
225 	struct rb_root in_progress;
226 	struct list_head wait_list;
227 	wait_queue_head_t endio_wait;
228 	struct workqueue_struct *wait_wq;
229 	struct workqueue_struct *offload_wq;
230 
231 	unsigned char commit_seq;
232 	commit_id_t commit_ids[N_COMMIT_IDS];
233 
234 	unsigned int committed_section;
235 	unsigned int n_committed_sections;
236 
237 	unsigned int uncommitted_section;
238 	unsigned int n_uncommitted_sections;
239 
240 	unsigned int free_section;
241 	unsigned char free_section_entry;
242 	unsigned int free_sectors;
243 
244 	unsigned int free_sectors_threshold;
245 
246 	struct workqueue_struct *commit_wq;
247 	struct work_struct commit_work;
248 
249 	struct workqueue_struct *writer_wq;
250 	struct work_struct writer_work;
251 
252 	struct workqueue_struct *recalc_wq;
253 	struct work_struct recalc_work;
254 
255 	struct bio_list flush_bio_list;
256 
257 	unsigned long autocommit_jiffies;
258 	struct timer_list autocommit_timer;
259 	unsigned int autocommit_msec;
260 
261 	wait_queue_head_t copy_to_journal_wait;
262 
263 	struct completion crypto_backoff;
264 
265 	bool wrote_to_journal;
266 	bool journal_uptodate;
267 	bool just_formatted;
268 	bool recalculate_flag;
269 	bool reset_recalculate_flag;
270 	bool discard;
271 	bool fix_padding;
272 	bool fix_hmac;
273 	bool legacy_recalculate;
274 
275 	struct alg_spec internal_hash_alg;
276 	struct alg_spec journal_crypt_alg;
277 	struct alg_spec journal_mac_alg;
278 
279 	atomic64_t number_of_mismatches;
280 
281 	mempool_t recheck_pool;
282 
283 	struct notifier_block reboot_notifier;
284 };
285 
286 struct dm_integrity_range {
287 	sector_t logical_sector;
288 	sector_t n_sectors;
289 	bool waiting;
290 	union {
291 		struct rb_node node;
292 		struct {
293 			struct task_struct *task;
294 			struct list_head wait_entry;
295 		};
296 	};
297 };
298 
299 struct dm_integrity_io {
300 	struct work_struct work;
301 
302 	struct dm_integrity_c *ic;
303 	enum req_op op;
304 	bool fua;
305 
306 	struct dm_integrity_range range;
307 
308 	sector_t metadata_block;
309 	unsigned int metadata_offset;
310 
311 	atomic_t in_flight;
312 	blk_status_t bi_status;
313 
314 	struct completion *completion;
315 
316 	struct dm_bio_details bio_details;
317 };
318 
319 struct journal_completion {
320 	struct dm_integrity_c *ic;
321 	atomic_t in_flight;
322 	struct completion comp;
323 };
324 
325 struct journal_io {
326 	struct dm_integrity_range range;
327 	struct journal_completion *comp;
328 };
329 
330 struct bitmap_block_status {
331 	struct work_struct work;
332 	struct dm_integrity_c *ic;
333 	unsigned int idx;
334 	unsigned long *bitmap;
335 	struct bio_list bio_queue;
336 	spinlock_t bio_queue_lock;
337 
338 };
339 
340 static struct kmem_cache *journal_io_cache;
341 
342 #define JOURNAL_IO_MEMPOOL	32
343 
344 #ifdef DEBUG_PRINT
345 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
346 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347 						       len ? ": " : "", len, bytes)
348 #else
349 #define DEBUG_print(x, ...)			do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
351 #endif
352 
353 static void dm_integrity_prepare(struct request *rq)
354 {
355 }
356 
357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358 {
359 }
360 
361 /*
362  * DM Integrity profile, protection is performed layer above (dm-crypt)
363  */
364 static const struct blk_integrity_profile dm_integrity_profile = {
365 	.name			= "DM-DIF-EXT-TAG",
366 	.generate_fn		= NULL,
367 	.verify_fn		= NULL,
368 	.prepare_fn		= dm_integrity_prepare,
369 	.complete_fn		= dm_integrity_complete,
370 };
371 
372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373 static void integrity_bio_wait(struct work_struct *w);
374 static void dm_integrity_dtr(struct dm_target *ti);
375 
376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377 {
378 	if (err == -EILSEQ)
379 		atomic64_inc(&ic->number_of_mismatches);
380 	if (!cmpxchg(&ic->failed, 0, err))
381 		DMERR("Error on %s: %d", msg, err);
382 }
383 
384 static int dm_integrity_failed(struct dm_integrity_c *ic)
385 {
386 	return READ_ONCE(ic->failed);
387 }
388 
389 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
390 {
391 	if (ic->legacy_recalculate)
392 		return false;
393 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
394 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
395 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
396 		return true;
397 	return false;
398 }
399 
400 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
401 					  unsigned int j, unsigned char seq)
402 {
403 	/*
404 	 * Xor the number with section and sector, so that if a piece of
405 	 * journal is written at wrong place, it is detected.
406 	 */
407 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
408 }
409 
410 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
411 				sector_t *area, sector_t *offset)
412 {
413 	if (!ic->meta_dev) {
414 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
415 		*area = data_sector >> log2_interleave_sectors;
416 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
417 	} else {
418 		*area = 0;
419 		*offset = data_sector;
420 	}
421 }
422 
423 #define sector_to_block(ic, n)						\
424 do {									\
425 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
426 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
427 } while (0)
428 
429 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
430 					    sector_t offset, unsigned int *metadata_offset)
431 {
432 	__u64 ms;
433 	unsigned int mo;
434 
435 	ms = area << ic->sb->log2_interleave_sectors;
436 	if (likely(ic->log2_metadata_run >= 0))
437 		ms += area << ic->log2_metadata_run;
438 	else
439 		ms += area * ic->metadata_run;
440 	ms >>= ic->log2_buffer_sectors;
441 
442 	sector_to_block(ic, offset);
443 
444 	if (likely(ic->log2_tag_size >= 0)) {
445 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
446 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
447 	} else {
448 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
449 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
450 	}
451 	*metadata_offset = mo;
452 	return ms;
453 }
454 
455 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
456 {
457 	sector_t result;
458 
459 	if (ic->meta_dev)
460 		return offset;
461 
462 	result = area << ic->sb->log2_interleave_sectors;
463 	if (likely(ic->log2_metadata_run >= 0))
464 		result += (area + 1) << ic->log2_metadata_run;
465 	else
466 		result += (area + 1) * ic->metadata_run;
467 
468 	result += (sector_t)ic->initial_sectors + offset;
469 	result += ic->start;
470 
471 	return result;
472 }
473 
474 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
475 {
476 	if (unlikely(*sec_ptr >= ic->journal_sections))
477 		*sec_ptr -= ic->journal_sections;
478 }
479 
480 static void sb_set_version(struct dm_integrity_c *ic)
481 {
482 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
483 		ic->sb->version = SB_VERSION_5;
484 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
485 		ic->sb->version = SB_VERSION_4;
486 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
487 		ic->sb->version = SB_VERSION_3;
488 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
489 		ic->sb->version = SB_VERSION_2;
490 	else
491 		ic->sb->version = SB_VERSION_1;
492 }
493 
494 static int sb_mac(struct dm_integrity_c *ic, bool wr)
495 {
496 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
497 	int r;
498 	unsigned int size = crypto_shash_digestsize(ic->journal_mac);
499 
500 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
501 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
502 		return -EINVAL;
503 	}
504 
505 	desc->tfm = ic->journal_mac;
506 
507 	r = crypto_shash_init(desc);
508 	if (unlikely(r < 0)) {
509 		dm_integrity_io_error(ic, "crypto_shash_init", r);
510 		return r;
511 	}
512 
513 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
514 	if (unlikely(r < 0)) {
515 		dm_integrity_io_error(ic, "crypto_shash_update", r);
516 		return r;
517 	}
518 
519 	if (likely(wr)) {
520 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
521 		if (unlikely(r < 0)) {
522 			dm_integrity_io_error(ic, "crypto_shash_final", r);
523 			return r;
524 		}
525 	} else {
526 		__u8 result[HASH_MAX_DIGESTSIZE];
527 
528 		r = crypto_shash_final(desc, result);
529 		if (unlikely(r < 0)) {
530 			dm_integrity_io_error(ic, "crypto_shash_final", r);
531 			return r;
532 		}
533 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
534 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
535 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
536 			return -EILSEQ;
537 		}
538 	}
539 
540 	return 0;
541 }
542 
543 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
544 {
545 	struct dm_io_request io_req;
546 	struct dm_io_region io_loc;
547 	const enum req_op op = opf & REQ_OP_MASK;
548 	int r;
549 
550 	io_req.bi_opf = opf;
551 	io_req.mem.type = DM_IO_KMEM;
552 	io_req.mem.ptr.addr = ic->sb;
553 	io_req.notify.fn = NULL;
554 	io_req.client = ic->io;
555 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
556 	io_loc.sector = ic->start;
557 	io_loc.count = SB_SECTORS;
558 
559 	if (op == REQ_OP_WRITE) {
560 		sb_set_version(ic);
561 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
562 			r = sb_mac(ic, true);
563 			if (unlikely(r))
564 				return r;
565 		}
566 	}
567 
568 	r = dm_io(&io_req, 1, &io_loc, NULL);
569 	if (unlikely(r))
570 		return r;
571 
572 	if (op == REQ_OP_READ) {
573 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
574 			r = sb_mac(ic, false);
575 			if (unlikely(r))
576 				return r;
577 		}
578 	}
579 
580 	return 0;
581 }
582 
583 #define BITMAP_OP_TEST_ALL_SET		0
584 #define BITMAP_OP_TEST_ALL_CLEAR	1
585 #define BITMAP_OP_SET			2
586 #define BITMAP_OP_CLEAR			3
587 
588 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
589 			    sector_t sector, sector_t n_sectors, int mode)
590 {
591 	unsigned long bit, end_bit, this_end_bit, page, end_page;
592 	unsigned long *data;
593 
594 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
595 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
596 			sector,
597 			n_sectors,
598 			ic->sb->log2_sectors_per_block,
599 			ic->log2_blocks_per_bitmap_bit,
600 			mode);
601 		BUG();
602 	}
603 
604 	if (unlikely(!n_sectors))
605 		return true;
606 
607 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
608 	end_bit = (sector + n_sectors - 1) >>
609 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
610 
611 	page = bit / (PAGE_SIZE * 8);
612 	bit %= PAGE_SIZE * 8;
613 
614 	end_page = end_bit / (PAGE_SIZE * 8);
615 	end_bit %= PAGE_SIZE * 8;
616 
617 repeat:
618 	if (page < end_page)
619 		this_end_bit = PAGE_SIZE * 8 - 1;
620 	else
621 		this_end_bit = end_bit;
622 
623 	data = lowmem_page_address(bitmap[page].page);
624 
625 	if (mode == BITMAP_OP_TEST_ALL_SET) {
626 		while (bit <= this_end_bit) {
627 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
628 				do {
629 					if (data[bit / BITS_PER_LONG] != -1)
630 						return false;
631 					bit += BITS_PER_LONG;
632 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
633 				continue;
634 			}
635 			if (!test_bit(bit, data))
636 				return false;
637 			bit++;
638 		}
639 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
640 		while (bit <= this_end_bit) {
641 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
642 				do {
643 					if (data[bit / BITS_PER_LONG] != 0)
644 						return false;
645 					bit += BITS_PER_LONG;
646 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
647 				continue;
648 			}
649 			if (test_bit(bit, data))
650 				return false;
651 			bit++;
652 		}
653 	} else if (mode == BITMAP_OP_SET) {
654 		while (bit <= this_end_bit) {
655 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
656 				do {
657 					data[bit / BITS_PER_LONG] = -1;
658 					bit += BITS_PER_LONG;
659 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
660 				continue;
661 			}
662 			__set_bit(bit, data);
663 			bit++;
664 		}
665 	} else if (mode == BITMAP_OP_CLEAR) {
666 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
667 			clear_page(data);
668 		else {
669 			while (bit <= this_end_bit) {
670 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
671 					do {
672 						data[bit / BITS_PER_LONG] = 0;
673 						bit += BITS_PER_LONG;
674 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
675 					continue;
676 				}
677 				__clear_bit(bit, data);
678 				bit++;
679 			}
680 		}
681 	} else {
682 		BUG();
683 	}
684 
685 	if (unlikely(page < end_page)) {
686 		bit = 0;
687 		page++;
688 		goto repeat;
689 	}
690 
691 	return true;
692 }
693 
694 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
695 {
696 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
697 	unsigned int i;
698 
699 	for (i = 0; i < n_bitmap_pages; i++) {
700 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
701 		unsigned long *src_data = lowmem_page_address(src[i].page);
702 
703 		copy_page(dst_data, src_data);
704 	}
705 }
706 
707 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
708 {
709 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
710 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
711 
712 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
713 	return &ic->bbs[bitmap_block];
714 }
715 
716 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
717 				 bool e, const char *function)
718 {
719 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
720 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
721 
722 	if (unlikely(section >= ic->journal_sections) ||
723 	    unlikely(offset >= limit)) {
724 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
725 		       function, section, offset, ic->journal_sections, limit);
726 		BUG();
727 	}
728 #endif
729 }
730 
731 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
732 			       unsigned int *pl_index, unsigned int *pl_offset)
733 {
734 	unsigned int sector;
735 
736 	access_journal_check(ic, section, offset, false, "page_list_location");
737 
738 	sector = section * ic->journal_section_sectors + offset;
739 
740 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
741 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
742 }
743 
744 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
745 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
746 {
747 	unsigned int pl_index, pl_offset;
748 	char *va;
749 
750 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
751 
752 	if (n_sectors)
753 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
754 
755 	va = lowmem_page_address(pl[pl_index].page);
756 
757 	return (struct journal_sector *)(va + pl_offset);
758 }
759 
760 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
761 {
762 	return access_page_list(ic, ic->journal, section, offset, NULL);
763 }
764 
765 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
766 {
767 	unsigned int rel_sector, offset;
768 	struct journal_sector *js;
769 
770 	access_journal_check(ic, section, n, true, "access_journal_entry");
771 
772 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
773 	offset = n / JOURNAL_BLOCK_SECTORS;
774 
775 	js = access_journal(ic, section, rel_sector);
776 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
777 }
778 
779 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
780 {
781 	n <<= ic->sb->log2_sectors_per_block;
782 
783 	n += JOURNAL_BLOCK_SECTORS;
784 
785 	access_journal_check(ic, section, n, false, "access_journal_data");
786 
787 	return access_journal(ic, section, n);
788 }
789 
790 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
791 {
792 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
793 	int r;
794 	unsigned int j, size;
795 
796 	desc->tfm = ic->journal_mac;
797 
798 	r = crypto_shash_init(desc);
799 	if (unlikely(r < 0)) {
800 		dm_integrity_io_error(ic, "crypto_shash_init", r);
801 		goto err;
802 	}
803 
804 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
805 		__le64 section_le;
806 
807 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
808 		if (unlikely(r < 0)) {
809 			dm_integrity_io_error(ic, "crypto_shash_update", r);
810 			goto err;
811 		}
812 
813 		section_le = cpu_to_le64(section);
814 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
815 		if (unlikely(r < 0)) {
816 			dm_integrity_io_error(ic, "crypto_shash_update", r);
817 			goto err;
818 		}
819 	}
820 
821 	for (j = 0; j < ic->journal_section_entries; j++) {
822 		struct journal_entry *je = access_journal_entry(ic, section, j);
823 
824 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
825 		if (unlikely(r < 0)) {
826 			dm_integrity_io_error(ic, "crypto_shash_update", r);
827 			goto err;
828 		}
829 	}
830 
831 	size = crypto_shash_digestsize(ic->journal_mac);
832 
833 	if (likely(size <= JOURNAL_MAC_SIZE)) {
834 		r = crypto_shash_final(desc, result);
835 		if (unlikely(r < 0)) {
836 			dm_integrity_io_error(ic, "crypto_shash_final", r);
837 			goto err;
838 		}
839 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
840 	} else {
841 		__u8 digest[HASH_MAX_DIGESTSIZE];
842 
843 		if (WARN_ON(size > sizeof(digest))) {
844 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
845 			goto err;
846 		}
847 		r = crypto_shash_final(desc, digest);
848 		if (unlikely(r < 0)) {
849 			dm_integrity_io_error(ic, "crypto_shash_final", r);
850 			goto err;
851 		}
852 		memcpy(result, digest, JOURNAL_MAC_SIZE);
853 	}
854 
855 	return;
856 err:
857 	memset(result, 0, JOURNAL_MAC_SIZE);
858 }
859 
860 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
861 {
862 	__u8 result[JOURNAL_MAC_SIZE];
863 	unsigned int j;
864 
865 	if (!ic->journal_mac)
866 		return;
867 
868 	section_mac(ic, section, result);
869 
870 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
871 		struct journal_sector *js = access_journal(ic, section, j);
872 
873 		if (likely(wr))
874 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
875 		else {
876 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
877 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
878 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
879 			}
880 		}
881 	}
882 }
883 
884 static void complete_journal_op(void *context)
885 {
886 	struct journal_completion *comp = context;
887 
888 	BUG_ON(!atomic_read(&comp->in_flight));
889 	if (likely(atomic_dec_and_test(&comp->in_flight)))
890 		complete(&comp->comp);
891 }
892 
893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
894 			unsigned int n_sections, struct journal_completion *comp)
895 {
896 	struct async_submit_ctl submit;
897 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
898 	unsigned int pl_index, pl_offset, section_index;
899 	struct page_list *source_pl, *target_pl;
900 
901 	if (likely(encrypt)) {
902 		source_pl = ic->journal;
903 		target_pl = ic->journal_io;
904 	} else {
905 		source_pl = ic->journal_io;
906 		target_pl = ic->journal;
907 	}
908 
909 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
910 
911 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
912 
913 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
914 
915 	section_index = pl_index;
916 
917 	do {
918 		size_t this_step;
919 		struct page *src_pages[2];
920 		struct page *dst_page;
921 
922 		while (unlikely(pl_index == section_index)) {
923 			unsigned int dummy;
924 
925 			if (likely(encrypt))
926 				rw_section_mac(ic, section, true);
927 			section++;
928 			n_sections--;
929 			if (!n_sections)
930 				break;
931 			page_list_location(ic, section, 0, &section_index, &dummy);
932 		}
933 
934 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
935 		dst_page = target_pl[pl_index].page;
936 		src_pages[0] = source_pl[pl_index].page;
937 		src_pages[1] = ic->journal_xor[pl_index].page;
938 
939 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
940 
941 		pl_index++;
942 		pl_offset = 0;
943 		n_bytes -= this_step;
944 	} while (n_bytes);
945 
946 	BUG_ON(n_sections);
947 
948 	async_tx_issue_pending_all();
949 }
950 
951 static void complete_journal_encrypt(void *data, int err)
952 {
953 	struct journal_completion *comp = data;
954 
955 	if (unlikely(err)) {
956 		if (likely(err == -EINPROGRESS)) {
957 			complete(&comp->ic->crypto_backoff);
958 			return;
959 		}
960 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
961 	}
962 	complete_journal_op(comp);
963 }
964 
965 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
966 {
967 	int r;
968 
969 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
970 				      complete_journal_encrypt, comp);
971 	if (likely(encrypt))
972 		r = crypto_skcipher_encrypt(req);
973 	else
974 		r = crypto_skcipher_decrypt(req);
975 	if (likely(!r))
976 		return false;
977 	if (likely(r == -EINPROGRESS))
978 		return true;
979 	if (likely(r == -EBUSY)) {
980 		wait_for_completion(&comp->ic->crypto_backoff);
981 		reinit_completion(&comp->ic->crypto_backoff);
982 		return true;
983 	}
984 	dm_integrity_io_error(comp->ic, "encrypt", r);
985 	return false;
986 }
987 
988 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
989 			  unsigned int n_sections, struct journal_completion *comp)
990 {
991 	struct scatterlist **source_sg;
992 	struct scatterlist **target_sg;
993 
994 	atomic_add(2, &comp->in_flight);
995 
996 	if (likely(encrypt)) {
997 		source_sg = ic->journal_scatterlist;
998 		target_sg = ic->journal_io_scatterlist;
999 	} else {
1000 		source_sg = ic->journal_io_scatterlist;
1001 		target_sg = ic->journal_scatterlist;
1002 	}
1003 
1004 	do {
1005 		struct skcipher_request *req;
1006 		unsigned int ivsize;
1007 		char *iv;
1008 
1009 		if (likely(encrypt))
1010 			rw_section_mac(ic, section, true);
1011 
1012 		req = ic->sk_requests[section];
1013 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1014 		iv = req->iv;
1015 
1016 		memcpy(iv, iv + ivsize, ivsize);
1017 
1018 		req->src = source_sg[section];
1019 		req->dst = target_sg[section];
1020 
1021 		if (unlikely(do_crypt(encrypt, req, comp)))
1022 			atomic_inc(&comp->in_flight);
1023 
1024 		section++;
1025 		n_sections--;
1026 	} while (n_sections);
1027 
1028 	atomic_dec(&comp->in_flight);
1029 	complete_journal_op(comp);
1030 }
1031 
1032 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1033 			    unsigned int n_sections, struct journal_completion *comp)
1034 {
1035 	if (ic->journal_xor)
1036 		return xor_journal(ic, encrypt, section, n_sections, comp);
1037 	else
1038 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1039 }
1040 
1041 static void complete_journal_io(unsigned long error, void *context)
1042 {
1043 	struct journal_completion *comp = context;
1044 
1045 	if (unlikely(error != 0))
1046 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1047 	complete_journal_op(comp);
1048 }
1049 
1050 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1051 			       unsigned int sector, unsigned int n_sectors,
1052 			       struct journal_completion *comp)
1053 {
1054 	struct dm_io_request io_req;
1055 	struct dm_io_region io_loc;
1056 	unsigned int pl_index, pl_offset;
1057 	int r;
1058 
1059 	if (unlikely(dm_integrity_failed(ic))) {
1060 		if (comp)
1061 			complete_journal_io(-1UL, comp);
1062 		return;
1063 	}
1064 
1065 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1066 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1067 
1068 	io_req.bi_opf = opf;
1069 	io_req.mem.type = DM_IO_PAGE_LIST;
1070 	if (ic->journal_io)
1071 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1072 	else
1073 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1074 	io_req.mem.offset = pl_offset;
1075 	if (likely(comp != NULL)) {
1076 		io_req.notify.fn = complete_journal_io;
1077 		io_req.notify.context = comp;
1078 	} else {
1079 		io_req.notify.fn = NULL;
1080 	}
1081 	io_req.client = ic->io;
1082 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1083 	io_loc.sector = ic->start + SB_SECTORS + sector;
1084 	io_loc.count = n_sectors;
1085 
1086 	r = dm_io(&io_req, 1, &io_loc, NULL);
1087 	if (unlikely(r)) {
1088 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1089 				      "reading journal" : "writing journal", r);
1090 		if (comp) {
1091 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1092 			complete_journal_io(-1UL, comp);
1093 		}
1094 	}
1095 }
1096 
1097 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1098 		       unsigned int section, unsigned int n_sections,
1099 		       struct journal_completion *comp)
1100 {
1101 	unsigned int sector, n_sectors;
1102 
1103 	sector = section * ic->journal_section_sectors;
1104 	n_sectors = n_sections * ic->journal_section_sectors;
1105 
1106 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1107 }
1108 
1109 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1110 {
1111 	struct journal_completion io_comp;
1112 	struct journal_completion crypt_comp_1;
1113 	struct journal_completion crypt_comp_2;
1114 	unsigned int i;
1115 
1116 	io_comp.ic = ic;
1117 	init_completion(&io_comp.comp);
1118 
1119 	if (commit_start + commit_sections <= ic->journal_sections) {
1120 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1121 		if (ic->journal_io) {
1122 			crypt_comp_1.ic = ic;
1123 			init_completion(&crypt_comp_1.comp);
1124 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1125 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1126 			wait_for_completion_io(&crypt_comp_1.comp);
1127 		} else {
1128 			for (i = 0; i < commit_sections; i++)
1129 				rw_section_mac(ic, commit_start + i, true);
1130 		}
1131 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1132 			   commit_sections, &io_comp);
1133 	} else {
1134 		unsigned int to_end;
1135 
1136 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1137 		to_end = ic->journal_sections - commit_start;
1138 		if (ic->journal_io) {
1139 			crypt_comp_1.ic = ic;
1140 			init_completion(&crypt_comp_1.comp);
1141 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1142 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1143 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1144 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1145 					   commit_start, to_end, &io_comp);
1146 				reinit_completion(&crypt_comp_1.comp);
1147 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1148 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1149 				wait_for_completion_io(&crypt_comp_1.comp);
1150 			} else {
1151 				crypt_comp_2.ic = ic;
1152 				init_completion(&crypt_comp_2.comp);
1153 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1154 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1155 				wait_for_completion_io(&crypt_comp_1.comp);
1156 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1157 				wait_for_completion_io(&crypt_comp_2.comp);
1158 			}
1159 		} else {
1160 			for (i = 0; i < to_end; i++)
1161 				rw_section_mac(ic, commit_start + i, true);
1162 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1163 			for (i = 0; i < commit_sections - to_end; i++)
1164 				rw_section_mac(ic, i, true);
1165 		}
1166 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1167 	}
1168 
1169 	wait_for_completion_io(&io_comp.comp);
1170 }
1171 
1172 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1173 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1174 {
1175 	struct dm_io_request io_req;
1176 	struct dm_io_region io_loc;
1177 	int r;
1178 	unsigned int sector, pl_index, pl_offset;
1179 
1180 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1181 
1182 	if (unlikely(dm_integrity_failed(ic))) {
1183 		fn(-1UL, data);
1184 		return;
1185 	}
1186 
1187 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1188 
1189 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1190 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1191 
1192 	io_req.bi_opf = REQ_OP_WRITE;
1193 	io_req.mem.type = DM_IO_PAGE_LIST;
1194 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1195 	io_req.mem.offset = pl_offset;
1196 	io_req.notify.fn = fn;
1197 	io_req.notify.context = data;
1198 	io_req.client = ic->io;
1199 	io_loc.bdev = ic->dev->bdev;
1200 	io_loc.sector = target;
1201 	io_loc.count = n_sectors;
1202 
1203 	r = dm_io(&io_req, 1, &io_loc, NULL);
1204 	if (unlikely(r)) {
1205 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1206 		fn(-1UL, data);
1207 	}
1208 }
1209 
1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1211 {
1212 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1213 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1214 }
1215 
1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1217 {
1218 	struct rb_node **n = &ic->in_progress.rb_node;
1219 	struct rb_node *parent;
1220 
1221 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1222 
1223 	if (likely(check_waiting)) {
1224 		struct dm_integrity_range *range;
1225 
1226 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1227 			if (unlikely(ranges_overlap(range, new_range)))
1228 				return false;
1229 		}
1230 	}
1231 
1232 	parent = NULL;
1233 
1234 	while (*n) {
1235 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1236 
1237 		parent = *n;
1238 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1239 			n = &range->node.rb_left;
1240 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1241 			n = &range->node.rb_right;
1242 		else
1243 			return false;
1244 	}
1245 
1246 	rb_link_node(&new_range->node, parent, n);
1247 	rb_insert_color(&new_range->node, &ic->in_progress);
1248 
1249 	return true;
1250 }
1251 
1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1253 {
1254 	rb_erase(&range->node, &ic->in_progress);
1255 	while (unlikely(!list_empty(&ic->wait_list))) {
1256 		struct dm_integrity_range *last_range =
1257 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1258 		struct task_struct *last_range_task;
1259 
1260 		last_range_task = last_range->task;
1261 		list_del(&last_range->wait_entry);
1262 		if (!add_new_range(ic, last_range, false)) {
1263 			last_range->task = last_range_task;
1264 			list_add(&last_range->wait_entry, &ic->wait_list);
1265 			break;
1266 		}
1267 		last_range->waiting = false;
1268 		wake_up_process(last_range_task);
1269 	}
1270 }
1271 
1272 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1273 {
1274 	unsigned long flags;
1275 
1276 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1277 	remove_range_unlocked(ic, range);
1278 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1279 }
1280 
1281 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1282 {
1283 	new_range->waiting = true;
1284 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1285 	new_range->task = current;
1286 	do {
1287 		__set_current_state(TASK_UNINTERRUPTIBLE);
1288 		spin_unlock_irq(&ic->endio_wait.lock);
1289 		io_schedule();
1290 		spin_lock_irq(&ic->endio_wait.lock);
1291 	} while (unlikely(new_range->waiting));
1292 }
1293 
1294 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1295 {
1296 	if (unlikely(!add_new_range(ic, new_range, true)))
1297 		wait_and_add_new_range(ic, new_range);
1298 }
1299 
1300 static void init_journal_node(struct journal_node *node)
1301 {
1302 	RB_CLEAR_NODE(&node->node);
1303 	node->sector = (sector_t)-1;
1304 }
1305 
1306 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1307 {
1308 	struct rb_node **link;
1309 	struct rb_node *parent;
1310 
1311 	node->sector = sector;
1312 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1313 
1314 	link = &ic->journal_tree_root.rb_node;
1315 	parent = NULL;
1316 
1317 	while (*link) {
1318 		struct journal_node *j;
1319 
1320 		parent = *link;
1321 		j = container_of(parent, struct journal_node, node);
1322 		if (sector < j->sector)
1323 			link = &j->node.rb_left;
1324 		else
1325 			link = &j->node.rb_right;
1326 	}
1327 
1328 	rb_link_node(&node->node, parent, link);
1329 	rb_insert_color(&node->node, &ic->journal_tree_root);
1330 }
1331 
1332 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1333 {
1334 	BUG_ON(RB_EMPTY_NODE(&node->node));
1335 	rb_erase(&node->node, &ic->journal_tree_root);
1336 	init_journal_node(node);
1337 }
1338 
1339 #define NOT_FOUND	(-1U)
1340 
1341 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1342 {
1343 	struct rb_node *n = ic->journal_tree_root.rb_node;
1344 	unsigned int found = NOT_FOUND;
1345 
1346 	*next_sector = (sector_t)-1;
1347 	while (n) {
1348 		struct journal_node *j = container_of(n, struct journal_node, node);
1349 
1350 		if (sector == j->sector)
1351 			found = j - ic->journal_tree;
1352 
1353 		if (sector < j->sector) {
1354 			*next_sector = j->sector;
1355 			n = j->node.rb_left;
1356 		} else
1357 			n = j->node.rb_right;
1358 	}
1359 
1360 	return found;
1361 }
1362 
1363 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1364 {
1365 	struct journal_node *node, *next_node;
1366 	struct rb_node *next;
1367 
1368 	if (unlikely(pos >= ic->journal_entries))
1369 		return false;
1370 	node = &ic->journal_tree[pos];
1371 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1372 		return false;
1373 	if (unlikely(node->sector != sector))
1374 		return false;
1375 
1376 	next = rb_next(&node->node);
1377 	if (unlikely(!next))
1378 		return true;
1379 
1380 	next_node = container_of(next, struct journal_node, node);
1381 	return next_node->sector != sector;
1382 }
1383 
1384 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1385 {
1386 	struct rb_node *next;
1387 	struct journal_node *next_node;
1388 	unsigned int next_section;
1389 
1390 	BUG_ON(RB_EMPTY_NODE(&node->node));
1391 
1392 	next = rb_next(&node->node);
1393 	if (unlikely(!next))
1394 		return false;
1395 
1396 	next_node = container_of(next, struct journal_node, node);
1397 
1398 	if (next_node->sector != node->sector)
1399 		return false;
1400 
1401 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1402 	if (next_section >= ic->committed_section &&
1403 	    next_section < ic->committed_section + ic->n_committed_sections)
1404 		return true;
1405 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1406 		return true;
1407 
1408 	return false;
1409 }
1410 
1411 #define TAG_READ	0
1412 #define TAG_WRITE	1
1413 #define TAG_CMP		2
1414 
1415 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1416 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1417 {
1418 #define MAY_BE_FILLER		1
1419 #define MAY_BE_HASH		2
1420 	unsigned int hash_offset = 0;
1421 	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1422 
1423 	do {
1424 		unsigned char *data, *dp;
1425 		struct dm_buffer *b;
1426 		unsigned int to_copy;
1427 		int r;
1428 
1429 		r = dm_integrity_failed(ic);
1430 		if (unlikely(r))
1431 			return r;
1432 
1433 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1434 		if (IS_ERR(data))
1435 			return PTR_ERR(data);
1436 
1437 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1438 		dp = data + *metadata_offset;
1439 		if (op == TAG_READ) {
1440 			memcpy(tag, dp, to_copy);
1441 		} else if (op == TAG_WRITE) {
1442 			if (memcmp(dp, tag, to_copy)) {
1443 				memcpy(dp, tag, to_copy);
1444 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1445 			}
1446 		} else {
1447 			/* e.g.: op == TAG_CMP */
1448 
1449 			if (likely(is_power_of_2(ic->tag_size))) {
1450 				if (unlikely(memcmp(dp, tag, to_copy)))
1451 					if (unlikely(!ic->discard) ||
1452 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1453 						goto thorough_test;
1454 				}
1455 			} else {
1456 				unsigned int i, ts;
1457 thorough_test:
1458 				ts = total_size;
1459 
1460 				for (i = 0; i < to_copy; i++, ts--) {
1461 					if (unlikely(dp[i] != tag[i]))
1462 						may_be &= ~MAY_BE_HASH;
1463 					if (likely(dp[i] != DISCARD_FILLER))
1464 						may_be &= ~MAY_BE_FILLER;
1465 					hash_offset++;
1466 					if (unlikely(hash_offset == ic->tag_size)) {
1467 						if (unlikely(!may_be)) {
1468 							dm_bufio_release(b);
1469 							return ts;
1470 						}
1471 						hash_offset = 0;
1472 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1473 					}
1474 				}
1475 			}
1476 		}
1477 		dm_bufio_release(b);
1478 
1479 		tag += to_copy;
1480 		*metadata_offset += to_copy;
1481 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1482 			(*metadata_block)++;
1483 			*metadata_offset = 0;
1484 		}
1485 
1486 		if (unlikely(!is_power_of_2(ic->tag_size)))
1487 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1488 
1489 		total_size -= to_copy;
1490 	} while (unlikely(total_size));
1491 
1492 	return 0;
1493 #undef MAY_BE_FILLER
1494 #undef MAY_BE_HASH
1495 }
1496 
1497 struct flush_request {
1498 	struct dm_io_request io_req;
1499 	struct dm_io_region io_reg;
1500 	struct dm_integrity_c *ic;
1501 	struct completion comp;
1502 };
1503 
1504 static void flush_notify(unsigned long error, void *fr_)
1505 {
1506 	struct flush_request *fr = fr_;
1507 
1508 	if (unlikely(error != 0))
1509 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1510 	complete(&fr->comp);
1511 }
1512 
1513 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1514 {
1515 	int r;
1516 	struct flush_request fr;
1517 
1518 	if (!ic->meta_dev)
1519 		flush_data = false;
1520 	if (flush_data) {
1521 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1522 		fr.io_req.mem.type = DM_IO_KMEM,
1523 		fr.io_req.mem.ptr.addr = NULL,
1524 		fr.io_req.notify.fn = flush_notify,
1525 		fr.io_req.notify.context = &fr;
1526 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1527 		fr.io_reg.bdev = ic->dev->bdev,
1528 		fr.io_reg.sector = 0,
1529 		fr.io_reg.count = 0,
1530 		fr.ic = ic;
1531 		init_completion(&fr.comp);
1532 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1533 		BUG_ON(r);
1534 	}
1535 
1536 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1537 	if (unlikely(r))
1538 		dm_integrity_io_error(ic, "writing tags", r);
1539 
1540 	if (flush_data)
1541 		wait_for_completion(&fr.comp);
1542 }
1543 
1544 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1545 {
1546 	DECLARE_WAITQUEUE(wait, current);
1547 
1548 	__add_wait_queue(&ic->endio_wait, &wait);
1549 	__set_current_state(TASK_UNINTERRUPTIBLE);
1550 	spin_unlock_irq(&ic->endio_wait.lock);
1551 	io_schedule();
1552 	spin_lock_irq(&ic->endio_wait.lock);
1553 	__remove_wait_queue(&ic->endio_wait, &wait);
1554 }
1555 
1556 static void autocommit_fn(struct timer_list *t)
1557 {
1558 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1559 
1560 	if (likely(!dm_integrity_failed(ic)))
1561 		queue_work(ic->commit_wq, &ic->commit_work);
1562 }
1563 
1564 static void schedule_autocommit(struct dm_integrity_c *ic)
1565 {
1566 	if (!timer_pending(&ic->autocommit_timer))
1567 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1568 }
1569 
1570 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1571 {
1572 	struct bio *bio;
1573 	unsigned long flags;
1574 
1575 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1576 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1577 	bio_list_add(&ic->flush_bio_list, bio);
1578 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1579 
1580 	queue_work(ic->commit_wq, &ic->commit_work);
1581 }
1582 
1583 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1584 {
1585 	int r;
1586 
1587 	r = dm_integrity_failed(ic);
1588 	if (unlikely(r) && !bio->bi_status)
1589 		bio->bi_status = errno_to_blk_status(r);
1590 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1591 		unsigned long flags;
1592 
1593 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1594 		bio_list_add(&ic->synchronous_bios, bio);
1595 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1596 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1597 		return;
1598 	}
1599 	bio_endio(bio);
1600 }
1601 
1602 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1603 {
1604 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1605 
1606 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1607 		submit_flush_bio(ic, dio);
1608 	else
1609 		do_endio(ic, bio);
1610 }
1611 
1612 static void dec_in_flight(struct dm_integrity_io *dio)
1613 {
1614 	if (atomic_dec_and_test(&dio->in_flight)) {
1615 		struct dm_integrity_c *ic = dio->ic;
1616 		struct bio *bio;
1617 
1618 		remove_range(ic, &dio->range);
1619 
1620 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1621 			schedule_autocommit(ic);
1622 
1623 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1624 		if (unlikely(dio->bi_status) && !bio->bi_status)
1625 			bio->bi_status = dio->bi_status;
1626 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1627 			dio->range.logical_sector += dio->range.n_sectors;
1628 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1629 			INIT_WORK(&dio->work, integrity_bio_wait);
1630 			queue_work(ic->offload_wq, &dio->work);
1631 			return;
1632 		}
1633 		do_endio_flush(ic, dio);
1634 	}
1635 }
1636 
1637 static void integrity_end_io(struct bio *bio)
1638 {
1639 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1640 
1641 	dm_bio_restore(&dio->bio_details, bio);
1642 	if (bio->bi_integrity)
1643 		bio->bi_opf |= REQ_INTEGRITY;
1644 
1645 	if (dio->completion)
1646 		complete(dio->completion);
1647 
1648 	dec_in_flight(dio);
1649 }
1650 
1651 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1652 				      const char *data, char *result)
1653 {
1654 	__le64 sector_le = cpu_to_le64(sector);
1655 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1656 	int r;
1657 	unsigned int digest_size;
1658 
1659 	req->tfm = ic->internal_hash;
1660 
1661 	r = crypto_shash_init(req);
1662 	if (unlikely(r < 0)) {
1663 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1664 		goto failed;
1665 	}
1666 
1667 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1668 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1669 		if (unlikely(r < 0)) {
1670 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1671 			goto failed;
1672 		}
1673 	}
1674 
1675 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1676 	if (unlikely(r < 0)) {
1677 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1678 		goto failed;
1679 	}
1680 
1681 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1682 	if (unlikely(r < 0)) {
1683 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1684 		goto failed;
1685 	}
1686 
1687 	r = crypto_shash_final(req, result);
1688 	if (unlikely(r < 0)) {
1689 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1690 		goto failed;
1691 	}
1692 
1693 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1694 	if (unlikely(digest_size < ic->tag_size))
1695 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1696 
1697 	return;
1698 
1699 failed:
1700 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1701 	get_random_bytes(result, ic->tag_size);
1702 }
1703 
1704 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1705 {
1706 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1707 	struct dm_integrity_c *ic = dio->ic;
1708 	struct bvec_iter iter;
1709 	struct bio_vec bv;
1710 	sector_t sector, logical_sector, area, offset;
1711 	struct page *page;
1712 	void *buffer;
1713 
1714 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1715 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1716 							     &dio->metadata_offset);
1717 	sector = get_data_sector(ic, area, offset);
1718 	logical_sector = dio->range.logical_sector;
1719 
1720 	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1721 	buffer = page_to_virt(page);
1722 
1723 	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1724 		unsigned pos = 0;
1725 
1726 		do {
1727 			char *mem;
1728 			int r;
1729 			struct dm_io_request io_req;
1730 			struct dm_io_region io_loc;
1731 			io_req.bi_opf = REQ_OP_READ;
1732 			io_req.mem.type = DM_IO_KMEM;
1733 			io_req.mem.ptr.addr = buffer;
1734 			io_req.notify.fn = NULL;
1735 			io_req.client = ic->io;
1736 			io_loc.bdev = ic->dev->bdev;
1737 			io_loc.sector = sector;
1738 			io_loc.count = ic->sectors_per_block;
1739 
1740 			r = dm_io(&io_req, 1, &io_loc, NULL);
1741 			if (unlikely(r)) {
1742 				dio->bi_status = errno_to_blk_status(r);
1743 				goto free_ret;
1744 			}
1745 
1746 			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1747 			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1748 						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1749 			if (r) {
1750 				if (r > 0) {
1751 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1752 						    bio->bi_bdev, logical_sector);
1753 					atomic64_inc(&ic->number_of_mismatches);
1754 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1755 							 bio, logical_sector, 0);
1756 					r = -EILSEQ;
1757 				}
1758 				dio->bi_status = errno_to_blk_status(r);
1759 				goto free_ret;
1760 			}
1761 
1762 			mem = bvec_kmap_local(&bv);
1763 			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1764 			kunmap_local(mem);
1765 
1766 			pos += ic->sectors_per_block << SECTOR_SHIFT;
1767 			sector += ic->sectors_per_block;
1768 			logical_sector += ic->sectors_per_block;
1769 		} while (pos < bv.bv_len);
1770 	}
1771 free_ret:
1772 	mempool_free(page, &ic->recheck_pool);
1773 }
1774 
1775 static void integrity_metadata(struct work_struct *w)
1776 {
1777 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1778 	struct dm_integrity_c *ic = dio->ic;
1779 
1780 	int r;
1781 
1782 	if (ic->internal_hash) {
1783 		struct bvec_iter iter;
1784 		struct bio_vec bv;
1785 		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1786 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1787 		char *checksums;
1788 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1789 		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1790 		sector_t sector;
1791 		unsigned int sectors_to_process;
1792 
1793 		if (unlikely(ic->mode == 'R'))
1794 			goto skip_io;
1795 
1796 		if (likely(dio->op != REQ_OP_DISCARD))
1797 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1798 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1799 		else
1800 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1801 		if (!checksums) {
1802 			checksums = checksums_onstack;
1803 			if (WARN_ON(extra_space &&
1804 				    digest_size > sizeof(checksums_onstack))) {
1805 				r = -EINVAL;
1806 				goto error;
1807 			}
1808 		}
1809 
1810 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1811 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1812 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1813 			unsigned int max_blocks = max_size / ic->tag_size;
1814 
1815 			memset(checksums, DISCARD_FILLER, max_size);
1816 
1817 			while (bi_size) {
1818 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1819 
1820 				this_step_blocks = min(this_step_blocks, max_blocks);
1821 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1822 							this_step_blocks * ic->tag_size, TAG_WRITE);
1823 				if (unlikely(r)) {
1824 					if (likely(checksums != checksums_onstack))
1825 						kfree(checksums);
1826 					goto error;
1827 				}
1828 
1829 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1830 			}
1831 
1832 			if (likely(checksums != checksums_onstack))
1833 				kfree(checksums);
1834 			goto skip_io;
1835 		}
1836 
1837 		sector = dio->range.logical_sector;
1838 		sectors_to_process = dio->range.n_sectors;
1839 
1840 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1841 			struct bio_vec bv_copy = bv;
1842 			unsigned int pos;
1843 			char *mem, *checksums_ptr;
1844 
1845 again:
1846 			mem = bvec_kmap_local(&bv_copy);
1847 			pos = 0;
1848 			checksums_ptr = checksums;
1849 			do {
1850 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1851 				checksums_ptr += ic->tag_size;
1852 				sectors_to_process -= ic->sectors_per_block;
1853 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1854 				sector += ic->sectors_per_block;
1855 			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1856 			kunmap_local(mem);
1857 
1858 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1859 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1860 			if (unlikely(r)) {
1861 				if (r > 0) {
1862 					integrity_recheck(dio, checksums);
1863 					goto skip_io;
1864 				}
1865 				if (likely(checksums != checksums_onstack))
1866 					kfree(checksums);
1867 				goto error;
1868 			}
1869 
1870 			if (!sectors_to_process)
1871 				break;
1872 
1873 			if (unlikely(pos < bv_copy.bv_len)) {
1874 				bv_copy.bv_offset += pos;
1875 				bv_copy.bv_len -= pos;
1876 				goto again;
1877 			}
1878 		}
1879 
1880 		if (likely(checksums != checksums_onstack))
1881 			kfree(checksums);
1882 	} else {
1883 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1884 
1885 		if (bip) {
1886 			struct bio_vec biv;
1887 			struct bvec_iter iter;
1888 			unsigned int data_to_process = dio->range.n_sectors;
1889 
1890 			sector_to_block(ic, data_to_process);
1891 			data_to_process *= ic->tag_size;
1892 
1893 			bip_for_each_vec(biv, bip, iter) {
1894 				unsigned char *tag;
1895 				unsigned int this_len;
1896 
1897 				BUG_ON(PageHighMem(biv.bv_page));
1898 				tag = bvec_virt(&biv);
1899 				this_len = min(biv.bv_len, data_to_process);
1900 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1901 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1902 				if (unlikely(r))
1903 					goto error;
1904 				data_to_process -= this_len;
1905 				if (!data_to_process)
1906 					break;
1907 			}
1908 		}
1909 	}
1910 skip_io:
1911 	dec_in_flight(dio);
1912 	return;
1913 error:
1914 	dio->bi_status = errno_to_blk_status(r);
1915 	dec_in_flight(dio);
1916 }
1917 
1918 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1919 {
1920 	struct dm_integrity_c *ic = ti->private;
1921 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1922 	struct bio_integrity_payload *bip;
1923 
1924 	sector_t area, offset;
1925 
1926 	dio->ic = ic;
1927 	dio->bi_status = 0;
1928 	dio->op = bio_op(bio);
1929 
1930 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1931 		if (ti->max_io_len) {
1932 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1933 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1934 			sector_t start_boundary = sec >> log2_max_io_len;
1935 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1936 
1937 			if (start_boundary < end_boundary) {
1938 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1939 
1940 				dm_accept_partial_bio(bio, len);
1941 			}
1942 		}
1943 	}
1944 
1945 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1946 		submit_flush_bio(ic, dio);
1947 		return DM_MAPIO_SUBMITTED;
1948 	}
1949 
1950 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1951 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1952 	if (unlikely(dio->fua)) {
1953 		/*
1954 		 * Don't pass down the FUA flag because we have to flush
1955 		 * disk cache anyway.
1956 		 */
1957 		bio->bi_opf &= ~REQ_FUA;
1958 	}
1959 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1960 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1961 		      dio->range.logical_sector, bio_sectors(bio),
1962 		      ic->provided_data_sectors);
1963 		return DM_MAPIO_KILL;
1964 	}
1965 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1966 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1967 		      ic->sectors_per_block,
1968 		      dio->range.logical_sector, bio_sectors(bio));
1969 		return DM_MAPIO_KILL;
1970 	}
1971 
1972 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1973 		struct bvec_iter iter;
1974 		struct bio_vec bv;
1975 
1976 		bio_for_each_segment(bv, bio, iter) {
1977 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1978 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1979 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1980 				return DM_MAPIO_KILL;
1981 			}
1982 		}
1983 	}
1984 
1985 	bip = bio_integrity(bio);
1986 	if (!ic->internal_hash) {
1987 		if (bip) {
1988 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1989 
1990 			if (ic->log2_tag_size >= 0)
1991 				wanted_tag_size <<= ic->log2_tag_size;
1992 			else
1993 				wanted_tag_size *= ic->tag_size;
1994 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1995 				DMERR("Invalid integrity data size %u, expected %u",
1996 				      bip->bip_iter.bi_size, wanted_tag_size);
1997 				return DM_MAPIO_KILL;
1998 			}
1999 		}
2000 	} else {
2001 		if (unlikely(bip != NULL)) {
2002 			DMERR("Unexpected integrity data when using internal hash");
2003 			return DM_MAPIO_KILL;
2004 		}
2005 	}
2006 
2007 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2008 		return DM_MAPIO_KILL;
2009 
2010 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2011 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2012 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2013 
2014 	dm_integrity_map_continue(dio, true);
2015 	return DM_MAPIO_SUBMITTED;
2016 }
2017 
2018 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2019 				 unsigned int journal_section, unsigned int journal_entry)
2020 {
2021 	struct dm_integrity_c *ic = dio->ic;
2022 	sector_t logical_sector;
2023 	unsigned int n_sectors;
2024 
2025 	logical_sector = dio->range.logical_sector;
2026 	n_sectors = dio->range.n_sectors;
2027 	do {
2028 		struct bio_vec bv = bio_iovec(bio);
2029 		char *mem;
2030 
2031 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2032 			bv.bv_len = n_sectors << SECTOR_SHIFT;
2033 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2034 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2035 retry_kmap:
2036 		mem = kmap_local_page(bv.bv_page);
2037 		if (likely(dio->op == REQ_OP_WRITE))
2038 			flush_dcache_page(bv.bv_page);
2039 
2040 		do {
2041 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2042 
2043 			if (unlikely(dio->op == REQ_OP_READ)) {
2044 				struct journal_sector *js;
2045 				char *mem_ptr;
2046 				unsigned int s;
2047 
2048 				if (unlikely(journal_entry_is_inprogress(je))) {
2049 					flush_dcache_page(bv.bv_page);
2050 					kunmap_local(mem);
2051 
2052 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2053 					goto retry_kmap;
2054 				}
2055 				smp_rmb();
2056 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2057 				js = access_journal_data(ic, journal_section, journal_entry);
2058 				mem_ptr = mem + bv.bv_offset;
2059 				s = 0;
2060 				do {
2061 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2062 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2063 					js++;
2064 					mem_ptr += 1 << SECTOR_SHIFT;
2065 				} while (++s < ic->sectors_per_block);
2066 #ifdef INTERNAL_VERIFY
2067 				if (ic->internal_hash) {
2068 					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2069 
2070 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2071 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2072 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2073 							    logical_sector);
2074 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2075 								 bio, logical_sector, 0);
2076 					}
2077 				}
2078 #endif
2079 			}
2080 
2081 			if (!ic->internal_hash) {
2082 				struct bio_integrity_payload *bip = bio_integrity(bio);
2083 				unsigned int tag_todo = ic->tag_size;
2084 				char *tag_ptr = journal_entry_tag(ic, je);
2085 
2086 				if (bip) {
2087 					do {
2088 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2089 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2090 						char *tag_addr;
2091 
2092 						BUG_ON(PageHighMem(biv.bv_page));
2093 						tag_addr = bvec_virt(&biv);
2094 						if (likely(dio->op == REQ_OP_WRITE))
2095 							memcpy(tag_ptr, tag_addr, tag_now);
2096 						else
2097 							memcpy(tag_addr, tag_ptr, tag_now);
2098 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2099 						tag_ptr += tag_now;
2100 						tag_todo -= tag_now;
2101 					} while (unlikely(tag_todo));
2102 				} else if (likely(dio->op == REQ_OP_WRITE))
2103 					memset(tag_ptr, 0, tag_todo);
2104 			}
2105 
2106 			if (likely(dio->op == REQ_OP_WRITE)) {
2107 				struct journal_sector *js;
2108 				unsigned int s;
2109 
2110 				js = access_journal_data(ic, journal_section, journal_entry);
2111 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2112 
2113 				s = 0;
2114 				do {
2115 					je->last_bytes[s] = js[s].commit_id;
2116 				} while (++s < ic->sectors_per_block);
2117 
2118 				if (ic->internal_hash) {
2119 					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2120 
2121 					if (unlikely(digest_size > ic->tag_size)) {
2122 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2123 
2124 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2125 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2126 					} else
2127 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2128 				}
2129 
2130 				journal_entry_set_sector(je, logical_sector);
2131 			}
2132 			logical_sector += ic->sectors_per_block;
2133 
2134 			journal_entry++;
2135 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2136 				journal_entry = 0;
2137 				journal_section++;
2138 				wraparound_section(ic, &journal_section);
2139 			}
2140 
2141 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2142 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2143 
2144 		if (unlikely(dio->op == REQ_OP_READ))
2145 			flush_dcache_page(bv.bv_page);
2146 		kunmap_local(mem);
2147 	} while (n_sectors);
2148 
2149 	if (likely(dio->op == REQ_OP_WRITE)) {
2150 		smp_mb();
2151 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2152 			wake_up(&ic->copy_to_journal_wait);
2153 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2154 			queue_work(ic->commit_wq, &ic->commit_work);
2155 		else
2156 			schedule_autocommit(ic);
2157 	} else
2158 		remove_range(ic, &dio->range);
2159 
2160 	if (unlikely(bio->bi_iter.bi_size)) {
2161 		sector_t area, offset;
2162 
2163 		dio->range.logical_sector = logical_sector;
2164 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2165 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2166 		return true;
2167 	}
2168 
2169 	return false;
2170 }
2171 
2172 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2173 {
2174 	struct dm_integrity_c *ic = dio->ic;
2175 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2176 	unsigned int journal_section, journal_entry;
2177 	unsigned int journal_read_pos;
2178 	struct completion read_comp;
2179 	bool discard_retried = false;
2180 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2181 
2182 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2183 		need_sync_io = true;
2184 
2185 	if (need_sync_io && from_map) {
2186 		INIT_WORK(&dio->work, integrity_bio_wait);
2187 		queue_work(ic->offload_wq, &dio->work);
2188 		return;
2189 	}
2190 
2191 lock_retry:
2192 	spin_lock_irq(&ic->endio_wait.lock);
2193 retry:
2194 	if (unlikely(dm_integrity_failed(ic))) {
2195 		spin_unlock_irq(&ic->endio_wait.lock);
2196 		do_endio(ic, bio);
2197 		return;
2198 	}
2199 	dio->range.n_sectors = bio_sectors(bio);
2200 	journal_read_pos = NOT_FOUND;
2201 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2202 		if (dio->op == REQ_OP_WRITE) {
2203 			unsigned int next_entry, i, pos;
2204 			unsigned int ws, we, range_sectors;
2205 
2206 			dio->range.n_sectors = min(dio->range.n_sectors,
2207 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2208 			if (unlikely(!dio->range.n_sectors)) {
2209 				if (from_map)
2210 					goto offload_to_thread;
2211 				sleep_on_endio_wait(ic);
2212 				goto retry;
2213 			}
2214 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2215 			ic->free_sectors -= range_sectors;
2216 			journal_section = ic->free_section;
2217 			journal_entry = ic->free_section_entry;
2218 
2219 			next_entry = ic->free_section_entry + range_sectors;
2220 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2221 			ic->free_section += next_entry / ic->journal_section_entries;
2222 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2223 			wraparound_section(ic, &ic->free_section);
2224 
2225 			pos = journal_section * ic->journal_section_entries + journal_entry;
2226 			ws = journal_section;
2227 			we = journal_entry;
2228 			i = 0;
2229 			do {
2230 				struct journal_entry *je;
2231 
2232 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2233 				pos++;
2234 				if (unlikely(pos >= ic->journal_entries))
2235 					pos = 0;
2236 
2237 				je = access_journal_entry(ic, ws, we);
2238 				BUG_ON(!journal_entry_is_unused(je));
2239 				journal_entry_set_inprogress(je);
2240 				we++;
2241 				if (unlikely(we == ic->journal_section_entries)) {
2242 					we = 0;
2243 					ws++;
2244 					wraparound_section(ic, &ws);
2245 				}
2246 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2247 
2248 			spin_unlock_irq(&ic->endio_wait.lock);
2249 			goto journal_read_write;
2250 		} else {
2251 			sector_t next_sector;
2252 
2253 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2254 			if (likely(journal_read_pos == NOT_FOUND)) {
2255 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2256 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2257 			} else {
2258 				unsigned int i;
2259 				unsigned int jp = journal_read_pos + 1;
2260 
2261 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2262 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2263 						break;
2264 				}
2265 				dio->range.n_sectors = i;
2266 			}
2267 		}
2268 	}
2269 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2270 		/*
2271 		 * We must not sleep in the request routine because it could
2272 		 * stall bios on current->bio_list.
2273 		 * So, we offload the bio to a workqueue if we have to sleep.
2274 		 */
2275 		if (from_map) {
2276 offload_to_thread:
2277 			spin_unlock_irq(&ic->endio_wait.lock);
2278 			INIT_WORK(&dio->work, integrity_bio_wait);
2279 			queue_work(ic->wait_wq, &dio->work);
2280 			return;
2281 		}
2282 		if (journal_read_pos != NOT_FOUND)
2283 			dio->range.n_sectors = ic->sectors_per_block;
2284 		wait_and_add_new_range(ic, &dio->range);
2285 		/*
2286 		 * wait_and_add_new_range drops the spinlock, so the journal
2287 		 * may have been changed arbitrarily. We need to recheck.
2288 		 * To simplify the code, we restrict I/O size to just one block.
2289 		 */
2290 		if (journal_read_pos != NOT_FOUND) {
2291 			sector_t next_sector;
2292 			unsigned int new_pos;
2293 
2294 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2295 			if (unlikely(new_pos != journal_read_pos)) {
2296 				remove_range_unlocked(ic, &dio->range);
2297 				goto retry;
2298 			}
2299 		}
2300 	}
2301 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2302 		sector_t next_sector;
2303 		unsigned int new_pos;
2304 
2305 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2306 		if (unlikely(new_pos != NOT_FOUND) ||
2307 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2308 			remove_range_unlocked(ic, &dio->range);
2309 			spin_unlock_irq(&ic->endio_wait.lock);
2310 			queue_work(ic->commit_wq, &ic->commit_work);
2311 			flush_workqueue(ic->commit_wq);
2312 			queue_work(ic->writer_wq, &ic->writer_work);
2313 			flush_workqueue(ic->writer_wq);
2314 			discard_retried = true;
2315 			goto lock_retry;
2316 		}
2317 	}
2318 	spin_unlock_irq(&ic->endio_wait.lock);
2319 
2320 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2321 		journal_section = journal_read_pos / ic->journal_section_entries;
2322 		journal_entry = journal_read_pos % ic->journal_section_entries;
2323 		goto journal_read_write;
2324 	}
2325 
2326 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2327 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2328 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2329 			struct bitmap_block_status *bbs;
2330 
2331 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2332 			spin_lock(&bbs->bio_queue_lock);
2333 			bio_list_add(&bbs->bio_queue, bio);
2334 			spin_unlock(&bbs->bio_queue_lock);
2335 			queue_work(ic->writer_wq, &bbs->work);
2336 			return;
2337 		}
2338 	}
2339 
2340 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2341 
2342 	if (need_sync_io) {
2343 		init_completion(&read_comp);
2344 		dio->completion = &read_comp;
2345 	} else
2346 		dio->completion = NULL;
2347 
2348 	dm_bio_record(&dio->bio_details, bio);
2349 	bio_set_dev(bio, ic->dev->bdev);
2350 	bio->bi_integrity = NULL;
2351 	bio->bi_opf &= ~REQ_INTEGRITY;
2352 	bio->bi_end_io = integrity_end_io;
2353 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2354 
2355 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2356 		integrity_metadata(&dio->work);
2357 		dm_integrity_flush_buffers(ic, false);
2358 
2359 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2360 		dio->completion = NULL;
2361 
2362 		submit_bio_noacct(bio);
2363 
2364 		return;
2365 	}
2366 
2367 	submit_bio_noacct(bio);
2368 
2369 	if (need_sync_io) {
2370 		wait_for_completion_io(&read_comp);
2371 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2372 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2373 			goto skip_check;
2374 		if (ic->mode == 'B') {
2375 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2376 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2377 				goto skip_check;
2378 		}
2379 
2380 		if (likely(!bio->bi_status))
2381 			integrity_metadata(&dio->work);
2382 		else
2383 skip_check:
2384 			dec_in_flight(dio);
2385 	} else {
2386 		INIT_WORK(&dio->work, integrity_metadata);
2387 		queue_work(ic->metadata_wq, &dio->work);
2388 	}
2389 
2390 	return;
2391 
2392 journal_read_write:
2393 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2394 		goto lock_retry;
2395 
2396 	do_endio_flush(ic, dio);
2397 }
2398 
2399 
2400 static void integrity_bio_wait(struct work_struct *w)
2401 {
2402 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2403 
2404 	dm_integrity_map_continue(dio, false);
2405 }
2406 
2407 static void pad_uncommitted(struct dm_integrity_c *ic)
2408 {
2409 	if (ic->free_section_entry) {
2410 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2411 		ic->free_section_entry = 0;
2412 		ic->free_section++;
2413 		wraparound_section(ic, &ic->free_section);
2414 		ic->n_uncommitted_sections++;
2415 	}
2416 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2417 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2418 		    ic->journal_section_entries + ic->free_sectors)) {
2419 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2420 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2421 		       "journal_section_entries %u, free_sectors %u",
2422 		       ic->journal_sections, ic->journal_section_entries,
2423 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2424 		       ic->journal_section_entries, ic->free_sectors);
2425 	}
2426 }
2427 
2428 static void integrity_commit(struct work_struct *w)
2429 {
2430 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2431 	unsigned int commit_start, commit_sections;
2432 	unsigned int i, j, n;
2433 	struct bio *flushes;
2434 
2435 	del_timer(&ic->autocommit_timer);
2436 
2437 	spin_lock_irq(&ic->endio_wait.lock);
2438 	flushes = bio_list_get(&ic->flush_bio_list);
2439 	if (unlikely(ic->mode != 'J')) {
2440 		spin_unlock_irq(&ic->endio_wait.lock);
2441 		dm_integrity_flush_buffers(ic, true);
2442 		goto release_flush_bios;
2443 	}
2444 
2445 	pad_uncommitted(ic);
2446 	commit_start = ic->uncommitted_section;
2447 	commit_sections = ic->n_uncommitted_sections;
2448 	spin_unlock_irq(&ic->endio_wait.lock);
2449 
2450 	if (!commit_sections)
2451 		goto release_flush_bios;
2452 
2453 	ic->wrote_to_journal = true;
2454 
2455 	i = commit_start;
2456 	for (n = 0; n < commit_sections; n++) {
2457 		for (j = 0; j < ic->journal_section_entries; j++) {
2458 			struct journal_entry *je;
2459 
2460 			je = access_journal_entry(ic, i, j);
2461 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2462 		}
2463 		for (j = 0; j < ic->journal_section_sectors; j++) {
2464 			struct journal_sector *js;
2465 
2466 			js = access_journal(ic, i, j);
2467 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2468 		}
2469 		i++;
2470 		if (unlikely(i >= ic->journal_sections))
2471 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2472 		wraparound_section(ic, &i);
2473 	}
2474 	smp_rmb();
2475 
2476 	write_journal(ic, commit_start, commit_sections);
2477 
2478 	spin_lock_irq(&ic->endio_wait.lock);
2479 	ic->uncommitted_section += commit_sections;
2480 	wraparound_section(ic, &ic->uncommitted_section);
2481 	ic->n_uncommitted_sections -= commit_sections;
2482 	ic->n_committed_sections += commit_sections;
2483 	spin_unlock_irq(&ic->endio_wait.lock);
2484 
2485 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2486 		queue_work(ic->writer_wq, &ic->writer_work);
2487 
2488 release_flush_bios:
2489 	while (flushes) {
2490 		struct bio *next = flushes->bi_next;
2491 
2492 		flushes->bi_next = NULL;
2493 		do_endio(ic, flushes);
2494 		flushes = next;
2495 	}
2496 }
2497 
2498 static void complete_copy_from_journal(unsigned long error, void *context)
2499 {
2500 	struct journal_io *io = context;
2501 	struct journal_completion *comp = io->comp;
2502 	struct dm_integrity_c *ic = comp->ic;
2503 
2504 	remove_range(ic, &io->range);
2505 	mempool_free(io, &ic->journal_io_mempool);
2506 	if (unlikely(error != 0))
2507 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2508 	complete_journal_op(comp);
2509 }
2510 
2511 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2512 			       struct journal_entry *je)
2513 {
2514 	unsigned int s = 0;
2515 
2516 	do {
2517 		js->commit_id = je->last_bytes[s];
2518 		js++;
2519 	} while (++s < ic->sectors_per_block);
2520 }
2521 
2522 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2523 			     unsigned int write_sections, bool from_replay)
2524 {
2525 	unsigned int i, j, n;
2526 	struct journal_completion comp;
2527 	struct blk_plug plug;
2528 
2529 	blk_start_plug(&plug);
2530 
2531 	comp.ic = ic;
2532 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2533 	init_completion(&comp.comp);
2534 
2535 	i = write_start;
2536 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2537 #ifndef INTERNAL_VERIFY
2538 		if (unlikely(from_replay))
2539 #endif
2540 			rw_section_mac(ic, i, false);
2541 		for (j = 0; j < ic->journal_section_entries; j++) {
2542 			struct journal_entry *je = access_journal_entry(ic, i, j);
2543 			sector_t sec, area, offset;
2544 			unsigned int k, l, next_loop;
2545 			sector_t metadata_block;
2546 			unsigned int metadata_offset;
2547 			struct journal_io *io;
2548 
2549 			if (journal_entry_is_unused(je))
2550 				continue;
2551 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2552 			sec = journal_entry_get_sector(je);
2553 			if (unlikely(from_replay)) {
2554 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2555 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2556 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2557 				}
2558 				if (unlikely(sec >= ic->provided_data_sectors)) {
2559 					journal_entry_set_unused(je);
2560 					continue;
2561 				}
2562 			}
2563 			get_area_and_offset(ic, sec, &area, &offset);
2564 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2565 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2566 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2567 				sector_t sec2, area2, offset2;
2568 
2569 				if (journal_entry_is_unused(je2))
2570 					break;
2571 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2572 				sec2 = journal_entry_get_sector(je2);
2573 				if (unlikely(sec2 >= ic->provided_data_sectors))
2574 					break;
2575 				get_area_and_offset(ic, sec2, &area2, &offset2);
2576 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2577 					break;
2578 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2579 			}
2580 			next_loop = k - 1;
2581 
2582 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2583 			io->comp = &comp;
2584 			io->range.logical_sector = sec;
2585 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2586 
2587 			spin_lock_irq(&ic->endio_wait.lock);
2588 			add_new_range_and_wait(ic, &io->range);
2589 
2590 			if (likely(!from_replay)) {
2591 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2592 
2593 				/* don't write if there is newer committed sector */
2594 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2595 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2596 
2597 					journal_entry_set_unused(je2);
2598 					remove_journal_node(ic, &section_node[j]);
2599 					j++;
2600 					sec += ic->sectors_per_block;
2601 					offset += ic->sectors_per_block;
2602 				}
2603 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2604 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2605 
2606 					journal_entry_set_unused(je2);
2607 					remove_journal_node(ic, &section_node[k - 1]);
2608 					k--;
2609 				}
2610 				if (j == k) {
2611 					remove_range_unlocked(ic, &io->range);
2612 					spin_unlock_irq(&ic->endio_wait.lock);
2613 					mempool_free(io, &ic->journal_io_mempool);
2614 					goto skip_io;
2615 				}
2616 				for (l = j; l < k; l++)
2617 					remove_journal_node(ic, &section_node[l]);
2618 			}
2619 			spin_unlock_irq(&ic->endio_wait.lock);
2620 
2621 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2622 			for (l = j; l < k; l++) {
2623 				int r;
2624 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2625 
2626 				if (
2627 #ifndef INTERNAL_VERIFY
2628 				    unlikely(from_replay) &&
2629 #endif
2630 				    ic->internal_hash) {
2631 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2632 
2633 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2634 								  (char *)access_journal_data(ic, i, l), test_tag);
2635 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2636 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2637 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2638 					}
2639 				}
2640 
2641 				journal_entry_set_unused(je2);
2642 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2643 							ic->tag_size, TAG_WRITE);
2644 				if (unlikely(r))
2645 					dm_integrity_io_error(ic, "reading tags", r);
2646 			}
2647 
2648 			atomic_inc(&comp.in_flight);
2649 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2650 					  (k - j) << ic->sb->log2_sectors_per_block,
2651 					  get_data_sector(ic, area, offset),
2652 					  complete_copy_from_journal, io);
2653 skip_io:
2654 			j = next_loop;
2655 		}
2656 	}
2657 
2658 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2659 
2660 	blk_finish_plug(&plug);
2661 
2662 	complete_journal_op(&comp);
2663 	wait_for_completion_io(&comp.comp);
2664 
2665 	dm_integrity_flush_buffers(ic, true);
2666 }
2667 
2668 static void integrity_writer(struct work_struct *w)
2669 {
2670 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2671 	unsigned int write_start, write_sections;
2672 	unsigned int prev_free_sectors;
2673 
2674 	spin_lock_irq(&ic->endio_wait.lock);
2675 	write_start = ic->committed_section;
2676 	write_sections = ic->n_committed_sections;
2677 	spin_unlock_irq(&ic->endio_wait.lock);
2678 
2679 	if (!write_sections)
2680 		return;
2681 
2682 	do_journal_write(ic, write_start, write_sections, false);
2683 
2684 	spin_lock_irq(&ic->endio_wait.lock);
2685 
2686 	ic->committed_section += write_sections;
2687 	wraparound_section(ic, &ic->committed_section);
2688 	ic->n_committed_sections -= write_sections;
2689 
2690 	prev_free_sectors = ic->free_sectors;
2691 	ic->free_sectors += write_sections * ic->journal_section_entries;
2692 	if (unlikely(!prev_free_sectors))
2693 		wake_up_locked(&ic->endio_wait);
2694 
2695 	spin_unlock_irq(&ic->endio_wait.lock);
2696 }
2697 
2698 static void recalc_write_super(struct dm_integrity_c *ic)
2699 {
2700 	int r;
2701 
2702 	dm_integrity_flush_buffers(ic, false);
2703 	if (dm_integrity_failed(ic))
2704 		return;
2705 
2706 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2707 	if (unlikely(r))
2708 		dm_integrity_io_error(ic, "writing superblock", r);
2709 }
2710 
2711 static void integrity_recalc(struct work_struct *w)
2712 {
2713 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2714 	size_t recalc_tags_size;
2715 	u8 *recalc_buffer = NULL;
2716 	u8 *recalc_tags = NULL;
2717 	struct dm_integrity_range range;
2718 	struct dm_io_request io_req;
2719 	struct dm_io_region io_loc;
2720 	sector_t area, offset;
2721 	sector_t metadata_block;
2722 	unsigned int metadata_offset;
2723 	sector_t logical_sector, n_sectors;
2724 	__u8 *t;
2725 	unsigned int i;
2726 	int r;
2727 	unsigned int super_counter = 0;
2728 	unsigned recalc_sectors = RECALC_SECTORS;
2729 
2730 retry:
2731 	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2732 	if (!recalc_buffer) {
2733 oom:
2734 		recalc_sectors >>= 1;
2735 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2736 			goto retry;
2737 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2738 		goto free_ret;
2739 	}
2740 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2741 	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2742 		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2743 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2744 	if (!recalc_tags) {
2745 		vfree(recalc_buffer);
2746 		recalc_buffer = NULL;
2747 		goto oom;
2748 	}
2749 
2750 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2751 
2752 	spin_lock_irq(&ic->endio_wait.lock);
2753 
2754 next_chunk:
2755 
2756 	if (unlikely(dm_post_suspending(ic->ti)))
2757 		goto unlock_ret;
2758 
2759 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2760 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2761 		if (ic->mode == 'B') {
2762 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2763 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2764 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2765 		}
2766 		goto unlock_ret;
2767 	}
2768 
2769 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2770 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2771 	if (!ic->meta_dev)
2772 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2773 
2774 	add_new_range_and_wait(ic, &range);
2775 	spin_unlock_irq(&ic->endio_wait.lock);
2776 	logical_sector = range.logical_sector;
2777 	n_sectors = range.n_sectors;
2778 
2779 	if (ic->mode == 'B') {
2780 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2781 			goto advance_and_next;
2782 
2783 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2784 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2785 			logical_sector += ic->sectors_per_block;
2786 			n_sectors -= ic->sectors_per_block;
2787 			cond_resched();
2788 		}
2789 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2790 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2791 			n_sectors -= ic->sectors_per_block;
2792 			cond_resched();
2793 		}
2794 		get_area_and_offset(ic, logical_sector, &area, &offset);
2795 	}
2796 
2797 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2798 
2799 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2800 		recalc_write_super(ic);
2801 		if (ic->mode == 'B')
2802 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2803 
2804 		super_counter = 0;
2805 	}
2806 
2807 	if (unlikely(dm_integrity_failed(ic)))
2808 		goto err;
2809 
2810 	io_req.bi_opf = REQ_OP_READ;
2811 	io_req.mem.type = DM_IO_VMA;
2812 	io_req.mem.ptr.addr = recalc_buffer;
2813 	io_req.notify.fn = NULL;
2814 	io_req.client = ic->io;
2815 	io_loc.bdev = ic->dev->bdev;
2816 	io_loc.sector = get_data_sector(ic, area, offset);
2817 	io_loc.count = n_sectors;
2818 
2819 	r = dm_io(&io_req, 1, &io_loc, NULL);
2820 	if (unlikely(r)) {
2821 		dm_integrity_io_error(ic, "reading data", r);
2822 		goto err;
2823 	}
2824 
2825 	t = recalc_tags;
2826 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2827 		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2828 		t += ic->tag_size;
2829 	}
2830 
2831 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2832 
2833 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2834 	if (unlikely(r)) {
2835 		dm_integrity_io_error(ic, "writing tags", r);
2836 		goto err;
2837 	}
2838 
2839 	if (ic->mode == 'B') {
2840 		sector_t start, end;
2841 
2842 		start = (range.logical_sector >>
2843 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2844 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2845 		end = ((range.logical_sector + range.n_sectors) >>
2846 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2847 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2848 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2849 	}
2850 
2851 advance_and_next:
2852 	cond_resched();
2853 
2854 	spin_lock_irq(&ic->endio_wait.lock);
2855 	remove_range_unlocked(ic, &range);
2856 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2857 	goto next_chunk;
2858 
2859 err:
2860 	remove_range(ic, &range);
2861 	goto free_ret;
2862 
2863 unlock_ret:
2864 	spin_unlock_irq(&ic->endio_wait.lock);
2865 
2866 	recalc_write_super(ic);
2867 
2868 free_ret:
2869 	vfree(recalc_buffer);
2870 	kvfree(recalc_tags);
2871 }
2872 
2873 static void bitmap_block_work(struct work_struct *w)
2874 {
2875 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2876 	struct dm_integrity_c *ic = bbs->ic;
2877 	struct bio *bio;
2878 	struct bio_list bio_queue;
2879 	struct bio_list waiting;
2880 
2881 	bio_list_init(&waiting);
2882 
2883 	spin_lock(&bbs->bio_queue_lock);
2884 	bio_queue = bbs->bio_queue;
2885 	bio_list_init(&bbs->bio_queue);
2886 	spin_unlock(&bbs->bio_queue_lock);
2887 
2888 	while ((bio = bio_list_pop(&bio_queue))) {
2889 		struct dm_integrity_io *dio;
2890 
2891 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2892 
2893 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2894 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2895 			remove_range(ic, &dio->range);
2896 			INIT_WORK(&dio->work, integrity_bio_wait);
2897 			queue_work(ic->offload_wq, &dio->work);
2898 		} else {
2899 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2900 					dio->range.n_sectors, BITMAP_OP_SET);
2901 			bio_list_add(&waiting, bio);
2902 		}
2903 	}
2904 
2905 	if (bio_list_empty(&waiting))
2906 		return;
2907 
2908 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2909 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2910 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2911 
2912 	while ((bio = bio_list_pop(&waiting))) {
2913 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2914 
2915 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2916 				dio->range.n_sectors, BITMAP_OP_SET);
2917 
2918 		remove_range(ic, &dio->range);
2919 		INIT_WORK(&dio->work, integrity_bio_wait);
2920 		queue_work(ic->offload_wq, &dio->work);
2921 	}
2922 
2923 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2924 }
2925 
2926 static void bitmap_flush_work(struct work_struct *work)
2927 {
2928 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2929 	struct dm_integrity_range range;
2930 	unsigned long limit;
2931 	struct bio *bio;
2932 
2933 	dm_integrity_flush_buffers(ic, false);
2934 
2935 	range.logical_sector = 0;
2936 	range.n_sectors = ic->provided_data_sectors;
2937 
2938 	spin_lock_irq(&ic->endio_wait.lock);
2939 	add_new_range_and_wait(ic, &range);
2940 	spin_unlock_irq(&ic->endio_wait.lock);
2941 
2942 	dm_integrity_flush_buffers(ic, true);
2943 
2944 	limit = ic->provided_data_sectors;
2945 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2946 		limit = le64_to_cpu(ic->sb->recalc_sector)
2947 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2948 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2949 	}
2950 	/*DEBUG_print("zeroing journal\n");*/
2951 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2952 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2953 
2954 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2955 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2956 
2957 	spin_lock_irq(&ic->endio_wait.lock);
2958 	remove_range_unlocked(ic, &range);
2959 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2960 		bio_endio(bio);
2961 		spin_unlock_irq(&ic->endio_wait.lock);
2962 		spin_lock_irq(&ic->endio_wait.lock);
2963 	}
2964 	spin_unlock_irq(&ic->endio_wait.lock);
2965 }
2966 
2967 
2968 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2969 			 unsigned int n_sections, unsigned char commit_seq)
2970 {
2971 	unsigned int i, j, n;
2972 
2973 	if (!n_sections)
2974 		return;
2975 
2976 	for (n = 0; n < n_sections; n++) {
2977 		i = start_section + n;
2978 		wraparound_section(ic, &i);
2979 		for (j = 0; j < ic->journal_section_sectors; j++) {
2980 			struct journal_sector *js = access_journal(ic, i, j);
2981 
2982 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2983 			memset(&js->sectors, 0, sizeof(js->sectors));
2984 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2985 		}
2986 		for (j = 0; j < ic->journal_section_entries; j++) {
2987 			struct journal_entry *je = access_journal_entry(ic, i, j);
2988 
2989 			journal_entry_set_unused(je);
2990 		}
2991 	}
2992 
2993 	write_journal(ic, start_section, n_sections);
2994 }
2995 
2996 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2997 {
2998 	unsigned char k;
2999 
3000 	for (k = 0; k < N_COMMIT_IDS; k++) {
3001 		if (dm_integrity_commit_id(ic, i, j, k) == id)
3002 			return k;
3003 	}
3004 	dm_integrity_io_error(ic, "journal commit id", -EIO);
3005 	return -EIO;
3006 }
3007 
3008 static void replay_journal(struct dm_integrity_c *ic)
3009 {
3010 	unsigned int i, j;
3011 	bool used_commit_ids[N_COMMIT_IDS];
3012 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3013 	unsigned int write_start, write_sections;
3014 	unsigned int continue_section;
3015 	bool journal_empty;
3016 	unsigned char unused, last_used, want_commit_seq;
3017 
3018 	if (ic->mode == 'R')
3019 		return;
3020 
3021 	if (ic->journal_uptodate)
3022 		return;
3023 
3024 	last_used = 0;
3025 	write_start = 0;
3026 
3027 	if (!ic->just_formatted) {
3028 		DEBUG_print("reading journal\n");
3029 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3030 		if (ic->journal_io)
3031 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3032 		if (ic->journal_io) {
3033 			struct journal_completion crypt_comp;
3034 
3035 			crypt_comp.ic = ic;
3036 			init_completion(&crypt_comp.comp);
3037 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3038 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3039 			wait_for_completion(&crypt_comp.comp);
3040 		}
3041 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3042 	}
3043 
3044 	if (dm_integrity_failed(ic))
3045 		goto clear_journal;
3046 
3047 	journal_empty = true;
3048 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3049 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3050 	for (i = 0; i < ic->journal_sections; i++) {
3051 		for (j = 0; j < ic->journal_section_sectors; j++) {
3052 			int k;
3053 			struct journal_sector *js = access_journal(ic, i, j);
3054 
3055 			k = find_commit_seq(ic, i, j, js->commit_id);
3056 			if (k < 0)
3057 				goto clear_journal;
3058 			used_commit_ids[k] = true;
3059 			max_commit_id_sections[k] = i;
3060 		}
3061 		if (journal_empty) {
3062 			for (j = 0; j < ic->journal_section_entries; j++) {
3063 				struct journal_entry *je = access_journal_entry(ic, i, j);
3064 
3065 				if (!journal_entry_is_unused(je)) {
3066 					journal_empty = false;
3067 					break;
3068 				}
3069 			}
3070 		}
3071 	}
3072 
3073 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3074 		unused = N_COMMIT_IDS - 1;
3075 		while (unused && !used_commit_ids[unused - 1])
3076 			unused--;
3077 	} else {
3078 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3079 			if (!used_commit_ids[unused])
3080 				break;
3081 		if (unused == N_COMMIT_IDS) {
3082 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3083 			goto clear_journal;
3084 		}
3085 	}
3086 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3087 		    unused, used_commit_ids[0], used_commit_ids[1],
3088 		    used_commit_ids[2], used_commit_ids[3]);
3089 
3090 	last_used = prev_commit_seq(unused);
3091 	want_commit_seq = prev_commit_seq(last_used);
3092 
3093 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3094 		journal_empty = true;
3095 
3096 	write_start = max_commit_id_sections[last_used] + 1;
3097 	if (unlikely(write_start >= ic->journal_sections))
3098 		want_commit_seq = next_commit_seq(want_commit_seq);
3099 	wraparound_section(ic, &write_start);
3100 
3101 	i = write_start;
3102 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3103 		for (j = 0; j < ic->journal_section_sectors; j++) {
3104 			struct journal_sector *js = access_journal(ic, i, j);
3105 
3106 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3107 				/*
3108 				 * This could be caused by crash during writing.
3109 				 * We won't replay the inconsistent part of the
3110 				 * journal.
3111 				 */
3112 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3113 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3114 				goto brk;
3115 			}
3116 		}
3117 		i++;
3118 		if (unlikely(i >= ic->journal_sections))
3119 			want_commit_seq = next_commit_seq(want_commit_seq);
3120 		wraparound_section(ic, &i);
3121 	}
3122 brk:
3123 
3124 	if (!journal_empty) {
3125 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3126 			    write_sections, write_start, want_commit_seq);
3127 		do_journal_write(ic, write_start, write_sections, true);
3128 	}
3129 
3130 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3131 		continue_section = write_start;
3132 		ic->commit_seq = want_commit_seq;
3133 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3134 	} else {
3135 		unsigned int s;
3136 		unsigned char erase_seq;
3137 
3138 clear_journal:
3139 		DEBUG_print("clearing journal\n");
3140 
3141 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3142 		s = write_start;
3143 		init_journal(ic, s, 1, erase_seq);
3144 		s++;
3145 		wraparound_section(ic, &s);
3146 		if (ic->journal_sections >= 2) {
3147 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3148 			s += ic->journal_sections - 2;
3149 			wraparound_section(ic, &s);
3150 			init_journal(ic, s, 1, erase_seq);
3151 		}
3152 
3153 		continue_section = 0;
3154 		ic->commit_seq = next_commit_seq(erase_seq);
3155 	}
3156 
3157 	ic->committed_section = continue_section;
3158 	ic->n_committed_sections = 0;
3159 
3160 	ic->uncommitted_section = continue_section;
3161 	ic->n_uncommitted_sections = 0;
3162 
3163 	ic->free_section = continue_section;
3164 	ic->free_section_entry = 0;
3165 	ic->free_sectors = ic->journal_entries;
3166 
3167 	ic->journal_tree_root = RB_ROOT;
3168 	for (i = 0; i < ic->journal_entries; i++)
3169 		init_journal_node(&ic->journal_tree[i]);
3170 }
3171 
3172 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3173 {
3174 	DEBUG_print("%s\n", __func__);
3175 
3176 	if (ic->mode == 'B') {
3177 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3178 		ic->synchronous_mode = 1;
3179 
3180 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3181 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3182 		flush_workqueue(ic->commit_wq);
3183 	}
3184 }
3185 
3186 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3187 {
3188 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3189 
3190 	DEBUG_print("%s\n", __func__);
3191 
3192 	dm_integrity_enter_synchronous_mode(ic);
3193 
3194 	return NOTIFY_DONE;
3195 }
3196 
3197 static void dm_integrity_postsuspend(struct dm_target *ti)
3198 {
3199 	struct dm_integrity_c *ic = ti->private;
3200 	int r;
3201 
3202 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3203 
3204 	del_timer_sync(&ic->autocommit_timer);
3205 
3206 	if (ic->recalc_wq)
3207 		drain_workqueue(ic->recalc_wq);
3208 
3209 	if (ic->mode == 'B')
3210 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3211 
3212 	queue_work(ic->commit_wq, &ic->commit_work);
3213 	drain_workqueue(ic->commit_wq);
3214 
3215 	if (ic->mode == 'J') {
3216 		queue_work(ic->writer_wq, &ic->writer_work);
3217 		drain_workqueue(ic->writer_wq);
3218 		dm_integrity_flush_buffers(ic, true);
3219 		if (ic->wrote_to_journal) {
3220 			init_journal(ic, ic->free_section,
3221 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3222 			if (ic->free_section) {
3223 				init_journal(ic, 0, ic->free_section,
3224 					     next_commit_seq(ic->commit_seq));
3225 			}
3226 		}
3227 	}
3228 
3229 	if (ic->mode == 'B') {
3230 		dm_integrity_flush_buffers(ic, true);
3231 #if 1
3232 		/* set to 0 to test bitmap replay code */
3233 		init_journal(ic, 0, ic->journal_sections, 0);
3234 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3235 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3236 		if (unlikely(r))
3237 			dm_integrity_io_error(ic, "writing superblock", r);
3238 #endif
3239 	}
3240 
3241 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3242 
3243 	ic->journal_uptodate = true;
3244 }
3245 
3246 static void dm_integrity_resume(struct dm_target *ti)
3247 {
3248 	struct dm_integrity_c *ic = ti->private;
3249 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3250 	int r;
3251 
3252 	DEBUG_print("resume\n");
3253 
3254 	ic->wrote_to_journal = false;
3255 
3256 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3257 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3258 		    ic->mode == 'B' &&
3259 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3260 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3261 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3262 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3263 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3264 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3265 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3266 		}
3267 
3268 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3269 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3270 		if (unlikely(r))
3271 			dm_integrity_io_error(ic, "writing superblock", r);
3272 	}
3273 
3274 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3275 		DEBUG_print("resume dirty_bitmap\n");
3276 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3277 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3278 		if (ic->mode == 'B') {
3279 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3280 			    !ic->reset_recalculate_flag) {
3281 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3282 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3283 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3284 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3285 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3286 					ic->sb->recalc_sector = cpu_to_le64(0);
3287 				}
3288 			} else {
3289 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3290 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3291 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3292 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3293 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3294 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3295 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3296 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3297 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3298 				ic->sb->recalc_sector = cpu_to_le64(0);
3299 			}
3300 		} else {
3301 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3302 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3303 			    ic->reset_recalculate_flag) {
3304 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3305 				ic->sb->recalc_sector = cpu_to_le64(0);
3306 			}
3307 			init_journal(ic, 0, ic->journal_sections, 0);
3308 			replay_journal(ic);
3309 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3310 		}
3311 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3312 		if (unlikely(r))
3313 			dm_integrity_io_error(ic, "writing superblock", r);
3314 	} else {
3315 		replay_journal(ic);
3316 		if (ic->reset_recalculate_flag) {
3317 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3318 			ic->sb->recalc_sector = cpu_to_le64(0);
3319 		}
3320 		if (ic->mode == 'B') {
3321 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3322 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3323 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3324 			if (unlikely(r))
3325 				dm_integrity_io_error(ic, "writing superblock", r);
3326 
3327 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3328 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3329 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3330 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3331 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3332 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3333 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3334 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3335 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3336 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3337 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3338 			}
3339 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3340 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3341 		}
3342 	}
3343 
3344 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3345 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3346 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3347 
3348 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3349 		if (recalc_pos < ic->provided_data_sectors) {
3350 			queue_work(ic->recalc_wq, &ic->recalc_work);
3351 		} else if (recalc_pos > ic->provided_data_sectors) {
3352 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3353 			recalc_write_super(ic);
3354 		}
3355 	}
3356 
3357 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3358 	ic->reboot_notifier.next = NULL;
3359 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3360 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3361 
3362 #if 0
3363 	/* set to 1 to stress test synchronous mode */
3364 	dm_integrity_enter_synchronous_mode(ic);
3365 #endif
3366 }
3367 
3368 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3369 				unsigned int status_flags, char *result, unsigned int maxlen)
3370 {
3371 	struct dm_integrity_c *ic = ti->private;
3372 	unsigned int arg_count;
3373 	size_t sz = 0;
3374 
3375 	switch (type) {
3376 	case STATUSTYPE_INFO:
3377 		DMEMIT("%llu %llu",
3378 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3379 			ic->provided_data_sectors);
3380 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3381 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3382 		else
3383 			DMEMIT(" -");
3384 		break;
3385 
3386 	case STATUSTYPE_TABLE: {
3387 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3388 
3389 		watermark_percentage += ic->journal_entries / 2;
3390 		do_div(watermark_percentage, ic->journal_entries);
3391 		arg_count = 3;
3392 		arg_count += !!ic->meta_dev;
3393 		arg_count += ic->sectors_per_block != 1;
3394 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3395 		arg_count += ic->reset_recalculate_flag;
3396 		arg_count += ic->discard;
3397 		arg_count += ic->mode == 'J';
3398 		arg_count += ic->mode == 'J';
3399 		arg_count += ic->mode == 'B';
3400 		arg_count += ic->mode == 'B';
3401 		arg_count += !!ic->internal_hash_alg.alg_string;
3402 		arg_count += !!ic->journal_crypt_alg.alg_string;
3403 		arg_count += !!ic->journal_mac_alg.alg_string;
3404 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3405 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3406 		arg_count += ic->legacy_recalculate;
3407 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3408 		       ic->tag_size, ic->mode, arg_count);
3409 		if (ic->meta_dev)
3410 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3411 		if (ic->sectors_per_block != 1)
3412 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3413 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3414 			DMEMIT(" recalculate");
3415 		if (ic->reset_recalculate_flag)
3416 			DMEMIT(" reset_recalculate");
3417 		if (ic->discard)
3418 			DMEMIT(" allow_discards");
3419 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3420 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3421 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3422 		if (ic->mode == 'J') {
3423 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3424 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3425 		}
3426 		if (ic->mode == 'B') {
3427 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3428 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3429 		}
3430 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3431 			DMEMIT(" fix_padding");
3432 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3433 			DMEMIT(" fix_hmac");
3434 		if (ic->legacy_recalculate)
3435 			DMEMIT(" legacy_recalculate");
3436 
3437 #define EMIT_ALG(a, n)							\
3438 		do {							\
3439 			if (ic->a.alg_string) {				\
3440 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3441 				if (ic->a.key_string)			\
3442 					DMEMIT(":%s", ic->a.key_string);\
3443 			}						\
3444 		} while (0)
3445 		EMIT_ALG(internal_hash_alg, "internal_hash");
3446 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3447 		EMIT_ALG(journal_mac_alg, "journal_mac");
3448 		break;
3449 	}
3450 	case STATUSTYPE_IMA:
3451 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3452 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3453 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3454 
3455 		if (ic->meta_dev)
3456 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3457 		if (ic->sectors_per_block != 1)
3458 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3459 
3460 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3461 		       'y' : 'n');
3462 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3463 		DMEMIT(",fix_padding=%c",
3464 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3465 		DMEMIT(",fix_hmac=%c",
3466 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3467 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3468 
3469 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3470 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3471 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3472 		DMEMIT(";");
3473 		break;
3474 	}
3475 }
3476 
3477 static int dm_integrity_iterate_devices(struct dm_target *ti,
3478 					iterate_devices_callout_fn fn, void *data)
3479 {
3480 	struct dm_integrity_c *ic = ti->private;
3481 
3482 	if (!ic->meta_dev)
3483 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3484 	else
3485 		return fn(ti, ic->dev, 0, ti->len, data);
3486 }
3487 
3488 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3489 {
3490 	struct dm_integrity_c *ic = ti->private;
3491 
3492 	if (ic->sectors_per_block > 1) {
3493 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3494 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3495 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3496 		limits->dma_alignment = limits->logical_block_size - 1;
3497 	}
3498 }
3499 
3500 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3501 {
3502 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3503 
3504 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3505 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3506 					 JOURNAL_ENTRY_ROUNDUP);
3507 
3508 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3509 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3510 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3511 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3512 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3513 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3514 }
3515 
3516 static int calculate_device_limits(struct dm_integrity_c *ic)
3517 {
3518 	__u64 initial_sectors;
3519 
3520 	calculate_journal_section_size(ic);
3521 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3522 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3523 		return -EINVAL;
3524 	ic->initial_sectors = initial_sectors;
3525 
3526 	if (!ic->meta_dev) {
3527 		sector_t last_sector, last_area, last_offset;
3528 
3529 		/* we have to maintain excessive padding for compatibility with existing volumes */
3530 		__u64 metadata_run_padding =
3531 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3532 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3533 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3534 
3535 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3536 					    metadata_run_padding) >> SECTOR_SHIFT;
3537 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3538 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3539 		else
3540 			ic->log2_metadata_run = -1;
3541 
3542 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3543 		last_sector = get_data_sector(ic, last_area, last_offset);
3544 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3545 			return -EINVAL;
3546 	} else {
3547 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3548 
3549 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3550 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3551 		meta_size <<= ic->log2_buffer_sectors;
3552 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3553 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3554 			return -EINVAL;
3555 		ic->metadata_run = 1;
3556 		ic->log2_metadata_run = 0;
3557 	}
3558 
3559 	return 0;
3560 }
3561 
3562 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3563 {
3564 	if (!ic->meta_dev) {
3565 		int test_bit;
3566 
3567 		ic->provided_data_sectors = 0;
3568 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3569 			__u64 prev_data_sectors = ic->provided_data_sectors;
3570 
3571 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3572 			if (calculate_device_limits(ic))
3573 				ic->provided_data_sectors = prev_data_sectors;
3574 		}
3575 	} else {
3576 		ic->provided_data_sectors = ic->data_device_sectors;
3577 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3578 	}
3579 }
3580 
3581 static int initialize_superblock(struct dm_integrity_c *ic,
3582 				 unsigned int journal_sectors, unsigned int interleave_sectors)
3583 {
3584 	unsigned int journal_sections;
3585 	int test_bit;
3586 
3587 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3588 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3589 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3590 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3591 	if (ic->journal_mac_alg.alg_string)
3592 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3593 
3594 	calculate_journal_section_size(ic);
3595 	journal_sections = journal_sectors / ic->journal_section_sectors;
3596 	if (!journal_sections)
3597 		journal_sections = 1;
3598 
3599 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3600 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3601 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3602 	}
3603 
3604 	if (!ic->meta_dev) {
3605 		if (ic->fix_padding)
3606 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3607 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3608 		if (!interleave_sectors)
3609 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3610 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3611 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3612 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3613 
3614 		get_provided_data_sectors(ic);
3615 		if (!ic->provided_data_sectors)
3616 			return -EINVAL;
3617 	} else {
3618 		ic->sb->log2_interleave_sectors = 0;
3619 
3620 		get_provided_data_sectors(ic);
3621 		if (!ic->provided_data_sectors)
3622 			return -EINVAL;
3623 
3624 try_smaller_buffer:
3625 		ic->sb->journal_sections = cpu_to_le32(0);
3626 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3627 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3628 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3629 
3630 			if (test_journal_sections > journal_sections)
3631 				continue;
3632 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3633 			if (calculate_device_limits(ic))
3634 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3635 
3636 		}
3637 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3638 			if (ic->log2_buffer_sectors > 3) {
3639 				ic->log2_buffer_sectors--;
3640 				goto try_smaller_buffer;
3641 			}
3642 			return -EINVAL;
3643 		}
3644 	}
3645 
3646 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3647 
3648 	sb_set_version(ic);
3649 
3650 	return 0;
3651 }
3652 
3653 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3654 {
3655 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3656 	struct blk_integrity bi;
3657 
3658 	memset(&bi, 0, sizeof(bi));
3659 	bi.profile = &dm_integrity_profile;
3660 	bi.tuple_size = ic->tag_size;
3661 	bi.tag_size = bi.tuple_size;
3662 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3663 
3664 	blk_integrity_register(disk, &bi);
3665 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3666 }
3667 
3668 static void dm_integrity_free_page_list(struct page_list *pl)
3669 {
3670 	unsigned int i;
3671 
3672 	if (!pl)
3673 		return;
3674 	for (i = 0; pl[i].page; i++)
3675 		__free_page(pl[i].page);
3676 	kvfree(pl);
3677 }
3678 
3679 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3680 {
3681 	struct page_list *pl;
3682 	unsigned int i;
3683 
3684 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3685 	if (!pl)
3686 		return NULL;
3687 
3688 	for (i = 0; i < n_pages; i++) {
3689 		pl[i].page = alloc_page(GFP_KERNEL);
3690 		if (!pl[i].page) {
3691 			dm_integrity_free_page_list(pl);
3692 			return NULL;
3693 		}
3694 		if (i)
3695 			pl[i - 1].next = &pl[i];
3696 	}
3697 	pl[i].page = NULL;
3698 	pl[i].next = NULL;
3699 
3700 	return pl;
3701 }
3702 
3703 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3704 {
3705 	unsigned int i;
3706 
3707 	for (i = 0; i < ic->journal_sections; i++)
3708 		kvfree(sl[i]);
3709 	kvfree(sl);
3710 }
3711 
3712 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3713 								   struct page_list *pl)
3714 {
3715 	struct scatterlist **sl;
3716 	unsigned int i;
3717 
3718 	sl = kvmalloc_array(ic->journal_sections,
3719 			    sizeof(struct scatterlist *),
3720 			    GFP_KERNEL | __GFP_ZERO);
3721 	if (!sl)
3722 		return NULL;
3723 
3724 	for (i = 0; i < ic->journal_sections; i++) {
3725 		struct scatterlist *s;
3726 		unsigned int start_index, start_offset;
3727 		unsigned int end_index, end_offset;
3728 		unsigned int n_pages;
3729 		unsigned int idx;
3730 
3731 		page_list_location(ic, i, 0, &start_index, &start_offset);
3732 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3733 				   &end_index, &end_offset);
3734 
3735 		n_pages = (end_index - start_index + 1);
3736 
3737 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3738 				   GFP_KERNEL);
3739 		if (!s) {
3740 			dm_integrity_free_journal_scatterlist(ic, sl);
3741 			return NULL;
3742 		}
3743 
3744 		sg_init_table(s, n_pages);
3745 		for (idx = start_index; idx <= end_index; idx++) {
3746 			char *va = lowmem_page_address(pl[idx].page);
3747 			unsigned int start = 0, end = PAGE_SIZE;
3748 
3749 			if (idx == start_index)
3750 				start = start_offset;
3751 			if (idx == end_index)
3752 				end = end_offset + (1 << SECTOR_SHIFT);
3753 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3754 		}
3755 
3756 		sl[i] = s;
3757 	}
3758 
3759 	return sl;
3760 }
3761 
3762 static void free_alg(struct alg_spec *a)
3763 {
3764 	kfree_sensitive(a->alg_string);
3765 	kfree_sensitive(a->key);
3766 	memset(a, 0, sizeof(*a));
3767 }
3768 
3769 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3770 {
3771 	char *k;
3772 
3773 	free_alg(a);
3774 
3775 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3776 	if (!a->alg_string)
3777 		goto nomem;
3778 
3779 	k = strchr(a->alg_string, ':');
3780 	if (k) {
3781 		*k = 0;
3782 		a->key_string = k + 1;
3783 		if (strlen(a->key_string) & 1)
3784 			goto inval;
3785 
3786 		a->key_size = strlen(a->key_string) / 2;
3787 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3788 		if (!a->key)
3789 			goto nomem;
3790 		if (hex2bin(a->key, a->key_string, a->key_size))
3791 			goto inval;
3792 	}
3793 
3794 	return 0;
3795 inval:
3796 	*error = error_inval;
3797 	return -EINVAL;
3798 nomem:
3799 	*error = "Out of memory for an argument";
3800 	return -ENOMEM;
3801 }
3802 
3803 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3804 		   char *error_alg, char *error_key)
3805 {
3806 	int r;
3807 
3808 	if (a->alg_string) {
3809 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3810 		if (IS_ERR(*hash)) {
3811 			*error = error_alg;
3812 			r = PTR_ERR(*hash);
3813 			*hash = NULL;
3814 			return r;
3815 		}
3816 
3817 		if (a->key) {
3818 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3819 			if (r) {
3820 				*error = error_key;
3821 				return r;
3822 			}
3823 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3824 			*error = error_key;
3825 			return -ENOKEY;
3826 		}
3827 	}
3828 
3829 	return 0;
3830 }
3831 
3832 static int create_journal(struct dm_integrity_c *ic, char **error)
3833 {
3834 	int r = 0;
3835 	unsigned int i;
3836 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3837 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3838 	struct skcipher_request *req = NULL;
3839 
3840 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3841 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3842 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3843 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3844 
3845 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3846 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3847 	journal_desc_size = journal_pages * sizeof(struct page_list);
3848 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3849 		*error = "Journal doesn't fit into memory";
3850 		r = -ENOMEM;
3851 		goto bad;
3852 	}
3853 	ic->journal_pages = journal_pages;
3854 
3855 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3856 	if (!ic->journal) {
3857 		*error = "Could not allocate memory for journal";
3858 		r = -ENOMEM;
3859 		goto bad;
3860 	}
3861 	if (ic->journal_crypt_alg.alg_string) {
3862 		unsigned int ivsize, blocksize;
3863 		struct journal_completion comp;
3864 
3865 		comp.ic = ic;
3866 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3867 		if (IS_ERR(ic->journal_crypt)) {
3868 			*error = "Invalid journal cipher";
3869 			r = PTR_ERR(ic->journal_crypt);
3870 			ic->journal_crypt = NULL;
3871 			goto bad;
3872 		}
3873 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3874 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3875 
3876 		if (ic->journal_crypt_alg.key) {
3877 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3878 						   ic->journal_crypt_alg.key_size);
3879 			if (r) {
3880 				*error = "Error setting encryption key";
3881 				goto bad;
3882 			}
3883 		}
3884 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3885 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3886 
3887 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3888 		if (!ic->journal_io) {
3889 			*error = "Could not allocate memory for journal io";
3890 			r = -ENOMEM;
3891 			goto bad;
3892 		}
3893 
3894 		if (blocksize == 1) {
3895 			struct scatterlist *sg;
3896 
3897 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3898 			if (!req) {
3899 				*error = "Could not allocate crypt request";
3900 				r = -ENOMEM;
3901 				goto bad;
3902 			}
3903 
3904 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3905 			if (!crypt_iv) {
3906 				*error = "Could not allocate iv";
3907 				r = -ENOMEM;
3908 				goto bad;
3909 			}
3910 
3911 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3912 			if (!ic->journal_xor) {
3913 				*error = "Could not allocate memory for journal xor";
3914 				r = -ENOMEM;
3915 				goto bad;
3916 			}
3917 
3918 			sg = kvmalloc_array(ic->journal_pages + 1,
3919 					    sizeof(struct scatterlist),
3920 					    GFP_KERNEL);
3921 			if (!sg) {
3922 				*error = "Unable to allocate sg list";
3923 				r = -ENOMEM;
3924 				goto bad;
3925 			}
3926 			sg_init_table(sg, ic->journal_pages + 1);
3927 			for (i = 0; i < ic->journal_pages; i++) {
3928 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3929 
3930 				clear_page(va);
3931 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3932 			}
3933 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3934 
3935 			skcipher_request_set_crypt(req, sg, sg,
3936 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3937 			init_completion(&comp.comp);
3938 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3939 			if (do_crypt(true, req, &comp))
3940 				wait_for_completion(&comp.comp);
3941 			kvfree(sg);
3942 			r = dm_integrity_failed(ic);
3943 			if (r) {
3944 				*error = "Unable to encrypt journal";
3945 				goto bad;
3946 			}
3947 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3948 
3949 			crypto_free_skcipher(ic->journal_crypt);
3950 			ic->journal_crypt = NULL;
3951 		} else {
3952 			unsigned int crypt_len = roundup(ivsize, blocksize);
3953 
3954 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3955 			if (!req) {
3956 				*error = "Could not allocate crypt request";
3957 				r = -ENOMEM;
3958 				goto bad;
3959 			}
3960 
3961 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3962 			if (!crypt_iv) {
3963 				*error = "Could not allocate iv";
3964 				r = -ENOMEM;
3965 				goto bad;
3966 			}
3967 
3968 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3969 			if (!crypt_data) {
3970 				*error = "Unable to allocate crypt data";
3971 				r = -ENOMEM;
3972 				goto bad;
3973 			}
3974 
3975 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3976 			if (!ic->journal_scatterlist) {
3977 				*error = "Unable to allocate sg list";
3978 				r = -ENOMEM;
3979 				goto bad;
3980 			}
3981 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3982 			if (!ic->journal_io_scatterlist) {
3983 				*error = "Unable to allocate sg list";
3984 				r = -ENOMEM;
3985 				goto bad;
3986 			}
3987 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3988 							 sizeof(struct skcipher_request *),
3989 							 GFP_KERNEL | __GFP_ZERO);
3990 			if (!ic->sk_requests) {
3991 				*error = "Unable to allocate sk requests";
3992 				r = -ENOMEM;
3993 				goto bad;
3994 			}
3995 			for (i = 0; i < ic->journal_sections; i++) {
3996 				struct scatterlist sg;
3997 				struct skcipher_request *section_req;
3998 				__le32 section_le = cpu_to_le32(i);
3999 
4000 				memset(crypt_iv, 0x00, ivsize);
4001 				memset(crypt_data, 0x00, crypt_len);
4002 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4003 
4004 				sg_init_one(&sg, crypt_data, crypt_len);
4005 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4006 				init_completion(&comp.comp);
4007 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4008 				if (do_crypt(true, req, &comp))
4009 					wait_for_completion(&comp.comp);
4010 
4011 				r = dm_integrity_failed(ic);
4012 				if (r) {
4013 					*error = "Unable to generate iv";
4014 					goto bad;
4015 				}
4016 
4017 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4018 				if (!section_req) {
4019 					*error = "Unable to allocate crypt request";
4020 					r = -ENOMEM;
4021 					goto bad;
4022 				}
4023 				section_req->iv = kmalloc_array(ivsize, 2,
4024 								GFP_KERNEL);
4025 				if (!section_req->iv) {
4026 					skcipher_request_free(section_req);
4027 					*error = "Unable to allocate iv";
4028 					r = -ENOMEM;
4029 					goto bad;
4030 				}
4031 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4032 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4033 				ic->sk_requests[i] = section_req;
4034 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4035 			}
4036 		}
4037 	}
4038 
4039 	for (i = 0; i < N_COMMIT_IDS; i++) {
4040 		unsigned int j;
4041 
4042 retest_commit_id:
4043 		for (j = 0; j < i; j++) {
4044 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4045 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4046 				goto retest_commit_id;
4047 			}
4048 		}
4049 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4050 	}
4051 
4052 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4053 	if (journal_tree_size > ULONG_MAX) {
4054 		*error = "Journal doesn't fit into memory";
4055 		r = -ENOMEM;
4056 		goto bad;
4057 	}
4058 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4059 	if (!ic->journal_tree) {
4060 		*error = "Could not allocate memory for journal tree";
4061 		r = -ENOMEM;
4062 	}
4063 bad:
4064 	kfree(crypt_data);
4065 	kfree(crypt_iv);
4066 	skcipher_request_free(req);
4067 
4068 	return r;
4069 }
4070 
4071 /*
4072  * Construct a integrity mapping
4073  *
4074  * Arguments:
4075  *	device
4076  *	offset from the start of the device
4077  *	tag size
4078  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4079  *	number of optional arguments
4080  *	optional arguments:
4081  *		journal_sectors
4082  *		interleave_sectors
4083  *		buffer_sectors
4084  *		journal_watermark
4085  *		commit_time
4086  *		meta_device
4087  *		block_size
4088  *		sectors_per_bit
4089  *		bitmap_flush_interval
4090  *		internal_hash
4091  *		journal_crypt
4092  *		journal_mac
4093  *		recalculate
4094  */
4095 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4096 {
4097 	struct dm_integrity_c *ic;
4098 	char dummy;
4099 	int r;
4100 	unsigned int extra_args;
4101 	struct dm_arg_set as;
4102 	static const struct dm_arg _args[] = {
4103 		{0, 18, "Invalid number of feature args"},
4104 	};
4105 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4106 	bool should_write_sb;
4107 	__u64 threshold;
4108 	unsigned long long start;
4109 	__s8 log2_sectors_per_bitmap_bit = -1;
4110 	__s8 log2_blocks_per_bitmap_bit;
4111 	__u64 bits_in_journal;
4112 	__u64 n_bitmap_bits;
4113 
4114 #define DIRECT_ARGUMENTS	4
4115 
4116 	if (argc <= DIRECT_ARGUMENTS) {
4117 		ti->error = "Invalid argument count";
4118 		return -EINVAL;
4119 	}
4120 
4121 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4122 	if (!ic) {
4123 		ti->error = "Cannot allocate integrity context";
4124 		return -ENOMEM;
4125 	}
4126 	ti->private = ic;
4127 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4128 	ic->ti = ti;
4129 
4130 	ic->in_progress = RB_ROOT;
4131 	INIT_LIST_HEAD(&ic->wait_list);
4132 	init_waitqueue_head(&ic->endio_wait);
4133 	bio_list_init(&ic->flush_bio_list);
4134 	init_waitqueue_head(&ic->copy_to_journal_wait);
4135 	init_completion(&ic->crypto_backoff);
4136 	atomic64_set(&ic->number_of_mismatches, 0);
4137 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4138 
4139 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4140 	if (r) {
4141 		ti->error = "Device lookup failed";
4142 		goto bad;
4143 	}
4144 
4145 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4146 		ti->error = "Invalid starting offset";
4147 		r = -EINVAL;
4148 		goto bad;
4149 	}
4150 	ic->start = start;
4151 
4152 	if (strcmp(argv[2], "-")) {
4153 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4154 			ti->error = "Invalid tag size";
4155 			r = -EINVAL;
4156 			goto bad;
4157 		}
4158 	}
4159 
4160 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4161 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4162 		ic->mode = argv[3][0];
4163 	} else {
4164 		ti->error = "Invalid mode (expecting J, B, D, R)";
4165 		r = -EINVAL;
4166 		goto bad;
4167 	}
4168 
4169 	journal_sectors = 0;
4170 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4171 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4172 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4173 	sync_msec = DEFAULT_SYNC_MSEC;
4174 	ic->sectors_per_block = 1;
4175 
4176 	as.argc = argc - DIRECT_ARGUMENTS;
4177 	as.argv = argv + DIRECT_ARGUMENTS;
4178 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4179 	if (r)
4180 		goto bad;
4181 
4182 	while (extra_args--) {
4183 		const char *opt_string;
4184 		unsigned int val;
4185 		unsigned long long llval;
4186 
4187 		opt_string = dm_shift_arg(&as);
4188 		if (!opt_string) {
4189 			r = -EINVAL;
4190 			ti->error = "Not enough feature arguments";
4191 			goto bad;
4192 		}
4193 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4194 			journal_sectors = val ? val : 1;
4195 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4196 			interleave_sectors = val;
4197 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4198 			buffer_sectors = val;
4199 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4200 			journal_watermark = val;
4201 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4202 			sync_msec = val;
4203 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4204 			if (ic->meta_dev) {
4205 				dm_put_device(ti, ic->meta_dev);
4206 				ic->meta_dev = NULL;
4207 			}
4208 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4209 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4210 			if (r) {
4211 				ti->error = "Device lookup failed";
4212 				goto bad;
4213 			}
4214 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4215 			if (val < 1 << SECTOR_SHIFT ||
4216 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4217 			    (val & (val - 1))) {
4218 				r = -EINVAL;
4219 				ti->error = "Invalid block_size argument";
4220 				goto bad;
4221 			}
4222 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4223 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4224 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4225 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4226 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4227 				r = -EINVAL;
4228 				ti->error = "Invalid bitmap_flush_interval argument";
4229 				goto bad;
4230 			}
4231 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4232 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4233 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4234 					    "Invalid internal_hash argument");
4235 			if (r)
4236 				goto bad;
4237 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4238 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4239 					    "Invalid journal_crypt argument");
4240 			if (r)
4241 				goto bad;
4242 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4243 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4244 					    "Invalid journal_mac argument");
4245 			if (r)
4246 				goto bad;
4247 		} else if (!strcmp(opt_string, "recalculate")) {
4248 			ic->recalculate_flag = true;
4249 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4250 			ic->recalculate_flag = true;
4251 			ic->reset_recalculate_flag = true;
4252 		} else if (!strcmp(opt_string, "allow_discards")) {
4253 			ic->discard = true;
4254 		} else if (!strcmp(opt_string, "fix_padding")) {
4255 			ic->fix_padding = true;
4256 		} else if (!strcmp(opt_string, "fix_hmac")) {
4257 			ic->fix_hmac = true;
4258 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4259 			ic->legacy_recalculate = true;
4260 		} else {
4261 			r = -EINVAL;
4262 			ti->error = "Invalid argument";
4263 			goto bad;
4264 		}
4265 	}
4266 
4267 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4268 	if (!ic->meta_dev)
4269 		ic->meta_device_sectors = ic->data_device_sectors;
4270 	else
4271 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4272 
4273 	if (!journal_sectors) {
4274 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4275 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4276 	}
4277 
4278 	if (!buffer_sectors)
4279 		buffer_sectors = 1;
4280 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4281 
4282 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4283 		    "Invalid internal hash", "Error setting internal hash key");
4284 	if (r)
4285 		goto bad;
4286 
4287 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4288 		    "Invalid journal mac", "Error setting journal mac key");
4289 	if (r)
4290 		goto bad;
4291 
4292 	if (!ic->tag_size) {
4293 		if (!ic->internal_hash) {
4294 			ti->error = "Unknown tag size";
4295 			r = -EINVAL;
4296 			goto bad;
4297 		}
4298 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4299 	}
4300 	if (ic->tag_size > MAX_TAG_SIZE) {
4301 		ti->error = "Too big tag size";
4302 		r = -EINVAL;
4303 		goto bad;
4304 	}
4305 	if (!(ic->tag_size & (ic->tag_size - 1)))
4306 		ic->log2_tag_size = __ffs(ic->tag_size);
4307 	else
4308 		ic->log2_tag_size = -1;
4309 
4310 	if (ic->mode == 'B' && !ic->internal_hash) {
4311 		r = -EINVAL;
4312 		ti->error = "Bitmap mode can be only used with internal hash";
4313 		goto bad;
4314 	}
4315 
4316 	if (ic->discard && !ic->internal_hash) {
4317 		r = -EINVAL;
4318 		ti->error = "Discard can be only used with internal hash";
4319 		goto bad;
4320 	}
4321 
4322 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4323 	ic->autocommit_msec = sync_msec;
4324 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4325 
4326 	ic->io = dm_io_client_create();
4327 	if (IS_ERR(ic->io)) {
4328 		r = PTR_ERR(ic->io);
4329 		ic->io = NULL;
4330 		ti->error = "Cannot allocate dm io";
4331 		goto bad;
4332 	}
4333 
4334 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4335 	if (r) {
4336 		ti->error = "Cannot allocate mempool";
4337 		goto bad;
4338 	}
4339 
4340 	r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4341 	if (r) {
4342 		ti->error = "Cannot allocate mempool";
4343 		goto bad;
4344 	}
4345 
4346 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4347 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4348 	if (!ic->metadata_wq) {
4349 		ti->error = "Cannot allocate workqueue";
4350 		r = -ENOMEM;
4351 		goto bad;
4352 	}
4353 
4354 	/*
4355 	 * If this workqueue weren't ordered, it would cause bio reordering
4356 	 * and reduced performance.
4357 	 */
4358 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4359 	if (!ic->wait_wq) {
4360 		ti->error = "Cannot allocate workqueue";
4361 		r = -ENOMEM;
4362 		goto bad;
4363 	}
4364 
4365 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4366 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4367 	if (!ic->offload_wq) {
4368 		ti->error = "Cannot allocate workqueue";
4369 		r = -ENOMEM;
4370 		goto bad;
4371 	}
4372 
4373 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4374 	if (!ic->commit_wq) {
4375 		ti->error = "Cannot allocate workqueue";
4376 		r = -ENOMEM;
4377 		goto bad;
4378 	}
4379 	INIT_WORK(&ic->commit_work, integrity_commit);
4380 
4381 	if (ic->mode == 'J' || ic->mode == 'B') {
4382 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4383 		if (!ic->writer_wq) {
4384 			ti->error = "Cannot allocate workqueue";
4385 			r = -ENOMEM;
4386 			goto bad;
4387 		}
4388 		INIT_WORK(&ic->writer_work, integrity_writer);
4389 	}
4390 
4391 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4392 	if (!ic->sb) {
4393 		r = -ENOMEM;
4394 		ti->error = "Cannot allocate superblock area";
4395 		goto bad;
4396 	}
4397 
4398 	r = sync_rw_sb(ic, REQ_OP_READ);
4399 	if (r) {
4400 		ti->error = "Error reading superblock";
4401 		goto bad;
4402 	}
4403 	should_write_sb = false;
4404 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4405 		if (ic->mode != 'R') {
4406 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4407 				r = -EINVAL;
4408 				ti->error = "The device is not initialized";
4409 				goto bad;
4410 			}
4411 		}
4412 
4413 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4414 		if (r) {
4415 			ti->error = "Could not initialize superblock";
4416 			goto bad;
4417 		}
4418 		if (ic->mode != 'R')
4419 			should_write_sb = true;
4420 	}
4421 
4422 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4423 		r = -EINVAL;
4424 		ti->error = "Unknown version";
4425 		goto bad;
4426 	}
4427 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4428 		r = -EINVAL;
4429 		ti->error = "Tag size doesn't match the information in superblock";
4430 		goto bad;
4431 	}
4432 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4433 		r = -EINVAL;
4434 		ti->error = "Block size doesn't match the information in superblock";
4435 		goto bad;
4436 	}
4437 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4438 		r = -EINVAL;
4439 		ti->error = "Corrupted superblock, journal_sections is 0";
4440 		goto bad;
4441 	}
4442 	/* make sure that ti->max_io_len doesn't overflow */
4443 	if (!ic->meta_dev) {
4444 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4445 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4446 			r = -EINVAL;
4447 			ti->error = "Invalid interleave_sectors in the superblock";
4448 			goto bad;
4449 		}
4450 	} else {
4451 		if (ic->sb->log2_interleave_sectors) {
4452 			r = -EINVAL;
4453 			ti->error = "Invalid interleave_sectors in the superblock";
4454 			goto bad;
4455 		}
4456 	}
4457 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4458 		r = -EINVAL;
4459 		ti->error = "Journal mac mismatch";
4460 		goto bad;
4461 	}
4462 
4463 	get_provided_data_sectors(ic);
4464 	if (!ic->provided_data_sectors) {
4465 		r = -EINVAL;
4466 		ti->error = "The device is too small";
4467 		goto bad;
4468 	}
4469 
4470 try_smaller_buffer:
4471 	r = calculate_device_limits(ic);
4472 	if (r) {
4473 		if (ic->meta_dev) {
4474 			if (ic->log2_buffer_sectors > 3) {
4475 				ic->log2_buffer_sectors--;
4476 				goto try_smaller_buffer;
4477 			}
4478 		}
4479 		ti->error = "The device is too small";
4480 		goto bad;
4481 	}
4482 
4483 	if (log2_sectors_per_bitmap_bit < 0)
4484 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4485 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4486 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4487 
4488 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4489 	if (bits_in_journal > UINT_MAX)
4490 		bits_in_journal = UINT_MAX;
4491 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4492 		log2_sectors_per_bitmap_bit++;
4493 
4494 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4495 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4496 	if (should_write_sb)
4497 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4498 
4499 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4500 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4501 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4502 
4503 	if (!ic->meta_dev)
4504 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4505 
4506 	if (ti->len > ic->provided_data_sectors) {
4507 		r = -EINVAL;
4508 		ti->error = "Not enough provided sectors for requested mapping size";
4509 		goto bad;
4510 	}
4511 
4512 
4513 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4514 	threshold += 50;
4515 	do_div(threshold, 100);
4516 	ic->free_sectors_threshold = threshold;
4517 
4518 	DEBUG_print("initialized:\n");
4519 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4520 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4521 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4522 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4523 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4524 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4525 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4526 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4527 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4528 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4529 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4530 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4531 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4532 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4533 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4534 
4535 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4536 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4537 		ic->sb->recalc_sector = cpu_to_le64(0);
4538 	}
4539 
4540 	if (ic->internal_hash) {
4541 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4542 		if (!ic->recalc_wq) {
4543 			ti->error = "Cannot allocate workqueue";
4544 			r = -ENOMEM;
4545 			goto bad;
4546 		}
4547 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4548 	} else {
4549 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4550 			ti->error = "Recalculate can only be specified with internal_hash";
4551 			r = -EINVAL;
4552 			goto bad;
4553 		}
4554 	}
4555 
4556 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4557 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4558 	    dm_integrity_disable_recalculate(ic)) {
4559 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4560 		r = -EOPNOTSUPP;
4561 		goto bad;
4562 	}
4563 
4564 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4565 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4566 	if (IS_ERR(ic->bufio)) {
4567 		r = PTR_ERR(ic->bufio);
4568 		ti->error = "Cannot initialize dm-bufio";
4569 		ic->bufio = NULL;
4570 		goto bad;
4571 	}
4572 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4573 
4574 	if (ic->mode != 'R') {
4575 		r = create_journal(ic, &ti->error);
4576 		if (r)
4577 			goto bad;
4578 
4579 	}
4580 
4581 	if (ic->mode == 'B') {
4582 		unsigned int i;
4583 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4584 
4585 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4586 		if (!ic->recalc_bitmap) {
4587 			r = -ENOMEM;
4588 			goto bad;
4589 		}
4590 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4591 		if (!ic->may_write_bitmap) {
4592 			r = -ENOMEM;
4593 			goto bad;
4594 		}
4595 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4596 		if (!ic->bbs) {
4597 			r = -ENOMEM;
4598 			goto bad;
4599 		}
4600 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4601 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4602 			struct bitmap_block_status *bbs = &ic->bbs[i];
4603 			unsigned int sector, pl_index, pl_offset;
4604 
4605 			INIT_WORK(&bbs->work, bitmap_block_work);
4606 			bbs->ic = ic;
4607 			bbs->idx = i;
4608 			bio_list_init(&bbs->bio_queue);
4609 			spin_lock_init(&bbs->bio_queue_lock);
4610 
4611 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4612 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4613 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4614 
4615 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4616 		}
4617 	}
4618 
4619 	if (should_write_sb) {
4620 		init_journal(ic, 0, ic->journal_sections, 0);
4621 		r = dm_integrity_failed(ic);
4622 		if (unlikely(r)) {
4623 			ti->error = "Error initializing journal";
4624 			goto bad;
4625 		}
4626 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4627 		if (r) {
4628 			ti->error = "Error initializing superblock";
4629 			goto bad;
4630 		}
4631 		ic->just_formatted = true;
4632 	}
4633 
4634 	if (!ic->meta_dev) {
4635 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4636 		if (r)
4637 			goto bad;
4638 	}
4639 	if (ic->mode == 'B') {
4640 		unsigned int max_io_len;
4641 
4642 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4643 		if (!max_io_len)
4644 			max_io_len = 1U << 31;
4645 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4646 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4647 			r = dm_set_target_max_io_len(ti, max_io_len);
4648 			if (r)
4649 				goto bad;
4650 		}
4651 	}
4652 
4653 	if (!ic->internal_hash)
4654 		dm_integrity_set(ti, ic);
4655 
4656 	ti->num_flush_bios = 1;
4657 	ti->flush_supported = true;
4658 	if (ic->discard)
4659 		ti->num_discard_bios = 1;
4660 
4661 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4662 	return 0;
4663 
4664 bad:
4665 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4666 	dm_integrity_dtr(ti);
4667 	return r;
4668 }
4669 
4670 static void dm_integrity_dtr(struct dm_target *ti)
4671 {
4672 	struct dm_integrity_c *ic = ti->private;
4673 
4674 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4675 	BUG_ON(!list_empty(&ic->wait_list));
4676 
4677 	if (ic->mode == 'B')
4678 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4679 	if (ic->metadata_wq)
4680 		destroy_workqueue(ic->metadata_wq);
4681 	if (ic->wait_wq)
4682 		destroy_workqueue(ic->wait_wq);
4683 	if (ic->offload_wq)
4684 		destroy_workqueue(ic->offload_wq);
4685 	if (ic->commit_wq)
4686 		destroy_workqueue(ic->commit_wq);
4687 	if (ic->writer_wq)
4688 		destroy_workqueue(ic->writer_wq);
4689 	if (ic->recalc_wq)
4690 		destroy_workqueue(ic->recalc_wq);
4691 	kvfree(ic->bbs);
4692 	if (ic->bufio)
4693 		dm_bufio_client_destroy(ic->bufio);
4694 	mempool_exit(&ic->recheck_pool);
4695 	mempool_exit(&ic->journal_io_mempool);
4696 	if (ic->io)
4697 		dm_io_client_destroy(ic->io);
4698 	if (ic->dev)
4699 		dm_put_device(ti, ic->dev);
4700 	if (ic->meta_dev)
4701 		dm_put_device(ti, ic->meta_dev);
4702 	dm_integrity_free_page_list(ic->journal);
4703 	dm_integrity_free_page_list(ic->journal_io);
4704 	dm_integrity_free_page_list(ic->journal_xor);
4705 	dm_integrity_free_page_list(ic->recalc_bitmap);
4706 	dm_integrity_free_page_list(ic->may_write_bitmap);
4707 	if (ic->journal_scatterlist)
4708 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4709 	if (ic->journal_io_scatterlist)
4710 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4711 	if (ic->sk_requests) {
4712 		unsigned int i;
4713 
4714 		for (i = 0; i < ic->journal_sections; i++) {
4715 			struct skcipher_request *req;
4716 
4717 			req = ic->sk_requests[i];
4718 			if (req) {
4719 				kfree_sensitive(req->iv);
4720 				skcipher_request_free(req);
4721 			}
4722 		}
4723 		kvfree(ic->sk_requests);
4724 	}
4725 	kvfree(ic->journal_tree);
4726 	if (ic->sb)
4727 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4728 
4729 	if (ic->internal_hash)
4730 		crypto_free_shash(ic->internal_hash);
4731 	free_alg(&ic->internal_hash_alg);
4732 
4733 	if (ic->journal_crypt)
4734 		crypto_free_skcipher(ic->journal_crypt);
4735 	free_alg(&ic->journal_crypt_alg);
4736 
4737 	if (ic->journal_mac)
4738 		crypto_free_shash(ic->journal_mac);
4739 	free_alg(&ic->journal_mac_alg);
4740 
4741 	kfree(ic);
4742 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4743 }
4744 
4745 static struct target_type integrity_target = {
4746 	.name			= "integrity",
4747 	.version		= {1, 10, 0},
4748 	.module			= THIS_MODULE,
4749 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4750 	.ctr			= dm_integrity_ctr,
4751 	.dtr			= dm_integrity_dtr,
4752 	.map			= dm_integrity_map,
4753 	.postsuspend		= dm_integrity_postsuspend,
4754 	.resume			= dm_integrity_resume,
4755 	.status			= dm_integrity_status,
4756 	.iterate_devices	= dm_integrity_iterate_devices,
4757 	.io_hints		= dm_integrity_io_hints,
4758 };
4759 
4760 static int __init dm_integrity_init(void)
4761 {
4762 	int r;
4763 
4764 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4765 					     sizeof(struct journal_io), 0, 0, NULL);
4766 	if (!journal_io_cache) {
4767 		DMERR("can't allocate journal io cache");
4768 		return -ENOMEM;
4769 	}
4770 
4771 	r = dm_register_target(&integrity_target);
4772 	if (r < 0) {
4773 		kmem_cache_destroy(journal_io_cache);
4774 		return r;
4775 	}
4776 
4777 	return 0;
4778 }
4779 
4780 static void __exit dm_integrity_exit(void)
4781 {
4782 	dm_unregister_target(&integrity_target);
4783 	kmem_cache_destroy(journal_io_cache);
4784 }
4785 
4786 module_init(dm_integrity_init);
4787 module_exit(dm_integrity_exit);
4788 
4789 MODULE_AUTHOR("Milan Broz");
4790 MODULE_AUTHOR("Mikulas Patocka");
4791 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4792 MODULE_LICENSE("GPL");
4793