1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/compiler.h> 10 #include <linux/module.h> 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/vmalloc.h> 14 #include <linux/sort.h> 15 #include <linux/rbtree.h> 16 #include <linux/delay.h> 17 #include <linux/random.h> 18 #include <crypto/hash.h> 19 #include <crypto/skcipher.h> 20 #include <linux/async_tx.h> 21 #include <linux/dm-bufio.h> 22 23 #define DM_MSG_PREFIX "integrity" 24 25 #define DEFAULT_INTERLEAVE_SECTORS 32768 26 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 27 #define DEFAULT_BUFFER_SECTORS 128 28 #define DEFAULT_JOURNAL_WATERMARK 50 29 #define DEFAULT_SYNC_MSEC 10000 30 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 31 #define MIN_LOG2_INTERLEAVE_SECTORS 3 32 #define MAX_LOG2_INTERLEAVE_SECTORS 31 33 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 34 #define RECALC_SECTORS 8192 35 #define RECALC_WRITE_SUPER 16 36 37 /* 38 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 39 * so it should not be enabled in the official kernel 40 */ 41 //#define DEBUG_PRINT 42 //#define INTERNAL_VERIFY 43 44 /* 45 * On disk structures 46 */ 47 48 #define SB_MAGIC "integrt" 49 #define SB_VERSION_1 1 50 #define SB_VERSION_2 2 51 #define SB_SECTORS 8 52 #define MAX_SECTORS_PER_BLOCK 8 53 54 struct superblock { 55 __u8 magic[8]; 56 __u8 version; 57 __u8 log2_interleave_sectors; 58 __u16 integrity_tag_size; 59 __u32 journal_sections; 60 __u64 provided_data_sectors; /* userspace uses this value */ 61 __u32 flags; 62 __u8 log2_sectors_per_block; 63 __u8 pad[3]; 64 __u64 recalc_sector; 65 }; 66 67 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 68 #define SB_FLAG_RECALCULATING 0x2 69 70 #define JOURNAL_ENTRY_ROUNDUP 8 71 72 typedef __u64 commit_id_t; 73 #define JOURNAL_MAC_PER_SECTOR 8 74 75 struct journal_entry { 76 union { 77 struct { 78 __u32 sector_lo; 79 __u32 sector_hi; 80 } s; 81 __u64 sector; 82 } u; 83 commit_id_t last_bytes[0]; 84 /* __u8 tag[0]; */ 85 }; 86 87 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 88 89 #if BITS_PER_LONG == 64 90 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 91 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 92 #elif defined(CONFIG_LBDAF) 93 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 94 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 95 #else 96 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0) 97 #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo) 98 #endif 99 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 100 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 101 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 102 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 103 104 #define JOURNAL_BLOCK_SECTORS 8 105 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 106 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 107 108 struct journal_sector { 109 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 110 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 111 commit_id_t commit_id; 112 }; 113 114 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 115 116 #define METADATA_PADDING_SECTORS 8 117 118 #define N_COMMIT_IDS 4 119 120 static unsigned char prev_commit_seq(unsigned char seq) 121 { 122 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 123 } 124 125 static unsigned char next_commit_seq(unsigned char seq) 126 { 127 return (seq + 1) % N_COMMIT_IDS; 128 } 129 130 /* 131 * In-memory structures 132 */ 133 134 struct journal_node { 135 struct rb_node node; 136 sector_t sector; 137 }; 138 139 struct alg_spec { 140 char *alg_string; 141 char *key_string; 142 __u8 *key; 143 unsigned key_size; 144 }; 145 146 struct dm_integrity_c { 147 struct dm_dev *dev; 148 struct dm_dev *meta_dev; 149 unsigned tag_size; 150 __s8 log2_tag_size; 151 sector_t start; 152 mempool_t journal_io_mempool; 153 struct dm_io_client *io; 154 struct dm_bufio_client *bufio; 155 struct workqueue_struct *metadata_wq; 156 struct superblock *sb; 157 unsigned journal_pages; 158 struct page_list *journal; 159 struct page_list *journal_io; 160 struct page_list *journal_xor; 161 162 struct crypto_skcipher *journal_crypt; 163 struct scatterlist **journal_scatterlist; 164 struct scatterlist **journal_io_scatterlist; 165 struct skcipher_request **sk_requests; 166 167 struct crypto_shash *journal_mac; 168 169 struct journal_node *journal_tree; 170 struct rb_root journal_tree_root; 171 172 sector_t provided_data_sectors; 173 174 unsigned short journal_entry_size; 175 unsigned char journal_entries_per_sector; 176 unsigned char journal_section_entries; 177 unsigned short journal_section_sectors; 178 unsigned journal_sections; 179 unsigned journal_entries; 180 sector_t data_device_sectors; 181 sector_t meta_device_sectors; 182 unsigned initial_sectors; 183 unsigned metadata_run; 184 __s8 log2_metadata_run; 185 __u8 log2_buffer_sectors; 186 __u8 sectors_per_block; 187 188 unsigned char mode; 189 int suspending; 190 191 int failed; 192 193 struct crypto_shash *internal_hash; 194 195 /* these variables are locked with endio_wait.lock */ 196 struct rb_root in_progress; 197 struct list_head wait_list; 198 wait_queue_head_t endio_wait; 199 struct workqueue_struct *wait_wq; 200 201 unsigned char commit_seq; 202 commit_id_t commit_ids[N_COMMIT_IDS]; 203 204 unsigned committed_section; 205 unsigned n_committed_sections; 206 207 unsigned uncommitted_section; 208 unsigned n_uncommitted_sections; 209 210 unsigned free_section; 211 unsigned char free_section_entry; 212 unsigned free_sectors; 213 214 unsigned free_sectors_threshold; 215 216 struct workqueue_struct *commit_wq; 217 struct work_struct commit_work; 218 219 struct workqueue_struct *writer_wq; 220 struct work_struct writer_work; 221 222 struct workqueue_struct *recalc_wq; 223 struct work_struct recalc_work; 224 u8 *recalc_buffer; 225 u8 *recalc_tags; 226 227 struct bio_list flush_bio_list; 228 229 unsigned long autocommit_jiffies; 230 struct timer_list autocommit_timer; 231 unsigned autocommit_msec; 232 233 wait_queue_head_t copy_to_journal_wait; 234 235 struct completion crypto_backoff; 236 237 bool journal_uptodate; 238 bool just_formatted; 239 240 struct alg_spec internal_hash_alg; 241 struct alg_spec journal_crypt_alg; 242 struct alg_spec journal_mac_alg; 243 244 atomic64_t number_of_mismatches; 245 }; 246 247 struct dm_integrity_range { 248 sector_t logical_sector; 249 unsigned n_sectors; 250 bool waiting; 251 union { 252 struct rb_node node; 253 struct { 254 struct task_struct *task; 255 struct list_head wait_entry; 256 }; 257 }; 258 }; 259 260 struct dm_integrity_io { 261 struct work_struct work; 262 263 struct dm_integrity_c *ic; 264 bool write; 265 bool fua; 266 267 struct dm_integrity_range range; 268 269 sector_t metadata_block; 270 unsigned metadata_offset; 271 272 atomic_t in_flight; 273 blk_status_t bi_status; 274 275 struct completion *completion; 276 277 struct gendisk *orig_bi_disk; 278 u8 orig_bi_partno; 279 bio_end_io_t *orig_bi_end_io; 280 struct bio_integrity_payload *orig_bi_integrity; 281 struct bvec_iter orig_bi_iter; 282 }; 283 284 struct journal_completion { 285 struct dm_integrity_c *ic; 286 atomic_t in_flight; 287 struct completion comp; 288 }; 289 290 struct journal_io { 291 struct dm_integrity_range range; 292 struct journal_completion *comp; 293 }; 294 295 static struct kmem_cache *journal_io_cache; 296 297 #define JOURNAL_IO_MEMPOOL 32 298 299 #ifdef DEBUG_PRINT 300 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 301 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 302 { 303 va_list args; 304 va_start(args, msg); 305 vprintk(msg, args); 306 va_end(args); 307 if (len) 308 pr_cont(":"); 309 while (len) { 310 pr_cont(" %02x", *bytes); 311 bytes++; 312 len--; 313 } 314 pr_cont("\n"); 315 } 316 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 317 #else 318 #define DEBUG_print(x, ...) do { } while (0) 319 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 320 #endif 321 322 /* 323 * DM Integrity profile, protection is performed layer above (dm-crypt) 324 */ 325 static const struct blk_integrity_profile dm_integrity_profile = { 326 .name = "DM-DIF-EXT-TAG", 327 .generate_fn = NULL, 328 .verify_fn = NULL, 329 }; 330 331 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 332 static void integrity_bio_wait(struct work_struct *w); 333 static void dm_integrity_dtr(struct dm_target *ti); 334 335 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 336 { 337 if (err == -EILSEQ) 338 atomic64_inc(&ic->number_of_mismatches); 339 if (!cmpxchg(&ic->failed, 0, err)) 340 DMERR("Error on %s: %d", msg, err); 341 } 342 343 static int dm_integrity_failed(struct dm_integrity_c *ic) 344 { 345 return READ_ONCE(ic->failed); 346 } 347 348 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 349 unsigned j, unsigned char seq) 350 { 351 /* 352 * Xor the number with section and sector, so that if a piece of 353 * journal is written at wrong place, it is detected. 354 */ 355 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 356 } 357 358 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 359 sector_t *area, sector_t *offset) 360 { 361 if (!ic->meta_dev) { 362 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 363 *area = data_sector >> log2_interleave_sectors; 364 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 365 } else { 366 *area = 0; 367 *offset = data_sector; 368 } 369 } 370 371 #define sector_to_block(ic, n) \ 372 do { \ 373 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 374 (n) >>= (ic)->sb->log2_sectors_per_block; \ 375 } while (0) 376 377 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 378 sector_t offset, unsigned *metadata_offset) 379 { 380 __u64 ms; 381 unsigned mo; 382 383 ms = area << ic->sb->log2_interleave_sectors; 384 if (likely(ic->log2_metadata_run >= 0)) 385 ms += area << ic->log2_metadata_run; 386 else 387 ms += area * ic->metadata_run; 388 ms >>= ic->log2_buffer_sectors; 389 390 sector_to_block(ic, offset); 391 392 if (likely(ic->log2_tag_size >= 0)) { 393 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 394 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 395 } else { 396 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 397 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 398 } 399 *metadata_offset = mo; 400 return ms; 401 } 402 403 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 404 { 405 sector_t result; 406 407 if (ic->meta_dev) 408 return offset; 409 410 result = area << ic->sb->log2_interleave_sectors; 411 if (likely(ic->log2_metadata_run >= 0)) 412 result += (area + 1) << ic->log2_metadata_run; 413 else 414 result += (area + 1) * ic->metadata_run; 415 416 result += (sector_t)ic->initial_sectors + offset; 417 result += ic->start; 418 419 return result; 420 } 421 422 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 423 { 424 if (unlikely(*sec_ptr >= ic->journal_sections)) 425 *sec_ptr -= ic->journal_sections; 426 } 427 428 static void sb_set_version(struct dm_integrity_c *ic) 429 { 430 if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 431 ic->sb->version = SB_VERSION_2; 432 else 433 ic->sb->version = SB_VERSION_1; 434 } 435 436 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 437 { 438 struct dm_io_request io_req; 439 struct dm_io_region io_loc; 440 441 io_req.bi_op = op; 442 io_req.bi_op_flags = op_flags; 443 io_req.mem.type = DM_IO_KMEM; 444 io_req.mem.ptr.addr = ic->sb; 445 io_req.notify.fn = NULL; 446 io_req.client = ic->io; 447 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 448 io_loc.sector = ic->start; 449 io_loc.count = SB_SECTORS; 450 451 return dm_io(&io_req, 1, &io_loc, NULL); 452 } 453 454 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 455 bool e, const char *function) 456 { 457 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 458 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 459 460 if (unlikely(section >= ic->journal_sections) || 461 unlikely(offset >= limit)) { 462 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n", 463 function, section, offset, ic->journal_sections, limit); 464 BUG(); 465 } 466 #endif 467 } 468 469 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 470 unsigned *pl_index, unsigned *pl_offset) 471 { 472 unsigned sector; 473 474 access_journal_check(ic, section, offset, false, "page_list_location"); 475 476 sector = section * ic->journal_section_sectors + offset; 477 478 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 479 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 480 } 481 482 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 483 unsigned section, unsigned offset, unsigned *n_sectors) 484 { 485 unsigned pl_index, pl_offset; 486 char *va; 487 488 page_list_location(ic, section, offset, &pl_index, &pl_offset); 489 490 if (n_sectors) 491 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 492 493 va = lowmem_page_address(pl[pl_index].page); 494 495 return (struct journal_sector *)(va + pl_offset); 496 } 497 498 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 499 { 500 return access_page_list(ic, ic->journal, section, offset, NULL); 501 } 502 503 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 504 { 505 unsigned rel_sector, offset; 506 struct journal_sector *js; 507 508 access_journal_check(ic, section, n, true, "access_journal_entry"); 509 510 rel_sector = n % JOURNAL_BLOCK_SECTORS; 511 offset = n / JOURNAL_BLOCK_SECTORS; 512 513 js = access_journal(ic, section, rel_sector); 514 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 515 } 516 517 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 518 { 519 n <<= ic->sb->log2_sectors_per_block; 520 521 n += JOURNAL_BLOCK_SECTORS; 522 523 access_journal_check(ic, section, n, false, "access_journal_data"); 524 525 return access_journal(ic, section, n); 526 } 527 528 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 529 { 530 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 531 int r; 532 unsigned j, size; 533 534 desc->tfm = ic->journal_mac; 535 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 536 537 r = crypto_shash_init(desc); 538 if (unlikely(r)) { 539 dm_integrity_io_error(ic, "crypto_shash_init", r); 540 goto err; 541 } 542 543 for (j = 0; j < ic->journal_section_entries; j++) { 544 struct journal_entry *je = access_journal_entry(ic, section, j); 545 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 546 if (unlikely(r)) { 547 dm_integrity_io_error(ic, "crypto_shash_update", r); 548 goto err; 549 } 550 } 551 552 size = crypto_shash_digestsize(ic->journal_mac); 553 554 if (likely(size <= JOURNAL_MAC_SIZE)) { 555 r = crypto_shash_final(desc, result); 556 if (unlikely(r)) { 557 dm_integrity_io_error(ic, "crypto_shash_final", r); 558 goto err; 559 } 560 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 561 } else { 562 __u8 digest[size]; 563 r = crypto_shash_final(desc, digest); 564 if (unlikely(r)) { 565 dm_integrity_io_error(ic, "crypto_shash_final", r); 566 goto err; 567 } 568 memcpy(result, digest, JOURNAL_MAC_SIZE); 569 } 570 571 return; 572 err: 573 memset(result, 0, JOURNAL_MAC_SIZE); 574 } 575 576 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 577 { 578 __u8 result[JOURNAL_MAC_SIZE]; 579 unsigned j; 580 581 if (!ic->journal_mac) 582 return; 583 584 section_mac(ic, section, result); 585 586 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 587 struct journal_sector *js = access_journal(ic, section, j); 588 589 if (likely(wr)) 590 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 591 else { 592 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 593 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 594 } 595 } 596 } 597 598 static void complete_journal_op(void *context) 599 { 600 struct journal_completion *comp = context; 601 BUG_ON(!atomic_read(&comp->in_flight)); 602 if (likely(atomic_dec_and_test(&comp->in_flight))) 603 complete(&comp->comp); 604 } 605 606 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 607 unsigned n_sections, struct journal_completion *comp) 608 { 609 struct async_submit_ctl submit; 610 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 611 unsigned pl_index, pl_offset, section_index; 612 struct page_list *source_pl, *target_pl; 613 614 if (likely(encrypt)) { 615 source_pl = ic->journal; 616 target_pl = ic->journal_io; 617 } else { 618 source_pl = ic->journal_io; 619 target_pl = ic->journal; 620 } 621 622 page_list_location(ic, section, 0, &pl_index, &pl_offset); 623 624 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 625 626 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 627 628 section_index = pl_index; 629 630 do { 631 size_t this_step; 632 struct page *src_pages[2]; 633 struct page *dst_page; 634 635 while (unlikely(pl_index == section_index)) { 636 unsigned dummy; 637 if (likely(encrypt)) 638 rw_section_mac(ic, section, true); 639 section++; 640 n_sections--; 641 if (!n_sections) 642 break; 643 page_list_location(ic, section, 0, §ion_index, &dummy); 644 } 645 646 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 647 dst_page = target_pl[pl_index].page; 648 src_pages[0] = source_pl[pl_index].page; 649 src_pages[1] = ic->journal_xor[pl_index].page; 650 651 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 652 653 pl_index++; 654 pl_offset = 0; 655 n_bytes -= this_step; 656 } while (n_bytes); 657 658 BUG_ON(n_sections); 659 660 async_tx_issue_pending_all(); 661 } 662 663 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 664 { 665 struct journal_completion *comp = req->data; 666 if (unlikely(err)) { 667 if (likely(err == -EINPROGRESS)) { 668 complete(&comp->ic->crypto_backoff); 669 return; 670 } 671 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 672 } 673 complete_journal_op(comp); 674 } 675 676 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 677 { 678 int r; 679 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 680 complete_journal_encrypt, comp); 681 if (likely(encrypt)) 682 r = crypto_skcipher_encrypt(req); 683 else 684 r = crypto_skcipher_decrypt(req); 685 if (likely(!r)) 686 return false; 687 if (likely(r == -EINPROGRESS)) 688 return true; 689 if (likely(r == -EBUSY)) { 690 wait_for_completion(&comp->ic->crypto_backoff); 691 reinit_completion(&comp->ic->crypto_backoff); 692 return true; 693 } 694 dm_integrity_io_error(comp->ic, "encrypt", r); 695 return false; 696 } 697 698 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 699 unsigned n_sections, struct journal_completion *comp) 700 { 701 struct scatterlist **source_sg; 702 struct scatterlist **target_sg; 703 704 atomic_add(2, &comp->in_flight); 705 706 if (likely(encrypt)) { 707 source_sg = ic->journal_scatterlist; 708 target_sg = ic->journal_io_scatterlist; 709 } else { 710 source_sg = ic->journal_io_scatterlist; 711 target_sg = ic->journal_scatterlist; 712 } 713 714 do { 715 struct skcipher_request *req; 716 unsigned ivsize; 717 char *iv; 718 719 if (likely(encrypt)) 720 rw_section_mac(ic, section, true); 721 722 req = ic->sk_requests[section]; 723 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 724 iv = req->iv; 725 726 memcpy(iv, iv + ivsize, ivsize); 727 728 req->src = source_sg[section]; 729 req->dst = target_sg[section]; 730 731 if (unlikely(do_crypt(encrypt, req, comp))) 732 atomic_inc(&comp->in_flight); 733 734 section++; 735 n_sections--; 736 } while (n_sections); 737 738 atomic_dec(&comp->in_flight); 739 complete_journal_op(comp); 740 } 741 742 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 743 unsigned n_sections, struct journal_completion *comp) 744 { 745 if (ic->journal_xor) 746 return xor_journal(ic, encrypt, section, n_sections, comp); 747 else 748 return crypt_journal(ic, encrypt, section, n_sections, comp); 749 } 750 751 static void complete_journal_io(unsigned long error, void *context) 752 { 753 struct journal_completion *comp = context; 754 if (unlikely(error != 0)) 755 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 756 complete_journal_op(comp); 757 } 758 759 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 760 unsigned n_sections, struct journal_completion *comp) 761 { 762 struct dm_io_request io_req; 763 struct dm_io_region io_loc; 764 unsigned sector, n_sectors, pl_index, pl_offset; 765 int r; 766 767 if (unlikely(dm_integrity_failed(ic))) { 768 if (comp) 769 complete_journal_io(-1UL, comp); 770 return; 771 } 772 773 sector = section * ic->journal_section_sectors; 774 n_sectors = n_sections * ic->journal_section_sectors; 775 776 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 777 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 778 779 io_req.bi_op = op; 780 io_req.bi_op_flags = op_flags; 781 io_req.mem.type = DM_IO_PAGE_LIST; 782 if (ic->journal_io) 783 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 784 else 785 io_req.mem.ptr.pl = &ic->journal[pl_index]; 786 io_req.mem.offset = pl_offset; 787 if (likely(comp != NULL)) { 788 io_req.notify.fn = complete_journal_io; 789 io_req.notify.context = comp; 790 } else { 791 io_req.notify.fn = NULL; 792 } 793 io_req.client = ic->io; 794 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 795 io_loc.sector = ic->start + SB_SECTORS + sector; 796 io_loc.count = n_sectors; 797 798 r = dm_io(&io_req, 1, &io_loc, NULL); 799 if (unlikely(r)) { 800 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 801 if (comp) { 802 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 803 complete_journal_io(-1UL, comp); 804 } 805 } 806 } 807 808 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 809 { 810 struct journal_completion io_comp; 811 struct journal_completion crypt_comp_1; 812 struct journal_completion crypt_comp_2; 813 unsigned i; 814 815 io_comp.ic = ic; 816 init_completion(&io_comp.comp); 817 818 if (commit_start + commit_sections <= ic->journal_sections) { 819 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 820 if (ic->journal_io) { 821 crypt_comp_1.ic = ic; 822 init_completion(&crypt_comp_1.comp); 823 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 824 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 825 wait_for_completion_io(&crypt_comp_1.comp); 826 } else { 827 for (i = 0; i < commit_sections; i++) 828 rw_section_mac(ic, commit_start + i, true); 829 } 830 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 831 commit_sections, &io_comp); 832 } else { 833 unsigned to_end; 834 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 835 to_end = ic->journal_sections - commit_start; 836 if (ic->journal_io) { 837 crypt_comp_1.ic = ic; 838 init_completion(&crypt_comp_1.comp); 839 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 840 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 841 if (try_wait_for_completion(&crypt_comp_1.comp)) { 842 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 843 reinit_completion(&crypt_comp_1.comp); 844 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 845 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 846 wait_for_completion_io(&crypt_comp_1.comp); 847 } else { 848 crypt_comp_2.ic = ic; 849 init_completion(&crypt_comp_2.comp); 850 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 851 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 852 wait_for_completion_io(&crypt_comp_1.comp); 853 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 854 wait_for_completion_io(&crypt_comp_2.comp); 855 } 856 } else { 857 for (i = 0; i < to_end; i++) 858 rw_section_mac(ic, commit_start + i, true); 859 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 860 for (i = 0; i < commit_sections - to_end; i++) 861 rw_section_mac(ic, i, true); 862 } 863 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 864 } 865 866 wait_for_completion_io(&io_comp.comp); 867 } 868 869 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 870 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 871 { 872 struct dm_io_request io_req; 873 struct dm_io_region io_loc; 874 int r; 875 unsigned sector, pl_index, pl_offset; 876 877 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 878 879 if (unlikely(dm_integrity_failed(ic))) { 880 fn(-1UL, data); 881 return; 882 } 883 884 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 885 886 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 887 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 888 889 io_req.bi_op = REQ_OP_WRITE; 890 io_req.bi_op_flags = 0; 891 io_req.mem.type = DM_IO_PAGE_LIST; 892 io_req.mem.ptr.pl = &ic->journal[pl_index]; 893 io_req.mem.offset = pl_offset; 894 io_req.notify.fn = fn; 895 io_req.notify.context = data; 896 io_req.client = ic->io; 897 io_loc.bdev = ic->dev->bdev; 898 io_loc.sector = target; 899 io_loc.count = n_sectors; 900 901 r = dm_io(&io_req, 1, &io_loc, NULL); 902 if (unlikely(r)) { 903 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 904 fn(-1UL, data); 905 } 906 } 907 908 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 909 { 910 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 911 range2->logical_sector + range2->n_sectors > range2->logical_sector; 912 } 913 914 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 915 { 916 struct rb_node **n = &ic->in_progress.rb_node; 917 struct rb_node *parent; 918 919 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 920 921 if (likely(check_waiting)) { 922 struct dm_integrity_range *range; 923 list_for_each_entry(range, &ic->wait_list, wait_entry) { 924 if (unlikely(ranges_overlap(range, new_range))) 925 return false; 926 } 927 } 928 929 parent = NULL; 930 931 while (*n) { 932 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 933 934 parent = *n; 935 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 936 n = &range->node.rb_left; 937 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 938 n = &range->node.rb_right; 939 } else { 940 return false; 941 } 942 } 943 944 rb_link_node(&new_range->node, parent, n); 945 rb_insert_color(&new_range->node, &ic->in_progress); 946 947 return true; 948 } 949 950 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 951 { 952 rb_erase(&range->node, &ic->in_progress); 953 while (unlikely(!list_empty(&ic->wait_list))) { 954 struct dm_integrity_range *last_range = 955 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 956 struct task_struct *last_range_task; 957 if (!ranges_overlap(range, last_range)) 958 break; 959 last_range_task = last_range->task; 960 list_del(&last_range->wait_entry); 961 if (!add_new_range(ic, last_range, false)) { 962 last_range->task = last_range_task; 963 list_add(&last_range->wait_entry, &ic->wait_list); 964 break; 965 } 966 last_range->waiting = false; 967 wake_up_process(last_range_task); 968 } 969 } 970 971 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 972 { 973 unsigned long flags; 974 975 spin_lock_irqsave(&ic->endio_wait.lock, flags); 976 remove_range_unlocked(ic, range); 977 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 978 } 979 980 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 981 { 982 new_range->waiting = true; 983 list_add_tail(&new_range->wait_entry, &ic->wait_list); 984 new_range->task = current; 985 do { 986 __set_current_state(TASK_UNINTERRUPTIBLE); 987 spin_unlock_irq(&ic->endio_wait.lock); 988 io_schedule(); 989 spin_lock_irq(&ic->endio_wait.lock); 990 } while (unlikely(new_range->waiting)); 991 } 992 993 static void init_journal_node(struct journal_node *node) 994 { 995 RB_CLEAR_NODE(&node->node); 996 node->sector = (sector_t)-1; 997 } 998 999 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1000 { 1001 struct rb_node **link; 1002 struct rb_node *parent; 1003 1004 node->sector = sector; 1005 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1006 1007 link = &ic->journal_tree_root.rb_node; 1008 parent = NULL; 1009 1010 while (*link) { 1011 struct journal_node *j; 1012 parent = *link; 1013 j = container_of(parent, struct journal_node, node); 1014 if (sector < j->sector) 1015 link = &j->node.rb_left; 1016 else 1017 link = &j->node.rb_right; 1018 } 1019 1020 rb_link_node(&node->node, parent, link); 1021 rb_insert_color(&node->node, &ic->journal_tree_root); 1022 } 1023 1024 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1025 { 1026 BUG_ON(RB_EMPTY_NODE(&node->node)); 1027 rb_erase(&node->node, &ic->journal_tree_root); 1028 init_journal_node(node); 1029 } 1030 1031 #define NOT_FOUND (-1U) 1032 1033 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1034 { 1035 struct rb_node *n = ic->journal_tree_root.rb_node; 1036 unsigned found = NOT_FOUND; 1037 *next_sector = (sector_t)-1; 1038 while (n) { 1039 struct journal_node *j = container_of(n, struct journal_node, node); 1040 if (sector == j->sector) { 1041 found = j - ic->journal_tree; 1042 } 1043 if (sector < j->sector) { 1044 *next_sector = j->sector; 1045 n = j->node.rb_left; 1046 } else { 1047 n = j->node.rb_right; 1048 } 1049 } 1050 1051 return found; 1052 } 1053 1054 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1055 { 1056 struct journal_node *node, *next_node; 1057 struct rb_node *next; 1058 1059 if (unlikely(pos >= ic->journal_entries)) 1060 return false; 1061 node = &ic->journal_tree[pos]; 1062 if (unlikely(RB_EMPTY_NODE(&node->node))) 1063 return false; 1064 if (unlikely(node->sector != sector)) 1065 return false; 1066 1067 next = rb_next(&node->node); 1068 if (unlikely(!next)) 1069 return true; 1070 1071 next_node = container_of(next, struct journal_node, node); 1072 return next_node->sector != sector; 1073 } 1074 1075 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1076 { 1077 struct rb_node *next; 1078 struct journal_node *next_node; 1079 unsigned next_section; 1080 1081 BUG_ON(RB_EMPTY_NODE(&node->node)); 1082 1083 next = rb_next(&node->node); 1084 if (unlikely(!next)) 1085 return false; 1086 1087 next_node = container_of(next, struct journal_node, node); 1088 1089 if (next_node->sector != node->sector) 1090 return false; 1091 1092 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1093 if (next_section >= ic->committed_section && 1094 next_section < ic->committed_section + ic->n_committed_sections) 1095 return true; 1096 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1097 return true; 1098 1099 return false; 1100 } 1101 1102 #define TAG_READ 0 1103 #define TAG_WRITE 1 1104 #define TAG_CMP 2 1105 1106 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1107 unsigned *metadata_offset, unsigned total_size, int op) 1108 { 1109 do { 1110 unsigned char *data, *dp; 1111 struct dm_buffer *b; 1112 unsigned to_copy; 1113 int r; 1114 1115 r = dm_integrity_failed(ic); 1116 if (unlikely(r)) 1117 return r; 1118 1119 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1120 if (unlikely(IS_ERR(data))) 1121 return PTR_ERR(data); 1122 1123 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1124 dp = data + *metadata_offset; 1125 if (op == TAG_READ) { 1126 memcpy(tag, dp, to_copy); 1127 } else if (op == TAG_WRITE) { 1128 memcpy(dp, tag, to_copy); 1129 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1130 } else { 1131 /* e.g.: op == TAG_CMP */ 1132 if (unlikely(memcmp(dp, tag, to_copy))) { 1133 unsigned i; 1134 1135 for (i = 0; i < to_copy; i++) { 1136 if (dp[i] != tag[i]) 1137 break; 1138 total_size--; 1139 } 1140 dm_bufio_release(b); 1141 return total_size; 1142 } 1143 } 1144 dm_bufio_release(b); 1145 1146 tag += to_copy; 1147 *metadata_offset += to_copy; 1148 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1149 (*metadata_block)++; 1150 *metadata_offset = 0; 1151 } 1152 total_size -= to_copy; 1153 } while (unlikely(total_size)); 1154 1155 return 0; 1156 } 1157 1158 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic) 1159 { 1160 int r; 1161 r = dm_bufio_write_dirty_buffers(ic->bufio); 1162 if (unlikely(r)) 1163 dm_integrity_io_error(ic, "writing tags", r); 1164 } 1165 1166 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1167 { 1168 DECLARE_WAITQUEUE(wait, current); 1169 __add_wait_queue(&ic->endio_wait, &wait); 1170 __set_current_state(TASK_UNINTERRUPTIBLE); 1171 spin_unlock_irq(&ic->endio_wait.lock); 1172 io_schedule(); 1173 spin_lock_irq(&ic->endio_wait.lock); 1174 __remove_wait_queue(&ic->endio_wait, &wait); 1175 } 1176 1177 static void autocommit_fn(struct timer_list *t) 1178 { 1179 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1180 1181 if (likely(!dm_integrity_failed(ic))) 1182 queue_work(ic->commit_wq, &ic->commit_work); 1183 } 1184 1185 static void schedule_autocommit(struct dm_integrity_c *ic) 1186 { 1187 if (!timer_pending(&ic->autocommit_timer)) 1188 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1189 } 1190 1191 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1192 { 1193 struct bio *bio; 1194 unsigned long flags; 1195 1196 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1197 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1198 bio_list_add(&ic->flush_bio_list, bio); 1199 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1200 1201 queue_work(ic->commit_wq, &ic->commit_work); 1202 } 1203 1204 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1205 { 1206 int r = dm_integrity_failed(ic); 1207 if (unlikely(r) && !bio->bi_status) 1208 bio->bi_status = errno_to_blk_status(r); 1209 bio_endio(bio); 1210 } 1211 1212 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1213 { 1214 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1215 1216 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1217 submit_flush_bio(ic, dio); 1218 else 1219 do_endio(ic, bio); 1220 } 1221 1222 static void dec_in_flight(struct dm_integrity_io *dio) 1223 { 1224 if (atomic_dec_and_test(&dio->in_flight)) { 1225 struct dm_integrity_c *ic = dio->ic; 1226 struct bio *bio; 1227 1228 remove_range(ic, &dio->range); 1229 1230 if (unlikely(dio->write)) 1231 schedule_autocommit(ic); 1232 1233 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1234 1235 if (unlikely(dio->bi_status) && !bio->bi_status) 1236 bio->bi_status = dio->bi_status; 1237 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1238 dio->range.logical_sector += dio->range.n_sectors; 1239 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1240 INIT_WORK(&dio->work, integrity_bio_wait); 1241 queue_work(ic->wait_wq, &dio->work); 1242 return; 1243 } 1244 do_endio_flush(ic, dio); 1245 } 1246 } 1247 1248 static void integrity_end_io(struct bio *bio) 1249 { 1250 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1251 1252 bio->bi_iter = dio->orig_bi_iter; 1253 bio->bi_disk = dio->orig_bi_disk; 1254 bio->bi_partno = dio->orig_bi_partno; 1255 if (dio->orig_bi_integrity) { 1256 bio->bi_integrity = dio->orig_bi_integrity; 1257 bio->bi_opf |= REQ_INTEGRITY; 1258 } 1259 bio->bi_end_io = dio->orig_bi_end_io; 1260 1261 if (dio->completion) 1262 complete(dio->completion); 1263 1264 dec_in_flight(dio); 1265 } 1266 1267 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1268 const char *data, char *result) 1269 { 1270 __u64 sector_le = cpu_to_le64(sector); 1271 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1272 int r; 1273 unsigned digest_size; 1274 1275 req->tfm = ic->internal_hash; 1276 req->flags = 0; 1277 1278 r = crypto_shash_init(req); 1279 if (unlikely(r < 0)) { 1280 dm_integrity_io_error(ic, "crypto_shash_init", r); 1281 goto failed; 1282 } 1283 1284 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1285 if (unlikely(r < 0)) { 1286 dm_integrity_io_error(ic, "crypto_shash_update", r); 1287 goto failed; 1288 } 1289 1290 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1291 if (unlikely(r < 0)) { 1292 dm_integrity_io_error(ic, "crypto_shash_update", r); 1293 goto failed; 1294 } 1295 1296 r = crypto_shash_final(req, result); 1297 if (unlikely(r < 0)) { 1298 dm_integrity_io_error(ic, "crypto_shash_final", r); 1299 goto failed; 1300 } 1301 1302 digest_size = crypto_shash_digestsize(ic->internal_hash); 1303 if (unlikely(digest_size < ic->tag_size)) 1304 memset(result + digest_size, 0, ic->tag_size - digest_size); 1305 1306 return; 1307 1308 failed: 1309 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1310 get_random_bytes(result, ic->tag_size); 1311 } 1312 1313 static void integrity_metadata(struct work_struct *w) 1314 { 1315 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1316 struct dm_integrity_c *ic = dio->ic; 1317 1318 int r; 1319 1320 if (ic->internal_hash) { 1321 struct bvec_iter iter; 1322 struct bio_vec bv; 1323 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1324 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1325 char *checksums; 1326 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1327 char checksums_onstack[ic->tag_size + extra_space]; 1328 unsigned sectors_to_process = dio->range.n_sectors; 1329 sector_t sector = dio->range.logical_sector; 1330 1331 if (unlikely(ic->mode == 'R')) 1332 goto skip_io; 1333 1334 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1335 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1336 if (!checksums) 1337 checksums = checksums_onstack; 1338 1339 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) { 1340 unsigned pos; 1341 char *mem, *checksums_ptr; 1342 1343 again: 1344 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1345 pos = 0; 1346 checksums_ptr = checksums; 1347 do { 1348 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1349 checksums_ptr += ic->tag_size; 1350 sectors_to_process -= ic->sectors_per_block; 1351 pos += ic->sectors_per_block << SECTOR_SHIFT; 1352 sector += ic->sectors_per_block; 1353 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1354 kunmap_atomic(mem); 1355 1356 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1357 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE); 1358 if (unlikely(r)) { 1359 if (r > 0) { 1360 DMERR("Checksum failed at sector 0x%llx", 1361 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1362 r = -EILSEQ; 1363 atomic64_inc(&ic->number_of_mismatches); 1364 } 1365 if (likely(checksums != checksums_onstack)) 1366 kfree(checksums); 1367 goto error; 1368 } 1369 1370 if (!sectors_to_process) 1371 break; 1372 1373 if (unlikely(pos < bv.bv_len)) { 1374 bv.bv_offset += pos; 1375 bv.bv_len -= pos; 1376 goto again; 1377 } 1378 } 1379 1380 if (likely(checksums != checksums_onstack)) 1381 kfree(checksums); 1382 } else { 1383 struct bio_integrity_payload *bip = dio->orig_bi_integrity; 1384 1385 if (bip) { 1386 struct bio_vec biv; 1387 struct bvec_iter iter; 1388 unsigned data_to_process = dio->range.n_sectors; 1389 sector_to_block(ic, data_to_process); 1390 data_to_process *= ic->tag_size; 1391 1392 bip_for_each_vec(biv, bip, iter) { 1393 unsigned char *tag; 1394 unsigned this_len; 1395 1396 BUG_ON(PageHighMem(biv.bv_page)); 1397 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1398 this_len = min(biv.bv_len, data_to_process); 1399 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1400 this_len, !dio->write ? TAG_READ : TAG_WRITE); 1401 if (unlikely(r)) 1402 goto error; 1403 data_to_process -= this_len; 1404 if (!data_to_process) 1405 break; 1406 } 1407 } 1408 } 1409 skip_io: 1410 dec_in_flight(dio); 1411 return; 1412 error: 1413 dio->bi_status = errno_to_blk_status(r); 1414 dec_in_flight(dio); 1415 } 1416 1417 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1418 { 1419 struct dm_integrity_c *ic = ti->private; 1420 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1421 struct bio_integrity_payload *bip; 1422 1423 sector_t area, offset; 1424 1425 dio->ic = ic; 1426 dio->bi_status = 0; 1427 1428 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1429 submit_flush_bio(ic, dio); 1430 return DM_MAPIO_SUBMITTED; 1431 } 1432 1433 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1434 dio->write = bio_op(bio) == REQ_OP_WRITE; 1435 dio->fua = dio->write && bio->bi_opf & REQ_FUA; 1436 if (unlikely(dio->fua)) { 1437 /* 1438 * Don't pass down the FUA flag because we have to flush 1439 * disk cache anyway. 1440 */ 1441 bio->bi_opf &= ~REQ_FUA; 1442 } 1443 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1444 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1445 (unsigned long long)dio->range.logical_sector, bio_sectors(bio), 1446 (unsigned long long)ic->provided_data_sectors); 1447 return DM_MAPIO_KILL; 1448 } 1449 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1450 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1451 ic->sectors_per_block, 1452 (unsigned long long)dio->range.logical_sector, bio_sectors(bio)); 1453 return DM_MAPIO_KILL; 1454 } 1455 1456 if (ic->sectors_per_block > 1) { 1457 struct bvec_iter iter; 1458 struct bio_vec bv; 1459 bio_for_each_segment(bv, bio, iter) { 1460 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1461 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1462 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1463 return DM_MAPIO_KILL; 1464 } 1465 } 1466 } 1467 1468 bip = bio_integrity(bio); 1469 if (!ic->internal_hash) { 1470 if (bip) { 1471 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1472 if (ic->log2_tag_size >= 0) 1473 wanted_tag_size <<= ic->log2_tag_size; 1474 else 1475 wanted_tag_size *= ic->tag_size; 1476 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1477 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size); 1478 return DM_MAPIO_KILL; 1479 } 1480 } 1481 } else { 1482 if (unlikely(bip != NULL)) { 1483 DMERR("Unexpected integrity data when using internal hash"); 1484 return DM_MAPIO_KILL; 1485 } 1486 } 1487 1488 if (unlikely(ic->mode == 'R') && unlikely(dio->write)) 1489 return DM_MAPIO_KILL; 1490 1491 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1492 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1493 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1494 1495 dm_integrity_map_continue(dio, true); 1496 return DM_MAPIO_SUBMITTED; 1497 } 1498 1499 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1500 unsigned journal_section, unsigned journal_entry) 1501 { 1502 struct dm_integrity_c *ic = dio->ic; 1503 sector_t logical_sector; 1504 unsigned n_sectors; 1505 1506 logical_sector = dio->range.logical_sector; 1507 n_sectors = dio->range.n_sectors; 1508 do { 1509 struct bio_vec bv = bio_iovec(bio); 1510 char *mem; 1511 1512 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1513 bv.bv_len = n_sectors << SECTOR_SHIFT; 1514 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1515 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1516 retry_kmap: 1517 mem = kmap_atomic(bv.bv_page); 1518 if (likely(dio->write)) 1519 flush_dcache_page(bv.bv_page); 1520 1521 do { 1522 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1523 1524 if (unlikely(!dio->write)) { 1525 struct journal_sector *js; 1526 char *mem_ptr; 1527 unsigned s; 1528 1529 if (unlikely(journal_entry_is_inprogress(je))) { 1530 flush_dcache_page(bv.bv_page); 1531 kunmap_atomic(mem); 1532 1533 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1534 goto retry_kmap; 1535 } 1536 smp_rmb(); 1537 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1538 js = access_journal_data(ic, journal_section, journal_entry); 1539 mem_ptr = mem + bv.bv_offset; 1540 s = 0; 1541 do { 1542 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1543 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1544 js++; 1545 mem_ptr += 1 << SECTOR_SHIFT; 1546 } while (++s < ic->sectors_per_block); 1547 #ifdef INTERNAL_VERIFY 1548 if (ic->internal_hash) { 1549 char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)]; 1550 1551 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1552 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1553 DMERR("Checksum failed when reading from journal, at sector 0x%llx", 1554 (unsigned long long)logical_sector); 1555 } 1556 } 1557 #endif 1558 } 1559 1560 if (!ic->internal_hash) { 1561 struct bio_integrity_payload *bip = bio_integrity(bio); 1562 unsigned tag_todo = ic->tag_size; 1563 char *tag_ptr = journal_entry_tag(ic, je); 1564 1565 if (bip) do { 1566 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1567 unsigned tag_now = min(biv.bv_len, tag_todo); 1568 char *tag_addr; 1569 BUG_ON(PageHighMem(biv.bv_page)); 1570 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1571 if (likely(dio->write)) 1572 memcpy(tag_ptr, tag_addr, tag_now); 1573 else 1574 memcpy(tag_addr, tag_ptr, tag_now); 1575 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1576 tag_ptr += tag_now; 1577 tag_todo -= tag_now; 1578 } while (unlikely(tag_todo)); else { 1579 if (likely(dio->write)) 1580 memset(tag_ptr, 0, tag_todo); 1581 } 1582 } 1583 1584 if (likely(dio->write)) { 1585 struct journal_sector *js; 1586 unsigned s; 1587 1588 js = access_journal_data(ic, journal_section, journal_entry); 1589 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1590 1591 s = 0; 1592 do { 1593 je->last_bytes[s] = js[s].commit_id; 1594 } while (++s < ic->sectors_per_block); 1595 1596 if (ic->internal_hash) { 1597 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1598 if (unlikely(digest_size > ic->tag_size)) { 1599 char checksums_onstack[digest_size]; 1600 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1601 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1602 } else 1603 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1604 } 1605 1606 journal_entry_set_sector(je, logical_sector); 1607 } 1608 logical_sector += ic->sectors_per_block; 1609 1610 journal_entry++; 1611 if (unlikely(journal_entry == ic->journal_section_entries)) { 1612 journal_entry = 0; 1613 journal_section++; 1614 wraparound_section(ic, &journal_section); 1615 } 1616 1617 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1618 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1619 1620 if (unlikely(!dio->write)) 1621 flush_dcache_page(bv.bv_page); 1622 kunmap_atomic(mem); 1623 } while (n_sectors); 1624 1625 if (likely(dio->write)) { 1626 smp_mb(); 1627 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1628 wake_up(&ic->copy_to_journal_wait); 1629 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1630 queue_work(ic->commit_wq, &ic->commit_work); 1631 } else { 1632 schedule_autocommit(ic); 1633 } 1634 } else { 1635 remove_range(ic, &dio->range); 1636 } 1637 1638 if (unlikely(bio->bi_iter.bi_size)) { 1639 sector_t area, offset; 1640 1641 dio->range.logical_sector = logical_sector; 1642 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1643 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1644 return true; 1645 } 1646 1647 return false; 1648 } 1649 1650 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1651 { 1652 struct dm_integrity_c *ic = dio->ic; 1653 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1654 unsigned journal_section, journal_entry; 1655 unsigned journal_read_pos; 1656 struct completion read_comp; 1657 bool need_sync_io = ic->internal_hash && !dio->write; 1658 1659 if (need_sync_io && from_map) { 1660 INIT_WORK(&dio->work, integrity_bio_wait); 1661 queue_work(ic->metadata_wq, &dio->work); 1662 return; 1663 } 1664 1665 lock_retry: 1666 spin_lock_irq(&ic->endio_wait.lock); 1667 retry: 1668 if (unlikely(dm_integrity_failed(ic))) { 1669 spin_unlock_irq(&ic->endio_wait.lock); 1670 do_endio(ic, bio); 1671 return; 1672 } 1673 dio->range.n_sectors = bio_sectors(bio); 1674 journal_read_pos = NOT_FOUND; 1675 if (likely(ic->mode == 'J')) { 1676 if (dio->write) { 1677 unsigned next_entry, i, pos; 1678 unsigned ws, we, range_sectors; 1679 1680 dio->range.n_sectors = min(dio->range.n_sectors, 1681 ic->free_sectors << ic->sb->log2_sectors_per_block); 1682 if (unlikely(!dio->range.n_sectors)) { 1683 if (from_map) 1684 goto offload_to_thread; 1685 sleep_on_endio_wait(ic); 1686 goto retry; 1687 } 1688 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 1689 ic->free_sectors -= range_sectors; 1690 journal_section = ic->free_section; 1691 journal_entry = ic->free_section_entry; 1692 1693 next_entry = ic->free_section_entry + range_sectors; 1694 ic->free_section_entry = next_entry % ic->journal_section_entries; 1695 ic->free_section += next_entry / ic->journal_section_entries; 1696 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 1697 wraparound_section(ic, &ic->free_section); 1698 1699 pos = journal_section * ic->journal_section_entries + journal_entry; 1700 ws = journal_section; 1701 we = journal_entry; 1702 i = 0; 1703 do { 1704 struct journal_entry *je; 1705 1706 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 1707 pos++; 1708 if (unlikely(pos >= ic->journal_entries)) 1709 pos = 0; 1710 1711 je = access_journal_entry(ic, ws, we); 1712 BUG_ON(!journal_entry_is_unused(je)); 1713 journal_entry_set_inprogress(je); 1714 we++; 1715 if (unlikely(we == ic->journal_section_entries)) { 1716 we = 0; 1717 ws++; 1718 wraparound_section(ic, &ws); 1719 } 1720 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 1721 1722 spin_unlock_irq(&ic->endio_wait.lock); 1723 goto journal_read_write; 1724 } else { 1725 sector_t next_sector; 1726 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1727 if (likely(journal_read_pos == NOT_FOUND)) { 1728 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 1729 dio->range.n_sectors = next_sector - dio->range.logical_sector; 1730 } else { 1731 unsigned i; 1732 unsigned jp = journal_read_pos + 1; 1733 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 1734 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 1735 break; 1736 } 1737 dio->range.n_sectors = i; 1738 } 1739 } 1740 } 1741 if (unlikely(!add_new_range(ic, &dio->range, true))) { 1742 /* 1743 * We must not sleep in the request routine because it could 1744 * stall bios on current->bio_list. 1745 * So, we offload the bio to a workqueue if we have to sleep. 1746 */ 1747 if (from_map) { 1748 offload_to_thread: 1749 spin_unlock_irq(&ic->endio_wait.lock); 1750 INIT_WORK(&dio->work, integrity_bio_wait); 1751 queue_work(ic->wait_wq, &dio->work); 1752 return; 1753 } 1754 wait_and_add_new_range(ic, &dio->range); 1755 } 1756 spin_unlock_irq(&ic->endio_wait.lock); 1757 1758 if (unlikely(journal_read_pos != NOT_FOUND)) { 1759 journal_section = journal_read_pos / ic->journal_section_entries; 1760 journal_entry = journal_read_pos % ic->journal_section_entries; 1761 goto journal_read_write; 1762 } 1763 1764 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 1765 1766 if (need_sync_io) { 1767 init_completion(&read_comp); 1768 dio->completion = &read_comp; 1769 } else 1770 dio->completion = NULL; 1771 1772 dio->orig_bi_iter = bio->bi_iter; 1773 1774 dio->orig_bi_disk = bio->bi_disk; 1775 dio->orig_bi_partno = bio->bi_partno; 1776 bio_set_dev(bio, ic->dev->bdev); 1777 1778 dio->orig_bi_integrity = bio_integrity(bio); 1779 bio->bi_integrity = NULL; 1780 bio->bi_opf &= ~REQ_INTEGRITY; 1781 1782 dio->orig_bi_end_io = bio->bi_end_io; 1783 bio->bi_end_io = integrity_end_io; 1784 1785 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 1786 generic_make_request(bio); 1787 1788 if (need_sync_io) { 1789 wait_for_completion_io(&read_comp); 1790 if (unlikely(ic->recalc_wq != NULL) && 1791 ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 1792 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 1793 goto skip_check; 1794 if (likely(!bio->bi_status)) 1795 integrity_metadata(&dio->work); 1796 else 1797 skip_check: 1798 dec_in_flight(dio); 1799 1800 } else { 1801 INIT_WORK(&dio->work, integrity_metadata); 1802 queue_work(ic->metadata_wq, &dio->work); 1803 } 1804 1805 return; 1806 1807 journal_read_write: 1808 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 1809 goto lock_retry; 1810 1811 do_endio_flush(ic, dio); 1812 } 1813 1814 1815 static void integrity_bio_wait(struct work_struct *w) 1816 { 1817 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1818 1819 dm_integrity_map_continue(dio, false); 1820 } 1821 1822 static void pad_uncommitted(struct dm_integrity_c *ic) 1823 { 1824 if (ic->free_section_entry) { 1825 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 1826 ic->free_section_entry = 0; 1827 ic->free_section++; 1828 wraparound_section(ic, &ic->free_section); 1829 ic->n_uncommitted_sections++; 1830 } 1831 WARN_ON(ic->journal_sections * ic->journal_section_entries != 1832 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors); 1833 } 1834 1835 static void integrity_commit(struct work_struct *w) 1836 { 1837 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 1838 unsigned commit_start, commit_sections; 1839 unsigned i, j, n; 1840 struct bio *flushes; 1841 1842 del_timer(&ic->autocommit_timer); 1843 1844 spin_lock_irq(&ic->endio_wait.lock); 1845 flushes = bio_list_get(&ic->flush_bio_list); 1846 if (unlikely(ic->mode != 'J')) { 1847 spin_unlock_irq(&ic->endio_wait.lock); 1848 dm_integrity_flush_buffers(ic); 1849 goto release_flush_bios; 1850 } 1851 1852 pad_uncommitted(ic); 1853 commit_start = ic->uncommitted_section; 1854 commit_sections = ic->n_uncommitted_sections; 1855 spin_unlock_irq(&ic->endio_wait.lock); 1856 1857 if (!commit_sections) 1858 goto release_flush_bios; 1859 1860 i = commit_start; 1861 for (n = 0; n < commit_sections; n++) { 1862 for (j = 0; j < ic->journal_section_entries; j++) { 1863 struct journal_entry *je; 1864 je = access_journal_entry(ic, i, j); 1865 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1866 } 1867 for (j = 0; j < ic->journal_section_sectors; j++) { 1868 struct journal_sector *js; 1869 js = access_journal(ic, i, j); 1870 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 1871 } 1872 i++; 1873 if (unlikely(i >= ic->journal_sections)) 1874 ic->commit_seq = next_commit_seq(ic->commit_seq); 1875 wraparound_section(ic, &i); 1876 } 1877 smp_rmb(); 1878 1879 write_journal(ic, commit_start, commit_sections); 1880 1881 spin_lock_irq(&ic->endio_wait.lock); 1882 ic->uncommitted_section += commit_sections; 1883 wraparound_section(ic, &ic->uncommitted_section); 1884 ic->n_uncommitted_sections -= commit_sections; 1885 ic->n_committed_sections += commit_sections; 1886 spin_unlock_irq(&ic->endio_wait.lock); 1887 1888 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 1889 queue_work(ic->writer_wq, &ic->writer_work); 1890 1891 release_flush_bios: 1892 while (flushes) { 1893 struct bio *next = flushes->bi_next; 1894 flushes->bi_next = NULL; 1895 do_endio(ic, flushes); 1896 flushes = next; 1897 } 1898 } 1899 1900 static void complete_copy_from_journal(unsigned long error, void *context) 1901 { 1902 struct journal_io *io = context; 1903 struct journal_completion *comp = io->comp; 1904 struct dm_integrity_c *ic = comp->ic; 1905 remove_range(ic, &io->range); 1906 mempool_free(io, &ic->journal_io_mempool); 1907 if (unlikely(error != 0)) 1908 dm_integrity_io_error(ic, "copying from journal", -EIO); 1909 complete_journal_op(comp); 1910 } 1911 1912 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 1913 struct journal_entry *je) 1914 { 1915 unsigned s = 0; 1916 do { 1917 js->commit_id = je->last_bytes[s]; 1918 js++; 1919 } while (++s < ic->sectors_per_block); 1920 } 1921 1922 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 1923 unsigned write_sections, bool from_replay) 1924 { 1925 unsigned i, j, n; 1926 struct journal_completion comp; 1927 struct blk_plug plug; 1928 1929 blk_start_plug(&plug); 1930 1931 comp.ic = ic; 1932 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1933 init_completion(&comp.comp); 1934 1935 i = write_start; 1936 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 1937 #ifndef INTERNAL_VERIFY 1938 if (unlikely(from_replay)) 1939 #endif 1940 rw_section_mac(ic, i, false); 1941 for (j = 0; j < ic->journal_section_entries; j++) { 1942 struct journal_entry *je = access_journal_entry(ic, i, j); 1943 sector_t sec, area, offset; 1944 unsigned k, l, next_loop; 1945 sector_t metadata_block; 1946 unsigned metadata_offset; 1947 struct journal_io *io; 1948 1949 if (journal_entry_is_unused(je)) 1950 continue; 1951 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 1952 sec = journal_entry_get_sector(je); 1953 if (unlikely(from_replay)) { 1954 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 1955 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 1956 sec &= ~(sector_t)(ic->sectors_per_block - 1); 1957 } 1958 } 1959 get_area_and_offset(ic, sec, &area, &offset); 1960 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 1961 for (k = j + 1; k < ic->journal_section_entries; k++) { 1962 struct journal_entry *je2 = access_journal_entry(ic, i, k); 1963 sector_t sec2, area2, offset2; 1964 if (journal_entry_is_unused(je2)) 1965 break; 1966 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 1967 sec2 = journal_entry_get_sector(je2); 1968 get_area_and_offset(ic, sec2, &area2, &offset2); 1969 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 1970 break; 1971 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 1972 } 1973 next_loop = k - 1; 1974 1975 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 1976 io->comp = ∁ 1977 io->range.logical_sector = sec; 1978 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 1979 1980 spin_lock_irq(&ic->endio_wait.lock); 1981 if (unlikely(!add_new_range(ic, &io->range, true))) 1982 wait_and_add_new_range(ic, &io->range); 1983 1984 if (likely(!from_replay)) { 1985 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 1986 1987 /* don't write if there is newer committed sector */ 1988 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 1989 struct journal_entry *je2 = access_journal_entry(ic, i, j); 1990 1991 journal_entry_set_unused(je2); 1992 remove_journal_node(ic, §ion_node[j]); 1993 j++; 1994 sec += ic->sectors_per_block; 1995 offset += ic->sectors_per_block; 1996 } 1997 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 1998 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 1999 2000 journal_entry_set_unused(je2); 2001 remove_journal_node(ic, §ion_node[k - 1]); 2002 k--; 2003 } 2004 if (j == k) { 2005 remove_range_unlocked(ic, &io->range); 2006 spin_unlock_irq(&ic->endio_wait.lock); 2007 mempool_free(io, &ic->journal_io_mempool); 2008 goto skip_io; 2009 } 2010 for (l = j; l < k; l++) { 2011 remove_journal_node(ic, §ion_node[l]); 2012 } 2013 } 2014 spin_unlock_irq(&ic->endio_wait.lock); 2015 2016 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2017 for (l = j; l < k; l++) { 2018 int r; 2019 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2020 2021 if ( 2022 #ifndef INTERNAL_VERIFY 2023 unlikely(from_replay) && 2024 #endif 2025 ic->internal_hash) { 2026 char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)]; 2027 2028 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2029 (char *)access_journal_data(ic, i, l), test_tag); 2030 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2031 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2032 } 2033 2034 journal_entry_set_unused(je2); 2035 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2036 ic->tag_size, TAG_WRITE); 2037 if (unlikely(r)) { 2038 dm_integrity_io_error(ic, "reading tags", r); 2039 } 2040 } 2041 2042 atomic_inc(&comp.in_flight); 2043 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2044 (k - j) << ic->sb->log2_sectors_per_block, 2045 get_data_sector(ic, area, offset), 2046 complete_copy_from_journal, io); 2047 skip_io: 2048 j = next_loop; 2049 } 2050 } 2051 2052 dm_bufio_write_dirty_buffers_async(ic->bufio); 2053 2054 blk_finish_plug(&plug); 2055 2056 complete_journal_op(&comp); 2057 wait_for_completion_io(&comp.comp); 2058 2059 dm_integrity_flush_buffers(ic); 2060 } 2061 2062 static void integrity_writer(struct work_struct *w) 2063 { 2064 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2065 unsigned write_start, write_sections; 2066 2067 unsigned prev_free_sectors; 2068 2069 /* the following test is not needed, but it tests the replay code */ 2070 if (READ_ONCE(ic->suspending) && !ic->meta_dev) 2071 return; 2072 2073 spin_lock_irq(&ic->endio_wait.lock); 2074 write_start = ic->committed_section; 2075 write_sections = ic->n_committed_sections; 2076 spin_unlock_irq(&ic->endio_wait.lock); 2077 2078 if (!write_sections) 2079 return; 2080 2081 do_journal_write(ic, write_start, write_sections, false); 2082 2083 spin_lock_irq(&ic->endio_wait.lock); 2084 2085 ic->committed_section += write_sections; 2086 wraparound_section(ic, &ic->committed_section); 2087 ic->n_committed_sections -= write_sections; 2088 2089 prev_free_sectors = ic->free_sectors; 2090 ic->free_sectors += write_sections * ic->journal_section_entries; 2091 if (unlikely(!prev_free_sectors)) 2092 wake_up_locked(&ic->endio_wait); 2093 2094 spin_unlock_irq(&ic->endio_wait.lock); 2095 } 2096 2097 static void recalc_write_super(struct dm_integrity_c *ic) 2098 { 2099 int r; 2100 2101 dm_integrity_flush_buffers(ic); 2102 if (dm_integrity_failed(ic)) 2103 return; 2104 2105 sb_set_version(ic); 2106 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2107 if (unlikely(r)) 2108 dm_integrity_io_error(ic, "writing superblock", r); 2109 } 2110 2111 static void integrity_recalc(struct work_struct *w) 2112 { 2113 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2114 struct dm_integrity_range range; 2115 struct dm_io_request io_req; 2116 struct dm_io_region io_loc; 2117 sector_t area, offset; 2118 sector_t metadata_block; 2119 unsigned metadata_offset; 2120 __u8 *t; 2121 unsigned i; 2122 int r; 2123 unsigned super_counter = 0; 2124 2125 spin_lock_irq(&ic->endio_wait.lock); 2126 2127 next_chunk: 2128 2129 if (unlikely(READ_ONCE(ic->suspending))) 2130 goto unlock_ret; 2131 2132 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2133 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) 2134 goto unlock_ret; 2135 2136 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2137 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2138 if (!ic->meta_dev) 2139 range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2140 2141 if (unlikely(!add_new_range(ic, &range, true))) 2142 wait_and_add_new_range(ic, &range); 2143 2144 spin_unlock_irq(&ic->endio_wait.lock); 2145 2146 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2147 recalc_write_super(ic); 2148 super_counter = 0; 2149 } 2150 2151 if (unlikely(dm_integrity_failed(ic))) 2152 goto err; 2153 2154 io_req.bi_op = REQ_OP_READ; 2155 io_req.bi_op_flags = 0; 2156 io_req.mem.type = DM_IO_VMA; 2157 io_req.mem.ptr.addr = ic->recalc_buffer; 2158 io_req.notify.fn = NULL; 2159 io_req.client = ic->io; 2160 io_loc.bdev = ic->dev->bdev; 2161 io_loc.sector = get_data_sector(ic, area, offset); 2162 io_loc.count = range.n_sectors; 2163 2164 r = dm_io(&io_req, 1, &io_loc, NULL); 2165 if (unlikely(r)) { 2166 dm_integrity_io_error(ic, "reading data", r); 2167 goto err; 2168 } 2169 2170 t = ic->recalc_tags; 2171 for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) { 2172 integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2173 t += ic->tag_size; 2174 } 2175 2176 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2177 2178 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2179 if (unlikely(r)) { 2180 dm_integrity_io_error(ic, "writing tags", r); 2181 goto err; 2182 } 2183 2184 spin_lock_irq(&ic->endio_wait.lock); 2185 remove_range_unlocked(ic, &range); 2186 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2187 goto next_chunk; 2188 2189 err: 2190 remove_range(ic, &range); 2191 return; 2192 2193 unlock_ret: 2194 spin_unlock_irq(&ic->endio_wait.lock); 2195 2196 recalc_write_super(ic); 2197 } 2198 2199 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2200 unsigned n_sections, unsigned char commit_seq) 2201 { 2202 unsigned i, j, n; 2203 2204 if (!n_sections) 2205 return; 2206 2207 for (n = 0; n < n_sections; n++) { 2208 i = start_section + n; 2209 wraparound_section(ic, &i); 2210 for (j = 0; j < ic->journal_section_sectors; j++) { 2211 struct journal_sector *js = access_journal(ic, i, j); 2212 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2213 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2214 } 2215 for (j = 0; j < ic->journal_section_entries; j++) { 2216 struct journal_entry *je = access_journal_entry(ic, i, j); 2217 journal_entry_set_unused(je); 2218 } 2219 } 2220 2221 write_journal(ic, start_section, n_sections); 2222 } 2223 2224 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2225 { 2226 unsigned char k; 2227 for (k = 0; k < N_COMMIT_IDS; k++) { 2228 if (dm_integrity_commit_id(ic, i, j, k) == id) 2229 return k; 2230 } 2231 dm_integrity_io_error(ic, "journal commit id", -EIO); 2232 return -EIO; 2233 } 2234 2235 static void replay_journal(struct dm_integrity_c *ic) 2236 { 2237 unsigned i, j; 2238 bool used_commit_ids[N_COMMIT_IDS]; 2239 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2240 unsigned write_start, write_sections; 2241 unsigned continue_section; 2242 bool journal_empty; 2243 unsigned char unused, last_used, want_commit_seq; 2244 2245 if (ic->mode == 'R') 2246 return; 2247 2248 if (ic->journal_uptodate) 2249 return; 2250 2251 last_used = 0; 2252 write_start = 0; 2253 2254 if (!ic->just_formatted) { 2255 DEBUG_print("reading journal\n"); 2256 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2257 if (ic->journal_io) 2258 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2259 if (ic->journal_io) { 2260 struct journal_completion crypt_comp; 2261 crypt_comp.ic = ic; 2262 init_completion(&crypt_comp.comp); 2263 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2264 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2265 wait_for_completion(&crypt_comp.comp); 2266 } 2267 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2268 } 2269 2270 if (dm_integrity_failed(ic)) 2271 goto clear_journal; 2272 2273 journal_empty = true; 2274 memset(used_commit_ids, 0, sizeof used_commit_ids); 2275 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2276 for (i = 0; i < ic->journal_sections; i++) { 2277 for (j = 0; j < ic->journal_section_sectors; j++) { 2278 int k; 2279 struct journal_sector *js = access_journal(ic, i, j); 2280 k = find_commit_seq(ic, i, j, js->commit_id); 2281 if (k < 0) 2282 goto clear_journal; 2283 used_commit_ids[k] = true; 2284 max_commit_id_sections[k] = i; 2285 } 2286 if (journal_empty) { 2287 for (j = 0; j < ic->journal_section_entries; j++) { 2288 struct journal_entry *je = access_journal_entry(ic, i, j); 2289 if (!journal_entry_is_unused(je)) { 2290 journal_empty = false; 2291 break; 2292 } 2293 } 2294 } 2295 } 2296 2297 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2298 unused = N_COMMIT_IDS - 1; 2299 while (unused && !used_commit_ids[unused - 1]) 2300 unused--; 2301 } else { 2302 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2303 if (!used_commit_ids[unused]) 2304 break; 2305 if (unused == N_COMMIT_IDS) { 2306 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2307 goto clear_journal; 2308 } 2309 } 2310 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2311 unused, used_commit_ids[0], used_commit_ids[1], 2312 used_commit_ids[2], used_commit_ids[3]); 2313 2314 last_used = prev_commit_seq(unused); 2315 want_commit_seq = prev_commit_seq(last_used); 2316 2317 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2318 journal_empty = true; 2319 2320 write_start = max_commit_id_sections[last_used] + 1; 2321 if (unlikely(write_start >= ic->journal_sections)) 2322 want_commit_seq = next_commit_seq(want_commit_seq); 2323 wraparound_section(ic, &write_start); 2324 2325 i = write_start; 2326 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2327 for (j = 0; j < ic->journal_section_sectors; j++) { 2328 struct journal_sector *js = access_journal(ic, i, j); 2329 2330 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2331 /* 2332 * This could be caused by crash during writing. 2333 * We won't replay the inconsistent part of the 2334 * journal. 2335 */ 2336 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2337 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2338 goto brk; 2339 } 2340 } 2341 i++; 2342 if (unlikely(i >= ic->journal_sections)) 2343 want_commit_seq = next_commit_seq(want_commit_seq); 2344 wraparound_section(ic, &i); 2345 } 2346 brk: 2347 2348 if (!journal_empty) { 2349 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2350 write_sections, write_start, want_commit_seq); 2351 do_journal_write(ic, write_start, write_sections, true); 2352 } 2353 2354 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2355 continue_section = write_start; 2356 ic->commit_seq = want_commit_seq; 2357 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2358 } else { 2359 unsigned s; 2360 unsigned char erase_seq; 2361 clear_journal: 2362 DEBUG_print("clearing journal\n"); 2363 2364 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2365 s = write_start; 2366 init_journal(ic, s, 1, erase_seq); 2367 s++; 2368 wraparound_section(ic, &s); 2369 if (ic->journal_sections >= 2) { 2370 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2371 s += ic->journal_sections - 2; 2372 wraparound_section(ic, &s); 2373 init_journal(ic, s, 1, erase_seq); 2374 } 2375 2376 continue_section = 0; 2377 ic->commit_seq = next_commit_seq(erase_seq); 2378 } 2379 2380 ic->committed_section = continue_section; 2381 ic->n_committed_sections = 0; 2382 2383 ic->uncommitted_section = continue_section; 2384 ic->n_uncommitted_sections = 0; 2385 2386 ic->free_section = continue_section; 2387 ic->free_section_entry = 0; 2388 ic->free_sectors = ic->journal_entries; 2389 2390 ic->journal_tree_root = RB_ROOT; 2391 for (i = 0; i < ic->journal_entries; i++) 2392 init_journal_node(&ic->journal_tree[i]); 2393 } 2394 2395 static void dm_integrity_postsuspend(struct dm_target *ti) 2396 { 2397 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2398 2399 del_timer_sync(&ic->autocommit_timer); 2400 2401 WRITE_ONCE(ic->suspending, 1); 2402 2403 if (ic->recalc_wq) 2404 drain_workqueue(ic->recalc_wq); 2405 2406 queue_work(ic->commit_wq, &ic->commit_work); 2407 drain_workqueue(ic->commit_wq); 2408 2409 if (ic->mode == 'J') { 2410 if (ic->meta_dev) 2411 queue_work(ic->writer_wq, &ic->writer_work); 2412 drain_workqueue(ic->writer_wq); 2413 dm_integrity_flush_buffers(ic); 2414 } 2415 2416 WRITE_ONCE(ic->suspending, 0); 2417 2418 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2419 2420 ic->journal_uptodate = true; 2421 } 2422 2423 static void dm_integrity_resume(struct dm_target *ti) 2424 { 2425 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2426 2427 replay_journal(ic); 2428 2429 if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2430 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 2431 if (recalc_pos < ic->provided_data_sectors) { 2432 queue_work(ic->recalc_wq, &ic->recalc_work); 2433 } else if (recalc_pos > ic->provided_data_sectors) { 2434 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 2435 recalc_write_super(ic); 2436 } 2437 } 2438 } 2439 2440 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 2441 unsigned status_flags, char *result, unsigned maxlen) 2442 { 2443 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2444 unsigned arg_count; 2445 size_t sz = 0; 2446 2447 switch (type) { 2448 case STATUSTYPE_INFO: 2449 DMEMIT("%llu %llu", 2450 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 2451 (unsigned long long)ic->provided_data_sectors); 2452 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 2453 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector)); 2454 else 2455 DMEMIT(" -"); 2456 break; 2457 2458 case STATUSTYPE_TABLE: { 2459 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 2460 watermark_percentage += ic->journal_entries / 2; 2461 do_div(watermark_percentage, ic->journal_entries); 2462 arg_count = 5; 2463 arg_count += !!ic->meta_dev; 2464 arg_count += ic->sectors_per_block != 1; 2465 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 2466 arg_count += !!ic->internal_hash_alg.alg_string; 2467 arg_count += !!ic->journal_crypt_alg.alg_string; 2468 arg_count += !!ic->journal_mac_alg.alg_string; 2469 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start, 2470 ic->tag_size, ic->mode, arg_count); 2471 if (ic->meta_dev) 2472 DMEMIT(" meta_device:%s", ic->meta_dev->name); 2473 if (ic->sectors_per_block != 1) 2474 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 2475 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 2476 DMEMIT(" recalculate"); 2477 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 2478 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 2479 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 2480 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 2481 DMEMIT(" commit_time:%u", ic->autocommit_msec); 2482 2483 #define EMIT_ALG(a, n) \ 2484 do { \ 2485 if (ic->a.alg_string) { \ 2486 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 2487 if (ic->a.key_string) \ 2488 DMEMIT(":%s", ic->a.key_string);\ 2489 } \ 2490 } while (0) 2491 EMIT_ALG(internal_hash_alg, "internal_hash"); 2492 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 2493 EMIT_ALG(journal_mac_alg, "journal_mac"); 2494 break; 2495 } 2496 } 2497 } 2498 2499 static int dm_integrity_iterate_devices(struct dm_target *ti, 2500 iterate_devices_callout_fn fn, void *data) 2501 { 2502 struct dm_integrity_c *ic = ti->private; 2503 2504 if (!ic->meta_dev) 2505 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 2506 else 2507 return fn(ti, ic->dev, 0, ti->len, data); 2508 } 2509 2510 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 2511 { 2512 struct dm_integrity_c *ic = ti->private; 2513 2514 if (ic->sectors_per_block > 1) { 2515 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2516 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2517 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 2518 } 2519 } 2520 2521 static void calculate_journal_section_size(struct dm_integrity_c *ic) 2522 { 2523 unsigned sector_space = JOURNAL_SECTOR_DATA; 2524 2525 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 2526 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 2527 JOURNAL_ENTRY_ROUNDUP); 2528 2529 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 2530 sector_space -= JOURNAL_MAC_PER_SECTOR; 2531 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 2532 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 2533 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 2534 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 2535 } 2536 2537 static int calculate_device_limits(struct dm_integrity_c *ic) 2538 { 2539 __u64 initial_sectors; 2540 2541 calculate_journal_section_size(ic); 2542 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 2543 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 2544 return -EINVAL; 2545 ic->initial_sectors = initial_sectors; 2546 2547 if (!ic->meta_dev) { 2548 sector_t last_sector, last_area, last_offset; 2549 2550 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 2551 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT; 2552 if (!(ic->metadata_run & (ic->metadata_run - 1))) 2553 ic->log2_metadata_run = __ffs(ic->metadata_run); 2554 else 2555 ic->log2_metadata_run = -1; 2556 2557 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 2558 last_sector = get_data_sector(ic, last_area, last_offset); 2559 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 2560 return -EINVAL; 2561 } else { 2562 __u64 meta_size = ic->provided_data_sectors * ic->tag_size; 2563 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 2564 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 2565 meta_size <<= ic->log2_buffer_sectors; 2566 if (ic->initial_sectors + meta_size < ic->initial_sectors || 2567 ic->initial_sectors + meta_size > ic->meta_device_sectors) 2568 return -EINVAL; 2569 ic->metadata_run = 1; 2570 ic->log2_metadata_run = 0; 2571 } 2572 2573 return 0; 2574 } 2575 2576 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 2577 { 2578 unsigned journal_sections; 2579 int test_bit; 2580 2581 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 2582 memcpy(ic->sb->magic, SB_MAGIC, 8); 2583 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 2584 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 2585 if (ic->journal_mac_alg.alg_string) 2586 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 2587 2588 calculate_journal_section_size(ic); 2589 journal_sections = journal_sectors / ic->journal_section_sectors; 2590 if (!journal_sections) 2591 journal_sections = 1; 2592 2593 if (!ic->meta_dev) { 2594 ic->sb->journal_sections = cpu_to_le32(journal_sections); 2595 if (!interleave_sectors) 2596 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 2597 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 2598 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 2599 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 2600 2601 ic->provided_data_sectors = 0; 2602 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 2603 __u64 prev_data_sectors = ic->provided_data_sectors; 2604 2605 ic->provided_data_sectors |= (sector_t)1 << test_bit; 2606 if (calculate_device_limits(ic)) 2607 ic->provided_data_sectors = prev_data_sectors; 2608 } 2609 if (!ic->provided_data_sectors) 2610 return -EINVAL; 2611 } else { 2612 ic->sb->log2_interleave_sectors = 0; 2613 ic->provided_data_sectors = ic->data_device_sectors; 2614 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 2615 2616 try_smaller_buffer: 2617 ic->sb->journal_sections = cpu_to_le32(0); 2618 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 2619 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 2620 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 2621 if (test_journal_sections > journal_sections) 2622 continue; 2623 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 2624 if (calculate_device_limits(ic)) 2625 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 2626 2627 } 2628 if (!le32_to_cpu(ic->sb->journal_sections)) { 2629 if (ic->log2_buffer_sectors > 3) { 2630 ic->log2_buffer_sectors--; 2631 goto try_smaller_buffer; 2632 } 2633 return -EINVAL; 2634 } 2635 } 2636 2637 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 2638 2639 sb_set_version(ic); 2640 2641 return 0; 2642 } 2643 2644 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 2645 { 2646 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 2647 struct blk_integrity bi; 2648 2649 memset(&bi, 0, sizeof(bi)); 2650 bi.profile = &dm_integrity_profile; 2651 bi.tuple_size = ic->tag_size; 2652 bi.tag_size = bi.tuple_size; 2653 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 2654 2655 blk_integrity_register(disk, &bi); 2656 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 2657 } 2658 2659 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl) 2660 { 2661 unsigned i; 2662 2663 if (!pl) 2664 return; 2665 for (i = 0; i < ic->journal_pages; i++) 2666 if (pl[i].page) 2667 __free_page(pl[i].page); 2668 kvfree(pl); 2669 } 2670 2671 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic) 2672 { 2673 size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list); 2674 struct page_list *pl; 2675 unsigned i; 2676 2677 pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO); 2678 if (!pl) 2679 return NULL; 2680 2681 for (i = 0; i < ic->journal_pages; i++) { 2682 pl[i].page = alloc_page(GFP_KERNEL); 2683 if (!pl[i].page) { 2684 dm_integrity_free_page_list(ic, pl); 2685 return NULL; 2686 } 2687 if (i) 2688 pl[i - 1].next = &pl[i]; 2689 } 2690 2691 return pl; 2692 } 2693 2694 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 2695 { 2696 unsigned i; 2697 for (i = 0; i < ic->journal_sections; i++) 2698 kvfree(sl[i]); 2699 kvfree(sl); 2700 } 2701 2702 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl) 2703 { 2704 struct scatterlist **sl; 2705 unsigned i; 2706 2707 sl = kvmalloc_array(ic->journal_sections, 2708 sizeof(struct scatterlist *), 2709 GFP_KERNEL | __GFP_ZERO); 2710 if (!sl) 2711 return NULL; 2712 2713 for (i = 0; i < ic->journal_sections; i++) { 2714 struct scatterlist *s; 2715 unsigned start_index, start_offset; 2716 unsigned end_index, end_offset; 2717 unsigned n_pages; 2718 unsigned idx; 2719 2720 page_list_location(ic, i, 0, &start_index, &start_offset); 2721 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset); 2722 2723 n_pages = (end_index - start_index + 1); 2724 2725 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 2726 GFP_KERNEL); 2727 if (!s) { 2728 dm_integrity_free_journal_scatterlist(ic, sl); 2729 return NULL; 2730 } 2731 2732 sg_init_table(s, n_pages); 2733 for (idx = start_index; idx <= end_index; idx++) { 2734 char *va = lowmem_page_address(pl[idx].page); 2735 unsigned start = 0, end = PAGE_SIZE; 2736 if (idx == start_index) 2737 start = start_offset; 2738 if (idx == end_index) 2739 end = end_offset + (1 << SECTOR_SHIFT); 2740 sg_set_buf(&s[idx - start_index], va + start, end - start); 2741 } 2742 2743 sl[i] = s; 2744 } 2745 2746 return sl; 2747 } 2748 2749 static void free_alg(struct alg_spec *a) 2750 { 2751 kzfree(a->alg_string); 2752 kzfree(a->key); 2753 memset(a, 0, sizeof *a); 2754 } 2755 2756 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 2757 { 2758 char *k; 2759 2760 free_alg(a); 2761 2762 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 2763 if (!a->alg_string) 2764 goto nomem; 2765 2766 k = strchr(a->alg_string, ':'); 2767 if (k) { 2768 *k = 0; 2769 a->key_string = k + 1; 2770 if (strlen(a->key_string) & 1) 2771 goto inval; 2772 2773 a->key_size = strlen(a->key_string) / 2; 2774 a->key = kmalloc(a->key_size, GFP_KERNEL); 2775 if (!a->key) 2776 goto nomem; 2777 if (hex2bin(a->key, a->key_string, a->key_size)) 2778 goto inval; 2779 } 2780 2781 return 0; 2782 inval: 2783 *error = error_inval; 2784 return -EINVAL; 2785 nomem: 2786 *error = "Out of memory for an argument"; 2787 return -ENOMEM; 2788 } 2789 2790 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 2791 char *error_alg, char *error_key) 2792 { 2793 int r; 2794 2795 if (a->alg_string) { 2796 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC); 2797 if (IS_ERR(*hash)) { 2798 *error = error_alg; 2799 r = PTR_ERR(*hash); 2800 *hash = NULL; 2801 return r; 2802 } 2803 2804 if (a->key) { 2805 r = crypto_shash_setkey(*hash, a->key, a->key_size); 2806 if (r) { 2807 *error = error_key; 2808 return r; 2809 } 2810 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 2811 *error = error_key; 2812 return -ENOKEY; 2813 } 2814 } 2815 2816 return 0; 2817 } 2818 2819 static int create_journal(struct dm_integrity_c *ic, char **error) 2820 { 2821 int r = 0; 2822 unsigned i; 2823 __u64 journal_pages, journal_desc_size, journal_tree_size; 2824 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 2825 struct skcipher_request *req = NULL; 2826 2827 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 2828 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 2829 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 2830 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 2831 2832 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 2833 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 2834 journal_desc_size = journal_pages * sizeof(struct page_list); 2835 if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) { 2836 *error = "Journal doesn't fit into memory"; 2837 r = -ENOMEM; 2838 goto bad; 2839 } 2840 ic->journal_pages = journal_pages; 2841 2842 ic->journal = dm_integrity_alloc_page_list(ic); 2843 if (!ic->journal) { 2844 *error = "Could not allocate memory for journal"; 2845 r = -ENOMEM; 2846 goto bad; 2847 } 2848 if (ic->journal_crypt_alg.alg_string) { 2849 unsigned ivsize, blocksize; 2850 struct journal_completion comp; 2851 2852 comp.ic = ic; 2853 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0); 2854 if (IS_ERR(ic->journal_crypt)) { 2855 *error = "Invalid journal cipher"; 2856 r = PTR_ERR(ic->journal_crypt); 2857 ic->journal_crypt = NULL; 2858 goto bad; 2859 } 2860 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 2861 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 2862 2863 if (ic->journal_crypt_alg.key) { 2864 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 2865 ic->journal_crypt_alg.key_size); 2866 if (r) { 2867 *error = "Error setting encryption key"; 2868 goto bad; 2869 } 2870 } 2871 DEBUG_print("cipher %s, block size %u iv size %u\n", 2872 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 2873 2874 ic->journal_io = dm_integrity_alloc_page_list(ic); 2875 if (!ic->journal_io) { 2876 *error = "Could not allocate memory for journal io"; 2877 r = -ENOMEM; 2878 goto bad; 2879 } 2880 2881 if (blocksize == 1) { 2882 struct scatterlist *sg; 2883 2884 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 2885 if (!req) { 2886 *error = "Could not allocate crypt request"; 2887 r = -ENOMEM; 2888 goto bad; 2889 } 2890 2891 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 2892 if (!crypt_iv) { 2893 *error = "Could not allocate iv"; 2894 r = -ENOMEM; 2895 goto bad; 2896 } 2897 2898 ic->journal_xor = dm_integrity_alloc_page_list(ic); 2899 if (!ic->journal_xor) { 2900 *error = "Could not allocate memory for journal xor"; 2901 r = -ENOMEM; 2902 goto bad; 2903 } 2904 2905 sg = kvmalloc_array(ic->journal_pages + 1, 2906 sizeof(struct scatterlist), 2907 GFP_KERNEL); 2908 if (!sg) { 2909 *error = "Unable to allocate sg list"; 2910 r = -ENOMEM; 2911 goto bad; 2912 } 2913 sg_init_table(sg, ic->journal_pages + 1); 2914 for (i = 0; i < ic->journal_pages; i++) { 2915 char *va = lowmem_page_address(ic->journal_xor[i].page); 2916 clear_page(va); 2917 sg_set_buf(&sg[i], va, PAGE_SIZE); 2918 } 2919 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 2920 memset(crypt_iv, 0x00, ivsize); 2921 2922 skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 2923 init_completion(&comp.comp); 2924 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2925 if (do_crypt(true, req, &comp)) 2926 wait_for_completion(&comp.comp); 2927 kvfree(sg); 2928 r = dm_integrity_failed(ic); 2929 if (r) { 2930 *error = "Unable to encrypt journal"; 2931 goto bad; 2932 } 2933 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 2934 2935 crypto_free_skcipher(ic->journal_crypt); 2936 ic->journal_crypt = NULL; 2937 } else { 2938 unsigned crypt_len = roundup(ivsize, blocksize); 2939 2940 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 2941 if (!req) { 2942 *error = "Could not allocate crypt request"; 2943 r = -ENOMEM; 2944 goto bad; 2945 } 2946 2947 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 2948 if (!crypt_iv) { 2949 *error = "Could not allocate iv"; 2950 r = -ENOMEM; 2951 goto bad; 2952 } 2953 2954 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 2955 if (!crypt_data) { 2956 *error = "Unable to allocate crypt data"; 2957 r = -ENOMEM; 2958 goto bad; 2959 } 2960 2961 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 2962 if (!ic->journal_scatterlist) { 2963 *error = "Unable to allocate sg list"; 2964 r = -ENOMEM; 2965 goto bad; 2966 } 2967 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 2968 if (!ic->journal_io_scatterlist) { 2969 *error = "Unable to allocate sg list"; 2970 r = -ENOMEM; 2971 goto bad; 2972 } 2973 ic->sk_requests = kvmalloc_array(ic->journal_sections, 2974 sizeof(struct skcipher_request *), 2975 GFP_KERNEL | __GFP_ZERO); 2976 if (!ic->sk_requests) { 2977 *error = "Unable to allocate sk requests"; 2978 r = -ENOMEM; 2979 goto bad; 2980 } 2981 for (i = 0; i < ic->journal_sections; i++) { 2982 struct scatterlist sg; 2983 struct skcipher_request *section_req; 2984 __u32 section_le = cpu_to_le32(i); 2985 2986 memset(crypt_iv, 0x00, ivsize); 2987 memset(crypt_data, 0x00, crypt_len); 2988 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 2989 2990 sg_init_one(&sg, crypt_data, crypt_len); 2991 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 2992 init_completion(&comp.comp); 2993 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2994 if (do_crypt(true, req, &comp)) 2995 wait_for_completion(&comp.comp); 2996 2997 r = dm_integrity_failed(ic); 2998 if (r) { 2999 *error = "Unable to generate iv"; 3000 goto bad; 3001 } 3002 3003 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3004 if (!section_req) { 3005 *error = "Unable to allocate crypt request"; 3006 r = -ENOMEM; 3007 goto bad; 3008 } 3009 section_req->iv = kmalloc_array(ivsize, 2, 3010 GFP_KERNEL); 3011 if (!section_req->iv) { 3012 skcipher_request_free(section_req); 3013 *error = "Unable to allocate iv"; 3014 r = -ENOMEM; 3015 goto bad; 3016 } 3017 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3018 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3019 ic->sk_requests[i] = section_req; 3020 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3021 } 3022 } 3023 } 3024 3025 for (i = 0; i < N_COMMIT_IDS; i++) { 3026 unsigned j; 3027 retest_commit_id: 3028 for (j = 0; j < i; j++) { 3029 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3030 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3031 goto retest_commit_id; 3032 } 3033 } 3034 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3035 } 3036 3037 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3038 if (journal_tree_size > ULONG_MAX) { 3039 *error = "Journal doesn't fit into memory"; 3040 r = -ENOMEM; 3041 goto bad; 3042 } 3043 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3044 if (!ic->journal_tree) { 3045 *error = "Could not allocate memory for journal tree"; 3046 r = -ENOMEM; 3047 } 3048 bad: 3049 kfree(crypt_data); 3050 kfree(crypt_iv); 3051 skcipher_request_free(req); 3052 3053 return r; 3054 } 3055 3056 /* 3057 * Construct a integrity mapping 3058 * 3059 * Arguments: 3060 * device 3061 * offset from the start of the device 3062 * tag size 3063 * D - direct writes, J - journal writes, R - recovery mode 3064 * number of optional arguments 3065 * optional arguments: 3066 * journal_sectors 3067 * interleave_sectors 3068 * buffer_sectors 3069 * journal_watermark 3070 * commit_time 3071 * internal_hash 3072 * journal_crypt 3073 * journal_mac 3074 * block_size 3075 */ 3076 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3077 { 3078 struct dm_integrity_c *ic; 3079 char dummy; 3080 int r; 3081 unsigned extra_args; 3082 struct dm_arg_set as; 3083 static const struct dm_arg _args[] = { 3084 {0, 9, "Invalid number of feature args"}, 3085 }; 3086 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3087 bool recalculate; 3088 bool should_write_sb; 3089 __u64 threshold; 3090 unsigned long long start; 3091 3092 #define DIRECT_ARGUMENTS 4 3093 3094 if (argc <= DIRECT_ARGUMENTS) { 3095 ti->error = "Invalid argument count"; 3096 return -EINVAL; 3097 } 3098 3099 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3100 if (!ic) { 3101 ti->error = "Cannot allocate integrity context"; 3102 return -ENOMEM; 3103 } 3104 ti->private = ic; 3105 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3106 3107 ic->in_progress = RB_ROOT; 3108 INIT_LIST_HEAD(&ic->wait_list); 3109 init_waitqueue_head(&ic->endio_wait); 3110 bio_list_init(&ic->flush_bio_list); 3111 init_waitqueue_head(&ic->copy_to_journal_wait); 3112 init_completion(&ic->crypto_backoff); 3113 atomic64_set(&ic->number_of_mismatches, 0); 3114 3115 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3116 if (r) { 3117 ti->error = "Device lookup failed"; 3118 goto bad; 3119 } 3120 3121 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3122 ti->error = "Invalid starting offset"; 3123 r = -EINVAL; 3124 goto bad; 3125 } 3126 ic->start = start; 3127 3128 if (strcmp(argv[2], "-")) { 3129 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3130 ti->error = "Invalid tag size"; 3131 r = -EINVAL; 3132 goto bad; 3133 } 3134 } 3135 3136 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) 3137 ic->mode = argv[3][0]; 3138 else { 3139 ti->error = "Invalid mode (expecting J, D, R)"; 3140 r = -EINVAL; 3141 goto bad; 3142 } 3143 3144 journal_sectors = 0; 3145 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3146 buffer_sectors = DEFAULT_BUFFER_SECTORS; 3147 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 3148 sync_msec = DEFAULT_SYNC_MSEC; 3149 recalculate = false; 3150 ic->sectors_per_block = 1; 3151 3152 as.argc = argc - DIRECT_ARGUMENTS; 3153 as.argv = argv + DIRECT_ARGUMENTS; 3154 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 3155 if (r) 3156 goto bad; 3157 3158 while (extra_args--) { 3159 const char *opt_string; 3160 unsigned val; 3161 opt_string = dm_shift_arg(&as); 3162 if (!opt_string) { 3163 r = -EINVAL; 3164 ti->error = "Not enough feature arguments"; 3165 goto bad; 3166 } 3167 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 3168 journal_sectors = val ? val : 1; 3169 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 3170 interleave_sectors = val; 3171 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 3172 buffer_sectors = val; 3173 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 3174 journal_watermark = val; 3175 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 3176 sync_msec = val; 3177 else if (!memcmp(opt_string, "meta_device:", strlen("meta_device:"))) { 3178 if (ic->meta_dev) { 3179 dm_put_device(ti, ic->meta_dev); 3180 ic->meta_dev = NULL; 3181 } 3182 r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev); 3183 if (r) { 3184 ti->error = "Device lookup failed"; 3185 goto bad; 3186 } 3187 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 3188 if (val < 1 << SECTOR_SHIFT || 3189 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 3190 (val & (val -1))) { 3191 r = -EINVAL; 3192 ti->error = "Invalid block_size argument"; 3193 goto bad; 3194 } 3195 ic->sectors_per_block = val >> SECTOR_SHIFT; 3196 } else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 3197 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 3198 "Invalid internal_hash argument"); 3199 if (r) 3200 goto bad; 3201 } else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 3202 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 3203 "Invalid journal_crypt argument"); 3204 if (r) 3205 goto bad; 3206 } else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 3207 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 3208 "Invalid journal_mac argument"); 3209 if (r) 3210 goto bad; 3211 } else if (!strcmp(opt_string, "recalculate")) { 3212 recalculate = true; 3213 } else { 3214 r = -EINVAL; 3215 ti->error = "Invalid argument"; 3216 goto bad; 3217 } 3218 } 3219 3220 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 3221 if (!ic->meta_dev) 3222 ic->meta_device_sectors = ic->data_device_sectors; 3223 else 3224 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 3225 3226 if (!journal_sectors) { 3227 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 3228 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 3229 } 3230 3231 if (!buffer_sectors) 3232 buffer_sectors = 1; 3233 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 3234 3235 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 3236 "Invalid internal hash", "Error setting internal hash key"); 3237 if (r) 3238 goto bad; 3239 3240 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 3241 "Invalid journal mac", "Error setting journal mac key"); 3242 if (r) 3243 goto bad; 3244 3245 if (!ic->tag_size) { 3246 if (!ic->internal_hash) { 3247 ti->error = "Unknown tag size"; 3248 r = -EINVAL; 3249 goto bad; 3250 } 3251 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 3252 } 3253 if (ic->tag_size > MAX_TAG_SIZE) { 3254 ti->error = "Too big tag size"; 3255 r = -EINVAL; 3256 goto bad; 3257 } 3258 if (!(ic->tag_size & (ic->tag_size - 1))) 3259 ic->log2_tag_size = __ffs(ic->tag_size); 3260 else 3261 ic->log2_tag_size = -1; 3262 3263 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 3264 ic->autocommit_msec = sync_msec; 3265 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 3266 3267 ic->io = dm_io_client_create(); 3268 if (IS_ERR(ic->io)) { 3269 r = PTR_ERR(ic->io); 3270 ic->io = NULL; 3271 ti->error = "Cannot allocate dm io"; 3272 goto bad; 3273 } 3274 3275 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 3276 if (r) { 3277 ti->error = "Cannot allocate mempool"; 3278 goto bad; 3279 } 3280 3281 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 3282 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 3283 if (!ic->metadata_wq) { 3284 ti->error = "Cannot allocate workqueue"; 3285 r = -ENOMEM; 3286 goto bad; 3287 } 3288 3289 /* 3290 * If this workqueue were percpu, it would cause bio reordering 3291 * and reduced performance. 3292 */ 3293 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3294 if (!ic->wait_wq) { 3295 ti->error = "Cannot allocate workqueue"; 3296 r = -ENOMEM; 3297 goto bad; 3298 } 3299 3300 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 3301 if (!ic->commit_wq) { 3302 ti->error = "Cannot allocate workqueue"; 3303 r = -ENOMEM; 3304 goto bad; 3305 } 3306 INIT_WORK(&ic->commit_work, integrity_commit); 3307 3308 if (ic->mode == 'J') { 3309 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 3310 if (!ic->writer_wq) { 3311 ti->error = "Cannot allocate workqueue"; 3312 r = -ENOMEM; 3313 goto bad; 3314 } 3315 INIT_WORK(&ic->writer_work, integrity_writer); 3316 } 3317 3318 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 3319 if (!ic->sb) { 3320 r = -ENOMEM; 3321 ti->error = "Cannot allocate superblock area"; 3322 goto bad; 3323 } 3324 3325 r = sync_rw_sb(ic, REQ_OP_READ, 0); 3326 if (r) { 3327 ti->error = "Error reading superblock"; 3328 goto bad; 3329 } 3330 should_write_sb = false; 3331 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 3332 if (ic->mode != 'R') { 3333 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 3334 r = -EINVAL; 3335 ti->error = "The device is not initialized"; 3336 goto bad; 3337 } 3338 } 3339 3340 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 3341 if (r) { 3342 ti->error = "Could not initialize superblock"; 3343 goto bad; 3344 } 3345 if (ic->mode != 'R') 3346 should_write_sb = true; 3347 } 3348 3349 if (!ic->sb->version || ic->sb->version > SB_VERSION_2) { 3350 r = -EINVAL; 3351 ti->error = "Unknown version"; 3352 goto bad; 3353 } 3354 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 3355 r = -EINVAL; 3356 ti->error = "Tag size doesn't match the information in superblock"; 3357 goto bad; 3358 } 3359 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 3360 r = -EINVAL; 3361 ti->error = "Block size doesn't match the information in superblock"; 3362 goto bad; 3363 } 3364 if (!le32_to_cpu(ic->sb->journal_sections)) { 3365 r = -EINVAL; 3366 ti->error = "Corrupted superblock, journal_sections is 0"; 3367 goto bad; 3368 } 3369 /* make sure that ti->max_io_len doesn't overflow */ 3370 if (!ic->meta_dev) { 3371 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 3372 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 3373 r = -EINVAL; 3374 ti->error = "Invalid interleave_sectors in the superblock"; 3375 goto bad; 3376 } 3377 } else { 3378 if (ic->sb->log2_interleave_sectors) { 3379 r = -EINVAL; 3380 ti->error = "Invalid interleave_sectors in the superblock"; 3381 goto bad; 3382 } 3383 } 3384 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3385 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) { 3386 /* test for overflow */ 3387 r = -EINVAL; 3388 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors"; 3389 goto bad; 3390 } 3391 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 3392 r = -EINVAL; 3393 ti->error = "Journal mac mismatch"; 3394 goto bad; 3395 } 3396 3397 try_smaller_buffer: 3398 r = calculate_device_limits(ic); 3399 if (r) { 3400 if (ic->meta_dev) { 3401 if (ic->log2_buffer_sectors > 3) { 3402 ic->log2_buffer_sectors--; 3403 goto try_smaller_buffer; 3404 } 3405 } 3406 ti->error = "The device is too small"; 3407 goto bad; 3408 } 3409 if (!ic->meta_dev) 3410 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 3411 3412 if (ti->len > ic->provided_data_sectors) { 3413 r = -EINVAL; 3414 ti->error = "Not enough provided sectors for requested mapping size"; 3415 goto bad; 3416 } 3417 3418 3419 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 3420 threshold += 50; 3421 do_div(threshold, 100); 3422 ic->free_sectors_threshold = threshold; 3423 3424 DEBUG_print("initialized:\n"); 3425 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 3426 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 3427 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 3428 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 3429 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 3430 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 3431 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 3432 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 3433 DEBUG_print(" device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors); 3434 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 3435 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 3436 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 3437 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors, 3438 (unsigned long long)ic->provided_data_sectors); 3439 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 3440 3441 if (recalculate && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 3442 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3443 ic->sb->recalc_sector = cpu_to_le64(0); 3444 } 3445 3446 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3447 if (!ic->internal_hash) { 3448 r = -EINVAL; 3449 ti->error = "Recalculate is only valid with internal hash"; 3450 goto bad; 3451 } 3452 ic->recalc_wq = alloc_workqueue("dm-intergrity-recalc", WQ_MEM_RECLAIM, 1); 3453 if (!ic->recalc_wq ) { 3454 ti->error = "Cannot allocate workqueue"; 3455 r = -ENOMEM; 3456 goto bad; 3457 } 3458 INIT_WORK(&ic->recalc_work, integrity_recalc); 3459 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 3460 if (!ic->recalc_buffer) { 3461 ti->error = "Cannot allocate buffer for recalculating"; 3462 r = -ENOMEM; 3463 goto bad; 3464 } 3465 ic->recalc_tags = kvmalloc((RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size, GFP_KERNEL); 3466 if (!ic->recalc_tags) { 3467 ti->error = "Cannot allocate tags for recalculating"; 3468 r = -ENOMEM; 3469 goto bad; 3470 } 3471 } 3472 3473 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 3474 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 3475 if (IS_ERR(ic->bufio)) { 3476 r = PTR_ERR(ic->bufio); 3477 ti->error = "Cannot initialize dm-bufio"; 3478 ic->bufio = NULL; 3479 goto bad; 3480 } 3481 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 3482 3483 if (ic->mode != 'R') { 3484 r = create_journal(ic, &ti->error); 3485 if (r) 3486 goto bad; 3487 } 3488 3489 if (should_write_sb) { 3490 int r; 3491 3492 init_journal(ic, 0, ic->journal_sections, 0); 3493 r = dm_integrity_failed(ic); 3494 if (unlikely(r)) { 3495 ti->error = "Error initializing journal"; 3496 goto bad; 3497 } 3498 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3499 if (r) { 3500 ti->error = "Error initializing superblock"; 3501 goto bad; 3502 } 3503 ic->just_formatted = true; 3504 } 3505 3506 if (!ic->meta_dev) { 3507 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 3508 if (r) 3509 goto bad; 3510 } 3511 3512 if (!ic->internal_hash) 3513 dm_integrity_set(ti, ic); 3514 3515 ti->num_flush_bios = 1; 3516 ti->flush_supported = true; 3517 3518 return 0; 3519 bad: 3520 dm_integrity_dtr(ti); 3521 return r; 3522 } 3523 3524 static void dm_integrity_dtr(struct dm_target *ti) 3525 { 3526 struct dm_integrity_c *ic = ti->private; 3527 3528 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3529 BUG_ON(!list_empty(&ic->wait_list)); 3530 3531 if (ic->metadata_wq) 3532 destroy_workqueue(ic->metadata_wq); 3533 if (ic->wait_wq) 3534 destroy_workqueue(ic->wait_wq); 3535 if (ic->commit_wq) 3536 destroy_workqueue(ic->commit_wq); 3537 if (ic->writer_wq) 3538 destroy_workqueue(ic->writer_wq); 3539 if (ic->recalc_wq) 3540 destroy_workqueue(ic->recalc_wq); 3541 if (ic->recalc_buffer) 3542 vfree(ic->recalc_buffer); 3543 if (ic->recalc_tags) 3544 kvfree(ic->recalc_tags); 3545 if (ic->bufio) 3546 dm_bufio_client_destroy(ic->bufio); 3547 mempool_exit(&ic->journal_io_mempool); 3548 if (ic->io) 3549 dm_io_client_destroy(ic->io); 3550 if (ic->dev) 3551 dm_put_device(ti, ic->dev); 3552 if (ic->meta_dev) 3553 dm_put_device(ti, ic->meta_dev); 3554 dm_integrity_free_page_list(ic, ic->journal); 3555 dm_integrity_free_page_list(ic, ic->journal_io); 3556 dm_integrity_free_page_list(ic, ic->journal_xor); 3557 if (ic->journal_scatterlist) 3558 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 3559 if (ic->journal_io_scatterlist) 3560 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 3561 if (ic->sk_requests) { 3562 unsigned i; 3563 3564 for (i = 0; i < ic->journal_sections; i++) { 3565 struct skcipher_request *req = ic->sk_requests[i]; 3566 if (req) { 3567 kzfree(req->iv); 3568 skcipher_request_free(req); 3569 } 3570 } 3571 kvfree(ic->sk_requests); 3572 } 3573 kvfree(ic->journal_tree); 3574 if (ic->sb) 3575 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 3576 3577 if (ic->internal_hash) 3578 crypto_free_shash(ic->internal_hash); 3579 free_alg(&ic->internal_hash_alg); 3580 3581 if (ic->journal_crypt) 3582 crypto_free_skcipher(ic->journal_crypt); 3583 free_alg(&ic->journal_crypt_alg); 3584 3585 if (ic->journal_mac) 3586 crypto_free_shash(ic->journal_mac); 3587 free_alg(&ic->journal_mac_alg); 3588 3589 kfree(ic); 3590 } 3591 3592 static struct target_type integrity_target = { 3593 .name = "integrity", 3594 .version = {1, 2, 0}, 3595 .module = THIS_MODULE, 3596 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 3597 .ctr = dm_integrity_ctr, 3598 .dtr = dm_integrity_dtr, 3599 .map = dm_integrity_map, 3600 .postsuspend = dm_integrity_postsuspend, 3601 .resume = dm_integrity_resume, 3602 .status = dm_integrity_status, 3603 .iterate_devices = dm_integrity_iterate_devices, 3604 .io_hints = dm_integrity_io_hints, 3605 }; 3606 3607 int __init dm_integrity_init(void) 3608 { 3609 int r; 3610 3611 journal_io_cache = kmem_cache_create("integrity_journal_io", 3612 sizeof(struct journal_io), 0, 0, NULL); 3613 if (!journal_io_cache) { 3614 DMERR("can't allocate journal io cache"); 3615 return -ENOMEM; 3616 } 3617 3618 r = dm_register_target(&integrity_target); 3619 3620 if (r < 0) 3621 DMERR("register failed %d", r); 3622 3623 return r; 3624 } 3625 3626 void dm_integrity_exit(void) 3627 { 3628 dm_unregister_target(&integrity_target); 3629 kmem_cache_destroy(journal_io_cache); 3630 } 3631 3632 module_init(dm_integrity_init); 3633 module_exit(dm_integrity_exit); 3634 3635 MODULE_AUTHOR("Milan Broz"); 3636 MODULE_AUTHOR("Mikulas Patocka"); 3637 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 3638 MODULE_LICENSE("GPL"); 3639