xref: /openbmc/linux/drivers/md/dm-integrity.c (revision d4a96be65423296e42091b0b79973b8d446e7798)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bio-record.h"
10 
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25 
26 #define DM_MSG_PREFIX "integrity"
27 
28 #define DEFAULT_INTERLEAVE_SECTORS	32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
31 #define DEFAULT_BUFFER_SECTORS		128
32 #define DEFAULT_JOURNAL_WATERMARK	50
33 #define DEFAULT_SYNC_MSEC		10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS	3
36 #define MAX_LOG2_INTERLEAVE_SECTORS	31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
38 #define RECALC_SECTORS			8192
39 #define RECALC_WRITE_SUPER		16
40 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
41 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
42 #define DISCARD_FILLER			0xf6
43 #define SALT_SIZE			16
44 
45 /*
46  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
47  * so it should not be enabled in the official kernel
48  */
49 //#define DEBUG_PRINT
50 //#define INTERNAL_VERIFY
51 
52 /*
53  * On disk structures
54  */
55 
56 #define SB_MAGIC			"integrt"
57 #define SB_VERSION_1			1
58 #define SB_VERSION_2			2
59 #define SB_VERSION_3			3
60 #define SB_VERSION_4			4
61 #define SB_VERSION_5			5
62 #define SB_SECTORS			8
63 #define MAX_SECTORS_PER_BLOCK		8
64 
65 struct superblock {
66 	__u8 magic[8];
67 	__u8 version;
68 	__u8 log2_interleave_sectors;
69 	__u16 integrity_tag_size;
70 	__u32 journal_sections;
71 	__u64 provided_data_sectors;	/* userspace uses this value */
72 	__u32 flags;
73 	__u8 log2_sectors_per_block;
74 	__u8 log2_blocks_per_bitmap_bit;
75 	__u8 pad[2];
76 	__u64 recalc_sector;
77 	__u8 pad2[8];
78 	__u8 salt[SALT_SIZE];
79 };
80 
81 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
82 #define SB_FLAG_RECALCULATING		0x2
83 #define SB_FLAG_DIRTY_BITMAP		0x4
84 #define SB_FLAG_FIXED_PADDING		0x8
85 #define SB_FLAG_FIXED_HMAC		0x10
86 
87 #define	JOURNAL_ENTRY_ROUNDUP		8
88 
89 typedef __u64 commit_id_t;
90 #define JOURNAL_MAC_PER_SECTOR		8
91 
92 struct journal_entry {
93 	union {
94 		struct {
95 			__u32 sector_lo;
96 			__u32 sector_hi;
97 		} s;
98 		__u64 sector;
99 	} u;
100 	commit_id_t last_bytes[];
101 	/* __u8 tag[0]; */
102 };
103 
104 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
105 
106 #if BITS_PER_LONG == 64
107 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
108 #else
109 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
110 #endif
111 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
112 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
113 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
114 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
115 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
116 
117 #define JOURNAL_BLOCK_SECTORS		8
118 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
119 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
120 
121 struct journal_sector {
122 	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
123 	__u8 mac[JOURNAL_MAC_PER_SECTOR];
124 	commit_id_t commit_id;
125 };
126 
127 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
128 
129 #define METADATA_PADDING_SECTORS	8
130 
131 #define N_COMMIT_IDS			4
132 
133 static unsigned char prev_commit_seq(unsigned char seq)
134 {
135 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
136 }
137 
138 static unsigned char next_commit_seq(unsigned char seq)
139 {
140 	return (seq + 1) % N_COMMIT_IDS;
141 }
142 
143 /*
144  * In-memory structures
145  */
146 
147 struct journal_node {
148 	struct rb_node node;
149 	sector_t sector;
150 };
151 
152 struct alg_spec {
153 	char *alg_string;
154 	char *key_string;
155 	__u8 *key;
156 	unsigned key_size;
157 };
158 
159 struct dm_integrity_c {
160 	struct dm_dev *dev;
161 	struct dm_dev *meta_dev;
162 	unsigned tag_size;
163 	__s8 log2_tag_size;
164 	sector_t start;
165 	mempool_t journal_io_mempool;
166 	struct dm_io_client *io;
167 	struct dm_bufio_client *bufio;
168 	struct workqueue_struct *metadata_wq;
169 	struct superblock *sb;
170 	unsigned journal_pages;
171 	unsigned n_bitmap_blocks;
172 
173 	struct page_list *journal;
174 	struct page_list *journal_io;
175 	struct page_list *journal_xor;
176 	struct page_list *recalc_bitmap;
177 	struct page_list *may_write_bitmap;
178 	struct bitmap_block_status *bbs;
179 	unsigned bitmap_flush_interval;
180 	int synchronous_mode;
181 	struct bio_list synchronous_bios;
182 	struct delayed_work bitmap_flush_work;
183 
184 	struct crypto_skcipher *journal_crypt;
185 	struct scatterlist **journal_scatterlist;
186 	struct scatterlist **journal_io_scatterlist;
187 	struct skcipher_request **sk_requests;
188 
189 	struct crypto_shash *journal_mac;
190 
191 	struct journal_node *journal_tree;
192 	struct rb_root journal_tree_root;
193 
194 	sector_t provided_data_sectors;
195 
196 	unsigned short journal_entry_size;
197 	unsigned char journal_entries_per_sector;
198 	unsigned char journal_section_entries;
199 	unsigned short journal_section_sectors;
200 	unsigned journal_sections;
201 	unsigned journal_entries;
202 	sector_t data_device_sectors;
203 	sector_t meta_device_sectors;
204 	unsigned initial_sectors;
205 	unsigned metadata_run;
206 	__s8 log2_metadata_run;
207 	__u8 log2_buffer_sectors;
208 	__u8 sectors_per_block;
209 	__u8 log2_blocks_per_bitmap_bit;
210 
211 	unsigned char mode;
212 
213 	int failed;
214 
215 	struct crypto_shash *internal_hash;
216 
217 	struct dm_target *ti;
218 
219 	/* these variables are locked with endio_wait.lock */
220 	struct rb_root in_progress;
221 	struct list_head wait_list;
222 	wait_queue_head_t endio_wait;
223 	struct workqueue_struct *wait_wq;
224 	struct workqueue_struct *offload_wq;
225 
226 	unsigned char commit_seq;
227 	commit_id_t commit_ids[N_COMMIT_IDS];
228 
229 	unsigned committed_section;
230 	unsigned n_committed_sections;
231 
232 	unsigned uncommitted_section;
233 	unsigned n_uncommitted_sections;
234 
235 	unsigned free_section;
236 	unsigned char free_section_entry;
237 	unsigned free_sectors;
238 
239 	unsigned free_sectors_threshold;
240 
241 	struct workqueue_struct *commit_wq;
242 	struct work_struct commit_work;
243 
244 	struct workqueue_struct *writer_wq;
245 	struct work_struct writer_work;
246 
247 	struct workqueue_struct *recalc_wq;
248 	struct work_struct recalc_work;
249 	u8 *recalc_buffer;
250 	u8 *recalc_tags;
251 
252 	struct bio_list flush_bio_list;
253 
254 	unsigned long autocommit_jiffies;
255 	struct timer_list autocommit_timer;
256 	unsigned autocommit_msec;
257 
258 	wait_queue_head_t copy_to_journal_wait;
259 
260 	struct completion crypto_backoff;
261 
262 	bool journal_uptodate;
263 	bool just_formatted;
264 	bool recalculate_flag;
265 	bool discard;
266 	bool fix_padding;
267 	bool fix_hmac;
268 	bool legacy_recalculate;
269 
270 	struct alg_spec internal_hash_alg;
271 	struct alg_spec journal_crypt_alg;
272 	struct alg_spec journal_mac_alg;
273 
274 	atomic64_t number_of_mismatches;
275 
276 	struct notifier_block reboot_notifier;
277 };
278 
279 struct dm_integrity_range {
280 	sector_t logical_sector;
281 	sector_t n_sectors;
282 	bool waiting;
283 	union {
284 		struct rb_node node;
285 		struct {
286 			struct task_struct *task;
287 			struct list_head wait_entry;
288 		};
289 	};
290 };
291 
292 struct dm_integrity_io {
293 	struct work_struct work;
294 
295 	struct dm_integrity_c *ic;
296 	enum req_opf op;
297 	bool fua;
298 
299 	struct dm_integrity_range range;
300 
301 	sector_t metadata_block;
302 	unsigned metadata_offset;
303 
304 	atomic_t in_flight;
305 	blk_status_t bi_status;
306 
307 	struct completion *completion;
308 
309 	struct dm_bio_details bio_details;
310 };
311 
312 struct journal_completion {
313 	struct dm_integrity_c *ic;
314 	atomic_t in_flight;
315 	struct completion comp;
316 };
317 
318 struct journal_io {
319 	struct dm_integrity_range range;
320 	struct journal_completion *comp;
321 };
322 
323 struct bitmap_block_status {
324 	struct work_struct work;
325 	struct dm_integrity_c *ic;
326 	unsigned idx;
327 	unsigned long *bitmap;
328 	struct bio_list bio_queue;
329 	spinlock_t bio_queue_lock;
330 
331 };
332 
333 static struct kmem_cache *journal_io_cache;
334 
335 #define JOURNAL_IO_MEMPOOL	32
336 
337 #ifdef DEBUG_PRINT
338 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
339 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
340 {
341 	va_list args;
342 	va_start(args, msg);
343 	vprintk(msg, args);
344 	va_end(args);
345 	if (len)
346 		pr_cont(":");
347 	while (len) {
348 		pr_cont(" %02x", *bytes);
349 		bytes++;
350 		len--;
351 	}
352 	pr_cont("\n");
353 }
354 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
355 #else
356 #define DEBUG_print(x, ...)			do { } while (0)
357 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
358 #endif
359 
360 static void dm_integrity_prepare(struct request *rq)
361 {
362 }
363 
364 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
365 {
366 }
367 
368 /*
369  * DM Integrity profile, protection is performed layer above (dm-crypt)
370  */
371 static const struct blk_integrity_profile dm_integrity_profile = {
372 	.name			= "DM-DIF-EXT-TAG",
373 	.generate_fn		= NULL,
374 	.verify_fn		= NULL,
375 	.prepare_fn		= dm_integrity_prepare,
376 	.complete_fn		= dm_integrity_complete,
377 };
378 
379 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
380 static void integrity_bio_wait(struct work_struct *w);
381 static void dm_integrity_dtr(struct dm_target *ti);
382 
383 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
384 {
385 	if (err == -EILSEQ)
386 		atomic64_inc(&ic->number_of_mismatches);
387 	if (!cmpxchg(&ic->failed, 0, err))
388 		DMERR("Error on %s: %d", msg, err);
389 }
390 
391 static int dm_integrity_failed(struct dm_integrity_c *ic)
392 {
393 	return READ_ONCE(ic->failed);
394 }
395 
396 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
397 {
398 	if (ic->legacy_recalculate)
399 		return false;
400 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
401 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
402 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
403 		return true;
404 	return false;
405 }
406 
407 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
408 					  unsigned j, unsigned char seq)
409 {
410 	/*
411 	 * Xor the number with section and sector, so that if a piece of
412 	 * journal is written at wrong place, it is detected.
413 	 */
414 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
415 }
416 
417 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
418 				sector_t *area, sector_t *offset)
419 {
420 	if (!ic->meta_dev) {
421 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
422 		*area = data_sector >> log2_interleave_sectors;
423 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
424 	} else {
425 		*area = 0;
426 		*offset = data_sector;
427 	}
428 }
429 
430 #define sector_to_block(ic, n)						\
431 do {									\
432 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
433 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
434 } while (0)
435 
436 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
437 					    sector_t offset, unsigned *metadata_offset)
438 {
439 	__u64 ms;
440 	unsigned mo;
441 
442 	ms = area << ic->sb->log2_interleave_sectors;
443 	if (likely(ic->log2_metadata_run >= 0))
444 		ms += area << ic->log2_metadata_run;
445 	else
446 		ms += area * ic->metadata_run;
447 	ms >>= ic->log2_buffer_sectors;
448 
449 	sector_to_block(ic, offset);
450 
451 	if (likely(ic->log2_tag_size >= 0)) {
452 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
453 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
454 	} else {
455 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
456 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
457 	}
458 	*metadata_offset = mo;
459 	return ms;
460 }
461 
462 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
463 {
464 	sector_t result;
465 
466 	if (ic->meta_dev)
467 		return offset;
468 
469 	result = area << ic->sb->log2_interleave_sectors;
470 	if (likely(ic->log2_metadata_run >= 0))
471 		result += (area + 1) << ic->log2_metadata_run;
472 	else
473 		result += (area + 1) * ic->metadata_run;
474 
475 	result += (sector_t)ic->initial_sectors + offset;
476 	result += ic->start;
477 
478 	return result;
479 }
480 
481 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
482 {
483 	if (unlikely(*sec_ptr >= ic->journal_sections))
484 		*sec_ptr -= ic->journal_sections;
485 }
486 
487 static void sb_set_version(struct dm_integrity_c *ic)
488 {
489 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
490 		ic->sb->version = SB_VERSION_5;
491 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
492 		ic->sb->version = SB_VERSION_4;
493 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
494 		ic->sb->version = SB_VERSION_3;
495 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
496 		ic->sb->version = SB_VERSION_2;
497 	else
498 		ic->sb->version = SB_VERSION_1;
499 }
500 
501 static int sb_mac(struct dm_integrity_c *ic, bool wr)
502 {
503 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
504 	int r;
505 	unsigned size = crypto_shash_digestsize(ic->journal_mac);
506 
507 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
508 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
509 		return -EINVAL;
510 	}
511 
512 	desc->tfm = ic->journal_mac;
513 
514 	r = crypto_shash_init(desc);
515 	if (unlikely(r < 0)) {
516 		dm_integrity_io_error(ic, "crypto_shash_init", r);
517 		return r;
518 	}
519 
520 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
521 	if (unlikely(r < 0)) {
522 		dm_integrity_io_error(ic, "crypto_shash_update", r);
523 		return r;
524 	}
525 
526 	if (likely(wr)) {
527 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
528 		if (unlikely(r < 0)) {
529 			dm_integrity_io_error(ic, "crypto_shash_final", r);
530 			return r;
531 		}
532 	} else {
533 		__u8 result[HASH_MAX_DIGESTSIZE];
534 		r = crypto_shash_final(desc, result);
535 		if (unlikely(r < 0)) {
536 			dm_integrity_io_error(ic, "crypto_shash_final", r);
537 			return r;
538 		}
539 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
540 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
541 			return -EILSEQ;
542 		}
543 	}
544 
545 	return 0;
546 }
547 
548 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
549 {
550 	struct dm_io_request io_req;
551 	struct dm_io_region io_loc;
552 	int r;
553 
554 	io_req.bi_op = op;
555 	io_req.bi_op_flags = op_flags;
556 	io_req.mem.type = DM_IO_KMEM;
557 	io_req.mem.ptr.addr = ic->sb;
558 	io_req.notify.fn = NULL;
559 	io_req.client = ic->io;
560 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
561 	io_loc.sector = ic->start;
562 	io_loc.count = SB_SECTORS;
563 
564 	if (op == REQ_OP_WRITE) {
565 		sb_set_version(ic);
566 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
567 			r = sb_mac(ic, true);
568 			if (unlikely(r))
569 				return r;
570 		}
571 	}
572 
573 	r = dm_io(&io_req, 1, &io_loc, NULL);
574 	if (unlikely(r))
575 		return r;
576 
577 	if (op == REQ_OP_READ) {
578 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
579 			r = sb_mac(ic, false);
580 			if (unlikely(r))
581 				return r;
582 		}
583 	}
584 
585 	return 0;
586 }
587 
588 #define BITMAP_OP_TEST_ALL_SET		0
589 #define BITMAP_OP_TEST_ALL_CLEAR	1
590 #define BITMAP_OP_SET			2
591 #define BITMAP_OP_CLEAR			3
592 
593 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
594 			    sector_t sector, sector_t n_sectors, int mode)
595 {
596 	unsigned long bit, end_bit, this_end_bit, page, end_page;
597 	unsigned long *data;
598 
599 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
600 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
601 			sector,
602 			n_sectors,
603 			ic->sb->log2_sectors_per_block,
604 			ic->log2_blocks_per_bitmap_bit,
605 			mode);
606 		BUG();
607 	}
608 
609 	if (unlikely(!n_sectors))
610 		return true;
611 
612 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
613 	end_bit = (sector + n_sectors - 1) >>
614 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
615 
616 	page = bit / (PAGE_SIZE * 8);
617 	bit %= PAGE_SIZE * 8;
618 
619 	end_page = end_bit / (PAGE_SIZE * 8);
620 	end_bit %= PAGE_SIZE * 8;
621 
622 repeat:
623 	if (page < end_page) {
624 		this_end_bit = PAGE_SIZE * 8 - 1;
625 	} else {
626 		this_end_bit = end_bit;
627 	}
628 
629 	data = lowmem_page_address(bitmap[page].page);
630 
631 	if (mode == BITMAP_OP_TEST_ALL_SET) {
632 		while (bit <= this_end_bit) {
633 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
634 				do {
635 					if (data[bit / BITS_PER_LONG] != -1)
636 						return false;
637 					bit += BITS_PER_LONG;
638 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
639 				continue;
640 			}
641 			if (!test_bit(bit, data))
642 				return false;
643 			bit++;
644 		}
645 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
646 		while (bit <= this_end_bit) {
647 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
648 				do {
649 					if (data[bit / BITS_PER_LONG] != 0)
650 						return false;
651 					bit += BITS_PER_LONG;
652 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
653 				continue;
654 			}
655 			if (test_bit(bit, data))
656 				return false;
657 			bit++;
658 		}
659 	} else if (mode == BITMAP_OP_SET) {
660 		while (bit <= this_end_bit) {
661 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
662 				do {
663 					data[bit / BITS_PER_LONG] = -1;
664 					bit += BITS_PER_LONG;
665 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
666 				continue;
667 			}
668 			__set_bit(bit, data);
669 			bit++;
670 		}
671 	} else if (mode == BITMAP_OP_CLEAR) {
672 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
673 			clear_page(data);
674 		else while (bit <= this_end_bit) {
675 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
676 				do {
677 					data[bit / BITS_PER_LONG] = 0;
678 					bit += BITS_PER_LONG;
679 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
680 				continue;
681 			}
682 			__clear_bit(bit, data);
683 			bit++;
684 		}
685 	} else {
686 		BUG();
687 	}
688 
689 	if (unlikely(page < end_page)) {
690 		bit = 0;
691 		page++;
692 		goto repeat;
693 	}
694 
695 	return true;
696 }
697 
698 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
699 {
700 	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
701 	unsigned i;
702 
703 	for (i = 0; i < n_bitmap_pages; i++) {
704 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
705 		unsigned long *src_data = lowmem_page_address(src[i].page);
706 		copy_page(dst_data, src_data);
707 	}
708 }
709 
710 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
711 {
712 	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
713 	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
714 
715 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
716 	return &ic->bbs[bitmap_block];
717 }
718 
719 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
720 				 bool e, const char *function)
721 {
722 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
723 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
724 
725 	if (unlikely(section >= ic->journal_sections) ||
726 	    unlikely(offset >= limit)) {
727 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
728 		       function, section, offset, ic->journal_sections, limit);
729 		BUG();
730 	}
731 #endif
732 }
733 
734 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
735 			       unsigned *pl_index, unsigned *pl_offset)
736 {
737 	unsigned sector;
738 
739 	access_journal_check(ic, section, offset, false, "page_list_location");
740 
741 	sector = section * ic->journal_section_sectors + offset;
742 
743 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
744 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
745 }
746 
747 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
748 					       unsigned section, unsigned offset, unsigned *n_sectors)
749 {
750 	unsigned pl_index, pl_offset;
751 	char *va;
752 
753 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
754 
755 	if (n_sectors)
756 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
757 
758 	va = lowmem_page_address(pl[pl_index].page);
759 
760 	return (struct journal_sector *)(va + pl_offset);
761 }
762 
763 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
764 {
765 	return access_page_list(ic, ic->journal, section, offset, NULL);
766 }
767 
768 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
769 {
770 	unsigned rel_sector, offset;
771 	struct journal_sector *js;
772 
773 	access_journal_check(ic, section, n, true, "access_journal_entry");
774 
775 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
776 	offset = n / JOURNAL_BLOCK_SECTORS;
777 
778 	js = access_journal(ic, section, rel_sector);
779 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
780 }
781 
782 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
783 {
784 	n <<= ic->sb->log2_sectors_per_block;
785 
786 	n += JOURNAL_BLOCK_SECTORS;
787 
788 	access_journal_check(ic, section, n, false, "access_journal_data");
789 
790 	return access_journal(ic, section, n);
791 }
792 
793 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
794 {
795 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
796 	int r;
797 	unsigned j, size;
798 
799 	desc->tfm = ic->journal_mac;
800 
801 	r = crypto_shash_init(desc);
802 	if (unlikely(r < 0)) {
803 		dm_integrity_io_error(ic, "crypto_shash_init", r);
804 		goto err;
805 	}
806 
807 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
808 		uint64_t section_le;
809 
810 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
811 		if (unlikely(r < 0)) {
812 			dm_integrity_io_error(ic, "crypto_shash_update", r);
813 			goto err;
814 		}
815 
816 		section_le = cpu_to_le64(section);
817 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
818 		if (unlikely(r < 0)) {
819 			dm_integrity_io_error(ic, "crypto_shash_update", r);
820 			goto err;
821 		}
822 	}
823 
824 	for (j = 0; j < ic->journal_section_entries; j++) {
825 		struct journal_entry *je = access_journal_entry(ic, section, j);
826 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
827 		if (unlikely(r < 0)) {
828 			dm_integrity_io_error(ic, "crypto_shash_update", r);
829 			goto err;
830 		}
831 	}
832 
833 	size = crypto_shash_digestsize(ic->journal_mac);
834 
835 	if (likely(size <= JOURNAL_MAC_SIZE)) {
836 		r = crypto_shash_final(desc, result);
837 		if (unlikely(r < 0)) {
838 			dm_integrity_io_error(ic, "crypto_shash_final", r);
839 			goto err;
840 		}
841 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
842 	} else {
843 		__u8 digest[HASH_MAX_DIGESTSIZE];
844 
845 		if (WARN_ON(size > sizeof(digest))) {
846 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
847 			goto err;
848 		}
849 		r = crypto_shash_final(desc, digest);
850 		if (unlikely(r < 0)) {
851 			dm_integrity_io_error(ic, "crypto_shash_final", r);
852 			goto err;
853 		}
854 		memcpy(result, digest, JOURNAL_MAC_SIZE);
855 	}
856 
857 	return;
858 err:
859 	memset(result, 0, JOURNAL_MAC_SIZE);
860 }
861 
862 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
863 {
864 	__u8 result[JOURNAL_MAC_SIZE];
865 	unsigned j;
866 
867 	if (!ic->journal_mac)
868 		return;
869 
870 	section_mac(ic, section, result);
871 
872 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
873 		struct journal_sector *js = access_journal(ic, section, j);
874 
875 		if (likely(wr))
876 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
877 		else {
878 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
879 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
880 		}
881 	}
882 }
883 
884 static void complete_journal_op(void *context)
885 {
886 	struct journal_completion *comp = context;
887 	BUG_ON(!atomic_read(&comp->in_flight));
888 	if (likely(atomic_dec_and_test(&comp->in_flight)))
889 		complete(&comp->comp);
890 }
891 
892 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
893 			unsigned n_sections, struct journal_completion *comp)
894 {
895 	struct async_submit_ctl submit;
896 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
897 	unsigned pl_index, pl_offset, section_index;
898 	struct page_list *source_pl, *target_pl;
899 
900 	if (likely(encrypt)) {
901 		source_pl = ic->journal;
902 		target_pl = ic->journal_io;
903 	} else {
904 		source_pl = ic->journal_io;
905 		target_pl = ic->journal;
906 	}
907 
908 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
909 
910 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
911 
912 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
913 
914 	section_index = pl_index;
915 
916 	do {
917 		size_t this_step;
918 		struct page *src_pages[2];
919 		struct page *dst_page;
920 
921 		while (unlikely(pl_index == section_index)) {
922 			unsigned dummy;
923 			if (likely(encrypt))
924 				rw_section_mac(ic, section, true);
925 			section++;
926 			n_sections--;
927 			if (!n_sections)
928 				break;
929 			page_list_location(ic, section, 0, &section_index, &dummy);
930 		}
931 
932 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
933 		dst_page = target_pl[pl_index].page;
934 		src_pages[0] = source_pl[pl_index].page;
935 		src_pages[1] = ic->journal_xor[pl_index].page;
936 
937 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
938 
939 		pl_index++;
940 		pl_offset = 0;
941 		n_bytes -= this_step;
942 	} while (n_bytes);
943 
944 	BUG_ON(n_sections);
945 
946 	async_tx_issue_pending_all();
947 }
948 
949 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
950 {
951 	struct journal_completion *comp = req->data;
952 	if (unlikely(err)) {
953 		if (likely(err == -EINPROGRESS)) {
954 			complete(&comp->ic->crypto_backoff);
955 			return;
956 		}
957 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
958 	}
959 	complete_journal_op(comp);
960 }
961 
962 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
963 {
964 	int r;
965 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
966 				      complete_journal_encrypt, comp);
967 	if (likely(encrypt))
968 		r = crypto_skcipher_encrypt(req);
969 	else
970 		r = crypto_skcipher_decrypt(req);
971 	if (likely(!r))
972 		return false;
973 	if (likely(r == -EINPROGRESS))
974 		return true;
975 	if (likely(r == -EBUSY)) {
976 		wait_for_completion(&comp->ic->crypto_backoff);
977 		reinit_completion(&comp->ic->crypto_backoff);
978 		return true;
979 	}
980 	dm_integrity_io_error(comp->ic, "encrypt", r);
981 	return false;
982 }
983 
984 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
985 			  unsigned n_sections, struct journal_completion *comp)
986 {
987 	struct scatterlist **source_sg;
988 	struct scatterlist **target_sg;
989 
990 	atomic_add(2, &comp->in_flight);
991 
992 	if (likely(encrypt)) {
993 		source_sg = ic->journal_scatterlist;
994 		target_sg = ic->journal_io_scatterlist;
995 	} else {
996 		source_sg = ic->journal_io_scatterlist;
997 		target_sg = ic->journal_scatterlist;
998 	}
999 
1000 	do {
1001 		struct skcipher_request *req;
1002 		unsigned ivsize;
1003 		char *iv;
1004 
1005 		if (likely(encrypt))
1006 			rw_section_mac(ic, section, true);
1007 
1008 		req = ic->sk_requests[section];
1009 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1010 		iv = req->iv;
1011 
1012 		memcpy(iv, iv + ivsize, ivsize);
1013 
1014 		req->src = source_sg[section];
1015 		req->dst = target_sg[section];
1016 
1017 		if (unlikely(do_crypt(encrypt, req, comp)))
1018 			atomic_inc(&comp->in_flight);
1019 
1020 		section++;
1021 		n_sections--;
1022 	} while (n_sections);
1023 
1024 	atomic_dec(&comp->in_flight);
1025 	complete_journal_op(comp);
1026 }
1027 
1028 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1029 			    unsigned n_sections, struct journal_completion *comp)
1030 {
1031 	if (ic->journal_xor)
1032 		return xor_journal(ic, encrypt, section, n_sections, comp);
1033 	else
1034 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1035 }
1036 
1037 static void complete_journal_io(unsigned long error, void *context)
1038 {
1039 	struct journal_completion *comp = context;
1040 	if (unlikely(error != 0))
1041 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1042 	complete_journal_op(comp);
1043 }
1044 
1045 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1046 			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1047 {
1048 	struct dm_io_request io_req;
1049 	struct dm_io_region io_loc;
1050 	unsigned pl_index, pl_offset;
1051 	int r;
1052 
1053 	if (unlikely(dm_integrity_failed(ic))) {
1054 		if (comp)
1055 			complete_journal_io(-1UL, comp);
1056 		return;
1057 	}
1058 
1059 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1060 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1061 
1062 	io_req.bi_op = op;
1063 	io_req.bi_op_flags = op_flags;
1064 	io_req.mem.type = DM_IO_PAGE_LIST;
1065 	if (ic->journal_io)
1066 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1067 	else
1068 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1069 	io_req.mem.offset = pl_offset;
1070 	if (likely(comp != NULL)) {
1071 		io_req.notify.fn = complete_journal_io;
1072 		io_req.notify.context = comp;
1073 	} else {
1074 		io_req.notify.fn = NULL;
1075 	}
1076 	io_req.client = ic->io;
1077 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1078 	io_loc.sector = ic->start + SB_SECTORS + sector;
1079 	io_loc.count = n_sectors;
1080 
1081 	r = dm_io(&io_req, 1, &io_loc, NULL);
1082 	if (unlikely(r)) {
1083 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1084 		if (comp) {
1085 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1086 			complete_journal_io(-1UL, comp);
1087 		}
1088 	}
1089 }
1090 
1091 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1092 		       unsigned n_sections, struct journal_completion *comp)
1093 {
1094 	unsigned sector, n_sectors;
1095 
1096 	sector = section * ic->journal_section_sectors;
1097 	n_sectors = n_sections * ic->journal_section_sectors;
1098 
1099 	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1100 }
1101 
1102 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1103 {
1104 	struct journal_completion io_comp;
1105 	struct journal_completion crypt_comp_1;
1106 	struct journal_completion crypt_comp_2;
1107 	unsigned i;
1108 
1109 	io_comp.ic = ic;
1110 	init_completion(&io_comp.comp);
1111 
1112 	if (commit_start + commit_sections <= ic->journal_sections) {
1113 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1114 		if (ic->journal_io) {
1115 			crypt_comp_1.ic = ic;
1116 			init_completion(&crypt_comp_1.comp);
1117 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1118 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1119 			wait_for_completion_io(&crypt_comp_1.comp);
1120 		} else {
1121 			for (i = 0; i < commit_sections; i++)
1122 				rw_section_mac(ic, commit_start + i, true);
1123 		}
1124 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1125 			   commit_sections, &io_comp);
1126 	} else {
1127 		unsigned to_end;
1128 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1129 		to_end = ic->journal_sections - commit_start;
1130 		if (ic->journal_io) {
1131 			crypt_comp_1.ic = ic;
1132 			init_completion(&crypt_comp_1.comp);
1133 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1134 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1135 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1136 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1137 				reinit_completion(&crypt_comp_1.comp);
1138 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1139 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1140 				wait_for_completion_io(&crypt_comp_1.comp);
1141 			} else {
1142 				crypt_comp_2.ic = ic;
1143 				init_completion(&crypt_comp_2.comp);
1144 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1145 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1146 				wait_for_completion_io(&crypt_comp_1.comp);
1147 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1148 				wait_for_completion_io(&crypt_comp_2.comp);
1149 			}
1150 		} else {
1151 			for (i = 0; i < to_end; i++)
1152 				rw_section_mac(ic, commit_start + i, true);
1153 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1154 			for (i = 0; i < commit_sections - to_end; i++)
1155 				rw_section_mac(ic, i, true);
1156 		}
1157 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1158 	}
1159 
1160 	wait_for_completion_io(&io_comp.comp);
1161 }
1162 
1163 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1164 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1165 {
1166 	struct dm_io_request io_req;
1167 	struct dm_io_region io_loc;
1168 	int r;
1169 	unsigned sector, pl_index, pl_offset;
1170 
1171 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1172 
1173 	if (unlikely(dm_integrity_failed(ic))) {
1174 		fn(-1UL, data);
1175 		return;
1176 	}
1177 
1178 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1179 
1180 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1181 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1182 
1183 	io_req.bi_op = REQ_OP_WRITE;
1184 	io_req.bi_op_flags = 0;
1185 	io_req.mem.type = DM_IO_PAGE_LIST;
1186 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1187 	io_req.mem.offset = pl_offset;
1188 	io_req.notify.fn = fn;
1189 	io_req.notify.context = data;
1190 	io_req.client = ic->io;
1191 	io_loc.bdev = ic->dev->bdev;
1192 	io_loc.sector = target;
1193 	io_loc.count = n_sectors;
1194 
1195 	r = dm_io(&io_req, 1, &io_loc, NULL);
1196 	if (unlikely(r)) {
1197 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1198 		fn(-1UL, data);
1199 	}
1200 }
1201 
1202 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1203 {
1204 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1205 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1206 }
1207 
1208 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1209 {
1210 	struct rb_node **n = &ic->in_progress.rb_node;
1211 	struct rb_node *parent;
1212 
1213 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1214 
1215 	if (likely(check_waiting)) {
1216 		struct dm_integrity_range *range;
1217 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1218 			if (unlikely(ranges_overlap(range, new_range)))
1219 				return false;
1220 		}
1221 	}
1222 
1223 	parent = NULL;
1224 
1225 	while (*n) {
1226 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1227 
1228 		parent = *n;
1229 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1230 			n = &range->node.rb_left;
1231 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1232 			n = &range->node.rb_right;
1233 		} else {
1234 			return false;
1235 		}
1236 	}
1237 
1238 	rb_link_node(&new_range->node, parent, n);
1239 	rb_insert_color(&new_range->node, &ic->in_progress);
1240 
1241 	return true;
1242 }
1243 
1244 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1245 {
1246 	rb_erase(&range->node, &ic->in_progress);
1247 	while (unlikely(!list_empty(&ic->wait_list))) {
1248 		struct dm_integrity_range *last_range =
1249 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1250 		struct task_struct *last_range_task;
1251 		last_range_task = last_range->task;
1252 		list_del(&last_range->wait_entry);
1253 		if (!add_new_range(ic, last_range, false)) {
1254 			last_range->task = last_range_task;
1255 			list_add(&last_range->wait_entry, &ic->wait_list);
1256 			break;
1257 		}
1258 		last_range->waiting = false;
1259 		wake_up_process(last_range_task);
1260 	}
1261 }
1262 
1263 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1264 {
1265 	unsigned long flags;
1266 
1267 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1268 	remove_range_unlocked(ic, range);
1269 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1270 }
1271 
1272 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1273 {
1274 	new_range->waiting = true;
1275 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1276 	new_range->task = current;
1277 	do {
1278 		__set_current_state(TASK_UNINTERRUPTIBLE);
1279 		spin_unlock_irq(&ic->endio_wait.lock);
1280 		io_schedule();
1281 		spin_lock_irq(&ic->endio_wait.lock);
1282 	} while (unlikely(new_range->waiting));
1283 }
1284 
1285 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1286 {
1287 	if (unlikely(!add_new_range(ic, new_range, true)))
1288 		wait_and_add_new_range(ic, new_range);
1289 }
1290 
1291 static void init_journal_node(struct journal_node *node)
1292 {
1293 	RB_CLEAR_NODE(&node->node);
1294 	node->sector = (sector_t)-1;
1295 }
1296 
1297 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1298 {
1299 	struct rb_node **link;
1300 	struct rb_node *parent;
1301 
1302 	node->sector = sector;
1303 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1304 
1305 	link = &ic->journal_tree_root.rb_node;
1306 	parent = NULL;
1307 
1308 	while (*link) {
1309 		struct journal_node *j;
1310 		parent = *link;
1311 		j = container_of(parent, struct journal_node, node);
1312 		if (sector < j->sector)
1313 			link = &j->node.rb_left;
1314 		else
1315 			link = &j->node.rb_right;
1316 	}
1317 
1318 	rb_link_node(&node->node, parent, link);
1319 	rb_insert_color(&node->node, &ic->journal_tree_root);
1320 }
1321 
1322 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1323 {
1324 	BUG_ON(RB_EMPTY_NODE(&node->node));
1325 	rb_erase(&node->node, &ic->journal_tree_root);
1326 	init_journal_node(node);
1327 }
1328 
1329 #define NOT_FOUND	(-1U)
1330 
1331 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1332 {
1333 	struct rb_node *n = ic->journal_tree_root.rb_node;
1334 	unsigned found = NOT_FOUND;
1335 	*next_sector = (sector_t)-1;
1336 	while (n) {
1337 		struct journal_node *j = container_of(n, struct journal_node, node);
1338 		if (sector == j->sector) {
1339 			found = j - ic->journal_tree;
1340 		}
1341 		if (sector < j->sector) {
1342 			*next_sector = j->sector;
1343 			n = j->node.rb_left;
1344 		} else {
1345 			n = j->node.rb_right;
1346 		}
1347 	}
1348 
1349 	return found;
1350 }
1351 
1352 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1353 {
1354 	struct journal_node *node, *next_node;
1355 	struct rb_node *next;
1356 
1357 	if (unlikely(pos >= ic->journal_entries))
1358 		return false;
1359 	node = &ic->journal_tree[pos];
1360 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1361 		return false;
1362 	if (unlikely(node->sector != sector))
1363 		return false;
1364 
1365 	next = rb_next(&node->node);
1366 	if (unlikely(!next))
1367 		return true;
1368 
1369 	next_node = container_of(next, struct journal_node, node);
1370 	return next_node->sector != sector;
1371 }
1372 
1373 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1374 {
1375 	struct rb_node *next;
1376 	struct journal_node *next_node;
1377 	unsigned next_section;
1378 
1379 	BUG_ON(RB_EMPTY_NODE(&node->node));
1380 
1381 	next = rb_next(&node->node);
1382 	if (unlikely(!next))
1383 		return false;
1384 
1385 	next_node = container_of(next, struct journal_node, node);
1386 
1387 	if (next_node->sector != node->sector)
1388 		return false;
1389 
1390 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1391 	if (next_section >= ic->committed_section &&
1392 	    next_section < ic->committed_section + ic->n_committed_sections)
1393 		return true;
1394 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1395 		return true;
1396 
1397 	return false;
1398 }
1399 
1400 #define TAG_READ	0
1401 #define TAG_WRITE	1
1402 #define TAG_CMP		2
1403 
1404 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1405 			       unsigned *metadata_offset, unsigned total_size, int op)
1406 {
1407 #define MAY_BE_FILLER		1
1408 #define MAY_BE_HASH		2
1409 	unsigned hash_offset = 0;
1410 	unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1411 
1412 	do {
1413 		unsigned char *data, *dp;
1414 		struct dm_buffer *b;
1415 		unsigned to_copy;
1416 		int r;
1417 
1418 		r = dm_integrity_failed(ic);
1419 		if (unlikely(r))
1420 			return r;
1421 
1422 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1423 		if (IS_ERR(data))
1424 			return PTR_ERR(data);
1425 
1426 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1427 		dp = data + *metadata_offset;
1428 		if (op == TAG_READ) {
1429 			memcpy(tag, dp, to_copy);
1430 		} else if (op == TAG_WRITE) {
1431 			memcpy(dp, tag, to_copy);
1432 			dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1433 		} else {
1434 			/* e.g.: op == TAG_CMP */
1435 
1436 			if (likely(is_power_of_2(ic->tag_size))) {
1437 				if (unlikely(memcmp(dp, tag, to_copy)))
1438 					if (unlikely(!ic->discard) ||
1439 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1440 						goto thorough_test;
1441 				}
1442 			} else {
1443 				unsigned i, ts;
1444 thorough_test:
1445 				ts = total_size;
1446 
1447 				for (i = 0; i < to_copy; i++, ts--) {
1448 					if (unlikely(dp[i] != tag[i]))
1449 						may_be &= ~MAY_BE_HASH;
1450 					if (likely(dp[i] != DISCARD_FILLER))
1451 						may_be &= ~MAY_BE_FILLER;
1452 					hash_offset++;
1453 					if (unlikely(hash_offset == ic->tag_size)) {
1454 						if (unlikely(!may_be)) {
1455 							dm_bufio_release(b);
1456 							return ts;
1457 						}
1458 						hash_offset = 0;
1459 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1460 					}
1461 				}
1462 			}
1463 		}
1464 		dm_bufio_release(b);
1465 
1466 		tag += to_copy;
1467 		*metadata_offset += to_copy;
1468 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1469 			(*metadata_block)++;
1470 			*metadata_offset = 0;
1471 		}
1472 
1473 		if (unlikely(!is_power_of_2(ic->tag_size))) {
1474 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1475 		}
1476 
1477 		total_size -= to_copy;
1478 	} while (unlikely(total_size));
1479 
1480 	return 0;
1481 #undef MAY_BE_FILLER
1482 #undef MAY_BE_HASH
1483 }
1484 
1485 struct flush_request {
1486 	struct dm_io_request io_req;
1487 	struct dm_io_region io_reg;
1488 	struct dm_integrity_c *ic;
1489 	struct completion comp;
1490 };
1491 
1492 static void flush_notify(unsigned long error, void *fr_)
1493 {
1494 	struct flush_request *fr = fr_;
1495 	if (unlikely(error != 0))
1496 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1497 	complete(&fr->comp);
1498 }
1499 
1500 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1501 {
1502 	int r;
1503 
1504 	struct flush_request fr;
1505 
1506 	if (!ic->meta_dev)
1507 		flush_data = false;
1508 	if (flush_data) {
1509 		fr.io_req.bi_op = REQ_OP_WRITE,
1510 		fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1511 		fr.io_req.mem.type = DM_IO_KMEM,
1512 		fr.io_req.mem.ptr.addr = NULL,
1513 		fr.io_req.notify.fn = flush_notify,
1514 		fr.io_req.notify.context = &fr;
1515 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1516 		fr.io_reg.bdev = ic->dev->bdev,
1517 		fr.io_reg.sector = 0,
1518 		fr.io_reg.count = 0,
1519 		fr.ic = ic;
1520 		init_completion(&fr.comp);
1521 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1522 		BUG_ON(r);
1523 	}
1524 
1525 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1526 	if (unlikely(r))
1527 		dm_integrity_io_error(ic, "writing tags", r);
1528 
1529 	if (flush_data)
1530 		wait_for_completion(&fr.comp);
1531 }
1532 
1533 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1534 {
1535 	DECLARE_WAITQUEUE(wait, current);
1536 	__add_wait_queue(&ic->endio_wait, &wait);
1537 	__set_current_state(TASK_UNINTERRUPTIBLE);
1538 	spin_unlock_irq(&ic->endio_wait.lock);
1539 	io_schedule();
1540 	spin_lock_irq(&ic->endio_wait.lock);
1541 	__remove_wait_queue(&ic->endio_wait, &wait);
1542 }
1543 
1544 static void autocommit_fn(struct timer_list *t)
1545 {
1546 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1547 
1548 	if (likely(!dm_integrity_failed(ic)))
1549 		queue_work(ic->commit_wq, &ic->commit_work);
1550 }
1551 
1552 static void schedule_autocommit(struct dm_integrity_c *ic)
1553 {
1554 	if (!timer_pending(&ic->autocommit_timer))
1555 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1556 }
1557 
1558 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1559 {
1560 	struct bio *bio;
1561 	unsigned long flags;
1562 
1563 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1564 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1565 	bio_list_add(&ic->flush_bio_list, bio);
1566 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1567 
1568 	queue_work(ic->commit_wq, &ic->commit_work);
1569 }
1570 
1571 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1572 {
1573 	int r = dm_integrity_failed(ic);
1574 	if (unlikely(r) && !bio->bi_status)
1575 		bio->bi_status = errno_to_blk_status(r);
1576 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1577 		unsigned long flags;
1578 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1579 		bio_list_add(&ic->synchronous_bios, bio);
1580 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1581 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1582 		return;
1583 	}
1584 	bio_endio(bio);
1585 }
1586 
1587 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1588 {
1589 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1590 
1591 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1592 		submit_flush_bio(ic, dio);
1593 	else
1594 		do_endio(ic, bio);
1595 }
1596 
1597 static void dec_in_flight(struct dm_integrity_io *dio)
1598 {
1599 	if (atomic_dec_and_test(&dio->in_flight)) {
1600 		struct dm_integrity_c *ic = dio->ic;
1601 		struct bio *bio;
1602 
1603 		remove_range(ic, &dio->range);
1604 
1605 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1606 			schedule_autocommit(ic);
1607 
1608 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1609 
1610 		if (unlikely(dio->bi_status) && !bio->bi_status)
1611 			bio->bi_status = dio->bi_status;
1612 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1613 			dio->range.logical_sector += dio->range.n_sectors;
1614 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1615 			INIT_WORK(&dio->work, integrity_bio_wait);
1616 			queue_work(ic->offload_wq, &dio->work);
1617 			return;
1618 		}
1619 		do_endio_flush(ic, dio);
1620 	}
1621 }
1622 
1623 static void integrity_end_io(struct bio *bio)
1624 {
1625 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1626 
1627 	dm_bio_restore(&dio->bio_details, bio);
1628 	if (bio->bi_integrity)
1629 		bio->bi_opf |= REQ_INTEGRITY;
1630 
1631 	if (dio->completion)
1632 		complete(dio->completion);
1633 
1634 	dec_in_flight(dio);
1635 }
1636 
1637 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1638 				      const char *data, char *result)
1639 {
1640 	__u64 sector_le = cpu_to_le64(sector);
1641 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1642 	int r;
1643 	unsigned digest_size;
1644 
1645 	req->tfm = ic->internal_hash;
1646 
1647 	r = crypto_shash_init(req);
1648 	if (unlikely(r < 0)) {
1649 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1650 		goto failed;
1651 	}
1652 
1653 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1654 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1655 		if (unlikely(r < 0)) {
1656 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1657 			goto failed;
1658 		}
1659 	}
1660 
1661 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1662 	if (unlikely(r < 0)) {
1663 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1664 		goto failed;
1665 	}
1666 
1667 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1668 	if (unlikely(r < 0)) {
1669 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1670 		goto failed;
1671 	}
1672 
1673 	r = crypto_shash_final(req, result);
1674 	if (unlikely(r < 0)) {
1675 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1676 		goto failed;
1677 	}
1678 
1679 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1680 	if (unlikely(digest_size < ic->tag_size))
1681 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1682 
1683 	return;
1684 
1685 failed:
1686 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1687 	get_random_bytes(result, ic->tag_size);
1688 }
1689 
1690 static void integrity_metadata(struct work_struct *w)
1691 {
1692 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1693 	struct dm_integrity_c *ic = dio->ic;
1694 
1695 	int r;
1696 
1697 	if (ic->internal_hash) {
1698 		struct bvec_iter iter;
1699 		struct bio_vec bv;
1700 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1701 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1702 		char *checksums;
1703 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1704 		char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1705 		sector_t sector;
1706 		unsigned sectors_to_process;
1707 
1708 		if (unlikely(ic->mode == 'R'))
1709 			goto skip_io;
1710 
1711 		if (likely(dio->op != REQ_OP_DISCARD))
1712 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1713 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1714 		else
1715 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1716 		if (!checksums) {
1717 			checksums = checksums_onstack;
1718 			if (WARN_ON(extra_space &&
1719 				    digest_size > sizeof(checksums_onstack))) {
1720 				r = -EINVAL;
1721 				goto error;
1722 			}
1723 		}
1724 
1725 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1726 			sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1727 			unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1728 			unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1729 			unsigned max_blocks = max_size / ic->tag_size;
1730 			memset(checksums, DISCARD_FILLER, max_size);
1731 
1732 			while (bi_size) {
1733 				unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1734 				this_step_blocks = min(this_step_blocks, max_blocks);
1735 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1736 							this_step_blocks * ic->tag_size, TAG_WRITE);
1737 				if (unlikely(r)) {
1738 					if (likely(checksums != checksums_onstack))
1739 						kfree(checksums);
1740 					goto error;
1741 				}
1742 
1743 				/*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1744 					printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1745 					printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1746 					BUG();
1747 				}*/
1748 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1749 				bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1750 			}
1751 
1752 			if (likely(checksums != checksums_onstack))
1753 				kfree(checksums);
1754 			goto skip_io;
1755 		}
1756 
1757 		sector = dio->range.logical_sector;
1758 		sectors_to_process = dio->range.n_sectors;
1759 
1760 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1761 			unsigned pos;
1762 			char *mem, *checksums_ptr;
1763 
1764 again:
1765 			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1766 			pos = 0;
1767 			checksums_ptr = checksums;
1768 			do {
1769 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1770 				checksums_ptr += ic->tag_size;
1771 				sectors_to_process -= ic->sectors_per_block;
1772 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1773 				sector += ic->sectors_per_block;
1774 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1775 			kunmap_atomic(mem);
1776 
1777 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1778 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1779 			if (unlikely(r)) {
1780 				if (r > 0) {
1781 					char b[BDEVNAME_SIZE];
1782 					DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1783 						    (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1784 					r = -EILSEQ;
1785 					atomic64_inc(&ic->number_of_mismatches);
1786 				}
1787 				if (likely(checksums != checksums_onstack))
1788 					kfree(checksums);
1789 				goto error;
1790 			}
1791 
1792 			if (!sectors_to_process)
1793 				break;
1794 
1795 			if (unlikely(pos < bv.bv_len)) {
1796 				bv.bv_offset += pos;
1797 				bv.bv_len -= pos;
1798 				goto again;
1799 			}
1800 		}
1801 
1802 		if (likely(checksums != checksums_onstack))
1803 			kfree(checksums);
1804 	} else {
1805 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1806 
1807 		if (bip) {
1808 			struct bio_vec biv;
1809 			struct bvec_iter iter;
1810 			unsigned data_to_process = dio->range.n_sectors;
1811 			sector_to_block(ic, data_to_process);
1812 			data_to_process *= ic->tag_size;
1813 
1814 			bip_for_each_vec(biv, bip, iter) {
1815 				unsigned char *tag;
1816 				unsigned this_len;
1817 
1818 				BUG_ON(PageHighMem(biv.bv_page));
1819 				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1820 				this_len = min(biv.bv_len, data_to_process);
1821 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1822 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1823 				if (unlikely(r))
1824 					goto error;
1825 				data_to_process -= this_len;
1826 				if (!data_to_process)
1827 					break;
1828 			}
1829 		}
1830 	}
1831 skip_io:
1832 	dec_in_flight(dio);
1833 	return;
1834 error:
1835 	dio->bi_status = errno_to_blk_status(r);
1836 	dec_in_flight(dio);
1837 }
1838 
1839 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1840 {
1841 	struct dm_integrity_c *ic = ti->private;
1842 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1843 	struct bio_integrity_payload *bip;
1844 
1845 	sector_t area, offset;
1846 
1847 	dio->ic = ic;
1848 	dio->bi_status = 0;
1849 	dio->op = bio_op(bio);
1850 
1851 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1852 		if (ti->max_io_len) {
1853 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1854 			unsigned log2_max_io_len = __fls(ti->max_io_len);
1855 			sector_t start_boundary = sec >> log2_max_io_len;
1856 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1857 			if (start_boundary < end_boundary) {
1858 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1859 				dm_accept_partial_bio(bio, len);
1860 			}
1861 		}
1862 	}
1863 
1864 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1865 		submit_flush_bio(ic, dio);
1866 		return DM_MAPIO_SUBMITTED;
1867 	}
1868 
1869 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1870 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1871 	if (unlikely(dio->fua)) {
1872 		/*
1873 		 * Don't pass down the FUA flag because we have to flush
1874 		 * disk cache anyway.
1875 		 */
1876 		bio->bi_opf &= ~REQ_FUA;
1877 	}
1878 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1879 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1880 		      dio->range.logical_sector, bio_sectors(bio),
1881 		      ic->provided_data_sectors);
1882 		return DM_MAPIO_KILL;
1883 	}
1884 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1885 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1886 		      ic->sectors_per_block,
1887 		      dio->range.logical_sector, bio_sectors(bio));
1888 		return DM_MAPIO_KILL;
1889 	}
1890 
1891 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1892 		struct bvec_iter iter;
1893 		struct bio_vec bv;
1894 		bio_for_each_segment(bv, bio, iter) {
1895 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1896 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1897 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1898 				return DM_MAPIO_KILL;
1899 			}
1900 		}
1901 	}
1902 
1903 	bip = bio_integrity(bio);
1904 	if (!ic->internal_hash) {
1905 		if (bip) {
1906 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1907 			if (ic->log2_tag_size >= 0)
1908 				wanted_tag_size <<= ic->log2_tag_size;
1909 			else
1910 				wanted_tag_size *= ic->tag_size;
1911 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1912 				DMERR("Invalid integrity data size %u, expected %u",
1913 				      bip->bip_iter.bi_size, wanted_tag_size);
1914 				return DM_MAPIO_KILL;
1915 			}
1916 		}
1917 	} else {
1918 		if (unlikely(bip != NULL)) {
1919 			DMERR("Unexpected integrity data when using internal hash");
1920 			return DM_MAPIO_KILL;
1921 		}
1922 	}
1923 
1924 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1925 		return DM_MAPIO_KILL;
1926 
1927 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1928 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1929 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1930 
1931 	dm_integrity_map_continue(dio, true);
1932 	return DM_MAPIO_SUBMITTED;
1933 }
1934 
1935 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1936 				 unsigned journal_section, unsigned journal_entry)
1937 {
1938 	struct dm_integrity_c *ic = dio->ic;
1939 	sector_t logical_sector;
1940 	unsigned n_sectors;
1941 
1942 	logical_sector = dio->range.logical_sector;
1943 	n_sectors = dio->range.n_sectors;
1944 	do {
1945 		struct bio_vec bv = bio_iovec(bio);
1946 		char *mem;
1947 
1948 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1949 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1950 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1951 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1952 retry_kmap:
1953 		mem = kmap_atomic(bv.bv_page);
1954 		if (likely(dio->op == REQ_OP_WRITE))
1955 			flush_dcache_page(bv.bv_page);
1956 
1957 		do {
1958 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1959 
1960 			if (unlikely(dio->op == REQ_OP_READ)) {
1961 				struct journal_sector *js;
1962 				char *mem_ptr;
1963 				unsigned s;
1964 
1965 				if (unlikely(journal_entry_is_inprogress(je))) {
1966 					flush_dcache_page(bv.bv_page);
1967 					kunmap_atomic(mem);
1968 
1969 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1970 					goto retry_kmap;
1971 				}
1972 				smp_rmb();
1973 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1974 				js = access_journal_data(ic, journal_section, journal_entry);
1975 				mem_ptr = mem + bv.bv_offset;
1976 				s = 0;
1977 				do {
1978 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1979 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1980 					js++;
1981 					mem_ptr += 1 << SECTOR_SHIFT;
1982 				} while (++s < ic->sectors_per_block);
1983 #ifdef INTERNAL_VERIFY
1984 				if (ic->internal_hash) {
1985 					char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1986 
1987 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1988 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1989 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1990 							    logical_sector);
1991 					}
1992 				}
1993 #endif
1994 			}
1995 
1996 			if (!ic->internal_hash) {
1997 				struct bio_integrity_payload *bip = bio_integrity(bio);
1998 				unsigned tag_todo = ic->tag_size;
1999 				char *tag_ptr = journal_entry_tag(ic, je);
2000 
2001 				if (bip) do {
2002 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2003 					unsigned tag_now = min(biv.bv_len, tag_todo);
2004 					char *tag_addr;
2005 					BUG_ON(PageHighMem(biv.bv_page));
2006 					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
2007 					if (likely(dio->op == REQ_OP_WRITE))
2008 						memcpy(tag_ptr, tag_addr, tag_now);
2009 					else
2010 						memcpy(tag_addr, tag_ptr, tag_now);
2011 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2012 					tag_ptr += tag_now;
2013 					tag_todo -= tag_now;
2014 				} while (unlikely(tag_todo)); else {
2015 					if (likely(dio->op == REQ_OP_WRITE))
2016 						memset(tag_ptr, 0, tag_todo);
2017 				}
2018 			}
2019 
2020 			if (likely(dio->op == REQ_OP_WRITE)) {
2021 				struct journal_sector *js;
2022 				unsigned s;
2023 
2024 				js = access_journal_data(ic, journal_section, journal_entry);
2025 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2026 
2027 				s = 0;
2028 				do {
2029 					je->last_bytes[s] = js[s].commit_id;
2030 				} while (++s < ic->sectors_per_block);
2031 
2032 				if (ic->internal_hash) {
2033 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2034 					if (unlikely(digest_size > ic->tag_size)) {
2035 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2036 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2037 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2038 					} else
2039 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2040 				}
2041 
2042 				journal_entry_set_sector(je, logical_sector);
2043 			}
2044 			logical_sector += ic->sectors_per_block;
2045 
2046 			journal_entry++;
2047 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2048 				journal_entry = 0;
2049 				journal_section++;
2050 				wraparound_section(ic, &journal_section);
2051 			}
2052 
2053 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2054 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2055 
2056 		if (unlikely(dio->op == REQ_OP_READ))
2057 			flush_dcache_page(bv.bv_page);
2058 		kunmap_atomic(mem);
2059 	} while (n_sectors);
2060 
2061 	if (likely(dio->op == REQ_OP_WRITE)) {
2062 		smp_mb();
2063 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2064 			wake_up(&ic->copy_to_journal_wait);
2065 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2066 			queue_work(ic->commit_wq, &ic->commit_work);
2067 		} else {
2068 			schedule_autocommit(ic);
2069 		}
2070 	} else {
2071 		remove_range(ic, &dio->range);
2072 	}
2073 
2074 	if (unlikely(bio->bi_iter.bi_size)) {
2075 		sector_t area, offset;
2076 
2077 		dio->range.logical_sector = logical_sector;
2078 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2079 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2080 		return true;
2081 	}
2082 
2083 	return false;
2084 }
2085 
2086 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2087 {
2088 	struct dm_integrity_c *ic = dio->ic;
2089 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2090 	unsigned journal_section, journal_entry;
2091 	unsigned journal_read_pos;
2092 	struct completion read_comp;
2093 	bool discard_retried = false;
2094 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2095 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2096 		need_sync_io = true;
2097 
2098 	if (need_sync_io && from_map) {
2099 		INIT_WORK(&dio->work, integrity_bio_wait);
2100 		queue_work(ic->offload_wq, &dio->work);
2101 		return;
2102 	}
2103 
2104 lock_retry:
2105 	spin_lock_irq(&ic->endio_wait.lock);
2106 retry:
2107 	if (unlikely(dm_integrity_failed(ic))) {
2108 		spin_unlock_irq(&ic->endio_wait.lock);
2109 		do_endio(ic, bio);
2110 		return;
2111 	}
2112 	dio->range.n_sectors = bio_sectors(bio);
2113 	journal_read_pos = NOT_FOUND;
2114 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2115 		if (dio->op == REQ_OP_WRITE) {
2116 			unsigned next_entry, i, pos;
2117 			unsigned ws, we, range_sectors;
2118 
2119 			dio->range.n_sectors = min(dio->range.n_sectors,
2120 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2121 			if (unlikely(!dio->range.n_sectors)) {
2122 				if (from_map)
2123 					goto offload_to_thread;
2124 				sleep_on_endio_wait(ic);
2125 				goto retry;
2126 			}
2127 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2128 			ic->free_sectors -= range_sectors;
2129 			journal_section = ic->free_section;
2130 			journal_entry = ic->free_section_entry;
2131 
2132 			next_entry = ic->free_section_entry + range_sectors;
2133 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2134 			ic->free_section += next_entry / ic->journal_section_entries;
2135 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2136 			wraparound_section(ic, &ic->free_section);
2137 
2138 			pos = journal_section * ic->journal_section_entries + journal_entry;
2139 			ws = journal_section;
2140 			we = journal_entry;
2141 			i = 0;
2142 			do {
2143 				struct journal_entry *je;
2144 
2145 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2146 				pos++;
2147 				if (unlikely(pos >= ic->journal_entries))
2148 					pos = 0;
2149 
2150 				je = access_journal_entry(ic, ws, we);
2151 				BUG_ON(!journal_entry_is_unused(je));
2152 				journal_entry_set_inprogress(je);
2153 				we++;
2154 				if (unlikely(we == ic->journal_section_entries)) {
2155 					we = 0;
2156 					ws++;
2157 					wraparound_section(ic, &ws);
2158 				}
2159 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2160 
2161 			spin_unlock_irq(&ic->endio_wait.lock);
2162 			goto journal_read_write;
2163 		} else {
2164 			sector_t next_sector;
2165 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2166 			if (likely(journal_read_pos == NOT_FOUND)) {
2167 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2168 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2169 			} else {
2170 				unsigned i;
2171 				unsigned jp = journal_read_pos + 1;
2172 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2173 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2174 						break;
2175 				}
2176 				dio->range.n_sectors = i;
2177 			}
2178 		}
2179 	}
2180 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2181 		/*
2182 		 * We must not sleep in the request routine because it could
2183 		 * stall bios on current->bio_list.
2184 		 * So, we offload the bio to a workqueue if we have to sleep.
2185 		 */
2186 		if (from_map) {
2187 offload_to_thread:
2188 			spin_unlock_irq(&ic->endio_wait.lock);
2189 			INIT_WORK(&dio->work, integrity_bio_wait);
2190 			queue_work(ic->wait_wq, &dio->work);
2191 			return;
2192 		}
2193 		if (journal_read_pos != NOT_FOUND)
2194 			dio->range.n_sectors = ic->sectors_per_block;
2195 		wait_and_add_new_range(ic, &dio->range);
2196 		/*
2197 		 * wait_and_add_new_range drops the spinlock, so the journal
2198 		 * may have been changed arbitrarily. We need to recheck.
2199 		 * To simplify the code, we restrict I/O size to just one block.
2200 		 */
2201 		if (journal_read_pos != NOT_FOUND) {
2202 			sector_t next_sector;
2203 			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2204 			if (unlikely(new_pos != journal_read_pos)) {
2205 				remove_range_unlocked(ic, &dio->range);
2206 				goto retry;
2207 			}
2208 		}
2209 	}
2210 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2211 		sector_t next_sector;
2212 		unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2213 		if (unlikely(new_pos != NOT_FOUND) ||
2214 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2215 			remove_range_unlocked(ic, &dio->range);
2216 			spin_unlock_irq(&ic->endio_wait.lock);
2217 			queue_work(ic->commit_wq, &ic->commit_work);
2218 			flush_workqueue(ic->commit_wq);
2219 			queue_work(ic->writer_wq, &ic->writer_work);
2220 			flush_workqueue(ic->writer_wq);
2221 			discard_retried = true;
2222 			goto lock_retry;
2223 		}
2224 	}
2225 	spin_unlock_irq(&ic->endio_wait.lock);
2226 
2227 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2228 		journal_section = journal_read_pos / ic->journal_section_entries;
2229 		journal_entry = journal_read_pos % ic->journal_section_entries;
2230 		goto journal_read_write;
2231 	}
2232 
2233 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2234 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2235 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2236 			struct bitmap_block_status *bbs;
2237 
2238 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2239 			spin_lock(&bbs->bio_queue_lock);
2240 			bio_list_add(&bbs->bio_queue, bio);
2241 			spin_unlock(&bbs->bio_queue_lock);
2242 			queue_work(ic->writer_wq, &bbs->work);
2243 			return;
2244 		}
2245 	}
2246 
2247 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2248 
2249 	if (need_sync_io) {
2250 		init_completion(&read_comp);
2251 		dio->completion = &read_comp;
2252 	} else
2253 		dio->completion = NULL;
2254 
2255 	dm_bio_record(&dio->bio_details, bio);
2256 	bio_set_dev(bio, ic->dev->bdev);
2257 	bio->bi_integrity = NULL;
2258 	bio->bi_opf &= ~REQ_INTEGRITY;
2259 	bio->bi_end_io = integrity_end_io;
2260 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2261 
2262 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2263 		integrity_metadata(&dio->work);
2264 		dm_integrity_flush_buffers(ic, false);
2265 
2266 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2267 		dio->completion = NULL;
2268 
2269 		submit_bio_noacct(bio);
2270 
2271 		return;
2272 	}
2273 
2274 	submit_bio_noacct(bio);
2275 
2276 	if (need_sync_io) {
2277 		wait_for_completion_io(&read_comp);
2278 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2279 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2280 			goto skip_check;
2281 		if (ic->mode == 'B') {
2282 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2283 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2284 				goto skip_check;
2285 		}
2286 
2287 		if (likely(!bio->bi_status))
2288 			integrity_metadata(&dio->work);
2289 		else
2290 skip_check:
2291 			dec_in_flight(dio);
2292 
2293 	} else {
2294 		INIT_WORK(&dio->work, integrity_metadata);
2295 		queue_work(ic->metadata_wq, &dio->work);
2296 	}
2297 
2298 	return;
2299 
2300 journal_read_write:
2301 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2302 		goto lock_retry;
2303 
2304 	do_endio_flush(ic, dio);
2305 }
2306 
2307 
2308 static void integrity_bio_wait(struct work_struct *w)
2309 {
2310 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2311 
2312 	dm_integrity_map_continue(dio, false);
2313 }
2314 
2315 static void pad_uncommitted(struct dm_integrity_c *ic)
2316 {
2317 	if (ic->free_section_entry) {
2318 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2319 		ic->free_section_entry = 0;
2320 		ic->free_section++;
2321 		wraparound_section(ic, &ic->free_section);
2322 		ic->n_uncommitted_sections++;
2323 	}
2324 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2325 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2326 		    ic->journal_section_entries + ic->free_sectors)) {
2327 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2328 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2329 		       "journal_section_entries %u, free_sectors %u",
2330 		       ic->journal_sections, ic->journal_section_entries,
2331 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2332 		       ic->journal_section_entries, ic->free_sectors);
2333 	}
2334 }
2335 
2336 static void integrity_commit(struct work_struct *w)
2337 {
2338 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2339 	unsigned commit_start, commit_sections;
2340 	unsigned i, j, n;
2341 	struct bio *flushes;
2342 
2343 	del_timer(&ic->autocommit_timer);
2344 
2345 	spin_lock_irq(&ic->endio_wait.lock);
2346 	flushes = bio_list_get(&ic->flush_bio_list);
2347 	if (unlikely(ic->mode != 'J')) {
2348 		spin_unlock_irq(&ic->endio_wait.lock);
2349 		dm_integrity_flush_buffers(ic, true);
2350 		goto release_flush_bios;
2351 	}
2352 
2353 	pad_uncommitted(ic);
2354 	commit_start = ic->uncommitted_section;
2355 	commit_sections = ic->n_uncommitted_sections;
2356 	spin_unlock_irq(&ic->endio_wait.lock);
2357 
2358 	if (!commit_sections)
2359 		goto release_flush_bios;
2360 
2361 	i = commit_start;
2362 	for (n = 0; n < commit_sections; n++) {
2363 		for (j = 0; j < ic->journal_section_entries; j++) {
2364 			struct journal_entry *je;
2365 			je = access_journal_entry(ic, i, j);
2366 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2367 		}
2368 		for (j = 0; j < ic->journal_section_sectors; j++) {
2369 			struct journal_sector *js;
2370 			js = access_journal(ic, i, j);
2371 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2372 		}
2373 		i++;
2374 		if (unlikely(i >= ic->journal_sections))
2375 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2376 		wraparound_section(ic, &i);
2377 	}
2378 	smp_rmb();
2379 
2380 	write_journal(ic, commit_start, commit_sections);
2381 
2382 	spin_lock_irq(&ic->endio_wait.lock);
2383 	ic->uncommitted_section += commit_sections;
2384 	wraparound_section(ic, &ic->uncommitted_section);
2385 	ic->n_uncommitted_sections -= commit_sections;
2386 	ic->n_committed_sections += commit_sections;
2387 	spin_unlock_irq(&ic->endio_wait.lock);
2388 
2389 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2390 		queue_work(ic->writer_wq, &ic->writer_work);
2391 
2392 release_flush_bios:
2393 	while (flushes) {
2394 		struct bio *next = flushes->bi_next;
2395 		flushes->bi_next = NULL;
2396 		do_endio(ic, flushes);
2397 		flushes = next;
2398 	}
2399 }
2400 
2401 static void complete_copy_from_journal(unsigned long error, void *context)
2402 {
2403 	struct journal_io *io = context;
2404 	struct journal_completion *comp = io->comp;
2405 	struct dm_integrity_c *ic = comp->ic;
2406 	remove_range(ic, &io->range);
2407 	mempool_free(io, &ic->journal_io_mempool);
2408 	if (unlikely(error != 0))
2409 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2410 	complete_journal_op(comp);
2411 }
2412 
2413 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2414 			       struct journal_entry *je)
2415 {
2416 	unsigned s = 0;
2417 	do {
2418 		js->commit_id = je->last_bytes[s];
2419 		js++;
2420 	} while (++s < ic->sectors_per_block);
2421 }
2422 
2423 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2424 			     unsigned write_sections, bool from_replay)
2425 {
2426 	unsigned i, j, n;
2427 	struct journal_completion comp;
2428 	struct blk_plug plug;
2429 
2430 	blk_start_plug(&plug);
2431 
2432 	comp.ic = ic;
2433 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2434 	init_completion(&comp.comp);
2435 
2436 	i = write_start;
2437 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2438 #ifndef INTERNAL_VERIFY
2439 		if (unlikely(from_replay))
2440 #endif
2441 			rw_section_mac(ic, i, false);
2442 		for (j = 0; j < ic->journal_section_entries; j++) {
2443 			struct journal_entry *je = access_journal_entry(ic, i, j);
2444 			sector_t sec, area, offset;
2445 			unsigned k, l, next_loop;
2446 			sector_t metadata_block;
2447 			unsigned metadata_offset;
2448 			struct journal_io *io;
2449 
2450 			if (journal_entry_is_unused(je))
2451 				continue;
2452 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2453 			sec = journal_entry_get_sector(je);
2454 			if (unlikely(from_replay)) {
2455 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2456 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2457 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2458 				}
2459 			}
2460 			if (unlikely(sec >= ic->provided_data_sectors))
2461 				continue;
2462 			get_area_and_offset(ic, sec, &area, &offset);
2463 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2464 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2465 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2466 				sector_t sec2, area2, offset2;
2467 				if (journal_entry_is_unused(je2))
2468 					break;
2469 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2470 				sec2 = journal_entry_get_sector(je2);
2471 				if (unlikely(sec2 >= ic->provided_data_sectors))
2472 					break;
2473 				get_area_and_offset(ic, sec2, &area2, &offset2);
2474 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2475 					break;
2476 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2477 			}
2478 			next_loop = k - 1;
2479 
2480 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2481 			io->comp = &comp;
2482 			io->range.logical_sector = sec;
2483 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2484 
2485 			spin_lock_irq(&ic->endio_wait.lock);
2486 			add_new_range_and_wait(ic, &io->range);
2487 
2488 			if (likely(!from_replay)) {
2489 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2490 
2491 				/* don't write if there is newer committed sector */
2492 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2493 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2494 
2495 					journal_entry_set_unused(je2);
2496 					remove_journal_node(ic, &section_node[j]);
2497 					j++;
2498 					sec += ic->sectors_per_block;
2499 					offset += ic->sectors_per_block;
2500 				}
2501 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2502 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2503 
2504 					journal_entry_set_unused(je2);
2505 					remove_journal_node(ic, &section_node[k - 1]);
2506 					k--;
2507 				}
2508 				if (j == k) {
2509 					remove_range_unlocked(ic, &io->range);
2510 					spin_unlock_irq(&ic->endio_wait.lock);
2511 					mempool_free(io, &ic->journal_io_mempool);
2512 					goto skip_io;
2513 				}
2514 				for (l = j; l < k; l++) {
2515 					remove_journal_node(ic, &section_node[l]);
2516 				}
2517 			}
2518 			spin_unlock_irq(&ic->endio_wait.lock);
2519 
2520 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2521 			for (l = j; l < k; l++) {
2522 				int r;
2523 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2524 
2525 				if (
2526 #ifndef INTERNAL_VERIFY
2527 				    unlikely(from_replay) &&
2528 #endif
2529 				    ic->internal_hash) {
2530 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2531 
2532 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2533 								  (char *)access_journal_data(ic, i, l), test_tag);
2534 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2535 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2536 				}
2537 
2538 				journal_entry_set_unused(je2);
2539 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2540 							ic->tag_size, TAG_WRITE);
2541 				if (unlikely(r)) {
2542 					dm_integrity_io_error(ic, "reading tags", r);
2543 				}
2544 			}
2545 
2546 			atomic_inc(&comp.in_flight);
2547 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2548 					  (k - j) << ic->sb->log2_sectors_per_block,
2549 					  get_data_sector(ic, area, offset),
2550 					  complete_copy_from_journal, io);
2551 skip_io:
2552 			j = next_loop;
2553 		}
2554 	}
2555 
2556 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2557 
2558 	blk_finish_plug(&plug);
2559 
2560 	complete_journal_op(&comp);
2561 	wait_for_completion_io(&comp.comp);
2562 
2563 	dm_integrity_flush_buffers(ic, true);
2564 }
2565 
2566 static void integrity_writer(struct work_struct *w)
2567 {
2568 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2569 	unsigned write_start, write_sections;
2570 
2571 	unsigned prev_free_sectors;
2572 
2573 	/* the following test is not needed, but it tests the replay code */
2574 	if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2575 		return;
2576 
2577 	spin_lock_irq(&ic->endio_wait.lock);
2578 	write_start = ic->committed_section;
2579 	write_sections = ic->n_committed_sections;
2580 	spin_unlock_irq(&ic->endio_wait.lock);
2581 
2582 	if (!write_sections)
2583 		return;
2584 
2585 	do_journal_write(ic, write_start, write_sections, false);
2586 
2587 	spin_lock_irq(&ic->endio_wait.lock);
2588 
2589 	ic->committed_section += write_sections;
2590 	wraparound_section(ic, &ic->committed_section);
2591 	ic->n_committed_sections -= write_sections;
2592 
2593 	prev_free_sectors = ic->free_sectors;
2594 	ic->free_sectors += write_sections * ic->journal_section_entries;
2595 	if (unlikely(!prev_free_sectors))
2596 		wake_up_locked(&ic->endio_wait);
2597 
2598 	spin_unlock_irq(&ic->endio_wait.lock);
2599 }
2600 
2601 static void recalc_write_super(struct dm_integrity_c *ic)
2602 {
2603 	int r;
2604 
2605 	dm_integrity_flush_buffers(ic, false);
2606 	if (dm_integrity_failed(ic))
2607 		return;
2608 
2609 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2610 	if (unlikely(r))
2611 		dm_integrity_io_error(ic, "writing superblock", r);
2612 }
2613 
2614 static void integrity_recalc(struct work_struct *w)
2615 {
2616 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2617 	struct dm_integrity_range range;
2618 	struct dm_io_request io_req;
2619 	struct dm_io_region io_loc;
2620 	sector_t area, offset;
2621 	sector_t metadata_block;
2622 	unsigned metadata_offset;
2623 	sector_t logical_sector, n_sectors;
2624 	__u8 *t;
2625 	unsigned i;
2626 	int r;
2627 	unsigned super_counter = 0;
2628 
2629 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2630 
2631 	spin_lock_irq(&ic->endio_wait.lock);
2632 
2633 next_chunk:
2634 
2635 	if (unlikely(dm_post_suspending(ic->ti)))
2636 		goto unlock_ret;
2637 
2638 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2639 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2640 		if (ic->mode == 'B') {
2641 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2642 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2643 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2644 		}
2645 		goto unlock_ret;
2646 	}
2647 
2648 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2649 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2650 	if (!ic->meta_dev)
2651 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2652 
2653 	add_new_range_and_wait(ic, &range);
2654 	spin_unlock_irq(&ic->endio_wait.lock);
2655 	logical_sector = range.logical_sector;
2656 	n_sectors = range.n_sectors;
2657 
2658 	if (ic->mode == 'B') {
2659 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2660 			goto advance_and_next;
2661 		}
2662 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2663 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2664 			logical_sector += ic->sectors_per_block;
2665 			n_sectors -= ic->sectors_per_block;
2666 			cond_resched();
2667 		}
2668 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2669 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2670 			n_sectors -= ic->sectors_per_block;
2671 			cond_resched();
2672 		}
2673 		get_area_and_offset(ic, logical_sector, &area, &offset);
2674 	}
2675 
2676 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2677 
2678 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2679 		recalc_write_super(ic);
2680 		if (ic->mode == 'B') {
2681 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2682 		}
2683 		super_counter = 0;
2684 	}
2685 
2686 	if (unlikely(dm_integrity_failed(ic)))
2687 		goto err;
2688 
2689 	io_req.bi_op = REQ_OP_READ;
2690 	io_req.bi_op_flags = 0;
2691 	io_req.mem.type = DM_IO_VMA;
2692 	io_req.mem.ptr.addr = ic->recalc_buffer;
2693 	io_req.notify.fn = NULL;
2694 	io_req.client = ic->io;
2695 	io_loc.bdev = ic->dev->bdev;
2696 	io_loc.sector = get_data_sector(ic, area, offset);
2697 	io_loc.count = n_sectors;
2698 
2699 	r = dm_io(&io_req, 1, &io_loc, NULL);
2700 	if (unlikely(r)) {
2701 		dm_integrity_io_error(ic, "reading data", r);
2702 		goto err;
2703 	}
2704 
2705 	t = ic->recalc_tags;
2706 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2707 		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2708 		t += ic->tag_size;
2709 	}
2710 
2711 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2712 
2713 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2714 	if (unlikely(r)) {
2715 		dm_integrity_io_error(ic, "writing tags", r);
2716 		goto err;
2717 	}
2718 
2719 	if (ic->mode == 'B') {
2720 		sector_t start, end;
2721 		start = (range.logical_sector >>
2722 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2723 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2724 		end = ((range.logical_sector + range.n_sectors) >>
2725 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2726 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2727 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2728 	}
2729 
2730 advance_and_next:
2731 	cond_resched();
2732 
2733 	spin_lock_irq(&ic->endio_wait.lock);
2734 	remove_range_unlocked(ic, &range);
2735 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2736 	goto next_chunk;
2737 
2738 err:
2739 	remove_range(ic, &range);
2740 	return;
2741 
2742 unlock_ret:
2743 	spin_unlock_irq(&ic->endio_wait.lock);
2744 
2745 	recalc_write_super(ic);
2746 }
2747 
2748 static void bitmap_block_work(struct work_struct *w)
2749 {
2750 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2751 	struct dm_integrity_c *ic = bbs->ic;
2752 	struct bio *bio;
2753 	struct bio_list bio_queue;
2754 	struct bio_list waiting;
2755 
2756 	bio_list_init(&waiting);
2757 
2758 	spin_lock(&bbs->bio_queue_lock);
2759 	bio_queue = bbs->bio_queue;
2760 	bio_list_init(&bbs->bio_queue);
2761 	spin_unlock(&bbs->bio_queue_lock);
2762 
2763 	while ((bio = bio_list_pop(&bio_queue))) {
2764 		struct dm_integrity_io *dio;
2765 
2766 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2767 
2768 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2769 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2770 			remove_range(ic, &dio->range);
2771 			INIT_WORK(&dio->work, integrity_bio_wait);
2772 			queue_work(ic->offload_wq, &dio->work);
2773 		} else {
2774 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2775 					dio->range.n_sectors, BITMAP_OP_SET);
2776 			bio_list_add(&waiting, bio);
2777 		}
2778 	}
2779 
2780 	if (bio_list_empty(&waiting))
2781 		return;
2782 
2783 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2784 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2785 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2786 
2787 	while ((bio = bio_list_pop(&waiting))) {
2788 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2789 
2790 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2791 				dio->range.n_sectors, BITMAP_OP_SET);
2792 
2793 		remove_range(ic, &dio->range);
2794 		INIT_WORK(&dio->work, integrity_bio_wait);
2795 		queue_work(ic->offload_wq, &dio->work);
2796 	}
2797 
2798 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2799 }
2800 
2801 static void bitmap_flush_work(struct work_struct *work)
2802 {
2803 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2804 	struct dm_integrity_range range;
2805 	unsigned long limit;
2806 	struct bio *bio;
2807 
2808 	dm_integrity_flush_buffers(ic, false);
2809 
2810 	range.logical_sector = 0;
2811 	range.n_sectors = ic->provided_data_sectors;
2812 
2813 	spin_lock_irq(&ic->endio_wait.lock);
2814 	add_new_range_and_wait(ic, &range);
2815 	spin_unlock_irq(&ic->endio_wait.lock);
2816 
2817 	dm_integrity_flush_buffers(ic, true);
2818 
2819 	limit = ic->provided_data_sectors;
2820 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2821 		limit = le64_to_cpu(ic->sb->recalc_sector)
2822 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2823 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2824 	}
2825 	/*DEBUG_print("zeroing journal\n");*/
2826 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2827 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2828 
2829 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2830 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2831 
2832 	spin_lock_irq(&ic->endio_wait.lock);
2833 	remove_range_unlocked(ic, &range);
2834 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2835 		bio_endio(bio);
2836 		spin_unlock_irq(&ic->endio_wait.lock);
2837 		spin_lock_irq(&ic->endio_wait.lock);
2838 	}
2839 	spin_unlock_irq(&ic->endio_wait.lock);
2840 }
2841 
2842 
2843 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2844 			 unsigned n_sections, unsigned char commit_seq)
2845 {
2846 	unsigned i, j, n;
2847 
2848 	if (!n_sections)
2849 		return;
2850 
2851 	for (n = 0; n < n_sections; n++) {
2852 		i = start_section + n;
2853 		wraparound_section(ic, &i);
2854 		for (j = 0; j < ic->journal_section_sectors; j++) {
2855 			struct journal_sector *js = access_journal(ic, i, j);
2856 			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2857 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2858 		}
2859 		for (j = 0; j < ic->journal_section_entries; j++) {
2860 			struct journal_entry *je = access_journal_entry(ic, i, j);
2861 			journal_entry_set_unused(je);
2862 		}
2863 	}
2864 
2865 	write_journal(ic, start_section, n_sections);
2866 }
2867 
2868 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2869 {
2870 	unsigned char k;
2871 	for (k = 0; k < N_COMMIT_IDS; k++) {
2872 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2873 			return k;
2874 	}
2875 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2876 	return -EIO;
2877 }
2878 
2879 static void replay_journal(struct dm_integrity_c *ic)
2880 {
2881 	unsigned i, j;
2882 	bool used_commit_ids[N_COMMIT_IDS];
2883 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2884 	unsigned write_start, write_sections;
2885 	unsigned continue_section;
2886 	bool journal_empty;
2887 	unsigned char unused, last_used, want_commit_seq;
2888 
2889 	if (ic->mode == 'R')
2890 		return;
2891 
2892 	if (ic->journal_uptodate)
2893 		return;
2894 
2895 	last_used = 0;
2896 	write_start = 0;
2897 
2898 	if (!ic->just_formatted) {
2899 		DEBUG_print("reading journal\n");
2900 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2901 		if (ic->journal_io)
2902 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2903 		if (ic->journal_io) {
2904 			struct journal_completion crypt_comp;
2905 			crypt_comp.ic = ic;
2906 			init_completion(&crypt_comp.comp);
2907 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2908 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2909 			wait_for_completion(&crypt_comp.comp);
2910 		}
2911 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2912 	}
2913 
2914 	if (dm_integrity_failed(ic))
2915 		goto clear_journal;
2916 
2917 	journal_empty = true;
2918 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2919 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2920 	for (i = 0; i < ic->journal_sections; i++) {
2921 		for (j = 0; j < ic->journal_section_sectors; j++) {
2922 			int k;
2923 			struct journal_sector *js = access_journal(ic, i, j);
2924 			k = find_commit_seq(ic, i, j, js->commit_id);
2925 			if (k < 0)
2926 				goto clear_journal;
2927 			used_commit_ids[k] = true;
2928 			max_commit_id_sections[k] = i;
2929 		}
2930 		if (journal_empty) {
2931 			for (j = 0; j < ic->journal_section_entries; j++) {
2932 				struct journal_entry *je = access_journal_entry(ic, i, j);
2933 				if (!journal_entry_is_unused(je)) {
2934 					journal_empty = false;
2935 					break;
2936 				}
2937 			}
2938 		}
2939 	}
2940 
2941 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2942 		unused = N_COMMIT_IDS - 1;
2943 		while (unused && !used_commit_ids[unused - 1])
2944 			unused--;
2945 	} else {
2946 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2947 			if (!used_commit_ids[unused])
2948 				break;
2949 		if (unused == N_COMMIT_IDS) {
2950 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2951 			goto clear_journal;
2952 		}
2953 	}
2954 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2955 		    unused, used_commit_ids[0], used_commit_ids[1],
2956 		    used_commit_ids[2], used_commit_ids[3]);
2957 
2958 	last_used = prev_commit_seq(unused);
2959 	want_commit_seq = prev_commit_seq(last_used);
2960 
2961 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2962 		journal_empty = true;
2963 
2964 	write_start = max_commit_id_sections[last_used] + 1;
2965 	if (unlikely(write_start >= ic->journal_sections))
2966 		want_commit_seq = next_commit_seq(want_commit_seq);
2967 	wraparound_section(ic, &write_start);
2968 
2969 	i = write_start;
2970 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2971 		for (j = 0; j < ic->journal_section_sectors; j++) {
2972 			struct journal_sector *js = access_journal(ic, i, j);
2973 
2974 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2975 				/*
2976 				 * This could be caused by crash during writing.
2977 				 * We won't replay the inconsistent part of the
2978 				 * journal.
2979 				 */
2980 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2981 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2982 				goto brk;
2983 			}
2984 		}
2985 		i++;
2986 		if (unlikely(i >= ic->journal_sections))
2987 			want_commit_seq = next_commit_seq(want_commit_seq);
2988 		wraparound_section(ic, &i);
2989 	}
2990 brk:
2991 
2992 	if (!journal_empty) {
2993 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2994 			    write_sections, write_start, want_commit_seq);
2995 		do_journal_write(ic, write_start, write_sections, true);
2996 	}
2997 
2998 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2999 		continue_section = write_start;
3000 		ic->commit_seq = want_commit_seq;
3001 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3002 	} else {
3003 		unsigned s;
3004 		unsigned char erase_seq;
3005 clear_journal:
3006 		DEBUG_print("clearing journal\n");
3007 
3008 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3009 		s = write_start;
3010 		init_journal(ic, s, 1, erase_seq);
3011 		s++;
3012 		wraparound_section(ic, &s);
3013 		if (ic->journal_sections >= 2) {
3014 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3015 			s += ic->journal_sections - 2;
3016 			wraparound_section(ic, &s);
3017 			init_journal(ic, s, 1, erase_seq);
3018 		}
3019 
3020 		continue_section = 0;
3021 		ic->commit_seq = next_commit_seq(erase_seq);
3022 	}
3023 
3024 	ic->committed_section = continue_section;
3025 	ic->n_committed_sections = 0;
3026 
3027 	ic->uncommitted_section = continue_section;
3028 	ic->n_uncommitted_sections = 0;
3029 
3030 	ic->free_section = continue_section;
3031 	ic->free_section_entry = 0;
3032 	ic->free_sectors = ic->journal_entries;
3033 
3034 	ic->journal_tree_root = RB_ROOT;
3035 	for (i = 0; i < ic->journal_entries; i++)
3036 		init_journal_node(&ic->journal_tree[i]);
3037 }
3038 
3039 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3040 {
3041 	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3042 
3043 	if (ic->mode == 'B') {
3044 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3045 		ic->synchronous_mode = 1;
3046 
3047 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3048 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3049 		flush_workqueue(ic->commit_wq);
3050 	}
3051 }
3052 
3053 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3054 {
3055 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3056 
3057 	DEBUG_print("dm_integrity_reboot\n");
3058 
3059 	dm_integrity_enter_synchronous_mode(ic);
3060 
3061 	return NOTIFY_DONE;
3062 }
3063 
3064 static void dm_integrity_postsuspend(struct dm_target *ti)
3065 {
3066 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3067 	int r;
3068 
3069 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3070 
3071 	del_timer_sync(&ic->autocommit_timer);
3072 
3073 	if (ic->recalc_wq)
3074 		drain_workqueue(ic->recalc_wq);
3075 
3076 	if (ic->mode == 'B')
3077 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3078 
3079 	queue_work(ic->commit_wq, &ic->commit_work);
3080 	drain_workqueue(ic->commit_wq);
3081 
3082 	if (ic->mode == 'J') {
3083 		if (ic->meta_dev)
3084 			queue_work(ic->writer_wq, &ic->writer_work);
3085 		drain_workqueue(ic->writer_wq);
3086 		dm_integrity_flush_buffers(ic, true);
3087 	}
3088 
3089 	if (ic->mode == 'B') {
3090 		dm_integrity_flush_buffers(ic, true);
3091 #if 1
3092 		/* set to 0 to test bitmap replay code */
3093 		init_journal(ic, 0, ic->journal_sections, 0);
3094 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3095 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3096 		if (unlikely(r))
3097 			dm_integrity_io_error(ic, "writing superblock", r);
3098 #endif
3099 	}
3100 
3101 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3102 
3103 	ic->journal_uptodate = true;
3104 }
3105 
3106 static void dm_integrity_resume(struct dm_target *ti)
3107 {
3108 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3109 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3110 	int r;
3111 
3112 	DEBUG_print("resume\n");
3113 
3114 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3115 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3116 		    ic->mode == 'B' &&
3117 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3118 			rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3119 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3120 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3121 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3122 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3123 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3124 		}
3125 
3126 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3127 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3128 		if (unlikely(r))
3129 			dm_integrity_io_error(ic, "writing superblock", r);
3130 	}
3131 
3132 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3133 		DEBUG_print("resume dirty_bitmap\n");
3134 		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3135 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3136 		if (ic->mode == 'B') {
3137 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3138 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3139 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3140 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3141 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3142 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3143 					ic->sb->recalc_sector = cpu_to_le64(0);
3144 				}
3145 			} else {
3146 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3147 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3148 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3149 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3150 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3151 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3152 				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3153 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3154 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3155 				ic->sb->recalc_sector = cpu_to_le64(0);
3156 			}
3157 		} else {
3158 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3159 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
3160 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3161 				ic->sb->recalc_sector = cpu_to_le64(0);
3162 			}
3163 			init_journal(ic, 0, ic->journal_sections, 0);
3164 			replay_journal(ic);
3165 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3166 		}
3167 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3168 		if (unlikely(r))
3169 			dm_integrity_io_error(ic, "writing superblock", r);
3170 	} else {
3171 		replay_journal(ic);
3172 		if (ic->mode == 'B') {
3173 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3174 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3175 			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3176 			if (unlikely(r))
3177 				dm_integrity_io_error(ic, "writing superblock", r);
3178 
3179 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3180 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3181 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3182 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3183 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3184 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3185 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3186 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3187 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3188 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3189 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3190 			}
3191 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3192 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3193 		}
3194 	}
3195 
3196 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3197 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3198 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3199 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3200 		if (recalc_pos < ic->provided_data_sectors) {
3201 			queue_work(ic->recalc_wq, &ic->recalc_work);
3202 		} else if (recalc_pos > ic->provided_data_sectors) {
3203 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3204 			recalc_write_super(ic);
3205 		}
3206 	}
3207 
3208 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3209 	ic->reboot_notifier.next = NULL;
3210 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3211 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3212 
3213 #if 0
3214 	/* set to 1 to stress test synchronous mode */
3215 	dm_integrity_enter_synchronous_mode(ic);
3216 #endif
3217 }
3218 
3219 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3220 				unsigned status_flags, char *result, unsigned maxlen)
3221 {
3222 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3223 	unsigned arg_count;
3224 	size_t sz = 0;
3225 
3226 	switch (type) {
3227 	case STATUSTYPE_INFO:
3228 		DMEMIT("%llu %llu",
3229 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3230 			ic->provided_data_sectors);
3231 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3232 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3233 		else
3234 			DMEMIT(" -");
3235 		break;
3236 
3237 	case STATUSTYPE_TABLE: {
3238 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3239 		watermark_percentage += ic->journal_entries / 2;
3240 		do_div(watermark_percentage, ic->journal_entries);
3241 		arg_count = 3;
3242 		arg_count += !!ic->meta_dev;
3243 		arg_count += ic->sectors_per_block != 1;
3244 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3245 		arg_count += ic->discard;
3246 		arg_count += ic->mode == 'J';
3247 		arg_count += ic->mode == 'J';
3248 		arg_count += ic->mode == 'B';
3249 		arg_count += ic->mode == 'B';
3250 		arg_count += !!ic->internal_hash_alg.alg_string;
3251 		arg_count += !!ic->journal_crypt_alg.alg_string;
3252 		arg_count += !!ic->journal_mac_alg.alg_string;
3253 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3254 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3255 		arg_count += ic->legacy_recalculate;
3256 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3257 		       ic->tag_size, ic->mode, arg_count);
3258 		if (ic->meta_dev)
3259 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3260 		if (ic->sectors_per_block != 1)
3261 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3262 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3263 			DMEMIT(" recalculate");
3264 		if (ic->discard)
3265 			DMEMIT(" allow_discards");
3266 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3267 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3268 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3269 		if (ic->mode == 'J') {
3270 			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3271 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3272 		}
3273 		if (ic->mode == 'B') {
3274 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3275 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3276 		}
3277 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3278 			DMEMIT(" fix_padding");
3279 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3280 			DMEMIT(" fix_hmac");
3281 		if (ic->legacy_recalculate)
3282 			DMEMIT(" legacy_recalculate");
3283 
3284 #define EMIT_ALG(a, n)							\
3285 		do {							\
3286 			if (ic->a.alg_string) {				\
3287 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3288 				if (ic->a.key_string)			\
3289 					DMEMIT(":%s", ic->a.key_string);\
3290 			}						\
3291 		} while (0)
3292 		EMIT_ALG(internal_hash_alg, "internal_hash");
3293 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3294 		EMIT_ALG(journal_mac_alg, "journal_mac");
3295 		break;
3296 	}
3297 	}
3298 }
3299 
3300 static int dm_integrity_iterate_devices(struct dm_target *ti,
3301 					iterate_devices_callout_fn fn, void *data)
3302 {
3303 	struct dm_integrity_c *ic = ti->private;
3304 
3305 	if (!ic->meta_dev)
3306 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3307 	else
3308 		return fn(ti, ic->dev, 0, ti->len, data);
3309 }
3310 
3311 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3312 {
3313 	struct dm_integrity_c *ic = ti->private;
3314 
3315 	if (ic->sectors_per_block > 1) {
3316 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3317 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3318 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3319 	}
3320 }
3321 
3322 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3323 {
3324 	unsigned sector_space = JOURNAL_SECTOR_DATA;
3325 
3326 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3327 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3328 					 JOURNAL_ENTRY_ROUNDUP);
3329 
3330 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3331 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3332 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3333 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3334 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3335 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3336 }
3337 
3338 static int calculate_device_limits(struct dm_integrity_c *ic)
3339 {
3340 	__u64 initial_sectors;
3341 
3342 	calculate_journal_section_size(ic);
3343 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3344 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3345 		return -EINVAL;
3346 	ic->initial_sectors = initial_sectors;
3347 
3348 	if (!ic->meta_dev) {
3349 		sector_t last_sector, last_area, last_offset;
3350 
3351 		/* we have to maintain excessive padding for compatibility with existing volumes */
3352 		__u64 metadata_run_padding =
3353 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3354 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3355 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3356 
3357 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3358 					    metadata_run_padding) >> SECTOR_SHIFT;
3359 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3360 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3361 		else
3362 			ic->log2_metadata_run = -1;
3363 
3364 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3365 		last_sector = get_data_sector(ic, last_area, last_offset);
3366 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3367 			return -EINVAL;
3368 	} else {
3369 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3370 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3371 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3372 		meta_size <<= ic->log2_buffer_sectors;
3373 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3374 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3375 			return -EINVAL;
3376 		ic->metadata_run = 1;
3377 		ic->log2_metadata_run = 0;
3378 	}
3379 
3380 	return 0;
3381 }
3382 
3383 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3384 {
3385 	if (!ic->meta_dev) {
3386 		int test_bit;
3387 		ic->provided_data_sectors = 0;
3388 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3389 			__u64 prev_data_sectors = ic->provided_data_sectors;
3390 
3391 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3392 			if (calculate_device_limits(ic))
3393 				ic->provided_data_sectors = prev_data_sectors;
3394 		}
3395 	} else {
3396 		ic->provided_data_sectors = ic->data_device_sectors;
3397 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3398 	}
3399 }
3400 
3401 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3402 {
3403 	unsigned journal_sections;
3404 	int test_bit;
3405 
3406 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3407 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3408 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3409 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3410 	if (ic->journal_mac_alg.alg_string)
3411 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3412 
3413 	calculate_journal_section_size(ic);
3414 	journal_sections = journal_sectors / ic->journal_section_sectors;
3415 	if (!journal_sections)
3416 		journal_sections = 1;
3417 
3418 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3419 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3420 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3421 	}
3422 
3423 	if (!ic->meta_dev) {
3424 		if (ic->fix_padding)
3425 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3426 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3427 		if (!interleave_sectors)
3428 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3429 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3430 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3431 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3432 
3433 		get_provided_data_sectors(ic);
3434 		if (!ic->provided_data_sectors)
3435 			return -EINVAL;
3436 	} else {
3437 		ic->sb->log2_interleave_sectors = 0;
3438 
3439 		get_provided_data_sectors(ic);
3440 		if (!ic->provided_data_sectors)
3441 			return -EINVAL;
3442 
3443 try_smaller_buffer:
3444 		ic->sb->journal_sections = cpu_to_le32(0);
3445 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3446 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3447 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3448 			if (test_journal_sections > journal_sections)
3449 				continue;
3450 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3451 			if (calculate_device_limits(ic))
3452 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3453 
3454 		}
3455 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3456 			if (ic->log2_buffer_sectors > 3) {
3457 				ic->log2_buffer_sectors--;
3458 				goto try_smaller_buffer;
3459 			}
3460 			return -EINVAL;
3461 		}
3462 	}
3463 
3464 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3465 
3466 	sb_set_version(ic);
3467 
3468 	return 0;
3469 }
3470 
3471 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3472 {
3473 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3474 	struct blk_integrity bi;
3475 
3476 	memset(&bi, 0, sizeof(bi));
3477 	bi.profile = &dm_integrity_profile;
3478 	bi.tuple_size = ic->tag_size;
3479 	bi.tag_size = bi.tuple_size;
3480 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3481 
3482 	blk_integrity_register(disk, &bi);
3483 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3484 }
3485 
3486 static void dm_integrity_free_page_list(struct page_list *pl)
3487 {
3488 	unsigned i;
3489 
3490 	if (!pl)
3491 		return;
3492 	for (i = 0; pl[i].page; i++)
3493 		__free_page(pl[i].page);
3494 	kvfree(pl);
3495 }
3496 
3497 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3498 {
3499 	struct page_list *pl;
3500 	unsigned i;
3501 
3502 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3503 	if (!pl)
3504 		return NULL;
3505 
3506 	for (i = 0; i < n_pages; i++) {
3507 		pl[i].page = alloc_page(GFP_KERNEL);
3508 		if (!pl[i].page) {
3509 			dm_integrity_free_page_list(pl);
3510 			return NULL;
3511 		}
3512 		if (i)
3513 			pl[i - 1].next = &pl[i];
3514 	}
3515 	pl[i].page = NULL;
3516 	pl[i].next = NULL;
3517 
3518 	return pl;
3519 }
3520 
3521 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3522 {
3523 	unsigned i;
3524 	for (i = 0; i < ic->journal_sections; i++)
3525 		kvfree(sl[i]);
3526 	kvfree(sl);
3527 }
3528 
3529 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3530 								   struct page_list *pl)
3531 {
3532 	struct scatterlist **sl;
3533 	unsigned i;
3534 
3535 	sl = kvmalloc_array(ic->journal_sections,
3536 			    sizeof(struct scatterlist *),
3537 			    GFP_KERNEL | __GFP_ZERO);
3538 	if (!sl)
3539 		return NULL;
3540 
3541 	for (i = 0; i < ic->journal_sections; i++) {
3542 		struct scatterlist *s;
3543 		unsigned start_index, start_offset;
3544 		unsigned end_index, end_offset;
3545 		unsigned n_pages;
3546 		unsigned idx;
3547 
3548 		page_list_location(ic, i, 0, &start_index, &start_offset);
3549 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3550 				   &end_index, &end_offset);
3551 
3552 		n_pages = (end_index - start_index + 1);
3553 
3554 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3555 				   GFP_KERNEL);
3556 		if (!s) {
3557 			dm_integrity_free_journal_scatterlist(ic, sl);
3558 			return NULL;
3559 		}
3560 
3561 		sg_init_table(s, n_pages);
3562 		for (idx = start_index; idx <= end_index; idx++) {
3563 			char *va = lowmem_page_address(pl[idx].page);
3564 			unsigned start = 0, end = PAGE_SIZE;
3565 			if (idx == start_index)
3566 				start = start_offset;
3567 			if (idx == end_index)
3568 				end = end_offset + (1 << SECTOR_SHIFT);
3569 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3570 		}
3571 
3572 		sl[i] = s;
3573 	}
3574 
3575 	return sl;
3576 }
3577 
3578 static void free_alg(struct alg_spec *a)
3579 {
3580 	kfree_sensitive(a->alg_string);
3581 	kfree_sensitive(a->key);
3582 	memset(a, 0, sizeof *a);
3583 }
3584 
3585 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3586 {
3587 	char *k;
3588 
3589 	free_alg(a);
3590 
3591 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3592 	if (!a->alg_string)
3593 		goto nomem;
3594 
3595 	k = strchr(a->alg_string, ':');
3596 	if (k) {
3597 		*k = 0;
3598 		a->key_string = k + 1;
3599 		if (strlen(a->key_string) & 1)
3600 			goto inval;
3601 
3602 		a->key_size = strlen(a->key_string) / 2;
3603 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3604 		if (!a->key)
3605 			goto nomem;
3606 		if (hex2bin(a->key, a->key_string, a->key_size))
3607 			goto inval;
3608 	}
3609 
3610 	return 0;
3611 inval:
3612 	*error = error_inval;
3613 	return -EINVAL;
3614 nomem:
3615 	*error = "Out of memory for an argument";
3616 	return -ENOMEM;
3617 }
3618 
3619 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3620 		   char *error_alg, char *error_key)
3621 {
3622 	int r;
3623 
3624 	if (a->alg_string) {
3625 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3626 		if (IS_ERR(*hash)) {
3627 			*error = error_alg;
3628 			r = PTR_ERR(*hash);
3629 			*hash = NULL;
3630 			return r;
3631 		}
3632 
3633 		if (a->key) {
3634 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3635 			if (r) {
3636 				*error = error_key;
3637 				return r;
3638 			}
3639 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3640 			*error = error_key;
3641 			return -ENOKEY;
3642 		}
3643 	}
3644 
3645 	return 0;
3646 }
3647 
3648 static int create_journal(struct dm_integrity_c *ic, char **error)
3649 {
3650 	int r = 0;
3651 	unsigned i;
3652 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3653 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3654 	struct skcipher_request *req = NULL;
3655 
3656 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3657 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3658 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3659 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3660 
3661 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3662 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3663 	journal_desc_size = journal_pages * sizeof(struct page_list);
3664 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3665 		*error = "Journal doesn't fit into memory";
3666 		r = -ENOMEM;
3667 		goto bad;
3668 	}
3669 	ic->journal_pages = journal_pages;
3670 
3671 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3672 	if (!ic->journal) {
3673 		*error = "Could not allocate memory for journal";
3674 		r = -ENOMEM;
3675 		goto bad;
3676 	}
3677 	if (ic->journal_crypt_alg.alg_string) {
3678 		unsigned ivsize, blocksize;
3679 		struct journal_completion comp;
3680 
3681 		comp.ic = ic;
3682 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3683 		if (IS_ERR(ic->journal_crypt)) {
3684 			*error = "Invalid journal cipher";
3685 			r = PTR_ERR(ic->journal_crypt);
3686 			ic->journal_crypt = NULL;
3687 			goto bad;
3688 		}
3689 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3690 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3691 
3692 		if (ic->journal_crypt_alg.key) {
3693 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3694 						   ic->journal_crypt_alg.key_size);
3695 			if (r) {
3696 				*error = "Error setting encryption key";
3697 				goto bad;
3698 			}
3699 		}
3700 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3701 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3702 
3703 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3704 		if (!ic->journal_io) {
3705 			*error = "Could not allocate memory for journal io";
3706 			r = -ENOMEM;
3707 			goto bad;
3708 		}
3709 
3710 		if (blocksize == 1) {
3711 			struct scatterlist *sg;
3712 
3713 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3714 			if (!req) {
3715 				*error = "Could not allocate crypt request";
3716 				r = -ENOMEM;
3717 				goto bad;
3718 			}
3719 
3720 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3721 			if (!crypt_iv) {
3722 				*error = "Could not allocate iv";
3723 				r = -ENOMEM;
3724 				goto bad;
3725 			}
3726 
3727 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3728 			if (!ic->journal_xor) {
3729 				*error = "Could not allocate memory for journal xor";
3730 				r = -ENOMEM;
3731 				goto bad;
3732 			}
3733 
3734 			sg = kvmalloc_array(ic->journal_pages + 1,
3735 					    sizeof(struct scatterlist),
3736 					    GFP_KERNEL);
3737 			if (!sg) {
3738 				*error = "Unable to allocate sg list";
3739 				r = -ENOMEM;
3740 				goto bad;
3741 			}
3742 			sg_init_table(sg, ic->journal_pages + 1);
3743 			for (i = 0; i < ic->journal_pages; i++) {
3744 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3745 				clear_page(va);
3746 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3747 			}
3748 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3749 
3750 			skcipher_request_set_crypt(req, sg, sg,
3751 						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3752 			init_completion(&comp.comp);
3753 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3754 			if (do_crypt(true, req, &comp))
3755 				wait_for_completion(&comp.comp);
3756 			kvfree(sg);
3757 			r = dm_integrity_failed(ic);
3758 			if (r) {
3759 				*error = "Unable to encrypt journal";
3760 				goto bad;
3761 			}
3762 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3763 
3764 			crypto_free_skcipher(ic->journal_crypt);
3765 			ic->journal_crypt = NULL;
3766 		} else {
3767 			unsigned crypt_len = roundup(ivsize, blocksize);
3768 
3769 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3770 			if (!req) {
3771 				*error = "Could not allocate crypt request";
3772 				r = -ENOMEM;
3773 				goto bad;
3774 			}
3775 
3776 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3777 			if (!crypt_iv) {
3778 				*error = "Could not allocate iv";
3779 				r = -ENOMEM;
3780 				goto bad;
3781 			}
3782 
3783 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3784 			if (!crypt_data) {
3785 				*error = "Unable to allocate crypt data";
3786 				r = -ENOMEM;
3787 				goto bad;
3788 			}
3789 
3790 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3791 			if (!ic->journal_scatterlist) {
3792 				*error = "Unable to allocate sg list";
3793 				r = -ENOMEM;
3794 				goto bad;
3795 			}
3796 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3797 			if (!ic->journal_io_scatterlist) {
3798 				*error = "Unable to allocate sg list";
3799 				r = -ENOMEM;
3800 				goto bad;
3801 			}
3802 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3803 							 sizeof(struct skcipher_request *),
3804 							 GFP_KERNEL | __GFP_ZERO);
3805 			if (!ic->sk_requests) {
3806 				*error = "Unable to allocate sk requests";
3807 				r = -ENOMEM;
3808 				goto bad;
3809 			}
3810 			for (i = 0; i < ic->journal_sections; i++) {
3811 				struct scatterlist sg;
3812 				struct skcipher_request *section_req;
3813 				__u32 section_le = cpu_to_le32(i);
3814 
3815 				memset(crypt_iv, 0x00, ivsize);
3816 				memset(crypt_data, 0x00, crypt_len);
3817 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3818 
3819 				sg_init_one(&sg, crypt_data, crypt_len);
3820 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3821 				init_completion(&comp.comp);
3822 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3823 				if (do_crypt(true, req, &comp))
3824 					wait_for_completion(&comp.comp);
3825 
3826 				r = dm_integrity_failed(ic);
3827 				if (r) {
3828 					*error = "Unable to generate iv";
3829 					goto bad;
3830 				}
3831 
3832 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3833 				if (!section_req) {
3834 					*error = "Unable to allocate crypt request";
3835 					r = -ENOMEM;
3836 					goto bad;
3837 				}
3838 				section_req->iv = kmalloc_array(ivsize, 2,
3839 								GFP_KERNEL);
3840 				if (!section_req->iv) {
3841 					skcipher_request_free(section_req);
3842 					*error = "Unable to allocate iv";
3843 					r = -ENOMEM;
3844 					goto bad;
3845 				}
3846 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3847 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3848 				ic->sk_requests[i] = section_req;
3849 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3850 			}
3851 		}
3852 	}
3853 
3854 	for (i = 0; i < N_COMMIT_IDS; i++) {
3855 		unsigned j;
3856 retest_commit_id:
3857 		for (j = 0; j < i; j++) {
3858 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3859 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3860 				goto retest_commit_id;
3861 			}
3862 		}
3863 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3864 	}
3865 
3866 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3867 	if (journal_tree_size > ULONG_MAX) {
3868 		*error = "Journal doesn't fit into memory";
3869 		r = -ENOMEM;
3870 		goto bad;
3871 	}
3872 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3873 	if (!ic->journal_tree) {
3874 		*error = "Could not allocate memory for journal tree";
3875 		r = -ENOMEM;
3876 	}
3877 bad:
3878 	kfree(crypt_data);
3879 	kfree(crypt_iv);
3880 	skcipher_request_free(req);
3881 
3882 	return r;
3883 }
3884 
3885 /*
3886  * Construct a integrity mapping
3887  *
3888  * Arguments:
3889  *	device
3890  *	offset from the start of the device
3891  *	tag size
3892  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3893  *	number of optional arguments
3894  *	optional arguments:
3895  *		journal_sectors
3896  *		interleave_sectors
3897  *		buffer_sectors
3898  *		journal_watermark
3899  *		commit_time
3900  *		meta_device
3901  *		block_size
3902  *		sectors_per_bit
3903  *		bitmap_flush_interval
3904  *		internal_hash
3905  *		journal_crypt
3906  *		journal_mac
3907  *		recalculate
3908  */
3909 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3910 {
3911 	struct dm_integrity_c *ic;
3912 	char dummy;
3913 	int r;
3914 	unsigned extra_args;
3915 	struct dm_arg_set as;
3916 	static const struct dm_arg _args[] = {
3917 		{0, 17, "Invalid number of feature args"},
3918 	};
3919 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3920 	bool should_write_sb;
3921 	__u64 threshold;
3922 	unsigned long long start;
3923 	__s8 log2_sectors_per_bitmap_bit = -1;
3924 	__s8 log2_blocks_per_bitmap_bit;
3925 	__u64 bits_in_journal;
3926 	__u64 n_bitmap_bits;
3927 
3928 #define DIRECT_ARGUMENTS	4
3929 
3930 	if (argc <= DIRECT_ARGUMENTS) {
3931 		ti->error = "Invalid argument count";
3932 		return -EINVAL;
3933 	}
3934 
3935 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3936 	if (!ic) {
3937 		ti->error = "Cannot allocate integrity context";
3938 		return -ENOMEM;
3939 	}
3940 	ti->private = ic;
3941 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3942 	ic->ti = ti;
3943 
3944 	ic->in_progress = RB_ROOT;
3945 	INIT_LIST_HEAD(&ic->wait_list);
3946 	init_waitqueue_head(&ic->endio_wait);
3947 	bio_list_init(&ic->flush_bio_list);
3948 	init_waitqueue_head(&ic->copy_to_journal_wait);
3949 	init_completion(&ic->crypto_backoff);
3950 	atomic64_set(&ic->number_of_mismatches, 0);
3951 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3952 
3953 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3954 	if (r) {
3955 		ti->error = "Device lookup failed";
3956 		goto bad;
3957 	}
3958 
3959 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3960 		ti->error = "Invalid starting offset";
3961 		r = -EINVAL;
3962 		goto bad;
3963 	}
3964 	ic->start = start;
3965 
3966 	if (strcmp(argv[2], "-")) {
3967 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3968 			ti->error = "Invalid tag size";
3969 			r = -EINVAL;
3970 			goto bad;
3971 		}
3972 	}
3973 
3974 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3975 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3976 		ic->mode = argv[3][0];
3977 	} else {
3978 		ti->error = "Invalid mode (expecting J, B, D, R)";
3979 		r = -EINVAL;
3980 		goto bad;
3981 	}
3982 
3983 	journal_sectors = 0;
3984 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3985 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
3986 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3987 	sync_msec = DEFAULT_SYNC_MSEC;
3988 	ic->sectors_per_block = 1;
3989 
3990 	as.argc = argc - DIRECT_ARGUMENTS;
3991 	as.argv = argv + DIRECT_ARGUMENTS;
3992 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3993 	if (r)
3994 		goto bad;
3995 
3996 	while (extra_args--) {
3997 		const char *opt_string;
3998 		unsigned val;
3999 		unsigned long long llval;
4000 		opt_string = dm_shift_arg(&as);
4001 		if (!opt_string) {
4002 			r = -EINVAL;
4003 			ti->error = "Not enough feature arguments";
4004 			goto bad;
4005 		}
4006 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4007 			journal_sectors = val ? val : 1;
4008 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4009 			interleave_sectors = val;
4010 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4011 			buffer_sectors = val;
4012 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4013 			journal_watermark = val;
4014 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4015 			sync_msec = val;
4016 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4017 			if (ic->meta_dev) {
4018 				dm_put_device(ti, ic->meta_dev);
4019 				ic->meta_dev = NULL;
4020 			}
4021 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4022 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4023 			if (r) {
4024 				ti->error = "Device lookup failed";
4025 				goto bad;
4026 			}
4027 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4028 			if (val < 1 << SECTOR_SHIFT ||
4029 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4030 			    (val & (val -1))) {
4031 				r = -EINVAL;
4032 				ti->error = "Invalid block_size argument";
4033 				goto bad;
4034 			}
4035 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4036 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4037 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4038 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4039 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4040 				r = -EINVAL;
4041 				ti->error = "Invalid bitmap_flush_interval argument";
4042 			}
4043 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4044 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4045 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4046 					    "Invalid internal_hash argument");
4047 			if (r)
4048 				goto bad;
4049 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4050 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4051 					    "Invalid journal_crypt argument");
4052 			if (r)
4053 				goto bad;
4054 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4055 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4056 					    "Invalid journal_mac argument");
4057 			if (r)
4058 				goto bad;
4059 		} else if (!strcmp(opt_string, "recalculate")) {
4060 			ic->recalculate_flag = true;
4061 		} else if (!strcmp(opt_string, "allow_discards")) {
4062 			ic->discard = true;
4063 		} else if (!strcmp(opt_string, "fix_padding")) {
4064 			ic->fix_padding = true;
4065 		} else if (!strcmp(opt_string, "fix_hmac")) {
4066 			ic->fix_hmac = true;
4067 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4068 			ic->legacy_recalculate = true;
4069 		} else {
4070 			r = -EINVAL;
4071 			ti->error = "Invalid argument";
4072 			goto bad;
4073 		}
4074 	}
4075 
4076 	ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
4077 	if (!ic->meta_dev)
4078 		ic->meta_device_sectors = ic->data_device_sectors;
4079 	else
4080 		ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
4081 
4082 	if (!journal_sectors) {
4083 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4084 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4085 	}
4086 
4087 	if (!buffer_sectors)
4088 		buffer_sectors = 1;
4089 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4090 
4091 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4092 		    "Invalid internal hash", "Error setting internal hash key");
4093 	if (r)
4094 		goto bad;
4095 
4096 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4097 		    "Invalid journal mac", "Error setting journal mac key");
4098 	if (r)
4099 		goto bad;
4100 
4101 	if (!ic->tag_size) {
4102 		if (!ic->internal_hash) {
4103 			ti->error = "Unknown tag size";
4104 			r = -EINVAL;
4105 			goto bad;
4106 		}
4107 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4108 	}
4109 	if (ic->tag_size > MAX_TAG_SIZE) {
4110 		ti->error = "Too big tag size";
4111 		r = -EINVAL;
4112 		goto bad;
4113 	}
4114 	if (!(ic->tag_size & (ic->tag_size - 1)))
4115 		ic->log2_tag_size = __ffs(ic->tag_size);
4116 	else
4117 		ic->log2_tag_size = -1;
4118 
4119 	if (ic->mode == 'B' && !ic->internal_hash) {
4120 		r = -EINVAL;
4121 		ti->error = "Bitmap mode can be only used with internal hash";
4122 		goto bad;
4123 	}
4124 
4125 	if (ic->discard && !ic->internal_hash) {
4126 		r = -EINVAL;
4127 		ti->error = "Discard can be only used with internal hash";
4128 		goto bad;
4129 	}
4130 
4131 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4132 	ic->autocommit_msec = sync_msec;
4133 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4134 
4135 	ic->io = dm_io_client_create();
4136 	if (IS_ERR(ic->io)) {
4137 		r = PTR_ERR(ic->io);
4138 		ic->io = NULL;
4139 		ti->error = "Cannot allocate dm io";
4140 		goto bad;
4141 	}
4142 
4143 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4144 	if (r) {
4145 		ti->error = "Cannot allocate mempool";
4146 		goto bad;
4147 	}
4148 
4149 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4150 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4151 	if (!ic->metadata_wq) {
4152 		ti->error = "Cannot allocate workqueue";
4153 		r = -ENOMEM;
4154 		goto bad;
4155 	}
4156 
4157 	/*
4158 	 * If this workqueue were percpu, it would cause bio reordering
4159 	 * and reduced performance.
4160 	 */
4161 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4162 	if (!ic->wait_wq) {
4163 		ti->error = "Cannot allocate workqueue";
4164 		r = -ENOMEM;
4165 		goto bad;
4166 	}
4167 
4168 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4169 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4170 	if (!ic->offload_wq) {
4171 		ti->error = "Cannot allocate workqueue";
4172 		r = -ENOMEM;
4173 		goto bad;
4174 	}
4175 
4176 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4177 	if (!ic->commit_wq) {
4178 		ti->error = "Cannot allocate workqueue";
4179 		r = -ENOMEM;
4180 		goto bad;
4181 	}
4182 	INIT_WORK(&ic->commit_work, integrity_commit);
4183 
4184 	if (ic->mode == 'J' || ic->mode == 'B') {
4185 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4186 		if (!ic->writer_wq) {
4187 			ti->error = "Cannot allocate workqueue";
4188 			r = -ENOMEM;
4189 			goto bad;
4190 		}
4191 		INIT_WORK(&ic->writer_work, integrity_writer);
4192 	}
4193 
4194 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4195 	if (!ic->sb) {
4196 		r = -ENOMEM;
4197 		ti->error = "Cannot allocate superblock area";
4198 		goto bad;
4199 	}
4200 
4201 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
4202 	if (r) {
4203 		ti->error = "Error reading superblock";
4204 		goto bad;
4205 	}
4206 	should_write_sb = false;
4207 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4208 		if (ic->mode != 'R') {
4209 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4210 				r = -EINVAL;
4211 				ti->error = "The device is not initialized";
4212 				goto bad;
4213 			}
4214 		}
4215 
4216 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4217 		if (r) {
4218 			ti->error = "Could not initialize superblock";
4219 			goto bad;
4220 		}
4221 		if (ic->mode != 'R')
4222 			should_write_sb = true;
4223 	}
4224 
4225 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4226 		r = -EINVAL;
4227 		ti->error = "Unknown version";
4228 		goto bad;
4229 	}
4230 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4231 		r = -EINVAL;
4232 		ti->error = "Tag size doesn't match the information in superblock";
4233 		goto bad;
4234 	}
4235 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4236 		r = -EINVAL;
4237 		ti->error = "Block size doesn't match the information in superblock";
4238 		goto bad;
4239 	}
4240 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4241 		r = -EINVAL;
4242 		ti->error = "Corrupted superblock, journal_sections is 0";
4243 		goto bad;
4244 	}
4245 	/* make sure that ti->max_io_len doesn't overflow */
4246 	if (!ic->meta_dev) {
4247 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4248 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4249 			r = -EINVAL;
4250 			ti->error = "Invalid interleave_sectors in the superblock";
4251 			goto bad;
4252 		}
4253 	} else {
4254 		if (ic->sb->log2_interleave_sectors) {
4255 			r = -EINVAL;
4256 			ti->error = "Invalid interleave_sectors in the superblock";
4257 			goto bad;
4258 		}
4259 	}
4260 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4261 		r = -EINVAL;
4262 		ti->error = "Journal mac mismatch";
4263 		goto bad;
4264 	}
4265 
4266 	get_provided_data_sectors(ic);
4267 	if (!ic->provided_data_sectors) {
4268 		r = -EINVAL;
4269 		ti->error = "The device is too small";
4270 		goto bad;
4271 	}
4272 
4273 try_smaller_buffer:
4274 	r = calculate_device_limits(ic);
4275 	if (r) {
4276 		if (ic->meta_dev) {
4277 			if (ic->log2_buffer_sectors > 3) {
4278 				ic->log2_buffer_sectors--;
4279 				goto try_smaller_buffer;
4280 			}
4281 		}
4282 		ti->error = "The device is too small";
4283 		goto bad;
4284 	}
4285 
4286 	if (log2_sectors_per_bitmap_bit < 0)
4287 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4288 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4289 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4290 
4291 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4292 	if (bits_in_journal > UINT_MAX)
4293 		bits_in_journal = UINT_MAX;
4294 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4295 		log2_sectors_per_bitmap_bit++;
4296 
4297 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4298 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4299 	if (should_write_sb) {
4300 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4301 	}
4302 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4303 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4304 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4305 
4306 	if (!ic->meta_dev)
4307 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4308 
4309 	if (ti->len > ic->provided_data_sectors) {
4310 		r = -EINVAL;
4311 		ti->error = "Not enough provided sectors for requested mapping size";
4312 		goto bad;
4313 	}
4314 
4315 
4316 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4317 	threshold += 50;
4318 	do_div(threshold, 100);
4319 	ic->free_sectors_threshold = threshold;
4320 
4321 	DEBUG_print("initialized:\n");
4322 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4323 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4324 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4325 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4326 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4327 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4328 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4329 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4330 	DEBUG_print("	data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4331 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4332 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4333 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4334 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4335 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4336 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4337 
4338 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4339 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4340 		ic->sb->recalc_sector = cpu_to_le64(0);
4341 	}
4342 
4343 	if (ic->internal_hash) {
4344 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4345 		if (!ic->recalc_wq ) {
4346 			ti->error = "Cannot allocate workqueue";
4347 			r = -ENOMEM;
4348 			goto bad;
4349 		}
4350 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4351 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4352 		if (!ic->recalc_buffer) {
4353 			ti->error = "Cannot allocate buffer for recalculating";
4354 			r = -ENOMEM;
4355 			goto bad;
4356 		}
4357 		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4358 						 ic->tag_size, GFP_KERNEL);
4359 		if (!ic->recalc_tags) {
4360 			ti->error = "Cannot allocate tags for recalculating";
4361 			r = -ENOMEM;
4362 			goto bad;
4363 		}
4364 	} else {
4365 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4366 			ti->error = "Recalculate can only be specified with internal_hash";
4367 			r = -EINVAL;
4368 			goto bad;
4369 		}
4370 	}
4371 
4372 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4373 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4374 	    dm_integrity_disable_recalculate(ic)) {
4375 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4376 		r = -EOPNOTSUPP;
4377 		goto bad;
4378 	}
4379 
4380 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4381 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4382 	if (IS_ERR(ic->bufio)) {
4383 		r = PTR_ERR(ic->bufio);
4384 		ti->error = "Cannot initialize dm-bufio";
4385 		ic->bufio = NULL;
4386 		goto bad;
4387 	}
4388 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4389 
4390 	if (ic->mode != 'R') {
4391 		r = create_journal(ic, &ti->error);
4392 		if (r)
4393 			goto bad;
4394 
4395 	}
4396 
4397 	if (ic->mode == 'B') {
4398 		unsigned i;
4399 		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4400 
4401 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4402 		if (!ic->recalc_bitmap) {
4403 			r = -ENOMEM;
4404 			goto bad;
4405 		}
4406 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4407 		if (!ic->may_write_bitmap) {
4408 			r = -ENOMEM;
4409 			goto bad;
4410 		}
4411 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4412 		if (!ic->bbs) {
4413 			r = -ENOMEM;
4414 			goto bad;
4415 		}
4416 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4417 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4418 			struct bitmap_block_status *bbs = &ic->bbs[i];
4419 			unsigned sector, pl_index, pl_offset;
4420 
4421 			INIT_WORK(&bbs->work, bitmap_block_work);
4422 			bbs->ic = ic;
4423 			bbs->idx = i;
4424 			bio_list_init(&bbs->bio_queue);
4425 			spin_lock_init(&bbs->bio_queue_lock);
4426 
4427 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4428 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4429 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4430 
4431 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4432 		}
4433 	}
4434 
4435 	if (should_write_sb) {
4436 		int r;
4437 
4438 		init_journal(ic, 0, ic->journal_sections, 0);
4439 		r = dm_integrity_failed(ic);
4440 		if (unlikely(r)) {
4441 			ti->error = "Error initializing journal";
4442 			goto bad;
4443 		}
4444 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4445 		if (r) {
4446 			ti->error = "Error initializing superblock";
4447 			goto bad;
4448 		}
4449 		ic->just_formatted = true;
4450 	}
4451 
4452 	if (!ic->meta_dev) {
4453 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4454 		if (r)
4455 			goto bad;
4456 	}
4457 	if (ic->mode == 'B') {
4458 		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4459 		if (!max_io_len)
4460 			max_io_len = 1U << 31;
4461 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4462 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4463 			r = dm_set_target_max_io_len(ti, max_io_len);
4464 			if (r)
4465 				goto bad;
4466 		}
4467 	}
4468 
4469 	if (!ic->internal_hash)
4470 		dm_integrity_set(ti, ic);
4471 
4472 	ti->num_flush_bios = 1;
4473 	ti->flush_supported = true;
4474 	if (ic->discard)
4475 		ti->num_discard_bios = 1;
4476 
4477 	return 0;
4478 
4479 bad:
4480 	dm_integrity_dtr(ti);
4481 	return r;
4482 }
4483 
4484 static void dm_integrity_dtr(struct dm_target *ti)
4485 {
4486 	struct dm_integrity_c *ic = ti->private;
4487 
4488 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4489 	BUG_ON(!list_empty(&ic->wait_list));
4490 
4491 	if (ic->metadata_wq)
4492 		destroy_workqueue(ic->metadata_wq);
4493 	if (ic->wait_wq)
4494 		destroy_workqueue(ic->wait_wq);
4495 	if (ic->offload_wq)
4496 		destroy_workqueue(ic->offload_wq);
4497 	if (ic->commit_wq)
4498 		destroy_workqueue(ic->commit_wq);
4499 	if (ic->writer_wq)
4500 		destroy_workqueue(ic->writer_wq);
4501 	if (ic->recalc_wq)
4502 		destroy_workqueue(ic->recalc_wq);
4503 	vfree(ic->recalc_buffer);
4504 	kvfree(ic->recalc_tags);
4505 	kvfree(ic->bbs);
4506 	if (ic->bufio)
4507 		dm_bufio_client_destroy(ic->bufio);
4508 	mempool_exit(&ic->journal_io_mempool);
4509 	if (ic->io)
4510 		dm_io_client_destroy(ic->io);
4511 	if (ic->dev)
4512 		dm_put_device(ti, ic->dev);
4513 	if (ic->meta_dev)
4514 		dm_put_device(ti, ic->meta_dev);
4515 	dm_integrity_free_page_list(ic->journal);
4516 	dm_integrity_free_page_list(ic->journal_io);
4517 	dm_integrity_free_page_list(ic->journal_xor);
4518 	dm_integrity_free_page_list(ic->recalc_bitmap);
4519 	dm_integrity_free_page_list(ic->may_write_bitmap);
4520 	if (ic->journal_scatterlist)
4521 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4522 	if (ic->journal_io_scatterlist)
4523 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4524 	if (ic->sk_requests) {
4525 		unsigned i;
4526 
4527 		for (i = 0; i < ic->journal_sections; i++) {
4528 			struct skcipher_request *req = ic->sk_requests[i];
4529 			if (req) {
4530 				kfree_sensitive(req->iv);
4531 				skcipher_request_free(req);
4532 			}
4533 		}
4534 		kvfree(ic->sk_requests);
4535 	}
4536 	kvfree(ic->journal_tree);
4537 	if (ic->sb)
4538 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4539 
4540 	if (ic->internal_hash)
4541 		crypto_free_shash(ic->internal_hash);
4542 	free_alg(&ic->internal_hash_alg);
4543 
4544 	if (ic->journal_crypt)
4545 		crypto_free_skcipher(ic->journal_crypt);
4546 	free_alg(&ic->journal_crypt_alg);
4547 
4548 	if (ic->journal_mac)
4549 		crypto_free_shash(ic->journal_mac);
4550 	free_alg(&ic->journal_mac_alg);
4551 
4552 	kfree(ic);
4553 }
4554 
4555 static struct target_type integrity_target = {
4556 	.name			= "integrity",
4557 	.version		= {1, 7, 0},
4558 	.module			= THIS_MODULE,
4559 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4560 	.ctr			= dm_integrity_ctr,
4561 	.dtr			= dm_integrity_dtr,
4562 	.map			= dm_integrity_map,
4563 	.postsuspend		= dm_integrity_postsuspend,
4564 	.resume			= dm_integrity_resume,
4565 	.status			= dm_integrity_status,
4566 	.iterate_devices	= dm_integrity_iterate_devices,
4567 	.io_hints		= dm_integrity_io_hints,
4568 };
4569 
4570 static int __init dm_integrity_init(void)
4571 {
4572 	int r;
4573 
4574 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4575 					     sizeof(struct journal_io), 0, 0, NULL);
4576 	if (!journal_io_cache) {
4577 		DMERR("can't allocate journal io cache");
4578 		return -ENOMEM;
4579 	}
4580 
4581 	r = dm_register_target(&integrity_target);
4582 
4583 	if (r < 0)
4584 		DMERR("register failed %d", r);
4585 
4586 	return r;
4587 }
4588 
4589 static void __exit dm_integrity_exit(void)
4590 {
4591 	dm_unregister_target(&integrity_target);
4592 	kmem_cache_destroy(journal_io_cache);
4593 }
4594 
4595 module_init(dm_integrity_init);
4596 module_exit(dm_integrity_exit);
4597 
4598 MODULE_AUTHOR("Milan Broz");
4599 MODULE_AUTHOR("Mikulas Patocka");
4600 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4601 MODULE_LICENSE("GPL");
4602