xref: /openbmc/linux/drivers/md/dm-integrity.c (revision c699ce1a)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bio-record.h"
10 
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25 
26 #include "dm-audit.h"
27 
28 #define DM_MSG_PREFIX "integrity"
29 
30 #define DEFAULT_INTERLEAVE_SECTORS	32768
31 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
32 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
33 #define DEFAULT_BUFFER_SECTORS		128
34 #define DEFAULT_JOURNAL_WATERMARK	50
35 #define DEFAULT_SYNC_MSEC		10000
36 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
37 #define MIN_LOG2_INTERLEAVE_SECTORS	3
38 #define MAX_LOG2_INTERLEAVE_SECTORS	31
39 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
40 #define RECALC_SECTORS			32768
41 #define RECALC_WRITE_SUPER		16
42 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
43 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
44 #define DISCARD_FILLER			0xf6
45 #define SALT_SIZE			16
46 
47 /*
48  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
49  * so it should not be enabled in the official kernel
50  */
51 //#define DEBUG_PRINT
52 //#define INTERNAL_VERIFY
53 
54 /*
55  * On disk structures
56  */
57 
58 #define SB_MAGIC			"integrt"
59 #define SB_VERSION_1			1
60 #define SB_VERSION_2			2
61 #define SB_VERSION_3			3
62 #define SB_VERSION_4			4
63 #define SB_VERSION_5			5
64 #define SB_SECTORS			8
65 #define MAX_SECTORS_PER_BLOCK		8
66 
67 struct superblock {
68 	__u8 magic[8];
69 	__u8 version;
70 	__u8 log2_interleave_sectors;
71 	__le16 integrity_tag_size;
72 	__le32 journal_sections;
73 	__le64 provided_data_sectors;	/* userspace uses this value */
74 	__le32 flags;
75 	__u8 log2_sectors_per_block;
76 	__u8 log2_blocks_per_bitmap_bit;
77 	__u8 pad[2];
78 	__le64 recalc_sector;
79 	__u8 pad2[8];
80 	__u8 salt[SALT_SIZE];
81 };
82 
83 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
84 #define SB_FLAG_RECALCULATING		0x2
85 #define SB_FLAG_DIRTY_BITMAP		0x4
86 #define SB_FLAG_FIXED_PADDING		0x8
87 #define SB_FLAG_FIXED_HMAC		0x10
88 
89 #define	JOURNAL_ENTRY_ROUNDUP		8
90 
91 typedef __le64 commit_id_t;
92 #define JOURNAL_MAC_PER_SECTOR		8
93 
94 struct journal_entry {
95 	union {
96 		struct {
97 			__le32 sector_lo;
98 			__le32 sector_hi;
99 		} s;
100 		__le64 sector;
101 	} u;
102 	commit_id_t last_bytes[];
103 	/* __u8 tag[0]; */
104 };
105 
106 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
107 
108 #if BITS_PER_LONG == 64
109 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
110 #else
111 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
112 #endif
113 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
114 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
115 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
116 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
117 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
118 
119 #define JOURNAL_BLOCK_SECTORS		8
120 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
121 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
122 
123 struct journal_sector {
124 	struct_group(sectors,
125 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
126 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
127 	);
128 	commit_id_t commit_id;
129 };
130 
131 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
132 
133 #define METADATA_PADDING_SECTORS	8
134 
135 #define N_COMMIT_IDS			4
136 
137 static unsigned char prev_commit_seq(unsigned char seq)
138 {
139 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
140 }
141 
142 static unsigned char next_commit_seq(unsigned char seq)
143 {
144 	return (seq + 1) % N_COMMIT_IDS;
145 }
146 
147 /*
148  * In-memory structures
149  */
150 
151 struct journal_node {
152 	struct rb_node node;
153 	sector_t sector;
154 };
155 
156 struct alg_spec {
157 	char *alg_string;
158 	char *key_string;
159 	__u8 *key;
160 	unsigned key_size;
161 };
162 
163 struct dm_integrity_c {
164 	struct dm_dev *dev;
165 	struct dm_dev *meta_dev;
166 	unsigned tag_size;
167 	__s8 log2_tag_size;
168 	sector_t start;
169 	mempool_t journal_io_mempool;
170 	struct dm_io_client *io;
171 	struct dm_bufio_client *bufio;
172 	struct workqueue_struct *metadata_wq;
173 	struct superblock *sb;
174 	unsigned journal_pages;
175 	unsigned n_bitmap_blocks;
176 
177 	struct page_list *journal;
178 	struct page_list *journal_io;
179 	struct page_list *journal_xor;
180 	struct page_list *recalc_bitmap;
181 	struct page_list *may_write_bitmap;
182 	struct bitmap_block_status *bbs;
183 	unsigned bitmap_flush_interval;
184 	int synchronous_mode;
185 	struct bio_list synchronous_bios;
186 	struct delayed_work bitmap_flush_work;
187 
188 	struct crypto_skcipher *journal_crypt;
189 	struct scatterlist **journal_scatterlist;
190 	struct scatterlist **journal_io_scatterlist;
191 	struct skcipher_request **sk_requests;
192 
193 	struct crypto_shash *journal_mac;
194 
195 	struct journal_node *journal_tree;
196 	struct rb_root journal_tree_root;
197 
198 	sector_t provided_data_sectors;
199 
200 	unsigned short journal_entry_size;
201 	unsigned char journal_entries_per_sector;
202 	unsigned char journal_section_entries;
203 	unsigned short journal_section_sectors;
204 	unsigned journal_sections;
205 	unsigned journal_entries;
206 	sector_t data_device_sectors;
207 	sector_t meta_device_sectors;
208 	unsigned initial_sectors;
209 	unsigned metadata_run;
210 	__s8 log2_metadata_run;
211 	__u8 log2_buffer_sectors;
212 	__u8 sectors_per_block;
213 	__u8 log2_blocks_per_bitmap_bit;
214 
215 	unsigned char mode;
216 
217 	int failed;
218 
219 	struct crypto_shash *internal_hash;
220 
221 	struct dm_target *ti;
222 
223 	/* these variables are locked with endio_wait.lock */
224 	struct rb_root in_progress;
225 	struct list_head wait_list;
226 	wait_queue_head_t endio_wait;
227 	struct workqueue_struct *wait_wq;
228 	struct workqueue_struct *offload_wq;
229 
230 	unsigned char commit_seq;
231 	commit_id_t commit_ids[N_COMMIT_IDS];
232 
233 	unsigned committed_section;
234 	unsigned n_committed_sections;
235 
236 	unsigned uncommitted_section;
237 	unsigned n_uncommitted_sections;
238 
239 	unsigned free_section;
240 	unsigned char free_section_entry;
241 	unsigned free_sectors;
242 
243 	unsigned free_sectors_threshold;
244 
245 	struct workqueue_struct *commit_wq;
246 	struct work_struct commit_work;
247 
248 	struct workqueue_struct *writer_wq;
249 	struct work_struct writer_work;
250 
251 	struct workqueue_struct *recalc_wq;
252 	struct work_struct recalc_work;
253 	u8 *recalc_buffer;
254 	u8 *recalc_tags;
255 
256 	struct bio_list flush_bio_list;
257 
258 	unsigned long autocommit_jiffies;
259 	struct timer_list autocommit_timer;
260 	unsigned autocommit_msec;
261 
262 	wait_queue_head_t copy_to_journal_wait;
263 
264 	struct completion crypto_backoff;
265 
266 	bool wrote_to_journal;
267 	bool journal_uptodate;
268 	bool just_formatted;
269 	bool recalculate_flag;
270 	bool reset_recalculate_flag;
271 	bool discard;
272 	bool fix_padding;
273 	bool fix_hmac;
274 	bool legacy_recalculate;
275 
276 	struct alg_spec internal_hash_alg;
277 	struct alg_spec journal_crypt_alg;
278 	struct alg_spec journal_mac_alg;
279 
280 	atomic64_t number_of_mismatches;
281 
282 	struct notifier_block reboot_notifier;
283 };
284 
285 struct dm_integrity_range {
286 	sector_t logical_sector;
287 	sector_t n_sectors;
288 	bool waiting;
289 	union {
290 		struct rb_node node;
291 		struct {
292 			struct task_struct *task;
293 			struct list_head wait_entry;
294 		};
295 	};
296 };
297 
298 struct dm_integrity_io {
299 	struct work_struct work;
300 
301 	struct dm_integrity_c *ic;
302 	enum req_op op;
303 	bool fua;
304 
305 	struct dm_integrity_range range;
306 
307 	sector_t metadata_block;
308 	unsigned metadata_offset;
309 
310 	atomic_t in_flight;
311 	blk_status_t bi_status;
312 
313 	struct completion *completion;
314 
315 	struct dm_bio_details bio_details;
316 };
317 
318 struct journal_completion {
319 	struct dm_integrity_c *ic;
320 	atomic_t in_flight;
321 	struct completion comp;
322 };
323 
324 struct journal_io {
325 	struct dm_integrity_range range;
326 	struct journal_completion *comp;
327 };
328 
329 struct bitmap_block_status {
330 	struct work_struct work;
331 	struct dm_integrity_c *ic;
332 	unsigned idx;
333 	unsigned long *bitmap;
334 	struct bio_list bio_queue;
335 	spinlock_t bio_queue_lock;
336 
337 };
338 
339 static struct kmem_cache *journal_io_cache;
340 
341 #define JOURNAL_IO_MEMPOOL	32
342 
343 #ifdef DEBUG_PRINT
344 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
345 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
346 {
347 	va_list args;
348 	va_start(args, msg);
349 	vprintk(msg, args);
350 	va_end(args);
351 	if (len)
352 		pr_cont(":");
353 	while (len) {
354 		pr_cont(" %02x", *bytes);
355 		bytes++;
356 		len--;
357 	}
358 	pr_cont("\n");
359 }
360 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
361 #else
362 #define DEBUG_print(x, ...)			do { } while (0)
363 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
364 #endif
365 
366 static void dm_integrity_prepare(struct request *rq)
367 {
368 }
369 
370 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
371 {
372 }
373 
374 /*
375  * DM Integrity profile, protection is performed layer above (dm-crypt)
376  */
377 static const struct blk_integrity_profile dm_integrity_profile = {
378 	.name			= "DM-DIF-EXT-TAG",
379 	.generate_fn		= NULL,
380 	.verify_fn		= NULL,
381 	.prepare_fn		= dm_integrity_prepare,
382 	.complete_fn		= dm_integrity_complete,
383 };
384 
385 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
386 static void integrity_bio_wait(struct work_struct *w);
387 static void dm_integrity_dtr(struct dm_target *ti);
388 
389 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
390 {
391 	if (err == -EILSEQ)
392 		atomic64_inc(&ic->number_of_mismatches);
393 	if (!cmpxchg(&ic->failed, 0, err))
394 		DMERR("Error on %s: %d", msg, err);
395 }
396 
397 static int dm_integrity_failed(struct dm_integrity_c *ic)
398 {
399 	return READ_ONCE(ic->failed);
400 }
401 
402 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
403 {
404 	if (ic->legacy_recalculate)
405 		return false;
406 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
407 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
408 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
409 		return true;
410 	return false;
411 }
412 
413 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
414 					  unsigned j, unsigned char seq)
415 {
416 	/*
417 	 * Xor the number with section and sector, so that if a piece of
418 	 * journal is written at wrong place, it is detected.
419 	 */
420 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
421 }
422 
423 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
424 				sector_t *area, sector_t *offset)
425 {
426 	if (!ic->meta_dev) {
427 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
428 		*area = data_sector >> log2_interleave_sectors;
429 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
430 	} else {
431 		*area = 0;
432 		*offset = data_sector;
433 	}
434 }
435 
436 #define sector_to_block(ic, n)						\
437 do {									\
438 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
439 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
440 } while (0)
441 
442 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
443 					    sector_t offset, unsigned *metadata_offset)
444 {
445 	__u64 ms;
446 	unsigned mo;
447 
448 	ms = area << ic->sb->log2_interleave_sectors;
449 	if (likely(ic->log2_metadata_run >= 0))
450 		ms += area << ic->log2_metadata_run;
451 	else
452 		ms += area * ic->metadata_run;
453 	ms >>= ic->log2_buffer_sectors;
454 
455 	sector_to_block(ic, offset);
456 
457 	if (likely(ic->log2_tag_size >= 0)) {
458 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
459 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
460 	} else {
461 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
462 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
463 	}
464 	*metadata_offset = mo;
465 	return ms;
466 }
467 
468 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
469 {
470 	sector_t result;
471 
472 	if (ic->meta_dev)
473 		return offset;
474 
475 	result = area << ic->sb->log2_interleave_sectors;
476 	if (likely(ic->log2_metadata_run >= 0))
477 		result += (area + 1) << ic->log2_metadata_run;
478 	else
479 		result += (area + 1) * ic->metadata_run;
480 
481 	result += (sector_t)ic->initial_sectors + offset;
482 	result += ic->start;
483 
484 	return result;
485 }
486 
487 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
488 {
489 	if (unlikely(*sec_ptr >= ic->journal_sections))
490 		*sec_ptr -= ic->journal_sections;
491 }
492 
493 static void sb_set_version(struct dm_integrity_c *ic)
494 {
495 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
496 		ic->sb->version = SB_VERSION_5;
497 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
498 		ic->sb->version = SB_VERSION_4;
499 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
500 		ic->sb->version = SB_VERSION_3;
501 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
502 		ic->sb->version = SB_VERSION_2;
503 	else
504 		ic->sb->version = SB_VERSION_1;
505 }
506 
507 static int sb_mac(struct dm_integrity_c *ic, bool wr)
508 {
509 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
510 	int r;
511 	unsigned size = crypto_shash_digestsize(ic->journal_mac);
512 
513 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
514 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
515 		return -EINVAL;
516 	}
517 
518 	desc->tfm = ic->journal_mac;
519 
520 	r = crypto_shash_init(desc);
521 	if (unlikely(r < 0)) {
522 		dm_integrity_io_error(ic, "crypto_shash_init", r);
523 		return r;
524 	}
525 
526 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
527 	if (unlikely(r < 0)) {
528 		dm_integrity_io_error(ic, "crypto_shash_update", r);
529 		return r;
530 	}
531 
532 	if (likely(wr)) {
533 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
534 		if (unlikely(r < 0)) {
535 			dm_integrity_io_error(ic, "crypto_shash_final", r);
536 			return r;
537 		}
538 	} else {
539 		__u8 result[HASH_MAX_DIGESTSIZE];
540 		r = crypto_shash_final(desc, result);
541 		if (unlikely(r < 0)) {
542 			dm_integrity_io_error(ic, "crypto_shash_final", r);
543 			return r;
544 		}
545 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
546 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
547 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
548 			return -EILSEQ;
549 		}
550 	}
551 
552 	return 0;
553 }
554 
555 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
556 {
557 	struct dm_io_request io_req;
558 	struct dm_io_region io_loc;
559 	const enum req_op op = opf & REQ_OP_MASK;
560 	int r;
561 
562 	io_req.bi_opf = opf;
563 	io_req.mem.type = DM_IO_KMEM;
564 	io_req.mem.ptr.addr = ic->sb;
565 	io_req.notify.fn = NULL;
566 	io_req.client = ic->io;
567 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
568 	io_loc.sector = ic->start;
569 	io_loc.count = SB_SECTORS;
570 
571 	if (op == REQ_OP_WRITE) {
572 		sb_set_version(ic);
573 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
574 			r = sb_mac(ic, true);
575 			if (unlikely(r))
576 				return r;
577 		}
578 	}
579 
580 	r = dm_io(&io_req, 1, &io_loc, NULL);
581 	if (unlikely(r))
582 		return r;
583 
584 	if (op == REQ_OP_READ) {
585 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
586 			r = sb_mac(ic, false);
587 			if (unlikely(r))
588 				return r;
589 		}
590 	}
591 
592 	return 0;
593 }
594 
595 #define BITMAP_OP_TEST_ALL_SET		0
596 #define BITMAP_OP_TEST_ALL_CLEAR	1
597 #define BITMAP_OP_SET			2
598 #define BITMAP_OP_CLEAR			3
599 
600 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
601 			    sector_t sector, sector_t n_sectors, int mode)
602 {
603 	unsigned long bit, end_bit, this_end_bit, page, end_page;
604 	unsigned long *data;
605 
606 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
607 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
608 			sector,
609 			n_sectors,
610 			ic->sb->log2_sectors_per_block,
611 			ic->log2_blocks_per_bitmap_bit,
612 			mode);
613 		BUG();
614 	}
615 
616 	if (unlikely(!n_sectors))
617 		return true;
618 
619 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
620 	end_bit = (sector + n_sectors - 1) >>
621 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
622 
623 	page = bit / (PAGE_SIZE * 8);
624 	bit %= PAGE_SIZE * 8;
625 
626 	end_page = end_bit / (PAGE_SIZE * 8);
627 	end_bit %= PAGE_SIZE * 8;
628 
629 repeat:
630 	if (page < end_page) {
631 		this_end_bit = PAGE_SIZE * 8 - 1;
632 	} else {
633 		this_end_bit = end_bit;
634 	}
635 
636 	data = lowmem_page_address(bitmap[page].page);
637 
638 	if (mode == BITMAP_OP_TEST_ALL_SET) {
639 		while (bit <= this_end_bit) {
640 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
641 				do {
642 					if (data[bit / BITS_PER_LONG] != -1)
643 						return false;
644 					bit += BITS_PER_LONG;
645 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
646 				continue;
647 			}
648 			if (!test_bit(bit, data))
649 				return false;
650 			bit++;
651 		}
652 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
653 		while (bit <= this_end_bit) {
654 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
655 				do {
656 					if (data[bit / BITS_PER_LONG] != 0)
657 						return false;
658 					bit += BITS_PER_LONG;
659 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
660 				continue;
661 			}
662 			if (test_bit(bit, data))
663 				return false;
664 			bit++;
665 		}
666 	} else if (mode == BITMAP_OP_SET) {
667 		while (bit <= this_end_bit) {
668 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
669 				do {
670 					data[bit / BITS_PER_LONG] = -1;
671 					bit += BITS_PER_LONG;
672 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
673 				continue;
674 			}
675 			__set_bit(bit, data);
676 			bit++;
677 		}
678 	} else if (mode == BITMAP_OP_CLEAR) {
679 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
680 			clear_page(data);
681 		else while (bit <= this_end_bit) {
682 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
683 				do {
684 					data[bit / BITS_PER_LONG] = 0;
685 					bit += BITS_PER_LONG;
686 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
687 				continue;
688 			}
689 			__clear_bit(bit, data);
690 			bit++;
691 		}
692 	} else {
693 		BUG();
694 	}
695 
696 	if (unlikely(page < end_page)) {
697 		bit = 0;
698 		page++;
699 		goto repeat;
700 	}
701 
702 	return true;
703 }
704 
705 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
706 {
707 	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
708 	unsigned i;
709 
710 	for (i = 0; i < n_bitmap_pages; i++) {
711 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
712 		unsigned long *src_data = lowmem_page_address(src[i].page);
713 		copy_page(dst_data, src_data);
714 	}
715 }
716 
717 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
718 {
719 	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
720 	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
721 
722 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
723 	return &ic->bbs[bitmap_block];
724 }
725 
726 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
727 				 bool e, const char *function)
728 {
729 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
730 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
731 
732 	if (unlikely(section >= ic->journal_sections) ||
733 	    unlikely(offset >= limit)) {
734 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
735 		       function, section, offset, ic->journal_sections, limit);
736 		BUG();
737 	}
738 #endif
739 }
740 
741 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
742 			       unsigned *pl_index, unsigned *pl_offset)
743 {
744 	unsigned sector;
745 
746 	access_journal_check(ic, section, offset, false, "page_list_location");
747 
748 	sector = section * ic->journal_section_sectors + offset;
749 
750 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
751 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
752 }
753 
754 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
755 					       unsigned section, unsigned offset, unsigned *n_sectors)
756 {
757 	unsigned pl_index, pl_offset;
758 	char *va;
759 
760 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
761 
762 	if (n_sectors)
763 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
764 
765 	va = lowmem_page_address(pl[pl_index].page);
766 
767 	return (struct journal_sector *)(va + pl_offset);
768 }
769 
770 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
771 {
772 	return access_page_list(ic, ic->journal, section, offset, NULL);
773 }
774 
775 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
776 {
777 	unsigned rel_sector, offset;
778 	struct journal_sector *js;
779 
780 	access_journal_check(ic, section, n, true, "access_journal_entry");
781 
782 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
783 	offset = n / JOURNAL_BLOCK_SECTORS;
784 
785 	js = access_journal(ic, section, rel_sector);
786 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
787 }
788 
789 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
790 {
791 	n <<= ic->sb->log2_sectors_per_block;
792 
793 	n += JOURNAL_BLOCK_SECTORS;
794 
795 	access_journal_check(ic, section, n, false, "access_journal_data");
796 
797 	return access_journal(ic, section, n);
798 }
799 
800 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
801 {
802 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
803 	int r;
804 	unsigned j, size;
805 
806 	desc->tfm = ic->journal_mac;
807 
808 	r = crypto_shash_init(desc);
809 	if (unlikely(r < 0)) {
810 		dm_integrity_io_error(ic, "crypto_shash_init", r);
811 		goto err;
812 	}
813 
814 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
815 		__le64 section_le;
816 
817 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
818 		if (unlikely(r < 0)) {
819 			dm_integrity_io_error(ic, "crypto_shash_update", r);
820 			goto err;
821 		}
822 
823 		section_le = cpu_to_le64(section);
824 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
825 		if (unlikely(r < 0)) {
826 			dm_integrity_io_error(ic, "crypto_shash_update", r);
827 			goto err;
828 		}
829 	}
830 
831 	for (j = 0; j < ic->journal_section_entries; j++) {
832 		struct journal_entry *je = access_journal_entry(ic, section, j);
833 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
834 		if (unlikely(r < 0)) {
835 			dm_integrity_io_error(ic, "crypto_shash_update", r);
836 			goto err;
837 		}
838 	}
839 
840 	size = crypto_shash_digestsize(ic->journal_mac);
841 
842 	if (likely(size <= JOURNAL_MAC_SIZE)) {
843 		r = crypto_shash_final(desc, result);
844 		if (unlikely(r < 0)) {
845 			dm_integrity_io_error(ic, "crypto_shash_final", r);
846 			goto err;
847 		}
848 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
849 	} else {
850 		__u8 digest[HASH_MAX_DIGESTSIZE];
851 
852 		if (WARN_ON(size > sizeof(digest))) {
853 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
854 			goto err;
855 		}
856 		r = crypto_shash_final(desc, digest);
857 		if (unlikely(r < 0)) {
858 			dm_integrity_io_error(ic, "crypto_shash_final", r);
859 			goto err;
860 		}
861 		memcpy(result, digest, JOURNAL_MAC_SIZE);
862 	}
863 
864 	return;
865 err:
866 	memset(result, 0, JOURNAL_MAC_SIZE);
867 }
868 
869 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
870 {
871 	__u8 result[JOURNAL_MAC_SIZE];
872 	unsigned j;
873 
874 	if (!ic->journal_mac)
875 		return;
876 
877 	section_mac(ic, section, result);
878 
879 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
880 		struct journal_sector *js = access_journal(ic, section, j);
881 
882 		if (likely(wr))
883 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
884 		else {
885 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
886 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
887 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
888 			}
889 		}
890 	}
891 }
892 
893 static void complete_journal_op(void *context)
894 {
895 	struct journal_completion *comp = context;
896 	BUG_ON(!atomic_read(&comp->in_flight));
897 	if (likely(atomic_dec_and_test(&comp->in_flight)))
898 		complete(&comp->comp);
899 }
900 
901 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
902 			unsigned n_sections, struct journal_completion *comp)
903 {
904 	struct async_submit_ctl submit;
905 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
906 	unsigned pl_index, pl_offset, section_index;
907 	struct page_list *source_pl, *target_pl;
908 
909 	if (likely(encrypt)) {
910 		source_pl = ic->journal;
911 		target_pl = ic->journal_io;
912 	} else {
913 		source_pl = ic->journal_io;
914 		target_pl = ic->journal;
915 	}
916 
917 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
918 
919 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
920 
921 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
922 
923 	section_index = pl_index;
924 
925 	do {
926 		size_t this_step;
927 		struct page *src_pages[2];
928 		struct page *dst_page;
929 
930 		while (unlikely(pl_index == section_index)) {
931 			unsigned dummy;
932 			if (likely(encrypt))
933 				rw_section_mac(ic, section, true);
934 			section++;
935 			n_sections--;
936 			if (!n_sections)
937 				break;
938 			page_list_location(ic, section, 0, &section_index, &dummy);
939 		}
940 
941 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
942 		dst_page = target_pl[pl_index].page;
943 		src_pages[0] = source_pl[pl_index].page;
944 		src_pages[1] = ic->journal_xor[pl_index].page;
945 
946 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
947 
948 		pl_index++;
949 		pl_offset = 0;
950 		n_bytes -= this_step;
951 	} while (n_bytes);
952 
953 	BUG_ON(n_sections);
954 
955 	async_tx_issue_pending_all();
956 }
957 
958 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
959 {
960 	struct journal_completion *comp = req->data;
961 	if (unlikely(err)) {
962 		if (likely(err == -EINPROGRESS)) {
963 			complete(&comp->ic->crypto_backoff);
964 			return;
965 		}
966 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
967 	}
968 	complete_journal_op(comp);
969 }
970 
971 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
972 {
973 	int r;
974 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
975 				      complete_journal_encrypt, comp);
976 	if (likely(encrypt))
977 		r = crypto_skcipher_encrypt(req);
978 	else
979 		r = crypto_skcipher_decrypt(req);
980 	if (likely(!r))
981 		return false;
982 	if (likely(r == -EINPROGRESS))
983 		return true;
984 	if (likely(r == -EBUSY)) {
985 		wait_for_completion(&comp->ic->crypto_backoff);
986 		reinit_completion(&comp->ic->crypto_backoff);
987 		return true;
988 	}
989 	dm_integrity_io_error(comp->ic, "encrypt", r);
990 	return false;
991 }
992 
993 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
994 			  unsigned n_sections, struct journal_completion *comp)
995 {
996 	struct scatterlist **source_sg;
997 	struct scatterlist **target_sg;
998 
999 	atomic_add(2, &comp->in_flight);
1000 
1001 	if (likely(encrypt)) {
1002 		source_sg = ic->journal_scatterlist;
1003 		target_sg = ic->journal_io_scatterlist;
1004 	} else {
1005 		source_sg = ic->journal_io_scatterlist;
1006 		target_sg = ic->journal_scatterlist;
1007 	}
1008 
1009 	do {
1010 		struct skcipher_request *req;
1011 		unsigned ivsize;
1012 		char *iv;
1013 
1014 		if (likely(encrypt))
1015 			rw_section_mac(ic, section, true);
1016 
1017 		req = ic->sk_requests[section];
1018 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1019 		iv = req->iv;
1020 
1021 		memcpy(iv, iv + ivsize, ivsize);
1022 
1023 		req->src = source_sg[section];
1024 		req->dst = target_sg[section];
1025 
1026 		if (unlikely(do_crypt(encrypt, req, comp)))
1027 			atomic_inc(&comp->in_flight);
1028 
1029 		section++;
1030 		n_sections--;
1031 	} while (n_sections);
1032 
1033 	atomic_dec(&comp->in_flight);
1034 	complete_journal_op(comp);
1035 }
1036 
1037 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1038 			    unsigned n_sections, struct journal_completion *comp)
1039 {
1040 	if (ic->journal_xor)
1041 		return xor_journal(ic, encrypt, section, n_sections, comp);
1042 	else
1043 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1044 }
1045 
1046 static void complete_journal_io(unsigned long error, void *context)
1047 {
1048 	struct journal_completion *comp = context;
1049 	if (unlikely(error != 0))
1050 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1051 	complete_journal_op(comp);
1052 }
1053 
1054 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1055 			       unsigned sector, unsigned n_sectors,
1056 			       struct journal_completion *comp)
1057 {
1058 	struct dm_io_request io_req;
1059 	struct dm_io_region io_loc;
1060 	unsigned pl_index, pl_offset;
1061 	int r;
1062 
1063 	if (unlikely(dm_integrity_failed(ic))) {
1064 		if (comp)
1065 			complete_journal_io(-1UL, comp);
1066 		return;
1067 	}
1068 
1069 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1070 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1071 
1072 	io_req.bi_opf = opf;
1073 	io_req.mem.type = DM_IO_PAGE_LIST;
1074 	if (ic->journal_io)
1075 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1076 	else
1077 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1078 	io_req.mem.offset = pl_offset;
1079 	if (likely(comp != NULL)) {
1080 		io_req.notify.fn = complete_journal_io;
1081 		io_req.notify.context = comp;
1082 	} else {
1083 		io_req.notify.fn = NULL;
1084 	}
1085 	io_req.client = ic->io;
1086 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1087 	io_loc.sector = ic->start + SB_SECTORS + sector;
1088 	io_loc.count = n_sectors;
1089 
1090 	r = dm_io(&io_req, 1, &io_loc, NULL);
1091 	if (unlikely(r)) {
1092 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1093 				      "reading journal" : "writing journal", r);
1094 		if (comp) {
1095 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1096 			complete_journal_io(-1UL, comp);
1097 		}
1098 	}
1099 }
1100 
1101 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1102 		       unsigned section, unsigned n_sections,
1103 		       struct journal_completion *comp)
1104 {
1105 	unsigned sector, n_sectors;
1106 
1107 	sector = section * ic->journal_section_sectors;
1108 	n_sectors = n_sections * ic->journal_section_sectors;
1109 
1110 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1111 }
1112 
1113 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1114 {
1115 	struct journal_completion io_comp;
1116 	struct journal_completion crypt_comp_1;
1117 	struct journal_completion crypt_comp_2;
1118 	unsigned i;
1119 
1120 	io_comp.ic = ic;
1121 	init_completion(&io_comp.comp);
1122 
1123 	if (commit_start + commit_sections <= ic->journal_sections) {
1124 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1125 		if (ic->journal_io) {
1126 			crypt_comp_1.ic = ic;
1127 			init_completion(&crypt_comp_1.comp);
1128 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1129 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1130 			wait_for_completion_io(&crypt_comp_1.comp);
1131 		} else {
1132 			for (i = 0; i < commit_sections; i++)
1133 				rw_section_mac(ic, commit_start + i, true);
1134 		}
1135 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1136 			   commit_sections, &io_comp);
1137 	} else {
1138 		unsigned to_end;
1139 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1140 		to_end = ic->journal_sections - commit_start;
1141 		if (ic->journal_io) {
1142 			crypt_comp_1.ic = ic;
1143 			init_completion(&crypt_comp_1.comp);
1144 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1145 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1146 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1147 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1148 					   commit_start, to_end, &io_comp);
1149 				reinit_completion(&crypt_comp_1.comp);
1150 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1151 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1152 				wait_for_completion_io(&crypt_comp_1.comp);
1153 			} else {
1154 				crypt_comp_2.ic = ic;
1155 				init_completion(&crypt_comp_2.comp);
1156 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1157 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1158 				wait_for_completion_io(&crypt_comp_1.comp);
1159 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1160 				wait_for_completion_io(&crypt_comp_2.comp);
1161 			}
1162 		} else {
1163 			for (i = 0; i < to_end; i++)
1164 				rw_section_mac(ic, commit_start + i, true);
1165 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1166 			for (i = 0; i < commit_sections - to_end; i++)
1167 				rw_section_mac(ic, i, true);
1168 		}
1169 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1170 	}
1171 
1172 	wait_for_completion_io(&io_comp.comp);
1173 }
1174 
1175 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1176 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1177 {
1178 	struct dm_io_request io_req;
1179 	struct dm_io_region io_loc;
1180 	int r;
1181 	unsigned sector, pl_index, pl_offset;
1182 
1183 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1184 
1185 	if (unlikely(dm_integrity_failed(ic))) {
1186 		fn(-1UL, data);
1187 		return;
1188 	}
1189 
1190 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1191 
1192 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1193 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1194 
1195 	io_req.bi_opf = REQ_OP_WRITE;
1196 	io_req.mem.type = DM_IO_PAGE_LIST;
1197 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1198 	io_req.mem.offset = pl_offset;
1199 	io_req.notify.fn = fn;
1200 	io_req.notify.context = data;
1201 	io_req.client = ic->io;
1202 	io_loc.bdev = ic->dev->bdev;
1203 	io_loc.sector = target;
1204 	io_loc.count = n_sectors;
1205 
1206 	r = dm_io(&io_req, 1, &io_loc, NULL);
1207 	if (unlikely(r)) {
1208 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1209 		fn(-1UL, data);
1210 	}
1211 }
1212 
1213 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1214 {
1215 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1216 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1217 }
1218 
1219 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1220 {
1221 	struct rb_node **n = &ic->in_progress.rb_node;
1222 	struct rb_node *parent;
1223 
1224 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1225 
1226 	if (likely(check_waiting)) {
1227 		struct dm_integrity_range *range;
1228 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1229 			if (unlikely(ranges_overlap(range, new_range)))
1230 				return false;
1231 		}
1232 	}
1233 
1234 	parent = NULL;
1235 
1236 	while (*n) {
1237 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1238 
1239 		parent = *n;
1240 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1241 			n = &range->node.rb_left;
1242 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1243 			n = &range->node.rb_right;
1244 		} else {
1245 			return false;
1246 		}
1247 	}
1248 
1249 	rb_link_node(&new_range->node, parent, n);
1250 	rb_insert_color(&new_range->node, &ic->in_progress);
1251 
1252 	return true;
1253 }
1254 
1255 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1256 {
1257 	rb_erase(&range->node, &ic->in_progress);
1258 	while (unlikely(!list_empty(&ic->wait_list))) {
1259 		struct dm_integrity_range *last_range =
1260 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1261 		struct task_struct *last_range_task;
1262 		last_range_task = last_range->task;
1263 		list_del(&last_range->wait_entry);
1264 		if (!add_new_range(ic, last_range, false)) {
1265 			last_range->task = last_range_task;
1266 			list_add(&last_range->wait_entry, &ic->wait_list);
1267 			break;
1268 		}
1269 		last_range->waiting = false;
1270 		wake_up_process(last_range_task);
1271 	}
1272 }
1273 
1274 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1275 {
1276 	unsigned long flags;
1277 
1278 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1279 	remove_range_unlocked(ic, range);
1280 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1281 }
1282 
1283 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1284 {
1285 	new_range->waiting = true;
1286 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1287 	new_range->task = current;
1288 	do {
1289 		__set_current_state(TASK_UNINTERRUPTIBLE);
1290 		spin_unlock_irq(&ic->endio_wait.lock);
1291 		io_schedule();
1292 		spin_lock_irq(&ic->endio_wait.lock);
1293 	} while (unlikely(new_range->waiting));
1294 }
1295 
1296 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1297 {
1298 	if (unlikely(!add_new_range(ic, new_range, true)))
1299 		wait_and_add_new_range(ic, new_range);
1300 }
1301 
1302 static void init_journal_node(struct journal_node *node)
1303 {
1304 	RB_CLEAR_NODE(&node->node);
1305 	node->sector = (sector_t)-1;
1306 }
1307 
1308 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1309 {
1310 	struct rb_node **link;
1311 	struct rb_node *parent;
1312 
1313 	node->sector = sector;
1314 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1315 
1316 	link = &ic->journal_tree_root.rb_node;
1317 	parent = NULL;
1318 
1319 	while (*link) {
1320 		struct journal_node *j;
1321 		parent = *link;
1322 		j = container_of(parent, struct journal_node, node);
1323 		if (sector < j->sector)
1324 			link = &j->node.rb_left;
1325 		else
1326 			link = &j->node.rb_right;
1327 	}
1328 
1329 	rb_link_node(&node->node, parent, link);
1330 	rb_insert_color(&node->node, &ic->journal_tree_root);
1331 }
1332 
1333 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1334 {
1335 	BUG_ON(RB_EMPTY_NODE(&node->node));
1336 	rb_erase(&node->node, &ic->journal_tree_root);
1337 	init_journal_node(node);
1338 }
1339 
1340 #define NOT_FOUND	(-1U)
1341 
1342 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1343 {
1344 	struct rb_node *n = ic->journal_tree_root.rb_node;
1345 	unsigned found = NOT_FOUND;
1346 	*next_sector = (sector_t)-1;
1347 	while (n) {
1348 		struct journal_node *j = container_of(n, struct journal_node, node);
1349 		if (sector == j->sector) {
1350 			found = j - ic->journal_tree;
1351 		}
1352 		if (sector < j->sector) {
1353 			*next_sector = j->sector;
1354 			n = j->node.rb_left;
1355 		} else {
1356 			n = j->node.rb_right;
1357 		}
1358 	}
1359 
1360 	return found;
1361 }
1362 
1363 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1364 {
1365 	struct journal_node *node, *next_node;
1366 	struct rb_node *next;
1367 
1368 	if (unlikely(pos >= ic->journal_entries))
1369 		return false;
1370 	node = &ic->journal_tree[pos];
1371 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1372 		return false;
1373 	if (unlikely(node->sector != sector))
1374 		return false;
1375 
1376 	next = rb_next(&node->node);
1377 	if (unlikely(!next))
1378 		return true;
1379 
1380 	next_node = container_of(next, struct journal_node, node);
1381 	return next_node->sector != sector;
1382 }
1383 
1384 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1385 {
1386 	struct rb_node *next;
1387 	struct journal_node *next_node;
1388 	unsigned next_section;
1389 
1390 	BUG_ON(RB_EMPTY_NODE(&node->node));
1391 
1392 	next = rb_next(&node->node);
1393 	if (unlikely(!next))
1394 		return false;
1395 
1396 	next_node = container_of(next, struct journal_node, node);
1397 
1398 	if (next_node->sector != node->sector)
1399 		return false;
1400 
1401 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1402 	if (next_section >= ic->committed_section &&
1403 	    next_section < ic->committed_section + ic->n_committed_sections)
1404 		return true;
1405 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1406 		return true;
1407 
1408 	return false;
1409 }
1410 
1411 #define TAG_READ	0
1412 #define TAG_WRITE	1
1413 #define TAG_CMP		2
1414 
1415 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1416 			       unsigned *metadata_offset, unsigned total_size, int op)
1417 {
1418 #define MAY_BE_FILLER		1
1419 #define MAY_BE_HASH		2
1420 	unsigned hash_offset = 0;
1421 	unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1422 
1423 	do {
1424 		unsigned char *data, *dp;
1425 		struct dm_buffer *b;
1426 		unsigned to_copy;
1427 		int r;
1428 
1429 		r = dm_integrity_failed(ic);
1430 		if (unlikely(r))
1431 			return r;
1432 
1433 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1434 		if (IS_ERR(data))
1435 			return PTR_ERR(data);
1436 
1437 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1438 		dp = data + *metadata_offset;
1439 		if (op == TAG_READ) {
1440 			memcpy(tag, dp, to_copy);
1441 		} else if (op == TAG_WRITE) {
1442 			if (memcmp(dp, tag, to_copy)) {
1443 				memcpy(dp, tag, to_copy);
1444 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1445 			}
1446 		} else {
1447 			/* e.g.: op == TAG_CMP */
1448 
1449 			if (likely(is_power_of_2(ic->tag_size))) {
1450 				if (unlikely(memcmp(dp, tag, to_copy)))
1451 					if (unlikely(!ic->discard) ||
1452 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1453 						goto thorough_test;
1454 				}
1455 			} else {
1456 				unsigned i, ts;
1457 thorough_test:
1458 				ts = total_size;
1459 
1460 				for (i = 0; i < to_copy; i++, ts--) {
1461 					if (unlikely(dp[i] != tag[i]))
1462 						may_be &= ~MAY_BE_HASH;
1463 					if (likely(dp[i] != DISCARD_FILLER))
1464 						may_be &= ~MAY_BE_FILLER;
1465 					hash_offset++;
1466 					if (unlikely(hash_offset == ic->tag_size)) {
1467 						if (unlikely(!may_be)) {
1468 							dm_bufio_release(b);
1469 							return ts;
1470 						}
1471 						hash_offset = 0;
1472 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1473 					}
1474 				}
1475 			}
1476 		}
1477 		dm_bufio_release(b);
1478 
1479 		tag += to_copy;
1480 		*metadata_offset += to_copy;
1481 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1482 			(*metadata_block)++;
1483 			*metadata_offset = 0;
1484 		}
1485 
1486 		if (unlikely(!is_power_of_2(ic->tag_size))) {
1487 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1488 		}
1489 
1490 		total_size -= to_copy;
1491 	} while (unlikely(total_size));
1492 
1493 	return 0;
1494 #undef MAY_BE_FILLER
1495 #undef MAY_BE_HASH
1496 }
1497 
1498 struct flush_request {
1499 	struct dm_io_request io_req;
1500 	struct dm_io_region io_reg;
1501 	struct dm_integrity_c *ic;
1502 	struct completion comp;
1503 };
1504 
1505 static void flush_notify(unsigned long error, void *fr_)
1506 {
1507 	struct flush_request *fr = fr_;
1508 	if (unlikely(error != 0))
1509 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1510 	complete(&fr->comp);
1511 }
1512 
1513 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1514 {
1515 	int r;
1516 
1517 	struct flush_request fr;
1518 
1519 	if (!ic->meta_dev)
1520 		flush_data = false;
1521 	if (flush_data) {
1522 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1523 		fr.io_req.mem.type = DM_IO_KMEM,
1524 		fr.io_req.mem.ptr.addr = NULL,
1525 		fr.io_req.notify.fn = flush_notify,
1526 		fr.io_req.notify.context = &fr;
1527 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1528 		fr.io_reg.bdev = ic->dev->bdev,
1529 		fr.io_reg.sector = 0,
1530 		fr.io_reg.count = 0,
1531 		fr.ic = ic;
1532 		init_completion(&fr.comp);
1533 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1534 		BUG_ON(r);
1535 	}
1536 
1537 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1538 	if (unlikely(r))
1539 		dm_integrity_io_error(ic, "writing tags", r);
1540 
1541 	if (flush_data)
1542 		wait_for_completion(&fr.comp);
1543 }
1544 
1545 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1546 {
1547 	DECLARE_WAITQUEUE(wait, current);
1548 	__add_wait_queue(&ic->endio_wait, &wait);
1549 	__set_current_state(TASK_UNINTERRUPTIBLE);
1550 	spin_unlock_irq(&ic->endio_wait.lock);
1551 	io_schedule();
1552 	spin_lock_irq(&ic->endio_wait.lock);
1553 	__remove_wait_queue(&ic->endio_wait, &wait);
1554 }
1555 
1556 static void autocommit_fn(struct timer_list *t)
1557 {
1558 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1559 
1560 	if (likely(!dm_integrity_failed(ic)))
1561 		queue_work(ic->commit_wq, &ic->commit_work);
1562 }
1563 
1564 static void schedule_autocommit(struct dm_integrity_c *ic)
1565 {
1566 	if (!timer_pending(&ic->autocommit_timer))
1567 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1568 }
1569 
1570 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1571 {
1572 	struct bio *bio;
1573 	unsigned long flags;
1574 
1575 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1576 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1577 	bio_list_add(&ic->flush_bio_list, bio);
1578 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1579 
1580 	queue_work(ic->commit_wq, &ic->commit_work);
1581 }
1582 
1583 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1584 {
1585 	int r = dm_integrity_failed(ic);
1586 	if (unlikely(r) && !bio->bi_status)
1587 		bio->bi_status = errno_to_blk_status(r);
1588 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1589 		unsigned long flags;
1590 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1591 		bio_list_add(&ic->synchronous_bios, bio);
1592 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1593 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1594 		return;
1595 	}
1596 	bio_endio(bio);
1597 }
1598 
1599 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1600 {
1601 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1602 
1603 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1604 		submit_flush_bio(ic, dio);
1605 	else
1606 		do_endio(ic, bio);
1607 }
1608 
1609 static void dec_in_flight(struct dm_integrity_io *dio)
1610 {
1611 	if (atomic_dec_and_test(&dio->in_flight)) {
1612 		struct dm_integrity_c *ic = dio->ic;
1613 		struct bio *bio;
1614 
1615 		remove_range(ic, &dio->range);
1616 
1617 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1618 			schedule_autocommit(ic);
1619 
1620 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1621 
1622 		if (unlikely(dio->bi_status) && !bio->bi_status)
1623 			bio->bi_status = dio->bi_status;
1624 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1625 			dio->range.logical_sector += dio->range.n_sectors;
1626 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1627 			INIT_WORK(&dio->work, integrity_bio_wait);
1628 			queue_work(ic->offload_wq, &dio->work);
1629 			return;
1630 		}
1631 		do_endio_flush(ic, dio);
1632 	}
1633 }
1634 
1635 static void integrity_end_io(struct bio *bio)
1636 {
1637 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1638 
1639 	dm_bio_restore(&dio->bio_details, bio);
1640 	if (bio->bi_integrity)
1641 		bio->bi_opf |= REQ_INTEGRITY;
1642 
1643 	if (dio->completion)
1644 		complete(dio->completion);
1645 
1646 	dec_in_flight(dio);
1647 }
1648 
1649 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1650 				      const char *data, char *result)
1651 {
1652 	__le64 sector_le = cpu_to_le64(sector);
1653 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1654 	int r;
1655 	unsigned digest_size;
1656 
1657 	req->tfm = ic->internal_hash;
1658 
1659 	r = crypto_shash_init(req);
1660 	if (unlikely(r < 0)) {
1661 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1662 		goto failed;
1663 	}
1664 
1665 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1666 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1667 		if (unlikely(r < 0)) {
1668 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1669 			goto failed;
1670 		}
1671 	}
1672 
1673 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1674 	if (unlikely(r < 0)) {
1675 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1676 		goto failed;
1677 	}
1678 
1679 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1680 	if (unlikely(r < 0)) {
1681 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1682 		goto failed;
1683 	}
1684 
1685 	r = crypto_shash_final(req, result);
1686 	if (unlikely(r < 0)) {
1687 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1688 		goto failed;
1689 	}
1690 
1691 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1692 	if (unlikely(digest_size < ic->tag_size))
1693 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1694 
1695 	return;
1696 
1697 failed:
1698 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1699 	get_random_bytes(result, ic->tag_size);
1700 }
1701 
1702 static void integrity_metadata(struct work_struct *w)
1703 {
1704 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1705 	struct dm_integrity_c *ic = dio->ic;
1706 
1707 	int r;
1708 
1709 	if (ic->internal_hash) {
1710 		struct bvec_iter iter;
1711 		struct bio_vec bv;
1712 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1713 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1714 		char *checksums;
1715 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1716 		char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1717 		sector_t sector;
1718 		unsigned sectors_to_process;
1719 
1720 		if (unlikely(ic->mode == 'R'))
1721 			goto skip_io;
1722 
1723 		if (likely(dio->op != REQ_OP_DISCARD))
1724 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1725 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1726 		else
1727 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1728 		if (!checksums) {
1729 			checksums = checksums_onstack;
1730 			if (WARN_ON(extra_space &&
1731 				    digest_size > sizeof(checksums_onstack))) {
1732 				r = -EINVAL;
1733 				goto error;
1734 			}
1735 		}
1736 
1737 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1738 			sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1739 			unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1740 			unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1741 			unsigned max_blocks = max_size / ic->tag_size;
1742 			memset(checksums, DISCARD_FILLER, max_size);
1743 
1744 			while (bi_size) {
1745 				unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1746 				this_step_blocks = min(this_step_blocks, max_blocks);
1747 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1748 							this_step_blocks * ic->tag_size, TAG_WRITE);
1749 				if (unlikely(r)) {
1750 					if (likely(checksums != checksums_onstack))
1751 						kfree(checksums);
1752 					goto error;
1753 				}
1754 
1755 				/*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1756 					printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1757 					printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1758 					BUG();
1759 				}*/
1760 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1761 				bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1762 			}
1763 
1764 			if (likely(checksums != checksums_onstack))
1765 				kfree(checksums);
1766 			goto skip_io;
1767 		}
1768 
1769 		sector = dio->range.logical_sector;
1770 		sectors_to_process = dio->range.n_sectors;
1771 
1772 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1773 			unsigned pos;
1774 			char *mem, *checksums_ptr;
1775 
1776 again:
1777 			mem = bvec_kmap_local(&bv);
1778 			pos = 0;
1779 			checksums_ptr = checksums;
1780 			do {
1781 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1782 				checksums_ptr += ic->tag_size;
1783 				sectors_to_process -= ic->sectors_per_block;
1784 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1785 				sector += ic->sectors_per_block;
1786 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1787 			kunmap_local(mem);
1788 
1789 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1790 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1791 			if (unlikely(r)) {
1792 				if (r > 0) {
1793 					sector_t s;
1794 
1795 					s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1796 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1797 						    bio->bi_bdev, s);
1798 					r = -EILSEQ;
1799 					atomic64_inc(&ic->number_of_mismatches);
1800 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1801 							 bio, s, 0);
1802 				}
1803 				if (likely(checksums != checksums_onstack))
1804 					kfree(checksums);
1805 				goto error;
1806 			}
1807 
1808 			if (!sectors_to_process)
1809 				break;
1810 
1811 			if (unlikely(pos < bv.bv_len)) {
1812 				bv.bv_offset += pos;
1813 				bv.bv_len -= pos;
1814 				goto again;
1815 			}
1816 		}
1817 
1818 		if (likely(checksums != checksums_onstack))
1819 			kfree(checksums);
1820 	} else {
1821 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1822 
1823 		if (bip) {
1824 			struct bio_vec biv;
1825 			struct bvec_iter iter;
1826 			unsigned data_to_process = dio->range.n_sectors;
1827 			sector_to_block(ic, data_to_process);
1828 			data_to_process *= ic->tag_size;
1829 
1830 			bip_for_each_vec(biv, bip, iter) {
1831 				unsigned char *tag;
1832 				unsigned this_len;
1833 
1834 				BUG_ON(PageHighMem(biv.bv_page));
1835 				tag = bvec_virt(&biv);
1836 				this_len = min(biv.bv_len, data_to_process);
1837 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1838 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1839 				if (unlikely(r))
1840 					goto error;
1841 				data_to_process -= this_len;
1842 				if (!data_to_process)
1843 					break;
1844 			}
1845 		}
1846 	}
1847 skip_io:
1848 	dec_in_flight(dio);
1849 	return;
1850 error:
1851 	dio->bi_status = errno_to_blk_status(r);
1852 	dec_in_flight(dio);
1853 }
1854 
1855 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1856 {
1857 	struct dm_integrity_c *ic = ti->private;
1858 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1859 	struct bio_integrity_payload *bip;
1860 
1861 	sector_t area, offset;
1862 
1863 	dio->ic = ic;
1864 	dio->bi_status = 0;
1865 	dio->op = bio_op(bio);
1866 
1867 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1868 		if (ti->max_io_len) {
1869 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1870 			unsigned log2_max_io_len = __fls(ti->max_io_len);
1871 			sector_t start_boundary = sec >> log2_max_io_len;
1872 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1873 			if (start_boundary < end_boundary) {
1874 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1875 				dm_accept_partial_bio(bio, len);
1876 			}
1877 		}
1878 	}
1879 
1880 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1881 		submit_flush_bio(ic, dio);
1882 		return DM_MAPIO_SUBMITTED;
1883 	}
1884 
1885 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1886 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1887 	if (unlikely(dio->fua)) {
1888 		/*
1889 		 * Don't pass down the FUA flag because we have to flush
1890 		 * disk cache anyway.
1891 		 */
1892 		bio->bi_opf &= ~REQ_FUA;
1893 	}
1894 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1895 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1896 		      dio->range.logical_sector, bio_sectors(bio),
1897 		      ic->provided_data_sectors);
1898 		return DM_MAPIO_KILL;
1899 	}
1900 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1901 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1902 		      ic->sectors_per_block,
1903 		      dio->range.logical_sector, bio_sectors(bio));
1904 		return DM_MAPIO_KILL;
1905 	}
1906 
1907 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1908 		struct bvec_iter iter;
1909 		struct bio_vec bv;
1910 		bio_for_each_segment(bv, bio, iter) {
1911 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1912 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1913 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1914 				return DM_MAPIO_KILL;
1915 			}
1916 		}
1917 	}
1918 
1919 	bip = bio_integrity(bio);
1920 	if (!ic->internal_hash) {
1921 		if (bip) {
1922 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1923 			if (ic->log2_tag_size >= 0)
1924 				wanted_tag_size <<= ic->log2_tag_size;
1925 			else
1926 				wanted_tag_size *= ic->tag_size;
1927 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1928 				DMERR("Invalid integrity data size %u, expected %u",
1929 				      bip->bip_iter.bi_size, wanted_tag_size);
1930 				return DM_MAPIO_KILL;
1931 			}
1932 		}
1933 	} else {
1934 		if (unlikely(bip != NULL)) {
1935 			DMERR("Unexpected integrity data when using internal hash");
1936 			return DM_MAPIO_KILL;
1937 		}
1938 	}
1939 
1940 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1941 		return DM_MAPIO_KILL;
1942 
1943 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1944 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1945 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1946 
1947 	dm_integrity_map_continue(dio, true);
1948 	return DM_MAPIO_SUBMITTED;
1949 }
1950 
1951 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1952 				 unsigned journal_section, unsigned journal_entry)
1953 {
1954 	struct dm_integrity_c *ic = dio->ic;
1955 	sector_t logical_sector;
1956 	unsigned n_sectors;
1957 
1958 	logical_sector = dio->range.logical_sector;
1959 	n_sectors = dio->range.n_sectors;
1960 	do {
1961 		struct bio_vec bv = bio_iovec(bio);
1962 		char *mem;
1963 
1964 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1965 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1966 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1967 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1968 retry_kmap:
1969 		mem = kmap_local_page(bv.bv_page);
1970 		if (likely(dio->op == REQ_OP_WRITE))
1971 			flush_dcache_page(bv.bv_page);
1972 
1973 		do {
1974 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1975 
1976 			if (unlikely(dio->op == REQ_OP_READ)) {
1977 				struct journal_sector *js;
1978 				char *mem_ptr;
1979 				unsigned s;
1980 
1981 				if (unlikely(journal_entry_is_inprogress(je))) {
1982 					flush_dcache_page(bv.bv_page);
1983 					kunmap_local(mem);
1984 
1985 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1986 					goto retry_kmap;
1987 				}
1988 				smp_rmb();
1989 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1990 				js = access_journal_data(ic, journal_section, journal_entry);
1991 				mem_ptr = mem + bv.bv_offset;
1992 				s = 0;
1993 				do {
1994 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1995 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1996 					js++;
1997 					mem_ptr += 1 << SECTOR_SHIFT;
1998 				} while (++s < ic->sectors_per_block);
1999 #ifdef INTERNAL_VERIFY
2000 				if (ic->internal_hash) {
2001 					char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2002 
2003 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2004 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2005 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2006 							    logical_sector);
2007 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2008 								 bio, logical_sector, 0);
2009 					}
2010 				}
2011 #endif
2012 			}
2013 
2014 			if (!ic->internal_hash) {
2015 				struct bio_integrity_payload *bip = bio_integrity(bio);
2016 				unsigned tag_todo = ic->tag_size;
2017 				char *tag_ptr = journal_entry_tag(ic, je);
2018 
2019 				if (bip) do {
2020 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2021 					unsigned tag_now = min(biv.bv_len, tag_todo);
2022 					char *tag_addr;
2023 					BUG_ON(PageHighMem(biv.bv_page));
2024 					tag_addr = bvec_virt(&biv);
2025 					if (likely(dio->op == REQ_OP_WRITE))
2026 						memcpy(tag_ptr, tag_addr, tag_now);
2027 					else
2028 						memcpy(tag_addr, tag_ptr, tag_now);
2029 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2030 					tag_ptr += tag_now;
2031 					tag_todo -= tag_now;
2032 				} while (unlikely(tag_todo)); else {
2033 					if (likely(dio->op == REQ_OP_WRITE))
2034 						memset(tag_ptr, 0, tag_todo);
2035 				}
2036 			}
2037 
2038 			if (likely(dio->op == REQ_OP_WRITE)) {
2039 				struct journal_sector *js;
2040 				unsigned s;
2041 
2042 				js = access_journal_data(ic, journal_section, journal_entry);
2043 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2044 
2045 				s = 0;
2046 				do {
2047 					je->last_bytes[s] = js[s].commit_id;
2048 				} while (++s < ic->sectors_per_block);
2049 
2050 				if (ic->internal_hash) {
2051 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2052 					if (unlikely(digest_size > ic->tag_size)) {
2053 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2054 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2055 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2056 					} else
2057 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2058 				}
2059 
2060 				journal_entry_set_sector(je, logical_sector);
2061 			}
2062 			logical_sector += ic->sectors_per_block;
2063 
2064 			journal_entry++;
2065 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2066 				journal_entry = 0;
2067 				journal_section++;
2068 				wraparound_section(ic, &journal_section);
2069 			}
2070 
2071 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2072 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2073 
2074 		if (unlikely(dio->op == REQ_OP_READ))
2075 			flush_dcache_page(bv.bv_page);
2076 		kunmap_local(mem);
2077 	} while (n_sectors);
2078 
2079 	if (likely(dio->op == REQ_OP_WRITE)) {
2080 		smp_mb();
2081 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2082 			wake_up(&ic->copy_to_journal_wait);
2083 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2084 			queue_work(ic->commit_wq, &ic->commit_work);
2085 		} else {
2086 			schedule_autocommit(ic);
2087 		}
2088 	} else {
2089 		remove_range(ic, &dio->range);
2090 	}
2091 
2092 	if (unlikely(bio->bi_iter.bi_size)) {
2093 		sector_t area, offset;
2094 
2095 		dio->range.logical_sector = logical_sector;
2096 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2097 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2098 		return true;
2099 	}
2100 
2101 	return false;
2102 }
2103 
2104 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2105 {
2106 	struct dm_integrity_c *ic = dio->ic;
2107 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2108 	unsigned journal_section, journal_entry;
2109 	unsigned journal_read_pos;
2110 	struct completion read_comp;
2111 	bool discard_retried = false;
2112 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2113 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2114 		need_sync_io = true;
2115 
2116 	if (need_sync_io && from_map) {
2117 		INIT_WORK(&dio->work, integrity_bio_wait);
2118 		queue_work(ic->offload_wq, &dio->work);
2119 		return;
2120 	}
2121 
2122 lock_retry:
2123 	spin_lock_irq(&ic->endio_wait.lock);
2124 retry:
2125 	if (unlikely(dm_integrity_failed(ic))) {
2126 		spin_unlock_irq(&ic->endio_wait.lock);
2127 		do_endio(ic, bio);
2128 		return;
2129 	}
2130 	dio->range.n_sectors = bio_sectors(bio);
2131 	journal_read_pos = NOT_FOUND;
2132 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2133 		if (dio->op == REQ_OP_WRITE) {
2134 			unsigned next_entry, i, pos;
2135 			unsigned ws, we, range_sectors;
2136 
2137 			dio->range.n_sectors = min(dio->range.n_sectors,
2138 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2139 			if (unlikely(!dio->range.n_sectors)) {
2140 				if (from_map)
2141 					goto offload_to_thread;
2142 				sleep_on_endio_wait(ic);
2143 				goto retry;
2144 			}
2145 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2146 			ic->free_sectors -= range_sectors;
2147 			journal_section = ic->free_section;
2148 			journal_entry = ic->free_section_entry;
2149 
2150 			next_entry = ic->free_section_entry + range_sectors;
2151 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2152 			ic->free_section += next_entry / ic->journal_section_entries;
2153 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2154 			wraparound_section(ic, &ic->free_section);
2155 
2156 			pos = journal_section * ic->journal_section_entries + journal_entry;
2157 			ws = journal_section;
2158 			we = journal_entry;
2159 			i = 0;
2160 			do {
2161 				struct journal_entry *je;
2162 
2163 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2164 				pos++;
2165 				if (unlikely(pos >= ic->journal_entries))
2166 					pos = 0;
2167 
2168 				je = access_journal_entry(ic, ws, we);
2169 				BUG_ON(!journal_entry_is_unused(je));
2170 				journal_entry_set_inprogress(je);
2171 				we++;
2172 				if (unlikely(we == ic->journal_section_entries)) {
2173 					we = 0;
2174 					ws++;
2175 					wraparound_section(ic, &ws);
2176 				}
2177 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2178 
2179 			spin_unlock_irq(&ic->endio_wait.lock);
2180 			goto journal_read_write;
2181 		} else {
2182 			sector_t next_sector;
2183 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2184 			if (likely(journal_read_pos == NOT_FOUND)) {
2185 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2186 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2187 			} else {
2188 				unsigned i;
2189 				unsigned jp = journal_read_pos + 1;
2190 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2191 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2192 						break;
2193 				}
2194 				dio->range.n_sectors = i;
2195 			}
2196 		}
2197 	}
2198 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2199 		/*
2200 		 * We must not sleep in the request routine because it could
2201 		 * stall bios on current->bio_list.
2202 		 * So, we offload the bio to a workqueue if we have to sleep.
2203 		 */
2204 		if (from_map) {
2205 offload_to_thread:
2206 			spin_unlock_irq(&ic->endio_wait.lock);
2207 			INIT_WORK(&dio->work, integrity_bio_wait);
2208 			queue_work(ic->wait_wq, &dio->work);
2209 			return;
2210 		}
2211 		if (journal_read_pos != NOT_FOUND)
2212 			dio->range.n_sectors = ic->sectors_per_block;
2213 		wait_and_add_new_range(ic, &dio->range);
2214 		/*
2215 		 * wait_and_add_new_range drops the spinlock, so the journal
2216 		 * may have been changed arbitrarily. We need to recheck.
2217 		 * To simplify the code, we restrict I/O size to just one block.
2218 		 */
2219 		if (journal_read_pos != NOT_FOUND) {
2220 			sector_t next_sector;
2221 			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2222 			if (unlikely(new_pos != journal_read_pos)) {
2223 				remove_range_unlocked(ic, &dio->range);
2224 				goto retry;
2225 			}
2226 		}
2227 	}
2228 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2229 		sector_t next_sector;
2230 		unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2231 		if (unlikely(new_pos != NOT_FOUND) ||
2232 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2233 			remove_range_unlocked(ic, &dio->range);
2234 			spin_unlock_irq(&ic->endio_wait.lock);
2235 			queue_work(ic->commit_wq, &ic->commit_work);
2236 			flush_workqueue(ic->commit_wq);
2237 			queue_work(ic->writer_wq, &ic->writer_work);
2238 			flush_workqueue(ic->writer_wq);
2239 			discard_retried = true;
2240 			goto lock_retry;
2241 		}
2242 	}
2243 	spin_unlock_irq(&ic->endio_wait.lock);
2244 
2245 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2246 		journal_section = journal_read_pos / ic->journal_section_entries;
2247 		journal_entry = journal_read_pos % ic->journal_section_entries;
2248 		goto journal_read_write;
2249 	}
2250 
2251 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2252 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2253 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2254 			struct bitmap_block_status *bbs;
2255 
2256 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2257 			spin_lock(&bbs->bio_queue_lock);
2258 			bio_list_add(&bbs->bio_queue, bio);
2259 			spin_unlock(&bbs->bio_queue_lock);
2260 			queue_work(ic->writer_wq, &bbs->work);
2261 			return;
2262 		}
2263 	}
2264 
2265 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2266 
2267 	if (need_sync_io) {
2268 		init_completion(&read_comp);
2269 		dio->completion = &read_comp;
2270 	} else
2271 		dio->completion = NULL;
2272 
2273 	dm_bio_record(&dio->bio_details, bio);
2274 	bio_set_dev(bio, ic->dev->bdev);
2275 	bio->bi_integrity = NULL;
2276 	bio->bi_opf &= ~REQ_INTEGRITY;
2277 	bio->bi_end_io = integrity_end_io;
2278 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2279 
2280 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2281 		integrity_metadata(&dio->work);
2282 		dm_integrity_flush_buffers(ic, false);
2283 
2284 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2285 		dio->completion = NULL;
2286 
2287 		submit_bio_noacct(bio);
2288 
2289 		return;
2290 	}
2291 
2292 	submit_bio_noacct(bio);
2293 
2294 	if (need_sync_io) {
2295 		wait_for_completion_io(&read_comp);
2296 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2297 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2298 			goto skip_check;
2299 		if (ic->mode == 'B') {
2300 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2301 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2302 				goto skip_check;
2303 		}
2304 
2305 		if (likely(!bio->bi_status))
2306 			integrity_metadata(&dio->work);
2307 		else
2308 skip_check:
2309 			dec_in_flight(dio);
2310 
2311 	} else {
2312 		INIT_WORK(&dio->work, integrity_metadata);
2313 		queue_work(ic->metadata_wq, &dio->work);
2314 	}
2315 
2316 	return;
2317 
2318 journal_read_write:
2319 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2320 		goto lock_retry;
2321 
2322 	do_endio_flush(ic, dio);
2323 }
2324 
2325 
2326 static void integrity_bio_wait(struct work_struct *w)
2327 {
2328 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2329 
2330 	dm_integrity_map_continue(dio, false);
2331 }
2332 
2333 static void pad_uncommitted(struct dm_integrity_c *ic)
2334 {
2335 	if (ic->free_section_entry) {
2336 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2337 		ic->free_section_entry = 0;
2338 		ic->free_section++;
2339 		wraparound_section(ic, &ic->free_section);
2340 		ic->n_uncommitted_sections++;
2341 	}
2342 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2343 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2344 		    ic->journal_section_entries + ic->free_sectors)) {
2345 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2346 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2347 		       "journal_section_entries %u, free_sectors %u",
2348 		       ic->journal_sections, ic->journal_section_entries,
2349 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2350 		       ic->journal_section_entries, ic->free_sectors);
2351 	}
2352 }
2353 
2354 static void integrity_commit(struct work_struct *w)
2355 {
2356 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2357 	unsigned commit_start, commit_sections;
2358 	unsigned i, j, n;
2359 	struct bio *flushes;
2360 
2361 	del_timer(&ic->autocommit_timer);
2362 
2363 	spin_lock_irq(&ic->endio_wait.lock);
2364 	flushes = bio_list_get(&ic->flush_bio_list);
2365 	if (unlikely(ic->mode != 'J')) {
2366 		spin_unlock_irq(&ic->endio_wait.lock);
2367 		dm_integrity_flush_buffers(ic, true);
2368 		goto release_flush_bios;
2369 	}
2370 
2371 	pad_uncommitted(ic);
2372 	commit_start = ic->uncommitted_section;
2373 	commit_sections = ic->n_uncommitted_sections;
2374 	spin_unlock_irq(&ic->endio_wait.lock);
2375 
2376 	if (!commit_sections)
2377 		goto release_flush_bios;
2378 
2379 	ic->wrote_to_journal = true;
2380 
2381 	i = commit_start;
2382 	for (n = 0; n < commit_sections; n++) {
2383 		for (j = 0; j < ic->journal_section_entries; j++) {
2384 			struct journal_entry *je;
2385 			je = access_journal_entry(ic, i, j);
2386 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2387 		}
2388 		for (j = 0; j < ic->journal_section_sectors; j++) {
2389 			struct journal_sector *js;
2390 			js = access_journal(ic, i, j);
2391 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2392 		}
2393 		i++;
2394 		if (unlikely(i >= ic->journal_sections))
2395 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2396 		wraparound_section(ic, &i);
2397 	}
2398 	smp_rmb();
2399 
2400 	write_journal(ic, commit_start, commit_sections);
2401 
2402 	spin_lock_irq(&ic->endio_wait.lock);
2403 	ic->uncommitted_section += commit_sections;
2404 	wraparound_section(ic, &ic->uncommitted_section);
2405 	ic->n_uncommitted_sections -= commit_sections;
2406 	ic->n_committed_sections += commit_sections;
2407 	spin_unlock_irq(&ic->endio_wait.lock);
2408 
2409 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2410 		queue_work(ic->writer_wq, &ic->writer_work);
2411 
2412 release_flush_bios:
2413 	while (flushes) {
2414 		struct bio *next = flushes->bi_next;
2415 		flushes->bi_next = NULL;
2416 		do_endio(ic, flushes);
2417 		flushes = next;
2418 	}
2419 }
2420 
2421 static void complete_copy_from_journal(unsigned long error, void *context)
2422 {
2423 	struct journal_io *io = context;
2424 	struct journal_completion *comp = io->comp;
2425 	struct dm_integrity_c *ic = comp->ic;
2426 	remove_range(ic, &io->range);
2427 	mempool_free(io, &ic->journal_io_mempool);
2428 	if (unlikely(error != 0))
2429 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2430 	complete_journal_op(comp);
2431 }
2432 
2433 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2434 			       struct journal_entry *je)
2435 {
2436 	unsigned s = 0;
2437 	do {
2438 		js->commit_id = je->last_bytes[s];
2439 		js++;
2440 	} while (++s < ic->sectors_per_block);
2441 }
2442 
2443 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2444 			     unsigned write_sections, bool from_replay)
2445 {
2446 	unsigned i, j, n;
2447 	struct journal_completion comp;
2448 	struct blk_plug plug;
2449 
2450 	blk_start_plug(&plug);
2451 
2452 	comp.ic = ic;
2453 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2454 	init_completion(&comp.comp);
2455 
2456 	i = write_start;
2457 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2458 #ifndef INTERNAL_VERIFY
2459 		if (unlikely(from_replay))
2460 #endif
2461 			rw_section_mac(ic, i, false);
2462 		for (j = 0; j < ic->journal_section_entries; j++) {
2463 			struct journal_entry *je = access_journal_entry(ic, i, j);
2464 			sector_t sec, area, offset;
2465 			unsigned k, l, next_loop;
2466 			sector_t metadata_block;
2467 			unsigned metadata_offset;
2468 			struct journal_io *io;
2469 
2470 			if (journal_entry_is_unused(je))
2471 				continue;
2472 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2473 			sec = journal_entry_get_sector(je);
2474 			if (unlikely(from_replay)) {
2475 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2476 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2477 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2478 				}
2479 				if (unlikely(sec >= ic->provided_data_sectors)) {
2480 					journal_entry_set_unused(je);
2481 					continue;
2482 				}
2483 			}
2484 			get_area_and_offset(ic, sec, &area, &offset);
2485 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2486 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2487 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2488 				sector_t sec2, area2, offset2;
2489 				if (journal_entry_is_unused(je2))
2490 					break;
2491 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2492 				sec2 = journal_entry_get_sector(je2);
2493 				if (unlikely(sec2 >= ic->provided_data_sectors))
2494 					break;
2495 				get_area_and_offset(ic, sec2, &area2, &offset2);
2496 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2497 					break;
2498 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2499 			}
2500 			next_loop = k - 1;
2501 
2502 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2503 			io->comp = &comp;
2504 			io->range.logical_sector = sec;
2505 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2506 
2507 			spin_lock_irq(&ic->endio_wait.lock);
2508 			add_new_range_and_wait(ic, &io->range);
2509 
2510 			if (likely(!from_replay)) {
2511 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2512 
2513 				/* don't write if there is newer committed sector */
2514 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2515 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2516 
2517 					journal_entry_set_unused(je2);
2518 					remove_journal_node(ic, &section_node[j]);
2519 					j++;
2520 					sec += ic->sectors_per_block;
2521 					offset += ic->sectors_per_block;
2522 				}
2523 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2524 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2525 
2526 					journal_entry_set_unused(je2);
2527 					remove_journal_node(ic, &section_node[k - 1]);
2528 					k--;
2529 				}
2530 				if (j == k) {
2531 					remove_range_unlocked(ic, &io->range);
2532 					spin_unlock_irq(&ic->endio_wait.lock);
2533 					mempool_free(io, &ic->journal_io_mempool);
2534 					goto skip_io;
2535 				}
2536 				for (l = j; l < k; l++) {
2537 					remove_journal_node(ic, &section_node[l]);
2538 				}
2539 			}
2540 			spin_unlock_irq(&ic->endio_wait.lock);
2541 
2542 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2543 			for (l = j; l < k; l++) {
2544 				int r;
2545 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2546 
2547 				if (
2548 #ifndef INTERNAL_VERIFY
2549 				    unlikely(from_replay) &&
2550 #endif
2551 				    ic->internal_hash) {
2552 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2553 
2554 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2555 								  (char *)access_journal_data(ic, i, l), test_tag);
2556 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2557 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2558 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2559 					}
2560 				}
2561 
2562 				journal_entry_set_unused(je2);
2563 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2564 							ic->tag_size, TAG_WRITE);
2565 				if (unlikely(r)) {
2566 					dm_integrity_io_error(ic, "reading tags", r);
2567 				}
2568 			}
2569 
2570 			atomic_inc(&comp.in_flight);
2571 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2572 					  (k - j) << ic->sb->log2_sectors_per_block,
2573 					  get_data_sector(ic, area, offset),
2574 					  complete_copy_from_journal, io);
2575 skip_io:
2576 			j = next_loop;
2577 		}
2578 	}
2579 
2580 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2581 
2582 	blk_finish_plug(&plug);
2583 
2584 	complete_journal_op(&comp);
2585 	wait_for_completion_io(&comp.comp);
2586 
2587 	dm_integrity_flush_buffers(ic, true);
2588 }
2589 
2590 static void integrity_writer(struct work_struct *w)
2591 {
2592 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2593 	unsigned write_start, write_sections;
2594 
2595 	unsigned prev_free_sectors;
2596 
2597 	spin_lock_irq(&ic->endio_wait.lock);
2598 	write_start = ic->committed_section;
2599 	write_sections = ic->n_committed_sections;
2600 	spin_unlock_irq(&ic->endio_wait.lock);
2601 
2602 	if (!write_sections)
2603 		return;
2604 
2605 	do_journal_write(ic, write_start, write_sections, false);
2606 
2607 	spin_lock_irq(&ic->endio_wait.lock);
2608 
2609 	ic->committed_section += write_sections;
2610 	wraparound_section(ic, &ic->committed_section);
2611 	ic->n_committed_sections -= write_sections;
2612 
2613 	prev_free_sectors = ic->free_sectors;
2614 	ic->free_sectors += write_sections * ic->journal_section_entries;
2615 	if (unlikely(!prev_free_sectors))
2616 		wake_up_locked(&ic->endio_wait);
2617 
2618 	spin_unlock_irq(&ic->endio_wait.lock);
2619 }
2620 
2621 static void recalc_write_super(struct dm_integrity_c *ic)
2622 {
2623 	int r;
2624 
2625 	dm_integrity_flush_buffers(ic, false);
2626 	if (dm_integrity_failed(ic))
2627 		return;
2628 
2629 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2630 	if (unlikely(r))
2631 		dm_integrity_io_error(ic, "writing superblock", r);
2632 }
2633 
2634 static void integrity_recalc(struct work_struct *w)
2635 {
2636 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2637 	struct dm_integrity_range range;
2638 	struct dm_io_request io_req;
2639 	struct dm_io_region io_loc;
2640 	sector_t area, offset;
2641 	sector_t metadata_block;
2642 	unsigned metadata_offset;
2643 	sector_t logical_sector, n_sectors;
2644 	__u8 *t;
2645 	unsigned i;
2646 	int r;
2647 	unsigned super_counter = 0;
2648 
2649 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2650 
2651 	spin_lock_irq(&ic->endio_wait.lock);
2652 
2653 next_chunk:
2654 
2655 	if (unlikely(dm_post_suspending(ic->ti)))
2656 		goto unlock_ret;
2657 
2658 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2659 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2660 		if (ic->mode == 'B') {
2661 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2662 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2663 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2664 		}
2665 		goto unlock_ret;
2666 	}
2667 
2668 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2669 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2670 	if (!ic->meta_dev)
2671 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2672 
2673 	add_new_range_and_wait(ic, &range);
2674 	spin_unlock_irq(&ic->endio_wait.lock);
2675 	logical_sector = range.logical_sector;
2676 	n_sectors = range.n_sectors;
2677 
2678 	if (ic->mode == 'B') {
2679 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2680 			goto advance_and_next;
2681 		}
2682 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2683 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2684 			logical_sector += ic->sectors_per_block;
2685 			n_sectors -= ic->sectors_per_block;
2686 			cond_resched();
2687 		}
2688 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2689 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2690 			n_sectors -= ic->sectors_per_block;
2691 			cond_resched();
2692 		}
2693 		get_area_and_offset(ic, logical_sector, &area, &offset);
2694 	}
2695 
2696 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2697 
2698 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2699 		recalc_write_super(ic);
2700 		if (ic->mode == 'B') {
2701 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2702 		}
2703 		super_counter = 0;
2704 	}
2705 
2706 	if (unlikely(dm_integrity_failed(ic)))
2707 		goto err;
2708 
2709 	io_req.bi_opf = REQ_OP_READ;
2710 	io_req.mem.type = DM_IO_VMA;
2711 	io_req.mem.ptr.addr = ic->recalc_buffer;
2712 	io_req.notify.fn = NULL;
2713 	io_req.client = ic->io;
2714 	io_loc.bdev = ic->dev->bdev;
2715 	io_loc.sector = get_data_sector(ic, area, offset);
2716 	io_loc.count = n_sectors;
2717 
2718 	r = dm_io(&io_req, 1, &io_loc, NULL);
2719 	if (unlikely(r)) {
2720 		dm_integrity_io_error(ic, "reading data", r);
2721 		goto err;
2722 	}
2723 
2724 	t = ic->recalc_tags;
2725 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2726 		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2727 		t += ic->tag_size;
2728 	}
2729 
2730 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2731 
2732 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2733 	if (unlikely(r)) {
2734 		dm_integrity_io_error(ic, "writing tags", r);
2735 		goto err;
2736 	}
2737 
2738 	if (ic->mode == 'B') {
2739 		sector_t start, end;
2740 		start = (range.logical_sector >>
2741 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2742 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2743 		end = ((range.logical_sector + range.n_sectors) >>
2744 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2745 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2746 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2747 	}
2748 
2749 advance_and_next:
2750 	cond_resched();
2751 
2752 	spin_lock_irq(&ic->endio_wait.lock);
2753 	remove_range_unlocked(ic, &range);
2754 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2755 	goto next_chunk;
2756 
2757 err:
2758 	remove_range(ic, &range);
2759 	return;
2760 
2761 unlock_ret:
2762 	spin_unlock_irq(&ic->endio_wait.lock);
2763 
2764 	recalc_write_super(ic);
2765 }
2766 
2767 static void bitmap_block_work(struct work_struct *w)
2768 {
2769 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2770 	struct dm_integrity_c *ic = bbs->ic;
2771 	struct bio *bio;
2772 	struct bio_list bio_queue;
2773 	struct bio_list waiting;
2774 
2775 	bio_list_init(&waiting);
2776 
2777 	spin_lock(&bbs->bio_queue_lock);
2778 	bio_queue = bbs->bio_queue;
2779 	bio_list_init(&bbs->bio_queue);
2780 	spin_unlock(&bbs->bio_queue_lock);
2781 
2782 	while ((bio = bio_list_pop(&bio_queue))) {
2783 		struct dm_integrity_io *dio;
2784 
2785 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2786 
2787 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2788 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2789 			remove_range(ic, &dio->range);
2790 			INIT_WORK(&dio->work, integrity_bio_wait);
2791 			queue_work(ic->offload_wq, &dio->work);
2792 		} else {
2793 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2794 					dio->range.n_sectors, BITMAP_OP_SET);
2795 			bio_list_add(&waiting, bio);
2796 		}
2797 	}
2798 
2799 	if (bio_list_empty(&waiting))
2800 		return;
2801 
2802 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2803 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2804 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2805 
2806 	while ((bio = bio_list_pop(&waiting))) {
2807 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2808 
2809 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2810 				dio->range.n_sectors, BITMAP_OP_SET);
2811 
2812 		remove_range(ic, &dio->range);
2813 		INIT_WORK(&dio->work, integrity_bio_wait);
2814 		queue_work(ic->offload_wq, &dio->work);
2815 	}
2816 
2817 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2818 }
2819 
2820 static void bitmap_flush_work(struct work_struct *work)
2821 {
2822 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2823 	struct dm_integrity_range range;
2824 	unsigned long limit;
2825 	struct bio *bio;
2826 
2827 	dm_integrity_flush_buffers(ic, false);
2828 
2829 	range.logical_sector = 0;
2830 	range.n_sectors = ic->provided_data_sectors;
2831 
2832 	spin_lock_irq(&ic->endio_wait.lock);
2833 	add_new_range_and_wait(ic, &range);
2834 	spin_unlock_irq(&ic->endio_wait.lock);
2835 
2836 	dm_integrity_flush_buffers(ic, true);
2837 
2838 	limit = ic->provided_data_sectors;
2839 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2840 		limit = le64_to_cpu(ic->sb->recalc_sector)
2841 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2842 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2843 	}
2844 	/*DEBUG_print("zeroing journal\n");*/
2845 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2846 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2847 
2848 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2849 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2850 
2851 	spin_lock_irq(&ic->endio_wait.lock);
2852 	remove_range_unlocked(ic, &range);
2853 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2854 		bio_endio(bio);
2855 		spin_unlock_irq(&ic->endio_wait.lock);
2856 		spin_lock_irq(&ic->endio_wait.lock);
2857 	}
2858 	spin_unlock_irq(&ic->endio_wait.lock);
2859 }
2860 
2861 
2862 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2863 			 unsigned n_sections, unsigned char commit_seq)
2864 {
2865 	unsigned i, j, n;
2866 
2867 	if (!n_sections)
2868 		return;
2869 
2870 	for (n = 0; n < n_sections; n++) {
2871 		i = start_section + n;
2872 		wraparound_section(ic, &i);
2873 		for (j = 0; j < ic->journal_section_sectors; j++) {
2874 			struct journal_sector *js = access_journal(ic, i, j);
2875 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2876 			memset(&js->sectors, 0, sizeof(js->sectors));
2877 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2878 		}
2879 		for (j = 0; j < ic->journal_section_entries; j++) {
2880 			struct journal_entry *je = access_journal_entry(ic, i, j);
2881 			journal_entry_set_unused(je);
2882 		}
2883 	}
2884 
2885 	write_journal(ic, start_section, n_sections);
2886 }
2887 
2888 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2889 {
2890 	unsigned char k;
2891 	for (k = 0; k < N_COMMIT_IDS; k++) {
2892 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2893 			return k;
2894 	}
2895 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2896 	return -EIO;
2897 }
2898 
2899 static void replay_journal(struct dm_integrity_c *ic)
2900 {
2901 	unsigned i, j;
2902 	bool used_commit_ids[N_COMMIT_IDS];
2903 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2904 	unsigned write_start, write_sections;
2905 	unsigned continue_section;
2906 	bool journal_empty;
2907 	unsigned char unused, last_used, want_commit_seq;
2908 
2909 	if (ic->mode == 'R')
2910 		return;
2911 
2912 	if (ic->journal_uptodate)
2913 		return;
2914 
2915 	last_used = 0;
2916 	write_start = 0;
2917 
2918 	if (!ic->just_formatted) {
2919 		DEBUG_print("reading journal\n");
2920 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2921 		if (ic->journal_io)
2922 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2923 		if (ic->journal_io) {
2924 			struct journal_completion crypt_comp;
2925 			crypt_comp.ic = ic;
2926 			init_completion(&crypt_comp.comp);
2927 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2928 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2929 			wait_for_completion(&crypt_comp.comp);
2930 		}
2931 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2932 	}
2933 
2934 	if (dm_integrity_failed(ic))
2935 		goto clear_journal;
2936 
2937 	journal_empty = true;
2938 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2939 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2940 	for (i = 0; i < ic->journal_sections; i++) {
2941 		for (j = 0; j < ic->journal_section_sectors; j++) {
2942 			int k;
2943 			struct journal_sector *js = access_journal(ic, i, j);
2944 			k = find_commit_seq(ic, i, j, js->commit_id);
2945 			if (k < 0)
2946 				goto clear_journal;
2947 			used_commit_ids[k] = true;
2948 			max_commit_id_sections[k] = i;
2949 		}
2950 		if (journal_empty) {
2951 			for (j = 0; j < ic->journal_section_entries; j++) {
2952 				struct journal_entry *je = access_journal_entry(ic, i, j);
2953 				if (!journal_entry_is_unused(je)) {
2954 					journal_empty = false;
2955 					break;
2956 				}
2957 			}
2958 		}
2959 	}
2960 
2961 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2962 		unused = N_COMMIT_IDS - 1;
2963 		while (unused && !used_commit_ids[unused - 1])
2964 			unused--;
2965 	} else {
2966 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2967 			if (!used_commit_ids[unused])
2968 				break;
2969 		if (unused == N_COMMIT_IDS) {
2970 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2971 			goto clear_journal;
2972 		}
2973 	}
2974 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2975 		    unused, used_commit_ids[0], used_commit_ids[1],
2976 		    used_commit_ids[2], used_commit_ids[3]);
2977 
2978 	last_used = prev_commit_seq(unused);
2979 	want_commit_seq = prev_commit_seq(last_used);
2980 
2981 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2982 		journal_empty = true;
2983 
2984 	write_start = max_commit_id_sections[last_used] + 1;
2985 	if (unlikely(write_start >= ic->journal_sections))
2986 		want_commit_seq = next_commit_seq(want_commit_seq);
2987 	wraparound_section(ic, &write_start);
2988 
2989 	i = write_start;
2990 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2991 		for (j = 0; j < ic->journal_section_sectors; j++) {
2992 			struct journal_sector *js = access_journal(ic, i, j);
2993 
2994 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2995 				/*
2996 				 * This could be caused by crash during writing.
2997 				 * We won't replay the inconsistent part of the
2998 				 * journal.
2999 				 */
3000 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3001 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3002 				goto brk;
3003 			}
3004 		}
3005 		i++;
3006 		if (unlikely(i >= ic->journal_sections))
3007 			want_commit_seq = next_commit_seq(want_commit_seq);
3008 		wraparound_section(ic, &i);
3009 	}
3010 brk:
3011 
3012 	if (!journal_empty) {
3013 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3014 			    write_sections, write_start, want_commit_seq);
3015 		do_journal_write(ic, write_start, write_sections, true);
3016 	}
3017 
3018 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3019 		continue_section = write_start;
3020 		ic->commit_seq = want_commit_seq;
3021 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3022 	} else {
3023 		unsigned s;
3024 		unsigned char erase_seq;
3025 clear_journal:
3026 		DEBUG_print("clearing journal\n");
3027 
3028 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3029 		s = write_start;
3030 		init_journal(ic, s, 1, erase_seq);
3031 		s++;
3032 		wraparound_section(ic, &s);
3033 		if (ic->journal_sections >= 2) {
3034 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3035 			s += ic->journal_sections - 2;
3036 			wraparound_section(ic, &s);
3037 			init_journal(ic, s, 1, erase_seq);
3038 		}
3039 
3040 		continue_section = 0;
3041 		ic->commit_seq = next_commit_seq(erase_seq);
3042 	}
3043 
3044 	ic->committed_section = continue_section;
3045 	ic->n_committed_sections = 0;
3046 
3047 	ic->uncommitted_section = continue_section;
3048 	ic->n_uncommitted_sections = 0;
3049 
3050 	ic->free_section = continue_section;
3051 	ic->free_section_entry = 0;
3052 	ic->free_sectors = ic->journal_entries;
3053 
3054 	ic->journal_tree_root = RB_ROOT;
3055 	for (i = 0; i < ic->journal_entries; i++)
3056 		init_journal_node(&ic->journal_tree[i]);
3057 }
3058 
3059 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3060 {
3061 	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3062 
3063 	if (ic->mode == 'B') {
3064 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3065 		ic->synchronous_mode = 1;
3066 
3067 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3068 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3069 		flush_workqueue(ic->commit_wq);
3070 	}
3071 }
3072 
3073 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3074 {
3075 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3076 
3077 	DEBUG_print("dm_integrity_reboot\n");
3078 
3079 	dm_integrity_enter_synchronous_mode(ic);
3080 
3081 	return NOTIFY_DONE;
3082 }
3083 
3084 static void dm_integrity_postsuspend(struct dm_target *ti)
3085 {
3086 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3087 	int r;
3088 
3089 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3090 
3091 	del_timer_sync(&ic->autocommit_timer);
3092 
3093 	if (ic->recalc_wq)
3094 		drain_workqueue(ic->recalc_wq);
3095 
3096 	if (ic->mode == 'B')
3097 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3098 
3099 	queue_work(ic->commit_wq, &ic->commit_work);
3100 	drain_workqueue(ic->commit_wq);
3101 
3102 	if (ic->mode == 'J') {
3103 		queue_work(ic->writer_wq, &ic->writer_work);
3104 		drain_workqueue(ic->writer_wq);
3105 		dm_integrity_flush_buffers(ic, true);
3106 		if (ic->wrote_to_journal) {
3107 			init_journal(ic, ic->free_section,
3108 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3109 			if (ic->free_section) {
3110 				init_journal(ic, 0, ic->free_section,
3111 					     next_commit_seq(ic->commit_seq));
3112 			}
3113 		}
3114 	}
3115 
3116 	if (ic->mode == 'B') {
3117 		dm_integrity_flush_buffers(ic, true);
3118 #if 1
3119 		/* set to 0 to test bitmap replay code */
3120 		init_journal(ic, 0, ic->journal_sections, 0);
3121 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3122 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3123 		if (unlikely(r))
3124 			dm_integrity_io_error(ic, "writing superblock", r);
3125 #endif
3126 	}
3127 
3128 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3129 
3130 	ic->journal_uptodate = true;
3131 }
3132 
3133 static void dm_integrity_resume(struct dm_target *ti)
3134 {
3135 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3136 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3137 	int r;
3138 
3139 	DEBUG_print("resume\n");
3140 
3141 	ic->wrote_to_journal = false;
3142 
3143 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3144 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3145 		    ic->mode == 'B' &&
3146 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3147 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3148 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3149 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3150 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3151 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3152 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3153 		}
3154 
3155 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3156 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3157 		if (unlikely(r))
3158 			dm_integrity_io_error(ic, "writing superblock", r);
3159 	}
3160 
3161 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3162 		DEBUG_print("resume dirty_bitmap\n");
3163 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3164 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3165 		if (ic->mode == 'B') {
3166 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3167 			    !ic->reset_recalculate_flag) {
3168 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3169 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3170 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3171 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3172 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3173 					ic->sb->recalc_sector = cpu_to_le64(0);
3174 				}
3175 			} else {
3176 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3177 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3178 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3179 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3180 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3181 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3182 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3183 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3184 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3185 				ic->sb->recalc_sector = cpu_to_le64(0);
3186 			}
3187 		} else {
3188 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3189 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3190 			    ic->reset_recalculate_flag) {
3191 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3192 				ic->sb->recalc_sector = cpu_to_le64(0);
3193 			}
3194 			init_journal(ic, 0, ic->journal_sections, 0);
3195 			replay_journal(ic);
3196 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3197 		}
3198 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3199 		if (unlikely(r))
3200 			dm_integrity_io_error(ic, "writing superblock", r);
3201 	} else {
3202 		replay_journal(ic);
3203 		if (ic->reset_recalculate_flag) {
3204 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3205 			ic->sb->recalc_sector = cpu_to_le64(0);
3206 		}
3207 		if (ic->mode == 'B') {
3208 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3209 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3210 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3211 			if (unlikely(r))
3212 				dm_integrity_io_error(ic, "writing superblock", r);
3213 
3214 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3215 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3216 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3217 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3218 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3219 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3220 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3221 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3222 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3223 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3224 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3225 			}
3226 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3227 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3228 		}
3229 	}
3230 
3231 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3232 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3233 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3234 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3235 		if (recalc_pos < ic->provided_data_sectors) {
3236 			queue_work(ic->recalc_wq, &ic->recalc_work);
3237 		} else if (recalc_pos > ic->provided_data_sectors) {
3238 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3239 			recalc_write_super(ic);
3240 		}
3241 	}
3242 
3243 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3244 	ic->reboot_notifier.next = NULL;
3245 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3246 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3247 
3248 #if 0
3249 	/* set to 1 to stress test synchronous mode */
3250 	dm_integrity_enter_synchronous_mode(ic);
3251 #endif
3252 }
3253 
3254 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3255 				unsigned status_flags, char *result, unsigned maxlen)
3256 {
3257 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3258 	unsigned arg_count;
3259 	size_t sz = 0;
3260 
3261 	switch (type) {
3262 	case STATUSTYPE_INFO:
3263 		DMEMIT("%llu %llu",
3264 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3265 			ic->provided_data_sectors);
3266 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3267 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3268 		else
3269 			DMEMIT(" -");
3270 		break;
3271 
3272 	case STATUSTYPE_TABLE: {
3273 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3274 		watermark_percentage += ic->journal_entries / 2;
3275 		do_div(watermark_percentage, ic->journal_entries);
3276 		arg_count = 3;
3277 		arg_count += !!ic->meta_dev;
3278 		arg_count += ic->sectors_per_block != 1;
3279 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3280 		arg_count += ic->reset_recalculate_flag;
3281 		arg_count += ic->discard;
3282 		arg_count += ic->mode == 'J';
3283 		arg_count += ic->mode == 'J';
3284 		arg_count += ic->mode == 'B';
3285 		arg_count += ic->mode == 'B';
3286 		arg_count += !!ic->internal_hash_alg.alg_string;
3287 		arg_count += !!ic->journal_crypt_alg.alg_string;
3288 		arg_count += !!ic->journal_mac_alg.alg_string;
3289 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3290 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3291 		arg_count += ic->legacy_recalculate;
3292 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3293 		       ic->tag_size, ic->mode, arg_count);
3294 		if (ic->meta_dev)
3295 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3296 		if (ic->sectors_per_block != 1)
3297 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3298 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3299 			DMEMIT(" recalculate");
3300 		if (ic->reset_recalculate_flag)
3301 			DMEMIT(" reset_recalculate");
3302 		if (ic->discard)
3303 			DMEMIT(" allow_discards");
3304 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3305 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3306 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3307 		if (ic->mode == 'J') {
3308 			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3309 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3310 		}
3311 		if (ic->mode == 'B') {
3312 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3313 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3314 		}
3315 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3316 			DMEMIT(" fix_padding");
3317 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3318 			DMEMIT(" fix_hmac");
3319 		if (ic->legacy_recalculate)
3320 			DMEMIT(" legacy_recalculate");
3321 
3322 #define EMIT_ALG(a, n)							\
3323 		do {							\
3324 			if (ic->a.alg_string) {				\
3325 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3326 				if (ic->a.key_string)			\
3327 					DMEMIT(":%s", ic->a.key_string);\
3328 			}						\
3329 		} while (0)
3330 		EMIT_ALG(internal_hash_alg, "internal_hash");
3331 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3332 		EMIT_ALG(journal_mac_alg, "journal_mac");
3333 		break;
3334 	}
3335 	case STATUSTYPE_IMA:
3336 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3337 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3338 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3339 
3340 		if (ic->meta_dev)
3341 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3342 		if (ic->sectors_per_block != 1)
3343 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3344 
3345 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3346 		       'y' : 'n');
3347 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3348 		DMEMIT(",fix_padding=%c",
3349 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3350 		DMEMIT(",fix_hmac=%c",
3351 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3352 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3353 
3354 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3355 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3356 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3357 		DMEMIT(";");
3358 		break;
3359 	}
3360 }
3361 
3362 static int dm_integrity_iterate_devices(struct dm_target *ti,
3363 					iterate_devices_callout_fn fn, void *data)
3364 {
3365 	struct dm_integrity_c *ic = ti->private;
3366 
3367 	if (!ic->meta_dev)
3368 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3369 	else
3370 		return fn(ti, ic->dev, 0, ti->len, data);
3371 }
3372 
3373 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3374 {
3375 	struct dm_integrity_c *ic = ti->private;
3376 
3377 	if (ic->sectors_per_block > 1) {
3378 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3379 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3380 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3381 		limits->dma_alignment = limits->logical_block_size - 1;
3382 	}
3383 }
3384 
3385 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3386 {
3387 	unsigned sector_space = JOURNAL_SECTOR_DATA;
3388 
3389 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3390 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3391 					 JOURNAL_ENTRY_ROUNDUP);
3392 
3393 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3394 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3395 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3396 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3397 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3398 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3399 }
3400 
3401 static int calculate_device_limits(struct dm_integrity_c *ic)
3402 {
3403 	__u64 initial_sectors;
3404 
3405 	calculate_journal_section_size(ic);
3406 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3407 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3408 		return -EINVAL;
3409 	ic->initial_sectors = initial_sectors;
3410 
3411 	if (!ic->meta_dev) {
3412 		sector_t last_sector, last_area, last_offset;
3413 
3414 		/* we have to maintain excessive padding for compatibility with existing volumes */
3415 		__u64 metadata_run_padding =
3416 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3417 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3418 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3419 
3420 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3421 					    metadata_run_padding) >> SECTOR_SHIFT;
3422 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3423 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3424 		else
3425 			ic->log2_metadata_run = -1;
3426 
3427 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3428 		last_sector = get_data_sector(ic, last_area, last_offset);
3429 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3430 			return -EINVAL;
3431 	} else {
3432 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3433 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3434 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3435 		meta_size <<= ic->log2_buffer_sectors;
3436 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3437 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3438 			return -EINVAL;
3439 		ic->metadata_run = 1;
3440 		ic->log2_metadata_run = 0;
3441 	}
3442 
3443 	return 0;
3444 }
3445 
3446 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3447 {
3448 	if (!ic->meta_dev) {
3449 		int test_bit;
3450 		ic->provided_data_sectors = 0;
3451 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3452 			__u64 prev_data_sectors = ic->provided_data_sectors;
3453 
3454 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3455 			if (calculate_device_limits(ic))
3456 				ic->provided_data_sectors = prev_data_sectors;
3457 		}
3458 	} else {
3459 		ic->provided_data_sectors = ic->data_device_sectors;
3460 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3461 	}
3462 }
3463 
3464 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3465 {
3466 	unsigned journal_sections;
3467 	int test_bit;
3468 
3469 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3470 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3471 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3472 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3473 	if (ic->journal_mac_alg.alg_string)
3474 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3475 
3476 	calculate_journal_section_size(ic);
3477 	journal_sections = journal_sectors / ic->journal_section_sectors;
3478 	if (!journal_sections)
3479 		journal_sections = 1;
3480 
3481 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3482 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3483 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3484 	}
3485 
3486 	if (!ic->meta_dev) {
3487 		if (ic->fix_padding)
3488 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3489 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3490 		if (!interleave_sectors)
3491 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3492 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3493 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3494 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3495 
3496 		get_provided_data_sectors(ic);
3497 		if (!ic->provided_data_sectors)
3498 			return -EINVAL;
3499 	} else {
3500 		ic->sb->log2_interleave_sectors = 0;
3501 
3502 		get_provided_data_sectors(ic);
3503 		if (!ic->provided_data_sectors)
3504 			return -EINVAL;
3505 
3506 try_smaller_buffer:
3507 		ic->sb->journal_sections = cpu_to_le32(0);
3508 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3509 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3510 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3511 			if (test_journal_sections > journal_sections)
3512 				continue;
3513 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3514 			if (calculate_device_limits(ic))
3515 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3516 
3517 		}
3518 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3519 			if (ic->log2_buffer_sectors > 3) {
3520 				ic->log2_buffer_sectors--;
3521 				goto try_smaller_buffer;
3522 			}
3523 			return -EINVAL;
3524 		}
3525 	}
3526 
3527 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3528 
3529 	sb_set_version(ic);
3530 
3531 	return 0;
3532 }
3533 
3534 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3535 {
3536 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3537 	struct blk_integrity bi;
3538 
3539 	memset(&bi, 0, sizeof(bi));
3540 	bi.profile = &dm_integrity_profile;
3541 	bi.tuple_size = ic->tag_size;
3542 	bi.tag_size = bi.tuple_size;
3543 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3544 
3545 	blk_integrity_register(disk, &bi);
3546 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3547 }
3548 
3549 static void dm_integrity_free_page_list(struct page_list *pl)
3550 {
3551 	unsigned i;
3552 
3553 	if (!pl)
3554 		return;
3555 	for (i = 0; pl[i].page; i++)
3556 		__free_page(pl[i].page);
3557 	kvfree(pl);
3558 }
3559 
3560 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3561 {
3562 	struct page_list *pl;
3563 	unsigned i;
3564 
3565 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3566 	if (!pl)
3567 		return NULL;
3568 
3569 	for (i = 0; i < n_pages; i++) {
3570 		pl[i].page = alloc_page(GFP_KERNEL);
3571 		if (!pl[i].page) {
3572 			dm_integrity_free_page_list(pl);
3573 			return NULL;
3574 		}
3575 		if (i)
3576 			pl[i - 1].next = &pl[i];
3577 	}
3578 	pl[i].page = NULL;
3579 	pl[i].next = NULL;
3580 
3581 	return pl;
3582 }
3583 
3584 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3585 {
3586 	unsigned i;
3587 	for (i = 0; i < ic->journal_sections; i++)
3588 		kvfree(sl[i]);
3589 	kvfree(sl);
3590 }
3591 
3592 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3593 								   struct page_list *pl)
3594 {
3595 	struct scatterlist **sl;
3596 	unsigned i;
3597 
3598 	sl = kvmalloc_array(ic->journal_sections,
3599 			    sizeof(struct scatterlist *),
3600 			    GFP_KERNEL | __GFP_ZERO);
3601 	if (!sl)
3602 		return NULL;
3603 
3604 	for (i = 0; i < ic->journal_sections; i++) {
3605 		struct scatterlist *s;
3606 		unsigned start_index, start_offset;
3607 		unsigned end_index, end_offset;
3608 		unsigned n_pages;
3609 		unsigned idx;
3610 
3611 		page_list_location(ic, i, 0, &start_index, &start_offset);
3612 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3613 				   &end_index, &end_offset);
3614 
3615 		n_pages = (end_index - start_index + 1);
3616 
3617 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3618 				   GFP_KERNEL);
3619 		if (!s) {
3620 			dm_integrity_free_journal_scatterlist(ic, sl);
3621 			return NULL;
3622 		}
3623 
3624 		sg_init_table(s, n_pages);
3625 		for (idx = start_index; idx <= end_index; idx++) {
3626 			char *va = lowmem_page_address(pl[idx].page);
3627 			unsigned start = 0, end = PAGE_SIZE;
3628 			if (idx == start_index)
3629 				start = start_offset;
3630 			if (idx == end_index)
3631 				end = end_offset + (1 << SECTOR_SHIFT);
3632 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3633 		}
3634 
3635 		sl[i] = s;
3636 	}
3637 
3638 	return sl;
3639 }
3640 
3641 static void free_alg(struct alg_spec *a)
3642 {
3643 	kfree_sensitive(a->alg_string);
3644 	kfree_sensitive(a->key);
3645 	memset(a, 0, sizeof *a);
3646 }
3647 
3648 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3649 {
3650 	char *k;
3651 
3652 	free_alg(a);
3653 
3654 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3655 	if (!a->alg_string)
3656 		goto nomem;
3657 
3658 	k = strchr(a->alg_string, ':');
3659 	if (k) {
3660 		*k = 0;
3661 		a->key_string = k + 1;
3662 		if (strlen(a->key_string) & 1)
3663 			goto inval;
3664 
3665 		a->key_size = strlen(a->key_string) / 2;
3666 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3667 		if (!a->key)
3668 			goto nomem;
3669 		if (hex2bin(a->key, a->key_string, a->key_size))
3670 			goto inval;
3671 	}
3672 
3673 	return 0;
3674 inval:
3675 	*error = error_inval;
3676 	return -EINVAL;
3677 nomem:
3678 	*error = "Out of memory for an argument";
3679 	return -ENOMEM;
3680 }
3681 
3682 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3683 		   char *error_alg, char *error_key)
3684 {
3685 	int r;
3686 
3687 	if (a->alg_string) {
3688 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3689 		if (IS_ERR(*hash)) {
3690 			*error = error_alg;
3691 			r = PTR_ERR(*hash);
3692 			*hash = NULL;
3693 			return r;
3694 		}
3695 
3696 		if (a->key) {
3697 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3698 			if (r) {
3699 				*error = error_key;
3700 				return r;
3701 			}
3702 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3703 			*error = error_key;
3704 			return -ENOKEY;
3705 		}
3706 	}
3707 
3708 	return 0;
3709 }
3710 
3711 static int create_journal(struct dm_integrity_c *ic, char **error)
3712 {
3713 	int r = 0;
3714 	unsigned i;
3715 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3716 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3717 	struct skcipher_request *req = NULL;
3718 
3719 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3720 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3721 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3722 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3723 
3724 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3725 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3726 	journal_desc_size = journal_pages * sizeof(struct page_list);
3727 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3728 		*error = "Journal doesn't fit into memory";
3729 		r = -ENOMEM;
3730 		goto bad;
3731 	}
3732 	ic->journal_pages = journal_pages;
3733 
3734 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3735 	if (!ic->journal) {
3736 		*error = "Could not allocate memory for journal";
3737 		r = -ENOMEM;
3738 		goto bad;
3739 	}
3740 	if (ic->journal_crypt_alg.alg_string) {
3741 		unsigned ivsize, blocksize;
3742 		struct journal_completion comp;
3743 
3744 		comp.ic = ic;
3745 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3746 		if (IS_ERR(ic->journal_crypt)) {
3747 			*error = "Invalid journal cipher";
3748 			r = PTR_ERR(ic->journal_crypt);
3749 			ic->journal_crypt = NULL;
3750 			goto bad;
3751 		}
3752 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3753 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3754 
3755 		if (ic->journal_crypt_alg.key) {
3756 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3757 						   ic->journal_crypt_alg.key_size);
3758 			if (r) {
3759 				*error = "Error setting encryption key";
3760 				goto bad;
3761 			}
3762 		}
3763 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3764 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3765 
3766 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3767 		if (!ic->journal_io) {
3768 			*error = "Could not allocate memory for journal io";
3769 			r = -ENOMEM;
3770 			goto bad;
3771 		}
3772 
3773 		if (blocksize == 1) {
3774 			struct scatterlist *sg;
3775 
3776 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3777 			if (!req) {
3778 				*error = "Could not allocate crypt request";
3779 				r = -ENOMEM;
3780 				goto bad;
3781 			}
3782 
3783 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3784 			if (!crypt_iv) {
3785 				*error = "Could not allocate iv";
3786 				r = -ENOMEM;
3787 				goto bad;
3788 			}
3789 
3790 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3791 			if (!ic->journal_xor) {
3792 				*error = "Could not allocate memory for journal xor";
3793 				r = -ENOMEM;
3794 				goto bad;
3795 			}
3796 
3797 			sg = kvmalloc_array(ic->journal_pages + 1,
3798 					    sizeof(struct scatterlist),
3799 					    GFP_KERNEL);
3800 			if (!sg) {
3801 				*error = "Unable to allocate sg list";
3802 				r = -ENOMEM;
3803 				goto bad;
3804 			}
3805 			sg_init_table(sg, ic->journal_pages + 1);
3806 			for (i = 0; i < ic->journal_pages; i++) {
3807 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3808 				clear_page(va);
3809 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3810 			}
3811 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3812 
3813 			skcipher_request_set_crypt(req, sg, sg,
3814 						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3815 			init_completion(&comp.comp);
3816 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3817 			if (do_crypt(true, req, &comp))
3818 				wait_for_completion(&comp.comp);
3819 			kvfree(sg);
3820 			r = dm_integrity_failed(ic);
3821 			if (r) {
3822 				*error = "Unable to encrypt journal";
3823 				goto bad;
3824 			}
3825 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3826 
3827 			crypto_free_skcipher(ic->journal_crypt);
3828 			ic->journal_crypt = NULL;
3829 		} else {
3830 			unsigned crypt_len = roundup(ivsize, blocksize);
3831 
3832 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3833 			if (!req) {
3834 				*error = "Could not allocate crypt request";
3835 				r = -ENOMEM;
3836 				goto bad;
3837 			}
3838 
3839 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3840 			if (!crypt_iv) {
3841 				*error = "Could not allocate iv";
3842 				r = -ENOMEM;
3843 				goto bad;
3844 			}
3845 
3846 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3847 			if (!crypt_data) {
3848 				*error = "Unable to allocate crypt data";
3849 				r = -ENOMEM;
3850 				goto bad;
3851 			}
3852 
3853 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3854 			if (!ic->journal_scatterlist) {
3855 				*error = "Unable to allocate sg list";
3856 				r = -ENOMEM;
3857 				goto bad;
3858 			}
3859 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3860 			if (!ic->journal_io_scatterlist) {
3861 				*error = "Unable to allocate sg list";
3862 				r = -ENOMEM;
3863 				goto bad;
3864 			}
3865 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3866 							 sizeof(struct skcipher_request *),
3867 							 GFP_KERNEL | __GFP_ZERO);
3868 			if (!ic->sk_requests) {
3869 				*error = "Unable to allocate sk requests";
3870 				r = -ENOMEM;
3871 				goto bad;
3872 			}
3873 			for (i = 0; i < ic->journal_sections; i++) {
3874 				struct scatterlist sg;
3875 				struct skcipher_request *section_req;
3876 				__le32 section_le = cpu_to_le32(i);
3877 
3878 				memset(crypt_iv, 0x00, ivsize);
3879 				memset(crypt_data, 0x00, crypt_len);
3880 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3881 
3882 				sg_init_one(&sg, crypt_data, crypt_len);
3883 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3884 				init_completion(&comp.comp);
3885 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3886 				if (do_crypt(true, req, &comp))
3887 					wait_for_completion(&comp.comp);
3888 
3889 				r = dm_integrity_failed(ic);
3890 				if (r) {
3891 					*error = "Unable to generate iv";
3892 					goto bad;
3893 				}
3894 
3895 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3896 				if (!section_req) {
3897 					*error = "Unable to allocate crypt request";
3898 					r = -ENOMEM;
3899 					goto bad;
3900 				}
3901 				section_req->iv = kmalloc_array(ivsize, 2,
3902 								GFP_KERNEL);
3903 				if (!section_req->iv) {
3904 					skcipher_request_free(section_req);
3905 					*error = "Unable to allocate iv";
3906 					r = -ENOMEM;
3907 					goto bad;
3908 				}
3909 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3910 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3911 				ic->sk_requests[i] = section_req;
3912 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3913 			}
3914 		}
3915 	}
3916 
3917 	for (i = 0; i < N_COMMIT_IDS; i++) {
3918 		unsigned j;
3919 retest_commit_id:
3920 		for (j = 0; j < i; j++) {
3921 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3922 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3923 				goto retest_commit_id;
3924 			}
3925 		}
3926 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3927 	}
3928 
3929 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3930 	if (journal_tree_size > ULONG_MAX) {
3931 		*error = "Journal doesn't fit into memory";
3932 		r = -ENOMEM;
3933 		goto bad;
3934 	}
3935 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3936 	if (!ic->journal_tree) {
3937 		*error = "Could not allocate memory for journal tree";
3938 		r = -ENOMEM;
3939 	}
3940 bad:
3941 	kfree(crypt_data);
3942 	kfree(crypt_iv);
3943 	skcipher_request_free(req);
3944 
3945 	return r;
3946 }
3947 
3948 /*
3949  * Construct a integrity mapping
3950  *
3951  * Arguments:
3952  *	device
3953  *	offset from the start of the device
3954  *	tag size
3955  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3956  *	number of optional arguments
3957  *	optional arguments:
3958  *		journal_sectors
3959  *		interleave_sectors
3960  *		buffer_sectors
3961  *		journal_watermark
3962  *		commit_time
3963  *		meta_device
3964  *		block_size
3965  *		sectors_per_bit
3966  *		bitmap_flush_interval
3967  *		internal_hash
3968  *		journal_crypt
3969  *		journal_mac
3970  *		recalculate
3971  */
3972 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3973 {
3974 	struct dm_integrity_c *ic;
3975 	char dummy;
3976 	int r;
3977 	unsigned extra_args;
3978 	struct dm_arg_set as;
3979 	static const struct dm_arg _args[] = {
3980 		{0, 18, "Invalid number of feature args"},
3981 	};
3982 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3983 	bool should_write_sb;
3984 	__u64 threshold;
3985 	unsigned long long start;
3986 	__s8 log2_sectors_per_bitmap_bit = -1;
3987 	__s8 log2_blocks_per_bitmap_bit;
3988 	__u64 bits_in_journal;
3989 	__u64 n_bitmap_bits;
3990 
3991 #define DIRECT_ARGUMENTS	4
3992 
3993 	if (argc <= DIRECT_ARGUMENTS) {
3994 		ti->error = "Invalid argument count";
3995 		return -EINVAL;
3996 	}
3997 
3998 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3999 	if (!ic) {
4000 		ti->error = "Cannot allocate integrity context";
4001 		return -ENOMEM;
4002 	}
4003 	ti->private = ic;
4004 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4005 	ic->ti = ti;
4006 
4007 	ic->in_progress = RB_ROOT;
4008 	INIT_LIST_HEAD(&ic->wait_list);
4009 	init_waitqueue_head(&ic->endio_wait);
4010 	bio_list_init(&ic->flush_bio_list);
4011 	init_waitqueue_head(&ic->copy_to_journal_wait);
4012 	init_completion(&ic->crypto_backoff);
4013 	atomic64_set(&ic->number_of_mismatches, 0);
4014 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4015 
4016 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4017 	if (r) {
4018 		ti->error = "Device lookup failed";
4019 		goto bad;
4020 	}
4021 
4022 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4023 		ti->error = "Invalid starting offset";
4024 		r = -EINVAL;
4025 		goto bad;
4026 	}
4027 	ic->start = start;
4028 
4029 	if (strcmp(argv[2], "-")) {
4030 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4031 			ti->error = "Invalid tag size";
4032 			r = -EINVAL;
4033 			goto bad;
4034 		}
4035 	}
4036 
4037 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4038 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4039 		ic->mode = argv[3][0];
4040 	} else {
4041 		ti->error = "Invalid mode (expecting J, B, D, R)";
4042 		r = -EINVAL;
4043 		goto bad;
4044 	}
4045 
4046 	journal_sectors = 0;
4047 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4048 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4049 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4050 	sync_msec = DEFAULT_SYNC_MSEC;
4051 	ic->sectors_per_block = 1;
4052 
4053 	as.argc = argc - DIRECT_ARGUMENTS;
4054 	as.argv = argv + DIRECT_ARGUMENTS;
4055 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4056 	if (r)
4057 		goto bad;
4058 
4059 	while (extra_args--) {
4060 		const char *opt_string;
4061 		unsigned val;
4062 		unsigned long long llval;
4063 		opt_string = dm_shift_arg(&as);
4064 		if (!opt_string) {
4065 			r = -EINVAL;
4066 			ti->error = "Not enough feature arguments";
4067 			goto bad;
4068 		}
4069 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4070 			journal_sectors = val ? val : 1;
4071 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4072 			interleave_sectors = val;
4073 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4074 			buffer_sectors = val;
4075 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4076 			journal_watermark = val;
4077 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4078 			sync_msec = val;
4079 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4080 			if (ic->meta_dev) {
4081 				dm_put_device(ti, ic->meta_dev);
4082 				ic->meta_dev = NULL;
4083 			}
4084 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4085 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4086 			if (r) {
4087 				ti->error = "Device lookup failed";
4088 				goto bad;
4089 			}
4090 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4091 			if (val < 1 << SECTOR_SHIFT ||
4092 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4093 			    (val & (val -1))) {
4094 				r = -EINVAL;
4095 				ti->error = "Invalid block_size argument";
4096 				goto bad;
4097 			}
4098 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4099 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4100 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4101 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4102 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4103 				r = -EINVAL;
4104 				ti->error = "Invalid bitmap_flush_interval argument";
4105 				goto bad;
4106 			}
4107 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4108 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4109 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4110 					    "Invalid internal_hash argument");
4111 			if (r)
4112 				goto bad;
4113 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4114 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4115 					    "Invalid journal_crypt argument");
4116 			if (r)
4117 				goto bad;
4118 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4119 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4120 					    "Invalid journal_mac argument");
4121 			if (r)
4122 				goto bad;
4123 		} else if (!strcmp(opt_string, "recalculate")) {
4124 			ic->recalculate_flag = true;
4125 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4126 			ic->recalculate_flag = true;
4127 			ic->reset_recalculate_flag = true;
4128 		} else if (!strcmp(opt_string, "allow_discards")) {
4129 			ic->discard = true;
4130 		} else if (!strcmp(opt_string, "fix_padding")) {
4131 			ic->fix_padding = true;
4132 		} else if (!strcmp(opt_string, "fix_hmac")) {
4133 			ic->fix_hmac = true;
4134 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4135 			ic->legacy_recalculate = true;
4136 		} else {
4137 			r = -EINVAL;
4138 			ti->error = "Invalid argument";
4139 			goto bad;
4140 		}
4141 	}
4142 
4143 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4144 	if (!ic->meta_dev)
4145 		ic->meta_device_sectors = ic->data_device_sectors;
4146 	else
4147 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4148 
4149 	if (!journal_sectors) {
4150 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4151 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4152 	}
4153 
4154 	if (!buffer_sectors)
4155 		buffer_sectors = 1;
4156 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4157 
4158 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4159 		    "Invalid internal hash", "Error setting internal hash key");
4160 	if (r)
4161 		goto bad;
4162 
4163 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4164 		    "Invalid journal mac", "Error setting journal mac key");
4165 	if (r)
4166 		goto bad;
4167 
4168 	if (!ic->tag_size) {
4169 		if (!ic->internal_hash) {
4170 			ti->error = "Unknown tag size";
4171 			r = -EINVAL;
4172 			goto bad;
4173 		}
4174 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4175 	}
4176 	if (ic->tag_size > MAX_TAG_SIZE) {
4177 		ti->error = "Too big tag size";
4178 		r = -EINVAL;
4179 		goto bad;
4180 	}
4181 	if (!(ic->tag_size & (ic->tag_size - 1)))
4182 		ic->log2_tag_size = __ffs(ic->tag_size);
4183 	else
4184 		ic->log2_tag_size = -1;
4185 
4186 	if (ic->mode == 'B' && !ic->internal_hash) {
4187 		r = -EINVAL;
4188 		ti->error = "Bitmap mode can be only used with internal hash";
4189 		goto bad;
4190 	}
4191 
4192 	if (ic->discard && !ic->internal_hash) {
4193 		r = -EINVAL;
4194 		ti->error = "Discard can be only used with internal hash";
4195 		goto bad;
4196 	}
4197 
4198 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4199 	ic->autocommit_msec = sync_msec;
4200 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4201 
4202 	ic->io = dm_io_client_create();
4203 	if (IS_ERR(ic->io)) {
4204 		r = PTR_ERR(ic->io);
4205 		ic->io = NULL;
4206 		ti->error = "Cannot allocate dm io";
4207 		goto bad;
4208 	}
4209 
4210 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4211 	if (r) {
4212 		ti->error = "Cannot allocate mempool";
4213 		goto bad;
4214 	}
4215 
4216 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4217 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4218 	if (!ic->metadata_wq) {
4219 		ti->error = "Cannot allocate workqueue";
4220 		r = -ENOMEM;
4221 		goto bad;
4222 	}
4223 
4224 	/*
4225 	 * If this workqueue were percpu, it would cause bio reordering
4226 	 * and reduced performance.
4227 	 */
4228 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4229 	if (!ic->wait_wq) {
4230 		ti->error = "Cannot allocate workqueue";
4231 		r = -ENOMEM;
4232 		goto bad;
4233 	}
4234 
4235 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4236 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4237 	if (!ic->offload_wq) {
4238 		ti->error = "Cannot allocate workqueue";
4239 		r = -ENOMEM;
4240 		goto bad;
4241 	}
4242 
4243 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4244 	if (!ic->commit_wq) {
4245 		ti->error = "Cannot allocate workqueue";
4246 		r = -ENOMEM;
4247 		goto bad;
4248 	}
4249 	INIT_WORK(&ic->commit_work, integrity_commit);
4250 
4251 	if (ic->mode == 'J' || ic->mode == 'B') {
4252 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4253 		if (!ic->writer_wq) {
4254 			ti->error = "Cannot allocate workqueue";
4255 			r = -ENOMEM;
4256 			goto bad;
4257 		}
4258 		INIT_WORK(&ic->writer_work, integrity_writer);
4259 	}
4260 
4261 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4262 	if (!ic->sb) {
4263 		r = -ENOMEM;
4264 		ti->error = "Cannot allocate superblock area";
4265 		goto bad;
4266 	}
4267 
4268 	r = sync_rw_sb(ic, REQ_OP_READ);
4269 	if (r) {
4270 		ti->error = "Error reading superblock";
4271 		goto bad;
4272 	}
4273 	should_write_sb = false;
4274 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4275 		if (ic->mode != 'R') {
4276 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4277 				r = -EINVAL;
4278 				ti->error = "The device is not initialized";
4279 				goto bad;
4280 			}
4281 		}
4282 
4283 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4284 		if (r) {
4285 			ti->error = "Could not initialize superblock";
4286 			goto bad;
4287 		}
4288 		if (ic->mode != 'R')
4289 			should_write_sb = true;
4290 	}
4291 
4292 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4293 		r = -EINVAL;
4294 		ti->error = "Unknown version";
4295 		goto bad;
4296 	}
4297 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4298 		r = -EINVAL;
4299 		ti->error = "Tag size doesn't match the information in superblock";
4300 		goto bad;
4301 	}
4302 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4303 		r = -EINVAL;
4304 		ti->error = "Block size doesn't match the information in superblock";
4305 		goto bad;
4306 	}
4307 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4308 		r = -EINVAL;
4309 		ti->error = "Corrupted superblock, journal_sections is 0";
4310 		goto bad;
4311 	}
4312 	/* make sure that ti->max_io_len doesn't overflow */
4313 	if (!ic->meta_dev) {
4314 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4315 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4316 			r = -EINVAL;
4317 			ti->error = "Invalid interleave_sectors in the superblock";
4318 			goto bad;
4319 		}
4320 	} else {
4321 		if (ic->sb->log2_interleave_sectors) {
4322 			r = -EINVAL;
4323 			ti->error = "Invalid interleave_sectors in the superblock";
4324 			goto bad;
4325 		}
4326 	}
4327 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4328 		r = -EINVAL;
4329 		ti->error = "Journal mac mismatch";
4330 		goto bad;
4331 	}
4332 
4333 	get_provided_data_sectors(ic);
4334 	if (!ic->provided_data_sectors) {
4335 		r = -EINVAL;
4336 		ti->error = "The device is too small";
4337 		goto bad;
4338 	}
4339 
4340 try_smaller_buffer:
4341 	r = calculate_device_limits(ic);
4342 	if (r) {
4343 		if (ic->meta_dev) {
4344 			if (ic->log2_buffer_sectors > 3) {
4345 				ic->log2_buffer_sectors--;
4346 				goto try_smaller_buffer;
4347 			}
4348 		}
4349 		ti->error = "The device is too small";
4350 		goto bad;
4351 	}
4352 
4353 	if (log2_sectors_per_bitmap_bit < 0)
4354 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4355 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4356 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4357 
4358 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4359 	if (bits_in_journal > UINT_MAX)
4360 		bits_in_journal = UINT_MAX;
4361 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4362 		log2_sectors_per_bitmap_bit++;
4363 
4364 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4365 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4366 	if (should_write_sb) {
4367 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4368 	}
4369 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4370 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4371 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4372 
4373 	if (!ic->meta_dev)
4374 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4375 
4376 	if (ti->len > ic->provided_data_sectors) {
4377 		r = -EINVAL;
4378 		ti->error = "Not enough provided sectors for requested mapping size";
4379 		goto bad;
4380 	}
4381 
4382 
4383 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4384 	threshold += 50;
4385 	do_div(threshold, 100);
4386 	ic->free_sectors_threshold = threshold;
4387 
4388 	DEBUG_print("initialized:\n");
4389 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4390 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4391 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4392 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4393 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4394 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4395 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4396 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4397 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4398 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4399 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4400 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4401 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4402 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4403 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4404 
4405 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4406 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4407 		ic->sb->recalc_sector = cpu_to_le64(0);
4408 	}
4409 
4410 	if (ic->internal_hash) {
4411 		size_t recalc_tags_size;
4412 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4413 		if (!ic->recalc_wq ) {
4414 			ti->error = "Cannot allocate workqueue";
4415 			r = -ENOMEM;
4416 			goto bad;
4417 		}
4418 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4419 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4420 		if (!ic->recalc_buffer) {
4421 			ti->error = "Cannot allocate buffer for recalculating";
4422 			r = -ENOMEM;
4423 			goto bad;
4424 		}
4425 		recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4426 		if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4427 			recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4428 		ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4429 		if (!ic->recalc_tags) {
4430 			ti->error = "Cannot allocate tags for recalculating";
4431 			r = -ENOMEM;
4432 			goto bad;
4433 		}
4434 	} else {
4435 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4436 			ti->error = "Recalculate can only be specified with internal_hash";
4437 			r = -EINVAL;
4438 			goto bad;
4439 		}
4440 	}
4441 
4442 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4443 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4444 	    dm_integrity_disable_recalculate(ic)) {
4445 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4446 		r = -EOPNOTSUPP;
4447 		goto bad;
4448 	}
4449 
4450 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4451 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4452 	if (IS_ERR(ic->bufio)) {
4453 		r = PTR_ERR(ic->bufio);
4454 		ti->error = "Cannot initialize dm-bufio";
4455 		ic->bufio = NULL;
4456 		goto bad;
4457 	}
4458 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4459 
4460 	if (ic->mode != 'R') {
4461 		r = create_journal(ic, &ti->error);
4462 		if (r)
4463 			goto bad;
4464 
4465 	}
4466 
4467 	if (ic->mode == 'B') {
4468 		unsigned i;
4469 		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4470 
4471 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4472 		if (!ic->recalc_bitmap) {
4473 			r = -ENOMEM;
4474 			goto bad;
4475 		}
4476 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4477 		if (!ic->may_write_bitmap) {
4478 			r = -ENOMEM;
4479 			goto bad;
4480 		}
4481 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4482 		if (!ic->bbs) {
4483 			r = -ENOMEM;
4484 			goto bad;
4485 		}
4486 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4487 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4488 			struct bitmap_block_status *bbs = &ic->bbs[i];
4489 			unsigned sector, pl_index, pl_offset;
4490 
4491 			INIT_WORK(&bbs->work, bitmap_block_work);
4492 			bbs->ic = ic;
4493 			bbs->idx = i;
4494 			bio_list_init(&bbs->bio_queue);
4495 			spin_lock_init(&bbs->bio_queue_lock);
4496 
4497 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4498 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4499 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4500 
4501 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4502 		}
4503 	}
4504 
4505 	if (should_write_sb) {
4506 		init_journal(ic, 0, ic->journal_sections, 0);
4507 		r = dm_integrity_failed(ic);
4508 		if (unlikely(r)) {
4509 			ti->error = "Error initializing journal";
4510 			goto bad;
4511 		}
4512 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4513 		if (r) {
4514 			ti->error = "Error initializing superblock";
4515 			goto bad;
4516 		}
4517 		ic->just_formatted = true;
4518 	}
4519 
4520 	if (!ic->meta_dev) {
4521 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4522 		if (r)
4523 			goto bad;
4524 	}
4525 	if (ic->mode == 'B') {
4526 		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4527 		if (!max_io_len)
4528 			max_io_len = 1U << 31;
4529 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4530 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4531 			r = dm_set_target_max_io_len(ti, max_io_len);
4532 			if (r)
4533 				goto bad;
4534 		}
4535 	}
4536 
4537 	if (!ic->internal_hash)
4538 		dm_integrity_set(ti, ic);
4539 
4540 	ti->num_flush_bios = 1;
4541 	ti->flush_supported = true;
4542 	if (ic->discard)
4543 		ti->num_discard_bios = 1;
4544 
4545 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4546 	return 0;
4547 
4548 bad:
4549 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4550 	dm_integrity_dtr(ti);
4551 	return r;
4552 }
4553 
4554 static void dm_integrity_dtr(struct dm_target *ti)
4555 {
4556 	struct dm_integrity_c *ic = ti->private;
4557 
4558 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4559 	BUG_ON(!list_empty(&ic->wait_list));
4560 
4561 	if (ic->mode == 'B')
4562 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4563 	if (ic->metadata_wq)
4564 		destroy_workqueue(ic->metadata_wq);
4565 	if (ic->wait_wq)
4566 		destroy_workqueue(ic->wait_wq);
4567 	if (ic->offload_wq)
4568 		destroy_workqueue(ic->offload_wq);
4569 	if (ic->commit_wq)
4570 		destroy_workqueue(ic->commit_wq);
4571 	if (ic->writer_wq)
4572 		destroy_workqueue(ic->writer_wq);
4573 	if (ic->recalc_wq)
4574 		destroy_workqueue(ic->recalc_wq);
4575 	vfree(ic->recalc_buffer);
4576 	kvfree(ic->recalc_tags);
4577 	kvfree(ic->bbs);
4578 	if (ic->bufio)
4579 		dm_bufio_client_destroy(ic->bufio);
4580 	mempool_exit(&ic->journal_io_mempool);
4581 	if (ic->io)
4582 		dm_io_client_destroy(ic->io);
4583 	if (ic->dev)
4584 		dm_put_device(ti, ic->dev);
4585 	if (ic->meta_dev)
4586 		dm_put_device(ti, ic->meta_dev);
4587 	dm_integrity_free_page_list(ic->journal);
4588 	dm_integrity_free_page_list(ic->journal_io);
4589 	dm_integrity_free_page_list(ic->journal_xor);
4590 	dm_integrity_free_page_list(ic->recalc_bitmap);
4591 	dm_integrity_free_page_list(ic->may_write_bitmap);
4592 	if (ic->journal_scatterlist)
4593 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4594 	if (ic->journal_io_scatterlist)
4595 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4596 	if (ic->sk_requests) {
4597 		unsigned i;
4598 
4599 		for (i = 0; i < ic->journal_sections; i++) {
4600 			struct skcipher_request *req = ic->sk_requests[i];
4601 			if (req) {
4602 				kfree_sensitive(req->iv);
4603 				skcipher_request_free(req);
4604 			}
4605 		}
4606 		kvfree(ic->sk_requests);
4607 	}
4608 	kvfree(ic->journal_tree);
4609 	if (ic->sb)
4610 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4611 
4612 	if (ic->internal_hash)
4613 		crypto_free_shash(ic->internal_hash);
4614 	free_alg(&ic->internal_hash_alg);
4615 
4616 	if (ic->journal_crypt)
4617 		crypto_free_skcipher(ic->journal_crypt);
4618 	free_alg(&ic->journal_crypt_alg);
4619 
4620 	if (ic->journal_mac)
4621 		crypto_free_shash(ic->journal_mac);
4622 	free_alg(&ic->journal_mac_alg);
4623 
4624 	kfree(ic);
4625 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4626 }
4627 
4628 static struct target_type integrity_target = {
4629 	.name			= "integrity",
4630 	.version		= {1, 10, 0},
4631 	.module			= THIS_MODULE,
4632 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4633 	.ctr			= dm_integrity_ctr,
4634 	.dtr			= dm_integrity_dtr,
4635 	.map			= dm_integrity_map,
4636 	.postsuspend		= dm_integrity_postsuspend,
4637 	.resume			= dm_integrity_resume,
4638 	.status			= dm_integrity_status,
4639 	.iterate_devices	= dm_integrity_iterate_devices,
4640 	.io_hints		= dm_integrity_io_hints,
4641 };
4642 
4643 static int __init dm_integrity_init(void)
4644 {
4645 	int r;
4646 
4647 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4648 					     sizeof(struct journal_io), 0, 0, NULL);
4649 	if (!journal_io_cache) {
4650 		DMERR("can't allocate journal io cache");
4651 		return -ENOMEM;
4652 	}
4653 
4654 	r = dm_register_target(&integrity_target);
4655 
4656 	if (r < 0)
4657 		DMERR("register failed %d", r);
4658 
4659 	return r;
4660 }
4661 
4662 static void __exit dm_integrity_exit(void)
4663 {
4664 	dm_unregister_target(&integrity_target);
4665 	kmem_cache_destroy(journal_io_cache);
4666 }
4667 
4668 module_init(dm_integrity_init);
4669 module_exit(dm_integrity_exit);
4670 
4671 MODULE_AUTHOR("Milan Broz");
4672 MODULE_AUTHOR("Mikulas Patocka");
4673 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4674 MODULE_LICENSE("GPL");
4675