1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/compiler.h> 10 #include <linux/module.h> 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/vmalloc.h> 14 #include <linux/sort.h> 15 #include <linux/rbtree.h> 16 #include <linux/delay.h> 17 #include <linux/random.h> 18 #include <crypto/hash.h> 19 #include <crypto/skcipher.h> 20 #include <linux/async_tx.h> 21 #include <linux/dm-bufio.h> 22 23 #define DM_MSG_PREFIX "integrity" 24 25 #define DEFAULT_INTERLEAVE_SECTORS 32768 26 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 27 #define DEFAULT_BUFFER_SECTORS 128 28 #define DEFAULT_JOURNAL_WATERMARK 50 29 #define DEFAULT_SYNC_MSEC 10000 30 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 31 #define MIN_LOG2_INTERLEAVE_SECTORS 3 32 #define MAX_LOG2_INTERLEAVE_SECTORS 31 33 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 34 35 /* 36 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 37 * so it should not be enabled in the official kernel 38 */ 39 //#define DEBUG_PRINT 40 //#define INTERNAL_VERIFY 41 42 /* 43 * On disk structures 44 */ 45 46 #define SB_MAGIC "integrt" 47 #define SB_VERSION 1 48 #define SB_SECTORS 8 49 #define MAX_SECTORS_PER_BLOCK 8 50 51 struct superblock { 52 __u8 magic[8]; 53 __u8 version; 54 __u8 log2_interleave_sectors; 55 __u16 integrity_tag_size; 56 __u32 journal_sections; 57 __u64 provided_data_sectors; /* userspace uses this value */ 58 __u32 flags; 59 __u8 log2_sectors_per_block; 60 }; 61 62 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 63 64 #define JOURNAL_ENTRY_ROUNDUP 8 65 66 typedef __u64 commit_id_t; 67 #define JOURNAL_MAC_PER_SECTOR 8 68 69 struct journal_entry { 70 union { 71 struct { 72 __u32 sector_lo; 73 __u32 sector_hi; 74 } s; 75 __u64 sector; 76 } u; 77 commit_id_t last_bytes[0]; 78 /* __u8 tag[0]; */ 79 }; 80 81 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 82 83 #if BITS_PER_LONG == 64 84 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 85 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 86 #elif defined(CONFIG_LBDAF) 87 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 88 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 89 #else 90 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0) 91 #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo) 92 #endif 93 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 94 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 95 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 96 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 97 98 #define JOURNAL_BLOCK_SECTORS 8 99 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 100 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 101 102 struct journal_sector { 103 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 104 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 105 commit_id_t commit_id; 106 }; 107 108 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 109 110 #define METADATA_PADDING_SECTORS 8 111 112 #define N_COMMIT_IDS 4 113 114 static unsigned char prev_commit_seq(unsigned char seq) 115 { 116 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 117 } 118 119 static unsigned char next_commit_seq(unsigned char seq) 120 { 121 return (seq + 1) % N_COMMIT_IDS; 122 } 123 124 /* 125 * In-memory structures 126 */ 127 128 struct journal_node { 129 struct rb_node node; 130 sector_t sector; 131 }; 132 133 struct alg_spec { 134 char *alg_string; 135 char *key_string; 136 __u8 *key; 137 unsigned key_size; 138 }; 139 140 struct dm_integrity_c { 141 struct dm_dev *dev; 142 unsigned tag_size; 143 __s8 log2_tag_size; 144 sector_t start; 145 mempool_t journal_io_mempool; 146 struct dm_io_client *io; 147 struct dm_bufio_client *bufio; 148 struct workqueue_struct *metadata_wq; 149 struct superblock *sb; 150 unsigned journal_pages; 151 struct page_list *journal; 152 struct page_list *journal_io; 153 struct page_list *journal_xor; 154 155 struct crypto_skcipher *journal_crypt; 156 struct scatterlist **journal_scatterlist; 157 struct scatterlist **journal_io_scatterlist; 158 struct skcipher_request **sk_requests; 159 160 struct crypto_shash *journal_mac; 161 162 struct journal_node *journal_tree; 163 struct rb_root journal_tree_root; 164 165 sector_t provided_data_sectors; 166 167 unsigned short journal_entry_size; 168 unsigned char journal_entries_per_sector; 169 unsigned char journal_section_entries; 170 unsigned short journal_section_sectors; 171 unsigned journal_sections; 172 unsigned journal_entries; 173 sector_t device_sectors; 174 unsigned initial_sectors; 175 unsigned metadata_run; 176 __s8 log2_metadata_run; 177 __u8 log2_buffer_sectors; 178 __u8 sectors_per_block; 179 180 unsigned char mode; 181 bool suspending; 182 183 int failed; 184 185 struct crypto_shash *internal_hash; 186 187 /* these variables are locked with endio_wait.lock */ 188 struct rb_root in_progress; 189 wait_queue_head_t endio_wait; 190 struct workqueue_struct *wait_wq; 191 192 unsigned char commit_seq; 193 commit_id_t commit_ids[N_COMMIT_IDS]; 194 195 unsigned committed_section; 196 unsigned n_committed_sections; 197 198 unsigned uncommitted_section; 199 unsigned n_uncommitted_sections; 200 201 unsigned free_section; 202 unsigned char free_section_entry; 203 unsigned free_sectors; 204 205 unsigned free_sectors_threshold; 206 207 struct workqueue_struct *commit_wq; 208 struct work_struct commit_work; 209 210 struct workqueue_struct *writer_wq; 211 struct work_struct writer_work; 212 213 struct bio_list flush_bio_list; 214 215 unsigned long autocommit_jiffies; 216 struct timer_list autocommit_timer; 217 unsigned autocommit_msec; 218 219 wait_queue_head_t copy_to_journal_wait; 220 221 struct completion crypto_backoff; 222 223 bool journal_uptodate; 224 bool just_formatted; 225 226 struct alg_spec internal_hash_alg; 227 struct alg_spec journal_crypt_alg; 228 struct alg_spec journal_mac_alg; 229 230 atomic64_t number_of_mismatches; 231 }; 232 233 struct dm_integrity_range { 234 sector_t logical_sector; 235 unsigned n_sectors; 236 struct rb_node node; 237 }; 238 239 struct dm_integrity_io { 240 struct work_struct work; 241 242 struct dm_integrity_c *ic; 243 bool write; 244 bool fua; 245 246 struct dm_integrity_range range; 247 248 sector_t metadata_block; 249 unsigned metadata_offset; 250 251 atomic_t in_flight; 252 blk_status_t bi_status; 253 254 struct completion *completion; 255 256 struct gendisk *orig_bi_disk; 257 u8 orig_bi_partno; 258 bio_end_io_t *orig_bi_end_io; 259 struct bio_integrity_payload *orig_bi_integrity; 260 struct bvec_iter orig_bi_iter; 261 }; 262 263 struct journal_completion { 264 struct dm_integrity_c *ic; 265 atomic_t in_flight; 266 struct completion comp; 267 }; 268 269 struct journal_io { 270 struct dm_integrity_range range; 271 struct journal_completion *comp; 272 }; 273 274 static struct kmem_cache *journal_io_cache; 275 276 #define JOURNAL_IO_MEMPOOL 32 277 278 #ifdef DEBUG_PRINT 279 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 280 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 281 { 282 va_list args; 283 va_start(args, msg); 284 vprintk(msg, args); 285 va_end(args); 286 if (len) 287 pr_cont(":"); 288 while (len) { 289 pr_cont(" %02x", *bytes); 290 bytes++; 291 len--; 292 } 293 pr_cont("\n"); 294 } 295 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 296 #else 297 #define DEBUG_print(x, ...) do { } while (0) 298 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 299 #endif 300 301 /* 302 * DM Integrity profile, protection is performed layer above (dm-crypt) 303 */ 304 static const struct blk_integrity_profile dm_integrity_profile = { 305 .name = "DM-DIF-EXT-TAG", 306 .generate_fn = NULL, 307 .verify_fn = NULL, 308 }; 309 310 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 311 static void integrity_bio_wait(struct work_struct *w); 312 static void dm_integrity_dtr(struct dm_target *ti); 313 314 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 315 { 316 if (err == -EILSEQ) 317 atomic64_inc(&ic->number_of_mismatches); 318 if (!cmpxchg(&ic->failed, 0, err)) 319 DMERR("Error on %s: %d", msg, err); 320 } 321 322 static int dm_integrity_failed(struct dm_integrity_c *ic) 323 { 324 return READ_ONCE(ic->failed); 325 } 326 327 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 328 unsigned j, unsigned char seq) 329 { 330 /* 331 * Xor the number with section and sector, so that if a piece of 332 * journal is written at wrong place, it is detected. 333 */ 334 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 335 } 336 337 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 338 sector_t *area, sector_t *offset) 339 { 340 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 341 342 *area = data_sector >> log2_interleave_sectors; 343 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 344 } 345 346 #define sector_to_block(ic, n) \ 347 do { \ 348 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 349 (n) >>= (ic)->sb->log2_sectors_per_block; \ 350 } while (0) 351 352 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 353 sector_t offset, unsigned *metadata_offset) 354 { 355 __u64 ms; 356 unsigned mo; 357 358 ms = area << ic->sb->log2_interleave_sectors; 359 if (likely(ic->log2_metadata_run >= 0)) 360 ms += area << ic->log2_metadata_run; 361 else 362 ms += area * ic->metadata_run; 363 ms >>= ic->log2_buffer_sectors; 364 365 sector_to_block(ic, offset); 366 367 if (likely(ic->log2_tag_size >= 0)) { 368 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 369 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 370 } else { 371 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 372 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 373 } 374 *metadata_offset = mo; 375 return ms; 376 } 377 378 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 379 { 380 sector_t result; 381 382 result = area << ic->sb->log2_interleave_sectors; 383 if (likely(ic->log2_metadata_run >= 0)) 384 result += (area + 1) << ic->log2_metadata_run; 385 else 386 result += (area + 1) * ic->metadata_run; 387 388 result += (sector_t)ic->initial_sectors + offset; 389 return result; 390 } 391 392 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 393 { 394 if (unlikely(*sec_ptr >= ic->journal_sections)) 395 *sec_ptr -= ic->journal_sections; 396 } 397 398 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 399 { 400 struct dm_io_request io_req; 401 struct dm_io_region io_loc; 402 403 io_req.bi_op = op; 404 io_req.bi_op_flags = op_flags; 405 io_req.mem.type = DM_IO_KMEM; 406 io_req.mem.ptr.addr = ic->sb; 407 io_req.notify.fn = NULL; 408 io_req.client = ic->io; 409 io_loc.bdev = ic->dev->bdev; 410 io_loc.sector = ic->start; 411 io_loc.count = SB_SECTORS; 412 413 return dm_io(&io_req, 1, &io_loc, NULL); 414 } 415 416 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 417 bool e, const char *function) 418 { 419 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 420 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 421 422 if (unlikely(section >= ic->journal_sections) || 423 unlikely(offset >= limit)) { 424 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n", 425 function, section, offset, ic->journal_sections, limit); 426 BUG(); 427 } 428 #endif 429 } 430 431 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 432 unsigned *pl_index, unsigned *pl_offset) 433 { 434 unsigned sector; 435 436 access_journal_check(ic, section, offset, false, "page_list_location"); 437 438 sector = section * ic->journal_section_sectors + offset; 439 440 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 441 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 442 } 443 444 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 445 unsigned section, unsigned offset, unsigned *n_sectors) 446 { 447 unsigned pl_index, pl_offset; 448 char *va; 449 450 page_list_location(ic, section, offset, &pl_index, &pl_offset); 451 452 if (n_sectors) 453 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 454 455 va = lowmem_page_address(pl[pl_index].page); 456 457 return (struct journal_sector *)(va + pl_offset); 458 } 459 460 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 461 { 462 return access_page_list(ic, ic->journal, section, offset, NULL); 463 } 464 465 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 466 { 467 unsigned rel_sector, offset; 468 struct journal_sector *js; 469 470 access_journal_check(ic, section, n, true, "access_journal_entry"); 471 472 rel_sector = n % JOURNAL_BLOCK_SECTORS; 473 offset = n / JOURNAL_BLOCK_SECTORS; 474 475 js = access_journal(ic, section, rel_sector); 476 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 477 } 478 479 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 480 { 481 n <<= ic->sb->log2_sectors_per_block; 482 483 n += JOURNAL_BLOCK_SECTORS; 484 485 access_journal_check(ic, section, n, false, "access_journal_data"); 486 487 return access_journal(ic, section, n); 488 } 489 490 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 491 { 492 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 493 int r; 494 unsigned j, size; 495 496 desc->tfm = ic->journal_mac; 497 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 498 499 r = crypto_shash_init(desc); 500 if (unlikely(r)) { 501 dm_integrity_io_error(ic, "crypto_shash_init", r); 502 goto err; 503 } 504 505 for (j = 0; j < ic->journal_section_entries; j++) { 506 struct journal_entry *je = access_journal_entry(ic, section, j); 507 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 508 if (unlikely(r)) { 509 dm_integrity_io_error(ic, "crypto_shash_update", r); 510 goto err; 511 } 512 } 513 514 size = crypto_shash_digestsize(ic->journal_mac); 515 516 if (likely(size <= JOURNAL_MAC_SIZE)) { 517 r = crypto_shash_final(desc, result); 518 if (unlikely(r)) { 519 dm_integrity_io_error(ic, "crypto_shash_final", r); 520 goto err; 521 } 522 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 523 } else { 524 __u8 digest[size]; 525 r = crypto_shash_final(desc, digest); 526 if (unlikely(r)) { 527 dm_integrity_io_error(ic, "crypto_shash_final", r); 528 goto err; 529 } 530 memcpy(result, digest, JOURNAL_MAC_SIZE); 531 } 532 533 return; 534 err: 535 memset(result, 0, JOURNAL_MAC_SIZE); 536 } 537 538 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 539 { 540 __u8 result[JOURNAL_MAC_SIZE]; 541 unsigned j; 542 543 if (!ic->journal_mac) 544 return; 545 546 section_mac(ic, section, result); 547 548 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 549 struct journal_sector *js = access_journal(ic, section, j); 550 551 if (likely(wr)) 552 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 553 else { 554 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 555 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 556 } 557 } 558 } 559 560 static void complete_journal_op(void *context) 561 { 562 struct journal_completion *comp = context; 563 BUG_ON(!atomic_read(&comp->in_flight)); 564 if (likely(atomic_dec_and_test(&comp->in_flight))) 565 complete(&comp->comp); 566 } 567 568 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 569 unsigned n_sections, struct journal_completion *comp) 570 { 571 struct async_submit_ctl submit; 572 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 573 unsigned pl_index, pl_offset, section_index; 574 struct page_list *source_pl, *target_pl; 575 576 if (likely(encrypt)) { 577 source_pl = ic->journal; 578 target_pl = ic->journal_io; 579 } else { 580 source_pl = ic->journal_io; 581 target_pl = ic->journal; 582 } 583 584 page_list_location(ic, section, 0, &pl_index, &pl_offset); 585 586 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 587 588 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 589 590 section_index = pl_index; 591 592 do { 593 size_t this_step; 594 struct page *src_pages[2]; 595 struct page *dst_page; 596 597 while (unlikely(pl_index == section_index)) { 598 unsigned dummy; 599 if (likely(encrypt)) 600 rw_section_mac(ic, section, true); 601 section++; 602 n_sections--; 603 if (!n_sections) 604 break; 605 page_list_location(ic, section, 0, §ion_index, &dummy); 606 } 607 608 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 609 dst_page = target_pl[pl_index].page; 610 src_pages[0] = source_pl[pl_index].page; 611 src_pages[1] = ic->journal_xor[pl_index].page; 612 613 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 614 615 pl_index++; 616 pl_offset = 0; 617 n_bytes -= this_step; 618 } while (n_bytes); 619 620 BUG_ON(n_sections); 621 622 async_tx_issue_pending_all(); 623 } 624 625 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 626 { 627 struct journal_completion *comp = req->data; 628 if (unlikely(err)) { 629 if (likely(err == -EINPROGRESS)) { 630 complete(&comp->ic->crypto_backoff); 631 return; 632 } 633 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 634 } 635 complete_journal_op(comp); 636 } 637 638 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 639 { 640 int r; 641 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 642 complete_journal_encrypt, comp); 643 if (likely(encrypt)) 644 r = crypto_skcipher_encrypt(req); 645 else 646 r = crypto_skcipher_decrypt(req); 647 if (likely(!r)) 648 return false; 649 if (likely(r == -EINPROGRESS)) 650 return true; 651 if (likely(r == -EBUSY)) { 652 wait_for_completion(&comp->ic->crypto_backoff); 653 reinit_completion(&comp->ic->crypto_backoff); 654 return true; 655 } 656 dm_integrity_io_error(comp->ic, "encrypt", r); 657 return false; 658 } 659 660 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 661 unsigned n_sections, struct journal_completion *comp) 662 { 663 struct scatterlist **source_sg; 664 struct scatterlist **target_sg; 665 666 atomic_add(2, &comp->in_flight); 667 668 if (likely(encrypt)) { 669 source_sg = ic->journal_scatterlist; 670 target_sg = ic->journal_io_scatterlist; 671 } else { 672 source_sg = ic->journal_io_scatterlist; 673 target_sg = ic->journal_scatterlist; 674 } 675 676 do { 677 struct skcipher_request *req; 678 unsigned ivsize; 679 char *iv; 680 681 if (likely(encrypt)) 682 rw_section_mac(ic, section, true); 683 684 req = ic->sk_requests[section]; 685 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 686 iv = req->iv; 687 688 memcpy(iv, iv + ivsize, ivsize); 689 690 req->src = source_sg[section]; 691 req->dst = target_sg[section]; 692 693 if (unlikely(do_crypt(encrypt, req, comp))) 694 atomic_inc(&comp->in_flight); 695 696 section++; 697 n_sections--; 698 } while (n_sections); 699 700 atomic_dec(&comp->in_flight); 701 complete_journal_op(comp); 702 } 703 704 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 705 unsigned n_sections, struct journal_completion *comp) 706 { 707 if (ic->journal_xor) 708 return xor_journal(ic, encrypt, section, n_sections, comp); 709 else 710 return crypt_journal(ic, encrypt, section, n_sections, comp); 711 } 712 713 static void complete_journal_io(unsigned long error, void *context) 714 { 715 struct journal_completion *comp = context; 716 if (unlikely(error != 0)) 717 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 718 complete_journal_op(comp); 719 } 720 721 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 722 unsigned n_sections, struct journal_completion *comp) 723 { 724 struct dm_io_request io_req; 725 struct dm_io_region io_loc; 726 unsigned sector, n_sectors, pl_index, pl_offset; 727 int r; 728 729 if (unlikely(dm_integrity_failed(ic))) { 730 if (comp) 731 complete_journal_io(-1UL, comp); 732 return; 733 } 734 735 sector = section * ic->journal_section_sectors; 736 n_sectors = n_sections * ic->journal_section_sectors; 737 738 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 739 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 740 741 io_req.bi_op = op; 742 io_req.bi_op_flags = op_flags; 743 io_req.mem.type = DM_IO_PAGE_LIST; 744 if (ic->journal_io) 745 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 746 else 747 io_req.mem.ptr.pl = &ic->journal[pl_index]; 748 io_req.mem.offset = pl_offset; 749 if (likely(comp != NULL)) { 750 io_req.notify.fn = complete_journal_io; 751 io_req.notify.context = comp; 752 } else { 753 io_req.notify.fn = NULL; 754 } 755 io_req.client = ic->io; 756 io_loc.bdev = ic->dev->bdev; 757 io_loc.sector = ic->start + SB_SECTORS + sector; 758 io_loc.count = n_sectors; 759 760 r = dm_io(&io_req, 1, &io_loc, NULL); 761 if (unlikely(r)) { 762 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 763 if (comp) { 764 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 765 complete_journal_io(-1UL, comp); 766 } 767 } 768 } 769 770 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 771 { 772 struct journal_completion io_comp; 773 struct journal_completion crypt_comp_1; 774 struct journal_completion crypt_comp_2; 775 unsigned i; 776 777 io_comp.ic = ic; 778 init_completion(&io_comp.comp); 779 780 if (commit_start + commit_sections <= ic->journal_sections) { 781 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 782 if (ic->journal_io) { 783 crypt_comp_1.ic = ic; 784 init_completion(&crypt_comp_1.comp); 785 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 786 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 787 wait_for_completion_io(&crypt_comp_1.comp); 788 } else { 789 for (i = 0; i < commit_sections; i++) 790 rw_section_mac(ic, commit_start + i, true); 791 } 792 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 793 commit_sections, &io_comp); 794 } else { 795 unsigned to_end; 796 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 797 to_end = ic->journal_sections - commit_start; 798 if (ic->journal_io) { 799 crypt_comp_1.ic = ic; 800 init_completion(&crypt_comp_1.comp); 801 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 802 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 803 if (try_wait_for_completion(&crypt_comp_1.comp)) { 804 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 805 reinit_completion(&crypt_comp_1.comp); 806 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 807 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 808 wait_for_completion_io(&crypt_comp_1.comp); 809 } else { 810 crypt_comp_2.ic = ic; 811 init_completion(&crypt_comp_2.comp); 812 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 813 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 814 wait_for_completion_io(&crypt_comp_1.comp); 815 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 816 wait_for_completion_io(&crypt_comp_2.comp); 817 } 818 } else { 819 for (i = 0; i < to_end; i++) 820 rw_section_mac(ic, commit_start + i, true); 821 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 822 for (i = 0; i < commit_sections - to_end; i++) 823 rw_section_mac(ic, i, true); 824 } 825 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 826 } 827 828 wait_for_completion_io(&io_comp.comp); 829 } 830 831 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 832 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 833 { 834 struct dm_io_request io_req; 835 struct dm_io_region io_loc; 836 int r; 837 unsigned sector, pl_index, pl_offset; 838 839 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 840 841 if (unlikely(dm_integrity_failed(ic))) { 842 fn(-1UL, data); 843 return; 844 } 845 846 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 847 848 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 849 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 850 851 io_req.bi_op = REQ_OP_WRITE; 852 io_req.bi_op_flags = 0; 853 io_req.mem.type = DM_IO_PAGE_LIST; 854 io_req.mem.ptr.pl = &ic->journal[pl_index]; 855 io_req.mem.offset = pl_offset; 856 io_req.notify.fn = fn; 857 io_req.notify.context = data; 858 io_req.client = ic->io; 859 io_loc.bdev = ic->dev->bdev; 860 io_loc.sector = ic->start + target; 861 io_loc.count = n_sectors; 862 863 r = dm_io(&io_req, 1, &io_loc, NULL); 864 if (unlikely(r)) { 865 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 866 fn(-1UL, data); 867 } 868 } 869 870 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 871 { 872 struct rb_node **n = &ic->in_progress.rb_node; 873 struct rb_node *parent; 874 875 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 876 877 parent = NULL; 878 879 while (*n) { 880 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 881 882 parent = *n; 883 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 884 n = &range->node.rb_left; 885 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 886 n = &range->node.rb_right; 887 } else { 888 return false; 889 } 890 } 891 892 rb_link_node(&new_range->node, parent, n); 893 rb_insert_color(&new_range->node, &ic->in_progress); 894 895 return true; 896 } 897 898 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 899 { 900 rb_erase(&range->node, &ic->in_progress); 901 wake_up_locked(&ic->endio_wait); 902 } 903 904 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 905 { 906 unsigned long flags; 907 908 spin_lock_irqsave(&ic->endio_wait.lock, flags); 909 remove_range_unlocked(ic, range); 910 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 911 } 912 913 static void init_journal_node(struct journal_node *node) 914 { 915 RB_CLEAR_NODE(&node->node); 916 node->sector = (sector_t)-1; 917 } 918 919 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 920 { 921 struct rb_node **link; 922 struct rb_node *parent; 923 924 node->sector = sector; 925 BUG_ON(!RB_EMPTY_NODE(&node->node)); 926 927 link = &ic->journal_tree_root.rb_node; 928 parent = NULL; 929 930 while (*link) { 931 struct journal_node *j; 932 parent = *link; 933 j = container_of(parent, struct journal_node, node); 934 if (sector < j->sector) 935 link = &j->node.rb_left; 936 else 937 link = &j->node.rb_right; 938 } 939 940 rb_link_node(&node->node, parent, link); 941 rb_insert_color(&node->node, &ic->journal_tree_root); 942 } 943 944 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 945 { 946 BUG_ON(RB_EMPTY_NODE(&node->node)); 947 rb_erase(&node->node, &ic->journal_tree_root); 948 init_journal_node(node); 949 } 950 951 #define NOT_FOUND (-1U) 952 953 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 954 { 955 struct rb_node *n = ic->journal_tree_root.rb_node; 956 unsigned found = NOT_FOUND; 957 *next_sector = (sector_t)-1; 958 while (n) { 959 struct journal_node *j = container_of(n, struct journal_node, node); 960 if (sector == j->sector) { 961 found = j - ic->journal_tree; 962 } 963 if (sector < j->sector) { 964 *next_sector = j->sector; 965 n = j->node.rb_left; 966 } else { 967 n = j->node.rb_right; 968 } 969 } 970 971 return found; 972 } 973 974 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 975 { 976 struct journal_node *node, *next_node; 977 struct rb_node *next; 978 979 if (unlikely(pos >= ic->journal_entries)) 980 return false; 981 node = &ic->journal_tree[pos]; 982 if (unlikely(RB_EMPTY_NODE(&node->node))) 983 return false; 984 if (unlikely(node->sector != sector)) 985 return false; 986 987 next = rb_next(&node->node); 988 if (unlikely(!next)) 989 return true; 990 991 next_node = container_of(next, struct journal_node, node); 992 return next_node->sector != sector; 993 } 994 995 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 996 { 997 struct rb_node *next; 998 struct journal_node *next_node; 999 unsigned next_section; 1000 1001 BUG_ON(RB_EMPTY_NODE(&node->node)); 1002 1003 next = rb_next(&node->node); 1004 if (unlikely(!next)) 1005 return false; 1006 1007 next_node = container_of(next, struct journal_node, node); 1008 1009 if (next_node->sector != node->sector) 1010 return false; 1011 1012 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1013 if (next_section >= ic->committed_section && 1014 next_section < ic->committed_section + ic->n_committed_sections) 1015 return true; 1016 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1017 return true; 1018 1019 return false; 1020 } 1021 1022 #define TAG_READ 0 1023 #define TAG_WRITE 1 1024 #define TAG_CMP 2 1025 1026 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1027 unsigned *metadata_offset, unsigned total_size, int op) 1028 { 1029 do { 1030 unsigned char *data, *dp; 1031 struct dm_buffer *b; 1032 unsigned to_copy; 1033 int r; 1034 1035 r = dm_integrity_failed(ic); 1036 if (unlikely(r)) 1037 return r; 1038 1039 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1040 if (unlikely(IS_ERR(data))) 1041 return PTR_ERR(data); 1042 1043 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1044 dp = data + *metadata_offset; 1045 if (op == TAG_READ) { 1046 memcpy(tag, dp, to_copy); 1047 } else if (op == TAG_WRITE) { 1048 memcpy(dp, tag, to_copy); 1049 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1050 } else { 1051 /* e.g.: op == TAG_CMP */ 1052 if (unlikely(memcmp(dp, tag, to_copy))) { 1053 unsigned i; 1054 1055 for (i = 0; i < to_copy; i++) { 1056 if (dp[i] != tag[i]) 1057 break; 1058 total_size--; 1059 } 1060 dm_bufio_release(b); 1061 return total_size; 1062 } 1063 } 1064 dm_bufio_release(b); 1065 1066 tag += to_copy; 1067 *metadata_offset += to_copy; 1068 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1069 (*metadata_block)++; 1070 *metadata_offset = 0; 1071 } 1072 total_size -= to_copy; 1073 } while (unlikely(total_size)); 1074 1075 return 0; 1076 } 1077 1078 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic) 1079 { 1080 int r; 1081 r = dm_bufio_write_dirty_buffers(ic->bufio); 1082 if (unlikely(r)) 1083 dm_integrity_io_error(ic, "writing tags", r); 1084 } 1085 1086 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1087 { 1088 DECLARE_WAITQUEUE(wait, current); 1089 __add_wait_queue(&ic->endio_wait, &wait); 1090 __set_current_state(TASK_UNINTERRUPTIBLE); 1091 spin_unlock_irq(&ic->endio_wait.lock); 1092 io_schedule(); 1093 spin_lock_irq(&ic->endio_wait.lock); 1094 __remove_wait_queue(&ic->endio_wait, &wait); 1095 } 1096 1097 static void autocommit_fn(struct timer_list *t) 1098 { 1099 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1100 1101 if (likely(!dm_integrity_failed(ic))) 1102 queue_work(ic->commit_wq, &ic->commit_work); 1103 } 1104 1105 static void schedule_autocommit(struct dm_integrity_c *ic) 1106 { 1107 if (!timer_pending(&ic->autocommit_timer)) 1108 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1109 } 1110 1111 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1112 { 1113 struct bio *bio; 1114 unsigned long flags; 1115 1116 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1117 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1118 bio_list_add(&ic->flush_bio_list, bio); 1119 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1120 1121 queue_work(ic->commit_wq, &ic->commit_work); 1122 } 1123 1124 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1125 { 1126 int r = dm_integrity_failed(ic); 1127 if (unlikely(r) && !bio->bi_status) 1128 bio->bi_status = errno_to_blk_status(r); 1129 bio_endio(bio); 1130 } 1131 1132 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1133 { 1134 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1135 1136 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1137 submit_flush_bio(ic, dio); 1138 else 1139 do_endio(ic, bio); 1140 } 1141 1142 static void dec_in_flight(struct dm_integrity_io *dio) 1143 { 1144 if (atomic_dec_and_test(&dio->in_flight)) { 1145 struct dm_integrity_c *ic = dio->ic; 1146 struct bio *bio; 1147 1148 remove_range(ic, &dio->range); 1149 1150 if (unlikely(dio->write)) 1151 schedule_autocommit(ic); 1152 1153 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1154 1155 if (unlikely(dio->bi_status) && !bio->bi_status) 1156 bio->bi_status = dio->bi_status; 1157 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1158 dio->range.logical_sector += dio->range.n_sectors; 1159 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1160 INIT_WORK(&dio->work, integrity_bio_wait); 1161 queue_work(ic->wait_wq, &dio->work); 1162 return; 1163 } 1164 do_endio_flush(ic, dio); 1165 } 1166 } 1167 1168 static void integrity_end_io(struct bio *bio) 1169 { 1170 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1171 1172 bio->bi_iter = dio->orig_bi_iter; 1173 bio->bi_disk = dio->orig_bi_disk; 1174 bio->bi_partno = dio->orig_bi_partno; 1175 if (dio->orig_bi_integrity) { 1176 bio->bi_integrity = dio->orig_bi_integrity; 1177 bio->bi_opf |= REQ_INTEGRITY; 1178 } 1179 bio->bi_end_io = dio->orig_bi_end_io; 1180 1181 if (dio->completion) 1182 complete(dio->completion); 1183 1184 dec_in_flight(dio); 1185 } 1186 1187 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1188 const char *data, char *result) 1189 { 1190 __u64 sector_le = cpu_to_le64(sector); 1191 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1192 int r; 1193 unsigned digest_size; 1194 1195 req->tfm = ic->internal_hash; 1196 req->flags = 0; 1197 1198 r = crypto_shash_init(req); 1199 if (unlikely(r < 0)) { 1200 dm_integrity_io_error(ic, "crypto_shash_init", r); 1201 goto failed; 1202 } 1203 1204 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1205 if (unlikely(r < 0)) { 1206 dm_integrity_io_error(ic, "crypto_shash_update", r); 1207 goto failed; 1208 } 1209 1210 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1211 if (unlikely(r < 0)) { 1212 dm_integrity_io_error(ic, "crypto_shash_update", r); 1213 goto failed; 1214 } 1215 1216 r = crypto_shash_final(req, result); 1217 if (unlikely(r < 0)) { 1218 dm_integrity_io_error(ic, "crypto_shash_final", r); 1219 goto failed; 1220 } 1221 1222 digest_size = crypto_shash_digestsize(ic->internal_hash); 1223 if (unlikely(digest_size < ic->tag_size)) 1224 memset(result + digest_size, 0, ic->tag_size - digest_size); 1225 1226 return; 1227 1228 failed: 1229 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1230 get_random_bytes(result, ic->tag_size); 1231 } 1232 1233 static void integrity_metadata(struct work_struct *w) 1234 { 1235 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1236 struct dm_integrity_c *ic = dio->ic; 1237 1238 int r; 1239 1240 if (ic->internal_hash) { 1241 struct bvec_iter iter; 1242 struct bio_vec bv; 1243 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1244 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1245 char *checksums; 1246 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1247 char checksums_onstack[ic->tag_size + extra_space]; 1248 unsigned sectors_to_process = dio->range.n_sectors; 1249 sector_t sector = dio->range.logical_sector; 1250 1251 if (unlikely(ic->mode == 'R')) 1252 goto skip_io; 1253 1254 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1255 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1256 if (!checksums) 1257 checksums = checksums_onstack; 1258 1259 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) { 1260 unsigned pos; 1261 char *mem, *checksums_ptr; 1262 1263 again: 1264 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1265 pos = 0; 1266 checksums_ptr = checksums; 1267 do { 1268 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1269 checksums_ptr += ic->tag_size; 1270 sectors_to_process -= ic->sectors_per_block; 1271 pos += ic->sectors_per_block << SECTOR_SHIFT; 1272 sector += ic->sectors_per_block; 1273 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1274 kunmap_atomic(mem); 1275 1276 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1277 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE); 1278 if (unlikely(r)) { 1279 if (r > 0) { 1280 DMERR("Checksum failed at sector 0x%llx", 1281 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1282 r = -EILSEQ; 1283 atomic64_inc(&ic->number_of_mismatches); 1284 } 1285 if (likely(checksums != checksums_onstack)) 1286 kfree(checksums); 1287 goto error; 1288 } 1289 1290 if (!sectors_to_process) 1291 break; 1292 1293 if (unlikely(pos < bv.bv_len)) { 1294 bv.bv_offset += pos; 1295 bv.bv_len -= pos; 1296 goto again; 1297 } 1298 } 1299 1300 if (likely(checksums != checksums_onstack)) 1301 kfree(checksums); 1302 } else { 1303 struct bio_integrity_payload *bip = dio->orig_bi_integrity; 1304 1305 if (bip) { 1306 struct bio_vec biv; 1307 struct bvec_iter iter; 1308 unsigned data_to_process = dio->range.n_sectors; 1309 sector_to_block(ic, data_to_process); 1310 data_to_process *= ic->tag_size; 1311 1312 bip_for_each_vec(biv, bip, iter) { 1313 unsigned char *tag; 1314 unsigned this_len; 1315 1316 BUG_ON(PageHighMem(biv.bv_page)); 1317 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1318 this_len = min(biv.bv_len, data_to_process); 1319 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1320 this_len, !dio->write ? TAG_READ : TAG_WRITE); 1321 if (unlikely(r)) 1322 goto error; 1323 data_to_process -= this_len; 1324 if (!data_to_process) 1325 break; 1326 } 1327 } 1328 } 1329 skip_io: 1330 dec_in_flight(dio); 1331 return; 1332 error: 1333 dio->bi_status = errno_to_blk_status(r); 1334 dec_in_flight(dio); 1335 } 1336 1337 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1338 { 1339 struct dm_integrity_c *ic = ti->private; 1340 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1341 struct bio_integrity_payload *bip; 1342 1343 sector_t area, offset; 1344 1345 dio->ic = ic; 1346 dio->bi_status = 0; 1347 1348 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1349 submit_flush_bio(ic, dio); 1350 return DM_MAPIO_SUBMITTED; 1351 } 1352 1353 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1354 dio->write = bio_op(bio) == REQ_OP_WRITE; 1355 dio->fua = dio->write && bio->bi_opf & REQ_FUA; 1356 if (unlikely(dio->fua)) { 1357 /* 1358 * Don't pass down the FUA flag because we have to flush 1359 * disk cache anyway. 1360 */ 1361 bio->bi_opf &= ~REQ_FUA; 1362 } 1363 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1364 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1365 (unsigned long long)dio->range.logical_sector, bio_sectors(bio), 1366 (unsigned long long)ic->provided_data_sectors); 1367 return DM_MAPIO_KILL; 1368 } 1369 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1370 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1371 ic->sectors_per_block, 1372 (unsigned long long)dio->range.logical_sector, bio_sectors(bio)); 1373 return DM_MAPIO_KILL; 1374 } 1375 1376 if (ic->sectors_per_block > 1) { 1377 struct bvec_iter iter; 1378 struct bio_vec bv; 1379 bio_for_each_segment(bv, bio, iter) { 1380 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1381 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1382 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1383 return DM_MAPIO_KILL; 1384 } 1385 } 1386 } 1387 1388 bip = bio_integrity(bio); 1389 if (!ic->internal_hash) { 1390 if (bip) { 1391 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1392 if (ic->log2_tag_size >= 0) 1393 wanted_tag_size <<= ic->log2_tag_size; 1394 else 1395 wanted_tag_size *= ic->tag_size; 1396 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1397 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size); 1398 return DM_MAPIO_KILL; 1399 } 1400 } 1401 } else { 1402 if (unlikely(bip != NULL)) { 1403 DMERR("Unexpected integrity data when using internal hash"); 1404 return DM_MAPIO_KILL; 1405 } 1406 } 1407 1408 if (unlikely(ic->mode == 'R') && unlikely(dio->write)) 1409 return DM_MAPIO_KILL; 1410 1411 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1412 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1413 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1414 1415 dm_integrity_map_continue(dio, true); 1416 return DM_MAPIO_SUBMITTED; 1417 } 1418 1419 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1420 unsigned journal_section, unsigned journal_entry) 1421 { 1422 struct dm_integrity_c *ic = dio->ic; 1423 sector_t logical_sector; 1424 unsigned n_sectors; 1425 1426 logical_sector = dio->range.logical_sector; 1427 n_sectors = dio->range.n_sectors; 1428 do { 1429 struct bio_vec bv = bio_iovec(bio); 1430 char *mem; 1431 1432 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1433 bv.bv_len = n_sectors << SECTOR_SHIFT; 1434 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1435 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1436 retry_kmap: 1437 mem = kmap_atomic(bv.bv_page); 1438 if (likely(dio->write)) 1439 flush_dcache_page(bv.bv_page); 1440 1441 do { 1442 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1443 1444 if (unlikely(!dio->write)) { 1445 struct journal_sector *js; 1446 char *mem_ptr; 1447 unsigned s; 1448 1449 if (unlikely(journal_entry_is_inprogress(je))) { 1450 flush_dcache_page(bv.bv_page); 1451 kunmap_atomic(mem); 1452 1453 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1454 goto retry_kmap; 1455 } 1456 smp_rmb(); 1457 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1458 js = access_journal_data(ic, journal_section, journal_entry); 1459 mem_ptr = mem + bv.bv_offset; 1460 s = 0; 1461 do { 1462 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1463 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1464 js++; 1465 mem_ptr += 1 << SECTOR_SHIFT; 1466 } while (++s < ic->sectors_per_block); 1467 #ifdef INTERNAL_VERIFY 1468 if (ic->internal_hash) { 1469 char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)]; 1470 1471 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1472 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1473 DMERR("Checksum failed when reading from journal, at sector 0x%llx", 1474 (unsigned long long)logical_sector); 1475 } 1476 } 1477 #endif 1478 } 1479 1480 if (!ic->internal_hash) { 1481 struct bio_integrity_payload *bip = bio_integrity(bio); 1482 unsigned tag_todo = ic->tag_size; 1483 char *tag_ptr = journal_entry_tag(ic, je); 1484 1485 if (bip) do { 1486 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1487 unsigned tag_now = min(biv.bv_len, tag_todo); 1488 char *tag_addr; 1489 BUG_ON(PageHighMem(biv.bv_page)); 1490 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1491 if (likely(dio->write)) 1492 memcpy(tag_ptr, tag_addr, tag_now); 1493 else 1494 memcpy(tag_addr, tag_ptr, tag_now); 1495 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1496 tag_ptr += tag_now; 1497 tag_todo -= tag_now; 1498 } while (unlikely(tag_todo)); else { 1499 if (likely(dio->write)) 1500 memset(tag_ptr, 0, tag_todo); 1501 } 1502 } 1503 1504 if (likely(dio->write)) { 1505 struct journal_sector *js; 1506 unsigned s; 1507 1508 js = access_journal_data(ic, journal_section, journal_entry); 1509 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1510 1511 s = 0; 1512 do { 1513 je->last_bytes[s] = js[s].commit_id; 1514 } while (++s < ic->sectors_per_block); 1515 1516 if (ic->internal_hash) { 1517 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1518 if (unlikely(digest_size > ic->tag_size)) { 1519 char checksums_onstack[digest_size]; 1520 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1521 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1522 } else 1523 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1524 } 1525 1526 journal_entry_set_sector(je, logical_sector); 1527 } 1528 logical_sector += ic->sectors_per_block; 1529 1530 journal_entry++; 1531 if (unlikely(journal_entry == ic->journal_section_entries)) { 1532 journal_entry = 0; 1533 journal_section++; 1534 wraparound_section(ic, &journal_section); 1535 } 1536 1537 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1538 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1539 1540 if (unlikely(!dio->write)) 1541 flush_dcache_page(bv.bv_page); 1542 kunmap_atomic(mem); 1543 } while (n_sectors); 1544 1545 if (likely(dio->write)) { 1546 smp_mb(); 1547 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1548 wake_up(&ic->copy_to_journal_wait); 1549 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1550 queue_work(ic->commit_wq, &ic->commit_work); 1551 } else { 1552 schedule_autocommit(ic); 1553 } 1554 } else { 1555 remove_range(ic, &dio->range); 1556 } 1557 1558 if (unlikely(bio->bi_iter.bi_size)) { 1559 sector_t area, offset; 1560 1561 dio->range.logical_sector = logical_sector; 1562 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1563 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1564 return true; 1565 } 1566 1567 return false; 1568 } 1569 1570 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1571 { 1572 struct dm_integrity_c *ic = dio->ic; 1573 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1574 unsigned journal_section, journal_entry; 1575 unsigned journal_read_pos; 1576 struct completion read_comp; 1577 bool need_sync_io = ic->internal_hash && !dio->write; 1578 1579 if (need_sync_io && from_map) { 1580 INIT_WORK(&dio->work, integrity_bio_wait); 1581 queue_work(ic->metadata_wq, &dio->work); 1582 return; 1583 } 1584 1585 lock_retry: 1586 spin_lock_irq(&ic->endio_wait.lock); 1587 retry: 1588 if (unlikely(dm_integrity_failed(ic))) { 1589 spin_unlock_irq(&ic->endio_wait.lock); 1590 do_endio(ic, bio); 1591 return; 1592 } 1593 dio->range.n_sectors = bio_sectors(bio); 1594 journal_read_pos = NOT_FOUND; 1595 if (likely(ic->mode == 'J')) { 1596 if (dio->write) { 1597 unsigned next_entry, i, pos; 1598 unsigned ws, we, range_sectors; 1599 1600 dio->range.n_sectors = min(dio->range.n_sectors, 1601 ic->free_sectors << ic->sb->log2_sectors_per_block); 1602 if (unlikely(!dio->range.n_sectors)) 1603 goto sleep; 1604 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 1605 ic->free_sectors -= range_sectors; 1606 journal_section = ic->free_section; 1607 journal_entry = ic->free_section_entry; 1608 1609 next_entry = ic->free_section_entry + range_sectors; 1610 ic->free_section_entry = next_entry % ic->journal_section_entries; 1611 ic->free_section += next_entry / ic->journal_section_entries; 1612 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 1613 wraparound_section(ic, &ic->free_section); 1614 1615 pos = journal_section * ic->journal_section_entries + journal_entry; 1616 ws = journal_section; 1617 we = journal_entry; 1618 i = 0; 1619 do { 1620 struct journal_entry *je; 1621 1622 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 1623 pos++; 1624 if (unlikely(pos >= ic->journal_entries)) 1625 pos = 0; 1626 1627 je = access_journal_entry(ic, ws, we); 1628 BUG_ON(!journal_entry_is_unused(je)); 1629 journal_entry_set_inprogress(je); 1630 we++; 1631 if (unlikely(we == ic->journal_section_entries)) { 1632 we = 0; 1633 ws++; 1634 wraparound_section(ic, &ws); 1635 } 1636 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 1637 1638 spin_unlock_irq(&ic->endio_wait.lock); 1639 goto journal_read_write; 1640 } else { 1641 sector_t next_sector; 1642 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1643 if (likely(journal_read_pos == NOT_FOUND)) { 1644 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 1645 dio->range.n_sectors = next_sector - dio->range.logical_sector; 1646 } else { 1647 unsigned i; 1648 unsigned jp = journal_read_pos + 1; 1649 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 1650 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 1651 break; 1652 } 1653 dio->range.n_sectors = i; 1654 } 1655 } 1656 } 1657 if (unlikely(!add_new_range(ic, &dio->range))) { 1658 /* 1659 * We must not sleep in the request routine because it could 1660 * stall bios on current->bio_list. 1661 * So, we offload the bio to a workqueue if we have to sleep. 1662 */ 1663 sleep: 1664 if (from_map) { 1665 spin_unlock_irq(&ic->endio_wait.lock); 1666 INIT_WORK(&dio->work, integrity_bio_wait); 1667 queue_work(ic->wait_wq, &dio->work); 1668 return; 1669 } else { 1670 sleep_on_endio_wait(ic); 1671 goto retry; 1672 } 1673 } 1674 spin_unlock_irq(&ic->endio_wait.lock); 1675 1676 if (unlikely(journal_read_pos != NOT_FOUND)) { 1677 journal_section = journal_read_pos / ic->journal_section_entries; 1678 journal_entry = journal_read_pos % ic->journal_section_entries; 1679 goto journal_read_write; 1680 } 1681 1682 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 1683 1684 if (need_sync_io) { 1685 init_completion(&read_comp); 1686 dio->completion = &read_comp; 1687 } else 1688 dio->completion = NULL; 1689 1690 dio->orig_bi_iter = bio->bi_iter; 1691 1692 dio->orig_bi_disk = bio->bi_disk; 1693 dio->orig_bi_partno = bio->bi_partno; 1694 bio_set_dev(bio, ic->dev->bdev); 1695 1696 dio->orig_bi_integrity = bio_integrity(bio); 1697 bio->bi_integrity = NULL; 1698 bio->bi_opf &= ~REQ_INTEGRITY; 1699 1700 dio->orig_bi_end_io = bio->bi_end_io; 1701 bio->bi_end_io = integrity_end_io; 1702 1703 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 1704 bio->bi_iter.bi_sector += ic->start; 1705 generic_make_request(bio); 1706 1707 if (need_sync_io) { 1708 wait_for_completion_io(&read_comp); 1709 if (likely(!bio->bi_status)) 1710 integrity_metadata(&dio->work); 1711 else 1712 dec_in_flight(dio); 1713 1714 } else { 1715 INIT_WORK(&dio->work, integrity_metadata); 1716 queue_work(ic->metadata_wq, &dio->work); 1717 } 1718 1719 return; 1720 1721 journal_read_write: 1722 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 1723 goto lock_retry; 1724 1725 do_endio_flush(ic, dio); 1726 } 1727 1728 1729 static void integrity_bio_wait(struct work_struct *w) 1730 { 1731 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1732 1733 dm_integrity_map_continue(dio, false); 1734 } 1735 1736 static void pad_uncommitted(struct dm_integrity_c *ic) 1737 { 1738 if (ic->free_section_entry) { 1739 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 1740 ic->free_section_entry = 0; 1741 ic->free_section++; 1742 wraparound_section(ic, &ic->free_section); 1743 ic->n_uncommitted_sections++; 1744 } 1745 WARN_ON(ic->journal_sections * ic->journal_section_entries != 1746 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors); 1747 } 1748 1749 static void integrity_commit(struct work_struct *w) 1750 { 1751 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 1752 unsigned commit_start, commit_sections; 1753 unsigned i, j, n; 1754 struct bio *flushes; 1755 1756 del_timer(&ic->autocommit_timer); 1757 1758 spin_lock_irq(&ic->endio_wait.lock); 1759 flushes = bio_list_get(&ic->flush_bio_list); 1760 if (unlikely(ic->mode != 'J')) { 1761 spin_unlock_irq(&ic->endio_wait.lock); 1762 dm_integrity_flush_buffers(ic); 1763 goto release_flush_bios; 1764 } 1765 1766 pad_uncommitted(ic); 1767 commit_start = ic->uncommitted_section; 1768 commit_sections = ic->n_uncommitted_sections; 1769 spin_unlock_irq(&ic->endio_wait.lock); 1770 1771 if (!commit_sections) 1772 goto release_flush_bios; 1773 1774 i = commit_start; 1775 for (n = 0; n < commit_sections; n++) { 1776 for (j = 0; j < ic->journal_section_entries; j++) { 1777 struct journal_entry *je; 1778 je = access_journal_entry(ic, i, j); 1779 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1780 } 1781 for (j = 0; j < ic->journal_section_sectors; j++) { 1782 struct journal_sector *js; 1783 js = access_journal(ic, i, j); 1784 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 1785 } 1786 i++; 1787 if (unlikely(i >= ic->journal_sections)) 1788 ic->commit_seq = next_commit_seq(ic->commit_seq); 1789 wraparound_section(ic, &i); 1790 } 1791 smp_rmb(); 1792 1793 write_journal(ic, commit_start, commit_sections); 1794 1795 spin_lock_irq(&ic->endio_wait.lock); 1796 ic->uncommitted_section += commit_sections; 1797 wraparound_section(ic, &ic->uncommitted_section); 1798 ic->n_uncommitted_sections -= commit_sections; 1799 ic->n_committed_sections += commit_sections; 1800 spin_unlock_irq(&ic->endio_wait.lock); 1801 1802 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 1803 queue_work(ic->writer_wq, &ic->writer_work); 1804 1805 release_flush_bios: 1806 while (flushes) { 1807 struct bio *next = flushes->bi_next; 1808 flushes->bi_next = NULL; 1809 do_endio(ic, flushes); 1810 flushes = next; 1811 } 1812 } 1813 1814 static void complete_copy_from_journal(unsigned long error, void *context) 1815 { 1816 struct journal_io *io = context; 1817 struct journal_completion *comp = io->comp; 1818 struct dm_integrity_c *ic = comp->ic; 1819 remove_range(ic, &io->range); 1820 mempool_free(io, &ic->journal_io_mempool); 1821 if (unlikely(error != 0)) 1822 dm_integrity_io_error(ic, "copying from journal", -EIO); 1823 complete_journal_op(comp); 1824 } 1825 1826 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 1827 struct journal_entry *je) 1828 { 1829 unsigned s = 0; 1830 do { 1831 js->commit_id = je->last_bytes[s]; 1832 js++; 1833 } while (++s < ic->sectors_per_block); 1834 } 1835 1836 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 1837 unsigned write_sections, bool from_replay) 1838 { 1839 unsigned i, j, n; 1840 struct journal_completion comp; 1841 struct blk_plug plug; 1842 1843 blk_start_plug(&plug); 1844 1845 comp.ic = ic; 1846 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1847 init_completion(&comp.comp); 1848 1849 i = write_start; 1850 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 1851 #ifndef INTERNAL_VERIFY 1852 if (unlikely(from_replay)) 1853 #endif 1854 rw_section_mac(ic, i, false); 1855 for (j = 0; j < ic->journal_section_entries; j++) { 1856 struct journal_entry *je = access_journal_entry(ic, i, j); 1857 sector_t sec, area, offset; 1858 unsigned k, l, next_loop; 1859 sector_t metadata_block; 1860 unsigned metadata_offset; 1861 struct journal_io *io; 1862 1863 if (journal_entry_is_unused(je)) 1864 continue; 1865 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 1866 sec = journal_entry_get_sector(je); 1867 if (unlikely(from_replay)) { 1868 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 1869 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 1870 sec &= ~(sector_t)(ic->sectors_per_block - 1); 1871 } 1872 } 1873 get_area_and_offset(ic, sec, &area, &offset); 1874 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 1875 for (k = j + 1; k < ic->journal_section_entries; k++) { 1876 struct journal_entry *je2 = access_journal_entry(ic, i, k); 1877 sector_t sec2, area2, offset2; 1878 if (journal_entry_is_unused(je2)) 1879 break; 1880 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 1881 sec2 = journal_entry_get_sector(je2); 1882 get_area_and_offset(ic, sec2, &area2, &offset2); 1883 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 1884 break; 1885 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 1886 } 1887 next_loop = k - 1; 1888 1889 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 1890 io->comp = ∁ 1891 io->range.logical_sector = sec; 1892 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 1893 1894 spin_lock_irq(&ic->endio_wait.lock); 1895 while (unlikely(!add_new_range(ic, &io->range))) 1896 sleep_on_endio_wait(ic); 1897 1898 if (likely(!from_replay)) { 1899 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 1900 1901 /* don't write if there is newer committed sector */ 1902 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 1903 struct journal_entry *je2 = access_journal_entry(ic, i, j); 1904 1905 journal_entry_set_unused(je2); 1906 remove_journal_node(ic, §ion_node[j]); 1907 j++; 1908 sec += ic->sectors_per_block; 1909 offset += ic->sectors_per_block; 1910 } 1911 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 1912 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 1913 1914 journal_entry_set_unused(je2); 1915 remove_journal_node(ic, §ion_node[k - 1]); 1916 k--; 1917 } 1918 if (j == k) { 1919 remove_range_unlocked(ic, &io->range); 1920 spin_unlock_irq(&ic->endio_wait.lock); 1921 mempool_free(io, &ic->journal_io_mempool); 1922 goto skip_io; 1923 } 1924 for (l = j; l < k; l++) { 1925 remove_journal_node(ic, §ion_node[l]); 1926 } 1927 } 1928 spin_unlock_irq(&ic->endio_wait.lock); 1929 1930 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 1931 for (l = j; l < k; l++) { 1932 int r; 1933 struct journal_entry *je2 = access_journal_entry(ic, i, l); 1934 1935 if ( 1936 #ifndef INTERNAL_VERIFY 1937 unlikely(from_replay) && 1938 #endif 1939 ic->internal_hash) { 1940 char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)]; 1941 1942 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 1943 (char *)access_journal_data(ic, i, l), test_tag); 1944 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 1945 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 1946 } 1947 1948 journal_entry_set_unused(je2); 1949 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 1950 ic->tag_size, TAG_WRITE); 1951 if (unlikely(r)) { 1952 dm_integrity_io_error(ic, "reading tags", r); 1953 } 1954 } 1955 1956 atomic_inc(&comp.in_flight); 1957 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 1958 (k - j) << ic->sb->log2_sectors_per_block, 1959 get_data_sector(ic, area, offset), 1960 complete_copy_from_journal, io); 1961 skip_io: 1962 j = next_loop; 1963 } 1964 } 1965 1966 dm_bufio_write_dirty_buffers_async(ic->bufio); 1967 1968 blk_finish_plug(&plug); 1969 1970 complete_journal_op(&comp); 1971 wait_for_completion_io(&comp.comp); 1972 1973 dm_integrity_flush_buffers(ic); 1974 } 1975 1976 static void integrity_writer(struct work_struct *w) 1977 { 1978 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 1979 unsigned write_start, write_sections; 1980 1981 unsigned prev_free_sectors; 1982 1983 /* the following test is not needed, but it tests the replay code */ 1984 if (READ_ONCE(ic->suspending)) 1985 return; 1986 1987 spin_lock_irq(&ic->endio_wait.lock); 1988 write_start = ic->committed_section; 1989 write_sections = ic->n_committed_sections; 1990 spin_unlock_irq(&ic->endio_wait.lock); 1991 1992 if (!write_sections) 1993 return; 1994 1995 do_journal_write(ic, write_start, write_sections, false); 1996 1997 spin_lock_irq(&ic->endio_wait.lock); 1998 1999 ic->committed_section += write_sections; 2000 wraparound_section(ic, &ic->committed_section); 2001 ic->n_committed_sections -= write_sections; 2002 2003 prev_free_sectors = ic->free_sectors; 2004 ic->free_sectors += write_sections * ic->journal_section_entries; 2005 if (unlikely(!prev_free_sectors)) 2006 wake_up_locked(&ic->endio_wait); 2007 2008 spin_unlock_irq(&ic->endio_wait.lock); 2009 } 2010 2011 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2012 unsigned n_sections, unsigned char commit_seq) 2013 { 2014 unsigned i, j, n; 2015 2016 if (!n_sections) 2017 return; 2018 2019 for (n = 0; n < n_sections; n++) { 2020 i = start_section + n; 2021 wraparound_section(ic, &i); 2022 for (j = 0; j < ic->journal_section_sectors; j++) { 2023 struct journal_sector *js = access_journal(ic, i, j); 2024 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2025 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2026 } 2027 for (j = 0; j < ic->journal_section_entries; j++) { 2028 struct journal_entry *je = access_journal_entry(ic, i, j); 2029 journal_entry_set_unused(je); 2030 } 2031 } 2032 2033 write_journal(ic, start_section, n_sections); 2034 } 2035 2036 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2037 { 2038 unsigned char k; 2039 for (k = 0; k < N_COMMIT_IDS; k++) { 2040 if (dm_integrity_commit_id(ic, i, j, k) == id) 2041 return k; 2042 } 2043 dm_integrity_io_error(ic, "journal commit id", -EIO); 2044 return -EIO; 2045 } 2046 2047 static void replay_journal(struct dm_integrity_c *ic) 2048 { 2049 unsigned i, j; 2050 bool used_commit_ids[N_COMMIT_IDS]; 2051 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2052 unsigned write_start, write_sections; 2053 unsigned continue_section; 2054 bool journal_empty; 2055 unsigned char unused, last_used, want_commit_seq; 2056 2057 if (ic->mode == 'R') 2058 return; 2059 2060 if (ic->journal_uptodate) 2061 return; 2062 2063 last_used = 0; 2064 write_start = 0; 2065 2066 if (!ic->just_formatted) { 2067 DEBUG_print("reading journal\n"); 2068 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2069 if (ic->journal_io) 2070 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2071 if (ic->journal_io) { 2072 struct journal_completion crypt_comp; 2073 crypt_comp.ic = ic; 2074 init_completion(&crypt_comp.comp); 2075 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2076 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2077 wait_for_completion(&crypt_comp.comp); 2078 } 2079 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2080 } 2081 2082 if (dm_integrity_failed(ic)) 2083 goto clear_journal; 2084 2085 journal_empty = true; 2086 memset(used_commit_ids, 0, sizeof used_commit_ids); 2087 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2088 for (i = 0; i < ic->journal_sections; i++) { 2089 for (j = 0; j < ic->journal_section_sectors; j++) { 2090 int k; 2091 struct journal_sector *js = access_journal(ic, i, j); 2092 k = find_commit_seq(ic, i, j, js->commit_id); 2093 if (k < 0) 2094 goto clear_journal; 2095 used_commit_ids[k] = true; 2096 max_commit_id_sections[k] = i; 2097 } 2098 if (journal_empty) { 2099 for (j = 0; j < ic->journal_section_entries; j++) { 2100 struct journal_entry *je = access_journal_entry(ic, i, j); 2101 if (!journal_entry_is_unused(je)) { 2102 journal_empty = false; 2103 break; 2104 } 2105 } 2106 } 2107 } 2108 2109 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2110 unused = N_COMMIT_IDS - 1; 2111 while (unused && !used_commit_ids[unused - 1]) 2112 unused--; 2113 } else { 2114 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2115 if (!used_commit_ids[unused]) 2116 break; 2117 if (unused == N_COMMIT_IDS) { 2118 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2119 goto clear_journal; 2120 } 2121 } 2122 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2123 unused, used_commit_ids[0], used_commit_ids[1], 2124 used_commit_ids[2], used_commit_ids[3]); 2125 2126 last_used = prev_commit_seq(unused); 2127 want_commit_seq = prev_commit_seq(last_used); 2128 2129 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2130 journal_empty = true; 2131 2132 write_start = max_commit_id_sections[last_used] + 1; 2133 if (unlikely(write_start >= ic->journal_sections)) 2134 want_commit_seq = next_commit_seq(want_commit_seq); 2135 wraparound_section(ic, &write_start); 2136 2137 i = write_start; 2138 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2139 for (j = 0; j < ic->journal_section_sectors; j++) { 2140 struct journal_sector *js = access_journal(ic, i, j); 2141 2142 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2143 /* 2144 * This could be caused by crash during writing. 2145 * We won't replay the inconsistent part of the 2146 * journal. 2147 */ 2148 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2149 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2150 goto brk; 2151 } 2152 } 2153 i++; 2154 if (unlikely(i >= ic->journal_sections)) 2155 want_commit_seq = next_commit_seq(want_commit_seq); 2156 wraparound_section(ic, &i); 2157 } 2158 brk: 2159 2160 if (!journal_empty) { 2161 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2162 write_sections, write_start, want_commit_seq); 2163 do_journal_write(ic, write_start, write_sections, true); 2164 } 2165 2166 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2167 continue_section = write_start; 2168 ic->commit_seq = want_commit_seq; 2169 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2170 } else { 2171 unsigned s; 2172 unsigned char erase_seq; 2173 clear_journal: 2174 DEBUG_print("clearing journal\n"); 2175 2176 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2177 s = write_start; 2178 init_journal(ic, s, 1, erase_seq); 2179 s++; 2180 wraparound_section(ic, &s); 2181 if (ic->journal_sections >= 2) { 2182 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2183 s += ic->journal_sections - 2; 2184 wraparound_section(ic, &s); 2185 init_journal(ic, s, 1, erase_seq); 2186 } 2187 2188 continue_section = 0; 2189 ic->commit_seq = next_commit_seq(erase_seq); 2190 } 2191 2192 ic->committed_section = continue_section; 2193 ic->n_committed_sections = 0; 2194 2195 ic->uncommitted_section = continue_section; 2196 ic->n_uncommitted_sections = 0; 2197 2198 ic->free_section = continue_section; 2199 ic->free_section_entry = 0; 2200 ic->free_sectors = ic->journal_entries; 2201 2202 ic->journal_tree_root = RB_ROOT; 2203 for (i = 0; i < ic->journal_entries; i++) 2204 init_journal_node(&ic->journal_tree[i]); 2205 } 2206 2207 static void dm_integrity_postsuspend(struct dm_target *ti) 2208 { 2209 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2210 2211 del_timer_sync(&ic->autocommit_timer); 2212 2213 ic->suspending = true; 2214 2215 queue_work(ic->commit_wq, &ic->commit_work); 2216 drain_workqueue(ic->commit_wq); 2217 2218 if (ic->mode == 'J') { 2219 drain_workqueue(ic->writer_wq); 2220 dm_integrity_flush_buffers(ic); 2221 } 2222 2223 ic->suspending = false; 2224 2225 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2226 2227 ic->journal_uptodate = true; 2228 } 2229 2230 static void dm_integrity_resume(struct dm_target *ti) 2231 { 2232 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2233 2234 replay_journal(ic); 2235 } 2236 2237 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 2238 unsigned status_flags, char *result, unsigned maxlen) 2239 { 2240 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2241 unsigned arg_count; 2242 size_t sz = 0; 2243 2244 switch (type) { 2245 case STATUSTYPE_INFO: 2246 DMEMIT("%llu", (unsigned long long)atomic64_read(&ic->number_of_mismatches)); 2247 break; 2248 2249 case STATUSTYPE_TABLE: { 2250 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 2251 watermark_percentage += ic->journal_entries / 2; 2252 do_div(watermark_percentage, ic->journal_entries); 2253 arg_count = 5; 2254 arg_count += ic->sectors_per_block != 1; 2255 arg_count += !!ic->internal_hash_alg.alg_string; 2256 arg_count += !!ic->journal_crypt_alg.alg_string; 2257 arg_count += !!ic->journal_mac_alg.alg_string; 2258 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start, 2259 ic->tag_size, ic->mode, arg_count); 2260 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 2261 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 2262 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 2263 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 2264 DMEMIT(" commit_time:%u", ic->autocommit_msec); 2265 if (ic->sectors_per_block != 1) 2266 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 2267 2268 #define EMIT_ALG(a, n) \ 2269 do { \ 2270 if (ic->a.alg_string) { \ 2271 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 2272 if (ic->a.key_string) \ 2273 DMEMIT(":%s", ic->a.key_string);\ 2274 } \ 2275 } while (0) 2276 EMIT_ALG(internal_hash_alg, "internal_hash"); 2277 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 2278 EMIT_ALG(journal_mac_alg, "journal_mac"); 2279 break; 2280 } 2281 } 2282 } 2283 2284 static int dm_integrity_iterate_devices(struct dm_target *ti, 2285 iterate_devices_callout_fn fn, void *data) 2286 { 2287 struct dm_integrity_c *ic = ti->private; 2288 2289 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 2290 } 2291 2292 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 2293 { 2294 struct dm_integrity_c *ic = ti->private; 2295 2296 if (ic->sectors_per_block > 1) { 2297 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2298 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2299 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 2300 } 2301 } 2302 2303 static void calculate_journal_section_size(struct dm_integrity_c *ic) 2304 { 2305 unsigned sector_space = JOURNAL_SECTOR_DATA; 2306 2307 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 2308 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 2309 JOURNAL_ENTRY_ROUNDUP); 2310 2311 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 2312 sector_space -= JOURNAL_MAC_PER_SECTOR; 2313 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 2314 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 2315 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 2316 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 2317 } 2318 2319 static int calculate_device_limits(struct dm_integrity_c *ic) 2320 { 2321 __u64 initial_sectors; 2322 sector_t last_sector, last_area, last_offset; 2323 2324 calculate_journal_section_size(ic); 2325 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 2326 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->device_sectors || initial_sectors > UINT_MAX) 2327 return -EINVAL; 2328 ic->initial_sectors = initial_sectors; 2329 2330 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 2331 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT; 2332 if (!(ic->metadata_run & (ic->metadata_run - 1))) 2333 ic->log2_metadata_run = __ffs(ic->metadata_run); 2334 else 2335 ic->log2_metadata_run = -1; 2336 2337 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 2338 last_sector = get_data_sector(ic, last_area, last_offset); 2339 2340 if (ic->start + last_sector < last_sector || ic->start + last_sector >= ic->device_sectors) 2341 return -EINVAL; 2342 2343 return 0; 2344 } 2345 2346 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 2347 { 2348 unsigned journal_sections; 2349 int test_bit; 2350 2351 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 2352 memcpy(ic->sb->magic, SB_MAGIC, 8); 2353 ic->sb->version = SB_VERSION; 2354 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 2355 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 2356 if (ic->journal_mac_alg.alg_string) 2357 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 2358 2359 calculate_journal_section_size(ic); 2360 journal_sections = journal_sectors / ic->journal_section_sectors; 2361 if (!journal_sections) 2362 journal_sections = 1; 2363 ic->sb->journal_sections = cpu_to_le32(journal_sections); 2364 2365 if (!interleave_sectors) 2366 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 2367 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 2368 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 2369 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 2370 2371 ic->provided_data_sectors = 0; 2372 for (test_bit = fls64(ic->device_sectors) - 1; test_bit >= 3; test_bit--) { 2373 __u64 prev_data_sectors = ic->provided_data_sectors; 2374 2375 ic->provided_data_sectors |= (sector_t)1 << test_bit; 2376 if (calculate_device_limits(ic)) 2377 ic->provided_data_sectors = prev_data_sectors; 2378 } 2379 2380 if (!ic->provided_data_sectors) 2381 return -EINVAL; 2382 2383 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 2384 2385 return 0; 2386 } 2387 2388 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 2389 { 2390 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 2391 struct blk_integrity bi; 2392 2393 memset(&bi, 0, sizeof(bi)); 2394 bi.profile = &dm_integrity_profile; 2395 bi.tuple_size = ic->tag_size; 2396 bi.tag_size = bi.tuple_size; 2397 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 2398 2399 blk_integrity_register(disk, &bi); 2400 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 2401 } 2402 2403 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl) 2404 { 2405 unsigned i; 2406 2407 if (!pl) 2408 return; 2409 for (i = 0; i < ic->journal_pages; i++) 2410 if (pl[i].page) 2411 __free_page(pl[i].page); 2412 kvfree(pl); 2413 } 2414 2415 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic) 2416 { 2417 size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list); 2418 struct page_list *pl; 2419 unsigned i; 2420 2421 pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO); 2422 if (!pl) 2423 return NULL; 2424 2425 for (i = 0; i < ic->journal_pages; i++) { 2426 pl[i].page = alloc_page(GFP_KERNEL); 2427 if (!pl[i].page) { 2428 dm_integrity_free_page_list(ic, pl); 2429 return NULL; 2430 } 2431 if (i) 2432 pl[i - 1].next = &pl[i]; 2433 } 2434 2435 return pl; 2436 } 2437 2438 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 2439 { 2440 unsigned i; 2441 for (i = 0; i < ic->journal_sections; i++) 2442 kvfree(sl[i]); 2443 kvfree(sl); 2444 } 2445 2446 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl) 2447 { 2448 struct scatterlist **sl; 2449 unsigned i; 2450 2451 sl = kvmalloc_array(ic->journal_sections, 2452 sizeof(struct scatterlist *), 2453 GFP_KERNEL | __GFP_ZERO); 2454 if (!sl) 2455 return NULL; 2456 2457 for (i = 0; i < ic->journal_sections; i++) { 2458 struct scatterlist *s; 2459 unsigned start_index, start_offset; 2460 unsigned end_index, end_offset; 2461 unsigned n_pages; 2462 unsigned idx; 2463 2464 page_list_location(ic, i, 0, &start_index, &start_offset); 2465 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset); 2466 2467 n_pages = (end_index - start_index + 1); 2468 2469 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 2470 GFP_KERNEL); 2471 if (!s) { 2472 dm_integrity_free_journal_scatterlist(ic, sl); 2473 return NULL; 2474 } 2475 2476 sg_init_table(s, n_pages); 2477 for (idx = start_index; idx <= end_index; idx++) { 2478 char *va = lowmem_page_address(pl[idx].page); 2479 unsigned start = 0, end = PAGE_SIZE; 2480 if (idx == start_index) 2481 start = start_offset; 2482 if (idx == end_index) 2483 end = end_offset + (1 << SECTOR_SHIFT); 2484 sg_set_buf(&s[idx - start_index], va + start, end - start); 2485 } 2486 2487 sl[i] = s; 2488 } 2489 2490 return sl; 2491 } 2492 2493 static void free_alg(struct alg_spec *a) 2494 { 2495 kzfree(a->alg_string); 2496 kzfree(a->key); 2497 memset(a, 0, sizeof *a); 2498 } 2499 2500 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 2501 { 2502 char *k; 2503 2504 free_alg(a); 2505 2506 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 2507 if (!a->alg_string) 2508 goto nomem; 2509 2510 k = strchr(a->alg_string, ':'); 2511 if (k) { 2512 *k = 0; 2513 a->key_string = k + 1; 2514 if (strlen(a->key_string) & 1) 2515 goto inval; 2516 2517 a->key_size = strlen(a->key_string) / 2; 2518 a->key = kmalloc(a->key_size, GFP_KERNEL); 2519 if (!a->key) 2520 goto nomem; 2521 if (hex2bin(a->key, a->key_string, a->key_size)) 2522 goto inval; 2523 } 2524 2525 return 0; 2526 inval: 2527 *error = error_inval; 2528 return -EINVAL; 2529 nomem: 2530 *error = "Out of memory for an argument"; 2531 return -ENOMEM; 2532 } 2533 2534 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 2535 char *error_alg, char *error_key) 2536 { 2537 int r; 2538 2539 if (a->alg_string) { 2540 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC); 2541 if (IS_ERR(*hash)) { 2542 *error = error_alg; 2543 r = PTR_ERR(*hash); 2544 *hash = NULL; 2545 return r; 2546 } 2547 2548 if (a->key) { 2549 r = crypto_shash_setkey(*hash, a->key, a->key_size); 2550 if (r) { 2551 *error = error_key; 2552 return r; 2553 } 2554 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 2555 *error = error_key; 2556 return -ENOKEY; 2557 } 2558 } 2559 2560 return 0; 2561 } 2562 2563 static int create_journal(struct dm_integrity_c *ic, char **error) 2564 { 2565 int r = 0; 2566 unsigned i; 2567 __u64 journal_pages, journal_desc_size, journal_tree_size; 2568 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 2569 struct skcipher_request *req = NULL; 2570 2571 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 2572 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 2573 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 2574 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 2575 2576 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 2577 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 2578 journal_desc_size = journal_pages * sizeof(struct page_list); 2579 if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) { 2580 *error = "Journal doesn't fit into memory"; 2581 r = -ENOMEM; 2582 goto bad; 2583 } 2584 ic->journal_pages = journal_pages; 2585 2586 ic->journal = dm_integrity_alloc_page_list(ic); 2587 if (!ic->journal) { 2588 *error = "Could not allocate memory for journal"; 2589 r = -ENOMEM; 2590 goto bad; 2591 } 2592 if (ic->journal_crypt_alg.alg_string) { 2593 unsigned ivsize, blocksize; 2594 struct journal_completion comp; 2595 2596 comp.ic = ic; 2597 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0); 2598 if (IS_ERR(ic->journal_crypt)) { 2599 *error = "Invalid journal cipher"; 2600 r = PTR_ERR(ic->journal_crypt); 2601 ic->journal_crypt = NULL; 2602 goto bad; 2603 } 2604 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 2605 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 2606 2607 if (ic->journal_crypt_alg.key) { 2608 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 2609 ic->journal_crypt_alg.key_size); 2610 if (r) { 2611 *error = "Error setting encryption key"; 2612 goto bad; 2613 } 2614 } 2615 DEBUG_print("cipher %s, block size %u iv size %u\n", 2616 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 2617 2618 ic->journal_io = dm_integrity_alloc_page_list(ic); 2619 if (!ic->journal_io) { 2620 *error = "Could not allocate memory for journal io"; 2621 r = -ENOMEM; 2622 goto bad; 2623 } 2624 2625 if (blocksize == 1) { 2626 struct scatterlist *sg; 2627 2628 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 2629 if (!req) { 2630 *error = "Could not allocate crypt request"; 2631 r = -ENOMEM; 2632 goto bad; 2633 } 2634 2635 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 2636 if (!crypt_iv) { 2637 *error = "Could not allocate iv"; 2638 r = -ENOMEM; 2639 goto bad; 2640 } 2641 2642 ic->journal_xor = dm_integrity_alloc_page_list(ic); 2643 if (!ic->journal_xor) { 2644 *error = "Could not allocate memory for journal xor"; 2645 r = -ENOMEM; 2646 goto bad; 2647 } 2648 2649 sg = kvmalloc_array(ic->journal_pages + 1, 2650 sizeof(struct scatterlist), 2651 GFP_KERNEL); 2652 if (!sg) { 2653 *error = "Unable to allocate sg list"; 2654 r = -ENOMEM; 2655 goto bad; 2656 } 2657 sg_init_table(sg, ic->journal_pages + 1); 2658 for (i = 0; i < ic->journal_pages; i++) { 2659 char *va = lowmem_page_address(ic->journal_xor[i].page); 2660 clear_page(va); 2661 sg_set_buf(&sg[i], va, PAGE_SIZE); 2662 } 2663 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 2664 memset(crypt_iv, 0x00, ivsize); 2665 2666 skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 2667 init_completion(&comp.comp); 2668 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2669 if (do_crypt(true, req, &comp)) 2670 wait_for_completion(&comp.comp); 2671 kvfree(sg); 2672 r = dm_integrity_failed(ic); 2673 if (r) { 2674 *error = "Unable to encrypt journal"; 2675 goto bad; 2676 } 2677 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 2678 2679 crypto_free_skcipher(ic->journal_crypt); 2680 ic->journal_crypt = NULL; 2681 } else { 2682 unsigned crypt_len = roundup(ivsize, blocksize); 2683 2684 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 2685 if (!req) { 2686 *error = "Could not allocate crypt request"; 2687 r = -ENOMEM; 2688 goto bad; 2689 } 2690 2691 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 2692 if (!crypt_iv) { 2693 *error = "Could not allocate iv"; 2694 r = -ENOMEM; 2695 goto bad; 2696 } 2697 2698 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 2699 if (!crypt_data) { 2700 *error = "Unable to allocate crypt data"; 2701 r = -ENOMEM; 2702 goto bad; 2703 } 2704 2705 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 2706 if (!ic->journal_scatterlist) { 2707 *error = "Unable to allocate sg list"; 2708 r = -ENOMEM; 2709 goto bad; 2710 } 2711 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 2712 if (!ic->journal_io_scatterlist) { 2713 *error = "Unable to allocate sg list"; 2714 r = -ENOMEM; 2715 goto bad; 2716 } 2717 ic->sk_requests = kvmalloc_array(ic->journal_sections, 2718 sizeof(struct skcipher_request *), 2719 GFP_KERNEL | __GFP_ZERO); 2720 if (!ic->sk_requests) { 2721 *error = "Unable to allocate sk requests"; 2722 r = -ENOMEM; 2723 goto bad; 2724 } 2725 for (i = 0; i < ic->journal_sections; i++) { 2726 struct scatterlist sg; 2727 struct skcipher_request *section_req; 2728 __u32 section_le = cpu_to_le32(i); 2729 2730 memset(crypt_iv, 0x00, ivsize); 2731 memset(crypt_data, 0x00, crypt_len); 2732 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 2733 2734 sg_init_one(&sg, crypt_data, crypt_len); 2735 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 2736 init_completion(&comp.comp); 2737 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2738 if (do_crypt(true, req, &comp)) 2739 wait_for_completion(&comp.comp); 2740 2741 r = dm_integrity_failed(ic); 2742 if (r) { 2743 *error = "Unable to generate iv"; 2744 goto bad; 2745 } 2746 2747 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 2748 if (!section_req) { 2749 *error = "Unable to allocate crypt request"; 2750 r = -ENOMEM; 2751 goto bad; 2752 } 2753 section_req->iv = kmalloc_array(ivsize, 2, 2754 GFP_KERNEL); 2755 if (!section_req->iv) { 2756 skcipher_request_free(section_req); 2757 *error = "Unable to allocate iv"; 2758 r = -ENOMEM; 2759 goto bad; 2760 } 2761 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 2762 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 2763 ic->sk_requests[i] = section_req; 2764 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 2765 } 2766 } 2767 } 2768 2769 for (i = 0; i < N_COMMIT_IDS; i++) { 2770 unsigned j; 2771 retest_commit_id: 2772 for (j = 0; j < i; j++) { 2773 if (ic->commit_ids[j] == ic->commit_ids[i]) { 2774 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 2775 goto retest_commit_id; 2776 } 2777 } 2778 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 2779 } 2780 2781 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 2782 if (journal_tree_size > ULONG_MAX) { 2783 *error = "Journal doesn't fit into memory"; 2784 r = -ENOMEM; 2785 goto bad; 2786 } 2787 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 2788 if (!ic->journal_tree) { 2789 *error = "Could not allocate memory for journal tree"; 2790 r = -ENOMEM; 2791 } 2792 bad: 2793 kfree(crypt_data); 2794 kfree(crypt_iv); 2795 skcipher_request_free(req); 2796 2797 return r; 2798 } 2799 2800 /* 2801 * Construct a integrity mapping 2802 * 2803 * Arguments: 2804 * device 2805 * offset from the start of the device 2806 * tag size 2807 * D - direct writes, J - journal writes, R - recovery mode 2808 * number of optional arguments 2809 * optional arguments: 2810 * journal_sectors 2811 * interleave_sectors 2812 * buffer_sectors 2813 * journal_watermark 2814 * commit_time 2815 * internal_hash 2816 * journal_crypt 2817 * journal_mac 2818 * block_size 2819 */ 2820 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 2821 { 2822 struct dm_integrity_c *ic; 2823 char dummy; 2824 int r; 2825 unsigned extra_args; 2826 struct dm_arg_set as; 2827 static const struct dm_arg _args[] = { 2828 {0, 9, "Invalid number of feature args"}, 2829 }; 2830 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 2831 bool should_write_sb; 2832 __u64 threshold; 2833 unsigned long long start; 2834 2835 #define DIRECT_ARGUMENTS 4 2836 2837 if (argc <= DIRECT_ARGUMENTS) { 2838 ti->error = "Invalid argument count"; 2839 return -EINVAL; 2840 } 2841 2842 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 2843 if (!ic) { 2844 ti->error = "Cannot allocate integrity context"; 2845 return -ENOMEM; 2846 } 2847 ti->private = ic; 2848 ti->per_io_data_size = sizeof(struct dm_integrity_io); 2849 2850 ic->in_progress = RB_ROOT; 2851 init_waitqueue_head(&ic->endio_wait); 2852 bio_list_init(&ic->flush_bio_list); 2853 init_waitqueue_head(&ic->copy_to_journal_wait); 2854 init_completion(&ic->crypto_backoff); 2855 atomic64_set(&ic->number_of_mismatches, 0); 2856 2857 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 2858 if (r) { 2859 ti->error = "Device lookup failed"; 2860 goto bad; 2861 } 2862 2863 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 2864 ti->error = "Invalid starting offset"; 2865 r = -EINVAL; 2866 goto bad; 2867 } 2868 ic->start = start; 2869 2870 if (strcmp(argv[2], "-")) { 2871 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 2872 ti->error = "Invalid tag size"; 2873 r = -EINVAL; 2874 goto bad; 2875 } 2876 } 2877 2878 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) 2879 ic->mode = argv[3][0]; 2880 else { 2881 ti->error = "Invalid mode (expecting J, D, R)"; 2882 r = -EINVAL; 2883 goto bad; 2884 } 2885 2886 ic->device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 2887 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 2888 ic->device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 2889 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 2890 buffer_sectors = DEFAULT_BUFFER_SECTORS; 2891 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 2892 sync_msec = DEFAULT_SYNC_MSEC; 2893 ic->sectors_per_block = 1; 2894 2895 as.argc = argc - DIRECT_ARGUMENTS; 2896 as.argv = argv + DIRECT_ARGUMENTS; 2897 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 2898 if (r) 2899 goto bad; 2900 2901 while (extra_args--) { 2902 const char *opt_string; 2903 unsigned val; 2904 opt_string = dm_shift_arg(&as); 2905 if (!opt_string) { 2906 r = -EINVAL; 2907 ti->error = "Not enough feature arguments"; 2908 goto bad; 2909 } 2910 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 2911 journal_sectors = val; 2912 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 2913 interleave_sectors = val; 2914 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 2915 buffer_sectors = val; 2916 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 2917 journal_watermark = val; 2918 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 2919 sync_msec = val; 2920 else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 2921 if (val < 1 << SECTOR_SHIFT || 2922 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 2923 (val & (val -1))) { 2924 r = -EINVAL; 2925 ti->error = "Invalid block_size argument"; 2926 goto bad; 2927 } 2928 ic->sectors_per_block = val >> SECTOR_SHIFT; 2929 } else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 2930 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 2931 "Invalid internal_hash argument"); 2932 if (r) 2933 goto bad; 2934 } else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 2935 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 2936 "Invalid journal_crypt argument"); 2937 if (r) 2938 goto bad; 2939 } else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 2940 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 2941 "Invalid journal_mac argument"); 2942 if (r) 2943 goto bad; 2944 } else { 2945 r = -EINVAL; 2946 ti->error = "Invalid argument"; 2947 goto bad; 2948 } 2949 } 2950 2951 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 2952 "Invalid internal hash", "Error setting internal hash key"); 2953 if (r) 2954 goto bad; 2955 2956 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 2957 "Invalid journal mac", "Error setting journal mac key"); 2958 if (r) 2959 goto bad; 2960 2961 if (!ic->tag_size) { 2962 if (!ic->internal_hash) { 2963 ti->error = "Unknown tag size"; 2964 r = -EINVAL; 2965 goto bad; 2966 } 2967 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 2968 } 2969 if (ic->tag_size > MAX_TAG_SIZE) { 2970 ti->error = "Too big tag size"; 2971 r = -EINVAL; 2972 goto bad; 2973 } 2974 if (!(ic->tag_size & (ic->tag_size - 1))) 2975 ic->log2_tag_size = __ffs(ic->tag_size); 2976 else 2977 ic->log2_tag_size = -1; 2978 2979 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 2980 ic->autocommit_msec = sync_msec; 2981 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 2982 2983 ic->io = dm_io_client_create(); 2984 if (IS_ERR(ic->io)) { 2985 r = PTR_ERR(ic->io); 2986 ic->io = NULL; 2987 ti->error = "Cannot allocate dm io"; 2988 goto bad; 2989 } 2990 2991 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 2992 if (r) { 2993 ti->error = "Cannot allocate mempool"; 2994 goto bad; 2995 } 2996 2997 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 2998 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 2999 if (!ic->metadata_wq) { 3000 ti->error = "Cannot allocate workqueue"; 3001 r = -ENOMEM; 3002 goto bad; 3003 } 3004 3005 /* 3006 * If this workqueue were percpu, it would cause bio reordering 3007 * and reduced performance. 3008 */ 3009 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3010 if (!ic->wait_wq) { 3011 ti->error = "Cannot allocate workqueue"; 3012 r = -ENOMEM; 3013 goto bad; 3014 } 3015 3016 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 3017 if (!ic->commit_wq) { 3018 ti->error = "Cannot allocate workqueue"; 3019 r = -ENOMEM; 3020 goto bad; 3021 } 3022 INIT_WORK(&ic->commit_work, integrity_commit); 3023 3024 if (ic->mode == 'J') { 3025 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 3026 if (!ic->writer_wq) { 3027 ti->error = "Cannot allocate workqueue"; 3028 r = -ENOMEM; 3029 goto bad; 3030 } 3031 INIT_WORK(&ic->writer_work, integrity_writer); 3032 } 3033 3034 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 3035 if (!ic->sb) { 3036 r = -ENOMEM; 3037 ti->error = "Cannot allocate superblock area"; 3038 goto bad; 3039 } 3040 3041 r = sync_rw_sb(ic, REQ_OP_READ, 0); 3042 if (r) { 3043 ti->error = "Error reading superblock"; 3044 goto bad; 3045 } 3046 should_write_sb = false; 3047 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 3048 if (ic->mode != 'R') { 3049 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 3050 r = -EINVAL; 3051 ti->error = "The device is not initialized"; 3052 goto bad; 3053 } 3054 } 3055 3056 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 3057 if (r) { 3058 ti->error = "Could not initialize superblock"; 3059 goto bad; 3060 } 3061 if (ic->mode != 'R') 3062 should_write_sb = true; 3063 } 3064 3065 if (ic->sb->version != SB_VERSION) { 3066 r = -EINVAL; 3067 ti->error = "Unknown version"; 3068 goto bad; 3069 } 3070 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 3071 r = -EINVAL; 3072 ti->error = "Tag size doesn't match the information in superblock"; 3073 goto bad; 3074 } 3075 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 3076 r = -EINVAL; 3077 ti->error = "Block size doesn't match the information in superblock"; 3078 goto bad; 3079 } 3080 if (!le32_to_cpu(ic->sb->journal_sections)) { 3081 r = -EINVAL; 3082 ti->error = "Corrupted superblock, journal_sections is 0"; 3083 goto bad; 3084 } 3085 /* make sure that ti->max_io_len doesn't overflow */ 3086 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 3087 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 3088 r = -EINVAL; 3089 ti->error = "Invalid interleave_sectors in the superblock"; 3090 goto bad; 3091 } 3092 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3093 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) { 3094 /* test for overflow */ 3095 r = -EINVAL; 3096 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors"; 3097 goto bad; 3098 } 3099 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 3100 r = -EINVAL; 3101 ti->error = "Journal mac mismatch"; 3102 goto bad; 3103 } 3104 r = calculate_device_limits(ic); 3105 if (r) { 3106 ti->error = "The device is too small"; 3107 goto bad; 3108 } 3109 if (ti->len > ic->provided_data_sectors) { 3110 r = -EINVAL; 3111 ti->error = "Not enough provided sectors for requested mapping size"; 3112 goto bad; 3113 } 3114 3115 if (!buffer_sectors) 3116 buffer_sectors = 1; 3117 ic->log2_buffer_sectors = min3((int)__fls(buffer_sectors), (int)__ffs(ic->metadata_run), 31 - SECTOR_SHIFT); 3118 3119 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 3120 threshold += 50; 3121 do_div(threshold, 100); 3122 ic->free_sectors_threshold = threshold; 3123 3124 DEBUG_print("initialized:\n"); 3125 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 3126 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 3127 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 3128 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 3129 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 3130 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 3131 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 3132 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 3133 DEBUG_print(" device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors); 3134 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 3135 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 3136 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 3137 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors, 3138 (unsigned long long)ic->provided_data_sectors); 3139 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 3140 3141 ic->bufio = dm_bufio_client_create(ic->dev->bdev, 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 3142 1, 0, NULL, NULL); 3143 if (IS_ERR(ic->bufio)) { 3144 r = PTR_ERR(ic->bufio); 3145 ti->error = "Cannot initialize dm-bufio"; 3146 ic->bufio = NULL; 3147 goto bad; 3148 } 3149 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 3150 3151 if (ic->mode != 'R') { 3152 r = create_journal(ic, &ti->error); 3153 if (r) 3154 goto bad; 3155 } 3156 3157 if (should_write_sb) { 3158 int r; 3159 3160 init_journal(ic, 0, ic->journal_sections, 0); 3161 r = dm_integrity_failed(ic); 3162 if (unlikely(r)) { 3163 ti->error = "Error initializing journal"; 3164 goto bad; 3165 } 3166 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3167 if (r) { 3168 ti->error = "Error initializing superblock"; 3169 goto bad; 3170 } 3171 ic->just_formatted = true; 3172 } 3173 3174 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 3175 if (r) 3176 goto bad; 3177 3178 if (!ic->internal_hash) 3179 dm_integrity_set(ti, ic); 3180 3181 ti->num_flush_bios = 1; 3182 ti->flush_supported = true; 3183 3184 return 0; 3185 bad: 3186 dm_integrity_dtr(ti); 3187 return r; 3188 } 3189 3190 static void dm_integrity_dtr(struct dm_target *ti) 3191 { 3192 struct dm_integrity_c *ic = ti->private; 3193 3194 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3195 3196 if (ic->metadata_wq) 3197 destroy_workqueue(ic->metadata_wq); 3198 if (ic->wait_wq) 3199 destroy_workqueue(ic->wait_wq); 3200 if (ic->commit_wq) 3201 destroy_workqueue(ic->commit_wq); 3202 if (ic->writer_wq) 3203 destroy_workqueue(ic->writer_wq); 3204 if (ic->bufio) 3205 dm_bufio_client_destroy(ic->bufio); 3206 mempool_exit(&ic->journal_io_mempool); 3207 if (ic->io) 3208 dm_io_client_destroy(ic->io); 3209 if (ic->dev) 3210 dm_put_device(ti, ic->dev); 3211 dm_integrity_free_page_list(ic, ic->journal); 3212 dm_integrity_free_page_list(ic, ic->journal_io); 3213 dm_integrity_free_page_list(ic, ic->journal_xor); 3214 if (ic->journal_scatterlist) 3215 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 3216 if (ic->journal_io_scatterlist) 3217 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 3218 if (ic->sk_requests) { 3219 unsigned i; 3220 3221 for (i = 0; i < ic->journal_sections; i++) { 3222 struct skcipher_request *req = ic->sk_requests[i]; 3223 if (req) { 3224 kzfree(req->iv); 3225 skcipher_request_free(req); 3226 } 3227 } 3228 kvfree(ic->sk_requests); 3229 } 3230 kvfree(ic->journal_tree); 3231 if (ic->sb) 3232 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 3233 3234 if (ic->internal_hash) 3235 crypto_free_shash(ic->internal_hash); 3236 free_alg(&ic->internal_hash_alg); 3237 3238 if (ic->journal_crypt) 3239 crypto_free_skcipher(ic->journal_crypt); 3240 free_alg(&ic->journal_crypt_alg); 3241 3242 if (ic->journal_mac) 3243 crypto_free_shash(ic->journal_mac); 3244 free_alg(&ic->journal_mac_alg); 3245 3246 kfree(ic); 3247 } 3248 3249 static struct target_type integrity_target = { 3250 .name = "integrity", 3251 .version = {1, 1, 0}, 3252 .module = THIS_MODULE, 3253 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 3254 .ctr = dm_integrity_ctr, 3255 .dtr = dm_integrity_dtr, 3256 .map = dm_integrity_map, 3257 .postsuspend = dm_integrity_postsuspend, 3258 .resume = dm_integrity_resume, 3259 .status = dm_integrity_status, 3260 .iterate_devices = dm_integrity_iterate_devices, 3261 .io_hints = dm_integrity_io_hints, 3262 }; 3263 3264 int __init dm_integrity_init(void) 3265 { 3266 int r; 3267 3268 journal_io_cache = kmem_cache_create("integrity_journal_io", 3269 sizeof(struct journal_io), 0, 0, NULL); 3270 if (!journal_io_cache) { 3271 DMERR("can't allocate journal io cache"); 3272 return -ENOMEM; 3273 } 3274 3275 r = dm_register_target(&integrity_target); 3276 3277 if (r < 0) 3278 DMERR("register failed %d", r); 3279 3280 return r; 3281 } 3282 3283 void dm_integrity_exit(void) 3284 { 3285 dm_unregister_target(&integrity_target); 3286 kmem_cache_destroy(journal_io_cache); 3287 } 3288 3289 module_init(dm_integrity_init); 3290 module_exit(dm_integrity_exit); 3291 3292 MODULE_AUTHOR("Milan Broz"); 3293 MODULE_AUTHOR("Mikulas Patocka"); 3294 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 3295 MODULE_LICENSE("GPL"); 3296