xref: /openbmc/linux/drivers/md/dm-integrity.c (revision b830f94f)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <linux/reboot.h>
19 #include <crypto/hash.h>
20 #include <crypto/skcipher.h>
21 #include <linux/async_tx.h>
22 #include <linux/dm-bufio.h>
23 
24 #define DM_MSG_PREFIX "integrity"
25 
26 #define DEFAULT_INTERLEAVE_SECTORS	32768
27 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
28 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
29 #define DEFAULT_BUFFER_SECTORS		128
30 #define DEFAULT_JOURNAL_WATERMARK	50
31 #define DEFAULT_SYNC_MSEC		10000
32 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
33 #define MIN_LOG2_INTERLEAVE_SECTORS	3
34 #define MAX_LOG2_INTERLEAVE_SECTORS	31
35 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
36 #define RECALC_SECTORS			8192
37 #define RECALC_WRITE_SUPER		16
38 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
39 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
40 
41 /*
42  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
43  * so it should not be enabled in the official kernel
44  */
45 //#define DEBUG_PRINT
46 //#define INTERNAL_VERIFY
47 
48 /*
49  * On disk structures
50  */
51 
52 #define SB_MAGIC			"integrt"
53 #define SB_VERSION_1			1
54 #define SB_VERSION_2			2
55 #define SB_VERSION_3			3
56 #define SB_SECTORS			8
57 #define MAX_SECTORS_PER_BLOCK		8
58 
59 struct superblock {
60 	__u8 magic[8];
61 	__u8 version;
62 	__u8 log2_interleave_sectors;
63 	__u16 integrity_tag_size;
64 	__u32 journal_sections;
65 	__u64 provided_data_sectors;	/* userspace uses this value */
66 	__u32 flags;
67 	__u8 log2_sectors_per_block;
68 	__u8 log2_blocks_per_bitmap_bit;
69 	__u8 pad[2];
70 	__u64 recalc_sector;
71 };
72 
73 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
74 #define SB_FLAG_RECALCULATING		0x2
75 #define SB_FLAG_DIRTY_BITMAP		0x4
76 
77 #define	JOURNAL_ENTRY_ROUNDUP		8
78 
79 typedef __u64 commit_id_t;
80 #define JOURNAL_MAC_PER_SECTOR		8
81 
82 struct journal_entry {
83 	union {
84 		struct {
85 			__u32 sector_lo;
86 			__u32 sector_hi;
87 		} s;
88 		__u64 sector;
89 	} u;
90 	commit_id_t last_bytes[0];
91 	/* __u8 tag[0]; */
92 };
93 
94 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
95 
96 #if BITS_PER_LONG == 64
97 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
98 #else
99 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
100 #endif
101 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
102 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
103 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
104 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
105 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
106 
107 #define JOURNAL_BLOCK_SECTORS		8
108 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
109 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
110 
111 struct journal_sector {
112 	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
113 	__u8 mac[JOURNAL_MAC_PER_SECTOR];
114 	commit_id_t commit_id;
115 };
116 
117 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
118 
119 #define METADATA_PADDING_SECTORS	8
120 
121 #define N_COMMIT_IDS			4
122 
123 static unsigned char prev_commit_seq(unsigned char seq)
124 {
125 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
126 }
127 
128 static unsigned char next_commit_seq(unsigned char seq)
129 {
130 	return (seq + 1) % N_COMMIT_IDS;
131 }
132 
133 /*
134  * In-memory structures
135  */
136 
137 struct journal_node {
138 	struct rb_node node;
139 	sector_t sector;
140 };
141 
142 struct alg_spec {
143 	char *alg_string;
144 	char *key_string;
145 	__u8 *key;
146 	unsigned key_size;
147 };
148 
149 struct dm_integrity_c {
150 	struct dm_dev *dev;
151 	struct dm_dev *meta_dev;
152 	unsigned tag_size;
153 	__s8 log2_tag_size;
154 	sector_t start;
155 	mempool_t journal_io_mempool;
156 	struct dm_io_client *io;
157 	struct dm_bufio_client *bufio;
158 	struct workqueue_struct *metadata_wq;
159 	struct superblock *sb;
160 	unsigned journal_pages;
161 	unsigned n_bitmap_blocks;
162 
163 	struct page_list *journal;
164 	struct page_list *journal_io;
165 	struct page_list *journal_xor;
166 	struct page_list *recalc_bitmap;
167 	struct page_list *may_write_bitmap;
168 	struct bitmap_block_status *bbs;
169 	unsigned bitmap_flush_interval;
170 	int synchronous_mode;
171 	struct bio_list synchronous_bios;
172 	struct delayed_work bitmap_flush_work;
173 
174 	struct crypto_skcipher *journal_crypt;
175 	struct scatterlist **journal_scatterlist;
176 	struct scatterlist **journal_io_scatterlist;
177 	struct skcipher_request **sk_requests;
178 
179 	struct crypto_shash *journal_mac;
180 
181 	struct journal_node *journal_tree;
182 	struct rb_root journal_tree_root;
183 
184 	sector_t provided_data_sectors;
185 
186 	unsigned short journal_entry_size;
187 	unsigned char journal_entries_per_sector;
188 	unsigned char journal_section_entries;
189 	unsigned short journal_section_sectors;
190 	unsigned journal_sections;
191 	unsigned journal_entries;
192 	sector_t data_device_sectors;
193 	sector_t meta_device_sectors;
194 	unsigned initial_sectors;
195 	unsigned metadata_run;
196 	__s8 log2_metadata_run;
197 	__u8 log2_buffer_sectors;
198 	__u8 sectors_per_block;
199 	__u8 log2_blocks_per_bitmap_bit;
200 
201 	unsigned char mode;
202 	int suspending;
203 
204 	int failed;
205 
206 	struct crypto_shash *internal_hash;
207 
208 	/* these variables are locked with endio_wait.lock */
209 	struct rb_root in_progress;
210 	struct list_head wait_list;
211 	wait_queue_head_t endio_wait;
212 	struct workqueue_struct *wait_wq;
213 
214 	unsigned char commit_seq;
215 	commit_id_t commit_ids[N_COMMIT_IDS];
216 
217 	unsigned committed_section;
218 	unsigned n_committed_sections;
219 
220 	unsigned uncommitted_section;
221 	unsigned n_uncommitted_sections;
222 
223 	unsigned free_section;
224 	unsigned char free_section_entry;
225 	unsigned free_sectors;
226 
227 	unsigned free_sectors_threshold;
228 
229 	struct workqueue_struct *commit_wq;
230 	struct work_struct commit_work;
231 
232 	struct workqueue_struct *writer_wq;
233 	struct work_struct writer_work;
234 
235 	struct workqueue_struct *recalc_wq;
236 	struct work_struct recalc_work;
237 	u8 *recalc_buffer;
238 	u8 *recalc_tags;
239 
240 	struct bio_list flush_bio_list;
241 
242 	unsigned long autocommit_jiffies;
243 	struct timer_list autocommit_timer;
244 	unsigned autocommit_msec;
245 
246 	wait_queue_head_t copy_to_journal_wait;
247 
248 	struct completion crypto_backoff;
249 
250 	bool journal_uptodate;
251 	bool just_formatted;
252 	bool recalculate_flag;
253 
254 	struct alg_spec internal_hash_alg;
255 	struct alg_spec journal_crypt_alg;
256 	struct alg_spec journal_mac_alg;
257 
258 	atomic64_t number_of_mismatches;
259 
260 	struct notifier_block reboot_notifier;
261 };
262 
263 struct dm_integrity_range {
264 	sector_t logical_sector;
265 	sector_t n_sectors;
266 	bool waiting;
267 	union {
268 		struct rb_node node;
269 		struct {
270 			struct task_struct *task;
271 			struct list_head wait_entry;
272 		};
273 	};
274 };
275 
276 struct dm_integrity_io {
277 	struct work_struct work;
278 
279 	struct dm_integrity_c *ic;
280 	bool write;
281 	bool fua;
282 
283 	struct dm_integrity_range range;
284 
285 	sector_t metadata_block;
286 	unsigned metadata_offset;
287 
288 	atomic_t in_flight;
289 	blk_status_t bi_status;
290 
291 	struct completion *completion;
292 
293 	struct gendisk *orig_bi_disk;
294 	u8 orig_bi_partno;
295 	bio_end_io_t *orig_bi_end_io;
296 	struct bio_integrity_payload *orig_bi_integrity;
297 	struct bvec_iter orig_bi_iter;
298 };
299 
300 struct journal_completion {
301 	struct dm_integrity_c *ic;
302 	atomic_t in_flight;
303 	struct completion comp;
304 };
305 
306 struct journal_io {
307 	struct dm_integrity_range range;
308 	struct journal_completion *comp;
309 };
310 
311 struct bitmap_block_status {
312 	struct work_struct work;
313 	struct dm_integrity_c *ic;
314 	unsigned idx;
315 	unsigned long *bitmap;
316 	struct bio_list bio_queue;
317 	spinlock_t bio_queue_lock;
318 
319 };
320 
321 static struct kmem_cache *journal_io_cache;
322 
323 #define JOURNAL_IO_MEMPOOL	32
324 
325 #ifdef DEBUG_PRINT
326 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
327 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
328 {
329 	va_list args;
330 	va_start(args, msg);
331 	vprintk(msg, args);
332 	va_end(args);
333 	if (len)
334 		pr_cont(":");
335 	while (len) {
336 		pr_cont(" %02x", *bytes);
337 		bytes++;
338 		len--;
339 	}
340 	pr_cont("\n");
341 }
342 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
343 #else
344 #define DEBUG_print(x, ...)			do { } while (0)
345 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
346 #endif
347 
348 /*
349  * DM Integrity profile, protection is performed layer above (dm-crypt)
350  */
351 static const struct blk_integrity_profile dm_integrity_profile = {
352 	.name			= "DM-DIF-EXT-TAG",
353 	.generate_fn		= NULL,
354 	.verify_fn		= NULL,
355 };
356 
357 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
358 static void integrity_bio_wait(struct work_struct *w);
359 static void dm_integrity_dtr(struct dm_target *ti);
360 
361 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
362 {
363 	if (err == -EILSEQ)
364 		atomic64_inc(&ic->number_of_mismatches);
365 	if (!cmpxchg(&ic->failed, 0, err))
366 		DMERR("Error on %s: %d", msg, err);
367 }
368 
369 static int dm_integrity_failed(struct dm_integrity_c *ic)
370 {
371 	return READ_ONCE(ic->failed);
372 }
373 
374 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
375 					  unsigned j, unsigned char seq)
376 {
377 	/*
378 	 * Xor the number with section and sector, so that if a piece of
379 	 * journal is written at wrong place, it is detected.
380 	 */
381 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
382 }
383 
384 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
385 				sector_t *area, sector_t *offset)
386 {
387 	if (!ic->meta_dev) {
388 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
389 		*area = data_sector >> log2_interleave_sectors;
390 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
391 	} else {
392 		*area = 0;
393 		*offset = data_sector;
394 	}
395 }
396 
397 #define sector_to_block(ic, n)						\
398 do {									\
399 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
400 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
401 } while (0)
402 
403 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
404 					    sector_t offset, unsigned *metadata_offset)
405 {
406 	__u64 ms;
407 	unsigned mo;
408 
409 	ms = area << ic->sb->log2_interleave_sectors;
410 	if (likely(ic->log2_metadata_run >= 0))
411 		ms += area << ic->log2_metadata_run;
412 	else
413 		ms += area * ic->metadata_run;
414 	ms >>= ic->log2_buffer_sectors;
415 
416 	sector_to_block(ic, offset);
417 
418 	if (likely(ic->log2_tag_size >= 0)) {
419 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
420 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
421 	} else {
422 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
423 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
424 	}
425 	*metadata_offset = mo;
426 	return ms;
427 }
428 
429 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
430 {
431 	sector_t result;
432 
433 	if (ic->meta_dev)
434 		return offset;
435 
436 	result = area << ic->sb->log2_interleave_sectors;
437 	if (likely(ic->log2_metadata_run >= 0))
438 		result += (area + 1) << ic->log2_metadata_run;
439 	else
440 		result += (area + 1) * ic->metadata_run;
441 
442 	result += (sector_t)ic->initial_sectors + offset;
443 	result += ic->start;
444 
445 	return result;
446 }
447 
448 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
449 {
450 	if (unlikely(*sec_ptr >= ic->journal_sections))
451 		*sec_ptr -= ic->journal_sections;
452 }
453 
454 static void sb_set_version(struct dm_integrity_c *ic)
455 {
456 	if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
457 		ic->sb->version = SB_VERSION_3;
458 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
459 		ic->sb->version = SB_VERSION_2;
460 	else
461 		ic->sb->version = SB_VERSION_1;
462 }
463 
464 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
465 {
466 	struct dm_io_request io_req;
467 	struct dm_io_region io_loc;
468 
469 	io_req.bi_op = op;
470 	io_req.bi_op_flags = op_flags;
471 	io_req.mem.type = DM_IO_KMEM;
472 	io_req.mem.ptr.addr = ic->sb;
473 	io_req.notify.fn = NULL;
474 	io_req.client = ic->io;
475 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
476 	io_loc.sector = ic->start;
477 	io_loc.count = SB_SECTORS;
478 
479 	if (op == REQ_OP_WRITE)
480 		sb_set_version(ic);
481 
482 	return dm_io(&io_req, 1, &io_loc, NULL);
483 }
484 
485 #define BITMAP_OP_TEST_ALL_SET		0
486 #define BITMAP_OP_TEST_ALL_CLEAR	1
487 #define BITMAP_OP_SET			2
488 #define BITMAP_OP_CLEAR			3
489 
490 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
491 			    sector_t sector, sector_t n_sectors, int mode)
492 {
493 	unsigned long bit, end_bit, this_end_bit, page, end_page;
494 	unsigned long *data;
495 
496 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
497 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
498 			(unsigned long long)sector,
499 			(unsigned long long)n_sectors,
500 			ic->sb->log2_sectors_per_block,
501 			ic->log2_blocks_per_bitmap_bit,
502 			mode);
503 		BUG();
504 	}
505 
506 	if (unlikely(!n_sectors))
507 		return true;
508 
509 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
510 	end_bit = (sector + n_sectors - 1) >>
511 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
512 
513 	page = bit / (PAGE_SIZE * 8);
514 	bit %= PAGE_SIZE * 8;
515 
516 	end_page = end_bit / (PAGE_SIZE * 8);
517 	end_bit %= PAGE_SIZE * 8;
518 
519 repeat:
520 	if (page < end_page) {
521 		this_end_bit = PAGE_SIZE * 8 - 1;
522 	} else {
523 		this_end_bit = end_bit;
524 	}
525 
526 	data = lowmem_page_address(bitmap[page].page);
527 
528 	if (mode == BITMAP_OP_TEST_ALL_SET) {
529 		while (bit <= this_end_bit) {
530 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
531 				do {
532 					if (data[bit / BITS_PER_LONG] != -1)
533 						return false;
534 					bit += BITS_PER_LONG;
535 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
536 				continue;
537 			}
538 			if (!test_bit(bit, data))
539 				return false;
540 			bit++;
541 		}
542 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
543 		while (bit <= this_end_bit) {
544 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
545 				do {
546 					if (data[bit / BITS_PER_LONG] != 0)
547 						return false;
548 					bit += BITS_PER_LONG;
549 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
550 				continue;
551 			}
552 			if (test_bit(bit, data))
553 				return false;
554 			bit++;
555 		}
556 	} else if (mode == BITMAP_OP_SET) {
557 		while (bit <= this_end_bit) {
558 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
559 				do {
560 					data[bit / BITS_PER_LONG] = -1;
561 					bit += BITS_PER_LONG;
562 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
563 				continue;
564 			}
565 			__set_bit(bit, data);
566 			bit++;
567 		}
568 	} else if (mode == BITMAP_OP_CLEAR) {
569 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
570 			clear_page(data);
571 		else while (bit <= this_end_bit) {
572 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
573 				do {
574 					data[bit / BITS_PER_LONG] = 0;
575 					bit += BITS_PER_LONG;
576 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
577 				continue;
578 			}
579 			__clear_bit(bit, data);
580 			bit++;
581 		}
582 	} else {
583 		BUG();
584 	}
585 
586 	if (unlikely(page < end_page)) {
587 		bit = 0;
588 		page++;
589 		goto repeat;
590 	}
591 
592 	return true;
593 }
594 
595 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
596 {
597 	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
598 	unsigned i;
599 
600 	for (i = 0; i < n_bitmap_pages; i++) {
601 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
602 		unsigned long *src_data = lowmem_page_address(src[i].page);
603 		copy_page(dst_data, src_data);
604 	}
605 }
606 
607 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
608 {
609 	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
610 	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
611 
612 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
613 	return &ic->bbs[bitmap_block];
614 }
615 
616 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
617 				 bool e, const char *function)
618 {
619 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
620 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
621 
622 	if (unlikely(section >= ic->journal_sections) ||
623 	    unlikely(offset >= limit)) {
624 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
625 		       function, section, offset, ic->journal_sections, limit);
626 		BUG();
627 	}
628 #endif
629 }
630 
631 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
632 			       unsigned *pl_index, unsigned *pl_offset)
633 {
634 	unsigned sector;
635 
636 	access_journal_check(ic, section, offset, false, "page_list_location");
637 
638 	sector = section * ic->journal_section_sectors + offset;
639 
640 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
641 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
642 }
643 
644 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
645 					       unsigned section, unsigned offset, unsigned *n_sectors)
646 {
647 	unsigned pl_index, pl_offset;
648 	char *va;
649 
650 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
651 
652 	if (n_sectors)
653 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
654 
655 	va = lowmem_page_address(pl[pl_index].page);
656 
657 	return (struct journal_sector *)(va + pl_offset);
658 }
659 
660 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
661 {
662 	return access_page_list(ic, ic->journal, section, offset, NULL);
663 }
664 
665 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
666 {
667 	unsigned rel_sector, offset;
668 	struct journal_sector *js;
669 
670 	access_journal_check(ic, section, n, true, "access_journal_entry");
671 
672 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
673 	offset = n / JOURNAL_BLOCK_SECTORS;
674 
675 	js = access_journal(ic, section, rel_sector);
676 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
677 }
678 
679 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
680 {
681 	n <<= ic->sb->log2_sectors_per_block;
682 
683 	n += JOURNAL_BLOCK_SECTORS;
684 
685 	access_journal_check(ic, section, n, false, "access_journal_data");
686 
687 	return access_journal(ic, section, n);
688 }
689 
690 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
691 {
692 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
693 	int r;
694 	unsigned j, size;
695 
696 	desc->tfm = ic->journal_mac;
697 
698 	r = crypto_shash_init(desc);
699 	if (unlikely(r)) {
700 		dm_integrity_io_error(ic, "crypto_shash_init", r);
701 		goto err;
702 	}
703 
704 	for (j = 0; j < ic->journal_section_entries; j++) {
705 		struct journal_entry *je = access_journal_entry(ic, section, j);
706 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
707 		if (unlikely(r)) {
708 			dm_integrity_io_error(ic, "crypto_shash_update", r);
709 			goto err;
710 		}
711 	}
712 
713 	size = crypto_shash_digestsize(ic->journal_mac);
714 
715 	if (likely(size <= JOURNAL_MAC_SIZE)) {
716 		r = crypto_shash_final(desc, result);
717 		if (unlikely(r)) {
718 			dm_integrity_io_error(ic, "crypto_shash_final", r);
719 			goto err;
720 		}
721 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
722 	} else {
723 		__u8 digest[HASH_MAX_DIGESTSIZE];
724 
725 		if (WARN_ON(size > sizeof(digest))) {
726 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
727 			goto err;
728 		}
729 		r = crypto_shash_final(desc, digest);
730 		if (unlikely(r)) {
731 			dm_integrity_io_error(ic, "crypto_shash_final", r);
732 			goto err;
733 		}
734 		memcpy(result, digest, JOURNAL_MAC_SIZE);
735 	}
736 
737 	return;
738 err:
739 	memset(result, 0, JOURNAL_MAC_SIZE);
740 }
741 
742 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
743 {
744 	__u8 result[JOURNAL_MAC_SIZE];
745 	unsigned j;
746 
747 	if (!ic->journal_mac)
748 		return;
749 
750 	section_mac(ic, section, result);
751 
752 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
753 		struct journal_sector *js = access_journal(ic, section, j);
754 
755 		if (likely(wr))
756 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
757 		else {
758 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
759 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
760 		}
761 	}
762 }
763 
764 static void complete_journal_op(void *context)
765 {
766 	struct journal_completion *comp = context;
767 	BUG_ON(!atomic_read(&comp->in_flight));
768 	if (likely(atomic_dec_and_test(&comp->in_flight)))
769 		complete(&comp->comp);
770 }
771 
772 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
773 			unsigned n_sections, struct journal_completion *comp)
774 {
775 	struct async_submit_ctl submit;
776 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
777 	unsigned pl_index, pl_offset, section_index;
778 	struct page_list *source_pl, *target_pl;
779 
780 	if (likely(encrypt)) {
781 		source_pl = ic->journal;
782 		target_pl = ic->journal_io;
783 	} else {
784 		source_pl = ic->journal_io;
785 		target_pl = ic->journal;
786 	}
787 
788 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
789 
790 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
791 
792 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
793 
794 	section_index = pl_index;
795 
796 	do {
797 		size_t this_step;
798 		struct page *src_pages[2];
799 		struct page *dst_page;
800 
801 		while (unlikely(pl_index == section_index)) {
802 			unsigned dummy;
803 			if (likely(encrypt))
804 				rw_section_mac(ic, section, true);
805 			section++;
806 			n_sections--;
807 			if (!n_sections)
808 				break;
809 			page_list_location(ic, section, 0, &section_index, &dummy);
810 		}
811 
812 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
813 		dst_page = target_pl[pl_index].page;
814 		src_pages[0] = source_pl[pl_index].page;
815 		src_pages[1] = ic->journal_xor[pl_index].page;
816 
817 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
818 
819 		pl_index++;
820 		pl_offset = 0;
821 		n_bytes -= this_step;
822 	} while (n_bytes);
823 
824 	BUG_ON(n_sections);
825 
826 	async_tx_issue_pending_all();
827 }
828 
829 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
830 {
831 	struct journal_completion *comp = req->data;
832 	if (unlikely(err)) {
833 		if (likely(err == -EINPROGRESS)) {
834 			complete(&comp->ic->crypto_backoff);
835 			return;
836 		}
837 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
838 	}
839 	complete_journal_op(comp);
840 }
841 
842 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
843 {
844 	int r;
845 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
846 				      complete_journal_encrypt, comp);
847 	if (likely(encrypt))
848 		r = crypto_skcipher_encrypt(req);
849 	else
850 		r = crypto_skcipher_decrypt(req);
851 	if (likely(!r))
852 		return false;
853 	if (likely(r == -EINPROGRESS))
854 		return true;
855 	if (likely(r == -EBUSY)) {
856 		wait_for_completion(&comp->ic->crypto_backoff);
857 		reinit_completion(&comp->ic->crypto_backoff);
858 		return true;
859 	}
860 	dm_integrity_io_error(comp->ic, "encrypt", r);
861 	return false;
862 }
863 
864 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
865 			  unsigned n_sections, struct journal_completion *comp)
866 {
867 	struct scatterlist **source_sg;
868 	struct scatterlist **target_sg;
869 
870 	atomic_add(2, &comp->in_flight);
871 
872 	if (likely(encrypt)) {
873 		source_sg = ic->journal_scatterlist;
874 		target_sg = ic->journal_io_scatterlist;
875 	} else {
876 		source_sg = ic->journal_io_scatterlist;
877 		target_sg = ic->journal_scatterlist;
878 	}
879 
880 	do {
881 		struct skcipher_request *req;
882 		unsigned ivsize;
883 		char *iv;
884 
885 		if (likely(encrypt))
886 			rw_section_mac(ic, section, true);
887 
888 		req = ic->sk_requests[section];
889 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
890 		iv = req->iv;
891 
892 		memcpy(iv, iv + ivsize, ivsize);
893 
894 		req->src = source_sg[section];
895 		req->dst = target_sg[section];
896 
897 		if (unlikely(do_crypt(encrypt, req, comp)))
898 			atomic_inc(&comp->in_flight);
899 
900 		section++;
901 		n_sections--;
902 	} while (n_sections);
903 
904 	atomic_dec(&comp->in_flight);
905 	complete_journal_op(comp);
906 }
907 
908 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
909 			    unsigned n_sections, struct journal_completion *comp)
910 {
911 	if (ic->journal_xor)
912 		return xor_journal(ic, encrypt, section, n_sections, comp);
913 	else
914 		return crypt_journal(ic, encrypt, section, n_sections, comp);
915 }
916 
917 static void complete_journal_io(unsigned long error, void *context)
918 {
919 	struct journal_completion *comp = context;
920 	if (unlikely(error != 0))
921 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
922 	complete_journal_op(comp);
923 }
924 
925 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
926 			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
927 {
928 	struct dm_io_request io_req;
929 	struct dm_io_region io_loc;
930 	unsigned pl_index, pl_offset;
931 	int r;
932 
933 	if (unlikely(dm_integrity_failed(ic))) {
934 		if (comp)
935 			complete_journal_io(-1UL, comp);
936 		return;
937 	}
938 
939 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
940 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
941 
942 	io_req.bi_op = op;
943 	io_req.bi_op_flags = op_flags;
944 	io_req.mem.type = DM_IO_PAGE_LIST;
945 	if (ic->journal_io)
946 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
947 	else
948 		io_req.mem.ptr.pl = &ic->journal[pl_index];
949 	io_req.mem.offset = pl_offset;
950 	if (likely(comp != NULL)) {
951 		io_req.notify.fn = complete_journal_io;
952 		io_req.notify.context = comp;
953 	} else {
954 		io_req.notify.fn = NULL;
955 	}
956 	io_req.client = ic->io;
957 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
958 	io_loc.sector = ic->start + SB_SECTORS + sector;
959 	io_loc.count = n_sectors;
960 
961 	r = dm_io(&io_req, 1, &io_loc, NULL);
962 	if (unlikely(r)) {
963 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
964 		if (comp) {
965 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
966 			complete_journal_io(-1UL, comp);
967 		}
968 	}
969 }
970 
971 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
972 		       unsigned n_sections, struct journal_completion *comp)
973 {
974 	unsigned sector, n_sectors;
975 
976 	sector = section * ic->journal_section_sectors;
977 	n_sectors = n_sections * ic->journal_section_sectors;
978 
979 	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
980 }
981 
982 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
983 {
984 	struct journal_completion io_comp;
985 	struct journal_completion crypt_comp_1;
986 	struct journal_completion crypt_comp_2;
987 	unsigned i;
988 
989 	io_comp.ic = ic;
990 	init_completion(&io_comp.comp);
991 
992 	if (commit_start + commit_sections <= ic->journal_sections) {
993 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
994 		if (ic->journal_io) {
995 			crypt_comp_1.ic = ic;
996 			init_completion(&crypt_comp_1.comp);
997 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
998 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
999 			wait_for_completion_io(&crypt_comp_1.comp);
1000 		} else {
1001 			for (i = 0; i < commit_sections; i++)
1002 				rw_section_mac(ic, commit_start + i, true);
1003 		}
1004 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1005 			   commit_sections, &io_comp);
1006 	} else {
1007 		unsigned to_end;
1008 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1009 		to_end = ic->journal_sections - commit_start;
1010 		if (ic->journal_io) {
1011 			crypt_comp_1.ic = ic;
1012 			init_completion(&crypt_comp_1.comp);
1013 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1014 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1015 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1016 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1017 				reinit_completion(&crypt_comp_1.comp);
1018 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1019 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1020 				wait_for_completion_io(&crypt_comp_1.comp);
1021 			} else {
1022 				crypt_comp_2.ic = ic;
1023 				init_completion(&crypt_comp_2.comp);
1024 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1025 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1026 				wait_for_completion_io(&crypt_comp_1.comp);
1027 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1028 				wait_for_completion_io(&crypt_comp_2.comp);
1029 			}
1030 		} else {
1031 			for (i = 0; i < to_end; i++)
1032 				rw_section_mac(ic, commit_start + i, true);
1033 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1034 			for (i = 0; i < commit_sections - to_end; i++)
1035 				rw_section_mac(ic, i, true);
1036 		}
1037 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1038 	}
1039 
1040 	wait_for_completion_io(&io_comp.comp);
1041 }
1042 
1043 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1044 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1045 {
1046 	struct dm_io_request io_req;
1047 	struct dm_io_region io_loc;
1048 	int r;
1049 	unsigned sector, pl_index, pl_offset;
1050 
1051 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1052 
1053 	if (unlikely(dm_integrity_failed(ic))) {
1054 		fn(-1UL, data);
1055 		return;
1056 	}
1057 
1058 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1059 
1060 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1061 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1062 
1063 	io_req.bi_op = REQ_OP_WRITE;
1064 	io_req.bi_op_flags = 0;
1065 	io_req.mem.type = DM_IO_PAGE_LIST;
1066 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1067 	io_req.mem.offset = pl_offset;
1068 	io_req.notify.fn = fn;
1069 	io_req.notify.context = data;
1070 	io_req.client = ic->io;
1071 	io_loc.bdev = ic->dev->bdev;
1072 	io_loc.sector = target;
1073 	io_loc.count = n_sectors;
1074 
1075 	r = dm_io(&io_req, 1, &io_loc, NULL);
1076 	if (unlikely(r)) {
1077 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1078 		fn(-1UL, data);
1079 	}
1080 }
1081 
1082 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1083 {
1084 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1085 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1086 }
1087 
1088 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1089 {
1090 	struct rb_node **n = &ic->in_progress.rb_node;
1091 	struct rb_node *parent;
1092 
1093 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1094 
1095 	if (likely(check_waiting)) {
1096 		struct dm_integrity_range *range;
1097 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1098 			if (unlikely(ranges_overlap(range, new_range)))
1099 				return false;
1100 		}
1101 	}
1102 
1103 	parent = NULL;
1104 
1105 	while (*n) {
1106 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1107 
1108 		parent = *n;
1109 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1110 			n = &range->node.rb_left;
1111 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1112 			n = &range->node.rb_right;
1113 		} else {
1114 			return false;
1115 		}
1116 	}
1117 
1118 	rb_link_node(&new_range->node, parent, n);
1119 	rb_insert_color(&new_range->node, &ic->in_progress);
1120 
1121 	return true;
1122 }
1123 
1124 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1125 {
1126 	rb_erase(&range->node, &ic->in_progress);
1127 	while (unlikely(!list_empty(&ic->wait_list))) {
1128 		struct dm_integrity_range *last_range =
1129 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1130 		struct task_struct *last_range_task;
1131 		last_range_task = last_range->task;
1132 		list_del(&last_range->wait_entry);
1133 		if (!add_new_range(ic, last_range, false)) {
1134 			last_range->task = last_range_task;
1135 			list_add(&last_range->wait_entry, &ic->wait_list);
1136 			break;
1137 		}
1138 		last_range->waiting = false;
1139 		wake_up_process(last_range_task);
1140 	}
1141 }
1142 
1143 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1144 {
1145 	unsigned long flags;
1146 
1147 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1148 	remove_range_unlocked(ic, range);
1149 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1150 }
1151 
1152 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1153 {
1154 	new_range->waiting = true;
1155 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1156 	new_range->task = current;
1157 	do {
1158 		__set_current_state(TASK_UNINTERRUPTIBLE);
1159 		spin_unlock_irq(&ic->endio_wait.lock);
1160 		io_schedule();
1161 		spin_lock_irq(&ic->endio_wait.lock);
1162 	} while (unlikely(new_range->waiting));
1163 }
1164 
1165 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1166 {
1167 	if (unlikely(!add_new_range(ic, new_range, true)))
1168 		wait_and_add_new_range(ic, new_range);
1169 }
1170 
1171 static void init_journal_node(struct journal_node *node)
1172 {
1173 	RB_CLEAR_NODE(&node->node);
1174 	node->sector = (sector_t)-1;
1175 }
1176 
1177 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1178 {
1179 	struct rb_node **link;
1180 	struct rb_node *parent;
1181 
1182 	node->sector = sector;
1183 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1184 
1185 	link = &ic->journal_tree_root.rb_node;
1186 	parent = NULL;
1187 
1188 	while (*link) {
1189 		struct journal_node *j;
1190 		parent = *link;
1191 		j = container_of(parent, struct journal_node, node);
1192 		if (sector < j->sector)
1193 			link = &j->node.rb_left;
1194 		else
1195 			link = &j->node.rb_right;
1196 	}
1197 
1198 	rb_link_node(&node->node, parent, link);
1199 	rb_insert_color(&node->node, &ic->journal_tree_root);
1200 }
1201 
1202 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1203 {
1204 	BUG_ON(RB_EMPTY_NODE(&node->node));
1205 	rb_erase(&node->node, &ic->journal_tree_root);
1206 	init_journal_node(node);
1207 }
1208 
1209 #define NOT_FOUND	(-1U)
1210 
1211 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1212 {
1213 	struct rb_node *n = ic->journal_tree_root.rb_node;
1214 	unsigned found = NOT_FOUND;
1215 	*next_sector = (sector_t)-1;
1216 	while (n) {
1217 		struct journal_node *j = container_of(n, struct journal_node, node);
1218 		if (sector == j->sector) {
1219 			found = j - ic->journal_tree;
1220 		}
1221 		if (sector < j->sector) {
1222 			*next_sector = j->sector;
1223 			n = j->node.rb_left;
1224 		} else {
1225 			n = j->node.rb_right;
1226 		}
1227 	}
1228 
1229 	return found;
1230 }
1231 
1232 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1233 {
1234 	struct journal_node *node, *next_node;
1235 	struct rb_node *next;
1236 
1237 	if (unlikely(pos >= ic->journal_entries))
1238 		return false;
1239 	node = &ic->journal_tree[pos];
1240 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1241 		return false;
1242 	if (unlikely(node->sector != sector))
1243 		return false;
1244 
1245 	next = rb_next(&node->node);
1246 	if (unlikely(!next))
1247 		return true;
1248 
1249 	next_node = container_of(next, struct journal_node, node);
1250 	return next_node->sector != sector;
1251 }
1252 
1253 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1254 {
1255 	struct rb_node *next;
1256 	struct journal_node *next_node;
1257 	unsigned next_section;
1258 
1259 	BUG_ON(RB_EMPTY_NODE(&node->node));
1260 
1261 	next = rb_next(&node->node);
1262 	if (unlikely(!next))
1263 		return false;
1264 
1265 	next_node = container_of(next, struct journal_node, node);
1266 
1267 	if (next_node->sector != node->sector)
1268 		return false;
1269 
1270 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1271 	if (next_section >= ic->committed_section &&
1272 	    next_section < ic->committed_section + ic->n_committed_sections)
1273 		return true;
1274 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1275 		return true;
1276 
1277 	return false;
1278 }
1279 
1280 #define TAG_READ	0
1281 #define TAG_WRITE	1
1282 #define TAG_CMP		2
1283 
1284 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1285 			       unsigned *metadata_offset, unsigned total_size, int op)
1286 {
1287 	do {
1288 		unsigned char *data, *dp;
1289 		struct dm_buffer *b;
1290 		unsigned to_copy;
1291 		int r;
1292 
1293 		r = dm_integrity_failed(ic);
1294 		if (unlikely(r))
1295 			return r;
1296 
1297 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1298 		if (IS_ERR(data))
1299 			return PTR_ERR(data);
1300 
1301 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1302 		dp = data + *metadata_offset;
1303 		if (op == TAG_READ) {
1304 			memcpy(tag, dp, to_copy);
1305 		} else if (op == TAG_WRITE) {
1306 			memcpy(dp, tag, to_copy);
1307 			dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1308 		} else  {
1309 			/* e.g.: op == TAG_CMP */
1310 			if (unlikely(memcmp(dp, tag, to_copy))) {
1311 				unsigned i;
1312 
1313 				for (i = 0; i < to_copy; i++) {
1314 					if (dp[i] != tag[i])
1315 						break;
1316 					total_size--;
1317 				}
1318 				dm_bufio_release(b);
1319 				return total_size;
1320 			}
1321 		}
1322 		dm_bufio_release(b);
1323 
1324 		tag += to_copy;
1325 		*metadata_offset += to_copy;
1326 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1327 			(*metadata_block)++;
1328 			*metadata_offset = 0;
1329 		}
1330 		total_size -= to_copy;
1331 	} while (unlikely(total_size));
1332 
1333 	return 0;
1334 }
1335 
1336 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1337 {
1338 	int r;
1339 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1340 	if (unlikely(r))
1341 		dm_integrity_io_error(ic, "writing tags", r);
1342 }
1343 
1344 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1345 {
1346 	DECLARE_WAITQUEUE(wait, current);
1347 	__add_wait_queue(&ic->endio_wait, &wait);
1348 	__set_current_state(TASK_UNINTERRUPTIBLE);
1349 	spin_unlock_irq(&ic->endio_wait.lock);
1350 	io_schedule();
1351 	spin_lock_irq(&ic->endio_wait.lock);
1352 	__remove_wait_queue(&ic->endio_wait, &wait);
1353 }
1354 
1355 static void autocommit_fn(struct timer_list *t)
1356 {
1357 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1358 
1359 	if (likely(!dm_integrity_failed(ic)))
1360 		queue_work(ic->commit_wq, &ic->commit_work);
1361 }
1362 
1363 static void schedule_autocommit(struct dm_integrity_c *ic)
1364 {
1365 	if (!timer_pending(&ic->autocommit_timer))
1366 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1367 }
1368 
1369 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1370 {
1371 	struct bio *bio;
1372 	unsigned long flags;
1373 
1374 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1375 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1376 	bio_list_add(&ic->flush_bio_list, bio);
1377 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1378 
1379 	queue_work(ic->commit_wq, &ic->commit_work);
1380 }
1381 
1382 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1383 {
1384 	int r = dm_integrity_failed(ic);
1385 	if (unlikely(r) && !bio->bi_status)
1386 		bio->bi_status = errno_to_blk_status(r);
1387 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1388 		unsigned long flags;
1389 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1390 		bio_list_add(&ic->synchronous_bios, bio);
1391 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1392 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1393 		return;
1394 	}
1395 	bio_endio(bio);
1396 }
1397 
1398 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1399 {
1400 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1401 
1402 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1403 		submit_flush_bio(ic, dio);
1404 	else
1405 		do_endio(ic, bio);
1406 }
1407 
1408 static void dec_in_flight(struct dm_integrity_io *dio)
1409 {
1410 	if (atomic_dec_and_test(&dio->in_flight)) {
1411 		struct dm_integrity_c *ic = dio->ic;
1412 		struct bio *bio;
1413 
1414 		remove_range(ic, &dio->range);
1415 
1416 		if (unlikely(dio->write))
1417 			schedule_autocommit(ic);
1418 
1419 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1420 
1421 		if (unlikely(dio->bi_status) && !bio->bi_status)
1422 			bio->bi_status = dio->bi_status;
1423 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1424 			dio->range.logical_sector += dio->range.n_sectors;
1425 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1426 			INIT_WORK(&dio->work, integrity_bio_wait);
1427 			queue_work(ic->wait_wq, &dio->work);
1428 			return;
1429 		}
1430 		do_endio_flush(ic, dio);
1431 	}
1432 }
1433 
1434 static void integrity_end_io(struct bio *bio)
1435 {
1436 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1437 
1438 	bio->bi_iter = dio->orig_bi_iter;
1439 	bio->bi_disk = dio->orig_bi_disk;
1440 	bio->bi_partno = dio->orig_bi_partno;
1441 	if (dio->orig_bi_integrity) {
1442 		bio->bi_integrity = dio->orig_bi_integrity;
1443 		bio->bi_opf |= REQ_INTEGRITY;
1444 	}
1445 	bio->bi_end_io = dio->orig_bi_end_io;
1446 
1447 	if (dio->completion)
1448 		complete(dio->completion);
1449 
1450 	dec_in_flight(dio);
1451 }
1452 
1453 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1454 				      const char *data, char *result)
1455 {
1456 	__u64 sector_le = cpu_to_le64(sector);
1457 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1458 	int r;
1459 	unsigned digest_size;
1460 
1461 	req->tfm = ic->internal_hash;
1462 
1463 	r = crypto_shash_init(req);
1464 	if (unlikely(r < 0)) {
1465 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1466 		goto failed;
1467 	}
1468 
1469 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1470 	if (unlikely(r < 0)) {
1471 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1472 		goto failed;
1473 	}
1474 
1475 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1476 	if (unlikely(r < 0)) {
1477 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1478 		goto failed;
1479 	}
1480 
1481 	r = crypto_shash_final(req, result);
1482 	if (unlikely(r < 0)) {
1483 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1484 		goto failed;
1485 	}
1486 
1487 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1488 	if (unlikely(digest_size < ic->tag_size))
1489 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1490 
1491 	return;
1492 
1493 failed:
1494 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1495 	get_random_bytes(result, ic->tag_size);
1496 }
1497 
1498 static void integrity_metadata(struct work_struct *w)
1499 {
1500 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1501 	struct dm_integrity_c *ic = dio->ic;
1502 
1503 	int r;
1504 
1505 	if (ic->internal_hash) {
1506 		struct bvec_iter iter;
1507 		struct bio_vec bv;
1508 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1509 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1510 		char *checksums;
1511 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1512 		char checksums_onstack[HASH_MAX_DIGESTSIZE];
1513 		unsigned sectors_to_process = dio->range.n_sectors;
1514 		sector_t sector = dio->range.logical_sector;
1515 
1516 		if (unlikely(ic->mode == 'R'))
1517 			goto skip_io;
1518 
1519 		checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1520 				    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1521 		if (!checksums) {
1522 			checksums = checksums_onstack;
1523 			if (WARN_ON(extra_space &&
1524 				    digest_size > sizeof(checksums_onstack))) {
1525 				r = -EINVAL;
1526 				goto error;
1527 			}
1528 		}
1529 
1530 		__bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1531 			unsigned pos;
1532 			char *mem, *checksums_ptr;
1533 
1534 again:
1535 			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1536 			pos = 0;
1537 			checksums_ptr = checksums;
1538 			do {
1539 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1540 				checksums_ptr += ic->tag_size;
1541 				sectors_to_process -= ic->sectors_per_block;
1542 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1543 				sector += ic->sectors_per_block;
1544 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1545 			kunmap_atomic(mem);
1546 
1547 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1548 						checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1549 			if (unlikely(r)) {
1550 				if (r > 0) {
1551 					DMERR_LIMIT("Checksum failed at sector 0x%llx",
1552 						    (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1553 					r = -EILSEQ;
1554 					atomic64_inc(&ic->number_of_mismatches);
1555 				}
1556 				if (likely(checksums != checksums_onstack))
1557 					kfree(checksums);
1558 				goto error;
1559 			}
1560 
1561 			if (!sectors_to_process)
1562 				break;
1563 
1564 			if (unlikely(pos < bv.bv_len)) {
1565 				bv.bv_offset += pos;
1566 				bv.bv_len -= pos;
1567 				goto again;
1568 			}
1569 		}
1570 
1571 		if (likely(checksums != checksums_onstack))
1572 			kfree(checksums);
1573 	} else {
1574 		struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1575 
1576 		if (bip) {
1577 			struct bio_vec biv;
1578 			struct bvec_iter iter;
1579 			unsigned data_to_process = dio->range.n_sectors;
1580 			sector_to_block(ic, data_to_process);
1581 			data_to_process *= ic->tag_size;
1582 
1583 			bip_for_each_vec(biv, bip, iter) {
1584 				unsigned char *tag;
1585 				unsigned this_len;
1586 
1587 				BUG_ON(PageHighMem(biv.bv_page));
1588 				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1589 				this_len = min(biv.bv_len, data_to_process);
1590 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1591 							this_len, !dio->write ? TAG_READ : TAG_WRITE);
1592 				if (unlikely(r))
1593 					goto error;
1594 				data_to_process -= this_len;
1595 				if (!data_to_process)
1596 					break;
1597 			}
1598 		}
1599 	}
1600 skip_io:
1601 	dec_in_flight(dio);
1602 	return;
1603 error:
1604 	dio->bi_status = errno_to_blk_status(r);
1605 	dec_in_flight(dio);
1606 }
1607 
1608 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1609 {
1610 	struct dm_integrity_c *ic = ti->private;
1611 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1612 	struct bio_integrity_payload *bip;
1613 
1614 	sector_t area, offset;
1615 
1616 	dio->ic = ic;
1617 	dio->bi_status = 0;
1618 
1619 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1620 		submit_flush_bio(ic, dio);
1621 		return DM_MAPIO_SUBMITTED;
1622 	}
1623 
1624 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1625 	dio->write = bio_op(bio) == REQ_OP_WRITE;
1626 	dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1627 	if (unlikely(dio->fua)) {
1628 		/*
1629 		 * Don't pass down the FUA flag because we have to flush
1630 		 * disk cache anyway.
1631 		 */
1632 		bio->bi_opf &= ~REQ_FUA;
1633 	}
1634 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1635 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1636 		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1637 		      (unsigned long long)ic->provided_data_sectors);
1638 		return DM_MAPIO_KILL;
1639 	}
1640 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1641 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1642 		      ic->sectors_per_block,
1643 		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1644 		return DM_MAPIO_KILL;
1645 	}
1646 
1647 	if (ic->sectors_per_block > 1) {
1648 		struct bvec_iter iter;
1649 		struct bio_vec bv;
1650 		bio_for_each_segment(bv, bio, iter) {
1651 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1652 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1653 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1654 				return DM_MAPIO_KILL;
1655 			}
1656 		}
1657 	}
1658 
1659 	bip = bio_integrity(bio);
1660 	if (!ic->internal_hash) {
1661 		if (bip) {
1662 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1663 			if (ic->log2_tag_size >= 0)
1664 				wanted_tag_size <<= ic->log2_tag_size;
1665 			else
1666 				wanted_tag_size *= ic->tag_size;
1667 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1668 				DMERR("Invalid integrity data size %u, expected %u",
1669 				      bip->bip_iter.bi_size, wanted_tag_size);
1670 				return DM_MAPIO_KILL;
1671 			}
1672 		}
1673 	} else {
1674 		if (unlikely(bip != NULL)) {
1675 			DMERR("Unexpected integrity data when using internal hash");
1676 			return DM_MAPIO_KILL;
1677 		}
1678 	}
1679 
1680 	if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1681 		return DM_MAPIO_KILL;
1682 
1683 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1684 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1685 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1686 
1687 	dm_integrity_map_continue(dio, true);
1688 	return DM_MAPIO_SUBMITTED;
1689 }
1690 
1691 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1692 				 unsigned journal_section, unsigned journal_entry)
1693 {
1694 	struct dm_integrity_c *ic = dio->ic;
1695 	sector_t logical_sector;
1696 	unsigned n_sectors;
1697 
1698 	logical_sector = dio->range.logical_sector;
1699 	n_sectors = dio->range.n_sectors;
1700 	do {
1701 		struct bio_vec bv = bio_iovec(bio);
1702 		char *mem;
1703 
1704 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1705 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1706 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1707 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1708 retry_kmap:
1709 		mem = kmap_atomic(bv.bv_page);
1710 		if (likely(dio->write))
1711 			flush_dcache_page(bv.bv_page);
1712 
1713 		do {
1714 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1715 
1716 			if (unlikely(!dio->write)) {
1717 				struct journal_sector *js;
1718 				char *mem_ptr;
1719 				unsigned s;
1720 
1721 				if (unlikely(journal_entry_is_inprogress(je))) {
1722 					flush_dcache_page(bv.bv_page);
1723 					kunmap_atomic(mem);
1724 
1725 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1726 					goto retry_kmap;
1727 				}
1728 				smp_rmb();
1729 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1730 				js = access_journal_data(ic, journal_section, journal_entry);
1731 				mem_ptr = mem + bv.bv_offset;
1732 				s = 0;
1733 				do {
1734 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1735 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1736 					js++;
1737 					mem_ptr += 1 << SECTOR_SHIFT;
1738 				} while (++s < ic->sectors_per_block);
1739 #ifdef INTERNAL_VERIFY
1740 				if (ic->internal_hash) {
1741 					char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1742 
1743 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1744 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1745 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1746 							    (unsigned long long)logical_sector);
1747 					}
1748 				}
1749 #endif
1750 			}
1751 
1752 			if (!ic->internal_hash) {
1753 				struct bio_integrity_payload *bip = bio_integrity(bio);
1754 				unsigned tag_todo = ic->tag_size;
1755 				char *tag_ptr = journal_entry_tag(ic, je);
1756 
1757 				if (bip) do {
1758 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1759 					unsigned tag_now = min(biv.bv_len, tag_todo);
1760 					char *tag_addr;
1761 					BUG_ON(PageHighMem(biv.bv_page));
1762 					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1763 					if (likely(dio->write))
1764 						memcpy(tag_ptr, tag_addr, tag_now);
1765 					else
1766 						memcpy(tag_addr, tag_ptr, tag_now);
1767 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1768 					tag_ptr += tag_now;
1769 					tag_todo -= tag_now;
1770 				} while (unlikely(tag_todo)); else {
1771 					if (likely(dio->write))
1772 						memset(tag_ptr, 0, tag_todo);
1773 				}
1774 			}
1775 
1776 			if (likely(dio->write)) {
1777 				struct journal_sector *js;
1778 				unsigned s;
1779 
1780 				js = access_journal_data(ic, journal_section, journal_entry);
1781 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1782 
1783 				s = 0;
1784 				do {
1785 					je->last_bytes[s] = js[s].commit_id;
1786 				} while (++s < ic->sectors_per_block);
1787 
1788 				if (ic->internal_hash) {
1789 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1790 					if (unlikely(digest_size > ic->tag_size)) {
1791 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
1792 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1793 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1794 					} else
1795 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1796 				}
1797 
1798 				journal_entry_set_sector(je, logical_sector);
1799 			}
1800 			logical_sector += ic->sectors_per_block;
1801 
1802 			journal_entry++;
1803 			if (unlikely(journal_entry == ic->journal_section_entries)) {
1804 				journal_entry = 0;
1805 				journal_section++;
1806 				wraparound_section(ic, &journal_section);
1807 			}
1808 
1809 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1810 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1811 
1812 		if (unlikely(!dio->write))
1813 			flush_dcache_page(bv.bv_page);
1814 		kunmap_atomic(mem);
1815 	} while (n_sectors);
1816 
1817 	if (likely(dio->write)) {
1818 		smp_mb();
1819 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1820 			wake_up(&ic->copy_to_journal_wait);
1821 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1822 			queue_work(ic->commit_wq, &ic->commit_work);
1823 		} else {
1824 			schedule_autocommit(ic);
1825 		}
1826 	} else {
1827 		remove_range(ic, &dio->range);
1828 	}
1829 
1830 	if (unlikely(bio->bi_iter.bi_size)) {
1831 		sector_t area, offset;
1832 
1833 		dio->range.logical_sector = logical_sector;
1834 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1835 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1836 		return true;
1837 	}
1838 
1839 	return false;
1840 }
1841 
1842 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1843 {
1844 	struct dm_integrity_c *ic = dio->ic;
1845 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1846 	unsigned journal_section, journal_entry;
1847 	unsigned journal_read_pos;
1848 	struct completion read_comp;
1849 	bool need_sync_io = ic->internal_hash && !dio->write;
1850 
1851 	if (need_sync_io && from_map) {
1852 		INIT_WORK(&dio->work, integrity_bio_wait);
1853 		queue_work(ic->metadata_wq, &dio->work);
1854 		return;
1855 	}
1856 
1857 lock_retry:
1858 	spin_lock_irq(&ic->endio_wait.lock);
1859 retry:
1860 	if (unlikely(dm_integrity_failed(ic))) {
1861 		spin_unlock_irq(&ic->endio_wait.lock);
1862 		do_endio(ic, bio);
1863 		return;
1864 	}
1865 	dio->range.n_sectors = bio_sectors(bio);
1866 	journal_read_pos = NOT_FOUND;
1867 	if (likely(ic->mode == 'J')) {
1868 		if (dio->write) {
1869 			unsigned next_entry, i, pos;
1870 			unsigned ws, we, range_sectors;
1871 
1872 			dio->range.n_sectors = min(dio->range.n_sectors,
1873 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1874 			if (unlikely(!dio->range.n_sectors)) {
1875 				if (from_map)
1876 					goto offload_to_thread;
1877 				sleep_on_endio_wait(ic);
1878 				goto retry;
1879 			}
1880 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1881 			ic->free_sectors -= range_sectors;
1882 			journal_section = ic->free_section;
1883 			journal_entry = ic->free_section_entry;
1884 
1885 			next_entry = ic->free_section_entry + range_sectors;
1886 			ic->free_section_entry = next_entry % ic->journal_section_entries;
1887 			ic->free_section += next_entry / ic->journal_section_entries;
1888 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1889 			wraparound_section(ic, &ic->free_section);
1890 
1891 			pos = journal_section * ic->journal_section_entries + journal_entry;
1892 			ws = journal_section;
1893 			we = journal_entry;
1894 			i = 0;
1895 			do {
1896 				struct journal_entry *je;
1897 
1898 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1899 				pos++;
1900 				if (unlikely(pos >= ic->journal_entries))
1901 					pos = 0;
1902 
1903 				je = access_journal_entry(ic, ws, we);
1904 				BUG_ON(!journal_entry_is_unused(je));
1905 				journal_entry_set_inprogress(je);
1906 				we++;
1907 				if (unlikely(we == ic->journal_section_entries)) {
1908 					we = 0;
1909 					ws++;
1910 					wraparound_section(ic, &ws);
1911 				}
1912 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1913 
1914 			spin_unlock_irq(&ic->endio_wait.lock);
1915 			goto journal_read_write;
1916 		} else {
1917 			sector_t next_sector;
1918 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1919 			if (likely(journal_read_pos == NOT_FOUND)) {
1920 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1921 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
1922 			} else {
1923 				unsigned i;
1924 				unsigned jp = journal_read_pos + 1;
1925 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1926 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1927 						break;
1928 				}
1929 				dio->range.n_sectors = i;
1930 			}
1931 		}
1932 	}
1933 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
1934 		/*
1935 		 * We must not sleep in the request routine because it could
1936 		 * stall bios on current->bio_list.
1937 		 * So, we offload the bio to a workqueue if we have to sleep.
1938 		 */
1939 		if (from_map) {
1940 offload_to_thread:
1941 			spin_unlock_irq(&ic->endio_wait.lock);
1942 			INIT_WORK(&dio->work, integrity_bio_wait);
1943 			queue_work(ic->wait_wq, &dio->work);
1944 			return;
1945 		}
1946 		wait_and_add_new_range(ic, &dio->range);
1947 	}
1948 	spin_unlock_irq(&ic->endio_wait.lock);
1949 
1950 	if (unlikely(journal_read_pos != NOT_FOUND)) {
1951 		journal_section = journal_read_pos / ic->journal_section_entries;
1952 		journal_entry = journal_read_pos % ic->journal_section_entries;
1953 		goto journal_read_write;
1954 	}
1955 
1956 	if (ic->mode == 'B' && dio->write) {
1957 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
1958 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
1959 			struct bitmap_block_status *bbs;
1960 
1961 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
1962 			spin_lock(&bbs->bio_queue_lock);
1963 			bio_list_add(&bbs->bio_queue, bio);
1964 			spin_unlock(&bbs->bio_queue_lock);
1965 			queue_work(ic->writer_wq, &bbs->work);
1966 			return;
1967 		}
1968 	}
1969 
1970 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1971 
1972 	if (need_sync_io) {
1973 		init_completion(&read_comp);
1974 		dio->completion = &read_comp;
1975 	} else
1976 		dio->completion = NULL;
1977 
1978 	dio->orig_bi_iter = bio->bi_iter;
1979 
1980 	dio->orig_bi_disk = bio->bi_disk;
1981 	dio->orig_bi_partno = bio->bi_partno;
1982 	bio_set_dev(bio, ic->dev->bdev);
1983 
1984 	dio->orig_bi_integrity = bio_integrity(bio);
1985 	bio->bi_integrity = NULL;
1986 	bio->bi_opf &= ~REQ_INTEGRITY;
1987 
1988 	dio->orig_bi_end_io = bio->bi_end_io;
1989 	bio->bi_end_io = integrity_end_io;
1990 
1991 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1992 	generic_make_request(bio);
1993 
1994 	if (need_sync_io) {
1995 		wait_for_completion_io(&read_comp);
1996 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
1997 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
1998 			goto skip_check;
1999 		if (ic->mode == 'B') {
2000 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2001 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2002 				goto skip_check;
2003 		}
2004 
2005 		if (likely(!bio->bi_status))
2006 			integrity_metadata(&dio->work);
2007 		else
2008 skip_check:
2009 			dec_in_flight(dio);
2010 
2011 	} else {
2012 		INIT_WORK(&dio->work, integrity_metadata);
2013 		queue_work(ic->metadata_wq, &dio->work);
2014 	}
2015 
2016 	return;
2017 
2018 journal_read_write:
2019 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2020 		goto lock_retry;
2021 
2022 	do_endio_flush(ic, dio);
2023 }
2024 
2025 
2026 static void integrity_bio_wait(struct work_struct *w)
2027 {
2028 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2029 
2030 	dm_integrity_map_continue(dio, false);
2031 }
2032 
2033 static void pad_uncommitted(struct dm_integrity_c *ic)
2034 {
2035 	if (ic->free_section_entry) {
2036 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2037 		ic->free_section_entry = 0;
2038 		ic->free_section++;
2039 		wraparound_section(ic, &ic->free_section);
2040 		ic->n_uncommitted_sections++;
2041 	}
2042 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2043 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2044 		    ic->journal_section_entries + ic->free_sectors)) {
2045 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2046 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2047 		       "journal_section_entries %u, free_sectors %u",
2048 		       ic->journal_sections, ic->journal_section_entries,
2049 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2050 		       ic->journal_section_entries, ic->free_sectors);
2051 	}
2052 }
2053 
2054 static void integrity_commit(struct work_struct *w)
2055 {
2056 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2057 	unsigned commit_start, commit_sections;
2058 	unsigned i, j, n;
2059 	struct bio *flushes;
2060 
2061 	del_timer(&ic->autocommit_timer);
2062 
2063 	spin_lock_irq(&ic->endio_wait.lock);
2064 	flushes = bio_list_get(&ic->flush_bio_list);
2065 	if (unlikely(ic->mode != 'J')) {
2066 		spin_unlock_irq(&ic->endio_wait.lock);
2067 		dm_integrity_flush_buffers(ic);
2068 		goto release_flush_bios;
2069 	}
2070 
2071 	pad_uncommitted(ic);
2072 	commit_start = ic->uncommitted_section;
2073 	commit_sections = ic->n_uncommitted_sections;
2074 	spin_unlock_irq(&ic->endio_wait.lock);
2075 
2076 	if (!commit_sections)
2077 		goto release_flush_bios;
2078 
2079 	i = commit_start;
2080 	for (n = 0; n < commit_sections; n++) {
2081 		for (j = 0; j < ic->journal_section_entries; j++) {
2082 			struct journal_entry *je;
2083 			je = access_journal_entry(ic, i, j);
2084 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2085 		}
2086 		for (j = 0; j < ic->journal_section_sectors; j++) {
2087 			struct journal_sector *js;
2088 			js = access_journal(ic, i, j);
2089 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2090 		}
2091 		i++;
2092 		if (unlikely(i >= ic->journal_sections))
2093 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2094 		wraparound_section(ic, &i);
2095 	}
2096 	smp_rmb();
2097 
2098 	write_journal(ic, commit_start, commit_sections);
2099 
2100 	spin_lock_irq(&ic->endio_wait.lock);
2101 	ic->uncommitted_section += commit_sections;
2102 	wraparound_section(ic, &ic->uncommitted_section);
2103 	ic->n_uncommitted_sections -= commit_sections;
2104 	ic->n_committed_sections += commit_sections;
2105 	spin_unlock_irq(&ic->endio_wait.lock);
2106 
2107 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2108 		queue_work(ic->writer_wq, &ic->writer_work);
2109 
2110 release_flush_bios:
2111 	while (flushes) {
2112 		struct bio *next = flushes->bi_next;
2113 		flushes->bi_next = NULL;
2114 		do_endio(ic, flushes);
2115 		flushes = next;
2116 	}
2117 }
2118 
2119 static void complete_copy_from_journal(unsigned long error, void *context)
2120 {
2121 	struct journal_io *io = context;
2122 	struct journal_completion *comp = io->comp;
2123 	struct dm_integrity_c *ic = comp->ic;
2124 	remove_range(ic, &io->range);
2125 	mempool_free(io, &ic->journal_io_mempool);
2126 	if (unlikely(error != 0))
2127 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2128 	complete_journal_op(comp);
2129 }
2130 
2131 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2132 			       struct journal_entry *je)
2133 {
2134 	unsigned s = 0;
2135 	do {
2136 		js->commit_id = je->last_bytes[s];
2137 		js++;
2138 	} while (++s < ic->sectors_per_block);
2139 }
2140 
2141 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2142 			     unsigned write_sections, bool from_replay)
2143 {
2144 	unsigned i, j, n;
2145 	struct journal_completion comp;
2146 	struct blk_plug plug;
2147 
2148 	blk_start_plug(&plug);
2149 
2150 	comp.ic = ic;
2151 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2152 	init_completion(&comp.comp);
2153 
2154 	i = write_start;
2155 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2156 #ifndef INTERNAL_VERIFY
2157 		if (unlikely(from_replay))
2158 #endif
2159 			rw_section_mac(ic, i, false);
2160 		for (j = 0; j < ic->journal_section_entries; j++) {
2161 			struct journal_entry *je = access_journal_entry(ic, i, j);
2162 			sector_t sec, area, offset;
2163 			unsigned k, l, next_loop;
2164 			sector_t metadata_block;
2165 			unsigned metadata_offset;
2166 			struct journal_io *io;
2167 
2168 			if (journal_entry_is_unused(je))
2169 				continue;
2170 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2171 			sec = journal_entry_get_sector(je);
2172 			if (unlikely(from_replay)) {
2173 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2174 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2175 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2176 				}
2177 			}
2178 			get_area_and_offset(ic, sec, &area, &offset);
2179 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2180 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2181 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2182 				sector_t sec2, area2, offset2;
2183 				if (journal_entry_is_unused(je2))
2184 					break;
2185 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2186 				sec2 = journal_entry_get_sector(je2);
2187 				get_area_and_offset(ic, sec2, &area2, &offset2);
2188 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2189 					break;
2190 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2191 			}
2192 			next_loop = k - 1;
2193 
2194 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2195 			io->comp = &comp;
2196 			io->range.logical_sector = sec;
2197 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2198 
2199 			spin_lock_irq(&ic->endio_wait.lock);
2200 			add_new_range_and_wait(ic, &io->range);
2201 
2202 			if (likely(!from_replay)) {
2203 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2204 
2205 				/* don't write if there is newer committed sector */
2206 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2207 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2208 
2209 					journal_entry_set_unused(je2);
2210 					remove_journal_node(ic, &section_node[j]);
2211 					j++;
2212 					sec += ic->sectors_per_block;
2213 					offset += ic->sectors_per_block;
2214 				}
2215 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2216 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2217 
2218 					journal_entry_set_unused(je2);
2219 					remove_journal_node(ic, &section_node[k - 1]);
2220 					k--;
2221 				}
2222 				if (j == k) {
2223 					remove_range_unlocked(ic, &io->range);
2224 					spin_unlock_irq(&ic->endio_wait.lock);
2225 					mempool_free(io, &ic->journal_io_mempool);
2226 					goto skip_io;
2227 				}
2228 				for (l = j; l < k; l++) {
2229 					remove_journal_node(ic, &section_node[l]);
2230 				}
2231 			}
2232 			spin_unlock_irq(&ic->endio_wait.lock);
2233 
2234 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2235 			for (l = j; l < k; l++) {
2236 				int r;
2237 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2238 
2239 				if (
2240 #ifndef INTERNAL_VERIFY
2241 				    unlikely(from_replay) &&
2242 #endif
2243 				    ic->internal_hash) {
2244 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2245 
2246 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2247 								  (char *)access_journal_data(ic, i, l), test_tag);
2248 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2249 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2250 				}
2251 
2252 				journal_entry_set_unused(je2);
2253 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2254 							ic->tag_size, TAG_WRITE);
2255 				if (unlikely(r)) {
2256 					dm_integrity_io_error(ic, "reading tags", r);
2257 				}
2258 			}
2259 
2260 			atomic_inc(&comp.in_flight);
2261 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2262 					  (k - j) << ic->sb->log2_sectors_per_block,
2263 					  get_data_sector(ic, area, offset),
2264 					  complete_copy_from_journal, io);
2265 skip_io:
2266 			j = next_loop;
2267 		}
2268 	}
2269 
2270 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2271 
2272 	blk_finish_plug(&plug);
2273 
2274 	complete_journal_op(&comp);
2275 	wait_for_completion_io(&comp.comp);
2276 
2277 	dm_integrity_flush_buffers(ic);
2278 }
2279 
2280 static void integrity_writer(struct work_struct *w)
2281 {
2282 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2283 	unsigned write_start, write_sections;
2284 
2285 	unsigned prev_free_sectors;
2286 
2287 	/* the following test is not needed, but it tests the replay code */
2288 	if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2289 		return;
2290 
2291 	spin_lock_irq(&ic->endio_wait.lock);
2292 	write_start = ic->committed_section;
2293 	write_sections = ic->n_committed_sections;
2294 	spin_unlock_irq(&ic->endio_wait.lock);
2295 
2296 	if (!write_sections)
2297 		return;
2298 
2299 	do_journal_write(ic, write_start, write_sections, false);
2300 
2301 	spin_lock_irq(&ic->endio_wait.lock);
2302 
2303 	ic->committed_section += write_sections;
2304 	wraparound_section(ic, &ic->committed_section);
2305 	ic->n_committed_sections -= write_sections;
2306 
2307 	prev_free_sectors = ic->free_sectors;
2308 	ic->free_sectors += write_sections * ic->journal_section_entries;
2309 	if (unlikely(!prev_free_sectors))
2310 		wake_up_locked(&ic->endio_wait);
2311 
2312 	spin_unlock_irq(&ic->endio_wait.lock);
2313 }
2314 
2315 static void recalc_write_super(struct dm_integrity_c *ic)
2316 {
2317 	int r;
2318 
2319 	dm_integrity_flush_buffers(ic);
2320 	if (dm_integrity_failed(ic))
2321 		return;
2322 
2323 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2324 	if (unlikely(r))
2325 		dm_integrity_io_error(ic, "writing superblock", r);
2326 }
2327 
2328 static void integrity_recalc(struct work_struct *w)
2329 {
2330 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2331 	struct dm_integrity_range range;
2332 	struct dm_io_request io_req;
2333 	struct dm_io_region io_loc;
2334 	sector_t area, offset;
2335 	sector_t metadata_block;
2336 	unsigned metadata_offset;
2337 	sector_t logical_sector, n_sectors;
2338 	__u8 *t;
2339 	unsigned i;
2340 	int r;
2341 	unsigned super_counter = 0;
2342 
2343 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2344 
2345 	spin_lock_irq(&ic->endio_wait.lock);
2346 
2347 next_chunk:
2348 
2349 	if (unlikely(READ_ONCE(ic->suspending)))
2350 		goto unlock_ret;
2351 
2352 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2353 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2354 		if (ic->mode == 'B') {
2355 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2356 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2357 		}
2358 		goto unlock_ret;
2359 	}
2360 
2361 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2362 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2363 	if (!ic->meta_dev)
2364 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2365 
2366 	add_new_range_and_wait(ic, &range);
2367 	spin_unlock_irq(&ic->endio_wait.lock);
2368 	logical_sector = range.logical_sector;
2369 	n_sectors = range.n_sectors;
2370 
2371 	if (ic->mode == 'B') {
2372 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2373 			goto advance_and_next;
2374 		}
2375 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2376 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2377 			logical_sector += ic->sectors_per_block;
2378 			n_sectors -= ic->sectors_per_block;
2379 			cond_resched();
2380 		}
2381 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2382 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2383 			n_sectors -= ic->sectors_per_block;
2384 			cond_resched();
2385 		}
2386 		get_area_and_offset(ic, logical_sector, &area, &offset);
2387 	}
2388 
2389 	DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors);
2390 
2391 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2392 		recalc_write_super(ic);
2393 		if (ic->mode == 'B') {
2394 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2395 		}
2396 		super_counter = 0;
2397 	}
2398 
2399 	if (unlikely(dm_integrity_failed(ic)))
2400 		goto err;
2401 
2402 	io_req.bi_op = REQ_OP_READ;
2403 	io_req.bi_op_flags = 0;
2404 	io_req.mem.type = DM_IO_VMA;
2405 	io_req.mem.ptr.addr = ic->recalc_buffer;
2406 	io_req.notify.fn = NULL;
2407 	io_req.client = ic->io;
2408 	io_loc.bdev = ic->dev->bdev;
2409 	io_loc.sector = get_data_sector(ic, area, offset);
2410 	io_loc.count = n_sectors;
2411 
2412 	r = dm_io(&io_req, 1, &io_loc, NULL);
2413 	if (unlikely(r)) {
2414 		dm_integrity_io_error(ic, "reading data", r);
2415 		goto err;
2416 	}
2417 
2418 	t = ic->recalc_tags;
2419 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2420 		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2421 		t += ic->tag_size;
2422 	}
2423 
2424 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2425 
2426 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2427 	if (unlikely(r)) {
2428 		dm_integrity_io_error(ic, "writing tags", r);
2429 		goto err;
2430 	}
2431 
2432 advance_and_next:
2433 	cond_resched();
2434 
2435 	spin_lock_irq(&ic->endio_wait.lock);
2436 	remove_range_unlocked(ic, &range);
2437 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2438 	goto next_chunk;
2439 
2440 err:
2441 	remove_range(ic, &range);
2442 	return;
2443 
2444 unlock_ret:
2445 	spin_unlock_irq(&ic->endio_wait.lock);
2446 
2447 	recalc_write_super(ic);
2448 }
2449 
2450 static void bitmap_block_work(struct work_struct *w)
2451 {
2452 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2453 	struct dm_integrity_c *ic = bbs->ic;
2454 	struct bio *bio;
2455 	struct bio_list bio_queue;
2456 	struct bio_list waiting;
2457 
2458 	bio_list_init(&waiting);
2459 
2460 	spin_lock(&bbs->bio_queue_lock);
2461 	bio_queue = bbs->bio_queue;
2462 	bio_list_init(&bbs->bio_queue);
2463 	spin_unlock(&bbs->bio_queue_lock);
2464 
2465 	while ((bio = bio_list_pop(&bio_queue))) {
2466 		struct dm_integrity_io *dio;
2467 
2468 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2469 
2470 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2471 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2472 			remove_range(ic, &dio->range);
2473 			INIT_WORK(&dio->work, integrity_bio_wait);
2474 			queue_work(ic->wait_wq, &dio->work);
2475 		} else {
2476 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2477 					dio->range.n_sectors, BITMAP_OP_SET);
2478 			bio_list_add(&waiting, bio);
2479 		}
2480 	}
2481 
2482 	if (bio_list_empty(&waiting))
2483 		return;
2484 
2485 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2486 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2487 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2488 
2489 	while ((bio = bio_list_pop(&waiting))) {
2490 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2491 
2492 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2493 				dio->range.n_sectors, BITMAP_OP_SET);
2494 
2495 		remove_range(ic, &dio->range);
2496 		INIT_WORK(&dio->work, integrity_bio_wait);
2497 		queue_work(ic->wait_wq, &dio->work);
2498 	}
2499 
2500 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2501 }
2502 
2503 static void bitmap_flush_work(struct work_struct *work)
2504 {
2505 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2506 	struct dm_integrity_range range;
2507 	unsigned long limit;
2508 	struct bio *bio;
2509 
2510 	dm_integrity_flush_buffers(ic);
2511 
2512 	range.logical_sector = 0;
2513 	range.n_sectors = ic->provided_data_sectors;
2514 
2515 	spin_lock_irq(&ic->endio_wait.lock);
2516 	add_new_range_and_wait(ic, &range);
2517 	spin_unlock_irq(&ic->endio_wait.lock);
2518 
2519 	dm_integrity_flush_buffers(ic);
2520 	if (ic->meta_dev)
2521 		blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL);
2522 
2523 	limit = ic->provided_data_sectors;
2524 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2525 		limit = le64_to_cpu(ic->sb->recalc_sector)
2526 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2527 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2528 	}
2529 	/*DEBUG_print("zeroing journal\n");*/
2530 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2531 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2532 
2533 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2534 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2535 
2536 	spin_lock_irq(&ic->endio_wait.lock);
2537 	remove_range_unlocked(ic, &range);
2538 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2539 		bio_endio(bio);
2540 		spin_unlock_irq(&ic->endio_wait.lock);
2541 		spin_lock_irq(&ic->endio_wait.lock);
2542 	}
2543 	spin_unlock_irq(&ic->endio_wait.lock);
2544 }
2545 
2546 
2547 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2548 			 unsigned n_sections, unsigned char commit_seq)
2549 {
2550 	unsigned i, j, n;
2551 
2552 	if (!n_sections)
2553 		return;
2554 
2555 	for (n = 0; n < n_sections; n++) {
2556 		i = start_section + n;
2557 		wraparound_section(ic, &i);
2558 		for (j = 0; j < ic->journal_section_sectors; j++) {
2559 			struct journal_sector *js = access_journal(ic, i, j);
2560 			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2561 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2562 		}
2563 		for (j = 0; j < ic->journal_section_entries; j++) {
2564 			struct journal_entry *je = access_journal_entry(ic, i, j);
2565 			journal_entry_set_unused(je);
2566 		}
2567 	}
2568 
2569 	write_journal(ic, start_section, n_sections);
2570 }
2571 
2572 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2573 {
2574 	unsigned char k;
2575 	for (k = 0; k < N_COMMIT_IDS; k++) {
2576 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2577 			return k;
2578 	}
2579 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2580 	return -EIO;
2581 }
2582 
2583 static void replay_journal(struct dm_integrity_c *ic)
2584 {
2585 	unsigned i, j;
2586 	bool used_commit_ids[N_COMMIT_IDS];
2587 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2588 	unsigned write_start, write_sections;
2589 	unsigned continue_section;
2590 	bool journal_empty;
2591 	unsigned char unused, last_used, want_commit_seq;
2592 
2593 	if (ic->mode == 'R')
2594 		return;
2595 
2596 	if (ic->journal_uptodate)
2597 		return;
2598 
2599 	last_used = 0;
2600 	write_start = 0;
2601 
2602 	if (!ic->just_formatted) {
2603 		DEBUG_print("reading journal\n");
2604 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2605 		if (ic->journal_io)
2606 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2607 		if (ic->journal_io) {
2608 			struct journal_completion crypt_comp;
2609 			crypt_comp.ic = ic;
2610 			init_completion(&crypt_comp.comp);
2611 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2612 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2613 			wait_for_completion(&crypt_comp.comp);
2614 		}
2615 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2616 	}
2617 
2618 	if (dm_integrity_failed(ic))
2619 		goto clear_journal;
2620 
2621 	journal_empty = true;
2622 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2623 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2624 	for (i = 0; i < ic->journal_sections; i++) {
2625 		for (j = 0; j < ic->journal_section_sectors; j++) {
2626 			int k;
2627 			struct journal_sector *js = access_journal(ic, i, j);
2628 			k = find_commit_seq(ic, i, j, js->commit_id);
2629 			if (k < 0)
2630 				goto clear_journal;
2631 			used_commit_ids[k] = true;
2632 			max_commit_id_sections[k] = i;
2633 		}
2634 		if (journal_empty) {
2635 			for (j = 0; j < ic->journal_section_entries; j++) {
2636 				struct journal_entry *je = access_journal_entry(ic, i, j);
2637 				if (!journal_entry_is_unused(je)) {
2638 					journal_empty = false;
2639 					break;
2640 				}
2641 			}
2642 		}
2643 	}
2644 
2645 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2646 		unused = N_COMMIT_IDS - 1;
2647 		while (unused && !used_commit_ids[unused - 1])
2648 			unused--;
2649 	} else {
2650 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2651 			if (!used_commit_ids[unused])
2652 				break;
2653 		if (unused == N_COMMIT_IDS) {
2654 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2655 			goto clear_journal;
2656 		}
2657 	}
2658 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2659 		    unused, used_commit_ids[0], used_commit_ids[1],
2660 		    used_commit_ids[2], used_commit_ids[3]);
2661 
2662 	last_used = prev_commit_seq(unused);
2663 	want_commit_seq = prev_commit_seq(last_used);
2664 
2665 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2666 		journal_empty = true;
2667 
2668 	write_start = max_commit_id_sections[last_used] + 1;
2669 	if (unlikely(write_start >= ic->journal_sections))
2670 		want_commit_seq = next_commit_seq(want_commit_seq);
2671 	wraparound_section(ic, &write_start);
2672 
2673 	i = write_start;
2674 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2675 		for (j = 0; j < ic->journal_section_sectors; j++) {
2676 			struct journal_sector *js = access_journal(ic, i, j);
2677 
2678 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2679 				/*
2680 				 * This could be caused by crash during writing.
2681 				 * We won't replay the inconsistent part of the
2682 				 * journal.
2683 				 */
2684 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2685 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2686 				goto brk;
2687 			}
2688 		}
2689 		i++;
2690 		if (unlikely(i >= ic->journal_sections))
2691 			want_commit_seq = next_commit_seq(want_commit_seq);
2692 		wraparound_section(ic, &i);
2693 	}
2694 brk:
2695 
2696 	if (!journal_empty) {
2697 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2698 			    write_sections, write_start, want_commit_seq);
2699 		do_journal_write(ic, write_start, write_sections, true);
2700 	}
2701 
2702 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2703 		continue_section = write_start;
2704 		ic->commit_seq = want_commit_seq;
2705 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2706 	} else {
2707 		unsigned s;
2708 		unsigned char erase_seq;
2709 clear_journal:
2710 		DEBUG_print("clearing journal\n");
2711 
2712 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2713 		s = write_start;
2714 		init_journal(ic, s, 1, erase_seq);
2715 		s++;
2716 		wraparound_section(ic, &s);
2717 		if (ic->journal_sections >= 2) {
2718 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2719 			s += ic->journal_sections - 2;
2720 			wraparound_section(ic, &s);
2721 			init_journal(ic, s, 1, erase_seq);
2722 		}
2723 
2724 		continue_section = 0;
2725 		ic->commit_seq = next_commit_seq(erase_seq);
2726 	}
2727 
2728 	ic->committed_section = continue_section;
2729 	ic->n_committed_sections = 0;
2730 
2731 	ic->uncommitted_section = continue_section;
2732 	ic->n_uncommitted_sections = 0;
2733 
2734 	ic->free_section = continue_section;
2735 	ic->free_section_entry = 0;
2736 	ic->free_sectors = ic->journal_entries;
2737 
2738 	ic->journal_tree_root = RB_ROOT;
2739 	for (i = 0; i < ic->journal_entries; i++)
2740 		init_journal_node(&ic->journal_tree[i]);
2741 }
2742 
2743 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2744 {
2745 	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2746 
2747 	if (ic->mode == 'B') {
2748 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2749 		ic->synchronous_mode = 1;
2750 
2751 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2752 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2753 		flush_workqueue(ic->commit_wq);
2754 	}
2755 }
2756 
2757 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2758 {
2759 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2760 
2761 	DEBUG_print("dm_integrity_reboot\n");
2762 
2763 	dm_integrity_enter_synchronous_mode(ic);
2764 
2765 	return NOTIFY_DONE;
2766 }
2767 
2768 static void dm_integrity_postsuspend(struct dm_target *ti)
2769 {
2770 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2771 	int r;
2772 
2773 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2774 
2775 	del_timer_sync(&ic->autocommit_timer);
2776 
2777 	WRITE_ONCE(ic->suspending, 1);
2778 
2779 	if (ic->recalc_wq)
2780 		drain_workqueue(ic->recalc_wq);
2781 
2782 	if (ic->mode == 'B')
2783 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2784 
2785 	queue_work(ic->commit_wq, &ic->commit_work);
2786 	drain_workqueue(ic->commit_wq);
2787 
2788 	if (ic->mode == 'J') {
2789 		if (ic->meta_dev)
2790 			queue_work(ic->writer_wq, &ic->writer_work);
2791 		drain_workqueue(ic->writer_wq);
2792 		dm_integrity_flush_buffers(ic);
2793 	}
2794 
2795 	if (ic->mode == 'B') {
2796 		dm_integrity_flush_buffers(ic);
2797 #if 1
2798 		/* set to 0 to test bitmap replay code */
2799 		init_journal(ic, 0, ic->journal_sections, 0);
2800 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2801 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2802 		if (unlikely(r))
2803 			dm_integrity_io_error(ic, "writing superblock", r);
2804 #endif
2805 	}
2806 
2807 	WRITE_ONCE(ic->suspending, 0);
2808 
2809 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2810 
2811 	ic->journal_uptodate = true;
2812 }
2813 
2814 static void dm_integrity_resume(struct dm_target *ti)
2815 {
2816 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2817 	int r;
2818 	DEBUG_print("resume\n");
2819 
2820 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2821 		DEBUG_print("resume dirty_bitmap\n");
2822 		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2823 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2824 		if (ic->mode == 'B') {
2825 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2826 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2827 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2828 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2829 						     BITMAP_OP_TEST_ALL_CLEAR)) {
2830 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2831 					ic->sb->recalc_sector = cpu_to_le64(0);
2832 				}
2833 			} else {
2834 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2835 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2836 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2837 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2838 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2839 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2840 				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2841 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2842 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2843 				ic->sb->recalc_sector = cpu_to_le64(0);
2844 			}
2845 		} else {
2846 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
2847 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
2848 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2849 				ic->sb->recalc_sector = cpu_to_le64(0);
2850 			}
2851 			init_journal(ic, 0, ic->journal_sections, 0);
2852 			replay_journal(ic);
2853 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2854 		}
2855 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2856 		if (unlikely(r))
2857 			dm_integrity_io_error(ic, "writing superblock", r);
2858 	} else {
2859 		replay_journal(ic);
2860 		if (ic->mode == 'B') {
2861 			int mode;
2862 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2863 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2864 			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2865 			if (unlikely(r))
2866 				dm_integrity_io_error(ic, "writing superblock", r);
2867 
2868 			mode = ic->recalculate_flag ? BITMAP_OP_SET : BITMAP_OP_CLEAR;
2869 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, mode);
2870 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, mode);
2871 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, mode);
2872 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2873 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2874 		}
2875 	}
2876 
2877 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
2878 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2879 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2880 		DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors);
2881 		if (recalc_pos < ic->provided_data_sectors) {
2882 			queue_work(ic->recalc_wq, &ic->recalc_work);
2883 		} else if (recalc_pos > ic->provided_data_sectors) {
2884 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2885 			recalc_write_super(ic);
2886 		}
2887 	}
2888 
2889 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
2890 	ic->reboot_notifier.next = NULL;
2891 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
2892 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
2893 
2894 #if 0
2895 	/* set to 1 to stress test synchronous mode */
2896 	dm_integrity_enter_synchronous_mode(ic);
2897 #endif
2898 }
2899 
2900 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2901 				unsigned status_flags, char *result, unsigned maxlen)
2902 {
2903 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2904 	unsigned arg_count;
2905 	size_t sz = 0;
2906 
2907 	switch (type) {
2908 	case STATUSTYPE_INFO:
2909 		DMEMIT("%llu %llu",
2910 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
2911 			(unsigned long long)ic->provided_data_sectors);
2912 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2913 			DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2914 		else
2915 			DMEMIT(" -");
2916 		break;
2917 
2918 	case STATUSTYPE_TABLE: {
2919 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2920 		watermark_percentage += ic->journal_entries / 2;
2921 		do_div(watermark_percentage, ic->journal_entries);
2922 		arg_count = 3;
2923 		arg_count += !!ic->meta_dev;
2924 		arg_count += ic->sectors_per_block != 1;
2925 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2926 		arg_count += ic->mode == 'J';
2927 		arg_count += ic->mode == 'J';
2928 		arg_count += ic->mode == 'B';
2929 		arg_count += ic->mode == 'B';
2930 		arg_count += !!ic->internal_hash_alg.alg_string;
2931 		arg_count += !!ic->journal_crypt_alg.alg_string;
2932 		arg_count += !!ic->journal_mac_alg.alg_string;
2933 		DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2934 		       ic->tag_size, ic->mode, arg_count);
2935 		if (ic->meta_dev)
2936 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
2937 		if (ic->sectors_per_block != 1)
2938 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2939 		if (ic->recalculate_flag)
2940 			DMEMIT(" recalculate");
2941 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2942 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2943 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2944 		if (ic->mode == 'J') {
2945 			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2946 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
2947 		}
2948 		if (ic->mode == 'B') {
2949 			DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
2950 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
2951 		}
2952 
2953 #define EMIT_ALG(a, n)							\
2954 		do {							\
2955 			if (ic->a.alg_string) {				\
2956 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
2957 				if (ic->a.key_string)			\
2958 					DMEMIT(":%s", ic->a.key_string);\
2959 			}						\
2960 		} while (0)
2961 		EMIT_ALG(internal_hash_alg, "internal_hash");
2962 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
2963 		EMIT_ALG(journal_mac_alg, "journal_mac");
2964 		break;
2965 	}
2966 	}
2967 }
2968 
2969 static int dm_integrity_iterate_devices(struct dm_target *ti,
2970 					iterate_devices_callout_fn fn, void *data)
2971 {
2972 	struct dm_integrity_c *ic = ti->private;
2973 
2974 	if (!ic->meta_dev)
2975 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2976 	else
2977 		return fn(ti, ic->dev, 0, ti->len, data);
2978 }
2979 
2980 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2981 {
2982 	struct dm_integrity_c *ic = ti->private;
2983 
2984 	if (ic->sectors_per_block > 1) {
2985 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2986 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2987 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2988 	}
2989 }
2990 
2991 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2992 {
2993 	unsigned sector_space = JOURNAL_SECTOR_DATA;
2994 
2995 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2996 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2997 					 JOURNAL_ENTRY_ROUNDUP);
2998 
2999 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3000 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3001 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3002 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3003 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3004 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3005 }
3006 
3007 static int calculate_device_limits(struct dm_integrity_c *ic)
3008 {
3009 	__u64 initial_sectors;
3010 
3011 	calculate_journal_section_size(ic);
3012 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3013 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3014 		return -EINVAL;
3015 	ic->initial_sectors = initial_sectors;
3016 
3017 	if (!ic->meta_dev) {
3018 		sector_t last_sector, last_area, last_offset;
3019 
3020 		ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3021 					   (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
3022 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3023 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3024 		else
3025 			ic->log2_metadata_run = -1;
3026 
3027 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3028 		last_sector = get_data_sector(ic, last_area, last_offset);
3029 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3030 			return -EINVAL;
3031 	} else {
3032 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3033 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3034 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3035 		meta_size <<= ic->log2_buffer_sectors;
3036 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3037 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3038 			return -EINVAL;
3039 		ic->metadata_run = 1;
3040 		ic->log2_metadata_run = 0;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3047 {
3048 	unsigned journal_sections;
3049 	int test_bit;
3050 
3051 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3052 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3053 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3054 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3055 	if (ic->journal_mac_alg.alg_string)
3056 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3057 
3058 	calculate_journal_section_size(ic);
3059 	journal_sections = journal_sectors / ic->journal_section_sectors;
3060 	if (!journal_sections)
3061 		journal_sections = 1;
3062 
3063 	if (!ic->meta_dev) {
3064 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3065 		if (!interleave_sectors)
3066 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3067 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3068 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3069 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3070 
3071 		ic->provided_data_sectors = 0;
3072 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3073 			__u64 prev_data_sectors = ic->provided_data_sectors;
3074 
3075 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3076 			if (calculate_device_limits(ic))
3077 				ic->provided_data_sectors = prev_data_sectors;
3078 		}
3079 		if (!ic->provided_data_sectors)
3080 			return -EINVAL;
3081 	} else {
3082 		ic->sb->log2_interleave_sectors = 0;
3083 		ic->provided_data_sectors = ic->data_device_sectors;
3084 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3085 
3086 try_smaller_buffer:
3087 		ic->sb->journal_sections = cpu_to_le32(0);
3088 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3089 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3090 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3091 			if (test_journal_sections > journal_sections)
3092 				continue;
3093 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3094 			if (calculate_device_limits(ic))
3095 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3096 
3097 		}
3098 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3099 			if (ic->log2_buffer_sectors > 3) {
3100 				ic->log2_buffer_sectors--;
3101 				goto try_smaller_buffer;
3102 			}
3103 			return -EINVAL;
3104 		}
3105 	}
3106 
3107 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3108 
3109 	sb_set_version(ic);
3110 
3111 	return 0;
3112 }
3113 
3114 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3115 {
3116 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3117 	struct blk_integrity bi;
3118 
3119 	memset(&bi, 0, sizeof(bi));
3120 	bi.profile = &dm_integrity_profile;
3121 	bi.tuple_size = ic->tag_size;
3122 	bi.tag_size = bi.tuple_size;
3123 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3124 
3125 	blk_integrity_register(disk, &bi);
3126 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3127 }
3128 
3129 static void dm_integrity_free_page_list(struct page_list *pl)
3130 {
3131 	unsigned i;
3132 
3133 	if (!pl)
3134 		return;
3135 	for (i = 0; pl[i].page; i++)
3136 		__free_page(pl[i].page);
3137 	kvfree(pl);
3138 }
3139 
3140 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3141 {
3142 	struct page_list *pl;
3143 	unsigned i;
3144 
3145 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3146 	if (!pl)
3147 		return NULL;
3148 
3149 	for (i = 0; i < n_pages; i++) {
3150 		pl[i].page = alloc_page(GFP_KERNEL);
3151 		if (!pl[i].page) {
3152 			dm_integrity_free_page_list(pl);
3153 			return NULL;
3154 		}
3155 		if (i)
3156 			pl[i - 1].next = &pl[i];
3157 	}
3158 	pl[i].page = NULL;
3159 	pl[i].next = NULL;
3160 
3161 	return pl;
3162 }
3163 
3164 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3165 {
3166 	unsigned i;
3167 	for (i = 0; i < ic->journal_sections; i++)
3168 		kvfree(sl[i]);
3169 	kvfree(sl);
3170 }
3171 
3172 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3173 								   struct page_list *pl)
3174 {
3175 	struct scatterlist **sl;
3176 	unsigned i;
3177 
3178 	sl = kvmalloc_array(ic->journal_sections,
3179 			    sizeof(struct scatterlist *),
3180 			    GFP_KERNEL | __GFP_ZERO);
3181 	if (!sl)
3182 		return NULL;
3183 
3184 	for (i = 0; i < ic->journal_sections; i++) {
3185 		struct scatterlist *s;
3186 		unsigned start_index, start_offset;
3187 		unsigned end_index, end_offset;
3188 		unsigned n_pages;
3189 		unsigned idx;
3190 
3191 		page_list_location(ic, i, 0, &start_index, &start_offset);
3192 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3193 				   &end_index, &end_offset);
3194 
3195 		n_pages = (end_index - start_index + 1);
3196 
3197 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3198 				   GFP_KERNEL);
3199 		if (!s) {
3200 			dm_integrity_free_journal_scatterlist(ic, sl);
3201 			return NULL;
3202 		}
3203 
3204 		sg_init_table(s, n_pages);
3205 		for (idx = start_index; idx <= end_index; idx++) {
3206 			char *va = lowmem_page_address(pl[idx].page);
3207 			unsigned start = 0, end = PAGE_SIZE;
3208 			if (idx == start_index)
3209 				start = start_offset;
3210 			if (idx == end_index)
3211 				end = end_offset + (1 << SECTOR_SHIFT);
3212 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3213 		}
3214 
3215 		sl[i] = s;
3216 	}
3217 
3218 	return sl;
3219 }
3220 
3221 static void free_alg(struct alg_spec *a)
3222 {
3223 	kzfree(a->alg_string);
3224 	kzfree(a->key);
3225 	memset(a, 0, sizeof *a);
3226 }
3227 
3228 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3229 {
3230 	char *k;
3231 
3232 	free_alg(a);
3233 
3234 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3235 	if (!a->alg_string)
3236 		goto nomem;
3237 
3238 	k = strchr(a->alg_string, ':');
3239 	if (k) {
3240 		*k = 0;
3241 		a->key_string = k + 1;
3242 		if (strlen(a->key_string) & 1)
3243 			goto inval;
3244 
3245 		a->key_size = strlen(a->key_string) / 2;
3246 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3247 		if (!a->key)
3248 			goto nomem;
3249 		if (hex2bin(a->key, a->key_string, a->key_size))
3250 			goto inval;
3251 	}
3252 
3253 	return 0;
3254 inval:
3255 	*error = error_inval;
3256 	return -EINVAL;
3257 nomem:
3258 	*error = "Out of memory for an argument";
3259 	return -ENOMEM;
3260 }
3261 
3262 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3263 		   char *error_alg, char *error_key)
3264 {
3265 	int r;
3266 
3267 	if (a->alg_string) {
3268 		*hash = crypto_alloc_shash(a->alg_string, 0, 0);
3269 		if (IS_ERR(*hash)) {
3270 			*error = error_alg;
3271 			r = PTR_ERR(*hash);
3272 			*hash = NULL;
3273 			return r;
3274 		}
3275 
3276 		if (a->key) {
3277 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3278 			if (r) {
3279 				*error = error_key;
3280 				return r;
3281 			}
3282 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3283 			*error = error_key;
3284 			return -ENOKEY;
3285 		}
3286 	}
3287 
3288 	return 0;
3289 }
3290 
3291 static int create_journal(struct dm_integrity_c *ic, char **error)
3292 {
3293 	int r = 0;
3294 	unsigned i;
3295 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3296 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3297 	struct skcipher_request *req = NULL;
3298 
3299 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3300 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3301 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3302 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3303 
3304 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3305 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3306 	journal_desc_size = journal_pages * sizeof(struct page_list);
3307 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3308 		*error = "Journal doesn't fit into memory";
3309 		r = -ENOMEM;
3310 		goto bad;
3311 	}
3312 	ic->journal_pages = journal_pages;
3313 
3314 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3315 	if (!ic->journal) {
3316 		*error = "Could not allocate memory for journal";
3317 		r = -ENOMEM;
3318 		goto bad;
3319 	}
3320 	if (ic->journal_crypt_alg.alg_string) {
3321 		unsigned ivsize, blocksize;
3322 		struct journal_completion comp;
3323 
3324 		comp.ic = ic;
3325 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
3326 		if (IS_ERR(ic->journal_crypt)) {
3327 			*error = "Invalid journal cipher";
3328 			r = PTR_ERR(ic->journal_crypt);
3329 			ic->journal_crypt = NULL;
3330 			goto bad;
3331 		}
3332 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3333 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3334 
3335 		if (ic->journal_crypt_alg.key) {
3336 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3337 						   ic->journal_crypt_alg.key_size);
3338 			if (r) {
3339 				*error = "Error setting encryption key";
3340 				goto bad;
3341 			}
3342 		}
3343 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3344 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3345 
3346 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3347 		if (!ic->journal_io) {
3348 			*error = "Could not allocate memory for journal io";
3349 			r = -ENOMEM;
3350 			goto bad;
3351 		}
3352 
3353 		if (blocksize == 1) {
3354 			struct scatterlist *sg;
3355 
3356 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3357 			if (!req) {
3358 				*error = "Could not allocate crypt request";
3359 				r = -ENOMEM;
3360 				goto bad;
3361 			}
3362 
3363 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3364 			if (!crypt_iv) {
3365 				*error = "Could not allocate iv";
3366 				r = -ENOMEM;
3367 				goto bad;
3368 			}
3369 
3370 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3371 			if (!ic->journal_xor) {
3372 				*error = "Could not allocate memory for journal xor";
3373 				r = -ENOMEM;
3374 				goto bad;
3375 			}
3376 
3377 			sg = kvmalloc_array(ic->journal_pages + 1,
3378 					    sizeof(struct scatterlist),
3379 					    GFP_KERNEL);
3380 			if (!sg) {
3381 				*error = "Unable to allocate sg list";
3382 				r = -ENOMEM;
3383 				goto bad;
3384 			}
3385 			sg_init_table(sg, ic->journal_pages + 1);
3386 			for (i = 0; i < ic->journal_pages; i++) {
3387 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3388 				clear_page(va);
3389 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3390 			}
3391 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3392 
3393 			skcipher_request_set_crypt(req, sg, sg,
3394 						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3395 			init_completion(&comp.comp);
3396 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3397 			if (do_crypt(true, req, &comp))
3398 				wait_for_completion(&comp.comp);
3399 			kvfree(sg);
3400 			r = dm_integrity_failed(ic);
3401 			if (r) {
3402 				*error = "Unable to encrypt journal";
3403 				goto bad;
3404 			}
3405 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3406 
3407 			crypto_free_skcipher(ic->journal_crypt);
3408 			ic->journal_crypt = NULL;
3409 		} else {
3410 			unsigned crypt_len = roundup(ivsize, blocksize);
3411 
3412 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3413 			if (!req) {
3414 				*error = "Could not allocate crypt request";
3415 				r = -ENOMEM;
3416 				goto bad;
3417 			}
3418 
3419 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3420 			if (!crypt_iv) {
3421 				*error = "Could not allocate iv";
3422 				r = -ENOMEM;
3423 				goto bad;
3424 			}
3425 
3426 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3427 			if (!crypt_data) {
3428 				*error = "Unable to allocate crypt data";
3429 				r = -ENOMEM;
3430 				goto bad;
3431 			}
3432 
3433 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3434 			if (!ic->journal_scatterlist) {
3435 				*error = "Unable to allocate sg list";
3436 				r = -ENOMEM;
3437 				goto bad;
3438 			}
3439 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3440 			if (!ic->journal_io_scatterlist) {
3441 				*error = "Unable to allocate sg list";
3442 				r = -ENOMEM;
3443 				goto bad;
3444 			}
3445 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3446 							 sizeof(struct skcipher_request *),
3447 							 GFP_KERNEL | __GFP_ZERO);
3448 			if (!ic->sk_requests) {
3449 				*error = "Unable to allocate sk requests";
3450 				r = -ENOMEM;
3451 				goto bad;
3452 			}
3453 			for (i = 0; i < ic->journal_sections; i++) {
3454 				struct scatterlist sg;
3455 				struct skcipher_request *section_req;
3456 				__u32 section_le = cpu_to_le32(i);
3457 
3458 				memset(crypt_iv, 0x00, ivsize);
3459 				memset(crypt_data, 0x00, crypt_len);
3460 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3461 
3462 				sg_init_one(&sg, crypt_data, crypt_len);
3463 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3464 				init_completion(&comp.comp);
3465 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3466 				if (do_crypt(true, req, &comp))
3467 					wait_for_completion(&comp.comp);
3468 
3469 				r = dm_integrity_failed(ic);
3470 				if (r) {
3471 					*error = "Unable to generate iv";
3472 					goto bad;
3473 				}
3474 
3475 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3476 				if (!section_req) {
3477 					*error = "Unable to allocate crypt request";
3478 					r = -ENOMEM;
3479 					goto bad;
3480 				}
3481 				section_req->iv = kmalloc_array(ivsize, 2,
3482 								GFP_KERNEL);
3483 				if (!section_req->iv) {
3484 					skcipher_request_free(section_req);
3485 					*error = "Unable to allocate iv";
3486 					r = -ENOMEM;
3487 					goto bad;
3488 				}
3489 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3490 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3491 				ic->sk_requests[i] = section_req;
3492 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3493 			}
3494 		}
3495 	}
3496 
3497 	for (i = 0; i < N_COMMIT_IDS; i++) {
3498 		unsigned j;
3499 retest_commit_id:
3500 		for (j = 0; j < i; j++) {
3501 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3502 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3503 				goto retest_commit_id;
3504 			}
3505 		}
3506 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3507 	}
3508 
3509 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3510 	if (journal_tree_size > ULONG_MAX) {
3511 		*error = "Journal doesn't fit into memory";
3512 		r = -ENOMEM;
3513 		goto bad;
3514 	}
3515 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3516 	if (!ic->journal_tree) {
3517 		*error = "Could not allocate memory for journal tree";
3518 		r = -ENOMEM;
3519 	}
3520 bad:
3521 	kfree(crypt_data);
3522 	kfree(crypt_iv);
3523 	skcipher_request_free(req);
3524 
3525 	return r;
3526 }
3527 
3528 /*
3529  * Construct a integrity mapping
3530  *
3531  * Arguments:
3532  *	device
3533  *	offset from the start of the device
3534  *	tag size
3535  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3536  *	number of optional arguments
3537  *	optional arguments:
3538  *		journal_sectors
3539  *		interleave_sectors
3540  *		buffer_sectors
3541  *		journal_watermark
3542  *		commit_time
3543  *		meta_device
3544  *		block_size
3545  *		sectors_per_bit
3546  *		bitmap_flush_interval
3547  *		internal_hash
3548  *		journal_crypt
3549  *		journal_mac
3550  *		recalculate
3551  */
3552 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3553 {
3554 	struct dm_integrity_c *ic;
3555 	char dummy;
3556 	int r;
3557 	unsigned extra_args;
3558 	struct dm_arg_set as;
3559 	static const struct dm_arg _args[] = {
3560 		{0, 9, "Invalid number of feature args"},
3561 	};
3562 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3563 	bool should_write_sb;
3564 	__u64 threshold;
3565 	unsigned long long start;
3566 	__s8 log2_sectors_per_bitmap_bit = -1;
3567 	__s8 log2_blocks_per_bitmap_bit;
3568 	__u64 bits_in_journal;
3569 	__u64 n_bitmap_bits;
3570 
3571 #define DIRECT_ARGUMENTS	4
3572 
3573 	if (argc <= DIRECT_ARGUMENTS) {
3574 		ti->error = "Invalid argument count";
3575 		return -EINVAL;
3576 	}
3577 
3578 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3579 	if (!ic) {
3580 		ti->error = "Cannot allocate integrity context";
3581 		return -ENOMEM;
3582 	}
3583 	ti->private = ic;
3584 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3585 
3586 	ic->in_progress = RB_ROOT;
3587 	INIT_LIST_HEAD(&ic->wait_list);
3588 	init_waitqueue_head(&ic->endio_wait);
3589 	bio_list_init(&ic->flush_bio_list);
3590 	init_waitqueue_head(&ic->copy_to_journal_wait);
3591 	init_completion(&ic->crypto_backoff);
3592 	atomic64_set(&ic->number_of_mismatches, 0);
3593 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3594 
3595 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3596 	if (r) {
3597 		ti->error = "Device lookup failed";
3598 		goto bad;
3599 	}
3600 
3601 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3602 		ti->error = "Invalid starting offset";
3603 		r = -EINVAL;
3604 		goto bad;
3605 	}
3606 	ic->start = start;
3607 
3608 	if (strcmp(argv[2], "-")) {
3609 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3610 			ti->error = "Invalid tag size";
3611 			r = -EINVAL;
3612 			goto bad;
3613 		}
3614 	}
3615 
3616 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3617 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3618 		ic->mode = argv[3][0];
3619 	} else {
3620 		ti->error = "Invalid mode (expecting J, B, D, R)";
3621 		r = -EINVAL;
3622 		goto bad;
3623 	}
3624 
3625 	journal_sectors = 0;
3626 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3627 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
3628 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3629 	sync_msec = DEFAULT_SYNC_MSEC;
3630 	ic->sectors_per_block = 1;
3631 
3632 	as.argc = argc - DIRECT_ARGUMENTS;
3633 	as.argv = argv + DIRECT_ARGUMENTS;
3634 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3635 	if (r)
3636 		goto bad;
3637 
3638 	while (extra_args--) {
3639 		const char *opt_string;
3640 		unsigned val;
3641 		unsigned long long llval;
3642 		opt_string = dm_shift_arg(&as);
3643 		if (!opt_string) {
3644 			r = -EINVAL;
3645 			ti->error = "Not enough feature arguments";
3646 			goto bad;
3647 		}
3648 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3649 			journal_sectors = val ? val : 1;
3650 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3651 			interleave_sectors = val;
3652 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3653 			buffer_sectors = val;
3654 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3655 			journal_watermark = val;
3656 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3657 			sync_msec = val;
3658 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3659 			if (ic->meta_dev) {
3660 				dm_put_device(ti, ic->meta_dev);
3661 				ic->meta_dev = NULL;
3662 			}
3663 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3664 					  dm_table_get_mode(ti->table), &ic->meta_dev);
3665 			if (r) {
3666 				ti->error = "Device lookup failed";
3667 				goto bad;
3668 			}
3669 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3670 			if (val < 1 << SECTOR_SHIFT ||
3671 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3672 			    (val & (val -1))) {
3673 				r = -EINVAL;
3674 				ti->error = "Invalid block_size argument";
3675 				goto bad;
3676 			}
3677 			ic->sectors_per_block = val >> SECTOR_SHIFT;
3678 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3679 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3680 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3681 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3682 				r = -EINVAL;
3683 				ti->error = "Invalid bitmap_flush_interval argument";
3684 			}
3685 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
3686 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3687 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3688 					    "Invalid internal_hash argument");
3689 			if (r)
3690 				goto bad;
3691 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3692 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3693 					    "Invalid journal_crypt argument");
3694 			if (r)
3695 				goto bad;
3696 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3697 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3698 					    "Invalid journal_mac argument");
3699 			if (r)
3700 				goto bad;
3701 		} else if (!strcmp(opt_string, "recalculate")) {
3702 			ic->recalculate_flag = true;
3703 		} else {
3704 			r = -EINVAL;
3705 			ti->error = "Invalid argument";
3706 			goto bad;
3707 		}
3708 	}
3709 
3710 	ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3711 	if (!ic->meta_dev)
3712 		ic->meta_device_sectors = ic->data_device_sectors;
3713 	else
3714 		ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3715 
3716 	if (!journal_sectors) {
3717 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3718 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3719 	}
3720 
3721 	if (!buffer_sectors)
3722 		buffer_sectors = 1;
3723 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3724 
3725 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3726 		    "Invalid internal hash", "Error setting internal hash key");
3727 	if (r)
3728 		goto bad;
3729 
3730 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3731 		    "Invalid journal mac", "Error setting journal mac key");
3732 	if (r)
3733 		goto bad;
3734 
3735 	if (!ic->tag_size) {
3736 		if (!ic->internal_hash) {
3737 			ti->error = "Unknown tag size";
3738 			r = -EINVAL;
3739 			goto bad;
3740 		}
3741 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3742 	}
3743 	if (ic->tag_size > MAX_TAG_SIZE) {
3744 		ti->error = "Too big tag size";
3745 		r = -EINVAL;
3746 		goto bad;
3747 	}
3748 	if (!(ic->tag_size & (ic->tag_size - 1)))
3749 		ic->log2_tag_size = __ffs(ic->tag_size);
3750 	else
3751 		ic->log2_tag_size = -1;
3752 
3753 	if (ic->mode == 'B' && !ic->internal_hash) {
3754 		r = -EINVAL;
3755 		ti->error = "Bitmap mode can be only used with internal hash";
3756 		goto bad;
3757 	}
3758 
3759 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3760 	ic->autocommit_msec = sync_msec;
3761 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3762 
3763 	ic->io = dm_io_client_create();
3764 	if (IS_ERR(ic->io)) {
3765 		r = PTR_ERR(ic->io);
3766 		ic->io = NULL;
3767 		ti->error = "Cannot allocate dm io";
3768 		goto bad;
3769 	}
3770 
3771 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3772 	if (r) {
3773 		ti->error = "Cannot allocate mempool";
3774 		goto bad;
3775 	}
3776 
3777 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3778 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3779 	if (!ic->metadata_wq) {
3780 		ti->error = "Cannot allocate workqueue";
3781 		r = -ENOMEM;
3782 		goto bad;
3783 	}
3784 
3785 	/*
3786 	 * If this workqueue were percpu, it would cause bio reordering
3787 	 * and reduced performance.
3788 	 */
3789 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3790 	if (!ic->wait_wq) {
3791 		ti->error = "Cannot allocate workqueue";
3792 		r = -ENOMEM;
3793 		goto bad;
3794 	}
3795 
3796 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3797 	if (!ic->commit_wq) {
3798 		ti->error = "Cannot allocate workqueue";
3799 		r = -ENOMEM;
3800 		goto bad;
3801 	}
3802 	INIT_WORK(&ic->commit_work, integrity_commit);
3803 
3804 	if (ic->mode == 'J' || ic->mode == 'B') {
3805 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3806 		if (!ic->writer_wq) {
3807 			ti->error = "Cannot allocate workqueue";
3808 			r = -ENOMEM;
3809 			goto bad;
3810 		}
3811 		INIT_WORK(&ic->writer_work, integrity_writer);
3812 	}
3813 
3814 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3815 	if (!ic->sb) {
3816 		r = -ENOMEM;
3817 		ti->error = "Cannot allocate superblock area";
3818 		goto bad;
3819 	}
3820 
3821 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
3822 	if (r) {
3823 		ti->error = "Error reading superblock";
3824 		goto bad;
3825 	}
3826 	should_write_sb = false;
3827 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3828 		if (ic->mode != 'R') {
3829 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3830 				r = -EINVAL;
3831 				ti->error = "The device is not initialized";
3832 				goto bad;
3833 			}
3834 		}
3835 
3836 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3837 		if (r) {
3838 			ti->error = "Could not initialize superblock";
3839 			goto bad;
3840 		}
3841 		if (ic->mode != 'R')
3842 			should_write_sb = true;
3843 	}
3844 
3845 	if (!ic->sb->version || ic->sb->version > SB_VERSION_3) {
3846 		r = -EINVAL;
3847 		ti->error = "Unknown version";
3848 		goto bad;
3849 	}
3850 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3851 		r = -EINVAL;
3852 		ti->error = "Tag size doesn't match the information in superblock";
3853 		goto bad;
3854 	}
3855 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3856 		r = -EINVAL;
3857 		ti->error = "Block size doesn't match the information in superblock";
3858 		goto bad;
3859 	}
3860 	if (!le32_to_cpu(ic->sb->journal_sections)) {
3861 		r = -EINVAL;
3862 		ti->error = "Corrupted superblock, journal_sections is 0";
3863 		goto bad;
3864 	}
3865 	/* make sure that ti->max_io_len doesn't overflow */
3866 	if (!ic->meta_dev) {
3867 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3868 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3869 			r = -EINVAL;
3870 			ti->error = "Invalid interleave_sectors in the superblock";
3871 			goto bad;
3872 		}
3873 	} else {
3874 		if (ic->sb->log2_interleave_sectors) {
3875 			r = -EINVAL;
3876 			ti->error = "Invalid interleave_sectors in the superblock";
3877 			goto bad;
3878 		}
3879 	}
3880 	ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3881 	if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3882 		/* test for overflow */
3883 		r = -EINVAL;
3884 		ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3885 		goto bad;
3886 	}
3887 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3888 		r = -EINVAL;
3889 		ti->error = "Journal mac mismatch";
3890 		goto bad;
3891 	}
3892 
3893 try_smaller_buffer:
3894 	r = calculate_device_limits(ic);
3895 	if (r) {
3896 		if (ic->meta_dev) {
3897 			if (ic->log2_buffer_sectors > 3) {
3898 				ic->log2_buffer_sectors--;
3899 				goto try_smaller_buffer;
3900 			}
3901 		}
3902 		ti->error = "The device is too small";
3903 		goto bad;
3904 	}
3905 
3906 	if (log2_sectors_per_bitmap_bit < 0)
3907 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
3908 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
3909 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
3910 
3911 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
3912 	if (bits_in_journal > UINT_MAX)
3913 		bits_in_journal = UINT_MAX;
3914 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
3915 		log2_sectors_per_bitmap_bit++;
3916 
3917 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
3918 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3919 	if (should_write_sb) {
3920 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3921 	}
3922 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
3923 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
3924 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
3925 
3926 	if (!ic->meta_dev)
3927 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3928 
3929 	if (ti->len > ic->provided_data_sectors) {
3930 		r = -EINVAL;
3931 		ti->error = "Not enough provided sectors for requested mapping size";
3932 		goto bad;
3933 	}
3934 
3935 
3936 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3937 	threshold += 50;
3938 	do_div(threshold, 100);
3939 	ic->free_sectors_threshold = threshold;
3940 
3941 	DEBUG_print("initialized:\n");
3942 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3943 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
3944 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3945 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
3946 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
3947 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3948 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
3949 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3950 	DEBUG_print("	data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
3951 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
3952 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
3953 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
3954 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3955 		    (unsigned long long)ic->provided_data_sectors);
3956 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3957 	DEBUG_print("	bits_in_journal %llu\n", (unsigned long long)bits_in_journal);
3958 
3959 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
3960 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3961 		ic->sb->recalc_sector = cpu_to_le64(0);
3962 	}
3963 
3964 	if (ic->internal_hash) {
3965 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
3966 		if (!ic->recalc_wq ) {
3967 			ti->error = "Cannot allocate workqueue";
3968 			r = -ENOMEM;
3969 			goto bad;
3970 		}
3971 		INIT_WORK(&ic->recalc_work, integrity_recalc);
3972 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
3973 		if (!ic->recalc_buffer) {
3974 			ti->error = "Cannot allocate buffer for recalculating";
3975 			r = -ENOMEM;
3976 			goto bad;
3977 		}
3978 		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
3979 						 ic->tag_size, GFP_KERNEL);
3980 		if (!ic->recalc_tags) {
3981 			ti->error = "Cannot allocate tags for recalculating";
3982 			r = -ENOMEM;
3983 			goto bad;
3984 		}
3985 	}
3986 
3987 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
3988 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
3989 	if (IS_ERR(ic->bufio)) {
3990 		r = PTR_ERR(ic->bufio);
3991 		ti->error = "Cannot initialize dm-bufio";
3992 		ic->bufio = NULL;
3993 		goto bad;
3994 	}
3995 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3996 
3997 	if (ic->mode != 'R') {
3998 		r = create_journal(ic, &ti->error);
3999 		if (r)
4000 			goto bad;
4001 
4002 	}
4003 
4004 	if (ic->mode == 'B') {
4005 		unsigned i;
4006 		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4007 
4008 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4009 		if (!ic->recalc_bitmap) {
4010 			r = -ENOMEM;
4011 			goto bad;
4012 		}
4013 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4014 		if (!ic->may_write_bitmap) {
4015 			r = -ENOMEM;
4016 			goto bad;
4017 		}
4018 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4019 		if (!ic->bbs) {
4020 			r = -ENOMEM;
4021 			goto bad;
4022 		}
4023 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4024 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4025 			struct bitmap_block_status *bbs = &ic->bbs[i];
4026 			unsigned sector, pl_index, pl_offset;
4027 
4028 			INIT_WORK(&bbs->work, bitmap_block_work);
4029 			bbs->ic = ic;
4030 			bbs->idx = i;
4031 			bio_list_init(&bbs->bio_queue);
4032 			spin_lock_init(&bbs->bio_queue_lock);
4033 
4034 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4035 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4036 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4037 
4038 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4039 		}
4040 	}
4041 
4042 	if (should_write_sb) {
4043 		int r;
4044 
4045 		init_journal(ic, 0, ic->journal_sections, 0);
4046 		r = dm_integrity_failed(ic);
4047 		if (unlikely(r)) {
4048 			ti->error = "Error initializing journal";
4049 			goto bad;
4050 		}
4051 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4052 		if (r) {
4053 			ti->error = "Error initializing superblock";
4054 			goto bad;
4055 		}
4056 		ic->just_formatted = true;
4057 	}
4058 
4059 	if (!ic->meta_dev) {
4060 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4061 		if (r)
4062 			goto bad;
4063 	}
4064 	if (ic->mode == 'B') {
4065 		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4066 		if (!max_io_len)
4067 			max_io_len = 1U << 31;
4068 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4069 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4070 			r = dm_set_target_max_io_len(ti, max_io_len);
4071 			if (r)
4072 				goto bad;
4073 		}
4074 	}
4075 
4076 	if (!ic->internal_hash)
4077 		dm_integrity_set(ti, ic);
4078 
4079 	ti->num_flush_bios = 1;
4080 	ti->flush_supported = true;
4081 
4082 	return 0;
4083 
4084 bad:
4085 	dm_integrity_dtr(ti);
4086 	return r;
4087 }
4088 
4089 static void dm_integrity_dtr(struct dm_target *ti)
4090 {
4091 	struct dm_integrity_c *ic = ti->private;
4092 
4093 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4094 	BUG_ON(!list_empty(&ic->wait_list));
4095 
4096 	if (ic->metadata_wq)
4097 		destroy_workqueue(ic->metadata_wq);
4098 	if (ic->wait_wq)
4099 		destroy_workqueue(ic->wait_wq);
4100 	if (ic->commit_wq)
4101 		destroy_workqueue(ic->commit_wq);
4102 	if (ic->writer_wq)
4103 		destroy_workqueue(ic->writer_wq);
4104 	if (ic->recalc_wq)
4105 		destroy_workqueue(ic->recalc_wq);
4106 	vfree(ic->recalc_buffer);
4107 	kvfree(ic->recalc_tags);
4108 	kvfree(ic->bbs);
4109 	if (ic->bufio)
4110 		dm_bufio_client_destroy(ic->bufio);
4111 	mempool_exit(&ic->journal_io_mempool);
4112 	if (ic->io)
4113 		dm_io_client_destroy(ic->io);
4114 	if (ic->dev)
4115 		dm_put_device(ti, ic->dev);
4116 	if (ic->meta_dev)
4117 		dm_put_device(ti, ic->meta_dev);
4118 	dm_integrity_free_page_list(ic->journal);
4119 	dm_integrity_free_page_list(ic->journal_io);
4120 	dm_integrity_free_page_list(ic->journal_xor);
4121 	dm_integrity_free_page_list(ic->recalc_bitmap);
4122 	dm_integrity_free_page_list(ic->may_write_bitmap);
4123 	if (ic->journal_scatterlist)
4124 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4125 	if (ic->journal_io_scatterlist)
4126 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4127 	if (ic->sk_requests) {
4128 		unsigned i;
4129 
4130 		for (i = 0; i < ic->journal_sections; i++) {
4131 			struct skcipher_request *req = ic->sk_requests[i];
4132 			if (req) {
4133 				kzfree(req->iv);
4134 				skcipher_request_free(req);
4135 			}
4136 		}
4137 		kvfree(ic->sk_requests);
4138 	}
4139 	kvfree(ic->journal_tree);
4140 	if (ic->sb)
4141 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4142 
4143 	if (ic->internal_hash)
4144 		crypto_free_shash(ic->internal_hash);
4145 	free_alg(&ic->internal_hash_alg);
4146 
4147 	if (ic->journal_crypt)
4148 		crypto_free_skcipher(ic->journal_crypt);
4149 	free_alg(&ic->journal_crypt_alg);
4150 
4151 	if (ic->journal_mac)
4152 		crypto_free_shash(ic->journal_mac);
4153 	free_alg(&ic->journal_mac_alg);
4154 
4155 	kfree(ic);
4156 }
4157 
4158 static struct target_type integrity_target = {
4159 	.name			= "integrity",
4160 	.version		= {1, 3, 0},
4161 	.module			= THIS_MODULE,
4162 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4163 	.ctr			= dm_integrity_ctr,
4164 	.dtr			= dm_integrity_dtr,
4165 	.map			= dm_integrity_map,
4166 	.postsuspend		= dm_integrity_postsuspend,
4167 	.resume			= dm_integrity_resume,
4168 	.status			= dm_integrity_status,
4169 	.iterate_devices	= dm_integrity_iterate_devices,
4170 	.io_hints		= dm_integrity_io_hints,
4171 };
4172 
4173 static int __init dm_integrity_init(void)
4174 {
4175 	int r;
4176 
4177 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4178 					     sizeof(struct journal_io), 0, 0, NULL);
4179 	if (!journal_io_cache) {
4180 		DMERR("can't allocate journal io cache");
4181 		return -ENOMEM;
4182 	}
4183 
4184 	r = dm_register_target(&integrity_target);
4185 
4186 	if (r < 0)
4187 		DMERR("register failed %d", r);
4188 
4189 	return r;
4190 }
4191 
4192 static void __exit dm_integrity_exit(void)
4193 {
4194 	dm_unregister_target(&integrity_target);
4195 	kmem_cache_destroy(journal_io_cache);
4196 }
4197 
4198 module_init(dm_integrity_init);
4199 module_exit(dm_integrity_exit);
4200 
4201 MODULE_AUTHOR("Milan Broz");
4202 MODULE_AUTHOR("Mikulas Patocka");
4203 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4204 MODULE_LICENSE("GPL");
4205