xref: /openbmc/linux/drivers/md/dm-integrity.c (revision b4a6aaea)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bio-record.h"
10 
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25 
26 #include "dm-audit.h"
27 
28 #define DM_MSG_PREFIX "integrity"
29 
30 #define DEFAULT_INTERLEAVE_SECTORS	32768
31 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
32 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
33 #define DEFAULT_BUFFER_SECTORS		128
34 #define DEFAULT_JOURNAL_WATERMARK	50
35 #define DEFAULT_SYNC_MSEC		10000
36 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
37 #define MIN_LOG2_INTERLEAVE_SECTORS	3
38 #define MAX_LOG2_INTERLEAVE_SECTORS	31
39 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
40 #define RECALC_SECTORS			32768
41 #define RECALC_WRITE_SUPER		16
42 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
43 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
44 #define DISCARD_FILLER			0xf6
45 #define SALT_SIZE			16
46 
47 /*
48  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
49  * so it should not be enabled in the official kernel
50  */
51 //#define DEBUG_PRINT
52 //#define INTERNAL_VERIFY
53 
54 /*
55  * On disk structures
56  */
57 
58 #define SB_MAGIC			"integrt"
59 #define SB_VERSION_1			1
60 #define SB_VERSION_2			2
61 #define SB_VERSION_3			3
62 #define SB_VERSION_4			4
63 #define SB_VERSION_5			5
64 #define SB_SECTORS			8
65 #define MAX_SECTORS_PER_BLOCK		8
66 
67 struct superblock {
68 	__u8 magic[8];
69 	__u8 version;
70 	__u8 log2_interleave_sectors;
71 	__le16 integrity_tag_size;
72 	__le32 journal_sections;
73 	__le64 provided_data_sectors;	/* userspace uses this value */
74 	__le32 flags;
75 	__u8 log2_sectors_per_block;
76 	__u8 log2_blocks_per_bitmap_bit;
77 	__u8 pad[2];
78 	__le64 recalc_sector;
79 	__u8 pad2[8];
80 	__u8 salt[SALT_SIZE];
81 };
82 
83 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
84 #define SB_FLAG_RECALCULATING		0x2
85 #define SB_FLAG_DIRTY_BITMAP		0x4
86 #define SB_FLAG_FIXED_PADDING		0x8
87 #define SB_FLAG_FIXED_HMAC		0x10
88 
89 #define	JOURNAL_ENTRY_ROUNDUP		8
90 
91 typedef __le64 commit_id_t;
92 #define JOURNAL_MAC_PER_SECTOR		8
93 
94 struct journal_entry {
95 	union {
96 		struct {
97 			__le32 sector_lo;
98 			__le32 sector_hi;
99 		} s;
100 		__le64 sector;
101 	} u;
102 	commit_id_t last_bytes[];
103 	/* __u8 tag[0]; */
104 };
105 
106 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
107 
108 #if BITS_PER_LONG == 64
109 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
110 #else
111 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
112 #endif
113 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
114 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
115 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
116 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
117 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
118 
119 #define JOURNAL_BLOCK_SECTORS		8
120 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
121 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
122 
123 struct journal_sector {
124 	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
125 	__u8 mac[JOURNAL_MAC_PER_SECTOR];
126 	commit_id_t commit_id;
127 };
128 
129 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
130 
131 #define METADATA_PADDING_SECTORS	8
132 
133 #define N_COMMIT_IDS			4
134 
135 static unsigned char prev_commit_seq(unsigned char seq)
136 {
137 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
138 }
139 
140 static unsigned char next_commit_seq(unsigned char seq)
141 {
142 	return (seq + 1) % N_COMMIT_IDS;
143 }
144 
145 /*
146  * In-memory structures
147  */
148 
149 struct journal_node {
150 	struct rb_node node;
151 	sector_t sector;
152 };
153 
154 struct alg_spec {
155 	char *alg_string;
156 	char *key_string;
157 	__u8 *key;
158 	unsigned key_size;
159 };
160 
161 struct dm_integrity_c {
162 	struct dm_dev *dev;
163 	struct dm_dev *meta_dev;
164 	unsigned tag_size;
165 	__s8 log2_tag_size;
166 	sector_t start;
167 	mempool_t journal_io_mempool;
168 	struct dm_io_client *io;
169 	struct dm_bufio_client *bufio;
170 	struct workqueue_struct *metadata_wq;
171 	struct superblock *sb;
172 	unsigned journal_pages;
173 	unsigned n_bitmap_blocks;
174 
175 	struct page_list *journal;
176 	struct page_list *journal_io;
177 	struct page_list *journal_xor;
178 	struct page_list *recalc_bitmap;
179 	struct page_list *may_write_bitmap;
180 	struct bitmap_block_status *bbs;
181 	unsigned bitmap_flush_interval;
182 	int synchronous_mode;
183 	struct bio_list synchronous_bios;
184 	struct delayed_work bitmap_flush_work;
185 
186 	struct crypto_skcipher *journal_crypt;
187 	struct scatterlist **journal_scatterlist;
188 	struct scatterlist **journal_io_scatterlist;
189 	struct skcipher_request **sk_requests;
190 
191 	struct crypto_shash *journal_mac;
192 
193 	struct journal_node *journal_tree;
194 	struct rb_root journal_tree_root;
195 
196 	sector_t provided_data_sectors;
197 
198 	unsigned short journal_entry_size;
199 	unsigned char journal_entries_per_sector;
200 	unsigned char journal_section_entries;
201 	unsigned short journal_section_sectors;
202 	unsigned journal_sections;
203 	unsigned journal_entries;
204 	sector_t data_device_sectors;
205 	sector_t meta_device_sectors;
206 	unsigned initial_sectors;
207 	unsigned metadata_run;
208 	__s8 log2_metadata_run;
209 	__u8 log2_buffer_sectors;
210 	__u8 sectors_per_block;
211 	__u8 log2_blocks_per_bitmap_bit;
212 
213 	unsigned char mode;
214 
215 	int failed;
216 
217 	struct crypto_shash *internal_hash;
218 
219 	struct dm_target *ti;
220 
221 	/* these variables are locked with endio_wait.lock */
222 	struct rb_root in_progress;
223 	struct list_head wait_list;
224 	wait_queue_head_t endio_wait;
225 	struct workqueue_struct *wait_wq;
226 	struct workqueue_struct *offload_wq;
227 
228 	unsigned char commit_seq;
229 	commit_id_t commit_ids[N_COMMIT_IDS];
230 
231 	unsigned committed_section;
232 	unsigned n_committed_sections;
233 
234 	unsigned uncommitted_section;
235 	unsigned n_uncommitted_sections;
236 
237 	unsigned free_section;
238 	unsigned char free_section_entry;
239 	unsigned free_sectors;
240 
241 	unsigned free_sectors_threshold;
242 
243 	struct workqueue_struct *commit_wq;
244 	struct work_struct commit_work;
245 
246 	struct workqueue_struct *writer_wq;
247 	struct work_struct writer_work;
248 
249 	struct workqueue_struct *recalc_wq;
250 	struct work_struct recalc_work;
251 	u8 *recalc_buffer;
252 	u8 *recalc_tags;
253 
254 	struct bio_list flush_bio_list;
255 
256 	unsigned long autocommit_jiffies;
257 	struct timer_list autocommit_timer;
258 	unsigned autocommit_msec;
259 
260 	wait_queue_head_t copy_to_journal_wait;
261 
262 	struct completion crypto_backoff;
263 
264 	bool journal_uptodate;
265 	bool just_formatted;
266 	bool recalculate_flag;
267 	bool reset_recalculate_flag;
268 	bool discard;
269 	bool fix_padding;
270 	bool fix_hmac;
271 	bool legacy_recalculate;
272 
273 	struct alg_spec internal_hash_alg;
274 	struct alg_spec journal_crypt_alg;
275 	struct alg_spec journal_mac_alg;
276 
277 	atomic64_t number_of_mismatches;
278 
279 	struct notifier_block reboot_notifier;
280 };
281 
282 struct dm_integrity_range {
283 	sector_t logical_sector;
284 	sector_t n_sectors;
285 	bool waiting;
286 	union {
287 		struct rb_node node;
288 		struct {
289 			struct task_struct *task;
290 			struct list_head wait_entry;
291 		};
292 	};
293 };
294 
295 struct dm_integrity_io {
296 	struct work_struct work;
297 
298 	struct dm_integrity_c *ic;
299 	enum req_opf op;
300 	bool fua;
301 
302 	struct dm_integrity_range range;
303 
304 	sector_t metadata_block;
305 	unsigned metadata_offset;
306 
307 	atomic_t in_flight;
308 	blk_status_t bi_status;
309 
310 	struct completion *completion;
311 
312 	struct dm_bio_details bio_details;
313 };
314 
315 struct journal_completion {
316 	struct dm_integrity_c *ic;
317 	atomic_t in_flight;
318 	struct completion comp;
319 };
320 
321 struct journal_io {
322 	struct dm_integrity_range range;
323 	struct journal_completion *comp;
324 };
325 
326 struct bitmap_block_status {
327 	struct work_struct work;
328 	struct dm_integrity_c *ic;
329 	unsigned idx;
330 	unsigned long *bitmap;
331 	struct bio_list bio_queue;
332 	spinlock_t bio_queue_lock;
333 
334 };
335 
336 static struct kmem_cache *journal_io_cache;
337 
338 #define JOURNAL_IO_MEMPOOL	32
339 
340 #ifdef DEBUG_PRINT
341 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
342 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
343 {
344 	va_list args;
345 	va_start(args, msg);
346 	vprintk(msg, args);
347 	va_end(args);
348 	if (len)
349 		pr_cont(":");
350 	while (len) {
351 		pr_cont(" %02x", *bytes);
352 		bytes++;
353 		len--;
354 	}
355 	pr_cont("\n");
356 }
357 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
358 #else
359 #define DEBUG_print(x, ...)			do { } while (0)
360 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
361 #endif
362 
363 static void dm_integrity_prepare(struct request *rq)
364 {
365 }
366 
367 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
368 {
369 }
370 
371 /*
372  * DM Integrity profile, protection is performed layer above (dm-crypt)
373  */
374 static const struct blk_integrity_profile dm_integrity_profile = {
375 	.name			= "DM-DIF-EXT-TAG",
376 	.generate_fn		= NULL,
377 	.verify_fn		= NULL,
378 	.prepare_fn		= dm_integrity_prepare,
379 	.complete_fn		= dm_integrity_complete,
380 };
381 
382 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
383 static void integrity_bio_wait(struct work_struct *w);
384 static void dm_integrity_dtr(struct dm_target *ti);
385 
386 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
387 {
388 	if (err == -EILSEQ)
389 		atomic64_inc(&ic->number_of_mismatches);
390 	if (!cmpxchg(&ic->failed, 0, err))
391 		DMERR("Error on %s: %d", msg, err);
392 }
393 
394 static int dm_integrity_failed(struct dm_integrity_c *ic)
395 {
396 	return READ_ONCE(ic->failed);
397 }
398 
399 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
400 {
401 	if (ic->legacy_recalculate)
402 		return false;
403 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
404 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
405 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
406 		return true;
407 	return false;
408 }
409 
410 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
411 					  unsigned j, unsigned char seq)
412 {
413 	/*
414 	 * Xor the number with section and sector, so that if a piece of
415 	 * journal is written at wrong place, it is detected.
416 	 */
417 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
418 }
419 
420 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
421 				sector_t *area, sector_t *offset)
422 {
423 	if (!ic->meta_dev) {
424 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
425 		*area = data_sector >> log2_interleave_sectors;
426 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
427 	} else {
428 		*area = 0;
429 		*offset = data_sector;
430 	}
431 }
432 
433 #define sector_to_block(ic, n)						\
434 do {									\
435 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
436 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
437 } while (0)
438 
439 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
440 					    sector_t offset, unsigned *metadata_offset)
441 {
442 	__u64 ms;
443 	unsigned mo;
444 
445 	ms = area << ic->sb->log2_interleave_sectors;
446 	if (likely(ic->log2_metadata_run >= 0))
447 		ms += area << ic->log2_metadata_run;
448 	else
449 		ms += area * ic->metadata_run;
450 	ms >>= ic->log2_buffer_sectors;
451 
452 	sector_to_block(ic, offset);
453 
454 	if (likely(ic->log2_tag_size >= 0)) {
455 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
456 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
457 	} else {
458 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
459 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
460 	}
461 	*metadata_offset = mo;
462 	return ms;
463 }
464 
465 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
466 {
467 	sector_t result;
468 
469 	if (ic->meta_dev)
470 		return offset;
471 
472 	result = area << ic->sb->log2_interleave_sectors;
473 	if (likely(ic->log2_metadata_run >= 0))
474 		result += (area + 1) << ic->log2_metadata_run;
475 	else
476 		result += (area + 1) * ic->metadata_run;
477 
478 	result += (sector_t)ic->initial_sectors + offset;
479 	result += ic->start;
480 
481 	return result;
482 }
483 
484 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
485 {
486 	if (unlikely(*sec_ptr >= ic->journal_sections))
487 		*sec_ptr -= ic->journal_sections;
488 }
489 
490 static void sb_set_version(struct dm_integrity_c *ic)
491 {
492 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
493 		ic->sb->version = SB_VERSION_5;
494 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
495 		ic->sb->version = SB_VERSION_4;
496 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
497 		ic->sb->version = SB_VERSION_3;
498 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
499 		ic->sb->version = SB_VERSION_2;
500 	else
501 		ic->sb->version = SB_VERSION_1;
502 }
503 
504 static int sb_mac(struct dm_integrity_c *ic, bool wr)
505 {
506 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
507 	int r;
508 	unsigned size = crypto_shash_digestsize(ic->journal_mac);
509 
510 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
511 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
512 		return -EINVAL;
513 	}
514 
515 	desc->tfm = ic->journal_mac;
516 
517 	r = crypto_shash_init(desc);
518 	if (unlikely(r < 0)) {
519 		dm_integrity_io_error(ic, "crypto_shash_init", r);
520 		return r;
521 	}
522 
523 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
524 	if (unlikely(r < 0)) {
525 		dm_integrity_io_error(ic, "crypto_shash_update", r);
526 		return r;
527 	}
528 
529 	if (likely(wr)) {
530 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
531 		if (unlikely(r < 0)) {
532 			dm_integrity_io_error(ic, "crypto_shash_final", r);
533 			return r;
534 		}
535 	} else {
536 		__u8 result[HASH_MAX_DIGESTSIZE];
537 		r = crypto_shash_final(desc, result);
538 		if (unlikely(r < 0)) {
539 			dm_integrity_io_error(ic, "crypto_shash_final", r);
540 			return r;
541 		}
542 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
543 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
544 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
545 			return -EILSEQ;
546 		}
547 	}
548 
549 	return 0;
550 }
551 
552 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
553 {
554 	struct dm_io_request io_req;
555 	struct dm_io_region io_loc;
556 	int r;
557 
558 	io_req.bi_op = op;
559 	io_req.bi_op_flags = op_flags;
560 	io_req.mem.type = DM_IO_KMEM;
561 	io_req.mem.ptr.addr = ic->sb;
562 	io_req.notify.fn = NULL;
563 	io_req.client = ic->io;
564 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
565 	io_loc.sector = ic->start;
566 	io_loc.count = SB_SECTORS;
567 
568 	if (op == REQ_OP_WRITE) {
569 		sb_set_version(ic);
570 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
571 			r = sb_mac(ic, true);
572 			if (unlikely(r))
573 				return r;
574 		}
575 	}
576 
577 	r = dm_io(&io_req, 1, &io_loc, NULL);
578 	if (unlikely(r))
579 		return r;
580 
581 	if (op == REQ_OP_READ) {
582 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
583 			r = sb_mac(ic, false);
584 			if (unlikely(r))
585 				return r;
586 		}
587 	}
588 
589 	return 0;
590 }
591 
592 #define BITMAP_OP_TEST_ALL_SET		0
593 #define BITMAP_OP_TEST_ALL_CLEAR	1
594 #define BITMAP_OP_SET			2
595 #define BITMAP_OP_CLEAR			3
596 
597 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
598 			    sector_t sector, sector_t n_sectors, int mode)
599 {
600 	unsigned long bit, end_bit, this_end_bit, page, end_page;
601 	unsigned long *data;
602 
603 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
604 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
605 			sector,
606 			n_sectors,
607 			ic->sb->log2_sectors_per_block,
608 			ic->log2_blocks_per_bitmap_bit,
609 			mode);
610 		BUG();
611 	}
612 
613 	if (unlikely(!n_sectors))
614 		return true;
615 
616 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
617 	end_bit = (sector + n_sectors - 1) >>
618 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
619 
620 	page = bit / (PAGE_SIZE * 8);
621 	bit %= PAGE_SIZE * 8;
622 
623 	end_page = end_bit / (PAGE_SIZE * 8);
624 	end_bit %= PAGE_SIZE * 8;
625 
626 repeat:
627 	if (page < end_page) {
628 		this_end_bit = PAGE_SIZE * 8 - 1;
629 	} else {
630 		this_end_bit = end_bit;
631 	}
632 
633 	data = lowmem_page_address(bitmap[page].page);
634 
635 	if (mode == BITMAP_OP_TEST_ALL_SET) {
636 		while (bit <= this_end_bit) {
637 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
638 				do {
639 					if (data[bit / BITS_PER_LONG] != -1)
640 						return false;
641 					bit += BITS_PER_LONG;
642 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
643 				continue;
644 			}
645 			if (!test_bit(bit, data))
646 				return false;
647 			bit++;
648 		}
649 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
650 		while (bit <= this_end_bit) {
651 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
652 				do {
653 					if (data[bit / BITS_PER_LONG] != 0)
654 						return false;
655 					bit += BITS_PER_LONG;
656 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
657 				continue;
658 			}
659 			if (test_bit(bit, data))
660 				return false;
661 			bit++;
662 		}
663 	} else if (mode == BITMAP_OP_SET) {
664 		while (bit <= this_end_bit) {
665 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
666 				do {
667 					data[bit / BITS_PER_LONG] = -1;
668 					bit += BITS_PER_LONG;
669 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
670 				continue;
671 			}
672 			__set_bit(bit, data);
673 			bit++;
674 		}
675 	} else if (mode == BITMAP_OP_CLEAR) {
676 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
677 			clear_page(data);
678 		else while (bit <= this_end_bit) {
679 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
680 				do {
681 					data[bit / BITS_PER_LONG] = 0;
682 					bit += BITS_PER_LONG;
683 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
684 				continue;
685 			}
686 			__clear_bit(bit, data);
687 			bit++;
688 		}
689 	} else {
690 		BUG();
691 	}
692 
693 	if (unlikely(page < end_page)) {
694 		bit = 0;
695 		page++;
696 		goto repeat;
697 	}
698 
699 	return true;
700 }
701 
702 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
703 {
704 	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
705 	unsigned i;
706 
707 	for (i = 0; i < n_bitmap_pages; i++) {
708 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
709 		unsigned long *src_data = lowmem_page_address(src[i].page);
710 		copy_page(dst_data, src_data);
711 	}
712 }
713 
714 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
715 {
716 	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
717 	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
718 
719 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
720 	return &ic->bbs[bitmap_block];
721 }
722 
723 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
724 				 bool e, const char *function)
725 {
726 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
727 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
728 
729 	if (unlikely(section >= ic->journal_sections) ||
730 	    unlikely(offset >= limit)) {
731 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
732 		       function, section, offset, ic->journal_sections, limit);
733 		BUG();
734 	}
735 #endif
736 }
737 
738 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
739 			       unsigned *pl_index, unsigned *pl_offset)
740 {
741 	unsigned sector;
742 
743 	access_journal_check(ic, section, offset, false, "page_list_location");
744 
745 	sector = section * ic->journal_section_sectors + offset;
746 
747 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
748 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
749 }
750 
751 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
752 					       unsigned section, unsigned offset, unsigned *n_sectors)
753 {
754 	unsigned pl_index, pl_offset;
755 	char *va;
756 
757 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
758 
759 	if (n_sectors)
760 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
761 
762 	va = lowmem_page_address(pl[pl_index].page);
763 
764 	return (struct journal_sector *)(va + pl_offset);
765 }
766 
767 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
768 {
769 	return access_page_list(ic, ic->journal, section, offset, NULL);
770 }
771 
772 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
773 {
774 	unsigned rel_sector, offset;
775 	struct journal_sector *js;
776 
777 	access_journal_check(ic, section, n, true, "access_journal_entry");
778 
779 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
780 	offset = n / JOURNAL_BLOCK_SECTORS;
781 
782 	js = access_journal(ic, section, rel_sector);
783 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
784 }
785 
786 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
787 {
788 	n <<= ic->sb->log2_sectors_per_block;
789 
790 	n += JOURNAL_BLOCK_SECTORS;
791 
792 	access_journal_check(ic, section, n, false, "access_journal_data");
793 
794 	return access_journal(ic, section, n);
795 }
796 
797 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
798 {
799 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
800 	int r;
801 	unsigned j, size;
802 
803 	desc->tfm = ic->journal_mac;
804 
805 	r = crypto_shash_init(desc);
806 	if (unlikely(r < 0)) {
807 		dm_integrity_io_error(ic, "crypto_shash_init", r);
808 		goto err;
809 	}
810 
811 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
812 		__le64 section_le;
813 
814 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
815 		if (unlikely(r < 0)) {
816 			dm_integrity_io_error(ic, "crypto_shash_update", r);
817 			goto err;
818 		}
819 
820 		section_le = cpu_to_le64(section);
821 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
822 		if (unlikely(r < 0)) {
823 			dm_integrity_io_error(ic, "crypto_shash_update", r);
824 			goto err;
825 		}
826 	}
827 
828 	for (j = 0; j < ic->journal_section_entries; j++) {
829 		struct journal_entry *je = access_journal_entry(ic, section, j);
830 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
831 		if (unlikely(r < 0)) {
832 			dm_integrity_io_error(ic, "crypto_shash_update", r);
833 			goto err;
834 		}
835 	}
836 
837 	size = crypto_shash_digestsize(ic->journal_mac);
838 
839 	if (likely(size <= JOURNAL_MAC_SIZE)) {
840 		r = crypto_shash_final(desc, result);
841 		if (unlikely(r < 0)) {
842 			dm_integrity_io_error(ic, "crypto_shash_final", r);
843 			goto err;
844 		}
845 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
846 	} else {
847 		__u8 digest[HASH_MAX_DIGESTSIZE];
848 
849 		if (WARN_ON(size > sizeof(digest))) {
850 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
851 			goto err;
852 		}
853 		r = crypto_shash_final(desc, digest);
854 		if (unlikely(r < 0)) {
855 			dm_integrity_io_error(ic, "crypto_shash_final", r);
856 			goto err;
857 		}
858 		memcpy(result, digest, JOURNAL_MAC_SIZE);
859 	}
860 
861 	return;
862 err:
863 	memset(result, 0, JOURNAL_MAC_SIZE);
864 }
865 
866 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
867 {
868 	__u8 result[JOURNAL_MAC_SIZE];
869 	unsigned j;
870 
871 	if (!ic->journal_mac)
872 		return;
873 
874 	section_mac(ic, section, result);
875 
876 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
877 		struct journal_sector *js = access_journal(ic, section, j);
878 
879 		if (likely(wr))
880 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
881 		else {
882 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
883 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
884 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
885 			}
886 		}
887 	}
888 }
889 
890 static void complete_journal_op(void *context)
891 {
892 	struct journal_completion *comp = context;
893 	BUG_ON(!atomic_read(&comp->in_flight));
894 	if (likely(atomic_dec_and_test(&comp->in_flight)))
895 		complete(&comp->comp);
896 }
897 
898 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
899 			unsigned n_sections, struct journal_completion *comp)
900 {
901 	struct async_submit_ctl submit;
902 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
903 	unsigned pl_index, pl_offset, section_index;
904 	struct page_list *source_pl, *target_pl;
905 
906 	if (likely(encrypt)) {
907 		source_pl = ic->journal;
908 		target_pl = ic->journal_io;
909 	} else {
910 		source_pl = ic->journal_io;
911 		target_pl = ic->journal;
912 	}
913 
914 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
915 
916 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
917 
918 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
919 
920 	section_index = pl_index;
921 
922 	do {
923 		size_t this_step;
924 		struct page *src_pages[2];
925 		struct page *dst_page;
926 
927 		while (unlikely(pl_index == section_index)) {
928 			unsigned dummy;
929 			if (likely(encrypt))
930 				rw_section_mac(ic, section, true);
931 			section++;
932 			n_sections--;
933 			if (!n_sections)
934 				break;
935 			page_list_location(ic, section, 0, &section_index, &dummy);
936 		}
937 
938 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
939 		dst_page = target_pl[pl_index].page;
940 		src_pages[0] = source_pl[pl_index].page;
941 		src_pages[1] = ic->journal_xor[pl_index].page;
942 
943 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
944 
945 		pl_index++;
946 		pl_offset = 0;
947 		n_bytes -= this_step;
948 	} while (n_bytes);
949 
950 	BUG_ON(n_sections);
951 
952 	async_tx_issue_pending_all();
953 }
954 
955 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
956 {
957 	struct journal_completion *comp = req->data;
958 	if (unlikely(err)) {
959 		if (likely(err == -EINPROGRESS)) {
960 			complete(&comp->ic->crypto_backoff);
961 			return;
962 		}
963 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
964 	}
965 	complete_journal_op(comp);
966 }
967 
968 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
969 {
970 	int r;
971 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
972 				      complete_journal_encrypt, comp);
973 	if (likely(encrypt))
974 		r = crypto_skcipher_encrypt(req);
975 	else
976 		r = crypto_skcipher_decrypt(req);
977 	if (likely(!r))
978 		return false;
979 	if (likely(r == -EINPROGRESS))
980 		return true;
981 	if (likely(r == -EBUSY)) {
982 		wait_for_completion(&comp->ic->crypto_backoff);
983 		reinit_completion(&comp->ic->crypto_backoff);
984 		return true;
985 	}
986 	dm_integrity_io_error(comp->ic, "encrypt", r);
987 	return false;
988 }
989 
990 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
991 			  unsigned n_sections, struct journal_completion *comp)
992 {
993 	struct scatterlist **source_sg;
994 	struct scatterlist **target_sg;
995 
996 	atomic_add(2, &comp->in_flight);
997 
998 	if (likely(encrypt)) {
999 		source_sg = ic->journal_scatterlist;
1000 		target_sg = ic->journal_io_scatterlist;
1001 	} else {
1002 		source_sg = ic->journal_io_scatterlist;
1003 		target_sg = ic->journal_scatterlist;
1004 	}
1005 
1006 	do {
1007 		struct skcipher_request *req;
1008 		unsigned ivsize;
1009 		char *iv;
1010 
1011 		if (likely(encrypt))
1012 			rw_section_mac(ic, section, true);
1013 
1014 		req = ic->sk_requests[section];
1015 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1016 		iv = req->iv;
1017 
1018 		memcpy(iv, iv + ivsize, ivsize);
1019 
1020 		req->src = source_sg[section];
1021 		req->dst = target_sg[section];
1022 
1023 		if (unlikely(do_crypt(encrypt, req, comp)))
1024 			atomic_inc(&comp->in_flight);
1025 
1026 		section++;
1027 		n_sections--;
1028 	} while (n_sections);
1029 
1030 	atomic_dec(&comp->in_flight);
1031 	complete_journal_op(comp);
1032 }
1033 
1034 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1035 			    unsigned n_sections, struct journal_completion *comp)
1036 {
1037 	if (ic->journal_xor)
1038 		return xor_journal(ic, encrypt, section, n_sections, comp);
1039 	else
1040 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1041 }
1042 
1043 static void complete_journal_io(unsigned long error, void *context)
1044 {
1045 	struct journal_completion *comp = context;
1046 	if (unlikely(error != 0))
1047 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1048 	complete_journal_op(comp);
1049 }
1050 
1051 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1052 			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1053 {
1054 	struct dm_io_request io_req;
1055 	struct dm_io_region io_loc;
1056 	unsigned pl_index, pl_offset;
1057 	int r;
1058 
1059 	if (unlikely(dm_integrity_failed(ic))) {
1060 		if (comp)
1061 			complete_journal_io(-1UL, comp);
1062 		return;
1063 	}
1064 
1065 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1066 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1067 
1068 	io_req.bi_op = op;
1069 	io_req.bi_op_flags = op_flags;
1070 	io_req.mem.type = DM_IO_PAGE_LIST;
1071 	if (ic->journal_io)
1072 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1073 	else
1074 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1075 	io_req.mem.offset = pl_offset;
1076 	if (likely(comp != NULL)) {
1077 		io_req.notify.fn = complete_journal_io;
1078 		io_req.notify.context = comp;
1079 	} else {
1080 		io_req.notify.fn = NULL;
1081 	}
1082 	io_req.client = ic->io;
1083 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1084 	io_loc.sector = ic->start + SB_SECTORS + sector;
1085 	io_loc.count = n_sectors;
1086 
1087 	r = dm_io(&io_req, 1, &io_loc, NULL);
1088 	if (unlikely(r)) {
1089 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1090 		if (comp) {
1091 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1092 			complete_journal_io(-1UL, comp);
1093 		}
1094 	}
1095 }
1096 
1097 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1098 		       unsigned n_sections, struct journal_completion *comp)
1099 {
1100 	unsigned sector, n_sectors;
1101 
1102 	sector = section * ic->journal_section_sectors;
1103 	n_sectors = n_sections * ic->journal_section_sectors;
1104 
1105 	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1106 }
1107 
1108 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1109 {
1110 	struct journal_completion io_comp;
1111 	struct journal_completion crypt_comp_1;
1112 	struct journal_completion crypt_comp_2;
1113 	unsigned i;
1114 
1115 	io_comp.ic = ic;
1116 	init_completion(&io_comp.comp);
1117 
1118 	if (commit_start + commit_sections <= ic->journal_sections) {
1119 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1120 		if (ic->journal_io) {
1121 			crypt_comp_1.ic = ic;
1122 			init_completion(&crypt_comp_1.comp);
1123 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1124 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1125 			wait_for_completion_io(&crypt_comp_1.comp);
1126 		} else {
1127 			for (i = 0; i < commit_sections; i++)
1128 				rw_section_mac(ic, commit_start + i, true);
1129 		}
1130 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1131 			   commit_sections, &io_comp);
1132 	} else {
1133 		unsigned to_end;
1134 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1135 		to_end = ic->journal_sections - commit_start;
1136 		if (ic->journal_io) {
1137 			crypt_comp_1.ic = ic;
1138 			init_completion(&crypt_comp_1.comp);
1139 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1141 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1142 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1143 				reinit_completion(&crypt_comp_1.comp);
1144 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1145 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1146 				wait_for_completion_io(&crypt_comp_1.comp);
1147 			} else {
1148 				crypt_comp_2.ic = ic;
1149 				init_completion(&crypt_comp_2.comp);
1150 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1151 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1152 				wait_for_completion_io(&crypt_comp_1.comp);
1153 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1154 				wait_for_completion_io(&crypt_comp_2.comp);
1155 			}
1156 		} else {
1157 			for (i = 0; i < to_end; i++)
1158 				rw_section_mac(ic, commit_start + i, true);
1159 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1160 			for (i = 0; i < commit_sections - to_end; i++)
1161 				rw_section_mac(ic, i, true);
1162 		}
1163 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1164 	}
1165 
1166 	wait_for_completion_io(&io_comp.comp);
1167 }
1168 
1169 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1170 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1171 {
1172 	struct dm_io_request io_req;
1173 	struct dm_io_region io_loc;
1174 	int r;
1175 	unsigned sector, pl_index, pl_offset;
1176 
1177 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1178 
1179 	if (unlikely(dm_integrity_failed(ic))) {
1180 		fn(-1UL, data);
1181 		return;
1182 	}
1183 
1184 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1185 
1186 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1187 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1188 
1189 	io_req.bi_op = REQ_OP_WRITE;
1190 	io_req.bi_op_flags = 0;
1191 	io_req.mem.type = DM_IO_PAGE_LIST;
1192 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1193 	io_req.mem.offset = pl_offset;
1194 	io_req.notify.fn = fn;
1195 	io_req.notify.context = data;
1196 	io_req.client = ic->io;
1197 	io_loc.bdev = ic->dev->bdev;
1198 	io_loc.sector = target;
1199 	io_loc.count = n_sectors;
1200 
1201 	r = dm_io(&io_req, 1, &io_loc, NULL);
1202 	if (unlikely(r)) {
1203 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1204 		fn(-1UL, data);
1205 	}
1206 }
1207 
1208 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1209 {
1210 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1211 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1212 }
1213 
1214 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1215 {
1216 	struct rb_node **n = &ic->in_progress.rb_node;
1217 	struct rb_node *parent;
1218 
1219 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1220 
1221 	if (likely(check_waiting)) {
1222 		struct dm_integrity_range *range;
1223 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1224 			if (unlikely(ranges_overlap(range, new_range)))
1225 				return false;
1226 		}
1227 	}
1228 
1229 	parent = NULL;
1230 
1231 	while (*n) {
1232 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1233 
1234 		parent = *n;
1235 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1236 			n = &range->node.rb_left;
1237 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1238 			n = &range->node.rb_right;
1239 		} else {
1240 			return false;
1241 		}
1242 	}
1243 
1244 	rb_link_node(&new_range->node, parent, n);
1245 	rb_insert_color(&new_range->node, &ic->in_progress);
1246 
1247 	return true;
1248 }
1249 
1250 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1251 {
1252 	rb_erase(&range->node, &ic->in_progress);
1253 	while (unlikely(!list_empty(&ic->wait_list))) {
1254 		struct dm_integrity_range *last_range =
1255 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1256 		struct task_struct *last_range_task;
1257 		last_range_task = last_range->task;
1258 		list_del(&last_range->wait_entry);
1259 		if (!add_new_range(ic, last_range, false)) {
1260 			last_range->task = last_range_task;
1261 			list_add(&last_range->wait_entry, &ic->wait_list);
1262 			break;
1263 		}
1264 		last_range->waiting = false;
1265 		wake_up_process(last_range_task);
1266 	}
1267 }
1268 
1269 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1270 {
1271 	unsigned long flags;
1272 
1273 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1274 	remove_range_unlocked(ic, range);
1275 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1276 }
1277 
1278 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1279 {
1280 	new_range->waiting = true;
1281 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1282 	new_range->task = current;
1283 	do {
1284 		__set_current_state(TASK_UNINTERRUPTIBLE);
1285 		spin_unlock_irq(&ic->endio_wait.lock);
1286 		io_schedule();
1287 		spin_lock_irq(&ic->endio_wait.lock);
1288 	} while (unlikely(new_range->waiting));
1289 }
1290 
1291 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1292 {
1293 	if (unlikely(!add_new_range(ic, new_range, true)))
1294 		wait_and_add_new_range(ic, new_range);
1295 }
1296 
1297 static void init_journal_node(struct journal_node *node)
1298 {
1299 	RB_CLEAR_NODE(&node->node);
1300 	node->sector = (sector_t)-1;
1301 }
1302 
1303 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1304 {
1305 	struct rb_node **link;
1306 	struct rb_node *parent;
1307 
1308 	node->sector = sector;
1309 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1310 
1311 	link = &ic->journal_tree_root.rb_node;
1312 	parent = NULL;
1313 
1314 	while (*link) {
1315 		struct journal_node *j;
1316 		parent = *link;
1317 		j = container_of(parent, struct journal_node, node);
1318 		if (sector < j->sector)
1319 			link = &j->node.rb_left;
1320 		else
1321 			link = &j->node.rb_right;
1322 	}
1323 
1324 	rb_link_node(&node->node, parent, link);
1325 	rb_insert_color(&node->node, &ic->journal_tree_root);
1326 }
1327 
1328 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1329 {
1330 	BUG_ON(RB_EMPTY_NODE(&node->node));
1331 	rb_erase(&node->node, &ic->journal_tree_root);
1332 	init_journal_node(node);
1333 }
1334 
1335 #define NOT_FOUND	(-1U)
1336 
1337 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1338 {
1339 	struct rb_node *n = ic->journal_tree_root.rb_node;
1340 	unsigned found = NOT_FOUND;
1341 	*next_sector = (sector_t)-1;
1342 	while (n) {
1343 		struct journal_node *j = container_of(n, struct journal_node, node);
1344 		if (sector == j->sector) {
1345 			found = j - ic->journal_tree;
1346 		}
1347 		if (sector < j->sector) {
1348 			*next_sector = j->sector;
1349 			n = j->node.rb_left;
1350 		} else {
1351 			n = j->node.rb_right;
1352 		}
1353 	}
1354 
1355 	return found;
1356 }
1357 
1358 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1359 {
1360 	struct journal_node *node, *next_node;
1361 	struct rb_node *next;
1362 
1363 	if (unlikely(pos >= ic->journal_entries))
1364 		return false;
1365 	node = &ic->journal_tree[pos];
1366 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1367 		return false;
1368 	if (unlikely(node->sector != sector))
1369 		return false;
1370 
1371 	next = rb_next(&node->node);
1372 	if (unlikely(!next))
1373 		return true;
1374 
1375 	next_node = container_of(next, struct journal_node, node);
1376 	return next_node->sector != sector;
1377 }
1378 
1379 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1380 {
1381 	struct rb_node *next;
1382 	struct journal_node *next_node;
1383 	unsigned next_section;
1384 
1385 	BUG_ON(RB_EMPTY_NODE(&node->node));
1386 
1387 	next = rb_next(&node->node);
1388 	if (unlikely(!next))
1389 		return false;
1390 
1391 	next_node = container_of(next, struct journal_node, node);
1392 
1393 	if (next_node->sector != node->sector)
1394 		return false;
1395 
1396 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1397 	if (next_section >= ic->committed_section &&
1398 	    next_section < ic->committed_section + ic->n_committed_sections)
1399 		return true;
1400 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1401 		return true;
1402 
1403 	return false;
1404 }
1405 
1406 #define TAG_READ	0
1407 #define TAG_WRITE	1
1408 #define TAG_CMP		2
1409 
1410 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1411 			       unsigned *metadata_offset, unsigned total_size, int op)
1412 {
1413 #define MAY_BE_FILLER		1
1414 #define MAY_BE_HASH		2
1415 	unsigned hash_offset = 0;
1416 	unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1417 
1418 	do {
1419 		unsigned char *data, *dp;
1420 		struct dm_buffer *b;
1421 		unsigned to_copy;
1422 		int r;
1423 
1424 		r = dm_integrity_failed(ic);
1425 		if (unlikely(r))
1426 			return r;
1427 
1428 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1429 		if (IS_ERR(data))
1430 			return PTR_ERR(data);
1431 
1432 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1433 		dp = data + *metadata_offset;
1434 		if (op == TAG_READ) {
1435 			memcpy(tag, dp, to_copy);
1436 		} else if (op == TAG_WRITE) {
1437 			if (memcmp(dp, tag, to_copy)) {
1438 				memcpy(dp, tag, to_copy);
1439 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1440 			}
1441 		} else {
1442 			/* e.g.: op == TAG_CMP */
1443 
1444 			if (likely(is_power_of_2(ic->tag_size))) {
1445 				if (unlikely(memcmp(dp, tag, to_copy)))
1446 					if (unlikely(!ic->discard) ||
1447 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1448 						goto thorough_test;
1449 				}
1450 			} else {
1451 				unsigned i, ts;
1452 thorough_test:
1453 				ts = total_size;
1454 
1455 				for (i = 0; i < to_copy; i++, ts--) {
1456 					if (unlikely(dp[i] != tag[i]))
1457 						may_be &= ~MAY_BE_HASH;
1458 					if (likely(dp[i] != DISCARD_FILLER))
1459 						may_be &= ~MAY_BE_FILLER;
1460 					hash_offset++;
1461 					if (unlikely(hash_offset == ic->tag_size)) {
1462 						if (unlikely(!may_be)) {
1463 							dm_bufio_release(b);
1464 							return ts;
1465 						}
1466 						hash_offset = 0;
1467 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1468 					}
1469 				}
1470 			}
1471 		}
1472 		dm_bufio_release(b);
1473 
1474 		tag += to_copy;
1475 		*metadata_offset += to_copy;
1476 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1477 			(*metadata_block)++;
1478 			*metadata_offset = 0;
1479 		}
1480 
1481 		if (unlikely(!is_power_of_2(ic->tag_size))) {
1482 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1483 		}
1484 
1485 		total_size -= to_copy;
1486 	} while (unlikely(total_size));
1487 
1488 	return 0;
1489 #undef MAY_BE_FILLER
1490 #undef MAY_BE_HASH
1491 }
1492 
1493 struct flush_request {
1494 	struct dm_io_request io_req;
1495 	struct dm_io_region io_reg;
1496 	struct dm_integrity_c *ic;
1497 	struct completion comp;
1498 };
1499 
1500 static void flush_notify(unsigned long error, void *fr_)
1501 {
1502 	struct flush_request *fr = fr_;
1503 	if (unlikely(error != 0))
1504 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1505 	complete(&fr->comp);
1506 }
1507 
1508 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1509 {
1510 	int r;
1511 
1512 	struct flush_request fr;
1513 
1514 	if (!ic->meta_dev)
1515 		flush_data = false;
1516 	if (flush_data) {
1517 		fr.io_req.bi_op = REQ_OP_WRITE,
1518 		fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1519 		fr.io_req.mem.type = DM_IO_KMEM,
1520 		fr.io_req.mem.ptr.addr = NULL,
1521 		fr.io_req.notify.fn = flush_notify,
1522 		fr.io_req.notify.context = &fr;
1523 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1524 		fr.io_reg.bdev = ic->dev->bdev,
1525 		fr.io_reg.sector = 0,
1526 		fr.io_reg.count = 0,
1527 		fr.ic = ic;
1528 		init_completion(&fr.comp);
1529 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1530 		BUG_ON(r);
1531 	}
1532 
1533 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1534 	if (unlikely(r))
1535 		dm_integrity_io_error(ic, "writing tags", r);
1536 
1537 	if (flush_data)
1538 		wait_for_completion(&fr.comp);
1539 }
1540 
1541 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1542 {
1543 	DECLARE_WAITQUEUE(wait, current);
1544 	__add_wait_queue(&ic->endio_wait, &wait);
1545 	__set_current_state(TASK_UNINTERRUPTIBLE);
1546 	spin_unlock_irq(&ic->endio_wait.lock);
1547 	io_schedule();
1548 	spin_lock_irq(&ic->endio_wait.lock);
1549 	__remove_wait_queue(&ic->endio_wait, &wait);
1550 }
1551 
1552 static void autocommit_fn(struct timer_list *t)
1553 {
1554 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1555 
1556 	if (likely(!dm_integrity_failed(ic)))
1557 		queue_work(ic->commit_wq, &ic->commit_work);
1558 }
1559 
1560 static void schedule_autocommit(struct dm_integrity_c *ic)
1561 {
1562 	if (!timer_pending(&ic->autocommit_timer))
1563 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1564 }
1565 
1566 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1567 {
1568 	struct bio *bio;
1569 	unsigned long flags;
1570 
1571 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1572 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1573 	bio_list_add(&ic->flush_bio_list, bio);
1574 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1575 
1576 	queue_work(ic->commit_wq, &ic->commit_work);
1577 }
1578 
1579 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1580 {
1581 	int r = dm_integrity_failed(ic);
1582 	if (unlikely(r) && !bio->bi_status)
1583 		bio->bi_status = errno_to_blk_status(r);
1584 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1585 		unsigned long flags;
1586 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1587 		bio_list_add(&ic->synchronous_bios, bio);
1588 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1589 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1590 		return;
1591 	}
1592 	bio_endio(bio);
1593 }
1594 
1595 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1596 {
1597 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1598 
1599 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1600 		submit_flush_bio(ic, dio);
1601 	else
1602 		do_endio(ic, bio);
1603 }
1604 
1605 static void dec_in_flight(struct dm_integrity_io *dio)
1606 {
1607 	if (atomic_dec_and_test(&dio->in_flight)) {
1608 		struct dm_integrity_c *ic = dio->ic;
1609 		struct bio *bio;
1610 
1611 		remove_range(ic, &dio->range);
1612 
1613 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1614 			schedule_autocommit(ic);
1615 
1616 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1617 
1618 		if (unlikely(dio->bi_status) && !bio->bi_status)
1619 			bio->bi_status = dio->bi_status;
1620 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1621 			dio->range.logical_sector += dio->range.n_sectors;
1622 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1623 			INIT_WORK(&dio->work, integrity_bio_wait);
1624 			queue_work(ic->offload_wq, &dio->work);
1625 			return;
1626 		}
1627 		do_endio_flush(ic, dio);
1628 	}
1629 }
1630 
1631 static void integrity_end_io(struct bio *bio)
1632 {
1633 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1634 
1635 	dm_bio_restore(&dio->bio_details, bio);
1636 	if (bio->bi_integrity)
1637 		bio->bi_opf |= REQ_INTEGRITY;
1638 
1639 	if (dio->completion)
1640 		complete(dio->completion);
1641 
1642 	dec_in_flight(dio);
1643 }
1644 
1645 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1646 				      const char *data, char *result)
1647 {
1648 	__le64 sector_le = cpu_to_le64(sector);
1649 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1650 	int r;
1651 	unsigned digest_size;
1652 
1653 	req->tfm = ic->internal_hash;
1654 
1655 	r = crypto_shash_init(req);
1656 	if (unlikely(r < 0)) {
1657 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1658 		goto failed;
1659 	}
1660 
1661 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1662 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1663 		if (unlikely(r < 0)) {
1664 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1665 			goto failed;
1666 		}
1667 	}
1668 
1669 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1670 	if (unlikely(r < 0)) {
1671 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1672 		goto failed;
1673 	}
1674 
1675 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1676 	if (unlikely(r < 0)) {
1677 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1678 		goto failed;
1679 	}
1680 
1681 	r = crypto_shash_final(req, result);
1682 	if (unlikely(r < 0)) {
1683 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1684 		goto failed;
1685 	}
1686 
1687 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1688 	if (unlikely(digest_size < ic->tag_size))
1689 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1690 
1691 	return;
1692 
1693 failed:
1694 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1695 	get_random_bytes(result, ic->tag_size);
1696 }
1697 
1698 static void integrity_metadata(struct work_struct *w)
1699 {
1700 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1701 	struct dm_integrity_c *ic = dio->ic;
1702 
1703 	int r;
1704 
1705 	if (ic->internal_hash) {
1706 		struct bvec_iter iter;
1707 		struct bio_vec bv;
1708 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1709 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1710 		char *checksums;
1711 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1712 		char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1713 		sector_t sector;
1714 		unsigned sectors_to_process;
1715 
1716 		if (unlikely(ic->mode == 'R'))
1717 			goto skip_io;
1718 
1719 		if (likely(dio->op != REQ_OP_DISCARD))
1720 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1721 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1722 		else
1723 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1724 		if (!checksums) {
1725 			checksums = checksums_onstack;
1726 			if (WARN_ON(extra_space &&
1727 				    digest_size > sizeof(checksums_onstack))) {
1728 				r = -EINVAL;
1729 				goto error;
1730 			}
1731 		}
1732 
1733 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1734 			sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1735 			unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1736 			unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1737 			unsigned max_blocks = max_size / ic->tag_size;
1738 			memset(checksums, DISCARD_FILLER, max_size);
1739 
1740 			while (bi_size) {
1741 				unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1742 				this_step_blocks = min(this_step_blocks, max_blocks);
1743 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1744 							this_step_blocks * ic->tag_size, TAG_WRITE);
1745 				if (unlikely(r)) {
1746 					if (likely(checksums != checksums_onstack))
1747 						kfree(checksums);
1748 					goto error;
1749 				}
1750 
1751 				/*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1752 					printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1753 					printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1754 					BUG();
1755 				}*/
1756 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1757 				bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1758 			}
1759 
1760 			if (likely(checksums != checksums_onstack))
1761 				kfree(checksums);
1762 			goto skip_io;
1763 		}
1764 
1765 		sector = dio->range.logical_sector;
1766 		sectors_to_process = dio->range.n_sectors;
1767 
1768 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1769 			unsigned pos;
1770 			char *mem, *checksums_ptr;
1771 
1772 again:
1773 			mem = bvec_kmap_local(&bv);
1774 			pos = 0;
1775 			checksums_ptr = checksums;
1776 			do {
1777 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1778 				checksums_ptr += ic->tag_size;
1779 				sectors_to_process -= ic->sectors_per_block;
1780 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1781 				sector += ic->sectors_per_block;
1782 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1783 			kunmap_local(mem);
1784 
1785 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1786 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1787 			if (unlikely(r)) {
1788 				if (r > 0) {
1789 					char b[BDEVNAME_SIZE];
1790 					sector_t s;
1791 
1792 					s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1793 					DMERR_LIMIT("%s: Checksum failed at sector 0x%llx",
1794 						    bio_devname(bio, b), s);
1795 					r = -EILSEQ;
1796 					atomic64_inc(&ic->number_of_mismatches);
1797 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1798 							 bio, s, 0);
1799 				}
1800 				if (likely(checksums != checksums_onstack))
1801 					kfree(checksums);
1802 				goto error;
1803 			}
1804 
1805 			if (!sectors_to_process)
1806 				break;
1807 
1808 			if (unlikely(pos < bv.bv_len)) {
1809 				bv.bv_offset += pos;
1810 				bv.bv_len -= pos;
1811 				goto again;
1812 			}
1813 		}
1814 
1815 		if (likely(checksums != checksums_onstack))
1816 			kfree(checksums);
1817 	} else {
1818 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1819 
1820 		if (bip) {
1821 			struct bio_vec biv;
1822 			struct bvec_iter iter;
1823 			unsigned data_to_process = dio->range.n_sectors;
1824 			sector_to_block(ic, data_to_process);
1825 			data_to_process *= ic->tag_size;
1826 
1827 			bip_for_each_vec(biv, bip, iter) {
1828 				unsigned char *tag;
1829 				unsigned this_len;
1830 
1831 				BUG_ON(PageHighMem(biv.bv_page));
1832 				tag = bvec_virt(&biv);
1833 				this_len = min(biv.bv_len, data_to_process);
1834 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1835 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1836 				if (unlikely(r))
1837 					goto error;
1838 				data_to_process -= this_len;
1839 				if (!data_to_process)
1840 					break;
1841 			}
1842 		}
1843 	}
1844 skip_io:
1845 	dec_in_flight(dio);
1846 	return;
1847 error:
1848 	dio->bi_status = errno_to_blk_status(r);
1849 	dec_in_flight(dio);
1850 }
1851 
1852 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1853 {
1854 	struct dm_integrity_c *ic = ti->private;
1855 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1856 	struct bio_integrity_payload *bip;
1857 
1858 	sector_t area, offset;
1859 
1860 	dio->ic = ic;
1861 	dio->bi_status = 0;
1862 	dio->op = bio_op(bio);
1863 
1864 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1865 		if (ti->max_io_len) {
1866 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1867 			unsigned log2_max_io_len = __fls(ti->max_io_len);
1868 			sector_t start_boundary = sec >> log2_max_io_len;
1869 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1870 			if (start_boundary < end_boundary) {
1871 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1872 				dm_accept_partial_bio(bio, len);
1873 			}
1874 		}
1875 	}
1876 
1877 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1878 		submit_flush_bio(ic, dio);
1879 		return DM_MAPIO_SUBMITTED;
1880 	}
1881 
1882 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1883 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1884 	if (unlikely(dio->fua)) {
1885 		/*
1886 		 * Don't pass down the FUA flag because we have to flush
1887 		 * disk cache anyway.
1888 		 */
1889 		bio->bi_opf &= ~REQ_FUA;
1890 	}
1891 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1892 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1893 		      dio->range.logical_sector, bio_sectors(bio),
1894 		      ic->provided_data_sectors);
1895 		return DM_MAPIO_KILL;
1896 	}
1897 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1898 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1899 		      ic->sectors_per_block,
1900 		      dio->range.logical_sector, bio_sectors(bio));
1901 		return DM_MAPIO_KILL;
1902 	}
1903 
1904 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1905 		struct bvec_iter iter;
1906 		struct bio_vec bv;
1907 		bio_for_each_segment(bv, bio, iter) {
1908 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1909 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1910 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1911 				return DM_MAPIO_KILL;
1912 			}
1913 		}
1914 	}
1915 
1916 	bip = bio_integrity(bio);
1917 	if (!ic->internal_hash) {
1918 		if (bip) {
1919 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1920 			if (ic->log2_tag_size >= 0)
1921 				wanted_tag_size <<= ic->log2_tag_size;
1922 			else
1923 				wanted_tag_size *= ic->tag_size;
1924 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1925 				DMERR("Invalid integrity data size %u, expected %u",
1926 				      bip->bip_iter.bi_size, wanted_tag_size);
1927 				return DM_MAPIO_KILL;
1928 			}
1929 		}
1930 	} else {
1931 		if (unlikely(bip != NULL)) {
1932 			DMERR("Unexpected integrity data when using internal hash");
1933 			return DM_MAPIO_KILL;
1934 		}
1935 	}
1936 
1937 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1938 		return DM_MAPIO_KILL;
1939 
1940 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1941 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1942 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1943 
1944 	dm_integrity_map_continue(dio, true);
1945 	return DM_MAPIO_SUBMITTED;
1946 }
1947 
1948 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1949 				 unsigned journal_section, unsigned journal_entry)
1950 {
1951 	struct dm_integrity_c *ic = dio->ic;
1952 	sector_t logical_sector;
1953 	unsigned n_sectors;
1954 
1955 	logical_sector = dio->range.logical_sector;
1956 	n_sectors = dio->range.n_sectors;
1957 	do {
1958 		struct bio_vec bv = bio_iovec(bio);
1959 		char *mem;
1960 
1961 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1962 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1963 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1964 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1965 retry_kmap:
1966 		mem = bvec_kmap_local(&bv);
1967 		if (likely(dio->op == REQ_OP_WRITE))
1968 			flush_dcache_page(bv.bv_page);
1969 
1970 		do {
1971 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1972 
1973 			if (unlikely(dio->op == REQ_OP_READ)) {
1974 				struct journal_sector *js;
1975 				char *mem_ptr;
1976 				unsigned s;
1977 
1978 				if (unlikely(journal_entry_is_inprogress(je))) {
1979 					flush_dcache_page(bv.bv_page);
1980 					kunmap_local(mem);
1981 
1982 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1983 					goto retry_kmap;
1984 				}
1985 				smp_rmb();
1986 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1987 				js = access_journal_data(ic, journal_section, journal_entry);
1988 				mem_ptr = mem + bv.bv_offset;
1989 				s = 0;
1990 				do {
1991 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1992 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1993 					js++;
1994 					mem_ptr += 1 << SECTOR_SHIFT;
1995 				} while (++s < ic->sectors_per_block);
1996 #ifdef INTERNAL_VERIFY
1997 				if (ic->internal_hash) {
1998 					char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1999 
2000 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2001 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2002 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2003 							    logical_sector);
2004 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2005 								 bio, logical_sector, 0);
2006 					}
2007 				}
2008 #endif
2009 			}
2010 
2011 			if (!ic->internal_hash) {
2012 				struct bio_integrity_payload *bip = bio_integrity(bio);
2013 				unsigned tag_todo = ic->tag_size;
2014 				char *tag_ptr = journal_entry_tag(ic, je);
2015 
2016 				if (bip) do {
2017 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2018 					unsigned tag_now = min(biv.bv_len, tag_todo);
2019 					char *tag_addr;
2020 					BUG_ON(PageHighMem(biv.bv_page));
2021 					tag_addr = bvec_virt(&biv);
2022 					if (likely(dio->op == REQ_OP_WRITE))
2023 						memcpy(tag_ptr, tag_addr, tag_now);
2024 					else
2025 						memcpy(tag_addr, tag_ptr, tag_now);
2026 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2027 					tag_ptr += tag_now;
2028 					tag_todo -= tag_now;
2029 				} while (unlikely(tag_todo)); else {
2030 					if (likely(dio->op == REQ_OP_WRITE))
2031 						memset(tag_ptr, 0, tag_todo);
2032 				}
2033 			}
2034 
2035 			if (likely(dio->op == REQ_OP_WRITE)) {
2036 				struct journal_sector *js;
2037 				unsigned s;
2038 
2039 				js = access_journal_data(ic, journal_section, journal_entry);
2040 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2041 
2042 				s = 0;
2043 				do {
2044 					je->last_bytes[s] = js[s].commit_id;
2045 				} while (++s < ic->sectors_per_block);
2046 
2047 				if (ic->internal_hash) {
2048 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2049 					if (unlikely(digest_size > ic->tag_size)) {
2050 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2051 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2052 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2053 					} else
2054 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2055 				}
2056 
2057 				journal_entry_set_sector(je, logical_sector);
2058 			}
2059 			logical_sector += ic->sectors_per_block;
2060 
2061 			journal_entry++;
2062 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2063 				journal_entry = 0;
2064 				journal_section++;
2065 				wraparound_section(ic, &journal_section);
2066 			}
2067 
2068 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2069 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2070 
2071 		if (unlikely(dio->op == REQ_OP_READ))
2072 			flush_dcache_page(bv.bv_page);
2073 		kunmap_local(mem);
2074 	} while (n_sectors);
2075 
2076 	if (likely(dio->op == REQ_OP_WRITE)) {
2077 		smp_mb();
2078 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2079 			wake_up(&ic->copy_to_journal_wait);
2080 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2081 			queue_work(ic->commit_wq, &ic->commit_work);
2082 		} else {
2083 			schedule_autocommit(ic);
2084 		}
2085 	} else {
2086 		remove_range(ic, &dio->range);
2087 	}
2088 
2089 	if (unlikely(bio->bi_iter.bi_size)) {
2090 		sector_t area, offset;
2091 
2092 		dio->range.logical_sector = logical_sector;
2093 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2094 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2095 		return true;
2096 	}
2097 
2098 	return false;
2099 }
2100 
2101 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2102 {
2103 	struct dm_integrity_c *ic = dio->ic;
2104 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2105 	unsigned journal_section, journal_entry;
2106 	unsigned journal_read_pos;
2107 	struct completion read_comp;
2108 	bool discard_retried = false;
2109 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2110 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2111 		need_sync_io = true;
2112 
2113 	if (need_sync_io && from_map) {
2114 		INIT_WORK(&dio->work, integrity_bio_wait);
2115 		queue_work(ic->offload_wq, &dio->work);
2116 		return;
2117 	}
2118 
2119 lock_retry:
2120 	spin_lock_irq(&ic->endio_wait.lock);
2121 retry:
2122 	if (unlikely(dm_integrity_failed(ic))) {
2123 		spin_unlock_irq(&ic->endio_wait.lock);
2124 		do_endio(ic, bio);
2125 		return;
2126 	}
2127 	dio->range.n_sectors = bio_sectors(bio);
2128 	journal_read_pos = NOT_FOUND;
2129 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2130 		if (dio->op == REQ_OP_WRITE) {
2131 			unsigned next_entry, i, pos;
2132 			unsigned ws, we, range_sectors;
2133 
2134 			dio->range.n_sectors = min(dio->range.n_sectors,
2135 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2136 			if (unlikely(!dio->range.n_sectors)) {
2137 				if (from_map)
2138 					goto offload_to_thread;
2139 				sleep_on_endio_wait(ic);
2140 				goto retry;
2141 			}
2142 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2143 			ic->free_sectors -= range_sectors;
2144 			journal_section = ic->free_section;
2145 			journal_entry = ic->free_section_entry;
2146 
2147 			next_entry = ic->free_section_entry + range_sectors;
2148 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2149 			ic->free_section += next_entry / ic->journal_section_entries;
2150 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2151 			wraparound_section(ic, &ic->free_section);
2152 
2153 			pos = journal_section * ic->journal_section_entries + journal_entry;
2154 			ws = journal_section;
2155 			we = journal_entry;
2156 			i = 0;
2157 			do {
2158 				struct journal_entry *je;
2159 
2160 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2161 				pos++;
2162 				if (unlikely(pos >= ic->journal_entries))
2163 					pos = 0;
2164 
2165 				je = access_journal_entry(ic, ws, we);
2166 				BUG_ON(!journal_entry_is_unused(je));
2167 				journal_entry_set_inprogress(je);
2168 				we++;
2169 				if (unlikely(we == ic->journal_section_entries)) {
2170 					we = 0;
2171 					ws++;
2172 					wraparound_section(ic, &ws);
2173 				}
2174 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2175 
2176 			spin_unlock_irq(&ic->endio_wait.lock);
2177 			goto journal_read_write;
2178 		} else {
2179 			sector_t next_sector;
2180 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2181 			if (likely(journal_read_pos == NOT_FOUND)) {
2182 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2183 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2184 			} else {
2185 				unsigned i;
2186 				unsigned jp = journal_read_pos + 1;
2187 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2188 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2189 						break;
2190 				}
2191 				dio->range.n_sectors = i;
2192 			}
2193 		}
2194 	}
2195 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2196 		/*
2197 		 * We must not sleep in the request routine because it could
2198 		 * stall bios on current->bio_list.
2199 		 * So, we offload the bio to a workqueue if we have to sleep.
2200 		 */
2201 		if (from_map) {
2202 offload_to_thread:
2203 			spin_unlock_irq(&ic->endio_wait.lock);
2204 			INIT_WORK(&dio->work, integrity_bio_wait);
2205 			queue_work(ic->wait_wq, &dio->work);
2206 			return;
2207 		}
2208 		if (journal_read_pos != NOT_FOUND)
2209 			dio->range.n_sectors = ic->sectors_per_block;
2210 		wait_and_add_new_range(ic, &dio->range);
2211 		/*
2212 		 * wait_and_add_new_range drops the spinlock, so the journal
2213 		 * may have been changed arbitrarily. We need to recheck.
2214 		 * To simplify the code, we restrict I/O size to just one block.
2215 		 */
2216 		if (journal_read_pos != NOT_FOUND) {
2217 			sector_t next_sector;
2218 			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2219 			if (unlikely(new_pos != journal_read_pos)) {
2220 				remove_range_unlocked(ic, &dio->range);
2221 				goto retry;
2222 			}
2223 		}
2224 	}
2225 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2226 		sector_t next_sector;
2227 		unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2228 		if (unlikely(new_pos != NOT_FOUND) ||
2229 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2230 			remove_range_unlocked(ic, &dio->range);
2231 			spin_unlock_irq(&ic->endio_wait.lock);
2232 			queue_work(ic->commit_wq, &ic->commit_work);
2233 			flush_workqueue(ic->commit_wq);
2234 			queue_work(ic->writer_wq, &ic->writer_work);
2235 			flush_workqueue(ic->writer_wq);
2236 			discard_retried = true;
2237 			goto lock_retry;
2238 		}
2239 	}
2240 	spin_unlock_irq(&ic->endio_wait.lock);
2241 
2242 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2243 		journal_section = journal_read_pos / ic->journal_section_entries;
2244 		journal_entry = journal_read_pos % ic->journal_section_entries;
2245 		goto journal_read_write;
2246 	}
2247 
2248 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2249 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2250 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2251 			struct bitmap_block_status *bbs;
2252 
2253 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2254 			spin_lock(&bbs->bio_queue_lock);
2255 			bio_list_add(&bbs->bio_queue, bio);
2256 			spin_unlock(&bbs->bio_queue_lock);
2257 			queue_work(ic->writer_wq, &bbs->work);
2258 			return;
2259 		}
2260 	}
2261 
2262 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2263 
2264 	if (need_sync_io) {
2265 		init_completion(&read_comp);
2266 		dio->completion = &read_comp;
2267 	} else
2268 		dio->completion = NULL;
2269 
2270 	dm_bio_record(&dio->bio_details, bio);
2271 	bio_set_dev(bio, ic->dev->bdev);
2272 	bio->bi_integrity = NULL;
2273 	bio->bi_opf &= ~REQ_INTEGRITY;
2274 	bio->bi_end_io = integrity_end_io;
2275 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2276 
2277 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2278 		integrity_metadata(&dio->work);
2279 		dm_integrity_flush_buffers(ic, false);
2280 
2281 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2282 		dio->completion = NULL;
2283 
2284 		submit_bio_noacct(bio);
2285 
2286 		return;
2287 	}
2288 
2289 	submit_bio_noacct(bio);
2290 
2291 	if (need_sync_io) {
2292 		wait_for_completion_io(&read_comp);
2293 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2294 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2295 			goto skip_check;
2296 		if (ic->mode == 'B') {
2297 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2298 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2299 				goto skip_check;
2300 		}
2301 
2302 		if (likely(!bio->bi_status))
2303 			integrity_metadata(&dio->work);
2304 		else
2305 skip_check:
2306 			dec_in_flight(dio);
2307 
2308 	} else {
2309 		INIT_WORK(&dio->work, integrity_metadata);
2310 		queue_work(ic->metadata_wq, &dio->work);
2311 	}
2312 
2313 	return;
2314 
2315 journal_read_write:
2316 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2317 		goto lock_retry;
2318 
2319 	do_endio_flush(ic, dio);
2320 }
2321 
2322 
2323 static void integrity_bio_wait(struct work_struct *w)
2324 {
2325 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2326 
2327 	dm_integrity_map_continue(dio, false);
2328 }
2329 
2330 static void pad_uncommitted(struct dm_integrity_c *ic)
2331 {
2332 	if (ic->free_section_entry) {
2333 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2334 		ic->free_section_entry = 0;
2335 		ic->free_section++;
2336 		wraparound_section(ic, &ic->free_section);
2337 		ic->n_uncommitted_sections++;
2338 	}
2339 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2340 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2341 		    ic->journal_section_entries + ic->free_sectors)) {
2342 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2343 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2344 		       "journal_section_entries %u, free_sectors %u",
2345 		       ic->journal_sections, ic->journal_section_entries,
2346 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2347 		       ic->journal_section_entries, ic->free_sectors);
2348 	}
2349 }
2350 
2351 static void integrity_commit(struct work_struct *w)
2352 {
2353 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2354 	unsigned commit_start, commit_sections;
2355 	unsigned i, j, n;
2356 	struct bio *flushes;
2357 
2358 	del_timer(&ic->autocommit_timer);
2359 
2360 	spin_lock_irq(&ic->endio_wait.lock);
2361 	flushes = bio_list_get(&ic->flush_bio_list);
2362 	if (unlikely(ic->mode != 'J')) {
2363 		spin_unlock_irq(&ic->endio_wait.lock);
2364 		dm_integrity_flush_buffers(ic, true);
2365 		goto release_flush_bios;
2366 	}
2367 
2368 	pad_uncommitted(ic);
2369 	commit_start = ic->uncommitted_section;
2370 	commit_sections = ic->n_uncommitted_sections;
2371 	spin_unlock_irq(&ic->endio_wait.lock);
2372 
2373 	if (!commit_sections)
2374 		goto release_flush_bios;
2375 
2376 	i = commit_start;
2377 	for (n = 0; n < commit_sections; n++) {
2378 		for (j = 0; j < ic->journal_section_entries; j++) {
2379 			struct journal_entry *je;
2380 			je = access_journal_entry(ic, i, j);
2381 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2382 		}
2383 		for (j = 0; j < ic->journal_section_sectors; j++) {
2384 			struct journal_sector *js;
2385 			js = access_journal(ic, i, j);
2386 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2387 		}
2388 		i++;
2389 		if (unlikely(i >= ic->journal_sections))
2390 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2391 		wraparound_section(ic, &i);
2392 	}
2393 	smp_rmb();
2394 
2395 	write_journal(ic, commit_start, commit_sections);
2396 
2397 	spin_lock_irq(&ic->endio_wait.lock);
2398 	ic->uncommitted_section += commit_sections;
2399 	wraparound_section(ic, &ic->uncommitted_section);
2400 	ic->n_uncommitted_sections -= commit_sections;
2401 	ic->n_committed_sections += commit_sections;
2402 	spin_unlock_irq(&ic->endio_wait.lock);
2403 
2404 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2405 		queue_work(ic->writer_wq, &ic->writer_work);
2406 
2407 release_flush_bios:
2408 	while (flushes) {
2409 		struct bio *next = flushes->bi_next;
2410 		flushes->bi_next = NULL;
2411 		do_endio(ic, flushes);
2412 		flushes = next;
2413 	}
2414 }
2415 
2416 static void complete_copy_from_journal(unsigned long error, void *context)
2417 {
2418 	struct journal_io *io = context;
2419 	struct journal_completion *comp = io->comp;
2420 	struct dm_integrity_c *ic = comp->ic;
2421 	remove_range(ic, &io->range);
2422 	mempool_free(io, &ic->journal_io_mempool);
2423 	if (unlikely(error != 0))
2424 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2425 	complete_journal_op(comp);
2426 }
2427 
2428 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2429 			       struct journal_entry *je)
2430 {
2431 	unsigned s = 0;
2432 	do {
2433 		js->commit_id = je->last_bytes[s];
2434 		js++;
2435 	} while (++s < ic->sectors_per_block);
2436 }
2437 
2438 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2439 			     unsigned write_sections, bool from_replay)
2440 {
2441 	unsigned i, j, n;
2442 	struct journal_completion comp;
2443 	struct blk_plug plug;
2444 
2445 	blk_start_plug(&plug);
2446 
2447 	comp.ic = ic;
2448 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2449 	init_completion(&comp.comp);
2450 
2451 	i = write_start;
2452 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2453 #ifndef INTERNAL_VERIFY
2454 		if (unlikely(from_replay))
2455 #endif
2456 			rw_section_mac(ic, i, false);
2457 		for (j = 0; j < ic->journal_section_entries; j++) {
2458 			struct journal_entry *je = access_journal_entry(ic, i, j);
2459 			sector_t sec, area, offset;
2460 			unsigned k, l, next_loop;
2461 			sector_t metadata_block;
2462 			unsigned metadata_offset;
2463 			struct journal_io *io;
2464 
2465 			if (journal_entry_is_unused(je))
2466 				continue;
2467 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2468 			sec = journal_entry_get_sector(je);
2469 			if (unlikely(from_replay)) {
2470 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2471 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2472 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2473 				}
2474 			}
2475 			if (unlikely(sec >= ic->provided_data_sectors))
2476 				continue;
2477 			get_area_and_offset(ic, sec, &area, &offset);
2478 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2479 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2480 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2481 				sector_t sec2, area2, offset2;
2482 				if (journal_entry_is_unused(je2))
2483 					break;
2484 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2485 				sec2 = journal_entry_get_sector(je2);
2486 				if (unlikely(sec2 >= ic->provided_data_sectors))
2487 					break;
2488 				get_area_and_offset(ic, sec2, &area2, &offset2);
2489 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2490 					break;
2491 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2492 			}
2493 			next_loop = k - 1;
2494 
2495 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2496 			io->comp = &comp;
2497 			io->range.logical_sector = sec;
2498 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2499 
2500 			spin_lock_irq(&ic->endio_wait.lock);
2501 			add_new_range_and_wait(ic, &io->range);
2502 
2503 			if (likely(!from_replay)) {
2504 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2505 
2506 				/* don't write if there is newer committed sector */
2507 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2508 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2509 
2510 					journal_entry_set_unused(je2);
2511 					remove_journal_node(ic, &section_node[j]);
2512 					j++;
2513 					sec += ic->sectors_per_block;
2514 					offset += ic->sectors_per_block;
2515 				}
2516 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2517 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2518 
2519 					journal_entry_set_unused(je2);
2520 					remove_journal_node(ic, &section_node[k - 1]);
2521 					k--;
2522 				}
2523 				if (j == k) {
2524 					remove_range_unlocked(ic, &io->range);
2525 					spin_unlock_irq(&ic->endio_wait.lock);
2526 					mempool_free(io, &ic->journal_io_mempool);
2527 					goto skip_io;
2528 				}
2529 				for (l = j; l < k; l++) {
2530 					remove_journal_node(ic, &section_node[l]);
2531 				}
2532 			}
2533 			spin_unlock_irq(&ic->endio_wait.lock);
2534 
2535 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2536 			for (l = j; l < k; l++) {
2537 				int r;
2538 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2539 
2540 				if (
2541 #ifndef INTERNAL_VERIFY
2542 				    unlikely(from_replay) &&
2543 #endif
2544 				    ic->internal_hash) {
2545 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2546 
2547 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2548 								  (char *)access_journal_data(ic, i, l), test_tag);
2549 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2550 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2551 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2552 					}
2553 				}
2554 
2555 				journal_entry_set_unused(je2);
2556 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2557 							ic->tag_size, TAG_WRITE);
2558 				if (unlikely(r)) {
2559 					dm_integrity_io_error(ic, "reading tags", r);
2560 				}
2561 			}
2562 
2563 			atomic_inc(&comp.in_flight);
2564 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2565 					  (k - j) << ic->sb->log2_sectors_per_block,
2566 					  get_data_sector(ic, area, offset),
2567 					  complete_copy_from_journal, io);
2568 skip_io:
2569 			j = next_loop;
2570 		}
2571 	}
2572 
2573 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2574 
2575 	blk_finish_plug(&plug);
2576 
2577 	complete_journal_op(&comp);
2578 	wait_for_completion_io(&comp.comp);
2579 
2580 	dm_integrity_flush_buffers(ic, true);
2581 }
2582 
2583 static void integrity_writer(struct work_struct *w)
2584 {
2585 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2586 	unsigned write_start, write_sections;
2587 
2588 	unsigned prev_free_sectors;
2589 
2590 	/* the following test is not needed, but it tests the replay code */
2591 	if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2592 		return;
2593 
2594 	spin_lock_irq(&ic->endio_wait.lock);
2595 	write_start = ic->committed_section;
2596 	write_sections = ic->n_committed_sections;
2597 	spin_unlock_irq(&ic->endio_wait.lock);
2598 
2599 	if (!write_sections)
2600 		return;
2601 
2602 	do_journal_write(ic, write_start, write_sections, false);
2603 
2604 	spin_lock_irq(&ic->endio_wait.lock);
2605 
2606 	ic->committed_section += write_sections;
2607 	wraparound_section(ic, &ic->committed_section);
2608 	ic->n_committed_sections -= write_sections;
2609 
2610 	prev_free_sectors = ic->free_sectors;
2611 	ic->free_sectors += write_sections * ic->journal_section_entries;
2612 	if (unlikely(!prev_free_sectors))
2613 		wake_up_locked(&ic->endio_wait);
2614 
2615 	spin_unlock_irq(&ic->endio_wait.lock);
2616 }
2617 
2618 static void recalc_write_super(struct dm_integrity_c *ic)
2619 {
2620 	int r;
2621 
2622 	dm_integrity_flush_buffers(ic, false);
2623 	if (dm_integrity_failed(ic))
2624 		return;
2625 
2626 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2627 	if (unlikely(r))
2628 		dm_integrity_io_error(ic, "writing superblock", r);
2629 }
2630 
2631 static void integrity_recalc(struct work_struct *w)
2632 {
2633 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2634 	struct dm_integrity_range range;
2635 	struct dm_io_request io_req;
2636 	struct dm_io_region io_loc;
2637 	sector_t area, offset;
2638 	sector_t metadata_block;
2639 	unsigned metadata_offset;
2640 	sector_t logical_sector, n_sectors;
2641 	__u8 *t;
2642 	unsigned i;
2643 	int r;
2644 	unsigned super_counter = 0;
2645 
2646 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2647 
2648 	spin_lock_irq(&ic->endio_wait.lock);
2649 
2650 next_chunk:
2651 
2652 	if (unlikely(dm_post_suspending(ic->ti)))
2653 		goto unlock_ret;
2654 
2655 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2656 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2657 		if (ic->mode == 'B') {
2658 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2659 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2660 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2661 		}
2662 		goto unlock_ret;
2663 	}
2664 
2665 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2666 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2667 	if (!ic->meta_dev)
2668 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2669 
2670 	add_new_range_and_wait(ic, &range);
2671 	spin_unlock_irq(&ic->endio_wait.lock);
2672 	logical_sector = range.logical_sector;
2673 	n_sectors = range.n_sectors;
2674 
2675 	if (ic->mode == 'B') {
2676 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2677 			goto advance_and_next;
2678 		}
2679 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2680 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2681 			logical_sector += ic->sectors_per_block;
2682 			n_sectors -= ic->sectors_per_block;
2683 			cond_resched();
2684 		}
2685 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2686 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2687 			n_sectors -= ic->sectors_per_block;
2688 			cond_resched();
2689 		}
2690 		get_area_and_offset(ic, logical_sector, &area, &offset);
2691 	}
2692 
2693 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2694 
2695 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2696 		recalc_write_super(ic);
2697 		if (ic->mode == 'B') {
2698 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2699 		}
2700 		super_counter = 0;
2701 	}
2702 
2703 	if (unlikely(dm_integrity_failed(ic)))
2704 		goto err;
2705 
2706 	io_req.bi_op = REQ_OP_READ;
2707 	io_req.bi_op_flags = 0;
2708 	io_req.mem.type = DM_IO_VMA;
2709 	io_req.mem.ptr.addr = ic->recalc_buffer;
2710 	io_req.notify.fn = NULL;
2711 	io_req.client = ic->io;
2712 	io_loc.bdev = ic->dev->bdev;
2713 	io_loc.sector = get_data_sector(ic, area, offset);
2714 	io_loc.count = n_sectors;
2715 
2716 	r = dm_io(&io_req, 1, &io_loc, NULL);
2717 	if (unlikely(r)) {
2718 		dm_integrity_io_error(ic, "reading data", r);
2719 		goto err;
2720 	}
2721 
2722 	t = ic->recalc_tags;
2723 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2724 		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2725 		t += ic->tag_size;
2726 	}
2727 
2728 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2729 
2730 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2731 	if (unlikely(r)) {
2732 		dm_integrity_io_error(ic, "writing tags", r);
2733 		goto err;
2734 	}
2735 
2736 	if (ic->mode == 'B') {
2737 		sector_t start, end;
2738 		start = (range.logical_sector >>
2739 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2740 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2741 		end = ((range.logical_sector + range.n_sectors) >>
2742 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2743 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2744 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2745 	}
2746 
2747 advance_and_next:
2748 	cond_resched();
2749 
2750 	spin_lock_irq(&ic->endio_wait.lock);
2751 	remove_range_unlocked(ic, &range);
2752 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2753 	goto next_chunk;
2754 
2755 err:
2756 	remove_range(ic, &range);
2757 	return;
2758 
2759 unlock_ret:
2760 	spin_unlock_irq(&ic->endio_wait.lock);
2761 
2762 	recalc_write_super(ic);
2763 }
2764 
2765 static void bitmap_block_work(struct work_struct *w)
2766 {
2767 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2768 	struct dm_integrity_c *ic = bbs->ic;
2769 	struct bio *bio;
2770 	struct bio_list bio_queue;
2771 	struct bio_list waiting;
2772 
2773 	bio_list_init(&waiting);
2774 
2775 	spin_lock(&bbs->bio_queue_lock);
2776 	bio_queue = bbs->bio_queue;
2777 	bio_list_init(&bbs->bio_queue);
2778 	spin_unlock(&bbs->bio_queue_lock);
2779 
2780 	while ((bio = bio_list_pop(&bio_queue))) {
2781 		struct dm_integrity_io *dio;
2782 
2783 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2784 
2785 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2786 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2787 			remove_range(ic, &dio->range);
2788 			INIT_WORK(&dio->work, integrity_bio_wait);
2789 			queue_work(ic->offload_wq, &dio->work);
2790 		} else {
2791 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2792 					dio->range.n_sectors, BITMAP_OP_SET);
2793 			bio_list_add(&waiting, bio);
2794 		}
2795 	}
2796 
2797 	if (bio_list_empty(&waiting))
2798 		return;
2799 
2800 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2801 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2802 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2803 
2804 	while ((bio = bio_list_pop(&waiting))) {
2805 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2806 
2807 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2808 				dio->range.n_sectors, BITMAP_OP_SET);
2809 
2810 		remove_range(ic, &dio->range);
2811 		INIT_WORK(&dio->work, integrity_bio_wait);
2812 		queue_work(ic->offload_wq, &dio->work);
2813 	}
2814 
2815 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2816 }
2817 
2818 static void bitmap_flush_work(struct work_struct *work)
2819 {
2820 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2821 	struct dm_integrity_range range;
2822 	unsigned long limit;
2823 	struct bio *bio;
2824 
2825 	dm_integrity_flush_buffers(ic, false);
2826 
2827 	range.logical_sector = 0;
2828 	range.n_sectors = ic->provided_data_sectors;
2829 
2830 	spin_lock_irq(&ic->endio_wait.lock);
2831 	add_new_range_and_wait(ic, &range);
2832 	spin_unlock_irq(&ic->endio_wait.lock);
2833 
2834 	dm_integrity_flush_buffers(ic, true);
2835 
2836 	limit = ic->provided_data_sectors;
2837 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2838 		limit = le64_to_cpu(ic->sb->recalc_sector)
2839 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2840 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2841 	}
2842 	/*DEBUG_print("zeroing journal\n");*/
2843 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2844 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2845 
2846 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2847 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2848 
2849 	spin_lock_irq(&ic->endio_wait.lock);
2850 	remove_range_unlocked(ic, &range);
2851 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2852 		bio_endio(bio);
2853 		spin_unlock_irq(&ic->endio_wait.lock);
2854 		spin_lock_irq(&ic->endio_wait.lock);
2855 	}
2856 	spin_unlock_irq(&ic->endio_wait.lock);
2857 }
2858 
2859 
2860 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2861 			 unsigned n_sections, unsigned char commit_seq)
2862 {
2863 	unsigned i, j, n;
2864 
2865 	if (!n_sections)
2866 		return;
2867 
2868 	for (n = 0; n < n_sections; n++) {
2869 		i = start_section + n;
2870 		wraparound_section(ic, &i);
2871 		for (j = 0; j < ic->journal_section_sectors; j++) {
2872 			struct journal_sector *js = access_journal(ic, i, j);
2873 			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2874 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2875 		}
2876 		for (j = 0; j < ic->journal_section_entries; j++) {
2877 			struct journal_entry *je = access_journal_entry(ic, i, j);
2878 			journal_entry_set_unused(je);
2879 		}
2880 	}
2881 
2882 	write_journal(ic, start_section, n_sections);
2883 }
2884 
2885 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2886 {
2887 	unsigned char k;
2888 	for (k = 0; k < N_COMMIT_IDS; k++) {
2889 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2890 			return k;
2891 	}
2892 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2893 	return -EIO;
2894 }
2895 
2896 static void replay_journal(struct dm_integrity_c *ic)
2897 {
2898 	unsigned i, j;
2899 	bool used_commit_ids[N_COMMIT_IDS];
2900 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2901 	unsigned write_start, write_sections;
2902 	unsigned continue_section;
2903 	bool journal_empty;
2904 	unsigned char unused, last_used, want_commit_seq;
2905 
2906 	if (ic->mode == 'R')
2907 		return;
2908 
2909 	if (ic->journal_uptodate)
2910 		return;
2911 
2912 	last_used = 0;
2913 	write_start = 0;
2914 
2915 	if (!ic->just_formatted) {
2916 		DEBUG_print("reading journal\n");
2917 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2918 		if (ic->journal_io)
2919 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2920 		if (ic->journal_io) {
2921 			struct journal_completion crypt_comp;
2922 			crypt_comp.ic = ic;
2923 			init_completion(&crypt_comp.comp);
2924 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2925 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2926 			wait_for_completion(&crypt_comp.comp);
2927 		}
2928 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2929 	}
2930 
2931 	if (dm_integrity_failed(ic))
2932 		goto clear_journal;
2933 
2934 	journal_empty = true;
2935 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2936 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2937 	for (i = 0; i < ic->journal_sections; i++) {
2938 		for (j = 0; j < ic->journal_section_sectors; j++) {
2939 			int k;
2940 			struct journal_sector *js = access_journal(ic, i, j);
2941 			k = find_commit_seq(ic, i, j, js->commit_id);
2942 			if (k < 0)
2943 				goto clear_journal;
2944 			used_commit_ids[k] = true;
2945 			max_commit_id_sections[k] = i;
2946 		}
2947 		if (journal_empty) {
2948 			for (j = 0; j < ic->journal_section_entries; j++) {
2949 				struct journal_entry *je = access_journal_entry(ic, i, j);
2950 				if (!journal_entry_is_unused(je)) {
2951 					journal_empty = false;
2952 					break;
2953 				}
2954 			}
2955 		}
2956 	}
2957 
2958 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2959 		unused = N_COMMIT_IDS - 1;
2960 		while (unused && !used_commit_ids[unused - 1])
2961 			unused--;
2962 	} else {
2963 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2964 			if (!used_commit_ids[unused])
2965 				break;
2966 		if (unused == N_COMMIT_IDS) {
2967 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2968 			goto clear_journal;
2969 		}
2970 	}
2971 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2972 		    unused, used_commit_ids[0], used_commit_ids[1],
2973 		    used_commit_ids[2], used_commit_ids[3]);
2974 
2975 	last_used = prev_commit_seq(unused);
2976 	want_commit_seq = prev_commit_seq(last_used);
2977 
2978 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2979 		journal_empty = true;
2980 
2981 	write_start = max_commit_id_sections[last_used] + 1;
2982 	if (unlikely(write_start >= ic->journal_sections))
2983 		want_commit_seq = next_commit_seq(want_commit_seq);
2984 	wraparound_section(ic, &write_start);
2985 
2986 	i = write_start;
2987 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2988 		for (j = 0; j < ic->journal_section_sectors; j++) {
2989 			struct journal_sector *js = access_journal(ic, i, j);
2990 
2991 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2992 				/*
2993 				 * This could be caused by crash during writing.
2994 				 * We won't replay the inconsistent part of the
2995 				 * journal.
2996 				 */
2997 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2998 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2999 				goto brk;
3000 			}
3001 		}
3002 		i++;
3003 		if (unlikely(i >= ic->journal_sections))
3004 			want_commit_seq = next_commit_seq(want_commit_seq);
3005 		wraparound_section(ic, &i);
3006 	}
3007 brk:
3008 
3009 	if (!journal_empty) {
3010 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3011 			    write_sections, write_start, want_commit_seq);
3012 		do_journal_write(ic, write_start, write_sections, true);
3013 	}
3014 
3015 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3016 		continue_section = write_start;
3017 		ic->commit_seq = want_commit_seq;
3018 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3019 	} else {
3020 		unsigned s;
3021 		unsigned char erase_seq;
3022 clear_journal:
3023 		DEBUG_print("clearing journal\n");
3024 
3025 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3026 		s = write_start;
3027 		init_journal(ic, s, 1, erase_seq);
3028 		s++;
3029 		wraparound_section(ic, &s);
3030 		if (ic->journal_sections >= 2) {
3031 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3032 			s += ic->journal_sections - 2;
3033 			wraparound_section(ic, &s);
3034 			init_journal(ic, s, 1, erase_seq);
3035 		}
3036 
3037 		continue_section = 0;
3038 		ic->commit_seq = next_commit_seq(erase_seq);
3039 	}
3040 
3041 	ic->committed_section = continue_section;
3042 	ic->n_committed_sections = 0;
3043 
3044 	ic->uncommitted_section = continue_section;
3045 	ic->n_uncommitted_sections = 0;
3046 
3047 	ic->free_section = continue_section;
3048 	ic->free_section_entry = 0;
3049 	ic->free_sectors = ic->journal_entries;
3050 
3051 	ic->journal_tree_root = RB_ROOT;
3052 	for (i = 0; i < ic->journal_entries; i++)
3053 		init_journal_node(&ic->journal_tree[i]);
3054 }
3055 
3056 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3057 {
3058 	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3059 
3060 	if (ic->mode == 'B') {
3061 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3062 		ic->synchronous_mode = 1;
3063 
3064 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3065 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3066 		flush_workqueue(ic->commit_wq);
3067 	}
3068 }
3069 
3070 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3071 {
3072 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3073 
3074 	DEBUG_print("dm_integrity_reboot\n");
3075 
3076 	dm_integrity_enter_synchronous_mode(ic);
3077 
3078 	return NOTIFY_DONE;
3079 }
3080 
3081 static void dm_integrity_postsuspend(struct dm_target *ti)
3082 {
3083 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3084 	int r;
3085 
3086 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3087 
3088 	del_timer_sync(&ic->autocommit_timer);
3089 
3090 	if (ic->recalc_wq)
3091 		drain_workqueue(ic->recalc_wq);
3092 
3093 	if (ic->mode == 'B')
3094 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3095 
3096 	queue_work(ic->commit_wq, &ic->commit_work);
3097 	drain_workqueue(ic->commit_wq);
3098 
3099 	if (ic->mode == 'J') {
3100 		if (ic->meta_dev)
3101 			queue_work(ic->writer_wq, &ic->writer_work);
3102 		drain_workqueue(ic->writer_wq);
3103 		dm_integrity_flush_buffers(ic, true);
3104 	}
3105 
3106 	if (ic->mode == 'B') {
3107 		dm_integrity_flush_buffers(ic, true);
3108 #if 1
3109 		/* set to 0 to test bitmap replay code */
3110 		init_journal(ic, 0, ic->journal_sections, 0);
3111 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3112 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3113 		if (unlikely(r))
3114 			dm_integrity_io_error(ic, "writing superblock", r);
3115 #endif
3116 	}
3117 
3118 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3119 
3120 	ic->journal_uptodate = true;
3121 }
3122 
3123 static void dm_integrity_resume(struct dm_target *ti)
3124 {
3125 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3126 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3127 	int r;
3128 
3129 	DEBUG_print("resume\n");
3130 
3131 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3132 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3133 		    ic->mode == 'B' &&
3134 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3135 			rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3136 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3137 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3138 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3139 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3140 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3141 		}
3142 
3143 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3144 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3145 		if (unlikely(r))
3146 			dm_integrity_io_error(ic, "writing superblock", r);
3147 	}
3148 
3149 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3150 		DEBUG_print("resume dirty_bitmap\n");
3151 		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3152 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3153 		if (ic->mode == 'B') {
3154 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3155 			    !ic->reset_recalculate_flag) {
3156 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3157 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3158 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3159 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3160 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3161 					ic->sb->recalc_sector = cpu_to_le64(0);
3162 				}
3163 			} else {
3164 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3165 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3166 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3167 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3168 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3169 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3170 				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3171 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3172 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3173 				ic->sb->recalc_sector = cpu_to_le64(0);
3174 			}
3175 		} else {
3176 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3177 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3178 			    ic->reset_recalculate_flag) {
3179 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3180 				ic->sb->recalc_sector = cpu_to_le64(0);
3181 			}
3182 			init_journal(ic, 0, ic->journal_sections, 0);
3183 			replay_journal(ic);
3184 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3185 		}
3186 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3187 		if (unlikely(r))
3188 			dm_integrity_io_error(ic, "writing superblock", r);
3189 	} else {
3190 		replay_journal(ic);
3191 		if (ic->reset_recalculate_flag) {
3192 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3193 			ic->sb->recalc_sector = cpu_to_le64(0);
3194 		}
3195 		if (ic->mode == 'B') {
3196 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3197 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3198 			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3199 			if (unlikely(r))
3200 				dm_integrity_io_error(ic, "writing superblock", r);
3201 
3202 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3203 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3204 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3205 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3206 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3207 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3208 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3209 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3210 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3211 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3212 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3213 			}
3214 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3215 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3216 		}
3217 	}
3218 
3219 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3220 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3221 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3222 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3223 		if (recalc_pos < ic->provided_data_sectors) {
3224 			queue_work(ic->recalc_wq, &ic->recalc_work);
3225 		} else if (recalc_pos > ic->provided_data_sectors) {
3226 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3227 			recalc_write_super(ic);
3228 		}
3229 	}
3230 
3231 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3232 	ic->reboot_notifier.next = NULL;
3233 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3234 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3235 
3236 #if 0
3237 	/* set to 1 to stress test synchronous mode */
3238 	dm_integrity_enter_synchronous_mode(ic);
3239 #endif
3240 }
3241 
3242 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3243 				unsigned status_flags, char *result, unsigned maxlen)
3244 {
3245 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3246 	unsigned arg_count;
3247 	size_t sz = 0;
3248 
3249 	switch (type) {
3250 	case STATUSTYPE_INFO:
3251 		DMEMIT("%llu %llu",
3252 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3253 			ic->provided_data_sectors);
3254 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3255 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3256 		else
3257 			DMEMIT(" -");
3258 		break;
3259 
3260 	case STATUSTYPE_TABLE: {
3261 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3262 		watermark_percentage += ic->journal_entries / 2;
3263 		do_div(watermark_percentage, ic->journal_entries);
3264 		arg_count = 3;
3265 		arg_count += !!ic->meta_dev;
3266 		arg_count += ic->sectors_per_block != 1;
3267 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3268 		arg_count += ic->reset_recalculate_flag;
3269 		arg_count += ic->discard;
3270 		arg_count += ic->mode == 'J';
3271 		arg_count += ic->mode == 'J';
3272 		arg_count += ic->mode == 'B';
3273 		arg_count += ic->mode == 'B';
3274 		arg_count += !!ic->internal_hash_alg.alg_string;
3275 		arg_count += !!ic->journal_crypt_alg.alg_string;
3276 		arg_count += !!ic->journal_mac_alg.alg_string;
3277 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3278 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3279 		arg_count += ic->legacy_recalculate;
3280 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3281 		       ic->tag_size, ic->mode, arg_count);
3282 		if (ic->meta_dev)
3283 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3284 		if (ic->sectors_per_block != 1)
3285 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3286 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3287 			DMEMIT(" recalculate");
3288 		if (ic->reset_recalculate_flag)
3289 			DMEMIT(" reset_recalculate");
3290 		if (ic->discard)
3291 			DMEMIT(" allow_discards");
3292 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3293 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3294 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3295 		if (ic->mode == 'J') {
3296 			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3297 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3298 		}
3299 		if (ic->mode == 'B') {
3300 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3301 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3302 		}
3303 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3304 			DMEMIT(" fix_padding");
3305 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3306 			DMEMIT(" fix_hmac");
3307 		if (ic->legacy_recalculate)
3308 			DMEMIT(" legacy_recalculate");
3309 
3310 #define EMIT_ALG(a, n)							\
3311 		do {							\
3312 			if (ic->a.alg_string) {				\
3313 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3314 				if (ic->a.key_string)			\
3315 					DMEMIT(":%s", ic->a.key_string);\
3316 			}						\
3317 		} while (0)
3318 		EMIT_ALG(internal_hash_alg, "internal_hash");
3319 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3320 		EMIT_ALG(journal_mac_alg, "journal_mac");
3321 		break;
3322 	}
3323 	case STATUSTYPE_IMA:
3324 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3325 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3326 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3327 
3328 		if (ic->meta_dev)
3329 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3330 		if (ic->sectors_per_block != 1)
3331 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3332 
3333 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3334 		       'y' : 'n');
3335 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3336 		DMEMIT(",fix_padding=%c",
3337 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3338 		DMEMIT(",fix_hmac=%c",
3339 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3340 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3341 
3342 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3343 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3344 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3345 		DMEMIT(";");
3346 		break;
3347 	}
3348 }
3349 
3350 static int dm_integrity_iterate_devices(struct dm_target *ti,
3351 					iterate_devices_callout_fn fn, void *data)
3352 {
3353 	struct dm_integrity_c *ic = ti->private;
3354 
3355 	if (!ic->meta_dev)
3356 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3357 	else
3358 		return fn(ti, ic->dev, 0, ti->len, data);
3359 }
3360 
3361 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3362 {
3363 	struct dm_integrity_c *ic = ti->private;
3364 
3365 	if (ic->sectors_per_block > 1) {
3366 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3367 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3368 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3369 	}
3370 }
3371 
3372 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3373 {
3374 	unsigned sector_space = JOURNAL_SECTOR_DATA;
3375 
3376 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3377 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3378 					 JOURNAL_ENTRY_ROUNDUP);
3379 
3380 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3381 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3382 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3383 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3384 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3385 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3386 }
3387 
3388 static int calculate_device_limits(struct dm_integrity_c *ic)
3389 {
3390 	__u64 initial_sectors;
3391 
3392 	calculate_journal_section_size(ic);
3393 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3394 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3395 		return -EINVAL;
3396 	ic->initial_sectors = initial_sectors;
3397 
3398 	if (!ic->meta_dev) {
3399 		sector_t last_sector, last_area, last_offset;
3400 
3401 		/* we have to maintain excessive padding for compatibility with existing volumes */
3402 		__u64 metadata_run_padding =
3403 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3404 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3405 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3406 
3407 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3408 					    metadata_run_padding) >> SECTOR_SHIFT;
3409 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3410 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3411 		else
3412 			ic->log2_metadata_run = -1;
3413 
3414 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3415 		last_sector = get_data_sector(ic, last_area, last_offset);
3416 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3417 			return -EINVAL;
3418 	} else {
3419 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3420 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3421 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3422 		meta_size <<= ic->log2_buffer_sectors;
3423 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3424 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3425 			return -EINVAL;
3426 		ic->metadata_run = 1;
3427 		ic->log2_metadata_run = 0;
3428 	}
3429 
3430 	return 0;
3431 }
3432 
3433 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3434 {
3435 	if (!ic->meta_dev) {
3436 		int test_bit;
3437 		ic->provided_data_sectors = 0;
3438 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3439 			__u64 prev_data_sectors = ic->provided_data_sectors;
3440 
3441 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3442 			if (calculate_device_limits(ic))
3443 				ic->provided_data_sectors = prev_data_sectors;
3444 		}
3445 	} else {
3446 		ic->provided_data_sectors = ic->data_device_sectors;
3447 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3448 	}
3449 }
3450 
3451 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3452 {
3453 	unsigned journal_sections;
3454 	int test_bit;
3455 
3456 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3457 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3458 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3459 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3460 	if (ic->journal_mac_alg.alg_string)
3461 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3462 
3463 	calculate_journal_section_size(ic);
3464 	journal_sections = journal_sectors / ic->journal_section_sectors;
3465 	if (!journal_sections)
3466 		journal_sections = 1;
3467 
3468 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3469 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3470 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3471 	}
3472 
3473 	if (!ic->meta_dev) {
3474 		if (ic->fix_padding)
3475 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3476 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3477 		if (!interleave_sectors)
3478 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3479 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3480 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3481 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3482 
3483 		get_provided_data_sectors(ic);
3484 		if (!ic->provided_data_sectors)
3485 			return -EINVAL;
3486 	} else {
3487 		ic->sb->log2_interleave_sectors = 0;
3488 
3489 		get_provided_data_sectors(ic);
3490 		if (!ic->provided_data_sectors)
3491 			return -EINVAL;
3492 
3493 try_smaller_buffer:
3494 		ic->sb->journal_sections = cpu_to_le32(0);
3495 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3496 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3497 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3498 			if (test_journal_sections > journal_sections)
3499 				continue;
3500 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3501 			if (calculate_device_limits(ic))
3502 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3503 
3504 		}
3505 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3506 			if (ic->log2_buffer_sectors > 3) {
3507 				ic->log2_buffer_sectors--;
3508 				goto try_smaller_buffer;
3509 			}
3510 			return -EINVAL;
3511 		}
3512 	}
3513 
3514 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3515 
3516 	sb_set_version(ic);
3517 
3518 	return 0;
3519 }
3520 
3521 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3522 {
3523 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3524 	struct blk_integrity bi;
3525 
3526 	memset(&bi, 0, sizeof(bi));
3527 	bi.profile = &dm_integrity_profile;
3528 	bi.tuple_size = ic->tag_size;
3529 	bi.tag_size = bi.tuple_size;
3530 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3531 
3532 	blk_integrity_register(disk, &bi);
3533 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3534 }
3535 
3536 static void dm_integrity_free_page_list(struct page_list *pl)
3537 {
3538 	unsigned i;
3539 
3540 	if (!pl)
3541 		return;
3542 	for (i = 0; pl[i].page; i++)
3543 		__free_page(pl[i].page);
3544 	kvfree(pl);
3545 }
3546 
3547 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3548 {
3549 	struct page_list *pl;
3550 	unsigned i;
3551 
3552 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3553 	if (!pl)
3554 		return NULL;
3555 
3556 	for (i = 0; i < n_pages; i++) {
3557 		pl[i].page = alloc_page(GFP_KERNEL);
3558 		if (!pl[i].page) {
3559 			dm_integrity_free_page_list(pl);
3560 			return NULL;
3561 		}
3562 		if (i)
3563 			pl[i - 1].next = &pl[i];
3564 	}
3565 	pl[i].page = NULL;
3566 	pl[i].next = NULL;
3567 
3568 	return pl;
3569 }
3570 
3571 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3572 {
3573 	unsigned i;
3574 	for (i = 0; i < ic->journal_sections; i++)
3575 		kvfree(sl[i]);
3576 	kvfree(sl);
3577 }
3578 
3579 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3580 								   struct page_list *pl)
3581 {
3582 	struct scatterlist **sl;
3583 	unsigned i;
3584 
3585 	sl = kvmalloc_array(ic->journal_sections,
3586 			    sizeof(struct scatterlist *),
3587 			    GFP_KERNEL | __GFP_ZERO);
3588 	if (!sl)
3589 		return NULL;
3590 
3591 	for (i = 0; i < ic->journal_sections; i++) {
3592 		struct scatterlist *s;
3593 		unsigned start_index, start_offset;
3594 		unsigned end_index, end_offset;
3595 		unsigned n_pages;
3596 		unsigned idx;
3597 
3598 		page_list_location(ic, i, 0, &start_index, &start_offset);
3599 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3600 				   &end_index, &end_offset);
3601 
3602 		n_pages = (end_index - start_index + 1);
3603 
3604 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3605 				   GFP_KERNEL);
3606 		if (!s) {
3607 			dm_integrity_free_journal_scatterlist(ic, sl);
3608 			return NULL;
3609 		}
3610 
3611 		sg_init_table(s, n_pages);
3612 		for (idx = start_index; idx <= end_index; idx++) {
3613 			char *va = lowmem_page_address(pl[idx].page);
3614 			unsigned start = 0, end = PAGE_SIZE;
3615 			if (idx == start_index)
3616 				start = start_offset;
3617 			if (idx == end_index)
3618 				end = end_offset + (1 << SECTOR_SHIFT);
3619 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3620 		}
3621 
3622 		sl[i] = s;
3623 	}
3624 
3625 	return sl;
3626 }
3627 
3628 static void free_alg(struct alg_spec *a)
3629 {
3630 	kfree_sensitive(a->alg_string);
3631 	kfree_sensitive(a->key);
3632 	memset(a, 0, sizeof *a);
3633 }
3634 
3635 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3636 {
3637 	char *k;
3638 
3639 	free_alg(a);
3640 
3641 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3642 	if (!a->alg_string)
3643 		goto nomem;
3644 
3645 	k = strchr(a->alg_string, ':');
3646 	if (k) {
3647 		*k = 0;
3648 		a->key_string = k + 1;
3649 		if (strlen(a->key_string) & 1)
3650 			goto inval;
3651 
3652 		a->key_size = strlen(a->key_string) / 2;
3653 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3654 		if (!a->key)
3655 			goto nomem;
3656 		if (hex2bin(a->key, a->key_string, a->key_size))
3657 			goto inval;
3658 	}
3659 
3660 	return 0;
3661 inval:
3662 	*error = error_inval;
3663 	return -EINVAL;
3664 nomem:
3665 	*error = "Out of memory for an argument";
3666 	return -ENOMEM;
3667 }
3668 
3669 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3670 		   char *error_alg, char *error_key)
3671 {
3672 	int r;
3673 
3674 	if (a->alg_string) {
3675 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3676 		if (IS_ERR(*hash)) {
3677 			*error = error_alg;
3678 			r = PTR_ERR(*hash);
3679 			*hash = NULL;
3680 			return r;
3681 		}
3682 
3683 		if (a->key) {
3684 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3685 			if (r) {
3686 				*error = error_key;
3687 				return r;
3688 			}
3689 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3690 			*error = error_key;
3691 			return -ENOKEY;
3692 		}
3693 	}
3694 
3695 	return 0;
3696 }
3697 
3698 static int create_journal(struct dm_integrity_c *ic, char **error)
3699 {
3700 	int r = 0;
3701 	unsigned i;
3702 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3703 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3704 	struct skcipher_request *req = NULL;
3705 
3706 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3707 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3708 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3709 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3710 
3711 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3712 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3713 	journal_desc_size = journal_pages * sizeof(struct page_list);
3714 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3715 		*error = "Journal doesn't fit into memory";
3716 		r = -ENOMEM;
3717 		goto bad;
3718 	}
3719 	ic->journal_pages = journal_pages;
3720 
3721 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3722 	if (!ic->journal) {
3723 		*error = "Could not allocate memory for journal";
3724 		r = -ENOMEM;
3725 		goto bad;
3726 	}
3727 	if (ic->journal_crypt_alg.alg_string) {
3728 		unsigned ivsize, blocksize;
3729 		struct journal_completion comp;
3730 
3731 		comp.ic = ic;
3732 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3733 		if (IS_ERR(ic->journal_crypt)) {
3734 			*error = "Invalid journal cipher";
3735 			r = PTR_ERR(ic->journal_crypt);
3736 			ic->journal_crypt = NULL;
3737 			goto bad;
3738 		}
3739 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3740 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3741 
3742 		if (ic->journal_crypt_alg.key) {
3743 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3744 						   ic->journal_crypt_alg.key_size);
3745 			if (r) {
3746 				*error = "Error setting encryption key";
3747 				goto bad;
3748 			}
3749 		}
3750 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3751 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3752 
3753 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3754 		if (!ic->journal_io) {
3755 			*error = "Could not allocate memory for journal io";
3756 			r = -ENOMEM;
3757 			goto bad;
3758 		}
3759 
3760 		if (blocksize == 1) {
3761 			struct scatterlist *sg;
3762 
3763 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3764 			if (!req) {
3765 				*error = "Could not allocate crypt request";
3766 				r = -ENOMEM;
3767 				goto bad;
3768 			}
3769 
3770 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3771 			if (!crypt_iv) {
3772 				*error = "Could not allocate iv";
3773 				r = -ENOMEM;
3774 				goto bad;
3775 			}
3776 
3777 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3778 			if (!ic->journal_xor) {
3779 				*error = "Could not allocate memory for journal xor";
3780 				r = -ENOMEM;
3781 				goto bad;
3782 			}
3783 
3784 			sg = kvmalloc_array(ic->journal_pages + 1,
3785 					    sizeof(struct scatterlist),
3786 					    GFP_KERNEL);
3787 			if (!sg) {
3788 				*error = "Unable to allocate sg list";
3789 				r = -ENOMEM;
3790 				goto bad;
3791 			}
3792 			sg_init_table(sg, ic->journal_pages + 1);
3793 			for (i = 0; i < ic->journal_pages; i++) {
3794 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3795 				clear_page(va);
3796 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3797 			}
3798 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3799 
3800 			skcipher_request_set_crypt(req, sg, sg,
3801 						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3802 			init_completion(&comp.comp);
3803 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3804 			if (do_crypt(true, req, &comp))
3805 				wait_for_completion(&comp.comp);
3806 			kvfree(sg);
3807 			r = dm_integrity_failed(ic);
3808 			if (r) {
3809 				*error = "Unable to encrypt journal";
3810 				goto bad;
3811 			}
3812 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3813 
3814 			crypto_free_skcipher(ic->journal_crypt);
3815 			ic->journal_crypt = NULL;
3816 		} else {
3817 			unsigned crypt_len = roundup(ivsize, blocksize);
3818 
3819 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3820 			if (!req) {
3821 				*error = "Could not allocate crypt request";
3822 				r = -ENOMEM;
3823 				goto bad;
3824 			}
3825 
3826 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3827 			if (!crypt_iv) {
3828 				*error = "Could not allocate iv";
3829 				r = -ENOMEM;
3830 				goto bad;
3831 			}
3832 
3833 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3834 			if (!crypt_data) {
3835 				*error = "Unable to allocate crypt data";
3836 				r = -ENOMEM;
3837 				goto bad;
3838 			}
3839 
3840 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3841 			if (!ic->journal_scatterlist) {
3842 				*error = "Unable to allocate sg list";
3843 				r = -ENOMEM;
3844 				goto bad;
3845 			}
3846 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3847 			if (!ic->journal_io_scatterlist) {
3848 				*error = "Unable to allocate sg list";
3849 				r = -ENOMEM;
3850 				goto bad;
3851 			}
3852 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3853 							 sizeof(struct skcipher_request *),
3854 							 GFP_KERNEL | __GFP_ZERO);
3855 			if (!ic->sk_requests) {
3856 				*error = "Unable to allocate sk requests";
3857 				r = -ENOMEM;
3858 				goto bad;
3859 			}
3860 			for (i = 0; i < ic->journal_sections; i++) {
3861 				struct scatterlist sg;
3862 				struct skcipher_request *section_req;
3863 				__le32 section_le = cpu_to_le32(i);
3864 
3865 				memset(crypt_iv, 0x00, ivsize);
3866 				memset(crypt_data, 0x00, crypt_len);
3867 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3868 
3869 				sg_init_one(&sg, crypt_data, crypt_len);
3870 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3871 				init_completion(&comp.comp);
3872 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3873 				if (do_crypt(true, req, &comp))
3874 					wait_for_completion(&comp.comp);
3875 
3876 				r = dm_integrity_failed(ic);
3877 				if (r) {
3878 					*error = "Unable to generate iv";
3879 					goto bad;
3880 				}
3881 
3882 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3883 				if (!section_req) {
3884 					*error = "Unable to allocate crypt request";
3885 					r = -ENOMEM;
3886 					goto bad;
3887 				}
3888 				section_req->iv = kmalloc_array(ivsize, 2,
3889 								GFP_KERNEL);
3890 				if (!section_req->iv) {
3891 					skcipher_request_free(section_req);
3892 					*error = "Unable to allocate iv";
3893 					r = -ENOMEM;
3894 					goto bad;
3895 				}
3896 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3897 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3898 				ic->sk_requests[i] = section_req;
3899 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3900 			}
3901 		}
3902 	}
3903 
3904 	for (i = 0; i < N_COMMIT_IDS; i++) {
3905 		unsigned j;
3906 retest_commit_id:
3907 		for (j = 0; j < i; j++) {
3908 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3909 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3910 				goto retest_commit_id;
3911 			}
3912 		}
3913 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3914 	}
3915 
3916 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3917 	if (journal_tree_size > ULONG_MAX) {
3918 		*error = "Journal doesn't fit into memory";
3919 		r = -ENOMEM;
3920 		goto bad;
3921 	}
3922 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3923 	if (!ic->journal_tree) {
3924 		*error = "Could not allocate memory for journal tree";
3925 		r = -ENOMEM;
3926 	}
3927 bad:
3928 	kfree(crypt_data);
3929 	kfree(crypt_iv);
3930 	skcipher_request_free(req);
3931 
3932 	return r;
3933 }
3934 
3935 /*
3936  * Construct a integrity mapping
3937  *
3938  * Arguments:
3939  *	device
3940  *	offset from the start of the device
3941  *	tag size
3942  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3943  *	number of optional arguments
3944  *	optional arguments:
3945  *		journal_sectors
3946  *		interleave_sectors
3947  *		buffer_sectors
3948  *		journal_watermark
3949  *		commit_time
3950  *		meta_device
3951  *		block_size
3952  *		sectors_per_bit
3953  *		bitmap_flush_interval
3954  *		internal_hash
3955  *		journal_crypt
3956  *		journal_mac
3957  *		recalculate
3958  */
3959 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3960 {
3961 	struct dm_integrity_c *ic;
3962 	char dummy;
3963 	int r;
3964 	unsigned extra_args;
3965 	struct dm_arg_set as;
3966 	static const struct dm_arg _args[] = {
3967 		{0, 18, "Invalid number of feature args"},
3968 	};
3969 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3970 	bool should_write_sb;
3971 	__u64 threshold;
3972 	unsigned long long start;
3973 	__s8 log2_sectors_per_bitmap_bit = -1;
3974 	__s8 log2_blocks_per_bitmap_bit;
3975 	__u64 bits_in_journal;
3976 	__u64 n_bitmap_bits;
3977 
3978 #define DIRECT_ARGUMENTS	4
3979 
3980 	if (argc <= DIRECT_ARGUMENTS) {
3981 		ti->error = "Invalid argument count";
3982 		return -EINVAL;
3983 	}
3984 
3985 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3986 	if (!ic) {
3987 		ti->error = "Cannot allocate integrity context";
3988 		return -ENOMEM;
3989 	}
3990 	ti->private = ic;
3991 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3992 	ic->ti = ti;
3993 
3994 	ic->in_progress = RB_ROOT;
3995 	INIT_LIST_HEAD(&ic->wait_list);
3996 	init_waitqueue_head(&ic->endio_wait);
3997 	bio_list_init(&ic->flush_bio_list);
3998 	init_waitqueue_head(&ic->copy_to_journal_wait);
3999 	init_completion(&ic->crypto_backoff);
4000 	atomic64_set(&ic->number_of_mismatches, 0);
4001 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4002 
4003 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4004 	if (r) {
4005 		ti->error = "Device lookup failed";
4006 		goto bad;
4007 	}
4008 
4009 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4010 		ti->error = "Invalid starting offset";
4011 		r = -EINVAL;
4012 		goto bad;
4013 	}
4014 	ic->start = start;
4015 
4016 	if (strcmp(argv[2], "-")) {
4017 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4018 			ti->error = "Invalid tag size";
4019 			r = -EINVAL;
4020 			goto bad;
4021 		}
4022 	}
4023 
4024 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4025 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4026 		ic->mode = argv[3][0];
4027 	} else {
4028 		ti->error = "Invalid mode (expecting J, B, D, R)";
4029 		r = -EINVAL;
4030 		goto bad;
4031 	}
4032 
4033 	journal_sectors = 0;
4034 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4035 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4036 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4037 	sync_msec = DEFAULT_SYNC_MSEC;
4038 	ic->sectors_per_block = 1;
4039 
4040 	as.argc = argc - DIRECT_ARGUMENTS;
4041 	as.argv = argv + DIRECT_ARGUMENTS;
4042 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4043 	if (r)
4044 		goto bad;
4045 
4046 	while (extra_args--) {
4047 		const char *opt_string;
4048 		unsigned val;
4049 		unsigned long long llval;
4050 		opt_string = dm_shift_arg(&as);
4051 		if (!opt_string) {
4052 			r = -EINVAL;
4053 			ti->error = "Not enough feature arguments";
4054 			goto bad;
4055 		}
4056 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4057 			journal_sectors = val ? val : 1;
4058 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4059 			interleave_sectors = val;
4060 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4061 			buffer_sectors = val;
4062 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4063 			journal_watermark = val;
4064 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4065 			sync_msec = val;
4066 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4067 			if (ic->meta_dev) {
4068 				dm_put_device(ti, ic->meta_dev);
4069 				ic->meta_dev = NULL;
4070 			}
4071 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4072 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4073 			if (r) {
4074 				ti->error = "Device lookup failed";
4075 				goto bad;
4076 			}
4077 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4078 			if (val < 1 << SECTOR_SHIFT ||
4079 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4080 			    (val & (val -1))) {
4081 				r = -EINVAL;
4082 				ti->error = "Invalid block_size argument";
4083 				goto bad;
4084 			}
4085 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4086 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4087 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4088 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4089 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4090 				r = -EINVAL;
4091 				ti->error = "Invalid bitmap_flush_interval argument";
4092 				goto bad;
4093 			}
4094 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4095 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4096 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4097 					    "Invalid internal_hash argument");
4098 			if (r)
4099 				goto bad;
4100 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4101 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4102 					    "Invalid journal_crypt argument");
4103 			if (r)
4104 				goto bad;
4105 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4106 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4107 					    "Invalid journal_mac argument");
4108 			if (r)
4109 				goto bad;
4110 		} else if (!strcmp(opt_string, "recalculate")) {
4111 			ic->recalculate_flag = true;
4112 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4113 			ic->recalculate_flag = true;
4114 			ic->reset_recalculate_flag = true;
4115 		} else if (!strcmp(opt_string, "allow_discards")) {
4116 			ic->discard = true;
4117 		} else if (!strcmp(opt_string, "fix_padding")) {
4118 			ic->fix_padding = true;
4119 		} else if (!strcmp(opt_string, "fix_hmac")) {
4120 			ic->fix_hmac = true;
4121 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4122 			ic->legacy_recalculate = true;
4123 		} else {
4124 			r = -EINVAL;
4125 			ti->error = "Invalid argument";
4126 			goto bad;
4127 		}
4128 	}
4129 
4130 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4131 	if (!ic->meta_dev)
4132 		ic->meta_device_sectors = ic->data_device_sectors;
4133 	else
4134 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4135 
4136 	if (!journal_sectors) {
4137 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4138 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4139 	}
4140 
4141 	if (!buffer_sectors)
4142 		buffer_sectors = 1;
4143 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4144 
4145 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4146 		    "Invalid internal hash", "Error setting internal hash key");
4147 	if (r)
4148 		goto bad;
4149 
4150 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4151 		    "Invalid journal mac", "Error setting journal mac key");
4152 	if (r)
4153 		goto bad;
4154 
4155 	if (!ic->tag_size) {
4156 		if (!ic->internal_hash) {
4157 			ti->error = "Unknown tag size";
4158 			r = -EINVAL;
4159 			goto bad;
4160 		}
4161 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4162 	}
4163 	if (ic->tag_size > MAX_TAG_SIZE) {
4164 		ti->error = "Too big tag size";
4165 		r = -EINVAL;
4166 		goto bad;
4167 	}
4168 	if (!(ic->tag_size & (ic->tag_size - 1)))
4169 		ic->log2_tag_size = __ffs(ic->tag_size);
4170 	else
4171 		ic->log2_tag_size = -1;
4172 
4173 	if (ic->mode == 'B' && !ic->internal_hash) {
4174 		r = -EINVAL;
4175 		ti->error = "Bitmap mode can be only used with internal hash";
4176 		goto bad;
4177 	}
4178 
4179 	if (ic->discard && !ic->internal_hash) {
4180 		r = -EINVAL;
4181 		ti->error = "Discard can be only used with internal hash";
4182 		goto bad;
4183 	}
4184 
4185 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4186 	ic->autocommit_msec = sync_msec;
4187 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4188 
4189 	ic->io = dm_io_client_create();
4190 	if (IS_ERR(ic->io)) {
4191 		r = PTR_ERR(ic->io);
4192 		ic->io = NULL;
4193 		ti->error = "Cannot allocate dm io";
4194 		goto bad;
4195 	}
4196 
4197 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4198 	if (r) {
4199 		ti->error = "Cannot allocate mempool";
4200 		goto bad;
4201 	}
4202 
4203 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4204 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4205 	if (!ic->metadata_wq) {
4206 		ti->error = "Cannot allocate workqueue";
4207 		r = -ENOMEM;
4208 		goto bad;
4209 	}
4210 
4211 	/*
4212 	 * If this workqueue were percpu, it would cause bio reordering
4213 	 * and reduced performance.
4214 	 */
4215 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4216 	if (!ic->wait_wq) {
4217 		ti->error = "Cannot allocate workqueue";
4218 		r = -ENOMEM;
4219 		goto bad;
4220 	}
4221 
4222 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4223 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4224 	if (!ic->offload_wq) {
4225 		ti->error = "Cannot allocate workqueue";
4226 		r = -ENOMEM;
4227 		goto bad;
4228 	}
4229 
4230 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4231 	if (!ic->commit_wq) {
4232 		ti->error = "Cannot allocate workqueue";
4233 		r = -ENOMEM;
4234 		goto bad;
4235 	}
4236 	INIT_WORK(&ic->commit_work, integrity_commit);
4237 
4238 	if (ic->mode == 'J' || ic->mode == 'B') {
4239 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4240 		if (!ic->writer_wq) {
4241 			ti->error = "Cannot allocate workqueue";
4242 			r = -ENOMEM;
4243 			goto bad;
4244 		}
4245 		INIT_WORK(&ic->writer_work, integrity_writer);
4246 	}
4247 
4248 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4249 	if (!ic->sb) {
4250 		r = -ENOMEM;
4251 		ti->error = "Cannot allocate superblock area";
4252 		goto bad;
4253 	}
4254 
4255 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
4256 	if (r) {
4257 		ti->error = "Error reading superblock";
4258 		goto bad;
4259 	}
4260 	should_write_sb = false;
4261 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4262 		if (ic->mode != 'R') {
4263 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4264 				r = -EINVAL;
4265 				ti->error = "The device is not initialized";
4266 				goto bad;
4267 			}
4268 		}
4269 
4270 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4271 		if (r) {
4272 			ti->error = "Could not initialize superblock";
4273 			goto bad;
4274 		}
4275 		if (ic->mode != 'R')
4276 			should_write_sb = true;
4277 	}
4278 
4279 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4280 		r = -EINVAL;
4281 		ti->error = "Unknown version";
4282 		goto bad;
4283 	}
4284 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4285 		r = -EINVAL;
4286 		ti->error = "Tag size doesn't match the information in superblock";
4287 		goto bad;
4288 	}
4289 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4290 		r = -EINVAL;
4291 		ti->error = "Block size doesn't match the information in superblock";
4292 		goto bad;
4293 	}
4294 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4295 		r = -EINVAL;
4296 		ti->error = "Corrupted superblock, journal_sections is 0";
4297 		goto bad;
4298 	}
4299 	/* make sure that ti->max_io_len doesn't overflow */
4300 	if (!ic->meta_dev) {
4301 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4302 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4303 			r = -EINVAL;
4304 			ti->error = "Invalid interleave_sectors in the superblock";
4305 			goto bad;
4306 		}
4307 	} else {
4308 		if (ic->sb->log2_interleave_sectors) {
4309 			r = -EINVAL;
4310 			ti->error = "Invalid interleave_sectors in the superblock";
4311 			goto bad;
4312 		}
4313 	}
4314 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4315 		r = -EINVAL;
4316 		ti->error = "Journal mac mismatch";
4317 		goto bad;
4318 	}
4319 
4320 	get_provided_data_sectors(ic);
4321 	if (!ic->provided_data_sectors) {
4322 		r = -EINVAL;
4323 		ti->error = "The device is too small";
4324 		goto bad;
4325 	}
4326 
4327 try_smaller_buffer:
4328 	r = calculate_device_limits(ic);
4329 	if (r) {
4330 		if (ic->meta_dev) {
4331 			if (ic->log2_buffer_sectors > 3) {
4332 				ic->log2_buffer_sectors--;
4333 				goto try_smaller_buffer;
4334 			}
4335 		}
4336 		ti->error = "The device is too small";
4337 		goto bad;
4338 	}
4339 
4340 	if (log2_sectors_per_bitmap_bit < 0)
4341 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4342 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4343 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4344 
4345 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4346 	if (bits_in_journal > UINT_MAX)
4347 		bits_in_journal = UINT_MAX;
4348 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4349 		log2_sectors_per_bitmap_bit++;
4350 
4351 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4352 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4353 	if (should_write_sb) {
4354 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4355 	}
4356 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4357 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4358 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4359 
4360 	if (!ic->meta_dev)
4361 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4362 
4363 	if (ti->len > ic->provided_data_sectors) {
4364 		r = -EINVAL;
4365 		ti->error = "Not enough provided sectors for requested mapping size";
4366 		goto bad;
4367 	}
4368 
4369 
4370 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4371 	threshold += 50;
4372 	do_div(threshold, 100);
4373 	ic->free_sectors_threshold = threshold;
4374 
4375 	DEBUG_print("initialized:\n");
4376 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4377 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4378 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4379 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4380 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4381 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4382 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4383 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4384 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4385 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4386 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4387 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4388 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4389 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4390 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4391 
4392 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4393 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4394 		ic->sb->recalc_sector = cpu_to_le64(0);
4395 	}
4396 
4397 	if (ic->internal_hash) {
4398 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4399 		if (!ic->recalc_wq ) {
4400 			ti->error = "Cannot allocate workqueue";
4401 			r = -ENOMEM;
4402 			goto bad;
4403 		}
4404 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4405 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4406 		if (!ic->recalc_buffer) {
4407 			ti->error = "Cannot allocate buffer for recalculating";
4408 			r = -ENOMEM;
4409 			goto bad;
4410 		}
4411 		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4412 						 ic->tag_size, GFP_KERNEL);
4413 		if (!ic->recalc_tags) {
4414 			ti->error = "Cannot allocate tags for recalculating";
4415 			r = -ENOMEM;
4416 			goto bad;
4417 		}
4418 	} else {
4419 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4420 			ti->error = "Recalculate can only be specified with internal_hash";
4421 			r = -EINVAL;
4422 			goto bad;
4423 		}
4424 	}
4425 
4426 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4427 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4428 	    dm_integrity_disable_recalculate(ic)) {
4429 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4430 		r = -EOPNOTSUPP;
4431 		goto bad;
4432 	}
4433 
4434 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4435 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4436 	if (IS_ERR(ic->bufio)) {
4437 		r = PTR_ERR(ic->bufio);
4438 		ti->error = "Cannot initialize dm-bufio";
4439 		ic->bufio = NULL;
4440 		goto bad;
4441 	}
4442 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4443 
4444 	if (ic->mode != 'R') {
4445 		r = create_journal(ic, &ti->error);
4446 		if (r)
4447 			goto bad;
4448 
4449 	}
4450 
4451 	if (ic->mode == 'B') {
4452 		unsigned i;
4453 		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4454 
4455 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4456 		if (!ic->recalc_bitmap) {
4457 			r = -ENOMEM;
4458 			goto bad;
4459 		}
4460 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4461 		if (!ic->may_write_bitmap) {
4462 			r = -ENOMEM;
4463 			goto bad;
4464 		}
4465 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4466 		if (!ic->bbs) {
4467 			r = -ENOMEM;
4468 			goto bad;
4469 		}
4470 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4471 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4472 			struct bitmap_block_status *bbs = &ic->bbs[i];
4473 			unsigned sector, pl_index, pl_offset;
4474 
4475 			INIT_WORK(&bbs->work, bitmap_block_work);
4476 			bbs->ic = ic;
4477 			bbs->idx = i;
4478 			bio_list_init(&bbs->bio_queue);
4479 			spin_lock_init(&bbs->bio_queue_lock);
4480 
4481 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4482 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4483 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4484 
4485 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4486 		}
4487 	}
4488 
4489 	if (should_write_sb) {
4490 		int r;
4491 
4492 		init_journal(ic, 0, ic->journal_sections, 0);
4493 		r = dm_integrity_failed(ic);
4494 		if (unlikely(r)) {
4495 			ti->error = "Error initializing journal";
4496 			goto bad;
4497 		}
4498 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4499 		if (r) {
4500 			ti->error = "Error initializing superblock";
4501 			goto bad;
4502 		}
4503 		ic->just_formatted = true;
4504 	}
4505 
4506 	if (!ic->meta_dev) {
4507 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4508 		if (r)
4509 			goto bad;
4510 	}
4511 	if (ic->mode == 'B') {
4512 		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4513 		if (!max_io_len)
4514 			max_io_len = 1U << 31;
4515 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4516 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4517 			r = dm_set_target_max_io_len(ti, max_io_len);
4518 			if (r)
4519 				goto bad;
4520 		}
4521 	}
4522 
4523 	if (!ic->internal_hash)
4524 		dm_integrity_set(ti, ic);
4525 
4526 	ti->num_flush_bios = 1;
4527 	ti->flush_supported = true;
4528 	if (ic->discard)
4529 		ti->num_discard_bios = 1;
4530 
4531 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4532 	return 0;
4533 
4534 bad:
4535 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4536 	dm_integrity_dtr(ti);
4537 	return r;
4538 }
4539 
4540 static void dm_integrity_dtr(struct dm_target *ti)
4541 {
4542 	struct dm_integrity_c *ic = ti->private;
4543 
4544 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4545 	BUG_ON(!list_empty(&ic->wait_list));
4546 
4547 	if (ic->metadata_wq)
4548 		destroy_workqueue(ic->metadata_wq);
4549 	if (ic->wait_wq)
4550 		destroy_workqueue(ic->wait_wq);
4551 	if (ic->offload_wq)
4552 		destroy_workqueue(ic->offload_wq);
4553 	if (ic->commit_wq)
4554 		destroy_workqueue(ic->commit_wq);
4555 	if (ic->writer_wq)
4556 		destroy_workqueue(ic->writer_wq);
4557 	if (ic->recalc_wq)
4558 		destroy_workqueue(ic->recalc_wq);
4559 	vfree(ic->recalc_buffer);
4560 	kvfree(ic->recalc_tags);
4561 	kvfree(ic->bbs);
4562 	if (ic->bufio)
4563 		dm_bufio_client_destroy(ic->bufio);
4564 	mempool_exit(&ic->journal_io_mempool);
4565 	if (ic->io)
4566 		dm_io_client_destroy(ic->io);
4567 	if (ic->dev)
4568 		dm_put_device(ti, ic->dev);
4569 	if (ic->meta_dev)
4570 		dm_put_device(ti, ic->meta_dev);
4571 	dm_integrity_free_page_list(ic->journal);
4572 	dm_integrity_free_page_list(ic->journal_io);
4573 	dm_integrity_free_page_list(ic->journal_xor);
4574 	dm_integrity_free_page_list(ic->recalc_bitmap);
4575 	dm_integrity_free_page_list(ic->may_write_bitmap);
4576 	if (ic->journal_scatterlist)
4577 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4578 	if (ic->journal_io_scatterlist)
4579 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4580 	if (ic->sk_requests) {
4581 		unsigned i;
4582 
4583 		for (i = 0; i < ic->journal_sections; i++) {
4584 			struct skcipher_request *req = ic->sk_requests[i];
4585 			if (req) {
4586 				kfree_sensitive(req->iv);
4587 				skcipher_request_free(req);
4588 			}
4589 		}
4590 		kvfree(ic->sk_requests);
4591 	}
4592 	kvfree(ic->journal_tree);
4593 	if (ic->sb)
4594 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4595 
4596 	if (ic->internal_hash)
4597 		crypto_free_shash(ic->internal_hash);
4598 	free_alg(&ic->internal_hash_alg);
4599 
4600 	if (ic->journal_crypt)
4601 		crypto_free_skcipher(ic->journal_crypt);
4602 	free_alg(&ic->journal_crypt_alg);
4603 
4604 	if (ic->journal_mac)
4605 		crypto_free_shash(ic->journal_mac);
4606 	free_alg(&ic->journal_mac_alg);
4607 
4608 	kfree(ic);
4609 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4610 }
4611 
4612 static struct target_type integrity_target = {
4613 	.name			= "integrity",
4614 	.version		= {1, 10, 0},
4615 	.module			= THIS_MODULE,
4616 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4617 	.ctr			= dm_integrity_ctr,
4618 	.dtr			= dm_integrity_dtr,
4619 	.map			= dm_integrity_map,
4620 	.postsuspend		= dm_integrity_postsuspend,
4621 	.resume			= dm_integrity_resume,
4622 	.status			= dm_integrity_status,
4623 	.iterate_devices	= dm_integrity_iterate_devices,
4624 	.io_hints		= dm_integrity_io_hints,
4625 };
4626 
4627 static int __init dm_integrity_init(void)
4628 {
4629 	int r;
4630 
4631 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4632 					     sizeof(struct journal_io), 0, 0, NULL);
4633 	if (!journal_io_cache) {
4634 		DMERR("can't allocate journal io cache");
4635 		return -ENOMEM;
4636 	}
4637 
4638 	r = dm_register_target(&integrity_target);
4639 
4640 	if (r < 0)
4641 		DMERR("register failed %d", r);
4642 
4643 	return r;
4644 }
4645 
4646 static void __exit dm_integrity_exit(void)
4647 {
4648 	dm_unregister_target(&integrity_target);
4649 	kmem_cache_destroy(journal_io_cache);
4650 }
4651 
4652 module_init(dm_integrity_init);
4653 module_exit(dm_integrity_exit);
4654 
4655 MODULE_AUTHOR("Milan Broz");
4656 MODULE_AUTHOR("Mikulas Patocka");
4657 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4658 MODULE_LICENSE("GPL");
4659