xref: /openbmc/linux/drivers/md/dm-integrity.c (revision a6c76bb0)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bio-record.h"
10 
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25 
26 #define DM_MSG_PREFIX "integrity"
27 
28 #define DEFAULT_INTERLEAVE_SECTORS	32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
31 #define DEFAULT_BUFFER_SECTORS		128
32 #define DEFAULT_JOURNAL_WATERMARK	50
33 #define DEFAULT_SYNC_MSEC		10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS	3
36 #define MAX_LOG2_INTERLEAVE_SECTORS	31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
38 #define RECALC_SECTORS			8192
39 #define RECALC_WRITE_SUPER		16
40 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
41 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
42 #define DISCARD_FILLER			0xf6
43 
44 /*
45  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
46  * so it should not be enabled in the official kernel
47  */
48 //#define DEBUG_PRINT
49 //#define INTERNAL_VERIFY
50 
51 /*
52  * On disk structures
53  */
54 
55 #define SB_MAGIC			"integrt"
56 #define SB_VERSION_1			1
57 #define SB_VERSION_2			2
58 #define SB_VERSION_3			3
59 #define SB_VERSION_4			4
60 #define SB_SECTORS			8
61 #define MAX_SECTORS_PER_BLOCK		8
62 
63 struct superblock {
64 	__u8 magic[8];
65 	__u8 version;
66 	__u8 log2_interleave_sectors;
67 	__u16 integrity_tag_size;
68 	__u32 journal_sections;
69 	__u64 provided_data_sectors;	/* userspace uses this value */
70 	__u32 flags;
71 	__u8 log2_sectors_per_block;
72 	__u8 log2_blocks_per_bitmap_bit;
73 	__u8 pad[2];
74 	__u64 recalc_sector;
75 };
76 
77 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
78 #define SB_FLAG_RECALCULATING		0x2
79 #define SB_FLAG_DIRTY_BITMAP		0x4
80 #define SB_FLAG_FIXED_PADDING		0x8
81 
82 #define	JOURNAL_ENTRY_ROUNDUP		8
83 
84 typedef __u64 commit_id_t;
85 #define JOURNAL_MAC_PER_SECTOR		8
86 
87 struct journal_entry {
88 	union {
89 		struct {
90 			__u32 sector_lo;
91 			__u32 sector_hi;
92 		} s;
93 		__u64 sector;
94 	} u;
95 	commit_id_t last_bytes[];
96 	/* __u8 tag[0]; */
97 };
98 
99 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
100 
101 #if BITS_PER_LONG == 64
102 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
103 #else
104 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
105 #endif
106 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
107 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
108 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
109 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
110 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
111 
112 #define JOURNAL_BLOCK_SECTORS		8
113 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
114 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
115 
116 struct journal_sector {
117 	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
118 	__u8 mac[JOURNAL_MAC_PER_SECTOR];
119 	commit_id_t commit_id;
120 };
121 
122 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
123 
124 #define METADATA_PADDING_SECTORS	8
125 
126 #define N_COMMIT_IDS			4
127 
128 static unsigned char prev_commit_seq(unsigned char seq)
129 {
130 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
131 }
132 
133 static unsigned char next_commit_seq(unsigned char seq)
134 {
135 	return (seq + 1) % N_COMMIT_IDS;
136 }
137 
138 /*
139  * In-memory structures
140  */
141 
142 struct journal_node {
143 	struct rb_node node;
144 	sector_t sector;
145 };
146 
147 struct alg_spec {
148 	char *alg_string;
149 	char *key_string;
150 	__u8 *key;
151 	unsigned key_size;
152 };
153 
154 struct dm_integrity_c {
155 	struct dm_dev *dev;
156 	struct dm_dev *meta_dev;
157 	unsigned tag_size;
158 	__s8 log2_tag_size;
159 	sector_t start;
160 	mempool_t journal_io_mempool;
161 	struct dm_io_client *io;
162 	struct dm_bufio_client *bufio;
163 	struct workqueue_struct *metadata_wq;
164 	struct superblock *sb;
165 	unsigned journal_pages;
166 	unsigned n_bitmap_blocks;
167 
168 	struct page_list *journal;
169 	struct page_list *journal_io;
170 	struct page_list *journal_xor;
171 	struct page_list *recalc_bitmap;
172 	struct page_list *may_write_bitmap;
173 	struct bitmap_block_status *bbs;
174 	unsigned bitmap_flush_interval;
175 	int synchronous_mode;
176 	struct bio_list synchronous_bios;
177 	struct delayed_work bitmap_flush_work;
178 
179 	struct crypto_skcipher *journal_crypt;
180 	struct scatterlist **journal_scatterlist;
181 	struct scatterlist **journal_io_scatterlist;
182 	struct skcipher_request **sk_requests;
183 
184 	struct crypto_shash *journal_mac;
185 
186 	struct journal_node *journal_tree;
187 	struct rb_root journal_tree_root;
188 
189 	sector_t provided_data_sectors;
190 
191 	unsigned short journal_entry_size;
192 	unsigned char journal_entries_per_sector;
193 	unsigned char journal_section_entries;
194 	unsigned short journal_section_sectors;
195 	unsigned journal_sections;
196 	unsigned journal_entries;
197 	sector_t data_device_sectors;
198 	sector_t meta_device_sectors;
199 	unsigned initial_sectors;
200 	unsigned metadata_run;
201 	__s8 log2_metadata_run;
202 	__u8 log2_buffer_sectors;
203 	__u8 sectors_per_block;
204 	__u8 log2_blocks_per_bitmap_bit;
205 
206 	unsigned char mode;
207 
208 	int failed;
209 
210 	struct crypto_shash *internal_hash;
211 
212 	struct dm_target *ti;
213 
214 	/* these variables are locked with endio_wait.lock */
215 	struct rb_root in_progress;
216 	struct list_head wait_list;
217 	wait_queue_head_t endio_wait;
218 	struct workqueue_struct *wait_wq;
219 	struct workqueue_struct *offload_wq;
220 
221 	unsigned char commit_seq;
222 	commit_id_t commit_ids[N_COMMIT_IDS];
223 
224 	unsigned committed_section;
225 	unsigned n_committed_sections;
226 
227 	unsigned uncommitted_section;
228 	unsigned n_uncommitted_sections;
229 
230 	unsigned free_section;
231 	unsigned char free_section_entry;
232 	unsigned free_sectors;
233 
234 	unsigned free_sectors_threshold;
235 
236 	struct workqueue_struct *commit_wq;
237 	struct work_struct commit_work;
238 
239 	struct workqueue_struct *writer_wq;
240 	struct work_struct writer_work;
241 
242 	struct workqueue_struct *recalc_wq;
243 	struct work_struct recalc_work;
244 	u8 *recalc_buffer;
245 	u8 *recalc_tags;
246 
247 	struct bio_list flush_bio_list;
248 
249 	unsigned long autocommit_jiffies;
250 	struct timer_list autocommit_timer;
251 	unsigned autocommit_msec;
252 
253 	wait_queue_head_t copy_to_journal_wait;
254 
255 	struct completion crypto_backoff;
256 
257 	bool journal_uptodate;
258 	bool just_formatted;
259 	bool recalculate_flag;
260 	bool discard;
261 	bool fix_padding;
262 	bool legacy_recalculate;
263 
264 	struct alg_spec internal_hash_alg;
265 	struct alg_spec journal_crypt_alg;
266 	struct alg_spec journal_mac_alg;
267 
268 	atomic64_t number_of_mismatches;
269 
270 	struct notifier_block reboot_notifier;
271 };
272 
273 struct dm_integrity_range {
274 	sector_t logical_sector;
275 	sector_t n_sectors;
276 	bool waiting;
277 	union {
278 		struct rb_node node;
279 		struct {
280 			struct task_struct *task;
281 			struct list_head wait_entry;
282 		};
283 	};
284 };
285 
286 struct dm_integrity_io {
287 	struct work_struct work;
288 
289 	struct dm_integrity_c *ic;
290 	enum req_opf op;
291 	bool fua;
292 
293 	struct dm_integrity_range range;
294 
295 	sector_t metadata_block;
296 	unsigned metadata_offset;
297 
298 	atomic_t in_flight;
299 	blk_status_t bi_status;
300 
301 	struct completion *completion;
302 
303 	struct dm_bio_details bio_details;
304 };
305 
306 struct journal_completion {
307 	struct dm_integrity_c *ic;
308 	atomic_t in_flight;
309 	struct completion comp;
310 };
311 
312 struct journal_io {
313 	struct dm_integrity_range range;
314 	struct journal_completion *comp;
315 };
316 
317 struct bitmap_block_status {
318 	struct work_struct work;
319 	struct dm_integrity_c *ic;
320 	unsigned idx;
321 	unsigned long *bitmap;
322 	struct bio_list bio_queue;
323 	spinlock_t bio_queue_lock;
324 
325 };
326 
327 static struct kmem_cache *journal_io_cache;
328 
329 #define JOURNAL_IO_MEMPOOL	32
330 
331 #ifdef DEBUG_PRINT
332 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
333 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
334 {
335 	va_list args;
336 	va_start(args, msg);
337 	vprintk(msg, args);
338 	va_end(args);
339 	if (len)
340 		pr_cont(":");
341 	while (len) {
342 		pr_cont(" %02x", *bytes);
343 		bytes++;
344 		len--;
345 	}
346 	pr_cont("\n");
347 }
348 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
349 #else
350 #define DEBUG_print(x, ...)			do { } while (0)
351 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
352 #endif
353 
354 static void dm_integrity_prepare(struct request *rq)
355 {
356 }
357 
358 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
359 {
360 }
361 
362 /*
363  * DM Integrity profile, protection is performed layer above (dm-crypt)
364  */
365 static const struct blk_integrity_profile dm_integrity_profile = {
366 	.name			= "DM-DIF-EXT-TAG",
367 	.generate_fn		= NULL,
368 	.verify_fn		= NULL,
369 	.prepare_fn		= dm_integrity_prepare,
370 	.complete_fn		= dm_integrity_complete,
371 };
372 
373 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
374 static void integrity_bio_wait(struct work_struct *w);
375 static void dm_integrity_dtr(struct dm_target *ti);
376 
377 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
378 {
379 	if (err == -EILSEQ)
380 		atomic64_inc(&ic->number_of_mismatches);
381 	if (!cmpxchg(&ic->failed, 0, err))
382 		DMERR("Error on %s: %d", msg, err);
383 }
384 
385 static int dm_integrity_failed(struct dm_integrity_c *ic)
386 {
387 	return READ_ONCE(ic->failed);
388 }
389 
390 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
391 {
392 	if ((ic->internal_hash_alg.key || ic->journal_mac_alg.key) &&
393 	    !ic->legacy_recalculate)
394 		return true;
395 	return false;
396 }
397 
398 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
399 					  unsigned j, unsigned char seq)
400 {
401 	/*
402 	 * Xor the number with section and sector, so that if a piece of
403 	 * journal is written at wrong place, it is detected.
404 	 */
405 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
406 }
407 
408 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
409 				sector_t *area, sector_t *offset)
410 {
411 	if (!ic->meta_dev) {
412 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
413 		*area = data_sector >> log2_interleave_sectors;
414 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
415 	} else {
416 		*area = 0;
417 		*offset = data_sector;
418 	}
419 }
420 
421 #define sector_to_block(ic, n)						\
422 do {									\
423 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
424 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
425 } while (0)
426 
427 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
428 					    sector_t offset, unsigned *metadata_offset)
429 {
430 	__u64 ms;
431 	unsigned mo;
432 
433 	ms = area << ic->sb->log2_interleave_sectors;
434 	if (likely(ic->log2_metadata_run >= 0))
435 		ms += area << ic->log2_metadata_run;
436 	else
437 		ms += area * ic->metadata_run;
438 	ms >>= ic->log2_buffer_sectors;
439 
440 	sector_to_block(ic, offset);
441 
442 	if (likely(ic->log2_tag_size >= 0)) {
443 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
444 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
445 	} else {
446 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
447 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
448 	}
449 	*metadata_offset = mo;
450 	return ms;
451 }
452 
453 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
454 {
455 	sector_t result;
456 
457 	if (ic->meta_dev)
458 		return offset;
459 
460 	result = area << ic->sb->log2_interleave_sectors;
461 	if (likely(ic->log2_metadata_run >= 0))
462 		result += (area + 1) << ic->log2_metadata_run;
463 	else
464 		result += (area + 1) * ic->metadata_run;
465 
466 	result += (sector_t)ic->initial_sectors + offset;
467 	result += ic->start;
468 
469 	return result;
470 }
471 
472 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
473 {
474 	if (unlikely(*sec_ptr >= ic->journal_sections))
475 		*sec_ptr -= ic->journal_sections;
476 }
477 
478 static void sb_set_version(struct dm_integrity_c *ic)
479 {
480 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
481 		ic->sb->version = SB_VERSION_4;
482 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
483 		ic->sb->version = SB_VERSION_3;
484 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
485 		ic->sb->version = SB_VERSION_2;
486 	else
487 		ic->sb->version = SB_VERSION_1;
488 }
489 
490 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
491 {
492 	struct dm_io_request io_req;
493 	struct dm_io_region io_loc;
494 
495 	io_req.bi_op = op;
496 	io_req.bi_op_flags = op_flags;
497 	io_req.mem.type = DM_IO_KMEM;
498 	io_req.mem.ptr.addr = ic->sb;
499 	io_req.notify.fn = NULL;
500 	io_req.client = ic->io;
501 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
502 	io_loc.sector = ic->start;
503 	io_loc.count = SB_SECTORS;
504 
505 	if (op == REQ_OP_WRITE)
506 		sb_set_version(ic);
507 
508 	return dm_io(&io_req, 1, &io_loc, NULL);
509 }
510 
511 #define BITMAP_OP_TEST_ALL_SET		0
512 #define BITMAP_OP_TEST_ALL_CLEAR	1
513 #define BITMAP_OP_SET			2
514 #define BITMAP_OP_CLEAR			3
515 
516 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
517 			    sector_t sector, sector_t n_sectors, int mode)
518 {
519 	unsigned long bit, end_bit, this_end_bit, page, end_page;
520 	unsigned long *data;
521 
522 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
523 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
524 			sector,
525 			n_sectors,
526 			ic->sb->log2_sectors_per_block,
527 			ic->log2_blocks_per_bitmap_bit,
528 			mode);
529 		BUG();
530 	}
531 
532 	if (unlikely(!n_sectors))
533 		return true;
534 
535 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
536 	end_bit = (sector + n_sectors - 1) >>
537 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
538 
539 	page = bit / (PAGE_SIZE * 8);
540 	bit %= PAGE_SIZE * 8;
541 
542 	end_page = end_bit / (PAGE_SIZE * 8);
543 	end_bit %= PAGE_SIZE * 8;
544 
545 repeat:
546 	if (page < end_page) {
547 		this_end_bit = PAGE_SIZE * 8 - 1;
548 	} else {
549 		this_end_bit = end_bit;
550 	}
551 
552 	data = lowmem_page_address(bitmap[page].page);
553 
554 	if (mode == BITMAP_OP_TEST_ALL_SET) {
555 		while (bit <= this_end_bit) {
556 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
557 				do {
558 					if (data[bit / BITS_PER_LONG] != -1)
559 						return false;
560 					bit += BITS_PER_LONG;
561 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
562 				continue;
563 			}
564 			if (!test_bit(bit, data))
565 				return false;
566 			bit++;
567 		}
568 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
569 		while (bit <= this_end_bit) {
570 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
571 				do {
572 					if (data[bit / BITS_PER_LONG] != 0)
573 						return false;
574 					bit += BITS_PER_LONG;
575 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
576 				continue;
577 			}
578 			if (test_bit(bit, data))
579 				return false;
580 			bit++;
581 		}
582 	} else if (mode == BITMAP_OP_SET) {
583 		while (bit <= this_end_bit) {
584 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
585 				do {
586 					data[bit / BITS_PER_LONG] = -1;
587 					bit += BITS_PER_LONG;
588 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
589 				continue;
590 			}
591 			__set_bit(bit, data);
592 			bit++;
593 		}
594 	} else if (mode == BITMAP_OP_CLEAR) {
595 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
596 			clear_page(data);
597 		else while (bit <= this_end_bit) {
598 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
599 				do {
600 					data[bit / BITS_PER_LONG] = 0;
601 					bit += BITS_PER_LONG;
602 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
603 				continue;
604 			}
605 			__clear_bit(bit, data);
606 			bit++;
607 		}
608 	} else {
609 		BUG();
610 	}
611 
612 	if (unlikely(page < end_page)) {
613 		bit = 0;
614 		page++;
615 		goto repeat;
616 	}
617 
618 	return true;
619 }
620 
621 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
622 {
623 	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
624 	unsigned i;
625 
626 	for (i = 0; i < n_bitmap_pages; i++) {
627 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
628 		unsigned long *src_data = lowmem_page_address(src[i].page);
629 		copy_page(dst_data, src_data);
630 	}
631 }
632 
633 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
634 {
635 	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
636 	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
637 
638 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
639 	return &ic->bbs[bitmap_block];
640 }
641 
642 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
643 				 bool e, const char *function)
644 {
645 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
646 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
647 
648 	if (unlikely(section >= ic->journal_sections) ||
649 	    unlikely(offset >= limit)) {
650 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
651 		       function, section, offset, ic->journal_sections, limit);
652 		BUG();
653 	}
654 #endif
655 }
656 
657 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
658 			       unsigned *pl_index, unsigned *pl_offset)
659 {
660 	unsigned sector;
661 
662 	access_journal_check(ic, section, offset, false, "page_list_location");
663 
664 	sector = section * ic->journal_section_sectors + offset;
665 
666 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
667 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
668 }
669 
670 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
671 					       unsigned section, unsigned offset, unsigned *n_sectors)
672 {
673 	unsigned pl_index, pl_offset;
674 	char *va;
675 
676 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
677 
678 	if (n_sectors)
679 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
680 
681 	va = lowmem_page_address(pl[pl_index].page);
682 
683 	return (struct journal_sector *)(va + pl_offset);
684 }
685 
686 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
687 {
688 	return access_page_list(ic, ic->journal, section, offset, NULL);
689 }
690 
691 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
692 {
693 	unsigned rel_sector, offset;
694 	struct journal_sector *js;
695 
696 	access_journal_check(ic, section, n, true, "access_journal_entry");
697 
698 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
699 	offset = n / JOURNAL_BLOCK_SECTORS;
700 
701 	js = access_journal(ic, section, rel_sector);
702 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
703 }
704 
705 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
706 {
707 	n <<= ic->sb->log2_sectors_per_block;
708 
709 	n += JOURNAL_BLOCK_SECTORS;
710 
711 	access_journal_check(ic, section, n, false, "access_journal_data");
712 
713 	return access_journal(ic, section, n);
714 }
715 
716 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
717 {
718 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
719 	int r;
720 	unsigned j, size;
721 
722 	desc->tfm = ic->journal_mac;
723 
724 	r = crypto_shash_init(desc);
725 	if (unlikely(r)) {
726 		dm_integrity_io_error(ic, "crypto_shash_init", r);
727 		goto err;
728 	}
729 
730 	for (j = 0; j < ic->journal_section_entries; j++) {
731 		struct journal_entry *je = access_journal_entry(ic, section, j);
732 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
733 		if (unlikely(r)) {
734 			dm_integrity_io_error(ic, "crypto_shash_update", r);
735 			goto err;
736 		}
737 	}
738 
739 	size = crypto_shash_digestsize(ic->journal_mac);
740 
741 	if (likely(size <= JOURNAL_MAC_SIZE)) {
742 		r = crypto_shash_final(desc, result);
743 		if (unlikely(r)) {
744 			dm_integrity_io_error(ic, "crypto_shash_final", r);
745 			goto err;
746 		}
747 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
748 	} else {
749 		__u8 digest[HASH_MAX_DIGESTSIZE];
750 
751 		if (WARN_ON(size > sizeof(digest))) {
752 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
753 			goto err;
754 		}
755 		r = crypto_shash_final(desc, digest);
756 		if (unlikely(r)) {
757 			dm_integrity_io_error(ic, "crypto_shash_final", r);
758 			goto err;
759 		}
760 		memcpy(result, digest, JOURNAL_MAC_SIZE);
761 	}
762 
763 	return;
764 err:
765 	memset(result, 0, JOURNAL_MAC_SIZE);
766 }
767 
768 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
769 {
770 	__u8 result[JOURNAL_MAC_SIZE];
771 	unsigned j;
772 
773 	if (!ic->journal_mac)
774 		return;
775 
776 	section_mac(ic, section, result);
777 
778 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
779 		struct journal_sector *js = access_journal(ic, section, j);
780 
781 		if (likely(wr))
782 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
783 		else {
784 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
785 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
786 		}
787 	}
788 }
789 
790 static void complete_journal_op(void *context)
791 {
792 	struct journal_completion *comp = context;
793 	BUG_ON(!atomic_read(&comp->in_flight));
794 	if (likely(atomic_dec_and_test(&comp->in_flight)))
795 		complete(&comp->comp);
796 }
797 
798 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
799 			unsigned n_sections, struct journal_completion *comp)
800 {
801 	struct async_submit_ctl submit;
802 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
803 	unsigned pl_index, pl_offset, section_index;
804 	struct page_list *source_pl, *target_pl;
805 
806 	if (likely(encrypt)) {
807 		source_pl = ic->journal;
808 		target_pl = ic->journal_io;
809 	} else {
810 		source_pl = ic->journal_io;
811 		target_pl = ic->journal;
812 	}
813 
814 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
815 
816 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
817 
818 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
819 
820 	section_index = pl_index;
821 
822 	do {
823 		size_t this_step;
824 		struct page *src_pages[2];
825 		struct page *dst_page;
826 
827 		while (unlikely(pl_index == section_index)) {
828 			unsigned dummy;
829 			if (likely(encrypt))
830 				rw_section_mac(ic, section, true);
831 			section++;
832 			n_sections--;
833 			if (!n_sections)
834 				break;
835 			page_list_location(ic, section, 0, &section_index, &dummy);
836 		}
837 
838 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
839 		dst_page = target_pl[pl_index].page;
840 		src_pages[0] = source_pl[pl_index].page;
841 		src_pages[1] = ic->journal_xor[pl_index].page;
842 
843 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
844 
845 		pl_index++;
846 		pl_offset = 0;
847 		n_bytes -= this_step;
848 	} while (n_bytes);
849 
850 	BUG_ON(n_sections);
851 
852 	async_tx_issue_pending_all();
853 }
854 
855 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
856 {
857 	struct journal_completion *comp = req->data;
858 	if (unlikely(err)) {
859 		if (likely(err == -EINPROGRESS)) {
860 			complete(&comp->ic->crypto_backoff);
861 			return;
862 		}
863 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
864 	}
865 	complete_journal_op(comp);
866 }
867 
868 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
869 {
870 	int r;
871 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
872 				      complete_journal_encrypt, comp);
873 	if (likely(encrypt))
874 		r = crypto_skcipher_encrypt(req);
875 	else
876 		r = crypto_skcipher_decrypt(req);
877 	if (likely(!r))
878 		return false;
879 	if (likely(r == -EINPROGRESS))
880 		return true;
881 	if (likely(r == -EBUSY)) {
882 		wait_for_completion(&comp->ic->crypto_backoff);
883 		reinit_completion(&comp->ic->crypto_backoff);
884 		return true;
885 	}
886 	dm_integrity_io_error(comp->ic, "encrypt", r);
887 	return false;
888 }
889 
890 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
891 			  unsigned n_sections, struct journal_completion *comp)
892 {
893 	struct scatterlist **source_sg;
894 	struct scatterlist **target_sg;
895 
896 	atomic_add(2, &comp->in_flight);
897 
898 	if (likely(encrypt)) {
899 		source_sg = ic->journal_scatterlist;
900 		target_sg = ic->journal_io_scatterlist;
901 	} else {
902 		source_sg = ic->journal_io_scatterlist;
903 		target_sg = ic->journal_scatterlist;
904 	}
905 
906 	do {
907 		struct skcipher_request *req;
908 		unsigned ivsize;
909 		char *iv;
910 
911 		if (likely(encrypt))
912 			rw_section_mac(ic, section, true);
913 
914 		req = ic->sk_requests[section];
915 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
916 		iv = req->iv;
917 
918 		memcpy(iv, iv + ivsize, ivsize);
919 
920 		req->src = source_sg[section];
921 		req->dst = target_sg[section];
922 
923 		if (unlikely(do_crypt(encrypt, req, comp)))
924 			atomic_inc(&comp->in_flight);
925 
926 		section++;
927 		n_sections--;
928 	} while (n_sections);
929 
930 	atomic_dec(&comp->in_flight);
931 	complete_journal_op(comp);
932 }
933 
934 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
935 			    unsigned n_sections, struct journal_completion *comp)
936 {
937 	if (ic->journal_xor)
938 		return xor_journal(ic, encrypt, section, n_sections, comp);
939 	else
940 		return crypt_journal(ic, encrypt, section, n_sections, comp);
941 }
942 
943 static void complete_journal_io(unsigned long error, void *context)
944 {
945 	struct journal_completion *comp = context;
946 	if (unlikely(error != 0))
947 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
948 	complete_journal_op(comp);
949 }
950 
951 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
952 			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
953 {
954 	struct dm_io_request io_req;
955 	struct dm_io_region io_loc;
956 	unsigned pl_index, pl_offset;
957 	int r;
958 
959 	if (unlikely(dm_integrity_failed(ic))) {
960 		if (comp)
961 			complete_journal_io(-1UL, comp);
962 		return;
963 	}
964 
965 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
966 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
967 
968 	io_req.bi_op = op;
969 	io_req.bi_op_flags = op_flags;
970 	io_req.mem.type = DM_IO_PAGE_LIST;
971 	if (ic->journal_io)
972 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
973 	else
974 		io_req.mem.ptr.pl = &ic->journal[pl_index];
975 	io_req.mem.offset = pl_offset;
976 	if (likely(comp != NULL)) {
977 		io_req.notify.fn = complete_journal_io;
978 		io_req.notify.context = comp;
979 	} else {
980 		io_req.notify.fn = NULL;
981 	}
982 	io_req.client = ic->io;
983 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
984 	io_loc.sector = ic->start + SB_SECTORS + sector;
985 	io_loc.count = n_sectors;
986 
987 	r = dm_io(&io_req, 1, &io_loc, NULL);
988 	if (unlikely(r)) {
989 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
990 		if (comp) {
991 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
992 			complete_journal_io(-1UL, comp);
993 		}
994 	}
995 }
996 
997 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
998 		       unsigned n_sections, struct journal_completion *comp)
999 {
1000 	unsigned sector, n_sectors;
1001 
1002 	sector = section * ic->journal_section_sectors;
1003 	n_sectors = n_sections * ic->journal_section_sectors;
1004 
1005 	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1006 }
1007 
1008 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1009 {
1010 	struct journal_completion io_comp;
1011 	struct journal_completion crypt_comp_1;
1012 	struct journal_completion crypt_comp_2;
1013 	unsigned i;
1014 
1015 	io_comp.ic = ic;
1016 	init_completion(&io_comp.comp);
1017 
1018 	if (commit_start + commit_sections <= ic->journal_sections) {
1019 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1020 		if (ic->journal_io) {
1021 			crypt_comp_1.ic = ic;
1022 			init_completion(&crypt_comp_1.comp);
1023 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1024 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1025 			wait_for_completion_io(&crypt_comp_1.comp);
1026 		} else {
1027 			for (i = 0; i < commit_sections; i++)
1028 				rw_section_mac(ic, commit_start + i, true);
1029 		}
1030 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1031 			   commit_sections, &io_comp);
1032 	} else {
1033 		unsigned to_end;
1034 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1035 		to_end = ic->journal_sections - commit_start;
1036 		if (ic->journal_io) {
1037 			crypt_comp_1.ic = ic;
1038 			init_completion(&crypt_comp_1.comp);
1039 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1040 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1041 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1042 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1043 				reinit_completion(&crypt_comp_1.comp);
1044 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1045 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1046 				wait_for_completion_io(&crypt_comp_1.comp);
1047 			} else {
1048 				crypt_comp_2.ic = ic;
1049 				init_completion(&crypt_comp_2.comp);
1050 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1051 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1052 				wait_for_completion_io(&crypt_comp_1.comp);
1053 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1054 				wait_for_completion_io(&crypt_comp_2.comp);
1055 			}
1056 		} else {
1057 			for (i = 0; i < to_end; i++)
1058 				rw_section_mac(ic, commit_start + i, true);
1059 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1060 			for (i = 0; i < commit_sections - to_end; i++)
1061 				rw_section_mac(ic, i, true);
1062 		}
1063 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1064 	}
1065 
1066 	wait_for_completion_io(&io_comp.comp);
1067 }
1068 
1069 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1070 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1071 {
1072 	struct dm_io_request io_req;
1073 	struct dm_io_region io_loc;
1074 	int r;
1075 	unsigned sector, pl_index, pl_offset;
1076 
1077 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1078 
1079 	if (unlikely(dm_integrity_failed(ic))) {
1080 		fn(-1UL, data);
1081 		return;
1082 	}
1083 
1084 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1085 
1086 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1087 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1088 
1089 	io_req.bi_op = REQ_OP_WRITE;
1090 	io_req.bi_op_flags = 0;
1091 	io_req.mem.type = DM_IO_PAGE_LIST;
1092 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1093 	io_req.mem.offset = pl_offset;
1094 	io_req.notify.fn = fn;
1095 	io_req.notify.context = data;
1096 	io_req.client = ic->io;
1097 	io_loc.bdev = ic->dev->bdev;
1098 	io_loc.sector = target;
1099 	io_loc.count = n_sectors;
1100 
1101 	r = dm_io(&io_req, 1, &io_loc, NULL);
1102 	if (unlikely(r)) {
1103 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1104 		fn(-1UL, data);
1105 	}
1106 }
1107 
1108 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1109 {
1110 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1111 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1112 }
1113 
1114 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1115 {
1116 	struct rb_node **n = &ic->in_progress.rb_node;
1117 	struct rb_node *parent;
1118 
1119 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1120 
1121 	if (likely(check_waiting)) {
1122 		struct dm_integrity_range *range;
1123 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1124 			if (unlikely(ranges_overlap(range, new_range)))
1125 				return false;
1126 		}
1127 	}
1128 
1129 	parent = NULL;
1130 
1131 	while (*n) {
1132 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1133 
1134 		parent = *n;
1135 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1136 			n = &range->node.rb_left;
1137 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1138 			n = &range->node.rb_right;
1139 		} else {
1140 			return false;
1141 		}
1142 	}
1143 
1144 	rb_link_node(&new_range->node, parent, n);
1145 	rb_insert_color(&new_range->node, &ic->in_progress);
1146 
1147 	return true;
1148 }
1149 
1150 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1151 {
1152 	rb_erase(&range->node, &ic->in_progress);
1153 	while (unlikely(!list_empty(&ic->wait_list))) {
1154 		struct dm_integrity_range *last_range =
1155 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1156 		struct task_struct *last_range_task;
1157 		last_range_task = last_range->task;
1158 		list_del(&last_range->wait_entry);
1159 		if (!add_new_range(ic, last_range, false)) {
1160 			last_range->task = last_range_task;
1161 			list_add(&last_range->wait_entry, &ic->wait_list);
1162 			break;
1163 		}
1164 		last_range->waiting = false;
1165 		wake_up_process(last_range_task);
1166 	}
1167 }
1168 
1169 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1170 {
1171 	unsigned long flags;
1172 
1173 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1174 	remove_range_unlocked(ic, range);
1175 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1176 }
1177 
1178 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1179 {
1180 	new_range->waiting = true;
1181 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1182 	new_range->task = current;
1183 	do {
1184 		__set_current_state(TASK_UNINTERRUPTIBLE);
1185 		spin_unlock_irq(&ic->endio_wait.lock);
1186 		io_schedule();
1187 		spin_lock_irq(&ic->endio_wait.lock);
1188 	} while (unlikely(new_range->waiting));
1189 }
1190 
1191 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1192 {
1193 	if (unlikely(!add_new_range(ic, new_range, true)))
1194 		wait_and_add_new_range(ic, new_range);
1195 }
1196 
1197 static void init_journal_node(struct journal_node *node)
1198 {
1199 	RB_CLEAR_NODE(&node->node);
1200 	node->sector = (sector_t)-1;
1201 }
1202 
1203 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1204 {
1205 	struct rb_node **link;
1206 	struct rb_node *parent;
1207 
1208 	node->sector = sector;
1209 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1210 
1211 	link = &ic->journal_tree_root.rb_node;
1212 	parent = NULL;
1213 
1214 	while (*link) {
1215 		struct journal_node *j;
1216 		parent = *link;
1217 		j = container_of(parent, struct journal_node, node);
1218 		if (sector < j->sector)
1219 			link = &j->node.rb_left;
1220 		else
1221 			link = &j->node.rb_right;
1222 	}
1223 
1224 	rb_link_node(&node->node, parent, link);
1225 	rb_insert_color(&node->node, &ic->journal_tree_root);
1226 }
1227 
1228 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1229 {
1230 	BUG_ON(RB_EMPTY_NODE(&node->node));
1231 	rb_erase(&node->node, &ic->journal_tree_root);
1232 	init_journal_node(node);
1233 }
1234 
1235 #define NOT_FOUND	(-1U)
1236 
1237 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1238 {
1239 	struct rb_node *n = ic->journal_tree_root.rb_node;
1240 	unsigned found = NOT_FOUND;
1241 	*next_sector = (sector_t)-1;
1242 	while (n) {
1243 		struct journal_node *j = container_of(n, struct journal_node, node);
1244 		if (sector == j->sector) {
1245 			found = j - ic->journal_tree;
1246 		}
1247 		if (sector < j->sector) {
1248 			*next_sector = j->sector;
1249 			n = j->node.rb_left;
1250 		} else {
1251 			n = j->node.rb_right;
1252 		}
1253 	}
1254 
1255 	return found;
1256 }
1257 
1258 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1259 {
1260 	struct journal_node *node, *next_node;
1261 	struct rb_node *next;
1262 
1263 	if (unlikely(pos >= ic->journal_entries))
1264 		return false;
1265 	node = &ic->journal_tree[pos];
1266 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1267 		return false;
1268 	if (unlikely(node->sector != sector))
1269 		return false;
1270 
1271 	next = rb_next(&node->node);
1272 	if (unlikely(!next))
1273 		return true;
1274 
1275 	next_node = container_of(next, struct journal_node, node);
1276 	return next_node->sector != sector;
1277 }
1278 
1279 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1280 {
1281 	struct rb_node *next;
1282 	struct journal_node *next_node;
1283 	unsigned next_section;
1284 
1285 	BUG_ON(RB_EMPTY_NODE(&node->node));
1286 
1287 	next = rb_next(&node->node);
1288 	if (unlikely(!next))
1289 		return false;
1290 
1291 	next_node = container_of(next, struct journal_node, node);
1292 
1293 	if (next_node->sector != node->sector)
1294 		return false;
1295 
1296 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1297 	if (next_section >= ic->committed_section &&
1298 	    next_section < ic->committed_section + ic->n_committed_sections)
1299 		return true;
1300 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1301 		return true;
1302 
1303 	return false;
1304 }
1305 
1306 #define TAG_READ	0
1307 #define TAG_WRITE	1
1308 #define TAG_CMP		2
1309 
1310 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1311 			       unsigned *metadata_offset, unsigned total_size, int op)
1312 {
1313 #define MAY_BE_FILLER		1
1314 #define MAY_BE_HASH		2
1315 	unsigned hash_offset = 0;
1316 	unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1317 
1318 	do {
1319 		unsigned char *data, *dp;
1320 		struct dm_buffer *b;
1321 		unsigned to_copy;
1322 		int r;
1323 
1324 		r = dm_integrity_failed(ic);
1325 		if (unlikely(r))
1326 			return r;
1327 
1328 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1329 		if (IS_ERR(data))
1330 			return PTR_ERR(data);
1331 
1332 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1333 		dp = data + *metadata_offset;
1334 		if (op == TAG_READ) {
1335 			memcpy(tag, dp, to_copy);
1336 		} else if (op == TAG_WRITE) {
1337 			memcpy(dp, tag, to_copy);
1338 			dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1339 		} else {
1340 			/* e.g.: op == TAG_CMP */
1341 
1342 			if (likely(is_power_of_2(ic->tag_size))) {
1343 				if (unlikely(memcmp(dp, tag, to_copy)))
1344 					if (unlikely(!ic->discard) ||
1345 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1346 						goto thorough_test;
1347 				}
1348 			} else {
1349 				unsigned i, ts;
1350 thorough_test:
1351 				ts = total_size;
1352 
1353 				for (i = 0; i < to_copy; i++, ts--) {
1354 					if (unlikely(dp[i] != tag[i]))
1355 						may_be &= ~MAY_BE_HASH;
1356 					if (likely(dp[i] != DISCARD_FILLER))
1357 						may_be &= ~MAY_BE_FILLER;
1358 					hash_offset++;
1359 					if (unlikely(hash_offset == ic->tag_size)) {
1360 						if (unlikely(!may_be)) {
1361 							dm_bufio_release(b);
1362 							return ts;
1363 						}
1364 						hash_offset = 0;
1365 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1366 					}
1367 				}
1368 			}
1369 		}
1370 		dm_bufio_release(b);
1371 
1372 		tag += to_copy;
1373 		*metadata_offset += to_copy;
1374 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1375 			(*metadata_block)++;
1376 			*metadata_offset = 0;
1377 		}
1378 
1379 		if (unlikely(!is_power_of_2(ic->tag_size))) {
1380 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1381 		}
1382 
1383 		total_size -= to_copy;
1384 	} while (unlikely(total_size));
1385 
1386 	return 0;
1387 #undef MAY_BE_FILLER
1388 #undef MAY_BE_HASH
1389 }
1390 
1391 struct flush_request {
1392 	struct dm_io_request io_req;
1393 	struct dm_io_region io_reg;
1394 	struct dm_integrity_c *ic;
1395 	struct completion comp;
1396 };
1397 
1398 static void flush_notify(unsigned long error, void *fr_)
1399 {
1400 	struct flush_request *fr = fr_;
1401 	if (unlikely(error != 0))
1402 		dm_integrity_io_error(fr->ic, "flusing disk cache", -EIO);
1403 	complete(&fr->comp);
1404 }
1405 
1406 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1407 {
1408 	int r;
1409 
1410 	struct flush_request fr;
1411 
1412 	if (!ic->meta_dev)
1413 		flush_data = false;
1414 	if (flush_data) {
1415 		fr.io_req.bi_op = REQ_OP_WRITE,
1416 		fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1417 		fr.io_req.mem.type = DM_IO_KMEM,
1418 		fr.io_req.mem.ptr.addr = NULL,
1419 		fr.io_req.notify.fn = flush_notify,
1420 		fr.io_req.notify.context = &fr;
1421 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1422 		fr.io_reg.bdev = ic->dev->bdev,
1423 		fr.io_reg.sector = 0,
1424 		fr.io_reg.count = 0,
1425 		fr.ic = ic;
1426 		init_completion(&fr.comp);
1427 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1428 		BUG_ON(r);
1429 	}
1430 
1431 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1432 	if (unlikely(r))
1433 		dm_integrity_io_error(ic, "writing tags", r);
1434 
1435 	if (flush_data)
1436 		wait_for_completion(&fr.comp);
1437 }
1438 
1439 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1440 {
1441 	DECLARE_WAITQUEUE(wait, current);
1442 	__add_wait_queue(&ic->endio_wait, &wait);
1443 	__set_current_state(TASK_UNINTERRUPTIBLE);
1444 	spin_unlock_irq(&ic->endio_wait.lock);
1445 	io_schedule();
1446 	spin_lock_irq(&ic->endio_wait.lock);
1447 	__remove_wait_queue(&ic->endio_wait, &wait);
1448 }
1449 
1450 static void autocommit_fn(struct timer_list *t)
1451 {
1452 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1453 
1454 	if (likely(!dm_integrity_failed(ic)))
1455 		queue_work(ic->commit_wq, &ic->commit_work);
1456 }
1457 
1458 static void schedule_autocommit(struct dm_integrity_c *ic)
1459 {
1460 	if (!timer_pending(&ic->autocommit_timer))
1461 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1462 }
1463 
1464 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1465 {
1466 	struct bio *bio;
1467 	unsigned long flags;
1468 
1469 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1470 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1471 	bio_list_add(&ic->flush_bio_list, bio);
1472 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1473 
1474 	queue_work(ic->commit_wq, &ic->commit_work);
1475 }
1476 
1477 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1478 {
1479 	int r = dm_integrity_failed(ic);
1480 	if (unlikely(r) && !bio->bi_status)
1481 		bio->bi_status = errno_to_blk_status(r);
1482 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1483 		unsigned long flags;
1484 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1485 		bio_list_add(&ic->synchronous_bios, bio);
1486 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1487 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1488 		return;
1489 	}
1490 	bio_endio(bio);
1491 }
1492 
1493 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1494 {
1495 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1496 
1497 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1498 		submit_flush_bio(ic, dio);
1499 	else
1500 		do_endio(ic, bio);
1501 }
1502 
1503 static void dec_in_flight(struct dm_integrity_io *dio)
1504 {
1505 	if (atomic_dec_and_test(&dio->in_flight)) {
1506 		struct dm_integrity_c *ic = dio->ic;
1507 		struct bio *bio;
1508 
1509 		remove_range(ic, &dio->range);
1510 
1511 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1512 			schedule_autocommit(ic);
1513 
1514 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1515 
1516 		if (unlikely(dio->bi_status) && !bio->bi_status)
1517 			bio->bi_status = dio->bi_status;
1518 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1519 			dio->range.logical_sector += dio->range.n_sectors;
1520 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1521 			INIT_WORK(&dio->work, integrity_bio_wait);
1522 			queue_work(ic->offload_wq, &dio->work);
1523 			return;
1524 		}
1525 		do_endio_flush(ic, dio);
1526 	}
1527 }
1528 
1529 static void integrity_end_io(struct bio *bio)
1530 {
1531 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1532 
1533 	dm_bio_restore(&dio->bio_details, bio);
1534 	if (bio->bi_integrity)
1535 		bio->bi_opf |= REQ_INTEGRITY;
1536 
1537 	if (dio->completion)
1538 		complete(dio->completion);
1539 
1540 	dec_in_flight(dio);
1541 }
1542 
1543 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1544 				      const char *data, char *result)
1545 {
1546 	__u64 sector_le = cpu_to_le64(sector);
1547 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1548 	int r;
1549 	unsigned digest_size;
1550 
1551 	req->tfm = ic->internal_hash;
1552 
1553 	r = crypto_shash_init(req);
1554 	if (unlikely(r < 0)) {
1555 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1556 		goto failed;
1557 	}
1558 
1559 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1560 	if (unlikely(r < 0)) {
1561 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1562 		goto failed;
1563 	}
1564 
1565 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1566 	if (unlikely(r < 0)) {
1567 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1568 		goto failed;
1569 	}
1570 
1571 	r = crypto_shash_final(req, result);
1572 	if (unlikely(r < 0)) {
1573 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1574 		goto failed;
1575 	}
1576 
1577 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1578 	if (unlikely(digest_size < ic->tag_size))
1579 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1580 
1581 	return;
1582 
1583 failed:
1584 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1585 	get_random_bytes(result, ic->tag_size);
1586 }
1587 
1588 static void integrity_metadata(struct work_struct *w)
1589 {
1590 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1591 	struct dm_integrity_c *ic = dio->ic;
1592 
1593 	int r;
1594 
1595 	if (ic->internal_hash) {
1596 		struct bvec_iter iter;
1597 		struct bio_vec bv;
1598 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1599 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1600 		char *checksums;
1601 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1602 		char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1603 		sector_t sector;
1604 		unsigned sectors_to_process;
1605 
1606 		if (unlikely(ic->mode == 'R'))
1607 			goto skip_io;
1608 
1609 		if (likely(dio->op != REQ_OP_DISCARD))
1610 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1611 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1612 		else
1613 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1614 		if (!checksums) {
1615 			checksums = checksums_onstack;
1616 			if (WARN_ON(extra_space &&
1617 				    digest_size > sizeof(checksums_onstack))) {
1618 				r = -EINVAL;
1619 				goto error;
1620 			}
1621 		}
1622 
1623 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1624 			sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1625 			unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1626 			unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1627 			unsigned max_blocks = max_size / ic->tag_size;
1628 			memset(checksums, DISCARD_FILLER, max_size);
1629 
1630 			while (bi_size) {
1631 				unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1632 				this_step_blocks = min(this_step_blocks, max_blocks);
1633 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1634 							this_step_blocks * ic->tag_size, TAG_WRITE);
1635 				if (unlikely(r)) {
1636 					if (likely(checksums != checksums_onstack))
1637 						kfree(checksums);
1638 					goto error;
1639 				}
1640 
1641 				/*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1642 					printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1643 					printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1644 					BUG();
1645 				}*/
1646 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1647 				bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1648 			}
1649 
1650 			if (likely(checksums != checksums_onstack))
1651 				kfree(checksums);
1652 			goto skip_io;
1653 		}
1654 
1655 		sector = dio->range.logical_sector;
1656 		sectors_to_process = dio->range.n_sectors;
1657 
1658 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1659 			unsigned pos;
1660 			char *mem, *checksums_ptr;
1661 
1662 again:
1663 			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1664 			pos = 0;
1665 			checksums_ptr = checksums;
1666 			do {
1667 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1668 				checksums_ptr += ic->tag_size;
1669 				sectors_to_process -= ic->sectors_per_block;
1670 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1671 				sector += ic->sectors_per_block;
1672 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1673 			kunmap_atomic(mem);
1674 
1675 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1676 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1677 			if (unlikely(r)) {
1678 				if (r > 0) {
1679 					char b[BDEVNAME_SIZE];
1680 					DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1681 						    (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1682 					r = -EILSEQ;
1683 					atomic64_inc(&ic->number_of_mismatches);
1684 				}
1685 				if (likely(checksums != checksums_onstack))
1686 					kfree(checksums);
1687 				goto error;
1688 			}
1689 
1690 			if (!sectors_to_process)
1691 				break;
1692 
1693 			if (unlikely(pos < bv.bv_len)) {
1694 				bv.bv_offset += pos;
1695 				bv.bv_len -= pos;
1696 				goto again;
1697 			}
1698 		}
1699 
1700 		if (likely(checksums != checksums_onstack))
1701 			kfree(checksums);
1702 	} else {
1703 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1704 
1705 		if (bip) {
1706 			struct bio_vec biv;
1707 			struct bvec_iter iter;
1708 			unsigned data_to_process = dio->range.n_sectors;
1709 			sector_to_block(ic, data_to_process);
1710 			data_to_process *= ic->tag_size;
1711 
1712 			bip_for_each_vec(biv, bip, iter) {
1713 				unsigned char *tag;
1714 				unsigned this_len;
1715 
1716 				BUG_ON(PageHighMem(biv.bv_page));
1717 				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1718 				this_len = min(biv.bv_len, data_to_process);
1719 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1720 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1721 				if (unlikely(r))
1722 					goto error;
1723 				data_to_process -= this_len;
1724 				if (!data_to_process)
1725 					break;
1726 			}
1727 		}
1728 	}
1729 skip_io:
1730 	dec_in_flight(dio);
1731 	return;
1732 error:
1733 	dio->bi_status = errno_to_blk_status(r);
1734 	dec_in_flight(dio);
1735 }
1736 
1737 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1738 {
1739 	struct dm_integrity_c *ic = ti->private;
1740 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1741 	struct bio_integrity_payload *bip;
1742 
1743 	sector_t area, offset;
1744 
1745 	dio->ic = ic;
1746 	dio->bi_status = 0;
1747 	dio->op = bio_op(bio);
1748 
1749 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1750 		if (ti->max_io_len) {
1751 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1752 			unsigned log2_max_io_len = __fls(ti->max_io_len);
1753 			sector_t start_boundary = sec >> log2_max_io_len;
1754 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1755 			if (start_boundary < end_boundary) {
1756 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1757 				dm_accept_partial_bio(bio, len);
1758 			}
1759 		}
1760 	}
1761 
1762 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1763 		submit_flush_bio(ic, dio);
1764 		return DM_MAPIO_SUBMITTED;
1765 	}
1766 
1767 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1768 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1769 	if (unlikely(dio->fua)) {
1770 		/*
1771 		 * Don't pass down the FUA flag because we have to flush
1772 		 * disk cache anyway.
1773 		 */
1774 		bio->bi_opf &= ~REQ_FUA;
1775 	}
1776 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1777 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1778 		      dio->range.logical_sector, bio_sectors(bio),
1779 		      ic->provided_data_sectors);
1780 		return DM_MAPIO_KILL;
1781 	}
1782 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1783 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1784 		      ic->sectors_per_block,
1785 		      dio->range.logical_sector, bio_sectors(bio));
1786 		return DM_MAPIO_KILL;
1787 	}
1788 
1789 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1790 		struct bvec_iter iter;
1791 		struct bio_vec bv;
1792 		bio_for_each_segment(bv, bio, iter) {
1793 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1794 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1795 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1796 				return DM_MAPIO_KILL;
1797 			}
1798 		}
1799 	}
1800 
1801 	bip = bio_integrity(bio);
1802 	if (!ic->internal_hash) {
1803 		if (bip) {
1804 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1805 			if (ic->log2_tag_size >= 0)
1806 				wanted_tag_size <<= ic->log2_tag_size;
1807 			else
1808 				wanted_tag_size *= ic->tag_size;
1809 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1810 				DMERR("Invalid integrity data size %u, expected %u",
1811 				      bip->bip_iter.bi_size, wanted_tag_size);
1812 				return DM_MAPIO_KILL;
1813 			}
1814 		}
1815 	} else {
1816 		if (unlikely(bip != NULL)) {
1817 			DMERR("Unexpected integrity data when using internal hash");
1818 			return DM_MAPIO_KILL;
1819 		}
1820 	}
1821 
1822 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1823 		return DM_MAPIO_KILL;
1824 
1825 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1826 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1827 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1828 
1829 	dm_integrity_map_continue(dio, true);
1830 	return DM_MAPIO_SUBMITTED;
1831 }
1832 
1833 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1834 				 unsigned journal_section, unsigned journal_entry)
1835 {
1836 	struct dm_integrity_c *ic = dio->ic;
1837 	sector_t logical_sector;
1838 	unsigned n_sectors;
1839 
1840 	logical_sector = dio->range.logical_sector;
1841 	n_sectors = dio->range.n_sectors;
1842 	do {
1843 		struct bio_vec bv = bio_iovec(bio);
1844 		char *mem;
1845 
1846 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1847 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1848 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1849 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1850 retry_kmap:
1851 		mem = kmap_atomic(bv.bv_page);
1852 		if (likely(dio->op == REQ_OP_WRITE))
1853 			flush_dcache_page(bv.bv_page);
1854 
1855 		do {
1856 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1857 
1858 			if (unlikely(dio->op == REQ_OP_READ)) {
1859 				struct journal_sector *js;
1860 				char *mem_ptr;
1861 				unsigned s;
1862 
1863 				if (unlikely(journal_entry_is_inprogress(je))) {
1864 					flush_dcache_page(bv.bv_page);
1865 					kunmap_atomic(mem);
1866 
1867 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1868 					goto retry_kmap;
1869 				}
1870 				smp_rmb();
1871 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1872 				js = access_journal_data(ic, journal_section, journal_entry);
1873 				mem_ptr = mem + bv.bv_offset;
1874 				s = 0;
1875 				do {
1876 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1877 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1878 					js++;
1879 					mem_ptr += 1 << SECTOR_SHIFT;
1880 				} while (++s < ic->sectors_per_block);
1881 #ifdef INTERNAL_VERIFY
1882 				if (ic->internal_hash) {
1883 					char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1884 
1885 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1886 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1887 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1888 							    logical_sector);
1889 					}
1890 				}
1891 #endif
1892 			}
1893 
1894 			if (!ic->internal_hash) {
1895 				struct bio_integrity_payload *bip = bio_integrity(bio);
1896 				unsigned tag_todo = ic->tag_size;
1897 				char *tag_ptr = journal_entry_tag(ic, je);
1898 
1899 				if (bip) do {
1900 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1901 					unsigned tag_now = min(biv.bv_len, tag_todo);
1902 					char *tag_addr;
1903 					BUG_ON(PageHighMem(biv.bv_page));
1904 					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1905 					if (likely(dio->op == REQ_OP_WRITE))
1906 						memcpy(tag_ptr, tag_addr, tag_now);
1907 					else
1908 						memcpy(tag_addr, tag_ptr, tag_now);
1909 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1910 					tag_ptr += tag_now;
1911 					tag_todo -= tag_now;
1912 				} while (unlikely(tag_todo)); else {
1913 					if (likely(dio->op == REQ_OP_WRITE))
1914 						memset(tag_ptr, 0, tag_todo);
1915 				}
1916 			}
1917 
1918 			if (likely(dio->op == REQ_OP_WRITE)) {
1919 				struct journal_sector *js;
1920 				unsigned s;
1921 
1922 				js = access_journal_data(ic, journal_section, journal_entry);
1923 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1924 
1925 				s = 0;
1926 				do {
1927 					je->last_bytes[s] = js[s].commit_id;
1928 				} while (++s < ic->sectors_per_block);
1929 
1930 				if (ic->internal_hash) {
1931 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1932 					if (unlikely(digest_size > ic->tag_size)) {
1933 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
1934 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1935 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1936 					} else
1937 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1938 				}
1939 
1940 				journal_entry_set_sector(je, logical_sector);
1941 			}
1942 			logical_sector += ic->sectors_per_block;
1943 
1944 			journal_entry++;
1945 			if (unlikely(journal_entry == ic->journal_section_entries)) {
1946 				journal_entry = 0;
1947 				journal_section++;
1948 				wraparound_section(ic, &journal_section);
1949 			}
1950 
1951 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1952 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1953 
1954 		if (unlikely(dio->op == REQ_OP_READ))
1955 			flush_dcache_page(bv.bv_page);
1956 		kunmap_atomic(mem);
1957 	} while (n_sectors);
1958 
1959 	if (likely(dio->op == REQ_OP_WRITE)) {
1960 		smp_mb();
1961 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1962 			wake_up(&ic->copy_to_journal_wait);
1963 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1964 			queue_work(ic->commit_wq, &ic->commit_work);
1965 		} else {
1966 			schedule_autocommit(ic);
1967 		}
1968 	} else {
1969 		remove_range(ic, &dio->range);
1970 	}
1971 
1972 	if (unlikely(bio->bi_iter.bi_size)) {
1973 		sector_t area, offset;
1974 
1975 		dio->range.logical_sector = logical_sector;
1976 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1977 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1978 		return true;
1979 	}
1980 
1981 	return false;
1982 }
1983 
1984 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1985 {
1986 	struct dm_integrity_c *ic = dio->ic;
1987 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1988 	unsigned journal_section, journal_entry;
1989 	unsigned journal_read_pos;
1990 	struct completion read_comp;
1991 	bool discard_retried = false;
1992 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
1993 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
1994 		need_sync_io = true;
1995 
1996 	if (need_sync_io && from_map) {
1997 		INIT_WORK(&dio->work, integrity_bio_wait);
1998 		queue_work(ic->offload_wq, &dio->work);
1999 		return;
2000 	}
2001 
2002 lock_retry:
2003 	spin_lock_irq(&ic->endio_wait.lock);
2004 retry:
2005 	if (unlikely(dm_integrity_failed(ic))) {
2006 		spin_unlock_irq(&ic->endio_wait.lock);
2007 		do_endio(ic, bio);
2008 		return;
2009 	}
2010 	dio->range.n_sectors = bio_sectors(bio);
2011 	journal_read_pos = NOT_FOUND;
2012 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2013 		if (dio->op == REQ_OP_WRITE) {
2014 			unsigned next_entry, i, pos;
2015 			unsigned ws, we, range_sectors;
2016 
2017 			dio->range.n_sectors = min(dio->range.n_sectors,
2018 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2019 			if (unlikely(!dio->range.n_sectors)) {
2020 				if (from_map)
2021 					goto offload_to_thread;
2022 				sleep_on_endio_wait(ic);
2023 				goto retry;
2024 			}
2025 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2026 			ic->free_sectors -= range_sectors;
2027 			journal_section = ic->free_section;
2028 			journal_entry = ic->free_section_entry;
2029 
2030 			next_entry = ic->free_section_entry + range_sectors;
2031 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2032 			ic->free_section += next_entry / ic->journal_section_entries;
2033 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2034 			wraparound_section(ic, &ic->free_section);
2035 
2036 			pos = journal_section * ic->journal_section_entries + journal_entry;
2037 			ws = journal_section;
2038 			we = journal_entry;
2039 			i = 0;
2040 			do {
2041 				struct journal_entry *je;
2042 
2043 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2044 				pos++;
2045 				if (unlikely(pos >= ic->journal_entries))
2046 					pos = 0;
2047 
2048 				je = access_journal_entry(ic, ws, we);
2049 				BUG_ON(!journal_entry_is_unused(je));
2050 				journal_entry_set_inprogress(je);
2051 				we++;
2052 				if (unlikely(we == ic->journal_section_entries)) {
2053 					we = 0;
2054 					ws++;
2055 					wraparound_section(ic, &ws);
2056 				}
2057 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2058 
2059 			spin_unlock_irq(&ic->endio_wait.lock);
2060 			goto journal_read_write;
2061 		} else {
2062 			sector_t next_sector;
2063 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2064 			if (likely(journal_read_pos == NOT_FOUND)) {
2065 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2066 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2067 			} else {
2068 				unsigned i;
2069 				unsigned jp = journal_read_pos + 1;
2070 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2071 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2072 						break;
2073 				}
2074 				dio->range.n_sectors = i;
2075 			}
2076 		}
2077 	}
2078 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2079 		/*
2080 		 * We must not sleep in the request routine because it could
2081 		 * stall bios on current->bio_list.
2082 		 * So, we offload the bio to a workqueue if we have to sleep.
2083 		 */
2084 		if (from_map) {
2085 offload_to_thread:
2086 			spin_unlock_irq(&ic->endio_wait.lock);
2087 			INIT_WORK(&dio->work, integrity_bio_wait);
2088 			queue_work(ic->wait_wq, &dio->work);
2089 			return;
2090 		}
2091 		if (journal_read_pos != NOT_FOUND)
2092 			dio->range.n_sectors = ic->sectors_per_block;
2093 		wait_and_add_new_range(ic, &dio->range);
2094 		/*
2095 		 * wait_and_add_new_range drops the spinlock, so the journal
2096 		 * may have been changed arbitrarily. We need to recheck.
2097 		 * To simplify the code, we restrict I/O size to just one block.
2098 		 */
2099 		if (journal_read_pos != NOT_FOUND) {
2100 			sector_t next_sector;
2101 			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2102 			if (unlikely(new_pos != journal_read_pos)) {
2103 				remove_range_unlocked(ic, &dio->range);
2104 				goto retry;
2105 			}
2106 		}
2107 	}
2108 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2109 		sector_t next_sector;
2110 		unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2111 		if (unlikely(new_pos != NOT_FOUND) ||
2112 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2113 			remove_range_unlocked(ic, &dio->range);
2114 			spin_unlock_irq(&ic->endio_wait.lock);
2115 			queue_work(ic->commit_wq, &ic->commit_work);
2116 			flush_workqueue(ic->commit_wq);
2117 			queue_work(ic->writer_wq, &ic->writer_work);
2118 			flush_workqueue(ic->writer_wq);
2119 			discard_retried = true;
2120 			goto lock_retry;
2121 		}
2122 	}
2123 	spin_unlock_irq(&ic->endio_wait.lock);
2124 
2125 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2126 		journal_section = journal_read_pos / ic->journal_section_entries;
2127 		journal_entry = journal_read_pos % ic->journal_section_entries;
2128 		goto journal_read_write;
2129 	}
2130 
2131 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2132 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2133 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2134 			struct bitmap_block_status *bbs;
2135 
2136 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2137 			spin_lock(&bbs->bio_queue_lock);
2138 			bio_list_add(&bbs->bio_queue, bio);
2139 			spin_unlock(&bbs->bio_queue_lock);
2140 			queue_work(ic->writer_wq, &bbs->work);
2141 			return;
2142 		}
2143 	}
2144 
2145 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2146 
2147 	if (need_sync_io) {
2148 		init_completion(&read_comp);
2149 		dio->completion = &read_comp;
2150 	} else
2151 		dio->completion = NULL;
2152 
2153 	dm_bio_record(&dio->bio_details, bio);
2154 	bio_set_dev(bio, ic->dev->bdev);
2155 	bio->bi_integrity = NULL;
2156 	bio->bi_opf &= ~REQ_INTEGRITY;
2157 	bio->bi_end_io = integrity_end_io;
2158 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2159 
2160 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2161 		integrity_metadata(&dio->work);
2162 		dm_integrity_flush_buffers(ic, false);
2163 
2164 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2165 		dio->completion = NULL;
2166 
2167 		submit_bio_noacct(bio);
2168 
2169 		return;
2170 	}
2171 
2172 	submit_bio_noacct(bio);
2173 
2174 	if (need_sync_io) {
2175 		wait_for_completion_io(&read_comp);
2176 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2177 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2178 			goto skip_check;
2179 		if (ic->mode == 'B') {
2180 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2181 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2182 				goto skip_check;
2183 		}
2184 
2185 		if (likely(!bio->bi_status))
2186 			integrity_metadata(&dio->work);
2187 		else
2188 skip_check:
2189 			dec_in_flight(dio);
2190 
2191 	} else {
2192 		INIT_WORK(&dio->work, integrity_metadata);
2193 		queue_work(ic->metadata_wq, &dio->work);
2194 	}
2195 
2196 	return;
2197 
2198 journal_read_write:
2199 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2200 		goto lock_retry;
2201 
2202 	do_endio_flush(ic, dio);
2203 }
2204 
2205 
2206 static void integrity_bio_wait(struct work_struct *w)
2207 {
2208 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2209 
2210 	dm_integrity_map_continue(dio, false);
2211 }
2212 
2213 static void pad_uncommitted(struct dm_integrity_c *ic)
2214 {
2215 	if (ic->free_section_entry) {
2216 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2217 		ic->free_section_entry = 0;
2218 		ic->free_section++;
2219 		wraparound_section(ic, &ic->free_section);
2220 		ic->n_uncommitted_sections++;
2221 	}
2222 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2223 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2224 		    ic->journal_section_entries + ic->free_sectors)) {
2225 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2226 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2227 		       "journal_section_entries %u, free_sectors %u",
2228 		       ic->journal_sections, ic->journal_section_entries,
2229 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2230 		       ic->journal_section_entries, ic->free_sectors);
2231 	}
2232 }
2233 
2234 static void integrity_commit(struct work_struct *w)
2235 {
2236 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2237 	unsigned commit_start, commit_sections;
2238 	unsigned i, j, n;
2239 	struct bio *flushes;
2240 
2241 	del_timer(&ic->autocommit_timer);
2242 
2243 	spin_lock_irq(&ic->endio_wait.lock);
2244 	flushes = bio_list_get(&ic->flush_bio_list);
2245 	if (unlikely(ic->mode != 'J')) {
2246 		spin_unlock_irq(&ic->endio_wait.lock);
2247 		dm_integrity_flush_buffers(ic, true);
2248 		goto release_flush_bios;
2249 	}
2250 
2251 	pad_uncommitted(ic);
2252 	commit_start = ic->uncommitted_section;
2253 	commit_sections = ic->n_uncommitted_sections;
2254 	spin_unlock_irq(&ic->endio_wait.lock);
2255 
2256 	if (!commit_sections)
2257 		goto release_flush_bios;
2258 
2259 	i = commit_start;
2260 	for (n = 0; n < commit_sections; n++) {
2261 		for (j = 0; j < ic->journal_section_entries; j++) {
2262 			struct journal_entry *je;
2263 			je = access_journal_entry(ic, i, j);
2264 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2265 		}
2266 		for (j = 0; j < ic->journal_section_sectors; j++) {
2267 			struct journal_sector *js;
2268 			js = access_journal(ic, i, j);
2269 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2270 		}
2271 		i++;
2272 		if (unlikely(i >= ic->journal_sections))
2273 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2274 		wraparound_section(ic, &i);
2275 	}
2276 	smp_rmb();
2277 
2278 	write_journal(ic, commit_start, commit_sections);
2279 
2280 	spin_lock_irq(&ic->endio_wait.lock);
2281 	ic->uncommitted_section += commit_sections;
2282 	wraparound_section(ic, &ic->uncommitted_section);
2283 	ic->n_uncommitted_sections -= commit_sections;
2284 	ic->n_committed_sections += commit_sections;
2285 	spin_unlock_irq(&ic->endio_wait.lock);
2286 
2287 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2288 		queue_work(ic->writer_wq, &ic->writer_work);
2289 
2290 release_flush_bios:
2291 	while (flushes) {
2292 		struct bio *next = flushes->bi_next;
2293 		flushes->bi_next = NULL;
2294 		do_endio(ic, flushes);
2295 		flushes = next;
2296 	}
2297 }
2298 
2299 static void complete_copy_from_journal(unsigned long error, void *context)
2300 {
2301 	struct journal_io *io = context;
2302 	struct journal_completion *comp = io->comp;
2303 	struct dm_integrity_c *ic = comp->ic;
2304 	remove_range(ic, &io->range);
2305 	mempool_free(io, &ic->journal_io_mempool);
2306 	if (unlikely(error != 0))
2307 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2308 	complete_journal_op(comp);
2309 }
2310 
2311 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2312 			       struct journal_entry *je)
2313 {
2314 	unsigned s = 0;
2315 	do {
2316 		js->commit_id = je->last_bytes[s];
2317 		js++;
2318 	} while (++s < ic->sectors_per_block);
2319 }
2320 
2321 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2322 			     unsigned write_sections, bool from_replay)
2323 {
2324 	unsigned i, j, n;
2325 	struct journal_completion comp;
2326 	struct blk_plug plug;
2327 
2328 	blk_start_plug(&plug);
2329 
2330 	comp.ic = ic;
2331 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2332 	init_completion(&comp.comp);
2333 
2334 	i = write_start;
2335 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2336 #ifndef INTERNAL_VERIFY
2337 		if (unlikely(from_replay))
2338 #endif
2339 			rw_section_mac(ic, i, false);
2340 		for (j = 0; j < ic->journal_section_entries; j++) {
2341 			struct journal_entry *je = access_journal_entry(ic, i, j);
2342 			sector_t sec, area, offset;
2343 			unsigned k, l, next_loop;
2344 			sector_t metadata_block;
2345 			unsigned metadata_offset;
2346 			struct journal_io *io;
2347 
2348 			if (journal_entry_is_unused(je))
2349 				continue;
2350 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2351 			sec = journal_entry_get_sector(je);
2352 			if (unlikely(from_replay)) {
2353 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2354 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2355 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2356 				}
2357 			}
2358 			if (unlikely(sec >= ic->provided_data_sectors))
2359 				continue;
2360 			get_area_and_offset(ic, sec, &area, &offset);
2361 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2362 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2363 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2364 				sector_t sec2, area2, offset2;
2365 				if (journal_entry_is_unused(je2))
2366 					break;
2367 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2368 				sec2 = journal_entry_get_sector(je2);
2369 				if (unlikely(sec2 >= ic->provided_data_sectors))
2370 					break;
2371 				get_area_and_offset(ic, sec2, &area2, &offset2);
2372 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2373 					break;
2374 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2375 			}
2376 			next_loop = k - 1;
2377 
2378 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2379 			io->comp = &comp;
2380 			io->range.logical_sector = sec;
2381 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2382 
2383 			spin_lock_irq(&ic->endio_wait.lock);
2384 			add_new_range_and_wait(ic, &io->range);
2385 
2386 			if (likely(!from_replay)) {
2387 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2388 
2389 				/* don't write if there is newer committed sector */
2390 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2391 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2392 
2393 					journal_entry_set_unused(je2);
2394 					remove_journal_node(ic, &section_node[j]);
2395 					j++;
2396 					sec += ic->sectors_per_block;
2397 					offset += ic->sectors_per_block;
2398 				}
2399 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2400 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2401 
2402 					journal_entry_set_unused(je2);
2403 					remove_journal_node(ic, &section_node[k - 1]);
2404 					k--;
2405 				}
2406 				if (j == k) {
2407 					remove_range_unlocked(ic, &io->range);
2408 					spin_unlock_irq(&ic->endio_wait.lock);
2409 					mempool_free(io, &ic->journal_io_mempool);
2410 					goto skip_io;
2411 				}
2412 				for (l = j; l < k; l++) {
2413 					remove_journal_node(ic, &section_node[l]);
2414 				}
2415 			}
2416 			spin_unlock_irq(&ic->endio_wait.lock);
2417 
2418 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2419 			for (l = j; l < k; l++) {
2420 				int r;
2421 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2422 
2423 				if (
2424 #ifndef INTERNAL_VERIFY
2425 				    unlikely(from_replay) &&
2426 #endif
2427 				    ic->internal_hash) {
2428 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2429 
2430 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2431 								  (char *)access_journal_data(ic, i, l), test_tag);
2432 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2433 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2434 				}
2435 
2436 				journal_entry_set_unused(je2);
2437 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2438 							ic->tag_size, TAG_WRITE);
2439 				if (unlikely(r)) {
2440 					dm_integrity_io_error(ic, "reading tags", r);
2441 				}
2442 			}
2443 
2444 			atomic_inc(&comp.in_flight);
2445 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2446 					  (k - j) << ic->sb->log2_sectors_per_block,
2447 					  get_data_sector(ic, area, offset),
2448 					  complete_copy_from_journal, io);
2449 skip_io:
2450 			j = next_loop;
2451 		}
2452 	}
2453 
2454 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2455 
2456 	blk_finish_plug(&plug);
2457 
2458 	complete_journal_op(&comp);
2459 	wait_for_completion_io(&comp.comp);
2460 
2461 	dm_integrity_flush_buffers(ic, true);
2462 }
2463 
2464 static void integrity_writer(struct work_struct *w)
2465 {
2466 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2467 	unsigned write_start, write_sections;
2468 
2469 	unsigned prev_free_sectors;
2470 
2471 	/* the following test is not needed, but it tests the replay code */
2472 	if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2473 		return;
2474 
2475 	spin_lock_irq(&ic->endio_wait.lock);
2476 	write_start = ic->committed_section;
2477 	write_sections = ic->n_committed_sections;
2478 	spin_unlock_irq(&ic->endio_wait.lock);
2479 
2480 	if (!write_sections)
2481 		return;
2482 
2483 	do_journal_write(ic, write_start, write_sections, false);
2484 
2485 	spin_lock_irq(&ic->endio_wait.lock);
2486 
2487 	ic->committed_section += write_sections;
2488 	wraparound_section(ic, &ic->committed_section);
2489 	ic->n_committed_sections -= write_sections;
2490 
2491 	prev_free_sectors = ic->free_sectors;
2492 	ic->free_sectors += write_sections * ic->journal_section_entries;
2493 	if (unlikely(!prev_free_sectors))
2494 		wake_up_locked(&ic->endio_wait);
2495 
2496 	spin_unlock_irq(&ic->endio_wait.lock);
2497 }
2498 
2499 static void recalc_write_super(struct dm_integrity_c *ic)
2500 {
2501 	int r;
2502 
2503 	dm_integrity_flush_buffers(ic, false);
2504 	if (dm_integrity_failed(ic))
2505 		return;
2506 
2507 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2508 	if (unlikely(r))
2509 		dm_integrity_io_error(ic, "writing superblock", r);
2510 }
2511 
2512 static void integrity_recalc(struct work_struct *w)
2513 {
2514 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2515 	struct dm_integrity_range range;
2516 	struct dm_io_request io_req;
2517 	struct dm_io_region io_loc;
2518 	sector_t area, offset;
2519 	sector_t metadata_block;
2520 	unsigned metadata_offset;
2521 	sector_t logical_sector, n_sectors;
2522 	__u8 *t;
2523 	unsigned i;
2524 	int r;
2525 	unsigned super_counter = 0;
2526 
2527 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2528 
2529 	spin_lock_irq(&ic->endio_wait.lock);
2530 
2531 next_chunk:
2532 
2533 	if (unlikely(dm_post_suspending(ic->ti)))
2534 		goto unlock_ret;
2535 
2536 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2537 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2538 		if (ic->mode == 'B') {
2539 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2540 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2541 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2542 		}
2543 		goto unlock_ret;
2544 	}
2545 
2546 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2547 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2548 	if (!ic->meta_dev)
2549 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2550 
2551 	add_new_range_and_wait(ic, &range);
2552 	spin_unlock_irq(&ic->endio_wait.lock);
2553 	logical_sector = range.logical_sector;
2554 	n_sectors = range.n_sectors;
2555 
2556 	if (ic->mode == 'B') {
2557 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2558 			goto advance_and_next;
2559 		}
2560 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2561 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2562 			logical_sector += ic->sectors_per_block;
2563 			n_sectors -= ic->sectors_per_block;
2564 			cond_resched();
2565 		}
2566 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2567 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2568 			n_sectors -= ic->sectors_per_block;
2569 			cond_resched();
2570 		}
2571 		get_area_and_offset(ic, logical_sector, &area, &offset);
2572 	}
2573 
2574 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2575 
2576 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2577 		recalc_write_super(ic);
2578 		if (ic->mode == 'B') {
2579 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2580 		}
2581 		super_counter = 0;
2582 	}
2583 
2584 	if (unlikely(dm_integrity_failed(ic)))
2585 		goto err;
2586 
2587 	io_req.bi_op = REQ_OP_READ;
2588 	io_req.bi_op_flags = 0;
2589 	io_req.mem.type = DM_IO_VMA;
2590 	io_req.mem.ptr.addr = ic->recalc_buffer;
2591 	io_req.notify.fn = NULL;
2592 	io_req.client = ic->io;
2593 	io_loc.bdev = ic->dev->bdev;
2594 	io_loc.sector = get_data_sector(ic, area, offset);
2595 	io_loc.count = n_sectors;
2596 
2597 	r = dm_io(&io_req, 1, &io_loc, NULL);
2598 	if (unlikely(r)) {
2599 		dm_integrity_io_error(ic, "reading data", r);
2600 		goto err;
2601 	}
2602 
2603 	t = ic->recalc_tags;
2604 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2605 		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2606 		t += ic->tag_size;
2607 	}
2608 
2609 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2610 
2611 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2612 	if (unlikely(r)) {
2613 		dm_integrity_io_error(ic, "writing tags", r);
2614 		goto err;
2615 	}
2616 
2617 	if (ic->mode == 'B') {
2618 		sector_t start, end;
2619 		start = (range.logical_sector >>
2620 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2621 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2622 		end = ((range.logical_sector + range.n_sectors) >>
2623 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2624 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2625 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2626 	}
2627 
2628 advance_and_next:
2629 	cond_resched();
2630 
2631 	spin_lock_irq(&ic->endio_wait.lock);
2632 	remove_range_unlocked(ic, &range);
2633 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2634 	goto next_chunk;
2635 
2636 err:
2637 	remove_range(ic, &range);
2638 	return;
2639 
2640 unlock_ret:
2641 	spin_unlock_irq(&ic->endio_wait.lock);
2642 
2643 	recalc_write_super(ic);
2644 }
2645 
2646 static void bitmap_block_work(struct work_struct *w)
2647 {
2648 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2649 	struct dm_integrity_c *ic = bbs->ic;
2650 	struct bio *bio;
2651 	struct bio_list bio_queue;
2652 	struct bio_list waiting;
2653 
2654 	bio_list_init(&waiting);
2655 
2656 	spin_lock(&bbs->bio_queue_lock);
2657 	bio_queue = bbs->bio_queue;
2658 	bio_list_init(&bbs->bio_queue);
2659 	spin_unlock(&bbs->bio_queue_lock);
2660 
2661 	while ((bio = bio_list_pop(&bio_queue))) {
2662 		struct dm_integrity_io *dio;
2663 
2664 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2665 
2666 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2667 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2668 			remove_range(ic, &dio->range);
2669 			INIT_WORK(&dio->work, integrity_bio_wait);
2670 			queue_work(ic->offload_wq, &dio->work);
2671 		} else {
2672 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2673 					dio->range.n_sectors, BITMAP_OP_SET);
2674 			bio_list_add(&waiting, bio);
2675 		}
2676 	}
2677 
2678 	if (bio_list_empty(&waiting))
2679 		return;
2680 
2681 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2682 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2683 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2684 
2685 	while ((bio = bio_list_pop(&waiting))) {
2686 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2687 
2688 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2689 				dio->range.n_sectors, BITMAP_OP_SET);
2690 
2691 		remove_range(ic, &dio->range);
2692 		INIT_WORK(&dio->work, integrity_bio_wait);
2693 		queue_work(ic->offload_wq, &dio->work);
2694 	}
2695 
2696 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2697 }
2698 
2699 static void bitmap_flush_work(struct work_struct *work)
2700 {
2701 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2702 	struct dm_integrity_range range;
2703 	unsigned long limit;
2704 	struct bio *bio;
2705 
2706 	dm_integrity_flush_buffers(ic, false);
2707 
2708 	range.logical_sector = 0;
2709 	range.n_sectors = ic->provided_data_sectors;
2710 
2711 	spin_lock_irq(&ic->endio_wait.lock);
2712 	add_new_range_and_wait(ic, &range);
2713 	spin_unlock_irq(&ic->endio_wait.lock);
2714 
2715 	dm_integrity_flush_buffers(ic, true);
2716 
2717 	limit = ic->provided_data_sectors;
2718 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2719 		limit = le64_to_cpu(ic->sb->recalc_sector)
2720 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2721 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2722 	}
2723 	/*DEBUG_print("zeroing journal\n");*/
2724 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2725 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2726 
2727 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2728 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2729 
2730 	spin_lock_irq(&ic->endio_wait.lock);
2731 	remove_range_unlocked(ic, &range);
2732 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2733 		bio_endio(bio);
2734 		spin_unlock_irq(&ic->endio_wait.lock);
2735 		spin_lock_irq(&ic->endio_wait.lock);
2736 	}
2737 	spin_unlock_irq(&ic->endio_wait.lock);
2738 }
2739 
2740 
2741 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2742 			 unsigned n_sections, unsigned char commit_seq)
2743 {
2744 	unsigned i, j, n;
2745 
2746 	if (!n_sections)
2747 		return;
2748 
2749 	for (n = 0; n < n_sections; n++) {
2750 		i = start_section + n;
2751 		wraparound_section(ic, &i);
2752 		for (j = 0; j < ic->journal_section_sectors; j++) {
2753 			struct journal_sector *js = access_journal(ic, i, j);
2754 			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2755 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2756 		}
2757 		for (j = 0; j < ic->journal_section_entries; j++) {
2758 			struct journal_entry *je = access_journal_entry(ic, i, j);
2759 			journal_entry_set_unused(je);
2760 		}
2761 	}
2762 
2763 	write_journal(ic, start_section, n_sections);
2764 }
2765 
2766 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2767 {
2768 	unsigned char k;
2769 	for (k = 0; k < N_COMMIT_IDS; k++) {
2770 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2771 			return k;
2772 	}
2773 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2774 	return -EIO;
2775 }
2776 
2777 static void replay_journal(struct dm_integrity_c *ic)
2778 {
2779 	unsigned i, j;
2780 	bool used_commit_ids[N_COMMIT_IDS];
2781 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2782 	unsigned write_start, write_sections;
2783 	unsigned continue_section;
2784 	bool journal_empty;
2785 	unsigned char unused, last_used, want_commit_seq;
2786 
2787 	if (ic->mode == 'R')
2788 		return;
2789 
2790 	if (ic->journal_uptodate)
2791 		return;
2792 
2793 	last_used = 0;
2794 	write_start = 0;
2795 
2796 	if (!ic->just_formatted) {
2797 		DEBUG_print("reading journal\n");
2798 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2799 		if (ic->journal_io)
2800 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2801 		if (ic->journal_io) {
2802 			struct journal_completion crypt_comp;
2803 			crypt_comp.ic = ic;
2804 			init_completion(&crypt_comp.comp);
2805 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2806 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2807 			wait_for_completion(&crypt_comp.comp);
2808 		}
2809 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2810 	}
2811 
2812 	if (dm_integrity_failed(ic))
2813 		goto clear_journal;
2814 
2815 	journal_empty = true;
2816 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2817 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2818 	for (i = 0; i < ic->journal_sections; i++) {
2819 		for (j = 0; j < ic->journal_section_sectors; j++) {
2820 			int k;
2821 			struct journal_sector *js = access_journal(ic, i, j);
2822 			k = find_commit_seq(ic, i, j, js->commit_id);
2823 			if (k < 0)
2824 				goto clear_journal;
2825 			used_commit_ids[k] = true;
2826 			max_commit_id_sections[k] = i;
2827 		}
2828 		if (journal_empty) {
2829 			for (j = 0; j < ic->journal_section_entries; j++) {
2830 				struct journal_entry *je = access_journal_entry(ic, i, j);
2831 				if (!journal_entry_is_unused(je)) {
2832 					journal_empty = false;
2833 					break;
2834 				}
2835 			}
2836 		}
2837 	}
2838 
2839 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2840 		unused = N_COMMIT_IDS - 1;
2841 		while (unused && !used_commit_ids[unused - 1])
2842 			unused--;
2843 	} else {
2844 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2845 			if (!used_commit_ids[unused])
2846 				break;
2847 		if (unused == N_COMMIT_IDS) {
2848 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2849 			goto clear_journal;
2850 		}
2851 	}
2852 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2853 		    unused, used_commit_ids[0], used_commit_ids[1],
2854 		    used_commit_ids[2], used_commit_ids[3]);
2855 
2856 	last_used = prev_commit_seq(unused);
2857 	want_commit_seq = prev_commit_seq(last_used);
2858 
2859 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2860 		journal_empty = true;
2861 
2862 	write_start = max_commit_id_sections[last_used] + 1;
2863 	if (unlikely(write_start >= ic->journal_sections))
2864 		want_commit_seq = next_commit_seq(want_commit_seq);
2865 	wraparound_section(ic, &write_start);
2866 
2867 	i = write_start;
2868 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2869 		for (j = 0; j < ic->journal_section_sectors; j++) {
2870 			struct journal_sector *js = access_journal(ic, i, j);
2871 
2872 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2873 				/*
2874 				 * This could be caused by crash during writing.
2875 				 * We won't replay the inconsistent part of the
2876 				 * journal.
2877 				 */
2878 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2879 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2880 				goto brk;
2881 			}
2882 		}
2883 		i++;
2884 		if (unlikely(i >= ic->journal_sections))
2885 			want_commit_seq = next_commit_seq(want_commit_seq);
2886 		wraparound_section(ic, &i);
2887 	}
2888 brk:
2889 
2890 	if (!journal_empty) {
2891 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2892 			    write_sections, write_start, want_commit_seq);
2893 		do_journal_write(ic, write_start, write_sections, true);
2894 	}
2895 
2896 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2897 		continue_section = write_start;
2898 		ic->commit_seq = want_commit_seq;
2899 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2900 	} else {
2901 		unsigned s;
2902 		unsigned char erase_seq;
2903 clear_journal:
2904 		DEBUG_print("clearing journal\n");
2905 
2906 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2907 		s = write_start;
2908 		init_journal(ic, s, 1, erase_seq);
2909 		s++;
2910 		wraparound_section(ic, &s);
2911 		if (ic->journal_sections >= 2) {
2912 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2913 			s += ic->journal_sections - 2;
2914 			wraparound_section(ic, &s);
2915 			init_journal(ic, s, 1, erase_seq);
2916 		}
2917 
2918 		continue_section = 0;
2919 		ic->commit_seq = next_commit_seq(erase_seq);
2920 	}
2921 
2922 	ic->committed_section = continue_section;
2923 	ic->n_committed_sections = 0;
2924 
2925 	ic->uncommitted_section = continue_section;
2926 	ic->n_uncommitted_sections = 0;
2927 
2928 	ic->free_section = continue_section;
2929 	ic->free_section_entry = 0;
2930 	ic->free_sectors = ic->journal_entries;
2931 
2932 	ic->journal_tree_root = RB_ROOT;
2933 	for (i = 0; i < ic->journal_entries; i++)
2934 		init_journal_node(&ic->journal_tree[i]);
2935 }
2936 
2937 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2938 {
2939 	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2940 
2941 	if (ic->mode == 'B') {
2942 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2943 		ic->synchronous_mode = 1;
2944 
2945 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2946 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2947 		flush_workqueue(ic->commit_wq);
2948 	}
2949 }
2950 
2951 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2952 {
2953 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2954 
2955 	DEBUG_print("dm_integrity_reboot\n");
2956 
2957 	dm_integrity_enter_synchronous_mode(ic);
2958 
2959 	return NOTIFY_DONE;
2960 }
2961 
2962 static void dm_integrity_postsuspend(struct dm_target *ti)
2963 {
2964 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2965 	int r;
2966 
2967 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2968 
2969 	del_timer_sync(&ic->autocommit_timer);
2970 
2971 	if (ic->recalc_wq)
2972 		drain_workqueue(ic->recalc_wq);
2973 
2974 	if (ic->mode == 'B')
2975 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2976 
2977 	queue_work(ic->commit_wq, &ic->commit_work);
2978 	drain_workqueue(ic->commit_wq);
2979 
2980 	if (ic->mode == 'J') {
2981 		if (ic->meta_dev)
2982 			queue_work(ic->writer_wq, &ic->writer_work);
2983 		drain_workqueue(ic->writer_wq);
2984 		dm_integrity_flush_buffers(ic, true);
2985 	}
2986 
2987 	if (ic->mode == 'B') {
2988 		dm_integrity_flush_buffers(ic, true);
2989 #if 1
2990 		/* set to 0 to test bitmap replay code */
2991 		init_journal(ic, 0, ic->journal_sections, 0);
2992 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2993 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2994 		if (unlikely(r))
2995 			dm_integrity_io_error(ic, "writing superblock", r);
2996 #endif
2997 	}
2998 
2999 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3000 
3001 	ic->journal_uptodate = true;
3002 }
3003 
3004 static void dm_integrity_resume(struct dm_target *ti)
3005 {
3006 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3007 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3008 	int r;
3009 
3010 	DEBUG_print("resume\n");
3011 
3012 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3013 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3014 		    ic->mode == 'B' &&
3015 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3016 			rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3017 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3018 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3019 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3020 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3021 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3022 		}
3023 
3024 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3025 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3026 		if (unlikely(r))
3027 			dm_integrity_io_error(ic, "writing superblock", r);
3028 	}
3029 
3030 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3031 		DEBUG_print("resume dirty_bitmap\n");
3032 		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3033 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3034 		if (ic->mode == 'B') {
3035 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3036 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3037 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3038 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3039 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3040 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3041 					ic->sb->recalc_sector = cpu_to_le64(0);
3042 				}
3043 			} else {
3044 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3045 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3046 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3047 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3048 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3049 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3050 				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3051 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3052 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3053 				ic->sb->recalc_sector = cpu_to_le64(0);
3054 			}
3055 		} else {
3056 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3057 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
3058 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3059 				ic->sb->recalc_sector = cpu_to_le64(0);
3060 			}
3061 			init_journal(ic, 0, ic->journal_sections, 0);
3062 			replay_journal(ic);
3063 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3064 		}
3065 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3066 		if (unlikely(r))
3067 			dm_integrity_io_error(ic, "writing superblock", r);
3068 	} else {
3069 		replay_journal(ic);
3070 		if (ic->mode == 'B') {
3071 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3072 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3073 			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3074 			if (unlikely(r))
3075 				dm_integrity_io_error(ic, "writing superblock", r);
3076 
3077 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3078 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3079 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3080 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3081 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3082 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3083 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3084 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3085 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3086 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3087 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3088 			}
3089 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3090 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3091 		}
3092 	}
3093 
3094 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3095 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3096 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3097 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3098 		if (recalc_pos < ic->provided_data_sectors) {
3099 			queue_work(ic->recalc_wq, &ic->recalc_work);
3100 		} else if (recalc_pos > ic->provided_data_sectors) {
3101 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3102 			recalc_write_super(ic);
3103 		}
3104 	}
3105 
3106 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3107 	ic->reboot_notifier.next = NULL;
3108 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3109 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3110 
3111 #if 0
3112 	/* set to 1 to stress test synchronous mode */
3113 	dm_integrity_enter_synchronous_mode(ic);
3114 #endif
3115 }
3116 
3117 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3118 				unsigned status_flags, char *result, unsigned maxlen)
3119 {
3120 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3121 	unsigned arg_count;
3122 	size_t sz = 0;
3123 
3124 	switch (type) {
3125 	case STATUSTYPE_INFO:
3126 		DMEMIT("%llu %llu",
3127 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3128 			ic->provided_data_sectors);
3129 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3130 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3131 		else
3132 			DMEMIT(" -");
3133 		break;
3134 
3135 	case STATUSTYPE_TABLE: {
3136 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3137 		watermark_percentage += ic->journal_entries / 2;
3138 		do_div(watermark_percentage, ic->journal_entries);
3139 		arg_count = 3;
3140 		arg_count += !!ic->meta_dev;
3141 		arg_count += ic->sectors_per_block != 1;
3142 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3143 		arg_count += ic->discard;
3144 		arg_count += ic->mode == 'J';
3145 		arg_count += ic->mode == 'J';
3146 		arg_count += ic->mode == 'B';
3147 		arg_count += ic->mode == 'B';
3148 		arg_count += !!ic->internal_hash_alg.alg_string;
3149 		arg_count += !!ic->journal_crypt_alg.alg_string;
3150 		arg_count += !!ic->journal_mac_alg.alg_string;
3151 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3152 		arg_count += ic->legacy_recalculate;
3153 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3154 		       ic->tag_size, ic->mode, arg_count);
3155 		if (ic->meta_dev)
3156 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3157 		if (ic->sectors_per_block != 1)
3158 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3159 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3160 			DMEMIT(" recalculate");
3161 		if (ic->discard)
3162 			DMEMIT(" allow_discards");
3163 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3164 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3165 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3166 		if (ic->mode == 'J') {
3167 			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3168 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3169 		}
3170 		if (ic->mode == 'B') {
3171 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3172 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3173 		}
3174 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3175 			DMEMIT(" fix_padding");
3176 		if (ic->legacy_recalculate)
3177 			DMEMIT(" legacy_recalculate");
3178 
3179 #define EMIT_ALG(a, n)							\
3180 		do {							\
3181 			if (ic->a.alg_string) {				\
3182 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3183 				if (ic->a.key_string)			\
3184 					DMEMIT(":%s", ic->a.key_string);\
3185 			}						\
3186 		} while (0)
3187 		EMIT_ALG(internal_hash_alg, "internal_hash");
3188 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3189 		EMIT_ALG(journal_mac_alg, "journal_mac");
3190 		break;
3191 	}
3192 	}
3193 }
3194 
3195 static int dm_integrity_iterate_devices(struct dm_target *ti,
3196 					iterate_devices_callout_fn fn, void *data)
3197 {
3198 	struct dm_integrity_c *ic = ti->private;
3199 
3200 	if (!ic->meta_dev)
3201 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3202 	else
3203 		return fn(ti, ic->dev, 0, ti->len, data);
3204 }
3205 
3206 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3207 {
3208 	struct dm_integrity_c *ic = ti->private;
3209 
3210 	if (ic->sectors_per_block > 1) {
3211 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3212 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3213 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3214 	}
3215 }
3216 
3217 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3218 {
3219 	unsigned sector_space = JOURNAL_SECTOR_DATA;
3220 
3221 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3222 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3223 					 JOURNAL_ENTRY_ROUNDUP);
3224 
3225 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3226 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3227 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3228 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3229 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3230 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3231 }
3232 
3233 static int calculate_device_limits(struct dm_integrity_c *ic)
3234 {
3235 	__u64 initial_sectors;
3236 
3237 	calculate_journal_section_size(ic);
3238 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3239 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3240 		return -EINVAL;
3241 	ic->initial_sectors = initial_sectors;
3242 
3243 	if (!ic->meta_dev) {
3244 		sector_t last_sector, last_area, last_offset;
3245 
3246 		/* we have to maintain excessive padding for compatibility with existing volumes */
3247 		__u64 metadata_run_padding =
3248 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3249 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3250 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3251 
3252 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3253 					    metadata_run_padding) >> SECTOR_SHIFT;
3254 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3255 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3256 		else
3257 			ic->log2_metadata_run = -1;
3258 
3259 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3260 		last_sector = get_data_sector(ic, last_area, last_offset);
3261 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3262 			return -EINVAL;
3263 	} else {
3264 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3265 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3266 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3267 		meta_size <<= ic->log2_buffer_sectors;
3268 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3269 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3270 			return -EINVAL;
3271 		ic->metadata_run = 1;
3272 		ic->log2_metadata_run = 0;
3273 	}
3274 
3275 	return 0;
3276 }
3277 
3278 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3279 {
3280 	if (!ic->meta_dev) {
3281 		int test_bit;
3282 		ic->provided_data_sectors = 0;
3283 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3284 			__u64 prev_data_sectors = ic->provided_data_sectors;
3285 
3286 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3287 			if (calculate_device_limits(ic))
3288 				ic->provided_data_sectors = prev_data_sectors;
3289 		}
3290 	} else {
3291 		ic->provided_data_sectors = ic->data_device_sectors;
3292 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3293 	}
3294 }
3295 
3296 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3297 {
3298 	unsigned journal_sections;
3299 	int test_bit;
3300 
3301 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3302 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3303 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3304 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3305 	if (ic->journal_mac_alg.alg_string)
3306 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3307 
3308 	calculate_journal_section_size(ic);
3309 	journal_sections = journal_sectors / ic->journal_section_sectors;
3310 	if (!journal_sections)
3311 		journal_sections = 1;
3312 
3313 	if (!ic->meta_dev) {
3314 		if (ic->fix_padding)
3315 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3316 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3317 		if (!interleave_sectors)
3318 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3319 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3320 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3321 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3322 
3323 		get_provided_data_sectors(ic);
3324 		if (!ic->provided_data_sectors)
3325 			return -EINVAL;
3326 	} else {
3327 		ic->sb->log2_interleave_sectors = 0;
3328 
3329 		get_provided_data_sectors(ic);
3330 		if (!ic->provided_data_sectors)
3331 			return -EINVAL;
3332 
3333 try_smaller_buffer:
3334 		ic->sb->journal_sections = cpu_to_le32(0);
3335 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3336 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3337 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3338 			if (test_journal_sections > journal_sections)
3339 				continue;
3340 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3341 			if (calculate_device_limits(ic))
3342 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3343 
3344 		}
3345 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3346 			if (ic->log2_buffer_sectors > 3) {
3347 				ic->log2_buffer_sectors--;
3348 				goto try_smaller_buffer;
3349 			}
3350 			return -EINVAL;
3351 		}
3352 	}
3353 
3354 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3355 
3356 	sb_set_version(ic);
3357 
3358 	return 0;
3359 }
3360 
3361 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3362 {
3363 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3364 	struct blk_integrity bi;
3365 
3366 	memset(&bi, 0, sizeof(bi));
3367 	bi.profile = &dm_integrity_profile;
3368 	bi.tuple_size = ic->tag_size;
3369 	bi.tag_size = bi.tuple_size;
3370 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3371 
3372 	blk_integrity_register(disk, &bi);
3373 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3374 }
3375 
3376 static void dm_integrity_free_page_list(struct page_list *pl)
3377 {
3378 	unsigned i;
3379 
3380 	if (!pl)
3381 		return;
3382 	for (i = 0; pl[i].page; i++)
3383 		__free_page(pl[i].page);
3384 	kvfree(pl);
3385 }
3386 
3387 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3388 {
3389 	struct page_list *pl;
3390 	unsigned i;
3391 
3392 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3393 	if (!pl)
3394 		return NULL;
3395 
3396 	for (i = 0; i < n_pages; i++) {
3397 		pl[i].page = alloc_page(GFP_KERNEL);
3398 		if (!pl[i].page) {
3399 			dm_integrity_free_page_list(pl);
3400 			return NULL;
3401 		}
3402 		if (i)
3403 			pl[i - 1].next = &pl[i];
3404 	}
3405 	pl[i].page = NULL;
3406 	pl[i].next = NULL;
3407 
3408 	return pl;
3409 }
3410 
3411 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3412 {
3413 	unsigned i;
3414 	for (i = 0; i < ic->journal_sections; i++)
3415 		kvfree(sl[i]);
3416 	kvfree(sl);
3417 }
3418 
3419 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3420 								   struct page_list *pl)
3421 {
3422 	struct scatterlist **sl;
3423 	unsigned i;
3424 
3425 	sl = kvmalloc_array(ic->journal_sections,
3426 			    sizeof(struct scatterlist *),
3427 			    GFP_KERNEL | __GFP_ZERO);
3428 	if (!sl)
3429 		return NULL;
3430 
3431 	for (i = 0; i < ic->journal_sections; i++) {
3432 		struct scatterlist *s;
3433 		unsigned start_index, start_offset;
3434 		unsigned end_index, end_offset;
3435 		unsigned n_pages;
3436 		unsigned idx;
3437 
3438 		page_list_location(ic, i, 0, &start_index, &start_offset);
3439 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3440 				   &end_index, &end_offset);
3441 
3442 		n_pages = (end_index - start_index + 1);
3443 
3444 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3445 				   GFP_KERNEL);
3446 		if (!s) {
3447 			dm_integrity_free_journal_scatterlist(ic, sl);
3448 			return NULL;
3449 		}
3450 
3451 		sg_init_table(s, n_pages);
3452 		for (idx = start_index; idx <= end_index; idx++) {
3453 			char *va = lowmem_page_address(pl[idx].page);
3454 			unsigned start = 0, end = PAGE_SIZE;
3455 			if (idx == start_index)
3456 				start = start_offset;
3457 			if (idx == end_index)
3458 				end = end_offset + (1 << SECTOR_SHIFT);
3459 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3460 		}
3461 
3462 		sl[i] = s;
3463 	}
3464 
3465 	return sl;
3466 }
3467 
3468 static void free_alg(struct alg_spec *a)
3469 {
3470 	kfree_sensitive(a->alg_string);
3471 	kfree_sensitive(a->key);
3472 	memset(a, 0, sizeof *a);
3473 }
3474 
3475 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3476 {
3477 	char *k;
3478 
3479 	free_alg(a);
3480 
3481 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3482 	if (!a->alg_string)
3483 		goto nomem;
3484 
3485 	k = strchr(a->alg_string, ':');
3486 	if (k) {
3487 		*k = 0;
3488 		a->key_string = k + 1;
3489 		if (strlen(a->key_string) & 1)
3490 			goto inval;
3491 
3492 		a->key_size = strlen(a->key_string) / 2;
3493 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3494 		if (!a->key)
3495 			goto nomem;
3496 		if (hex2bin(a->key, a->key_string, a->key_size))
3497 			goto inval;
3498 	}
3499 
3500 	return 0;
3501 inval:
3502 	*error = error_inval;
3503 	return -EINVAL;
3504 nomem:
3505 	*error = "Out of memory for an argument";
3506 	return -ENOMEM;
3507 }
3508 
3509 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3510 		   char *error_alg, char *error_key)
3511 {
3512 	int r;
3513 
3514 	if (a->alg_string) {
3515 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3516 		if (IS_ERR(*hash)) {
3517 			*error = error_alg;
3518 			r = PTR_ERR(*hash);
3519 			*hash = NULL;
3520 			return r;
3521 		}
3522 
3523 		if (a->key) {
3524 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3525 			if (r) {
3526 				*error = error_key;
3527 				return r;
3528 			}
3529 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3530 			*error = error_key;
3531 			return -ENOKEY;
3532 		}
3533 	}
3534 
3535 	return 0;
3536 }
3537 
3538 static int create_journal(struct dm_integrity_c *ic, char **error)
3539 {
3540 	int r = 0;
3541 	unsigned i;
3542 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3543 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3544 	struct skcipher_request *req = NULL;
3545 
3546 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3547 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3548 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3549 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3550 
3551 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3552 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3553 	journal_desc_size = journal_pages * sizeof(struct page_list);
3554 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3555 		*error = "Journal doesn't fit into memory";
3556 		r = -ENOMEM;
3557 		goto bad;
3558 	}
3559 	ic->journal_pages = journal_pages;
3560 
3561 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3562 	if (!ic->journal) {
3563 		*error = "Could not allocate memory for journal";
3564 		r = -ENOMEM;
3565 		goto bad;
3566 	}
3567 	if (ic->journal_crypt_alg.alg_string) {
3568 		unsigned ivsize, blocksize;
3569 		struct journal_completion comp;
3570 
3571 		comp.ic = ic;
3572 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3573 		if (IS_ERR(ic->journal_crypt)) {
3574 			*error = "Invalid journal cipher";
3575 			r = PTR_ERR(ic->journal_crypt);
3576 			ic->journal_crypt = NULL;
3577 			goto bad;
3578 		}
3579 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3580 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3581 
3582 		if (ic->journal_crypt_alg.key) {
3583 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3584 						   ic->journal_crypt_alg.key_size);
3585 			if (r) {
3586 				*error = "Error setting encryption key";
3587 				goto bad;
3588 			}
3589 		}
3590 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3591 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3592 
3593 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3594 		if (!ic->journal_io) {
3595 			*error = "Could not allocate memory for journal io";
3596 			r = -ENOMEM;
3597 			goto bad;
3598 		}
3599 
3600 		if (blocksize == 1) {
3601 			struct scatterlist *sg;
3602 
3603 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3604 			if (!req) {
3605 				*error = "Could not allocate crypt request";
3606 				r = -ENOMEM;
3607 				goto bad;
3608 			}
3609 
3610 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3611 			if (!crypt_iv) {
3612 				*error = "Could not allocate iv";
3613 				r = -ENOMEM;
3614 				goto bad;
3615 			}
3616 
3617 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3618 			if (!ic->journal_xor) {
3619 				*error = "Could not allocate memory for journal xor";
3620 				r = -ENOMEM;
3621 				goto bad;
3622 			}
3623 
3624 			sg = kvmalloc_array(ic->journal_pages + 1,
3625 					    sizeof(struct scatterlist),
3626 					    GFP_KERNEL);
3627 			if (!sg) {
3628 				*error = "Unable to allocate sg list";
3629 				r = -ENOMEM;
3630 				goto bad;
3631 			}
3632 			sg_init_table(sg, ic->journal_pages + 1);
3633 			for (i = 0; i < ic->journal_pages; i++) {
3634 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3635 				clear_page(va);
3636 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3637 			}
3638 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3639 
3640 			skcipher_request_set_crypt(req, sg, sg,
3641 						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3642 			init_completion(&comp.comp);
3643 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3644 			if (do_crypt(true, req, &comp))
3645 				wait_for_completion(&comp.comp);
3646 			kvfree(sg);
3647 			r = dm_integrity_failed(ic);
3648 			if (r) {
3649 				*error = "Unable to encrypt journal";
3650 				goto bad;
3651 			}
3652 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3653 
3654 			crypto_free_skcipher(ic->journal_crypt);
3655 			ic->journal_crypt = NULL;
3656 		} else {
3657 			unsigned crypt_len = roundup(ivsize, blocksize);
3658 
3659 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3660 			if (!req) {
3661 				*error = "Could not allocate crypt request";
3662 				r = -ENOMEM;
3663 				goto bad;
3664 			}
3665 
3666 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3667 			if (!crypt_iv) {
3668 				*error = "Could not allocate iv";
3669 				r = -ENOMEM;
3670 				goto bad;
3671 			}
3672 
3673 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3674 			if (!crypt_data) {
3675 				*error = "Unable to allocate crypt data";
3676 				r = -ENOMEM;
3677 				goto bad;
3678 			}
3679 
3680 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3681 			if (!ic->journal_scatterlist) {
3682 				*error = "Unable to allocate sg list";
3683 				r = -ENOMEM;
3684 				goto bad;
3685 			}
3686 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3687 			if (!ic->journal_io_scatterlist) {
3688 				*error = "Unable to allocate sg list";
3689 				r = -ENOMEM;
3690 				goto bad;
3691 			}
3692 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3693 							 sizeof(struct skcipher_request *),
3694 							 GFP_KERNEL | __GFP_ZERO);
3695 			if (!ic->sk_requests) {
3696 				*error = "Unable to allocate sk requests";
3697 				r = -ENOMEM;
3698 				goto bad;
3699 			}
3700 			for (i = 0; i < ic->journal_sections; i++) {
3701 				struct scatterlist sg;
3702 				struct skcipher_request *section_req;
3703 				__u32 section_le = cpu_to_le32(i);
3704 
3705 				memset(crypt_iv, 0x00, ivsize);
3706 				memset(crypt_data, 0x00, crypt_len);
3707 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3708 
3709 				sg_init_one(&sg, crypt_data, crypt_len);
3710 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3711 				init_completion(&comp.comp);
3712 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3713 				if (do_crypt(true, req, &comp))
3714 					wait_for_completion(&comp.comp);
3715 
3716 				r = dm_integrity_failed(ic);
3717 				if (r) {
3718 					*error = "Unable to generate iv";
3719 					goto bad;
3720 				}
3721 
3722 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3723 				if (!section_req) {
3724 					*error = "Unable to allocate crypt request";
3725 					r = -ENOMEM;
3726 					goto bad;
3727 				}
3728 				section_req->iv = kmalloc_array(ivsize, 2,
3729 								GFP_KERNEL);
3730 				if (!section_req->iv) {
3731 					skcipher_request_free(section_req);
3732 					*error = "Unable to allocate iv";
3733 					r = -ENOMEM;
3734 					goto bad;
3735 				}
3736 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3737 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3738 				ic->sk_requests[i] = section_req;
3739 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3740 			}
3741 		}
3742 	}
3743 
3744 	for (i = 0; i < N_COMMIT_IDS; i++) {
3745 		unsigned j;
3746 retest_commit_id:
3747 		for (j = 0; j < i; j++) {
3748 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3749 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3750 				goto retest_commit_id;
3751 			}
3752 		}
3753 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3754 	}
3755 
3756 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3757 	if (journal_tree_size > ULONG_MAX) {
3758 		*error = "Journal doesn't fit into memory";
3759 		r = -ENOMEM;
3760 		goto bad;
3761 	}
3762 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3763 	if (!ic->journal_tree) {
3764 		*error = "Could not allocate memory for journal tree";
3765 		r = -ENOMEM;
3766 	}
3767 bad:
3768 	kfree(crypt_data);
3769 	kfree(crypt_iv);
3770 	skcipher_request_free(req);
3771 
3772 	return r;
3773 }
3774 
3775 /*
3776  * Construct a integrity mapping
3777  *
3778  * Arguments:
3779  *	device
3780  *	offset from the start of the device
3781  *	tag size
3782  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3783  *	number of optional arguments
3784  *	optional arguments:
3785  *		journal_sectors
3786  *		interleave_sectors
3787  *		buffer_sectors
3788  *		journal_watermark
3789  *		commit_time
3790  *		meta_device
3791  *		block_size
3792  *		sectors_per_bit
3793  *		bitmap_flush_interval
3794  *		internal_hash
3795  *		journal_crypt
3796  *		journal_mac
3797  *		recalculate
3798  */
3799 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3800 {
3801 	struct dm_integrity_c *ic;
3802 	char dummy;
3803 	int r;
3804 	unsigned extra_args;
3805 	struct dm_arg_set as;
3806 	static const struct dm_arg _args[] = {
3807 		{0, 16, "Invalid number of feature args"},
3808 	};
3809 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3810 	bool should_write_sb;
3811 	__u64 threshold;
3812 	unsigned long long start;
3813 	__s8 log2_sectors_per_bitmap_bit = -1;
3814 	__s8 log2_blocks_per_bitmap_bit;
3815 	__u64 bits_in_journal;
3816 	__u64 n_bitmap_bits;
3817 
3818 #define DIRECT_ARGUMENTS	4
3819 
3820 	if (argc <= DIRECT_ARGUMENTS) {
3821 		ti->error = "Invalid argument count";
3822 		return -EINVAL;
3823 	}
3824 
3825 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3826 	if (!ic) {
3827 		ti->error = "Cannot allocate integrity context";
3828 		return -ENOMEM;
3829 	}
3830 	ti->private = ic;
3831 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3832 	ic->ti = ti;
3833 
3834 	ic->in_progress = RB_ROOT;
3835 	INIT_LIST_HEAD(&ic->wait_list);
3836 	init_waitqueue_head(&ic->endio_wait);
3837 	bio_list_init(&ic->flush_bio_list);
3838 	init_waitqueue_head(&ic->copy_to_journal_wait);
3839 	init_completion(&ic->crypto_backoff);
3840 	atomic64_set(&ic->number_of_mismatches, 0);
3841 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3842 
3843 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3844 	if (r) {
3845 		ti->error = "Device lookup failed";
3846 		goto bad;
3847 	}
3848 
3849 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3850 		ti->error = "Invalid starting offset";
3851 		r = -EINVAL;
3852 		goto bad;
3853 	}
3854 	ic->start = start;
3855 
3856 	if (strcmp(argv[2], "-")) {
3857 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3858 			ti->error = "Invalid tag size";
3859 			r = -EINVAL;
3860 			goto bad;
3861 		}
3862 	}
3863 
3864 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3865 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3866 		ic->mode = argv[3][0];
3867 	} else {
3868 		ti->error = "Invalid mode (expecting J, B, D, R)";
3869 		r = -EINVAL;
3870 		goto bad;
3871 	}
3872 
3873 	journal_sectors = 0;
3874 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3875 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
3876 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3877 	sync_msec = DEFAULT_SYNC_MSEC;
3878 	ic->sectors_per_block = 1;
3879 
3880 	as.argc = argc - DIRECT_ARGUMENTS;
3881 	as.argv = argv + DIRECT_ARGUMENTS;
3882 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3883 	if (r)
3884 		goto bad;
3885 
3886 	while (extra_args--) {
3887 		const char *opt_string;
3888 		unsigned val;
3889 		unsigned long long llval;
3890 		opt_string = dm_shift_arg(&as);
3891 		if (!opt_string) {
3892 			r = -EINVAL;
3893 			ti->error = "Not enough feature arguments";
3894 			goto bad;
3895 		}
3896 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3897 			journal_sectors = val ? val : 1;
3898 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3899 			interleave_sectors = val;
3900 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3901 			buffer_sectors = val;
3902 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3903 			journal_watermark = val;
3904 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3905 			sync_msec = val;
3906 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3907 			if (ic->meta_dev) {
3908 				dm_put_device(ti, ic->meta_dev);
3909 				ic->meta_dev = NULL;
3910 			}
3911 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3912 					  dm_table_get_mode(ti->table), &ic->meta_dev);
3913 			if (r) {
3914 				ti->error = "Device lookup failed";
3915 				goto bad;
3916 			}
3917 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3918 			if (val < 1 << SECTOR_SHIFT ||
3919 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3920 			    (val & (val -1))) {
3921 				r = -EINVAL;
3922 				ti->error = "Invalid block_size argument";
3923 				goto bad;
3924 			}
3925 			ic->sectors_per_block = val >> SECTOR_SHIFT;
3926 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3927 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3928 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3929 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3930 				r = -EINVAL;
3931 				ti->error = "Invalid bitmap_flush_interval argument";
3932 			}
3933 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
3934 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3935 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3936 					    "Invalid internal_hash argument");
3937 			if (r)
3938 				goto bad;
3939 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3940 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3941 					    "Invalid journal_crypt argument");
3942 			if (r)
3943 				goto bad;
3944 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3945 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3946 					    "Invalid journal_mac argument");
3947 			if (r)
3948 				goto bad;
3949 		} else if (!strcmp(opt_string, "recalculate")) {
3950 			ic->recalculate_flag = true;
3951 		} else if (!strcmp(opt_string, "allow_discards")) {
3952 			ic->discard = true;
3953 		} else if (!strcmp(opt_string, "fix_padding")) {
3954 			ic->fix_padding = true;
3955 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
3956 			ic->legacy_recalculate = true;
3957 		} else {
3958 			r = -EINVAL;
3959 			ti->error = "Invalid argument";
3960 			goto bad;
3961 		}
3962 	}
3963 
3964 	ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3965 	if (!ic->meta_dev)
3966 		ic->meta_device_sectors = ic->data_device_sectors;
3967 	else
3968 		ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3969 
3970 	if (!journal_sectors) {
3971 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3972 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3973 	}
3974 
3975 	if (!buffer_sectors)
3976 		buffer_sectors = 1;
3977 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3978 
3979 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3980 		    "Invalid internal hash", "Error setting internal hash key");
3981 	if (r)
3982 		goto bad;
3983 
3984 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3985 		    "Invalid journal mac", "Error setting journal mac key");
3986 	if (r)
3987 		goto bad;
3988 
3989 	if (!ic->tag_size) {
3990 		if (!ic->internal_hash) {
3991 			ti->error = "Unknown tag size";
3992 			r = -EINVAL;
3993 			goto bad;
3994 		}
3995 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3996 	}
3997 	if (ic->tag_size > MAX_TAG_SIZE) {
3998 		ti->error = "Too big tag size";
3999 		r = -EINVAL;
4000 		goto bad;
4001 	}
4002 	if (!(ic->tag_size & (ic->tag_size - 1)))
4003 		ic->log2_tag_size = __ffs(ic->tag_size);
4004 	else
4005 		ic->log2_tag_size = -1;
4006 
4007 	if (ic->mode == 'B' && !ic->internal_hash) {
4008 		r = -EINVAL;
4009 		ti->error = "Bitmap mode can be only used with internal hash";
4010 		goto bad;
4011 	}
4012 
4013 	if (ic->discard && !ic->internal_hash) {
4014 		r = -EINVAL;
4015 		ti->error = "Discard can be only used with internal hash";
4016 		goto bad;
4017 	}
4018 
4019 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4020 	ic->autocommit_msec = sync_msec;
4021 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4022 
4023 	ic->io = dm_io_client_create();
4024 	if (IS_ERR(ic->io)) {
4025 		r = PTR_ERR(ic->io);
4026 		ic->io = NULL;
4027 		ti->error = "Cannot allocate dm io";
4028 		goto bad;
4029 	}
4030 
4031 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4032 	if (r) {
4033 		ti->error = "Cannot allocate mempool";
4034 		goto bad;
4035 	}
4036 
4037 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4038 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4039 	if (!ic->metadata_wq) {
4040 		ti->error = "Cannot allocate workqueue";
4041 		r = -ENOMEM;
4042 		goto bad;
4043 	}
4044 
4045 	/*
4046 	 * If this workqueue were percpu, it would cause bio reordering
4047 	 * and reduced performance.
4048 	 */
4049 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4050 	if (!ic->wait_wq) {
4051 		ti->error = "Cannot allocate workqueue";
4052 		r = -ENOMEM;
4053 		goto bad;
4054 	}
4055 
4056 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4057 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4058 	if (!ic->offload_wq) {
4059 		ti->error = "Cannot allocate workqueue";
4060 		r = -ENOMEM;
4061 		goto bad;
4062 	}
4063 
4064 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4065 	if (!ic->commit_wq) {
4066 		ti->error = "Cannot allocate workqueue";
4067 		r = -ENOMEM;
4068 		goto bad;
4069 	}
4070 	INIT_WORK(&ic->commit_work, integrity_commit);
4071 
4072 	if (ic->mode == 'J' || ic->mode == 'B') {
4073 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4074 		if (!ic->writer_wq) {
4075 			ti->error = "Cannot allocate workqueue";
4076 			r = -ENOMEM;
4077 			goto bad;
4078 		}
4079 		INIT_WORK(&ic->writer_work, integrity_writer);
4080 	}
4081 
4082 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4083 	if (!ic->sb) {
4084 		r = -ENOMEM;
4085 		ti->error = "Cannot allocate superblock area";
4086 		goto bad;
4087 	}
4088 
4089 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
4090 	if (r) {
4091 		ti->error = "Error reading superblock";
4092 		goto bad;
4093 	}
4094 	should_write_sb = false;
4095 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4096 		if (ic->mode != 'R') {
4097 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4098 				r = -EINVAL;
4099 				ti->error = "The device is not initialized";
4100 				goto bad;
4101 			}
4102 		}
4103 
4104 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4105 		if (r) {
4106 			ti->error = "Could not initialize superblock";
4107 			goto bad;
4108 		}
4109 		if (ic->mode != 'R')
4110 			should_write_sb = true;
4111 	}
4112 
4113 	if (!ic->sb->version || ic->sb->version > SB_VERSION_4) {
4114 		r = -EINVAL;
4115 		ti->error = "Unknown version";
4116 		goto bad;
4117 	}
4118 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4119 		r = -EINVAL;
4120 		ti->error = "Tag size doesn't match the information in superblock";
4121 		goto bad;
4122 	}
4123 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4124 		r = -EINVAL;
4125 		ti->error = "Block size doesn't match the information in superblock";
4126 		goto bad;
4127 	}
4128 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4129 		r = -EINVAL;
4130 		ti->error = "Corrupted superblock, journal_sections is 0";
4131 		goto bad;
4132 	}
4133 	/* make sure that ti->max_io_len doesn't overflow */
4134 	if (!ic->meta_dev) {
4135 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4136 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4137 			r = -EINVAL;
4138 			ti->error = "Invalid interleave_sectors in the superblock";
4139 			goto bad;
4140 		}
4141 	} else {
4142 		if (ic->sb->log2_interleave_sectors) {
4143 			r = -EINVAL;
4144 			ti->error = "Invalid interleave_sectors in the superblock";
4145 			goto bad;
4146 		}
4147 	}
4148 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4149 		r = -EINVAL;
4150 		ti->error = "Journal mac mismatch";
4151 		goto bad;
4152 	}
4153 
4154 	get_provided_data_sectors(ic);
4155 	if (!ic->provided_data_sectors) {
4156 		r = -EINVAL;
4157 		ti->error = "The device is too small";
4158 		goto bad;
4159 	}
4160 
4161 try_smaller_buffer:
4162 	r = calculate_device_limits(ic);
4163 	if (r) {
4164 		if (ic->meta_dev) {
4165 			if (ic->log2_buffer_sectors > 3) {
4166 				ic->log2_buffer_sectors--;
4167 				goto try_smaller_buffer;
4168 			}
4169 		}
4170 		ti->error = "The device is too small";
4171 		goto bad;
4172 	}
4173 
4174 	if (log2_sectors_per_bitmap_bit < 0)
4175 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4176 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4177 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4178 
4179 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4180 	if (bits_in_journal > UINT_MAX)
4181 		bits_in_journal = UINT_MAX;
4182 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4183 		log2_sectors_per_bitmap_bit++;
4184 
4185 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4186 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4187 	if (should_write_sb) {
4188 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4189 	}
4190 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4191 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4192 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4193 
4194 	if (!ic->meta_dev)
4195 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4196 
4197 	if (ti->len > ic->provided_data_sectors) {
4198 		r = -EINVAL;
4199 		ti->error = "Not enough provided sectors for requested mapping size";
4200 		goto bad;
4201 	}
4202 
4203 
4204 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4205 	threshold += 50;
4206 	do_div(threshold, 100);
4207 	ic->free_sectors_threshold = threshold;
4208 
4209 	DEBUG_print("initialized:\n");
4210 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4211 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4212 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4213 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4214 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4215 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4216 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4217 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4218 	DEBUG_print("	data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4219 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4220 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4221 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4222 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4223 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4224 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4225 
4226 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4227 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4228 		ic->sb->recalc_sector = cpu_to_le64(0);
4229 	}
4230 
4231 	if (ic->internal_hash) {
4232 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4233 		if (!ic->recalc_wq ) {
4234 			ti->error = "Cannot allocate workqueue";
4235 			r = -ENOMEM;
4236 			goto bad;
4237 		}
4238 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4239 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4240 		if (!ic->recalc_buffer) {
4241 			ti->error = "Cannot allocate buffer for recalculating";
4242 			r = -ENOMEM;
4243 			goto bad;
4244 		}
4245 		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4246 						 ic->tag_size, GFP_KERNEL);
4247 		if (!ic->recalc_tags) {
4248 			ti->error = "Cannot allocate tags for recalculating";
4249 			r = -ENOMEM;
4250 			goto bad;
4251 		}
4252 	} else {
4253 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4254 			ti->error = "Recalculate can only be specified with internal_hash";
4255 			r = -EINVAL;
4256 			goto bad;
4257 		}
4258 	}
4259 
4260 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4261 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4262 	    dm_integrity_disable_recalculate(ic)) {
4263 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4264 		r = -EOPNOTSUPP;
4265 		goto bad;
4266 	}
4267 
4268 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4269 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4270 	if (IS_ERR(ic->bufio)) {
4271 		r = PTR_ERR(ic->bufio);
4272 		ti->error = "Cannot initialize dm-bufio";
4273 		ic->bufio = NULL;
4274 		goto bad;
4275 	}
4276 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4277 
4278 	if (ic->mode != 'R') {
4279 		r = create_journal(ic, &ti->error);
4280 		if (r)
4281 			goto bad;
4282 
4283 	}
4284 
4285 	if (ic->mode == 'B') {
4286 		unsigned i;
4287 		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4288 
4289 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4290 		if (!ic->recalc_bitmap) {
4291 			r = -ENOMEM;
4292 			goto bad;
4293 		}
4294 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4295 		if (!ic->may_write_bitmap) {
4296 			r = -ENOMEM;
4297 			goto bad;
4298 		}
4299 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4300 		if (!ic->bbs) {
4301 			r = -ENOMEM;
4302 			goto bad;
4303 		}
4304 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4305 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4306 			struct bitmap_block_status *bbs = &ic->bbs[i];
4307 			unsigned sector, pl_index, pl_offset;
4308 
4309 			INIT_WORK(&bbs->work, bitmap_block_work);
4310 			bbs->ic = ic;
4311 			bbs->idx = i;
4312 			bio_list_init(&bbs->bio_queue);
4313 			spin_lock_init(&bbs->bio_queue_lock);
4314 
4315 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4316 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4317 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4318 
4319 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4320 		}
4321 	}
4322 
4323 	if (should_write_sb) {
4324 		int r;
4325 
4326 		init_journal(ic, 0, ic->journal_sections, 0);
4327 		r = dm_integrity_failed(ic);
4328 		if (unlikely(r)) {
4329 			ti->error = "Error initializing journal";
4330 			goto bad;
4331 		}
4332 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4333 		if (r) {
4334 			ti->error = "Error initializing superblock";
4335 			goto bad;
4336 		}
4337 		ic->just_formatted = true;
4338 	}
4339 
4340 	if (!ic->meta_dev) {
4341 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4342 		if (r)
4343 			goto bad;
4344 	}
4345 	if (ic->mode == 'B') {
4346 		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4347 		if (!max_io_len)
4348 			max_io_len = 1U << 31;
4349 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4350 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4351 			r = dm_set_target_max_io_len(ti, max_io_len);
4352 			if (r)
4353 				goto bad;
4354 		}
4355 	}
4356 
4357 	if (!ic->internal_hash)
4358 		dm_integrity_set(ti, ic);
4359 
4360 	ti->num_flush_bios = 1;
4361 	ti->flush_supported = true;
4362 	if (ic->discard)
4363 		ti->num_discard_bios = 1;
4364 
4365 	return 0;
4366 
4367 bad:
4368 	dm_integrity_dtr(ti);
4369 	return r;
4370 }
4371 
4372 static void dm_integrity_dtr(struct dm_target *ti)
4373 {
4374 	struct dm_integrity_c *ic = ti->private;
4375 
4376 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4377 	BUG_ON(!list_empty(&ic->wait_list));
4378 
4379 	if (ic->metadata_wq)
4380 		destroy_workqueue(ic->metadata_wq);
4381 	if (ic->wait_wq)
4382 		destroy_workqueue(ic->wait_wq);
4383 	if (ic->offload_wq)
4384 		destroy_workqueue(ic->offload_wq);
4385 	if (ic->commit_wq)
4386 		destroy_workqueue(ic->commit_wq);
4387 	if (ic->writer_wq)
4388 		destroy_workqueue(ic->writer_wq);
4389 	if (ic->recalc_wq)
4390 		destroy_workqueue(ic->recalc_wq);
4391 	vfree(ic->recalc_buffer);
4392 	kvfree(ic->recalc_tags);
4393 	kvfree(ic->bbs);
4394 	if (ic->bufio)
4395 		dm_bufio_client_destroy(ic->bufio);
4396 	mempool_exit(&ic->journal_io_mempool);
4397 	if (ic->io)
4398 		dm_io_client_destroy(ic->io);
4399 	if (ic->dev)
4400 		dm_put_device(ti, ic->dev);
4401 	if (ic->meta_dev)
4402 		dm_put_device(ti, ic->meta_dev);
4403 	dm_integrity_free_page_list(ic->journal);
4404 	dm_integrity_free_page_list(ic->journal_io);
4405 	dm_integrity_free_page_list(ic->journal_xor);
4406 	dm_integrity_free_page_list(ic->recalc_bitmap);
4407 	dm_integrity_free_page_list(ic->may_write_bitmap);
4408 	if (ic->journal_scatterlist)
4409 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4410 	if (ic->journal_io_scatterlist)
4411 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4412 	if (ic->sk_requests) {
4413 		unsigned i;
4414 
4415 		for (i = 0; i < ic->journal_sections; i++) {
4416 			struct skcipher_request *req = ic->sk_requests[i];
4417 			if (req) {
4418 				kfree_sensitive(req->iv);
4419 				skcipher_request_free(req);
4420 			}
4421 		}
4422 		kvfree(ic->sk_requests);
4423 	}
4424 	kvfree(ic->journal_tree);
4425 	if (ic->sb)
4426 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4427 
4428 	if (ic->internal_hash)
4429 		crypto_free_shash(ic->internal_hash);
4430 	free_alg(&ic->internal_hash_alg);
4431 
4432 	if (ic->journal_crypt)
4433 		crypto_free_skcipher(ic->journal_crypt);
4434 	free_alg(&ic->journal_crypt_alg);
4435 
4436 	if (ic->journal_mac)
4437 		crypto_free_shash(ic->journal_mac);
4438 	free_alg(&ic->journal_mac_alg);
4439 
4440 	kfree(ic);
4441 }
4442 
4443 static struct target_type integrity_target = {
4444 	.name			= "integrity",
4445 	.version		= {1, 6, 0},
4446 	.module			= THIS_MODULE,
4447 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4448 	.ctr			= dm_integrity_ctr,
4449 	.dtr			= dm_integrity_dtr,
4450 	.map			= dm_integrity_map,
4451 	.postsuspend		= dm_integrity_postsuspend,
4452 	.resume			= dm_integrity_resume,
4453 	.status			= dm_integrity_status,
4454 	.iterate_devices	= dm_integrity_iterate_devices,
4455 	.io_hints		= dm_integrity_io_hints,
4456 };
4457 
4458 static int __init dm_integrity_init(void)
4459 {
4460 	int r;
4461 
4462 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4463 					     sizeof(struct journal_io), 0, 0, NULL);
4464 	if (!journal_io_cache) {
4465 		DMERR("can't allocate journal io cache");
4466 		return -ENOMEM;
4467 	}
4468 
4469 	r = dm_register_target(&integrity_target);
4470 
4471 	if (r < 0)
4472 		DMERR("register failed %d", r);
4473 
4474 	return r;
4475 }
4476 
4477 static void __exit dm_integrity_exit(void)
4478 {
4479 	dm_unregister_target(&integrity_target);
4480 	kmem_cache_destroy(journal_io_cache);
4481 }
4482 
4483 module_init(dm_integrity_init);
4484 module_exit(dm_integrity_exit);
4485 
4486 MODULE_AUTHOR("Milan Broz");
4487 MODULE_AUTHOR("Mikulas Patocka");
4488 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4489 MODULE_LICENSE("GPL");
4490