1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bio-record.h" 10 11 #include <linux/compiler.h> 12 #include <linux/module.h> 13 #include <linux/device-mapper.h> 14 #include <linux/dm-io.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sort.h> 17 #include <linux/rbtree.h> 18 #include <linux/delay.h> 19 #include <linux/random.h> 20 #include <linux/reboot.h> 21 #include <crypto/hash.h> 22 #include <crypto/skcipher.h> 23 #include <linux/async_tx.h> 24 #include <linux/dm-bufio.h> 25 26 #include "dm-audit.h" 27 28 #define DM_MSG_PREFIX "integrity" 29 30 #define DEFAULT_INTERLEAVE_SECTORS 32768 31 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 32 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 33 #define DEFAULT_BUFFER_SECTORS 128 34 #define DEFAULT_JOURNAL_WATERMARK 50 35 #define DEFAULT_SYNC_MSEC 10000 36 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 37 #define MIN_LOG2_INTERLEAVE_SECTORS 3 38 #define MAX_LOG2_INTERLEAVE_SECTORS 31 39 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 40 #define RECALC_SECTORS 32768 41 #define RECALC_WRITE_SUPER 16 42 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 43 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 44 #define DISCARD_FILLER 0xf6 45 #define SALT_SIZE 16 46 47 /* 48 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 49 * so it should not be enabled in the official kernel 50 */ 51 //#define DEBUG_PRINT 52 //#define INTERNAL_VERIFY 53 54 /* 55 * On disk structures 56 */ 57 58 #define SB_MAGIC "integrt" 59 #define SB_VERSION_1 1 60 #define SB_VERSION_2 2 61 #define SB_VERSION_3 3 62 #define SB_VERSION_4 4 63 #define SB_VERSION_5 5 64 #define SB_SECTORS 8 65 #define MAX_SECTORS_PER_BLOCK 8 66 67 struct superblock { 68 __u8 magic[8]; 69 __u8 version; 70 __u8 log2_interleave_sectors; 71 __le16 integrity_tag_size; 72 __le32 journal_sections; 73 __le64 provided_data_sectors; /* userspace uses this value */ 74 __le32 flags; 75 __u8 log2_sectors_per_block; 76 __u8 log2_blocks_per_bitmap_bit; 77 __u8 pad[2]; 78 __le64 recalc_sector; 79 __u8 pad2[8]; 80 __u8 salt[SALT_SIZE]; 81 }; 82 83 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 84 #define SB_FLAG_RECALCULATING 0x2 85 #define SB_FLAG_DIRTY_BITMAP 0x4 86 #define SB_FLAG_FIXED_PADDING 0x8 87 #define SB_FLAG_FIXED_HMAC 0x10 88 89 #define JOURNAL_ENTRY_ROUNDUP 8 90 91 typedef __le64 commit_id_t; 92 #define JOURNAL_MAC_PER_SECTOR 8 93 94 struct journal_entry { 95 union { 96 struct { 97 __le32 sector_lo; 98 __le32 sector_hi; 99 } s; 100 __le64 sector; 101 } u; 102 commit_id_t last_bytes[]; 103 /* __u8 tag[0]; */ 104 }; 105 106 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 107 108 #if BITS_PER_LONG == 64 109 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 110 #else 111 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 112 #endif 113 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 114 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 115 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 116 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 117 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 118 119 #define JOURNAL_BLOCK_SECTORS 8 120 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 121 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 122 123 struct journal_sector { 124 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 125 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 126 commit_id_t commit_id; 127 }; 128 129 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 130 131 #define METADATA_PADDING_SECTORS 8 132 133 #define N_COMMIT_IDS 4 134 135 static unsigned char prev_commit_seq(unsigned char seq) 136 { 137 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 138 } 139 140 static unsigned char next_commit_seq(unsigned char seq) 141 { 142 return (seq + 1) % N_COMMIT_IDS; 143 } 144 145 /* 146 * In-memory structures 147 */ 148 149 struct journal_node { 150 struct rb_node node; 151 sector_t sector; 152 }; 153 154 struct alg_spec { 155 char *alg_string; 156 char *key_string; 157 __u8 *key; 158 unsigned key_size; 159 }; 160 161 struct dm_integrity_c { 162 struct dm_dev *dev; 163 struct dm_dev *meta_dev; 164 unsigned tag_size; 165 __s8 log2_tag_size; 166 sector_t start; 167 mempool_t journal_io_mempool; 168 struct dm_io_client *io; 169 struct dm_bufio_client *bufio; 170 struct workqueue_struct *metadata_wq; 171 struct superblock *sb; 172 unsigned journal_pages; 173 unsigned n_bitmap_blocks; 174 175 struct page_list *journal; 176 struct page_list *journal_io; 177 struct page_list *journal_xor; 178 struct page_list *recalc_bitmap; 179 struct page_list *may_write_bitmap; 180 struct bitmap_block_status *bbs; 181 unsigned bitmap_flush_interval; 182 int synchronous_mode; 183 struct bio_list synchronous_bios; 184 struct delayed_work bitmap_flush_work; 185 186 struct crypto_skcipher *journal_crypt; 187 struct scatterlist **journal_scatterlist; 188 struct scatterlist **journal_io_scatterlist; 189 struct skcipher_request **sk_requests; 190 191 struct crypto_shash *journal_mac; 192 193 struct journal_node *journal_tree; 194 struct rb_root journal_tree_root; 195 196 sector_t provided_data_sectors; 197 198 unsigned short journal_entry_size; 199 unsigned char journal_entries_per_sector; 200 unsigned char journal_section_entries; 201 unsigned short journal_section_sectors; 202 unsigned journal_sections; 203 unsigned journal_entries; 204 sector_t data_device_sectors; 205 sector_t meta_device_sectors; 206 unsigned initial_sectors; 207 unsigned metadata_run; 208 __s8 log2_metadata_run; 209 __u8 log2_buffer_sectors; 210 __u8 sectors_per_block; 211 __u8 log2_blocks_per_bitmap_bit; 212 213 unsigned char mode; 214 215 int failed; 216 217 struct crypto_shash *internal_hash; 218 219 struct dm_target *ti; 220 221 /* these variables are locked with endio_wait.lock */ 222 struct rb_root in_progress; 223 struct list_head wait_list; 224 wait_queue_head_t endio_wait; 225 struct workqueue_struct *wait_wq; 226 struct workqueue_struct *offload_wq; 227 228 unsigned char commit_seq; 229 commit_id_t commit_ids[N_COMMIT_IDS]; 230 231 unsigned committed_section; 232 unsigned n_committed_sections; 233 234 unsigned uncommitted_section; 235 unsigned n_uncommitted_sections; 236 237 unsigned free_section; 238 unsigned char free_section_entry; 239 unsigned free_sectors; 240 241 unsigned free_sectors_threshold; 242 243 struct workqueue_struct *commit_wq; 244 struct work_struct commit_work; 245 246 struct workqueue_struct *writer_wq; 247 struct work_struct writer_work; 248 249 struct workqueue_struct *recalc_wq; 250 struct work_struct recalc_work; 251 u8 *recalc_buffer; 252 u8 *recalc_tags; 253 254 struct bio_list flush_bio_list; 255 256 unsigned long autocommit_jiffies; 257 struct timer_list autocommit_timer; 258 unsigned autocommit_msec; 259 260 wait_queue_head_t copy_to_journal_wait; 261 262 struct completion crypto_backoff; 263 264 bool journal_uptodate; 265 bool just_formatted; 266 bool recalculate_flag; 267 bool reset_recalculate_flag; 268 bool discard; 269 bool fix_padding; 270 bool fix_hmac; 271 bool legacy_recalculate; 272 273 struct alg_spec internal_hash_alg; 274 struct alg_spec journal_crypt_alg; 275 struct alg_spec journal_mac_alg; 276 277 atomic64_t number_of_mismatches; 278 279 struct notifier_block reboot_notifier; 280 }; 281 282 struct dm_integrity_range { 283 sector_t logical_sector; 284 sector_t n_sectors; 285 bool waiting; 286 union { 287 struct rb_node node; 288 struct { 289 struct task_struct *task; 290 struct list_head wait_entry; 291 }; 292 }; 293 }; 294 295 struct dm_integrity_io { 296 struct work_struct work; 297 298 struct dm_integrity_c *ic; 299 enum req_opf op; 300 bool fua; 301 302 struct dm_integrity_range range; 303 304 sector_t metadata_block; 305 unsigned metadata_offset; 306 307 atomic_t in_flight; 308 blk_status_t bi_status; 309 310 struct completion *completion; 311 312 struct dm_bio_details bio_details; 313 }; 314 315 struct journal_completion { 316 struct dm_integrity_c *ic; 317 atomic_t in_flight; 318 struct completion comp; 319 }; 320 321 struct journal_io { 322 struct dm_integrity_range range; 323 struct journal_completion *comp; 324 }; 325 326 struct bitmap_block_status { 327 struct work_struct work; 328 struct dm_integrity_c *ic; 329 unsigned idx; 330 unsigned long *bitmap; 331 struct bio_list bio_queue; 332 spinlock_t bio_queue_lock; 333 334 }; 335 336 static struct kmem_cache *journal_io_cache; 337 338 #define JOURNAL_IO_MEMPOOL 32 339 340 #ifdef DEBUG_PRINT 341 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 342 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 343 { 344 va_list args; 345 va_start(args, msg); 346 vprintk(msg, args); 347 va_end(args); 348 if (len) 349 pr_cont(":"); 350 while (len) { 351 pr_cont(" %02x", *bytes); 352 bytes++; 353 len--; 354 } 355 pr_cont("\n"); 356 } 357 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 358 #else 359 #define DEBUG_print(x, ...) do { } while (0) 360 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 361 #endif 362 363 static void dm_integrity_prepare(struct request *rq) 364 { 365 } 366 367 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 368 { 369 } 370 371 /* 372 * DM Integrity profile, protection is performed layer above (dm-crypt) 373 */ 374 static const struct blk_integrity_profile dm_integrity_profile = { 375 .name = "DM-DIF-EXT-TAG", 376 .generate_fn = NULL, 377 .verify_fn = NULL, 378 .prepare_fn = dm_integrity_prepare, 379 .complete_fn = dm_integrity_complete, 380 }; 381 382 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 383 static void integrity_bio_wait(struct work_struct *w); 384 static void dm_integrity_dtr(struct dm_target *ti); 385 386 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 387 { 388 if (err == -EILSEQ) 389 atomic64_inc(&ic->number_of_mismatches); 390 if (!cmpxchg(&ic->failed, 0, err)) 391 DMERR("Error on %s: %d", msg, err); 392 } 393 394 static int dm_integrity_failed(struct dm_integrity_c *ic) 395 { 396 return READ_ONCE(ic->failed); 397 } 398 399 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 400 { 401 if (ic->legacy_recalculate) 402 return false; 403 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 404 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 405 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 406 return true; 407 return false; 408 } 409 410 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 411 unsigned j, unsigned char seq) 412 { 413 /* 414 * Xor the number with section and sector, so that if a piece of 415 * journal is written at wrong place, it is detected. 416 */ 417 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 418 } 419 420 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 421 sector_t *area, sector_t *offset) 422 { 423 if (!ic->meta_dev) { 424 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 425 *area = data_sector >> log2_interleave_sectors; 426 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 427 } else { 428 *area = 0; 429 *offset = data_sector; 430 } 431 } 432 433 #define sector_to_block(ic, n) \ 434 do { \ 435 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 436 (n) >>= (ic)->sb->log2_sectors_per_block; \ 437 } while (0) 438 439 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 440 sector_t offset, unsigned *metadata_offset) 441 { 442 __u64 ms; 443 unsigned mo; 444 445 ms = area << ic->sb->log2_interleave_sectors; 446 if (likely(ic->log2_metadata_run >= 0)) 447 ms += area << ic->log2_metadata_run; 448 else 449 ms += area * ic->metadata_run; 450 ms >>= ic->log2_buffer_sectors; 451 452 sector_to_block(ic, offset); 453 454 if (likely(ic->log2_tag_size >= 0)) { 455 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 456 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 457 } else { 458 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 459 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 460 } 461 *metadata_offset = mo; 462 return ms; 463 } 464 465 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 466 { 467 sector_t result; 468 469 if (ic->meta_dev) 470 return offset; 471 472 result = area << ic->sb->log2_interleave_sectors; 473 if (likely(ic->log2_metadata_run >= 0)) 474 result += (area + 1) << ic->log2_metadata_run; 475 else 476 result += (area + 1) * ic->metadata_run; 477 478 result += (sector_t)ic->initial_sectors + offset; 479 result += ic->start; 480 481 return result; 482 } 483 484 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 485 { 486 if (unlikely(*sec_ptr >= ic->journal_sections)) 487 *sec_ptr -= ic->journal_sections; 488 } 489 490 static void sb_set_version(struct dm_integrity_c *ic) 491 { 492 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 493 ic->sb->version = SB_VERSION_5; 494 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 495 ic->sb->version = SB_VERSION_4; 496 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 497 ic->sb->version = SB_VERSION_3; 498 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 499 ic->sb->version = SB_VERSION_2; 500 else 501 ic->sb->version = SB_VERSION_1; 502 } 503 504 static int sb_mac(struct dm_integrity_c *ic, bool wr) 505 { 506 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 507 int r; 508 unsigned size = crypto_shash_digestsize(ic->journal_mac); 509 510 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) { 511 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 512 return -EINVAL; 513 } 514 515 desc->tfm = ic->journal_mac; 516 517 r = crypto_shash_init(desc); 518 if (unlikely(r < 0)) { 519 dm_integrity_io_error(ic, "crypto_shash_init", r); 520 return r; 521 } 522 523 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size); 524 if (unlikely(r < 0)) { 525 dm_integrity_io_error(ic, "crypto_shash_update", r); 526 return r; 527 } 528 529 if (likely(wr)) { 530 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size); 531 if (unlikely(r < 0)) { 532 dm_integrity_io_error(ic, "crypto_shash_final", r); 533 return r; 534 } 535 } else { 536 __u8 result[HASH_MAX_DIGESTSIZE]; 537 r = crypto_shash_final(desc, result); 538 if (unlikely(r < 0)) { 539 dm_integrity_io_error(ic, "crypto_shash_final", r); 540 return r; 541 } 542 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) { 543 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 544 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0); 545 return -EILSEQ; 546 } 547 } 548 549 return 0; 550 } 551 552 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 553 { 554 struct dm_io_request io_req; 555 struct dm_io_region io_loc; 556 int r; 557 558 io_req.bi_op = op; 559 io_req.bi_op_flags = op_flags; 560 io_req.mem.type = DM_IO_KMEM; 561 io_req.mem.ptr.addr = ic->sb; 562 io_req.notify.fn = NULL; 563 io_req.client = ic->io; 564 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 565 io_loc.sector = ic->start; 566 io_loc.count = SB_SECTORS; 567 568 if (op == REQ_OP_WRITE) { 569 sb_set_version(ic); 570 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 571 r = sb_mac(ic, true); 572 if (unlikely(r)) 573 return r; 574 } 575 } 576 577 r = dm_io(&io_req, 1, &io_loc, NULL); 578 if (unlikely(r)) 579 return r; 580 581 if (op == REQ_OP_READ) { 582 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 583 r = sb_mac(ic, false); 584 if (unlikely(r)) 585 return r; 586 } 587 } 588 589 return 0; 590 } 591 592 #define BITMAP_OP_TEST_ALL_SET 0 593 #define BITMAP_OP_TEST_ALL_CLEAR 1 594 #define BITMAP_OP_SET 2 595 #define BITMAP_OP_CLEAR 3 596 597 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 598 sector_t sector, sector_t n_sectors, int mode) 599 { 600 unsigned long bit, end_bit, this_end_bit, page, end_page; 601 unsigned long *data; 602 603 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 604 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 605 sector, 606 n_sectors, 607 ic->sb->log2_sectors_per_block, 608 ic->log2_blocks_per_bitmap_bit, 609 mode); 610 BUG(); 611 } 612 613 if (unlikely(!n_sectors)) 614 return true; 615 616 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 617 end_bit = (sector + n_sectors - 1) >> 618 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 619 620 page = bit / (PAGE_SIZE * 8); 621 bit %= PAGE_SIZE * 8; 622 623 end_page = end_bit / (PAGE_SIZE * 8); 624 end_bit %= PAGE_SIZE * 8; 625 626 repeat: 627 if (page < end_page) { 628 this_end_bit = PAGE_SIZE * 8 - 1; 629 } else { 630 this_end_bit = end_bit; 631 } 632 633 data = lowmem_page_address(bitmap[page].page); 634 635 if (mode == BITMAP_OP_TEST_ALL_SET) { 636 while (bit <= this_end_bit) { 637 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 638 do { 639 if (data[bit / BITS_PER_LONG] != -1) 640 return false; 641 bit += BITS_PER_LONG; 642 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 643 continue; 644 } 645 if (!test_bit(bit, data)) 646 return false; 647 bit++; 648 } 649 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 650 while (bit <= this_end_bit) { 651 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 652 do { 653 if (data[bit / BITS_PER_LONG] != 0) 654 return false; 655 bit += BITS_PER_LONG; 656 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 657 continue; 658 } 659 if (test_bit(bit, data)) 660 return false; 661 bit++; 662 } 663 } else if (mode == BITMAP_OP_SET) { 664 while (bit <= this_end_bit) { 665 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 666 do { 667 data[bit / BITS_PER_LONG] = -1; 668 bit += BITS_PER_LONG; 669 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 670 continue; 671 } 672 __set_bit(bit, data); 673 bit++; 674 } 675 } else if (mode == BITMAP_OP_CLEAR) { 676 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 677 clear_page(data); 678 else while (bit <= this_end_bit) { 679 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 680 do { 681 data[bit / BITS_PER_LONG] = 0; 682 bit += BITS_PER_LONG; 683 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 684 continue; 685 } 686 __clear_bit(bit, data); 687 bit++; 688 } 689 } else { 690 BUG(); 691 } 692 693 if (unlikely(page < end_page)) { 694 bit = 0; 695 page++; 696 goto repeat; 697 } 698 699 return true; 700 } 701 702 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 703 { 704 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 705 unsigned i; 706 707 for (i = 0; i < n_bitmap_pages; i++) { 708 unsigned long *dst_data = lowmem_page_address(dst[i].page); 709 unsigned long *src_data = lowmem_page_address(src[i].page); 710 copy_page(dst_data, src_data); 711 } 712 } 713 714 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 715 { 716 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 717 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 718 719 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 720 return &ic->bbs[bitmap_block]; 721 } 722 723 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 724 bool e, const char *function) 725 { 726 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 727 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 728 729 if (unlikely(section >= ic->journal_sections) || 730 unlikely(offset >= limit)) { 731 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 732 function, section, offset, ic->journal_sections, limit); 733 BUG(); 734 } 735 #endif 736 } 737 738 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 739 unsigned *pl_index, unsigned *pl_offset) 740 { 741 unsigned sector; 742 743 access_journal_check(ic, section, offset, false, "page_list_location"); 744 745 sector = section * ic->journal_section_sectors + offset; 746 747 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 748 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 749 } 750 751 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 752 unsigned section, unsigned offset, unsigned *n_sectors) 753 { 754 unsigned pl_index, pl_offset; 755 char *va; 756 757 page_list_location(ic, section, offset, &pl_index, &pl_offset); 758 759 if (n_sectors) 760 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 761 762 va = lowmem_page_address(pl[pl_index].page); 763 764 return (struct journal_sector *)(va + pl_offset); 765 } 766 767 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 768 { 769 return access_page_list(ic, ic->journal, section, offset, NULL); 770 } 771 772 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 773 { 774 unsigned rel_sector, offset; 775 struct journal_sector *js; 776 777 access_journal_check(ic, section, n, true, "access_journal_entry"); 778 779 rel_sector = n % JOURNAL_BLOCK_SECTORS; 780 offset = n / JOURNAL_BLOCK_SECTORS; 781 782 js = access_journal(ic, section, rel_sector); 783 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 784 } 785 786 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 787 { 788 n <<= ic->sb->log2_sectors_per_block; 789 790 n += JOURNAL_BLOCK_SECTORS; 791 792 access_journal_check(ic, section, n, false, "access_journal_data"); 793 794 return access_journal(ic, section, n); 795 } 796 797 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 798 { 799 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 800 int r; 801 unsigned j, size; 802 803 desc->tfm = ic->journal_mac; 804 805 r = crypto_shash_init(desc); 806 if (unlikely(r < 0)) { 807 dm_integrity_io_error(ic, "crypto_shash_init", r); 808 goto err; 809 } 810 811 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 812 __le64 section_le; 813 814 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 815 if (unlikely(r < 0)) { 816 dm_integrity_io_error(ic, "crypto_shash_update", r); 817 goto err; 818 } 819 820 section_le = cpu_to_le64(section); 821 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof section_le); 822 if (unlikely(r < 0)) { 823 dm_integrity_io_error(ic, "crypto_shash_update", r); 824 goto err; 825 } 826 } 827 828 for (j = 0; j < ic->journal_section_entries; j++) { 829 struct journal_entry *je = access_journal_entry(ic, section, j); 830 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 831 if (unlikely(r < 0)) { 832 dm_integrity_io_error(ic, "crypto_shash_update", r); 833 goto err; 834 } 835 } 836 837 size = crypto_shash_digestsize(ic->journal_mac); 838 839 if (likely(size <= JOURNAL_MAC_SIZE)) { 840 r = crypto_shash_final(desc, result); 841 if (unlikely(r < 0)) { 842 dm_integrity_io_error(ic, "crypto_shash_final", r); 843 goto err; 844 } 845 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 846 } else { 847 __u8 digest[HASH_MAX_DIGESTSIZE]; 848 849 if (WARN_ON(size > sizeof(digest))) { 850 dm_integrity_io_error(ic, "digest_size", -EINVAL); 851 goto err; 852 } 853 r = crypto_shash_final(desc, digest); 854 if (unlikely(r < 0)) { 855 dm_integrity_io_error(ic, "crypto_shash_final", r); 856 goto err; 857 } 858 memcpy(result, digest, JOURNAL_MAC_SIZE); 859 } 860 861 return; 862 err: 863 memset(result, 0, JOURNAL_MAC_SIZE); 864 } 865 866 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 867 { 868 __u8 result[JOURNAL_MAC_SIZE]; 869 unsigned j; 870 871 if (!ic->journal_mac) 872 return; 873 874 section_mac(ic, section, result); 875 876 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 877 struct journal_sector *js = access_journal(ic, section, j); 878 879 if (likely(wr)) 880 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 881 else { 882 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) { 883 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 884 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0); 885 } 886 } 887 } 888 } 889 890 static void complete_journal_op(void *context) 891 { 892 struct journal_completion *comp = context; 893 BUG_ON(!atomic_read(&comp->in_flight)); 894 if (likely(atomic_dec_and_test(&comp->in_flight))) 895 complete(&comp->comp); 896 } 897 898 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 899 unsigned n_sections, struct journal_completion *comp) 900 { 901 struct async_submit_ctl submit; 902 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 903 unsigned pl_index, pl_offset, section_index; 904 struct page_list *source_pl, *target_pl; 905 906 if (likely(encrypt)) { 907 source_pl = ic->journal; 908 target_pl = ic->journal_io; 909 } else { 910 source_pl = ic->journal_io; 911 target_pl = ic->journal; 912 } 913 914 page_list_location(ic, section, 0, &pl_index, &pl_offset); 915 916 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 917 918 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 919 920 section_index = pl_index; 921 922 do { 923 size_t this_step; 924 struct page *src_pages[2]; 925 struct page *dst_page; 926 927 while (unlikely(pl_index == section_index)) { 928 unsigned dummy; 929 if (likely(encrypt)) 930 rw_section_mac(ic, section, true); 931 section++; 932 n_sections--; 933 if (!n_sections) 934 break; 935 page_list_location(ic, section, 0, §ion_index, &dummy); 936 } 937 938 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 939 dst_page = target_pl[pl_index].page; 940 src_pages[0] = source_pl[pl_index].page; 941 src_pages[1] = ic->journal_xor[pl_index].page; 942 943 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 944 945 pl_index++; 946 pl_offset = 0; 947 n_bytes -= this_step; 948 } while (n_bytes); 949 950 BUG_ON(n_sections); 951 952 async_tx_issue_pending_all(); 953 } 954 955 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 956 { 957 struct journal_completion *comp = req->data; 958 if (unlikely(err)) { 959 if (likely(err == -EINPROGRESS)) { 960 complete(&comp->ic->crypto_backoff); 961 return; 962 } 963 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 964 } 965 complete_journal_op(comp); 966 } 967 968 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 969 { 970 int r; 971 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 972 complete_journal_encrypt, comp); 973 if (likely(encrypt)) 974 r = crypto_skcipher_encrypt(req); 975 else 976 r = crypto_skcipher_decrypt(req); 977 if (likely(!r)) 978 return false; 979 if (likely(r == -EINPROGRESS)) 980 return true; 981 if (likely(r == -EBUSY)) { 982 wait_for_completion(&comp->ic->crypto_backoff); 983 reinit_completion(&comp->ic->crypto_backoff); 984 return true; 985 } 986 dm_integrity_io_error(comp->ic, "encrypt", r); 987 return false; 988 } 989 990 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 991 unsigned n_sections, struct journal_completion *comp) 992 { 993 struct scatterlist **source_sg; 994 struct scatterlist **target_sg; 995 996 atomic_add(2, &comp->in_flight); 997 998 if (likely(encrypt)) { 999 source_sg = ic->journal_scatterlist; 1000 target_sg = ic->journal_io_scatterlist; 1001 } else { 1002 source_sg = ic->journal_io_scatterlist; 1003 target_sg = ic->journal_scatterlist; 1004 } 1005 1006 do { 1007 struct skcipher_request *req; 1008 unsigned ivsize; 1009 char *iv; 1010 1011 if (likely(encrypt)) 1012 rw_section_mac(ic, section, true); 1013 1014 req = ic->sk_requests[section]; 1015 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 1016 iv = req->iv; 1017 1018 memcpy(iv, iv + ivsize, ivsize); 1019 1020 req->src = source_sg[section]; 1021 req->dst = target_sg[section]; 1022 1023 if (unlikely(do_crypt(encrypt, req, comp))) 1024 atomic_inc(&comp->in_flight); 1025 1026 section++; 1027 n_sections--; 1028 } while (n_sections); 1029 1030 atomic_dec(&comp->in_flight); 1031 complete_journal_op(comp); 1032 } 1033 1034 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 1035 unsigned n_sections, struct journal_completion *comp) 1036 { 1037 if (ic->journal_xor) 1038 return xor_journal(ic, encrypt, section, n_sections, comp); 1039 else 1040 return crypt_journal(ic, encrypt, section, n_sections, comp); 1041 } 1042 1043 static void complete_journal_io(unsigned long error, void *context) 1044 { 1045 struct journal_completion *comp = context; 1046 if (unlikely(error != 0)) 1047 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1048 complete_journal_op(comp); 1049 } 1050 1051 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 1052 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 1053 { 1054 struct dm_io_request io_req; 1055 struct dm_io_region io_loc; 1056 unsigned pl_index, pl_offset; 1057 int r; 1058 1059 if (unlikely(dm_integrity_failed(ic))) { 1060 if (comp) 1061 complete_journal_io(-1UL, comp); 1062 return; 1063 } 1064 1065 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1066 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1067 1068 io_req.bi_op = op; 1069 io_req.bi_op_flags = op_flags; 1070 io_req.mem.type = DM_IO_PAGE_LIST; 1071 if (ic->journal_io) 1072 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1073 else 1074 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1075 io_req.mem.offset = pl_offset; 1076 if (likely(comp != NULL)) { 1077 io_req.notify.fn = complete_journal_io; 1078 io_req.notify.context = comp; 1079 } else { 1080 io_req.notify.fn = NULL; 1081 } 1082 io_req.client = ic->io; 1083 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1084 io_loc.sector = ic->start + SB_SECTORS + sector; 1085 io_loc.count = n_sectors; 1086 1087 r = dm_io(&io_req, 1, &io_loc, NULL); 1088 if (unlikely(r)) { 1089 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 1090 if (comp) { 1091 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1092 complete_journal_io(-1UL, comp); 1093 } 1094 } 1095 } 1096 1097 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 1098 unsigned n_sections, struct journal_completion *comp) 1099 { 1100 unsigned sector, n_sectors; 1101 1102 sector = section * ic->journal_section_sectors; 1103 n_sectors = n_sections * ic->journal_section_sectors; 1104 1105 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 1106 } 1107 1108 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 1109 { 1110 struct journal_completion io_comp; 1111 struct journal_completion crypt_comp_1; 1112 struct journal_completion crypt_comp_2; 1113 unsigned i; 1114 1115 io_comp.ic = ic; 1116 init_completion(&io_comp.comp); 1117 1118 if (commit_start + commit_sections <= ic->journal_sections) { 1119 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1120 if (ic->journal_io) { 1121 crypt_comp_1.ic = ic; 1122 init_completion(&crypt_comp_1.comp); 1123 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1124 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1125 wait_for_completion_io(&crypt_comp_1.comp); 1126 } else { 1127 for (i = 0; i < commit_sections; i++) 1128 rw_section_mac(ic, commit_start + i, true); 1129 } 1130 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1131 commit_sections, &io_comp); 1132 } else { 1133 unsigned to_end; 1134 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1135 to_end = ic->journal_sections - commit_start; 1136 if (ic->journal_io) { 1137 crypt_comp_1.ic = ic; 1138 init_completion(&crypt_comp_1.comp); 1139 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1140 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1141 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1142 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1143 reinit_completion(&crypt_comp_1.comp); 1144 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1145 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1146 wait_for_completion_io(&crypt_comp_1.comp); 1147 } else { 1148 crypt_comp_2.ic = ic; 1149 init_completion(&crypt_comp_2.comp); 1150 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1151 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1152 wait_for_completion_io(&crypt_comp_1.comp); 1153 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1154 wait_for_completion_io(&crypt_comp_2.comp); 1155 } 1156 } else { 1157 for (i = 0; i < to_end; i++) 1158 rw_section_mac(ic, commit_start + i, true); 1159 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1160 for (i = 0; i < commit_sections - to_end; i++) 1161 rw_section_mac(ic, i, true); 1162 } 1163 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1164 } 1165 1166 wait_for_completion_io(&io_comp.comp); 1167 } 1168 1169 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1170 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1171 { 1172 struct dm_io_request io_req; 1173 struct dm_io_region io_loc; 1174 int r; 1175 unsigned sector, pl_index, pl_offset; 1176 1177 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1178 1179 if (unlikely(dm_integrity_failed(ic))) { 1180 fn(-1UL, data); 1181 return; 1182 } 1183 1184 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1185 1186 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1187 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1188 1189 io_req.bi_op = REQ_OP_WRITE; 1190 io_req.bi_op_flags = 0; 1191 io_req.mem.type = DM_IO_PAGE_LIST; 1192 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1193 io_req.mem.offset = pl_offset; 1194 io_req.notify.fn = fn; 1195 io_req.notify.context = data; 1196 io_req.client = ic->io; 1197 io_loc.bdev = ic->dev->bdev; 1198 io_loc.sector = target; 1199 io_loc.count = n_sectors; 1200 1201 r = dm_io(&io_req, 1, &io_loc, NULL); 1202 if (unlikely(r)) { 1203 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1204 fn(-1UL, data); 1205 } 1206 } 1207 1208 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1209 { 1210 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1211 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1212 } 1213 1214 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1215 { 1216 struct rb_node **n = &ic->in_progress.rb_node; 1217 struct rb_node *parent; 1218 1219 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1220 1221 if (likely(check_waiting)) { 1222 struct dm_integrity_range *range; 1223 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1224 if (unlikely(ranges_overlap(range, new_range))) 1225 return false; 1226 } 1227 } 1228 1229 parent = NULL; 1230 1231 while (*n) { 1232 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1233 1234 parent = *n; 1235 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1236 n = &range->node.rb_left; 1237 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1238 n = &range->node.rb_right; 1239 } else { 1240 return false; 1241 } 1242 } 1243 1244 rb_link_node(&new_range->node, parent, n); 1245 rb_insert_color(&new_range->node, &ic->in_progress); 1246 1247 return true; 1248 } 1249 1250 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1251 { 1252 rb_erase(&range->node, &ic->in_progress); 1253 while (unlikely(!list_empty(&ic->wait_list))) { 1254 struct dm_integrity_range *last_range = 1255 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1256 struct task_struct *last_range_task; 1257 last_range_task = last_range->task; 1258 list_del(&last_range->wait_entry); 1259 if (!add_new_range(ic, last_range, false)) { 1260 last_range->task = last_range_task; 1261 list_add(&last_range->wait_entry, &ic->wait_list); 1262 break; 1263 } 1264 last_range->waiting = false; 1265 wake_up_process(last_range_task); 1266 } 1267 } 1268 1269 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1270 { 1271 unsigned long flags; 1272 1273 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1274 remove_range_unlocked(ic, range); 1275 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1276 } 1277 1278 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1279 { 1280 new_range->waiting = true; 1281 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1282 new_range->task = current; 1283 do { 1284 __set_current_state(TASK_UNINTERRUPTIBLE); 1285 spin_unlock_irq(&ic->endio_wait.lock); 1286 io_schedule(); 1287 spin_lock_irq(&ic->endio_wait.lock); 1288 } while (unlikely(new_range->waiting)); 1289 } 1290 1291 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1292 { 1293 if (unlikely(!add_new_range(ic, new_range, true))) 1294 wait_and_add_new_range(ic, new_range); 1295 } 1296 1297 static void init_journal_node(struct journal_node *node) 1298 { 1299 RB_CLEAR_NODE(&node->node); 1300 node->sector = (sector_t)-1; 1301 } 1302 1303 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1304 { 1305 struct rb_node **link; 1306 struct rb_node *parent; 1307 1308 node->sector = sector; 1309 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1310 1311 link = &ic->journal_tree_root.rb_node; 1312 parent = NULL; 1313 1314 while (*link) { 1315 struct journal_node *j; 1316 parent = *link; 1317 j = container_of(parent, struct journal_node, node); 1318 if (sector < j->sector) 1319 link = &j->node.rb_left; 1320 else 1321 link = &j->node.rb_right; 1322 } 1323 1324 rb_link_node(&node->node, parent, link); 1325 rb_insert_color(&node->node, &ic->journal_tree_root); 1326 } 1327 1328 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1329 { 1330 BUG_ON(RB_EMPTY_NODE(&node->node)); 1331 rb_erase(&node->node, &ic->journal_tree_root); 1332 init_journal_node(node); 1333 } 1334 1335 #define NOT_FOUND (-1U) 1336 1337 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1338 { 1339 struct rb_node *n = ic->journal_tree_root.rb_node; 1340 unsigned found = NOT_FOUND; 1341 *next_sector = (sector_t)-1; 1342 while (n) { 1343 struct journal_node *j = container_of(n, struct journal_node, node); 1344 if (sector == j->sector) { 1345 found = j - ic->journal_tree; 1346 } 1347 if (sector < j->sector) { 1348 *next_sector = j->sector; 1349 n = j->node.rb_left; 1350 } else { 1351 n = j->node.rb_right; 1352 } 1353 } 1354 1355 return found; 1356 } 1357 1358 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1359 { 1360 struct journal_node *node, *next_node; 1361 struct rb_node *next; 1362 1363 if (unlikely(pos >= ic->journal_entries)) 1364 return false; 1365 node = &ic->journal_tree[pos]; 1366 if (unlikely(RB_EMPTY_NODE(&node->node))) 1367 return false; 1368 if (unlikely(node->sector != sector)) 1369 return false; 1370 1371 next = rb_next(&node->node); 1372 if (unlikely(!next)) 1373 return true; 1374 1375 next_node = container_of(next, struct journal_node, node); 1376 return next_node->sector != sector; 1377 } 1378 1379 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1380 { 1381 struct rb_node *next; 1382 struct journal_node *next_node; 1383 unsigned next_section; 1384 1385 BUG_ON(RB_EMPTY_NODE(&node->node)); 1386 1387 next = rb_next(&node->node); 1388 if (unlikely(!next)) 1389 return false; 1390 1391 next_node = container_of(next, struct journal_node, node); 1392 1393 if (next_node->sector != node->sector) 1394 return false; 1395 1396 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1397 if (next_section >= ic->committed_section && 1398 next_section < ic->committed_section + ic->n_committed_sections) 1399 return true; 1400 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1401 return true; 1402 1403 return false; 1404 } 1405 1406 #define TAG_READ 0 1407 #define TAG_WRITE 1 1408 #define TAG_CMP 2 1409 1410 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1411 unsigned *metadata_offset, unsigned total_size, int op) 1412 { 1413 #define MAY_BE_FILLER 1 1414 #define MAY_BE_HASH 2 1415 unsigned hash_offset = 0; 1416 unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1417 1418 do { 1419 unsigned char *data, *dp; 1420 struct dm_buffer *b; 1421 unsigned to_copy; 1422 int r; 1423 1424 r = dm_integrity_failed(ic); 1425 if (unlikely(r)) 1426 return r; 1427 1428 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1429 if (IS_ERR(data)) 1430 return PTR_ERR(data); 1431 1432 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1433 dp = data + *metadata_offset; 1434 if (op == TAG_READ) { 1435 memcpy(tag, dp, to_copy); 1436 } else if (op == TAG_WRITE) { 1437 if (memcmp(dp, tag, to_copy)) { 1438 memcpy(dp, tag, to_copy); 1439 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1440 } 1441 } else { 1442 /* e.g.: op == TAG_CMP */ 1443 1444 if (likely(is_power_of_2(ic->tag_size))) { 1445 if (unlikely(memcmp(dp, tag, to_copy))) 1446 if (unlikely(!ic->discard) || 1447 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1448 goto thorough_test; 1449 } 1450 } else { 1451 unsigned i, ts; 1452 thorough_test: 1453 ts = total_size; 1454 1455 for (i = 0; i < to_copy; i++, ts--) { 1456 if (unlikely(dp[i] != tag[i])) 1457 may_be &= ~MAY_BE_HASH; 1458 if (likely(dp[i] != DISCARD_FILLER)) 1459 may_be &= ~MAY_BE_FILLER; 1460 hash_offset++; 1461 if (unlikely(hash_offset == ic->tag_size)) { 1462 if (unlikely(!may_be)) { 1463 dm_bufio_release(b); 1464 return ts; 1465 } 1466 hash_offset = 0; 1467 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1468 } 1469 } 1470 } 1471 } 1472 dm_bufio_release(b); 1473 1474 tag += to_copy; 1475 *metadata_offset += to_copy; 1476 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1477 (*metadata_block)++; 1478 *metadata_offset = 0; 1479 } 1480 1481 if (unlikely(!is_power_of_2(ic->tag_size))) { 1482 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1483 } 1484 1485 total_size -= to_copy; 1486 } while (unlikely(total_size)); 1487 1488 return 0; 1489 #undef MAY_BE_FILLER 1490 #undef MAY_BE_HASH 1491 } 1492 1493 struct flush_request { 1494 struct dm_io_request io_req; 1495 struct dm_io_region io_reg; 1496 struct dm_integrity_c *ic; 1497 struct completion comp; 1498 }; 1499 1500 static void flush_notify(unsigned long error, void *fr_) 1501 { 1502 struct flush_request *fr = fr_; 1503 if (unlikely(error != 0)) 1504 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1505 complete(&fr->comp); 1506 } 1507 1508 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1509 { 1510 int r; 1511 1512 struct flush_request fr; 1513 1514 if (!ic->meta_dev) 1515 flush_data = false; 1516 if (flush_data) { 1517 fr.io_req.bi_op = REQ_OP_WRITE, 1518 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1519 fr.io_req.mem.type = DM_IO_KMEM, 1520 fr.io_req.mem.ptr.addr = NULL, 1521 fr.io_req.notify.fn = flush_notify, 1522 fr.io_req.notify.context = &fr; 1523 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1524 fr.io_reg.bdev = ic->dev->bdev, 1525 fr.io_reg.sector = 0, 1526 fr.io_reg.count = 0, 1527 fr.ic = ic; 1528 init_completion(&fr.comp); 1529 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL); 1530 BUG_ON(r); 1531 } 1532 1533 r = dm_bufio_write_dirty_buffers(ic->bufio); 1534 if (unlikely(r)) 1535 dm_integrity_io_error(ic, "writing tags", r); 1536 1537 if (flush_data) 1538 wait_for_completion(&fr.comp); 1539 } 1540 1541 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1542 { 1543 DECLARE_WAITQUEUE(wait, current); 1544 __add_wait_queue(&ic->endio_wait, &wait); 1545 __set_current_state(TASK_UNINTERRUPTIBLE); 1546 spin_unlock_irq(&ic->endio_wait.lock); 1547 io_schedule(); 1548 spin_lock_irq(&ic->endio_wait.lock); 1549 __remove_wait_queue(&ic->endio_wait, &wait); 1550 } 1551 1552 static void autocommit_fn(struct timer_list *t) 1553 { 1554 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1555 1556 if (likely(!dm_integrity_failed(ic))) 1557 queue_work(ic->commit_wq, &ic->commit_work); 1558 } 1559 1560 static void schedule_autocommit(struct dm_integrity_c *ic) 1561 { 1562 if (!timer_pending(&ic->autocommit_timer)) 1563 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1564 } 1565 1566 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1567 { 1568 struct bio *bio; 1569 unsigned long flags; 1570 1571 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1572 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1573 bio_list_add(&ic->flush_bio_list, bio); 1574 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1575 1576 queue_work(ic->commit_wq, &ic->commit_work); 1577 } 1578 1579 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1580 { 1581 int r = dm_integrity_failed(ic); 1582 if (unlikely(r) && !bio->bi_status) 1583 bio->bi_status = errno_to_blk_status(r); 1584 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1585 unsigned long flags; 1586 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1587 bio_list_add(&ic->synchronous_bios, bio); 1588 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1589 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1590 return; 1591 } 1592 bio_endio(bio); 1593 } 1594 1595 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1596 { 1597 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1598 1599 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1600 submit_flush_bio(ic, dio); 1601 else 1602 do_endio(ic, bio); 1603 } 1604 1605 static void dec_in_flight(struct dm_integrity_io *dio) 1606 { 1607 if (atomic_dec_and_test(&dio->in_flight)) { 1608 struct dm_integrity_c *ic = dio->ic; 1609 struct bio *bio; 1610 1611 remove_range(ic, &dio->range); 1612 1613 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1614 schedule_autocommit(ic); 1615 1616 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1617 1618 if (unlikely(dio->bi_status) && !bio->bi_status) 1619 bio->bi_status = dio->bi_status; 1620 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1621 dio->range.logical_sector += dio->range.n_sectors; 1622 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1623 INIT_WORK(&dio->work, integrity_bio_wait); 1624 queue_work(ic->offload_wq, &dio->work); 1625 return; 1626 } 1627 do_endio_flush(ic, dio); 1628 } 1629 } 1630 1631 static void integrity_end_io(struct bio *bio) 1632 { 1633 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1634 1635 dm_bio_restore(&dio->bio_details, bio); 1636 if (bio->bi_integrity) 1637 bio->bi_opf |= REQ_INTEGRITY; 1638 1639 if (dio->completion) 1640 complete(dio->completion); 1641 1642 dec_in_flight(dio); 1643 } 1644 1645 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1646 const char *data, char *result) 1647 { 1648 __le64 sector_le = cpu_to_le64(sector); 1649 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1650 int r; 1651 unsigned digest_size; 1652 1653 req->tfm = ic->internal_hash; 1654 1655 r = crypto_shash_init(req); 1656 if (unlikely(r < 0)) { 1657 dm_integrity_io_error(ic, "crypto_shash_init", r); 1658 goto failed; 1659 } 1660 1661 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1662 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1663 if (unlikely(r < 0)) { 1664 dm_integrity_io_error(ic, "crypto_shash_update", r); 1665 goto failed; 1666 } 1667 } 1668 1669 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1670 if (unlikely(r < 0)) { 1671 dm_integrity_io_error(ic, "crypto_shash_update", r); 1672 goto failed; 1673 } 1674 1675 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1676 if (unlikely(r < 0)) { 1677 dm_integrity_io_error(ic, "crypto_shash_update", r); 1678 goto failed; 1679 } 1680 1681 r = crypto_shash_final(req, result); 1682 if (unlikely(r < 0)) { 1683 dm_integrity_io_error(ic, "crypto_shash_final", r); 1684 goto failed; 1685 } 1686 1687 digest_size = crypto_shash_digestsize(ic->internal_hash); 1688 if (unlikely(digest_size < ic->tag_size)) 1689 memset(result + digest_size, 0, ic->tag_size - digest_size); 1690 1691 return; 1692 1693 failed: 1694 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1695 get_random_bytes(result, ic->tag_size); 1696 } 1697 1698 static void integrity_metadata(struct work_struct *w) 1699 { 1700 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1701 struct dm_integrity_c *ic = dio->ic; 1702 1703 int r; 1704 1705 if (ic->internal_hash) { 1706 struct bvec_iter iter; 1707 struct bio_vec bv; 1708 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1709 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1710 char *checksums; 1711 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1712 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1713 sector_t sector; 1714 unsigned sectors_to_process; 1715 1716 if (unlikely(ic->mode == 'R')) 1717 goto skip_io; 1718 1719 if (likely(dio->op != REQ_OP_DISCARD)) 1720 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1721 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1722 else 1723 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1724 if (!checksums) { 1725 checksums = checksums_onstack; 1726 if (WARN_ON(extra_space && 1727 digest_size > sizeof(checksums_onstack))) { 1728 r = -EINVAL; 1729 goto error; 1730 } 1731 } 1732 1733 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1734 sector_t bi_sector = dio->bio_details.bi_iter.bi_sector; 1735 unsigned bi_size = dio->bio_details.bi_iter.bi_size; 1736 unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1737 unsigned max_blocks = max_size / ic->tag_size; 1738 memset(checksums, DISCARD_FILLER, max_size); 1739 1740 while (bi_size) { 1741 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1742 this_step_blocks = min(this_step_blocks, max_blocks); 1743 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1744 this_step_blocks * ic->tag_size, TAG_WRITE); 1745 if (unlikely(r)) { 1746 if (likely(checksums != checksums_onstack)) 1747 kfree(checksums); 1748 goto error; 1749 } 1750 1751 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) { 1752 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size); 1753 printk("BUGG: this_step_blocks: %u\n", this_step_blocks); 1754 BUG(); 1755 }*/ 1756 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1757 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block; 1758 } 1759 1760 if (likely(checksums != checksums_onstack)) 1761 kfree(checksums); 1762 goto skip_io; 1763 } 1764 1765 sector = dio->range.logical_sector; 1766 sectors_to_process = dio->range.n_sectors; 1767 1768 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1769 unsigned pos; 1770 char *mem, *checksums_ptr; 1771 1772 again: 1773 mem = bvec_kmap_local(&bv); 1774 pos = 0; 1775 checksums_ptr = checksums; 1776 do { 1777 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1778 checksums_ptr += ic->tag_size; 1779 sectors_to_process -= ic->sectors_per_block; 1780 pos += ic->sectors_per_block << SECTOR_SHIFT; 1781 sector += ic->sectors_per_block; 1782 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1783 kunmap_local(mem); 1784 1785 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1786 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1787 if (unlikely(r)) { 1788 if (r > 0) { 1789 char b[BDEVNAME_SIZE]; 1790 sector_t s; 1791 1792 s = sector - ((r + ic->tag_size - 1) / ic->tag_size); 1793 DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", 1794 bio_devname(bio, b), s); 1795 r = -EILSEQ; 1796 atomic64_inc(&ic->number_of_mismatches); 1797 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 1798 bio, s, 0); 1799 } 1800 if (likely(checksums != checksums_onstack)) 1801 kfree(checksums); 1802 goto error; 1803 } 1804 1805 if (!sectors_to_process) 1806 break; 1807 1808 if (unlikely(pos < bv.bv_len)) { 1809 bv.bv_offset += pos; 1810 bv.bv_len -= pos; 1811 goto again; 1812 } 1813 } 1814 1815 if (likely(checksums != checksums_onstack)) 1816 kfree(checksums); 1817 } else { 1818 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1819 1820 if (bip) { 1821 struct bio_vec biv; 1822 struct bvec_iter iter; 1823 unsigned data_to_process = dio->range.n_sectors; 1824 sector_to_block(ic, data_to_process); 1825 data_to_process *= ic->tag_size; 1826 1827 bip_for_each_vec(biv, bip, iter) { 1828 unsigned char *tag; 1829 unsigned this_len; 1830 1831 BUG_ON(PageHighMem(biv.bv_page)); 1832 tag = bvec_virt(&biv); 1833 this_len = min(biv.bv_len, data_to_process); 1834 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1835 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1836 if (unlikely(r)) 1837 goto error; 1838 data_to_process -= this_len; 1839 if (!data_to_process) 1840 break; 1841 } 1842 } 1843 } 1844 skip_io: 1845 dec_in_flight(dio); 1846 return; 1847 error: 1848 dio->bi_status = errno_to_blk_status(r); 1849 dec_in_flight(dio); 1850 } 1851 1852 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1853 { 1854 struct dm_integrity_c *ic = ti->private; 1855 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1856 struct bio_integrity_payload *bip; 1857 1858 sector_t area, offset; 1859 1860 dio->ic = ic; 1861 dio->bi_status = 0; 1862 dio->op = bio_op(bio); 1863 1864 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1865 if (ti->max_io_len) { 1866 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1867 unsigned log2_max_io_len = __fls(ti->max_io_len); 1868 sector_t start_boundary = sec >> log2_max_io_len; 1869 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1870 if (start_boundary < end_boundary) { 1871 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1872 dm_accept_partial_bio(bio, len); 1873 } 1874 } 1875 } 1876 1877 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1878 submit_flush_bio(ic, dio); 1879 return DM_MAPIO_SUBMITTED; 1880 } 1881 1882 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1883 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1884 if (unlikely(dio->fua)) { 1885 /* 1886 * Don't pass down the FUA flag because we have to flush 1887 * disk cache anyway. 1888 */ 1889 bio->bi_opf &= ~REQ_FUA; 1890 } 1891 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1892 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1893 dio->range.logical_sector, bio_sectors(bio), 1894 ic->provided_data_sectors); 1895 return DM_MAPIO_KILL; 1896 } 1897 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1898 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1899 ic->sectors_per_block, 1900 dio->range.logical_sector, bio_sectors(bio)); 1901 return DM_MAPIO_KILL; 1902 } 1903 1904 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1905 struct bvec_iter iter; 1906 struct bio_vec bv; 1907 bio_for_each_segment(bv, bio, iter) { 1908 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1909 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1910 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1911 return DM_MAPIO_KILL; 1912 } 1913 } 1914 } 1915 1916 bip = bio_integrity(bio); 1917 if (!ic->internal_hash) { 1918 if (bip) { 1919 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1920 if (ic->log2_tag_size >= 0) 1921 wanted_tag_size <<= ic->log2_tag_size; 1922 else 1923 wanted_tag_size *= ic->tag_size; 1924 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1925 DMERR("Invalid integrity data size %u, expected %u", 1926 bip->bip_iter.bi_size, wanted_tag_size); 1927 return DM_MAPIO_KILL; 1928 } 1929 } 1930 } else { 1931 if (unlikely(bip != NULL)) { 1932 DMERR("Unexpected integrity data when using internal hash"); 1933 return DM_MAPIO_KILL; 1934 } 1935 } 1936 1937 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 1938 return DM_MAPIO_KILL; 1939 1940 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1941 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1942 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1943 1944 dm_integrity_map_continue(dio, true); 1945 return DM_MAPIO_SUBMITTED; 1946 } 1947 1948 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1949 unsigned journal_section, unsigned journal_entry) 1950 { 1951 struct dm_integrity_c *ic = dio->ic; 1952 sector_t logical_sector; 1953 unsigned n_sectors; 1954 1955 logical_sector = dio->range.logical_sector; 1956 n_sectors = dio->range.n_sectors; 1957 do { 1958 struct bio_vec bv = bio_iovec(bio); 1959 char *mem; 1960 1961 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1962 bv.bv_len = n_sectors << SECTOR_SHIFT; 1963 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1964 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1965 retry_kmap: 1966 mem = kmap_local_page(bv.bv_page); 1967 if (likely(dio->op == REQ_OP_WRITE)) 1968 flush_dcache_page(bv.bv_page); 1969 1970 do { 1971 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1972 1973 if (unlikely(dio->op == REQ_OP_READ)) { 1974 struct journal_sector *js; 1975 char *mem_ptr; 1976 unsigned s; 1977 1978 if (unlikely(journal_entry_is_inprogress(je))) { 1979 flush_dcache_page(bv.bv_page); 1980 kunmap_local(mem); 1981 1982 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1983 goto retry_kmap; 1984 } 1985 smp_rmb(); 1986 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1987 js = access_journal_data(ic, journal_section, journal_entry); 1988 mem_ptr = mem + bv.bv_offset; 1989 s = 0; 1990 do { 1991 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1992 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1993 js++; 1994 mem_ptr += 1 << SECTOR_SHIFT; 1995 } while (++s < ic->sectors_per_block); 1996 #ifdef INTERNAL_VERIFY 1997 if (ic->internal_hash) { 1998 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1999 2000 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 2001 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 2002 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 2003 logical_sector); 2004 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum", 2005 bio, logical_sector, 0); 2006 } 2007 } 2008 #endif 2009 } 2010 2011 if (!ic->internal_hash) { 2012 struct bio_integrity_payload *bip = bio_integrity(bio); 2013 unsigned tag_todo = ic->tag_size; 2014 char *tag_ptr = journal_entry_tag(ic, je); 2015 2016 if (bip) do { 2017 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2018 unsigned tag_now = min(biv.bv_len, tag_todo); 2019 char *tag_addr; 2020 BUG_ON(PageHighMem(biv.bv_page)); 2021 tag_addr = bvec_virt(&biv); 2022 if (likely(dio->op == REQ_OP_WRITE)) 2023 memcpy(tag_ptr, tag_addr, tag_now); 2024 else 2025 memcpy(tag_addr, tag_ptr, tag_now); 2026 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2027 tag_ptr += tag_now; 2028 tag_todo -= tag_now; 2029 } while (unlikely(tag_todo)); else { 2030 if (likely(dio->op == REQ_OP_WRITE)) 2031 memset(tag_ptr, 0, tag_todo); 2032 } 2033 } 2034 2035 if (likely(dio->op == REQ_OP_WRITE)) { 2036 struct journal_sector *js; 2037 unsigned s; 2038 2039 js = access_journal_data(ic, journal_section, journal_entry); 2040 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2041 2042 s = 0; 2043 do { 2044 je->last_bytes[s] = js[s].commit_id; 2045 } while (++s < ic->sectors_per_block); 2046 2047 if (ic->internal_hash) { 2048 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 2049 if (unlikely(digest_size > ic->tag_size)) { 2050 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2051 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2052 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2053 } else 2054 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2055 } 2056 2057 journal_entry_set_sector(je, logical_sector); 2058 } 2059 logical_sector += ic->sectors_per_block; 2060 2061 journal_entry++; 2062 if (unlikely(journal_entry == ic->journal_section_entries)) { 2063 journal_entry = 0; 2064 journal_section++; 2065 wraparound_section(ic, &journal_section); 2066 } 2067 2068 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2069 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2070 2071 if (unlikely(dio->op == REQ_OP_READ)) 2072 flush_dcache_page(bv.bv_page); 2073 kunmap_local(mem); 2074 } while (n_sectors); 2075 2076 if (likely(dio->op == REQ_OP_WRITE)) { 2077 smp_mb(); 2078 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2079 wake_up(&ic->copy_to_journal_wait); 2080 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 2081 queue_work(ic->commit_wq, &ic->commit_work); 2082 } else { 2083 schedule_autocommit(ic); 2084 } 2085 } else { 2086 remove_range(ic, &dio->range); 2087 } 2088 2089 if (unlikely(bio->bi_iter.bi_size)) { 2090 sector_t area, offset; 2091 2092 dio->range.logical_sector = logical_sector; 2093 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2094 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2095 return true; 2096 } 2097 2098 return false; 2099 } 2100 2101 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2102 { 2103 struct dm_integrity_c *ic = dio->ic; 2104 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2105 unsigned journal_section, journal_entry; 2106 unsigned journal_read_pos; 2107 struct completion read_comp; 2108 bool discard_retried = false; 2109 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2110 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2111 need_sync_io = true; 2112 2113 if (need_sync_io && from_map) { 2114 INIT_WORK(&dio->work, integrity_bio_wait); 2115 queue_work(ic->offload_wq, &dio->work); 2116 return; 2117 } 2118 2119 lock_retry: 2120 spin_lock_irq(&ic->endio_wait.lock); 2121 retry: 2122 if (unlikely(dm_integrity_failed(ic))) { 2123 spin_unlock_irq(&ic->endio_wait.lock); 2124 do_endio(ic, bio); 2125 return; 2126 } 2127 dio->range.n_sectors = bio_sectors(bio); 2128 journal_read_pos = NOT_FOUND; 2129 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2130 if (dio->op == REQ_OP_WRITE) { 2131 unsigned next_entry, i, pos; 2132 unsigned ws, we, range_sectors; 2133 2134 dio->range.n_sectors = min(dio->range.n_sectors, 2135 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2136 if (unlikely(!dio->range.n_sectors)) { 2137 if (from_map) 2138 goto offload_to_thread; 2139 sleep_on_endio_wait(ic); 2140 goto retry; 2141 } 2142 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2143 ic->free_sectors -= range_sectors; 2144 journal_section = ic->free_section; 2145 journal_entry = ic->free_section_entry; 2146 2147 next_entry = ic->free_section_entry + range_sectors; 2148 ic->free_section_entry = next_entry % ic->journal_section_entries; 2149 ic->free_section += next_entry / ic->journal_section_entries; 2150 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2151 wraparound_section(ic, &ic->free_section); 2152 2153 pos = journal_section * ic->journal_section_entries + journal_entry; 2154 ws = journal_section; 2155 we = journal_entry; 2156 i = 0; 2157 do { 2158 struct journal_entry *je; 2159 2160 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2161 pos++; 2162 if (unlikely(pos >= ic->journal_entries)) 2163 pos = 0; 2164 2165 je = access_journal_entry(ic, ws, we); 2166 BUG_ON(!journal_entry_is_unused(je)); 2167 journal_entry_set_inprogress(je); 2168 we++; 2169 if (unlikely(we == ic->journal_section_entries)) { 2170 we = 0; 2171 ws++; 2172 wraparound_section(ic, &ws); 2173 } 2174 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2175 2176 spin_unlock_irq(&ic->endio_wait.lock); 2177 goto journal_read_write; 2178 } else { 2179 sector_t next_sector; 2180 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2181 if (likely(journal_read_pos == NOT_FOUND)) { 2182 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2183 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2184 } else { 2185 unsigned i; 2186 unsigned jp = journal_read_pos + 1; 2187 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2188 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2189 break; 2190 } 2191 dio->range.n_sectors = i; 2192 } 2193 } 2194 } 2195 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2196 /* 2197 * We must not sleep in the request routine because it could 2198 * stall bios on current->bio_list. 2199 * So, we offload the bio to a workqueue if we have to sleep. 2200 */ 2201 if (from_map) { 2202 offload_to_thread: 2203 spin_unlock_irq(&ic->endio_wait.lock); 2204 INIT_WORK(&dio->work, integrity_bio_wait); 2205 queue_work(ic->wait_wq, &dio->work); 2206 return; 2207 } 2208 if (journal_read_pos != NOT_FOUND) 2209 dio->range.n_sectors = ic->sectors_per_block; 2210 wait_and_add_new_range(ic, &dio->range); 2211 /* 2212 * wait_and_add_new_range drops the spinlock, so the journal 2213 * may have been changed arbitrarily. We need to recheck. 2214 * To simplify the code, we restrict I/O size to just one block. 2215 */ 2216 if (journal_read_pos != NOT_FOUND) { 2217 sector_t next_sector; 2218 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2219 if (unlikely(new_pos != journal_read_pos)) { 2220 remove_range_unlocked(ic, &dio->range); 2221 goto retry; 2222 } 2223 } 2224 } 2225 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2226 sector_t next_sector; 2227 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2228 if (unlikely(new_pos != NOT_FOUND) || 2229 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2230 remove_range_unlocked(ic, &dio->range); 2231 spin_unlock_irq(&ic->endio_wait.lock); 2232 queue_work(ic->commit_wq, &ic->commit_work); 2233 flush_workqueue(ic->commit_wq); 2234 queue_work(ic->writer_wq, &ic->writer_work); 2235 flush_workqueue(ic->writer_wq); 2236 discard_retried = true; 2237 goto lock_retry; 2238 } 2239 } 2240 spin_unlock_irq(&ic->endio_wait.lock); 2241 2242 if (unlikely(journal_read_pos != NOT_FOUND)) { 2243 journal_section = journal_read_pos / ic->journal_section_entries; 2244 journal_entry = journal_read_pos % ic->journal_section_entries; 2245 goto journal_read_write; 2246 } 2247 2248 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2249 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2250 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2251 struct bitmap_block_status *bbs; 2252 2253 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2254 spin_lock(&bbs->bio_queue_lock); 2255 bio_list_add(&bbs->bio_queue, bio); 2256 spin_unlock(&bbs->bio_queue_lock); 2257 queue_work(ic->writer_wq, &bbs->work); 2258 return; 2259 } 2260 } 2261 2262 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2263 2264 if (need_sync_io) { 2265 init_completion(&read_comp); 2266 dio->completion = &read_comp; 2267 } else 2268 dio->completion = NULL; 2269 2270 dm_bio_record(&dio->bio_details, bio); 2271 bio_set_dev(bio, ic->dev->bdev); 2272 bio->bi_integrity = NULL; 2273 bio->bi_opf &= ~REQ_INTEGRITY; 2274 bio->bi_end_io = integrity_end_io; 2275 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2276 2277 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2278 integrity_metadata(&dio->work); 2279 dm_integrity_flush_buffers(ic, false); 2280 2281 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2282 dio->completion = NULL; 2283 2284 submit_bio_noacct(bio); 2285 2286 return; 2287 } 2288 2289 submit_bio_noacct(bio); 2290 2291 if (need_sync_io) { 2292 wait_for_completion_io(&read_comp); 2293 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2294 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2295 goto skip_check; 2296 if (ic->mode == 'B') { 2297 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2298 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2299 goto skip_check; 2300 } 2301 2302 if (likely(!bio->bi_status)) 2303 integrity_metadata(&dio->work); 2304 else 2305 skip_check: 2306 dec_in_flight(dio); 2307 2308 } else { 2309 INIT_WORK(&dio->work, integrity_metadata); 2310 queue_work(ic->metadata_wq, &dio->work); 2311 } 2312 2313 return; 2314 2315 journal_read_write: 2316 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2317 goto lock_retry; 2318 2319 do_endio_flush(ic, dio); 2320 } 2321 2322 2323 static void integrity_bio_wait(struct work_struct *w) 2324 { 2325 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2326 2327 dm_integrity_map_continue(dio, false); 2328 } 2329 2330 static void pad_uncommitted(struct dm_integrity_c *ic) 2331 { 2332 if (ic->free_section_entry) { 2333 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2334 ic->free_section_entry = 0; 2335 ic->free_section++; 2336 wraparound_section(ic, &ic->free_section); 2337 ic->n_uncommitted_sections++; 2338 } 2339 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2340 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2341 ic->journal_section_entries + ic->free_sectors)) { 2342 DMCRIT("journal_sections %u, journal_section_entries %u, " 2343 "n_uncommitted_sections %u, n_committed_sections %u, " 2344 "journal_section_entries %u, free_sectors %u", 2345 ic->journal_sections, ic->journal_section_entries, 2346 ic->n_uncommitted_sections, ic->n_committed_sections, 2347 ic->journal_section_entries, ic->free_sectors); 2348 } 2349 } 2350 2351 static void integrity_commit(struct work_struct *w) 2352 { 2353 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2354 unsigned commit_start, commit_sections; 2355 unsigned i, j, n; 2356 struct bio *flushes; 2357 2358 del_timer(&ic->autocommit_timer); 2359 2360 spin_lock_irq(&ic->endio_wait.lock); 2361 flushes = bio_list_get(&ic->flush_bio_list); 2362 if (unlikely(ic->mode != 'J')) { 2363 spin_unlock_irq(&ic->endio_wait.lock); 2364 dm_integrity_flush_buffers(ic, true); 2365 goto release_flush_bios; 2366 } 2367 2368 pad_uncommitted(ic); 2369 commit_start = ic->uncommitted_section; 2370 commit_sections = ic->n_uncommitted_sections; 2371 spin_unlock_irq(&ic->endio_wait.lock); 2372 2373 if (!commit_sections) 2374 goto release_flush_bios; 2375 2376 i = commit_start; 2377 for (n = 0; n < commit_sections; n++) { 2378 for (j = 0; j < ic->journal_section_entries; j++) { 2379 struct journal_entry *je; 2380 je = access_journal_entry(ic, i, j); 2381 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2382 } 2383 for (j = 0; j < ic->journal_section_sectors; j++) { 2384 struct journal_sector *js; 2385 js = access_journal(ic, i, j); 2386 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2387 } 2388 i++; 2389 if (unlikely(i >= ic->journal_sections)) 2390 ic->commit_seq = next_commit_seq(ic->commit_seq); 2391 wraparound_section(ic, &i); 2392 } 2393 smp_rmb(); 2394 2395 write_journal(ic, commit_start, commit_sections); 2396 2397 spin_lock_irq(&ic->endio_wait.lock); 2398 ic->uncommitted_section += commit_sections; 2399 wraparound_section(ic, &ic->uncommitted_section); 2400 ic->n_uncommitted_sections -= commit_sections; 2401 ic->n_committed_sections += commit_sections; 2402 spin_unlock_irq(&ic->endio_wait.lock); 2403 2404 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2405 queue_work(ic->writer_wq, &ic->writer_work); 2406 2407 release_flush_bios: 2408 while (flushes) { 2409 struct bio *next = flushes->bi_next; 2410 flushes->bi_next = NULL; 2411 do_endio(ic, flushes); 2412 flushes = next; 2413 } 2414 } 2415 2416 static void complete_copy_from_journal(unsigned long error, void *context) 2417 { 2418 struct journal_io *io = context; 2419 struct journal_completion *comp = io->comp; 2420 struct dm_integrity_c *ic = comp->ic; 2421 remove_range(ic, &io->range); 2422 mempool_free(io, &ic->journal_io_mempool); 2423 if (unlikely(error != 0)) 2424 dm_integrity_io_error(ic, "copying from journal", -EIO); 2425 complete_journal_op(comp); 2426 } 2427 2428 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2429 struct journal_entry *je) 2430 { 2431 unsigned s = 0; 2432 do { 2433 js->commit_id = je->last_bytes[s]; 2434 js++; 2435 } while (++s < ic->sectors_per_block); 2436 } 2437 2438 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2439 unsigned write_sections, bool from_replay) 2440 { 2441 unsigned i, j, n; 2442 struct journal_completion comp; 2443 struct blk_plug plug; 2444 2445 blk_start_plug(&plug); 2446 2447 comp.ic = ic; 2448 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2449 init_completion(&comp.comp); 2450 2451 i = write_start; 2452 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2453 #ifndef INTERNAL_VERIFY 2454 if (unlikely(from_replay)) 2455 #endif 2456 rw_section_mac(ic, i, false); 2457 for (j = 0; j < ic->journal_section_entries; j++) { 2458 struct journal_entry *je = access_journal_entry(ic, i, j); 2459 sector_t sec, area, offset; 2460 unsigned k, l, next_loop; 2461 sector_t metadata_block; 2462 unsigned metadata_offset; 2463 struct journal_io *io; 2464 2465 if (journal_entry_is_unused(je)) 2466 continue; 2467 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2468 sec = journal_entry_get_sector(je); 2469 if (unlikely(from_replay)) { 2470 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2471 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2472 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2473 } 2474 } 2475 if (unlikely(sec >= ic->provided_data_sectors)) 2476 continue; 2477 get_area_and_offset(ic, sec, &area, &offset); 2478 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2479 for (k = j + 1; k < ic->journal_section_entries; k++) { 2480 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2481 sector_t sec2, area2, offset2; 2482 if (journal_entry_is_unused(je2)) 2483 break; 2484 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2485 sec2 = journal_entry_get_sector(je2); 2486 if (unlikely(sec2 >= ic->provided_data_sectors)) 2487 break; 2488 get_area_and_offset(ic, sec2, &area2, &offset2); 2489 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2490 break; 2491 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2492 } 2493 next_loop = k - 1; 2494 2495 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2496 io->comp = ∁ 2497 io->range.logical_sector = sec; 2498 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2499 2500 spin_lock_irq(&ic->endio_wait.lock); 2501 add_new_range_and_wait(ic, &io->range); 2502 2503 if (likely(!from_replay)) { 2504 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2505 2506 /* don't write if there is newer committed sector */ 2507 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2508 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2509 2510 journal_entry_set_unused(je2); 2511 remove_journal_node(ic, §ion_node[j]); 2512 j++; 2513 sec += ic->sectors_per_block; 2514 offset += ic->sectors_per_block; 2515 } 2516 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2517 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2518 2519 journal_entry_set_unused(je2); 2520 remove_journal_node(ic, §ion_node[k - 1]); 2521 k--; 2522 } 2523 if (j == k) { 2524 remove_range_unlocked(ic, &io->range); 2525 spin_unlock_irq(&ic->endio_wait.lock); 2526 mempool_free(io, &ic->journal_io_mempool); 2527 goto skip_io; 2528 } 2529 for (l = j; l < k; l++) { 2530 remove_journal_node(ic, §ion_node[l]); 2531 } 2532 } 2533 spin_unlock_irq(&ic->endio_wait.lock); 2534 2535 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2536 for (l = j; l < k; l++) { 2537 int r; 2538 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2539 2540 if ( 2541 #ifndef INTERNAL_VERIFY 2542 unlikely(from_replay) && 2543 #endif 2544 ic->internal_hash) { 2545 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2546 2547 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2548 (char *)access_journal_data(ic, i, l), test_tag); 2549 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) { 2550 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2551 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0); 2552 } 2553 } 2554 2555 journal_entry_set_unused(je2); 2556 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2557 ic->tag_size, TAG_WRITE); 2558 if (unlikely(r)) { 2559 dm_integrity_io_error(ic, "reading tags", r); 2560 } 2561 } 2562 2563 atomic_inc(&comp.in_flight); 2564 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2565 (k - j) << ic->sb->log2_sectors_per_block, 2566 get_data_sector(ic, area, offset), 2567 complete_copy_from_journal, io); 2568 skip_io: 2569 j = next_loop; 2570 } 2571 } 2572 2573 dm_bufio_write_dirty_buffers_async(ic->bufio); 2574 2575 blk_finish_plug(&plug); 2576 2577 complete_journal_op(&comp); 2578 wait_for_completion_io(&comp.comp); 2579 2580 dm_integrity_flush_buffers(ic, true); 2581 } 2582 2583 static void integrity_writer(struct work_struct *w) 2584 { 2585 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2586 unsigned write_start, write_sections; 2587 2588 unsigned prev_free_sectors; 2589 2590 /* the following test is not needed, but it tests the replay code */ 2591 if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev) 2592 return; 2593 2594 spin_lock_irq(&ic->endio_wait.lock); 2595 write_start = ic->committed_section; 2596 write_sections = ic->n_committed_sections; 2597 spin_unlock_irq(&ic->endio_wait.lock); 2598 2599 if (!write_sections) 2600 return; 2601 2602 do_journal_write(ic, write_start, write_sections, false); 2603 2604 spin_lock_irq(&ic->endio_wait.lock); 2605 2606 ic->committed_section += write_sections; 2607 wraparound_section(ic, &ic->committed_section); 2608 ic->n_committed_sections -= write_sections; 2609 2610 prev_free_sectors = ic->free_sectors; 2611 ic->free_sectors += write_sections * ic->journal_section_entries; 2612 if (unlikely(!prev_free_sectors)) 2613 wake_up_locked(&ic->endio_wait); 2614 2615 spin_unlock_irq(&ic->endio_wait.lock); 2616 } 2617 2618 static void recalc_write_super(struct dm_integrity_c *ic) 2619 { 2620 int r; 2621 2622 dm_integrity_flush_buffers(ic, false); 2623 if (dm_integrity_failed(ic)) 2624 return; 2625 2626 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2627 if (unlikely(r)) 2628 dm_integrity_io_error(ic, "writing superblock", r); 2629 } 2630 2631 static void integrity_recalc(struct work_struct *w) 2632 { 2633 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2634 struct dm_integrity_range range; 2635 struct dm_io_request io_req; 2636 struct dm_io_region io_loc; 2637 sector_t area, offset; 2638 sector_t metadata_block; 2639 unsigned metadata_offset; 2640 sector_t logical_sector, n_sectors; 2641 __u8 *t; 2642 unsigned i; 2643 int r; 2644 unsigned super_counter = 0; 2645 2646 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2647 2648 spin_lock_irq(&ic->endio_wait.lock); 2649 2650 next_chunk: 2651 2652 if (unlikely(dm_post_suspending(ic->ti))) 2653 goto unlock_ret; 2654 2655 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2656 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2657 if (ic->mode == 'B') { 2658 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2659 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2660 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2661 } 2662 goto unlock_ret; 2663 } 2664 2665 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2666 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2667 if (!ic->meta_dev) 2668 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2669 2670 add_new_range_and_wait(ic, &range); 2671 spin_unlock_irq(&ic->endio_wait.lock); 2672 logical_sector = range.logical_sector; 2673 n_sectors = range.n_sectors; 2674 2675 if (ic->mode == 'B') { 2676 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2677 goto advance_and_next; 2678 } 2679 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2680 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2681 logical_sector += ic->sectors_per_block; 2682 n_sectors -= ic->sectors_per_block; 2683 cond_resched(); 2684 } 2685 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2686 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2687 n_sectors -= ic->sectors_per_block; 2688 cond_resched(); 2689 } 2690 get_area_and_offset(ic, logical_sector, &area, &offset); 2691 } 2692 2693 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2694 2695 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2696 recalc_write_super(ic); 2697 if (ic->mode == 'B') { 2698 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2699 } 2700 super_counter = 0; 2701 } 2702 2703 if (unlikely(dm_integrity_failed(ic))) 2704 goto err; 2705 2706 io_req.bi_op = REQ_OP_READ; 2707 io_req.bi_op_flags = 0; 2708 io_req.mem.type = DM_IO_VMA; 2709 io_req.mem.ptr.addr = ic->recalc_buffer; 2710 io_req.notify.fn = NULL; 2711 io_req.client = ic->io; 2712 io_loc.bdev = ic->dev->bdev; 2713 io_loc.sector = get_data_sector(ic, area, offset); 2714 io_loc.count = n_sectors; 2715 2716 r = dm_io(&io_req, 1, &io_loc, NULL); 2717 if (unlikely(r)) { 2718 dm_integrity_io_error(ic, "reading data", r); 2719 goto err; 2720 } 2721 2722 t = ic->recalc_tags; 2723 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2724 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2725 t += ic->tag_size; 2726 } 2727 2728 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2729 2730 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2731 if (unlikely(r)) { 2732 dm_integrity_io_error(ic, "writing tags", r); 2733 goto err; 2734 } 2735 2736 if (ic->mode == 'B') { 2737 sector_t start, end; 2738 start = (range.logical_sector >> 2739 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2740 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2741 end = ((range.logical_sector + range.n_sectors) >> 2742 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2743 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2744 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2745 } 2746 2747 advance_and_next: 2748 cond_resched(); 2749 2750 spin_lock_irq(&ic->endio_wait.lock); 2751 remove_range_unlocked(ic, &range); 2752 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2753 goto next_chunk; 2754 2755 err: 2756 remove_range(ic, &range); 2757 return; 2758 2759 unlock_ret: 2760 spin_unlock_irq(&ic->endio_wait.lock); 2761 2762 recalc_write_super(ic); 2763 } 2764 2765 static void bitmap_block_work(struct work_struct *w) 2766 { 2767 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2768 struct dm_integrity_c *ic = bbs->ic; 2769 struct bio *bio; 2770 struct bio_list bio_queue; 2771 struct bio_list waiting; 2772 2773 bio_list_init(&waiting); 2774 2775 spin_lock(&bbs->bio_queue_lock); 2776 bio_queue = bbs->bio_queue; 2777 bio_list_init(&bbs->bio_queue); 2778 spin_unlock(&bbs->bio_queue_lock); 2779 2780 while ((bio = bio_list_pop(&bio_queue))) { 2781 struct dm_integrity_io *dio; 2782 2783 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2784 2785 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2786 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2787 remove_range(ic, &dio->range); 2788 INIT_WORK(&dio->work, integrity_bio_wait); 2789 queue_work(ic->offload_wq, &dio->work); 2790 } else { 2791 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2792 dio->range.n_sectors, BITMAP_OP_SET); 2793 bio_list_add(&waiting, bio); 2794 } 2795 } 2796 2797 if (bio_list_empty(&waiting)) 2798 return; 2799 2800 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2801 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2802 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2803 2804 while ((bio = bio_list_pop(&waiting))) { 2805 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2806 2807 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2808 dio->range.n_sectors, BITMAP_OP_SET); 2809 2810 remove_range(ic, &dio->range); 2811 INIT_WORK(&dio->work, integrity_bio_wait); 2812 queue_work(ic->offload_wq, &dio->work); 2813 } 2814 2815 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2816 } 2817 2818 static void bitmap_flush_work(struct work_struct *work) 2819 { 2820 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2821 struct dm_integrity_range range; 2822 unsigned long limit; 2823 struct bio *bio; 2824 2825 dm_integrity_flush_buffers(ic, false); 2826 2827 range.logical_sector = 0; 2828 range.n_sectors = ic->provided_data_sectors; 2829 2830 spin_lock_irq(&ic->endio_wait.lock); 2831 add_new_range_and_wait(ic, &range); 2832 spin_unlock_irq(&ic->endio_wait.lock); 2833 2834 dm_integrity_flush_buffers(ic, true); 2835 2836 limit = ic->provided_data_sectors; 2837 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2838 limit = le64_to_cpu(ic->sb->recalc_sector) 2839 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2840 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2841 } 2842 /*DEBUG_print("zeroing journal\n");*/ 2843 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2844 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2845 2846 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2847 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2848 2849 spin_lock_irq(&ic->endio_wait.lock); 2850 remove_range_unlocked(ic, &range); 2851 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2852 bio_endio(bio); 2853 spin_unlock_irq(&ic->endio_wait.lock); 2854 spin_lock_irq(&ic->endio_wait.lock); 2855 } 2856 spin_unlock_irq(&ic->endio_wait.lock); 2857 } 2858 2859 2860 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2861 unsigned n_sections, unsigned char commit_seq) 2862 { 2863 unsigned i, j, n; 2864 2865 if (!n_sections) 2866 return; 2867 2868 for (n = 0; n < n_sections; n++) { 2869 i = start_section + n; 2870 wraparound_section(ic, &i); 2871 for (j = 0; j < ic->journal_section_sectors; j++) { 2872 struct journal_sector *js = access_journal(ic, i, j); 2873 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2874 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2875 } 2876 for (j = 0; j < ic->journal_section_entries; j++) { 2877 struct journal_entry *je = access_journal_entry(ic, i, j); 2878 journal_entry_set_unused(je); 2879 } 2880 } 2881 2882 write_journal(ic, start_section, n_sections); 2883 } 2884 2885 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2886 { 2887 unsigned char k; 2888 for (k = 0; k < N_COMMIT_IDS; k++) { 2889 if (dm_integrity_commit_id(ic, i, j, k) == id) 2890 return k; 2891 } 2892 dm_integrity_io_error(ic, "journal commit id", -EIO); 2893 return -EIO; 2894 } 2895 2896 static void replay_journal(struct dm_integrity_c *ic) 2897 { 2898 unsigned i, j; 2899 bool used_commit_ids[N_COMMIT_IDS]; 2900 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2901 unsigned write_start, write_sections; 2902 unsigned continue_section; 2903 bool journal_empty; 2904 unsigned char unused, last_used, want_commit_seq; 2905 2906 if (ic->mode == 'R') 2907 return; 2908 2909 if (ic->journal_uptodate) 2910 return; 2911 2912 last_used = 0; 2913 write_start = 0; 2914 2915 if (!ic->just_formatted) { 2916 DEBUG_print("reading journal\n"); 2917 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2918 if (ic->journal_io) 2919 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2920 if (ic->journal_io) { 2921 struct journal_completion crypt_comp; 2922 crypt_comp.ic = ic; 2923 init_completion(&crypt_comp.comp); 2924 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2925 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2926 wait_for_completion(&crypt_comp.comp); 2927 } 2928 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2929 } 2930 2931 if (dm_integrity_failed(ic)) 2932 goto clear_journal; 2933 2934 journal_empty = true; 2935 memset(used_commit_ids, 0, sizeof used_commit_ids); 2936 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2937 for (i = 0; i < ic->journal_sections; i++) { 2938 for (j = 0; j < ic->journal_section_sectors; j++) { 2939 int k; 2940 struct journal_sector *js = access_journal(ic, i, j); 2941 k = find_commit_seq(ic, i, j, js->commit_id); 2942 if (k < 0) 2943 goto clear_journal; 2944 used_commit_ids[k] = true; 2945 max_commit_id_sections[k] = i; 2946 } 2947 if (journal_empty) { 2948 for (j = 0; j < ic->journal_section_entries; j++) { 2949 struct journal_entry *je = access_journal_entry(ic, i, j); 2950 if (!journal_entry_is_unused(je)) { 2951 journal_empty = false; 2952 break; 2953 } 2954 } 2955 } 2956 } 2957 2958 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2959 unused = N_COMMIT_IDS - 1; 2960 while (unused && !used_commit_ids[unused - 1]) 2961 unused--; 2962 } else { 2963 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2964 if (!used_commit_ids[unused]) 2965 break; 2966 if (unused == N_COMMIT_IDS) { 2967 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2968 goto clear_journal; 2969 } 2970 } 2971 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2972 unused, used_commit_ids[0], used_commit_ids[1], 2973 used_commit_ids[2], used_commit_ids[3]); 2974 2975 last_used = prev_commit_seq(unused); 2976 want_commit_seq = prev_commit_seq(last_used); 2977 2978 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2979 journal_empty = true; 2980 2981 write_start = max_commit_id_sections[last_used] + 1; 2982 if (unlikely(write_start >= ic->journal_sections)) 2983 want_commit_seq = next_commit_seq(want_commit_seq); 2984 wraparound_section(ic, &write_start); 2985 2986 i = write_start; 2987 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2988 for (j = 0; j < ic->journal_section_sectors; j++) { 2989 struct journal_sector *js = access_journal(ic, i, j); 2990 2991 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2992 /* 2993 * This could be caused by crash during writing. 2994 * We won't replay the inconsistent part of the 2995 * journal. 2996 */ 2997 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2998 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2999 goto brk; 3000 } 3001 } 3002 i++; 3003 if (unlikely(i >= ic->journal_sections)) 3004 want_commit_seq = next_commit_seq(want_commit_seq); 3005 wraparound_section(ic, &i); 3006 } 3007 brk: 3008 3009 if (!journal_empty) { 3010 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 3011 write_sections, write_start, want_commit_seq); 3012 do_journal_write(ic, write_start, write_sections, true); 3013 } 3014 3015 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3016 continue_section = write_start; 3017 ic->commit_seq = want_commit_seq; 3018 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3019 } else { 3020 unsigned s; 3021 unsigned char erase_seq; 3022 clear_journal: 3023 DEBUG_print("clearing journal\n"); 3024 3025 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3026 s = write_start; 3027 init_journal(ic, s, 1, erase_seq); 3028 s++; 3029 wraparound_section(ic, &s); 3030 if (ic->journal_sections >= 2) { 3031 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3032 s += ic->journal_sections - 2; 3033 wraparound_section(ic, &s); 3034 init_journal(ic, s, 1, erase_seq); 3035 } 3036 3037 continue_section = 0; 3038 ic->commit_seq = next_commit_seq(erase_seq); 3039 } 3040 3041 ic->committed_section = continue_section; 3042 ic->n_committed_sections = 0; 3043 3044 ic->uncommitted_section = continue_section; 3045 ic->n_uncommitted_sections = 0; 3046 3047 ic->free_section = continue_section; 3048 ic->free_section_entry = 0; 3049 ic->free_sectors = ic->journal_entries; 3050 3051 ic->journal_tree_root = RB_ROOT; 3052 for (i = 0; i < ic->journal_entries; i++) 3053 init_journal_node(&ic->journal_tree[i]); 3054 } 3055 3056 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3057 { 3058 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 3059 3060 if (ic->mode == 'B') { 3061 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3062 ic->synchronous_mode = 1; 3063 3064 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3065 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3066 flush_workqueue(ic->commit_wq); 3067 } 3068 } 3069 3070 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3071 { 3072 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3073 3074 DEBUG_print("dm_integrity_reboot\n"); 3075 3076 dm_integrity_enter_synchronous_mode(ic); 3077 3078 return NOTIFY_DONE; 3079 } 3080 3081 static void dm_integrity_postsuspend(struct dm_target *ti) 3082 { 3083 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3084 int r; 3085 3086 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3087 3088 del_timer_sync(&ic->autocommit_timer); 3089 3090 if (ic->recalc_wq) 3091 drain_workqueue(ic->recalc_wq); 3092 3093 if (ic->mode == 'B') 3094 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3095 3096 queue_work(ic->commit_wq, &ic->commit_work); 3097 drain_workqueue(ic->commit_wq); 3098 3099 if (ic->mode == 'J') { 3100 if (ic->meta_dev) 3101 queue_work(ic->writer_wq, &ic->writer_work); 3102 drain_workqueue(ic->writer_wq); 3103 dm_integrity_flush_buffers(ic, true); 3104 } 3105 3106 if (ic->mode == 'B') { 3107 dm_integrity_flush_buffers(ic, true); 3108 #if 1 3109 /* set to 0 to test bitmap replay code */ 3110 init_journal(ic, 0, ic->journal_sections, 0); 3111 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3112 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3113 if (unlikely(r)) 3114 dm_integrity_io_error(ic, "writing superblock", r); 3115 #endif 3116 } 3117 3118 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3119 3120 ic->journal_uptodate = true; 3121 } 3122 3123 static void dm_integrity_resume(struct dm_target *ti) 3124 { 3125 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3126 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3127 int r; 3128 3129 DEBUG_print("resume\n"); 3130 3131 if (ic->provided_data_sectors != old_provided_data_sectors) { 3132 if (ic->provided_data_sectors > old_provided_data_sectors && 3133 ic->mode == 'B' && 3134 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3135 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 3136 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3137 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3138 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3139 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3140 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3141 } 3142 3143 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3144 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3145 if (unlikely(r)) 3146 dm_integrity_io_error(ic, "writing superblock", r); 3147 } 3148 3149 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3150 DEBUG_print("resume dirty_bitmap\n"); 3151 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 3152 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3153 if (ic->mode == 'B') { 3154 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3155 !ic->reset_recalculate_flag) { 3156 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3157 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3158 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3159 BITMAP_OP_TEST_ALL_CLEAR)) { 3160 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3161 ic->sb->recalc_sector = cpu_to_le64(0); 3162 } 3163 } else { 3164 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3165 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3166 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3167 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3168 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3169 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3170 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3171 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3172 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3173 ic->sb->recalc_sector = cpu_to_le64(0); 3174 } 3175 } else { 3176 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3177 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3178 ic->reset_recalculate_flag) { 3179 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3180 ic->sb->recalc_sector = cpu_to_le64(0); 3181 } 3182 init_journal(ic, 0, ic->journal_sections, 0); 3183 replay_journal(ic); 3184 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3185 } 3186 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3187 if (unlikely(r)) 3188 dm_integrity_io_error(ic, "writing superblock", r); 3189 } else { 3190 replay_journal(ic); 3191 if (ic->reset_recalculate_flag) { 3192 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3193 ic->sb->recalc_sector = cpu_to_le64(0); 3194 } 3195 if (ic->mode == 'B') { 3196 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3197 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3198 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3199 if (unlikely(r)) 3200 dm_integrity_io_error(ic, "writing superblock", r); 3201 3202 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3203 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3204 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3205 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3206 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3207 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3208 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3209 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3210 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3211 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3212 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3213 } 3214 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3215 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3216 } 3217 } 3218 3219 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3220 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3221 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3222 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3223 if (recalc_pos < ic->provided_data_sectors) { 3224 queue_work(ic->recalc_wq, &ic->recalc_work); 3225 } else if (recalc_pos > ic->provided_data_sectors) { 3226 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3227 recalc_write_super(ic); 3228 } 3229 } 3230 3231 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3232 ic->reboot_notifier.next = NULL; 3233 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3234 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3235 3236 #if 0 3237 /* set to 1 to stress test synchronous mode */ 3238 dm_integrity_enter_synchronous_mode(ic); 3239 #endif 3240 } 3241 3242 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3243 unsigned status_flags, char *result, unsigned maxlen) 3244 { 3245 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3246 unsigned arg_count; 3247 size_t sz = 0; 3248 3249 switch (type) { 3250 case STATUSTYPE_INFO: 3251 DMEMIT("%llu %llu", 3252 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3253 ic->provided_data_sectors); 3254 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3255 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3256 else 3257 DMEMIT(" -"); 3258 break; 3259 3260 case STATUSTYPE_TABLE: { 3261 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3262 watermark_percentage += ic->journal_entries / 2; 3263 do_div(watermark_percentage, ic->journal_entries); 3264 arg_count = 3; 3265 arg_count += !!ic->meta_dev; 3266 arg_count += ic->sectors_per_block != 1; 3267 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3268 arg_count += ic->reset_recalculate_flag; 3269 arg_count += ic->discard; 3270 arg_count += ic->mode == 'J'; 3271 arg_count += ic->mode == 'J'; 3272 arg_count += ic->mode == 'B'; 3273 arg_count += ic->mode == 'B'; 3274 arg_count += !!ic->internal_hash_alg.alg_string; 3275 arg_count += !!ic->journal_crypt_alg.alg_string; 3276 arg_count += !!ic->journal_mac_alg.alg_string; 3277 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3278 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3279 arg_count += ic->legacy_recalculate; 3280 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3281 ic->tag_size, ic->mode, arg_count); 3282 if (ic->meta_dev) 3283 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3284 if (ic->sectors_per_block != 1) 3285 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3286 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3287 DMEMIT(" recalculate"); 3288 if (ic->reset_recalculate_flag) 3289 DMEMIT(" reset_recalculate"); 3290 if (ic->discard) 3291 DMEMIT(" allow_discards"); 3292 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3293 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3294 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3295 if (ic->mode == 'J') { 3296 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 3297 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3298 } 3299 if (ic->mode == 'B') { 3300 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3301 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3302 } 3303 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3304 DMEMIT(" fix_padding"); 3305 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3306 DMEMIT(" fix_hmac"); 3307 if (ic->legacy_recalculate) 3308 DMEMIT(" legacy_recalculate"); 3309 3310 #define EMIT_ALG(a, n) \ 3311 do { \ 3312 if (ic->a.alg_string) { \ 3313 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3314 if (ic->a.key_string) \ 3315 DMEMIT(":%s", ic->a.key_string);\ 3316 } \ 3317 } while (0) 3318 EMIT_ALG(internal_hash_alg, "internal_hash"); 3319 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3320 EMIT_ALG(journal_mac_alg, "journal_mac"); 3321 break; 3322 } 3323 case STATUSTYPE_IMA: 3324 DMEMIT_TARGET_NAME_VERSION(ti->type); 3325 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", 3326 ic->dev->name, ic->start, ic->tag_size, ic->mode); 3327 3328 if (ic->meta_dev) 3329 DMEMIT(",meta_device=%s", ic->meta_dev->name); 3330 if (ic->sectors_per_block != 1) 3331 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); 3332 3333 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 3334 'y' : 'n'); 3335 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); 3336 DMEMIT(",fix_padding=%c", 3337 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); 3338 DMEMIT(",fix_hmac=%c", 3339 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); 3340 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); 3341 3342 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); 3343 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); 3344 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); 3345 DMEMIT(";"); 3346 break; 3347 } 3348 } 3349 3350 static int dm_integrity_iterate_devices(struct dm_target *ti, 3351 iterate_devices_callout_fn fn, void *data) 3352 { 3353 struct dm_integrity_c *ic = ti->private; 3354 3355 if (!ic->meta_dev) 3356 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3357 else 3358 return fn(ti, ic->dev, 0, ti->len, data); 3359 } 3360 3361 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3362 { 3363 struct dm_integrity_c *ic = ti->private; 3364 3365 if (ic->sectors_per_block > 1) { 3366 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3367 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3368 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3369 } 3370 } 3371 3372 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3373 { 3374 unsigned sector_space = JOURNAL_SECTOR_DATA; 3375 3376 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3377 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3378 JOURNAL_ENTRY_ROUNDUP); 3379 3380 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3381 sector_space -= JOURNAL_MAC_PER_SECTOR; 3382 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3383 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3384 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3385 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3386 } 3387 3388 static int calculate_device_limits(struct dm_integrity_c *ic) 3389 { 3390 __u64 initial_sectors; 3391 3392 calculate_journal_section_size(ic); 3393 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3394 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3395 return -EINVAL; 3396 ic->initial_sectors = initial_sectors; 3397 3398 if (!ic->meta_dev) { 3399 sector_t last_sector, last_area, last_offset; 3400 3401 /* we have to maintain excessive padding for compatibility with existing volumes */ 3402 __u64 metadata_run_padding = 3403 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3404 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3405 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3406 3407 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3408 metadata_run_padding) >> SECTOR_SHIFT; 3409 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3410 ic->log2_metadata_run = __ffs(ic->metadata_run); 3411 else 3412 ic->log2_metadata_run = -1; 3413 3414 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3415 last_sector = get_data_sector(ic, last_area, last_offset); 3416 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3417 return -EINVAL; 3418 } else { 3419 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3420 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3421 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3422 meta_size <<= ic->log2_buffer_sectors; 3423 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3424 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3425 return -EINVAL; 3426 ic->metadata_run = 1; 3427 ic->log2_metadata_run = 0; 3428 } 3429 3430 return 0; 3431 } 3432 3433 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3434 { 3435 if (!ic->meta_dev) { 3436 int test_bit; 3437 ic->provided_data_sectors = 0; 3438 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3439 __u64 prev_data_sectors = ic->provided_data_sectors; 3440 3441 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3442 if (calculate_device_limits(ic)) 3443 ic->provided_data_sectors = prev_data_sectors; 3444 } 3445 } else { 3446 ic->provided_data_sectors = ic->data_device_sectors; 3447 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3448 } 3449 } 3450 3451 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3452 { 3453 unsigned journal_sections; 3454 int test_bit; 3455 3456 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3457 memcpy(ic->sb->magic, SB_MAGIC, 8); 3458 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3459 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3460 if (ic->journal_mac_alg.alg_string) 3461 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3462 3463 calculate_journal_section_size(ic); 3464 journal_sections = journal_sectors / ic->journal_section_sectors; 3465 if (!journal_sections) 3466 journal_sections = 1; 3467 3468 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 3469 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 3470 get_random_bytes(ic->sb->salt, SALT_SIZE); 3471 } 3472 3473 if (!ic->meta_dev) { 3474 if (ic->fix_padding) 3475 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3476 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3477 if (!interleave_sectors) 3478 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3479 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3480 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3481 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3482 3483 get_provided_data_sectors(ic); 3484 if (!ic->provided_data_sectors) 3485 return -EINVAL; 3486 } else { 3487 ic->sb->log2_interleave_sectors = 0; 3488 3489 get_provided_data_sectors(ic); 3490 if (!ic->provided_data_sectors) 3491 return -EINVAL; 3492 3493 try_smaller_buffer: 3494 ic->sb->journal_sections = cpu_to_le32(0); 3495 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3496 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3497 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3498 if (test_journal_sections > journal_sections) 3499 continue; 3500 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3501 if (calculate_device_limits(ic)) 3502 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3503 3504 } 3505 if (!le32_to_cpu(ic->sb->journal_sections)) { 3506 if (ic->log2_buffer_sectors > 3) { 3507 ic->log2_buffer_sectors--; 3508 goto try_smaller_buffer; 3509 } 3510 return -EINVAL; 3511 } 3512 } 3513 3514 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3515 3516 sb_set_version(ic); 3517 3518 return 0; 3519 } 3520 3521 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3522 { 3523 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3524 struct blk_integrity bi; 3525 3526 memset(&bi, 0, sizeof(bi)); 3527 bi.profile = &dm_integrity_profile; 3528 bi.tuple_size = ic->tag_size; 3529 bi.tag_size = bi.tuple_size; 3530 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3531 3532 blk_integrity_register(disk, &bi); 3533 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3534 } 3535 3536 static void dm_integrity_free_page_list(struct page_list *pl) 3537 { 3538 unsigned i; 3539 3540 if (!pl) 3541 return; 3542 for (i = 0; pl[i].page; i++) 3543 __free_page(pl[i].page); 3544 kvfree(pl); 3545 } 3546 3547 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3548 { 3549 struct page_list *pl; 3550 unsigned i; 3551 3552 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3553 if (!pl) 3554 return NULL; 3555 3556 for (i = 0; i < n_pages; i++) { 3557 pl[i].page = alloc_page(GFP_KERNEL); 3558 if (!pl[i].page) { 3559 dm_integrity_free_page_list(pl); 3560 return NULL; 3561 } 3562 if (i) 3563 pl[i - 1].next = &pl[i]; 3564 } 3565 pl[i].page = NULL; 3566 pl[i].next = NULL; 3567 3568 return pl; 3569 } 3570 3571 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3572 { 3573 unsigned i; 3574 for (i = 0; i < ic->journal_sections; i++) 3575 kvfree(sl[i]); 3576 kvfree(sl); 3577 } 3578 3579 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3580 struct page_list *pl) 3581 { 3582 struct scatterlist **sl; 3583 unsigned i; 3584 3585 sl = kvmalloc_array(ic->journal_sections, 3586 sizeof(struct scatterlist *), 3587 GFP_KERNEL | __GFP_ZERO); 3588 if (!sl) 3589 return NULL; 3590 3591 for (i = 0; i < ic->journal_sections; i++) { 3592 struct scatterlist *s; 3593 unsigned start_index, start_offset; 3594 unsigned end_index, end_offset; 3595 unsigned n_pages; 3596 unsigned idx; 3597 3598 page_list_location(ic, i, 0, &start_index, &start_offset); 3599 page_list_location(ic, i, ic->journal_section_sectors - 1, 3600 &end_index, &end_offset); 3601 3602 n_pages = (end_index - start_index + 1); 3603 3604 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3605 GFP_KERNEL); 3606 if (!s) { 3607 dm_integrity_free_journal_scatterlist(ic, sl); 3608 return NULL; 3609 } 3610 3611 sg_init_table(s, n_pages); 3612 for (idx = start_index; idx <= end_index; idx++) { 3613 char *va = lowmem_page_address(pl[idx].page); 3614 unsigned start = 0, end = PAGE_SIZE; 3615 if (idx == start_index) 3616 start = start_offset; 3617 if (idx == end_index) 3618 end = end_offset + (1 << SECTOR_SHIFT); 3619 sg_set_buf(&s[idx - start_index], va + start, end - start); 3620 } 3621 3622 sl[i] = s; 3623 } 3624 3625 return sl; 3626 } 3627 3628 static void free_alg(struct alg_spec *a) 3629 { 3630 kfree_sensitive(a->alg_string); 3631 kfree_sensitive(a->key); 3632 memset(a, 0, sizeof *a); 3633 } 3634 3635 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3636 { 3637 char *k; 3638 3639 free_alg(a); 3640 3641 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3642 if (!a->alg_string) 3643 goto nomem; 3644 3645 k = strchr(a->alg_string, ':'); 3646 if (k) { 3647 *k = 0; 3648 a->key_string = k + 1; 3649 if (strlen(a->key_string) & 1) 3650 goto inval; 3651 3652 a->key_size = strlen(a->key_string) / 2; 3653 a->key = kmalloc(a->key_size, GFP_KERNEL); 3654 if (!a->key) 3655 goto nomem; 3656 if (hex2bin(a->key, a->key_string, a->key_size)) 3657 goto inval; 3658 } 3659 3660 return 0; 3661 inval: 3662 *error = error_inval; 3663 return -EINVAL; 3664 nomem: 3665 *error = "Out of memory for an argument"; 3666 return -ENOMEM; 3667 } 3668 3669 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3670 char *error_alg, char *error_key) 3671 { 3672 int r; 3673 3674 if (a->alg_string) { 3675 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3676 if (IS_ERR(*hash)) { 3677 *error = error_alg; 3678 r = PTR_ERR(*hash); 3679 *hash = NULL; 3680 return r; 3681 } 3682 3683 if (a->key) { 3684 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3685 if (r) { 3686 *error = error_key; 3687 return r; 3688 } 3689 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3690 *error = error_key; 3691 return -ENOKEY; 3692 } 3693 } 3694 3695 return 0; 3696 } 3697 3698 static int create_journal(struct dm_integrity_c *ic, char **error) 3699 { 3700 int r = 0; 3701 unsigned i; 3702 __u64 journal_pages, journal_desc_size, journal_tree_size; 3703 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3704 struct skcipher_request *req = NULL; 3705 3706 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3707 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3708 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3709 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3710 3711 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3712 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3713 journal_desc_size = journal_pages * sizeof(struct page_list); 3714 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3715 *error = "Journal doesn't fit into memory"; 3716 r = -ENOMEM; 3717 goto bad; 3718 } 3719 ic->journal_pages = journal_pages; 3720 3721 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3722 if (!ic->journal) { 3723 *error = "Could not allocate memory for journal"; 3724 r = -ENOMEM; 3725 goto bad; 3726 } 3727 if (ic->journal_crypt_alg.alg_string) { 3728 unsigned ivsize, blocksize; 3729 struct journal_completion comp; 3730 3731 comp.ic = ic; 3732 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3733 if (IS_ERR(ic->journal_crypt)) { 3734 *error = "Invalid journal cipher"; 3735 r = PTR_ERR(ic->journal_crypt); 3736 ic->journal_crypt = NULL; 3737 goto bad; 3738 } 3739 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3740 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3741 3742 if (ic->journal_crypt_alg.key) { 3743 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3744 ic->journal_crypt_alg.key_size); 3745 if (r) { 3746 *error = "Error setting encryption key"; 3747 goto bad; 3748 } 3749 } 3750 DEBUG_print("cipher %s, block size %u iv size %u\n", 3751 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3752 3753 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3754 if (!ic->journal_io) { 3755 *error = "Could not allocate memory for journal io"; 3756 r = -ENOMEM; 3757 goto bad; 3758 } 3759 3760 if (blocksize == 1) { 3761 struct scatterlist *sg; 3762 3763 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3764 if (!req) { 3765 *error = "Could not allocate crypt request"; 3766 r = -ENOMEM; 3767 goto bad; 3768 } 3769 3770 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3771 if (!crypt_iv) { 3772 *error = "Could not allocate iv"; 3773 r = -ENOMEM; 3774 goto bad; 3775 } 3776 3777 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3778 if (!ic->journal_xor) { 3779 *error = "Could not allocate memory for journal xor"; 3780 r = -ENOMEM; 3781 goto bad; 3782 } 3783 3784 sg = kvmalloc_array(ic->journal_pages + 1, 3785 sizeof(struct scatterlist), 3786 GFP_KERNEL); 3787 if (!sg) { 3788 *error = "Unable to allocate sg list"; 3789 r = -ENOMEM; 3790 goto bad; 3791 } 3792 sg_init_table(sg, ic->journal_pages + 1); 3793 for (i = 0; i < ic->journal_pages; i++) { 3794 char *va = lowmem_page_address(ic->journal_xor[i].page); 3795 clear_page(va); 3796 sg_set_buf(&sg[i], va, PAGE_SIZE); 3797 } 3798 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3799 3800 skcipher_request_set_crypt(req, sg, sg, 3801 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3802 init_completion(&comp.comp); 3803 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3804 if (do_crypt(true, req, &comp)) 3805 wait_for_completion(&comp.comp); 3806 kvfree(sg); 3807 r = dm_integrity_failed(ic); 3808 if (r) { 3809 *error = "Unable to encrypt journal"; 3810 goto bad; 3811 } 3812 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3813 3814 crypto_free_skcipher(ic->journal_crypt); 3815 ic->journal_crypt = NULL; 3816 } else { 3817 unsigned crypt_len = roundup(ivsize, blocksize); 3818 3819 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3820 if (!req) { 3821 *error = "Could not allocate crypt request"; 3822 r = -ENOMEM; 3823 goto bad; 3824 } 3825 3826 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3827 if (!crypt_iv) { 3828 *error = "Could not allocate iv"; 3829 r = -ENOMEM; 3830 goto bad; 3831 } 3832 3833 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3834 if (!crypt_data) { 3835 *error = "Unable to allocate crypt data"; 3836 r = -ENOMEM; 3837 goto bad; 3838 } 3839 3840 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3841 if (!ic->journal_scatterlist) { 3842 *error = "Unable to allocate sg list"; 3843 r = -ENOMEM; 3844 goto bad; 3845 } 3846 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3847 if (!ic->journal_io_scatterlist) { 3848 *error = "Unable to allocate sg list"; 3849 r = -ENOMEM; 3850 goto bad; 3851 } 3852 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3853 sizeof(struct skcipher_request *), 3854 GFP_KERNEL | __GFP_ZERO); 3855 if (!ic->sk_requests) { 3856 *error = "Unable to allocate sk requests"; 3857 r = -ENOMEM; 3858 goto bad; 3859 } 3860 for (i = 0; i < ic->journal_sections; i++) { 3861 struct scatterlist sg; 3862 struct skcipher_request *section_req; 3863 __le32 section_le = cpu_to_le32(i); 3864 3865 memset(crypt_iv, 0x00, ivsize); 3866 memset(crypt_data, 0x00, crypt_len); 3867 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3868 3869 sg_init_one(&sg, crypt_data, crypt_len); 3870 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3871 init_completion(&comp.comp); 3872 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3873 if (do_crypt(true, req, &comp)) 3874 wait_for_completion(&comp.comp); 3875 3876 r = dm_integrity_failed(ic); 3877 if (r) { 3878 *error = "Unable to generate iv"; 3879 goto bad; 3880 } 3881 3882 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3883 if (!section_req) { 3884 *error = "Unable to allocate crypt request"; 3885 r = -ENOMEM; 3886 goto bad; 3887 } 3888 section_req->iv = kmalloc_array(ivsize, 2, 3889 GFP_KERNEL); 3890 if (!section_req->iv) { 3891 skcipher_request_free(section_req); 3892 *error = "Unable to allocate iv"; 3893 r = -ENOMEM; 3894 goto bad; 3895 } 3896 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3897 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3898 ic->sk_requests[i] = section_req; 3899 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3900 } 3901 } 3902 } 3903 3904 for (i = 0; i < N_COMMIT_IDS; i++) { 3905 unsigned j; 3906 retest_commit_id: 3907 for (j = 0; j < i; j++) { 3908 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3909 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3910 goto retest_commit_id; 3911 } 3912 } 3913 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3914 } 3915 3916 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3917 if (journal_tree_size > ULONG_MAX) { 3918 *error = "Journal doesn't fit into memory"; 3919 r = -ENOMEM; 3920 goto bad; 3921 } 3922 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3923 if (!ic->journal_tree) { 3924 *error = "Could not allocate memory for journal tree"; 3925 r = -ENOMEM; 3926 } 3927 bad: 3928 kfree(crypt_data); 3929 kfree(crypt_iv); 3930 skcipher_request_free(req); 3931 3932 return r; 3933 } 3934 3935 /* 3936 * Construct a integrity mapping 3937 * 3938 * Arguments: 3939 * device 3940 * offset from the start of the device 3941 * tag size 3942 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3943 * number of optional arguments 3944 * optional arguments: 3945 * journal_sectors 3946 * interleave_sectors 3947 * buffer_sectors 3948 * journal_watermark 3949 * commit_time 3950 * meta_device 3951 * block_size 3952 * sectors_per_bit 3953 * bitmap_flush_interval 3954 * internal_hash 3955 * journal_crypt 3956 * journal_mac 3957 * recalculate 3958 */ 3959 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3960 { 3961 struct dm_integrity_c *ic; 3962 char dummy; 3963 int r; 3964 unsigned extra_args; 3965 struct dm_arg_set as; 3966 static const struct dm_arg _args[] = { 3967 {0, 18, "Invalid number of feature args"}, 3968 }; 3969 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3970 bool should_write_sb; 3971 __u64 threshold; 3972 unsigned long long start; 3973 __s8 log2_sectors_per_bitmap_bit = -1; 3974 __s8 log2_blocks_per_bitmap_bit; 3975 __u64 bits_in_journal; 3976 __u64 n_bitmap_bits; 3977 3978 #define DIRECT_ARGUMENTS 4 3979 3980 if (argc <= DIRECT_ARGUMENTS) { 3981 ti->error = "Invalid argument count"; 3982 return -EINVAL; 3983 } 3984 3985 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3986 if (!ic) { 3987 ti->error = "Cannot allocate integrity context"; 3988 return -ENOMEM; 3989 } 3990 ti->private = ic; 3991 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3992 ic->ti = ti; 3993 3994 ic->in_progress = RB_ROOT; 3995 INIT_LIST_HEAD(&ic->wait_list); 3996 init_waitqueue_head(&ic->endio_wait); 3997 bio_list_init(&ic->flush_bio_list); 3998 init_waitqueue_head(&ic->copy_to_journal_wait); 3999 init_completion(&ic->crypto_backoff); 4000 atomic64_set(&ic->number_of_mismatches, 0); 4001 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 4002 4003 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 4004 if (r) { 4005 ti->error = "Device lookup failed"; 4006 goto bad; 4007 } 4008 4009 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 4010 ti->error = "Invalid starting offset"; 4011 r = -EINVAL; 4012 goto bad; 4013 } 4014 ic->start = start; 4015 4016 if (strcmp(argv[2], "-")) { 4017 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 4018 ti->error = "Invalid tag size"; 4019 r = -EINVAL; 4020 goto bad; 4021 } 4022 } 4023 4024 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 4025 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 4026 ic->mode = argv[3][0]; 4027 } else { 4028 ti->error = "Invalid mode (expecting J, B, D, R)"; 4029 r = -EINVAL; 4030 goto bad; 4031 } 4032 4033 journal_sectors = 0; 4034 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4035 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4036 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4037 sync_msec = DEFAULT_SYNC_MSEC; 4038 ic->sectors_per_block = 1; 4039 4040 as.argc = argc - DIRECT_ARGUMENTS; 4041 as.argv = argv + DIRECT_ARGUMENTS; 4042 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4043 if (r) 4044 goto bad; 4045 4046 while (extra_args--) { 4047 const char *opt_string; 4048 unsigned val; 4049 unsigned long long llval; 4050 opt_string = dm_shift_arg(&as); 4051 if (!opt_string) { 4052 r = -EINVAL; 4053 ti->error = "Not enough feature arguments"; 4054 goto bad; 4055 } 4056 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4057 journal_sectors = val ? val : 1; 4058 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4059 interleave_sectors = val; 4060 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4061 buffer_sectors = val; 4062 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4063 journal_watermark = val; 4064 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4065 sync_msec = val; 4066 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4067 if (ic->meta_dev) { 4068 dm_put_device(ti, ic->meta_dev); 4069 ic->meta_dev = NULL; 4070 } 4071 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4072 dm_table_get_mode(ti->table), &ic->meta_dev); 4073 if (r) { 4074 ti->error = "Device lookup failed"; 4075 goto bad; 4076 } 4077 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4078 if (val < 1 << SECTOR_SHIFT || 4079 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4080 (val & (val -1))) { 4081 r = -EINVAL; 4082 ti->error = "Invalid block_size argument"; 4083 goto bad; 4084 } 4085 ic->sectors_per_block = val >> SECTOR_SHIFT; 4086 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4087 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4088 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4089 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4090 r = -EINVAL; 4091 ti->error = "Invalid bitmap_flush_interval argument"; 4092 goto bad; 4093 } 4094 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4095 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4096 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4097 "Invalid internal_hash argument"); 4098 if (r) 4099 goto bad; 4100 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4101 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4102 "Invalid journal_crypt argument"); 4103 if (r) 4104 goto bad; 4105 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4106 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4107 "Invalid journal_mac argument"); 4108 if (r) 4109 goto bad; 4110 } else if (!strcmp(opt_string, "recalculate")) { 4111 ic->recalculate_flag = true; 4112 } else if (!strcmp(opt_string, "reset_recalculate")) { 4113 ic->recalculate_flag = true; 4114 ic->reset_recalculate_flag = true; 4115 } else if (!strcmp(opt_string, "allow_discards")) { 4116 ic->discard = true; 4117 } else if (!strcmp(opt_string, "fix_padding")) { 4118 ic->fix_padding = true; 4119 } else if (!strcmp(opt_string, "fix_hmac")) { 4120 ic->fix_hmac = true; 4121 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4122 ic->legacy_recalculate = true; 4123 } else { 4124 r = -EINVAL; 4125 ti->error = "Invalid argument"; 4126 goto bad; 4127 } 4128 } 4129 4130 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev); 4131 if (!ic->meta_dev) 4132 ic->meta_device_sectors = ic->data_device_sectors; 4133 else 4134 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev); 4135 4136 if (!journal_sectors) { 4137 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4138 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4139 } 4140 4141 if (!buffer_sectors) 4142 buffer_sectors = 1; 4143 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4144 4145 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4146 "Invalid internal hash", "Error setting internal hash key"); 4147 if (r) 4148 goto bad; 4149 4150 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4151 "Invalid journal mac", "Error setting journal mac key"); 4152 if (r) 4153 goto bad; 4154 4155 if (!ic->tag_size) { 4156 if (!ic->internal_hash) { 4157 ti->error = "Unknown tag size"; 4158 r = -EINVAL; 4159 goto bad; 4160 } 4161 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4162 } 4163 if (ic->tag_size > MAX_TAG_SIZE) { 4164 ti->error = "Too big tag size"; 4165 r = -EINVAL; 4166 goto bad; 4167 } 4168 if (!(ic->tag_size & (ic->tag_size - 1))) 4169 ic->log2_tag_size = __ffs(ic->tag_size); 4170 else 4171 ic->log2_tag_size = -1; 4172 4173 if (ic->mode == 'B' && !ic->internal_hash) { 4174 r = -EINVAL; 4175 ti->error = "Bitmap mode can be only used with internal hash"; 4176 goto bad; 4177 } 4178 4179 if (ic->discard && !ic->internal_hash) { 4180 r = -EINVAL; 4181 ti->error = "Discard can be only used with internal hash"; 4182 goto bad; 4183 } 4184 4185 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4186 ic->autocommit_msec = sync_msec; 4187 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4188 4189 ic->io = dm_io_client_create(); 4190 if (IS_ERR(ic->io)) { 4191 r = PTR_ERR(ic->io); 4192 ic->io = NULL; 4193 ti->error = "Cannot allocate dm io"; 4194 goto bad; 4195 } 4196 4197 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4198 if (r) { 4199 ti->error = "Cannot allocate mempool"; 4200 goto bad; 4201 } 4202 4203 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4204 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4205 if (!ic->metadata_wq) { 4206 ti->error = "Cannot allocate workqueue"; 4207 r = -ENOMEM; 4208 goto bad; 4209 } 4210 4211 /* 4212 * If this workqueue were percpu, it would cause bio reordering 4213 * and reduced performance. 4214 */ 4215 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4216 if (!ic->wait_wq) { 4217 ti->error = "Cannot allocate workqueue"; 4218 r = -ENOMEM; 4219 goto bad; 4220 } 4221 4222 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4223 METADATA_WORKQUEUE_MAX_ACTIVE); 4224 if (!ic->offload_wq) { 4225 ti->error = "Cannot allocate workqueue"; 4226 r = -ENOMEM; 4227 goto bad; 4228 } 4229 4230 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4231 if (!ic->commit_wq) { 4232 ti->error = "Cannot allocate workqueue"; 4233 r = -ENOMEM; 4234 goto bad; 4235 } 4236 INIT_WORK(&ic->commit_work, integrity_commit); 4237 4238 if (ic->mode == 'J' || ic->mode == 'B') { 4239 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4240 if (!ic->writer_wq) { 4241 ti->error = "Cannot allocate workqueue"; 4242 r = -ENOMEM; 4243 goto bad; 4244 } 4245 INIT_WORK(&ic->writer_work, integrity_writer); 4246 } 4247 4248 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4249 if (!ic->sb) { 4250 r = -ENOMEM; 4251 ti->error = "Cannot allocate superblock area"; 4252 goto bad; 4253 } 4254 4255 r = sync_rw_sb(ic, REQ_OP_READ, 0); 4256 if (r) { 4257 ti->error = "Error reading superblock"; 4258 goto bad; 4259 } 4260 should_write_sb = false; 4261 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4262 if (ic->mode != 'R') { 4263 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4264 r = -EINVAL; 4265 ti->error = "The device is not initialized"; 4266 goto bad; 4267 } 4268 } 4269 4270 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4271 if (r) { 4272 ti->error = "Could not initialize superblock"; 4273 goto bad; 4274 } 4275 if (ic->mode != 'R') 4276 should_write_sb = true; 4277 } 4278 4279 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) { 4280 r = -EINVAL; 4281 ti->error = "Unknown version"; 4282 goto bad; 4283 } 4284 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4285 r = -EINVAL; 4286 ti->error = "Tag size doesn't match the information in superblock"; 4287 goto bad; 4288 } 4289 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4290 r = -EINVAL; 4291 ti->error = "Block size doesn't match the information in superblock"; 4292 goto bad; 4293 } 4294 if (!le32_to_cpu(ic->sb->journal_sections)) { 4295 r = -EINVAL; 4296 ti->error = "Corrupted superblock, journal_sections is 0"; 4297 goto bad; 4298 } 4299 /* make sure that ti->max_io_len doesn't overflow */ 4300 if (!ic->meta_dev) { 4301 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4302 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4303 r = -EINVAL; 4304 ti->error = "Invalid interleave_sectors in the superblock"; 4305 goto bad; 4306 } 4307 } else { 4308 if (ic->sb->log2_interleave_sectors) { 4309 r = -EINVAL; 4310 ti->error = "Invalid interleave_sectors in the superblock"; 4311 goto bad; 4312 } 4313 } 4314 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4315 r = -EINVAL; 4316 ti->error = "Journal mac mismatch"; 4317 goto bad; 4318 } 4319 4320 get_provided_data_sectors(ic); 4321 if (!ic->provided_data_sectors) { 4322 r = -EINVAL; 4323 ti->error = "The device is too small"; 4324 goto bad; 4325 } 4326 4327 try_smaller_buffer: 4328 r = calculate_device_limits(ic); 4329 if (r) { 4330 if (ic->meta_dev) { 4331 if (ic->log2_buffer_sectors > 3) { 4332 ic->log2_buffer_sectors--; 4333 goto try_smaller_buffer; 4334 } 4335 } 4336 ti->error = "The device is too small"; 4337 goto bad; 4338 } 4339 4340 if (log2_sectors_per_bitmap_bit < 0) 4341 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4342 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4343 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4344 4345 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4346 if (bits_in_journal > UINT_MAX) 4347 bits_in_journal = UINT_MAX; 4348 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4349 log2_sectors_per_bitmap_bit++; 4350 4351 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4352 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4353 if (should_write_sb) { 4354 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4355 } 4356 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4357 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4358 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4359 4360 if (!ic->meta_dev) 4361 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4362 4363 if (ti->len > ic->provided_data_sectors) { 4364 r = -EINVAL; 4365 ti->error = "Not enough provided sectors for requested mapping size"; 4366 goto bad; 4367 } 4368 4369 4370 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4371 threshold += 50; 4372 do_div(threshold, 100); 4373 ic->free_sectors_threshold = threshold; 4374 4375 DEBUG_print("initialized:\n"); 4376 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4377 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4378 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4379 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4380 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4381 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 4382 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4383 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4384 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev)); 4385 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4386 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4387 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4388 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4389 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4390 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4391 4392 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4393 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4394 ic->sb->recalc_sector = cpu_to_le64(0); 4395 } 4396 4397 if (ic->internal_hash) { 4398 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4399 if (!ic->recalc_wq ) { 4400 ti->error = "Cannot allocate workqueue"; 4401 r = -ENOMEM; 4402 goto bad; 4403 } 4404 INIT_WORK(&ic->recalc_work, integrity_recalc); 4405 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 4406 if (!ic->recalc_buffer) { 4407 ti->error = "Cannot allocate buffer for recalculating"; 4408 r = -ENOMEM; 4409 goto bad; 4410 } 4411 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 4412 ic->tag_size, GFP_KERNEL); 4413 if (!ic->recalc_tags) { 4414 ti->error = "Cannot allocate tags for recalculating"; 4415 r = -ENOMEM; 4416 goto bad; 4417 } 4418 } else { 4419 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 4420 ti->error = "Recalculate can only be specified with internal_hash"; 4421 r = -EINVAL; 4422 goto bad; 4423 } 4424 } 4425 4426 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 4427 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 4428 dm_integrity_disable_recalculate(ic)) { 4429 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 4430 r = -EOPNOTSUPP; 4431 goto bad; 4432 } 4433 4434 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4435 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 4436 if (IS_ERR(ic->bufio)) { 4437 r = PTR_ERR(ic->bufio); 4438 ti->error = "Cannot initialize dm-bufio"; 4439 ic->bufio = NULL; 4440 goto bad; 4441 } 4442 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4443 4444 if (ic->mode != 'R') { 4445 r = create_journal(ic, &ti->error); 4446 if (r) 4447 goto bad; 4448 4449 } 4450 4451 if (ic->mode == 'B') { 4452 unsigned i; 4453 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4454 4455 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4456 if (!ic->recalc_bitmap) { 4457 r = -ENOMEM; 4458 goto bad; 4459 } 4460 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4461 if (!ic->may_write_bitmap) { 4462 r = -ENOMEM; 4463 goto bad; 4464 } 4465 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4466 if (!ic->bbs) { 4467 r = -ENOMEM; 4468 goto bad; 4469 } 4470 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4471 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4472 struct bitmap_block_status *bbs = &ic->bbs[i]; 4473 unsigned sector, pl_index, pl_offset; 4474 4475 INIT_WORK(&bbs->work, bitmap_block_work); 4476 bbs->ic = ic; 4477 bbs->idx = i; 4478 bio_list_init(&bbs->bio_queue); 4479 spin_lock_init(&bbs->bio_queue_lock); 4480 4481 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4482 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4483 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4484 4485 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4486 } 4487 } 4488 4489 if (should_write_sb) { 4490 int r; 4491 4492 init_journal(ic, 0, ic->journal_sections, 0); 4493 r = dm_integrity_failed(ic); 4494 if (unlikely(r)) { 4495 ti->error = "Error initializing journal"; 4496 goto bad; 4497 } 4498 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4499 if (r) { 4500 ti->error = "Error initializing superblock"; 4501 goto bad; 4502 } 4503 ic->just_formatted = true; 4504 } 4505 4506 if (!ic->meta_dev) { 4507 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4508 if (r) 4509 goto bad; 4510 } 4511 if (ic->mode == 'B') { 4512 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4513 if (!max_io_len) 4514 max_io_len = 1U << 31; 4515 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4516 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4517 r = dm_set_target_max_io_len(ti, max_io_len); 4518 if (r) 4519 goto bad; 4520 } 4521 } 4522 4523 if (!ic->internal_hash) 4524 dm_integrity_set(ti, ic); 4525 4526 ti->num_flush_bios = 1; 4527 ti->flush_supported = true; 4528 if (ic->discard) 4529 ti->num_discard_bios = 1; 4530 4531 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 4532 return 0; 4533 4534 bad: 4535 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 4536 dm_integrity_dtr(ti); 4537 return r; 4538 } 4539 4540 static void dm_integrity_dtr(struct dm_target *ti) 4541 { 4542 struct dm_integrity_c *ic = ti->private; 4543 4544 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4545 BUG_ON(!list_empty(&ic->wait_list)); 4546 4547 if (ic->metadata_wq) 4548 destroy_workqueue(ic->metadata_wq); 4549 if (ic->wait_wq) 4550 destroy_workqueue(ic->wait_wq); 4551 if (ic->offload_wq) 4552 destroy_workqueue(ic->offload_wq); 4553 if (ic->commit_wq) 4554 destroy_workqueue(ic->commit_wq); 4555 if (ic->writer_wq) 4556 destroy_workqueue(ic->writer_wq); 4557 if (ic->recalc_wq) 4558 destroy_workqueue(ic->recalc_wq); 4559 vfree(ic->recalc_buffer); 4560 kvfree(ic->recalc_tags); 4561 kvfree(ic->bbs); 4562 if (ic->bufio) 4563 dm_bufio_client_destroy(ic->bufio); 4564 mempool_exit(&ic->journal_io_mempool); 4565 if (ic->io) 4566 dm_io_client_destroy(ic->io); 4567 if (ic->dev) 4568 dm_put_device(ti, ic->dev); 4569 if (ic->meta_dev) 4570 dm_put_device(ti, ic->meta_dev); 4571 dm_integrity_free_page_list(ic->journal); 4572 dm_integrity_free_page_list(ic->journal_io); 4573 dm_integrity_free_page_list(ic->journal_xor); 4574 dm_integrity_free_page_list(ic->recalc_bitmap); 4575 dm_integrity_free_page_list(ic->may_write_bitmap); 4576 if (ic->journal_scatterlist) 4577 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4578 if (ic->journal_io_scatterlist) 4579 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4580 if (ic->sk_requests) { 4581 unsigned i; 4582 4583 for (i = 0; i < ic->journal_sections; i++) { 4584 struct skcipher_request *req = ic->sk_requests[i]; 4585 if (req) { 4586 kfree_sensitive(req->iv); 4587 skcipher_request_free(req); 4588 } 4589 } 4590 kvfree(ic->sk_requests); 4591 } 4592 kvfree(ic->journal_tree); 4593 if (ic->sb) 4594 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4595 4596 if (ic->internal_hash) 4597 crypto_free_shash(ic->internal_hash); 4598 free_alg(&ic->internal_hash_alg); 4599 4600 if (ic->journal_crypt) 4601 crypto_free_skcipher(ic->journal_crypt); 4602 free_alg(&ic->journal_crypt_alg); 4603 4604 if (ic->journal_mac) 4605 crypto_free_shash(ic->journal_mac); 4606 free_alg(&ic->journal_mac_alg); 4607 4608 kfree(ic); 4609 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 4610 } 4611 4612 static struct target_type integrity_target = { 4613 .name = "integrity", 4614 .version = {1, 10, 0}, 4615 .module = THIS_MODULE, 4616 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4617 .ctr = dm_integrity_ctr, 4618 .dtr = dm_integrity_dtr, 4619 .map = dm_integrity_map, 4620 .postsuspend = dm_integrity_postsuspend, 4621 .resume = dm_integrity_resume, 4622 .status = dm_integrity_status, 4623 .iterate_devices = dm_integrity_iterate_devices, 4624 .io_hints = dm_integrity_io_hints, 4625 }; 4626 4627 static int __init dm_integrity_init(void) 4628 { 4629 int r; 4630 4631 journal_io_cache = kmem_cache_create("integrity_journal_io", 4632 sizeof(struct journal_io), 0, 0, NULL); 4633 if (!journal_io_cache) { 4634 DMERR("can't allocate journal io cache"); 4635 return -ENOMEM; 4636 } 4637 4638 r = dm_register_target(&integrity_target); 4639 4640 if (r < 0) 4641 DMERR("register failed %d", r); 4642 4643 return r; 4644 } 4645 4646 static void __exit dm_integrity_exit(void) 4647 { 4648 dm_unregister_target(&integrity_target); 4649 kmem_cache_destroy(journal_io_cache); 4650 } 4651 4652 module_init(dm_integrity_init); 4653 module_exit(dm_integrity_exit); 4654 4655 MODULE_AUTHOR("Milan Broz"); 4656 MODULE_AUTHOR("Mikulas Patocka"); 4657 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4658 MODULE_LICENSE("GPL"); 4659