1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 4 * Copyright (C) 2016-2017 Milan Broz 5 * Copyright (C) 2016-2017 Mikulas Patocka 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include "dm-bio-record.h" 11 12 #include <linux/compiler.h> 13 #include <linux/module.h> 14 #include <linux/device-mapper.h> 15 #include <linux/dm-io.h> 16 #include <linux/vmalloc.h> 17 #include <linux/sort.h> 18 #include <linux/rbtree.h> 19 #include <linux/delay.h> 20 #include <linux/random.h> 21 #include <linux/reboot.h> 22 #include <crypto/hash.h> 23 #include <crypto/skcipher.h> 24 #include <linux/async_tx.h> 25 #include <linux/dm-bufio.h> 26 27 #include "dm-audit.h" 28 29 #define DM_MSG_PREFIX "integrity" 30 31 #define DEFAULT_INTERLEAVE_SECTORS 32768 32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 34 #define DEFAULT_BUFFER_SECTORS 128 35 #define DEFAULT_JOURNAL_WATERMARK 50 36 #define DEFAULT_SYNC_MSEC 10000 37 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192) 38 #define MIN_LOG2_INTERLEAVE_SECTORS 3 39 #define MAX_LOG2_INTERLEAVE_SECTORS 31 40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 41 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048) 42 #define RECALC_WRITE_SUPER 16 43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 44 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 45 #define DISCARD_FILLER 0xf6 46 #define SALT_SIZE 16 47 48 /* 49 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 50 * so it should not be enabled in the official kernel 51 */ 52 //#define DEBUG_PRINT 53 //#define INTERNAL_VERIFY 54 55 /* 56 * On disk structures 57 */ 58 59 #define SB_MAGIC "integrt" 60 #define SB_VERSION_1 1 61 #define SB_VERSION_2 2 62 #define SB_VERSION_3 3 63 #define SB_VERSION_4 4 64 #define SB_VERSION_5 5 65 #define SB_SECTORS 8 66 #define MAX_SECTORS_PER_BLOCK 8 67 68 struct superblock { 69 __u8 magic[8]; 70 __u8 version; 71 __u8 log2_interleave_sectors; 72 __le16 integrity_tag_size; 73 __le32 journal_sections; 74 __le64 provided_data_sectors; /* userspace uses this value */ 75 __le32 flags; 76 __u8 log2_sectors_per_block; 77 __u8 log2_blocks_per_bitmap_bit; 78 __u8 pad[2]; 79 __le64 recalc_sector; 80 __u8 pad2[8]; 81 __u8 salt[SALT_SIZE]; 82 }; 83 84 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 85 #define SB_FLAG_RECALCULATING 0x2 86 #define SB_FLAG_DIRTY_BITMAP 0x4 87 #define SB_FLAG_FIXED_PADDING 0x8 88 #define SB_FLAG_FIXED_HMAC 0x10 89 90 #define JOURNAL_ENTRY_ROUNDUP 8 91 92 typedef __le64 commit_id_t; 93 #define JOURNAL_MAC_PER_SECTOR 8 94 95 struct journal_entry { 96 union { 97 struct { 98 __le32 sector_lo; 99 __le32 sector_hi; 100 } s; 101 __le64 sector; 102 } u; 103 commit_id_t last_bytes[]; 104 /* __u8 tag[0]; */ 105 }; 106 107 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 108 109 #if BITS_PER_LONG == 64 110 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 111 #else 112 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 113 #endif 114 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 115 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 116 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1)) 117 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 118 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2)) 119 120 #define JOURNAL_BLOCK_SECTORS 8 121 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 122 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 123 124 struct journal_sector { 125 struct_group(sectors, 126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 127 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 128 ); 129 commit_id_t commit_id; 130 }; 131 132 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 133 134 #define METADATA_PADDING_SECTORS 8 135 136 #define N_COMMIT_IDS 4 137 138 static unsigned char prev_commit_seq(unsigned char seq) 139 { 140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 141 } 142 143 static unsigned char next_commit_seq(unsigned char seq) 144 { 145 return (seq + 1) % N_COMMIT_IDS; 146 } 147 148 /* 149 * In-memory structures 150 */ 151 152 struct journal_node { 153 struct rb_node node; 154 sector_t sector; 155 }; 156 157 struct alg_spec { 158 char *alg_string; 159 char *key_string; 160 __u8 *key; 161 unsigned int key_size; 162 }; 163 164 struct dm_integrity_c { 165 struct dm_dev *dev; 166 struct dm_dev *meta_dev; 167 unsigned int tag_size; 168 __s8 log2_tag_size; 169 sector_t start; 170 mempool_t journal_io_mempool; 171 struct dm_io_client *io; 172 struct dm_bufio_client *bufio; 173 struct workqueue_struct *metadata_wq; 174 struct superblock *sb; 175 unsigned int journal_pages; 176 unsigned int n_bitmap_blocks; 177 178 struct page_list *journal; 179 struct page_list *journal_io; 180 struct page_list *journal_xor; 181 struct page_list *recalc_bitmap; 182 struct page_list *may_write_bitmap; 183 struct bitmap_block_status *bbs; 184 unsigned int bitmap_flush_interval; 185 int synchronous_mode; 186 struct bio_list synchronous_bios; 187 struct delayed_work bitmap_flush_work; 188 189 struct crypto_skcipher *journal_crypt; 190 struct scatterlist **journal_scatterlist; 191 struct scatterlist **journal_io_scatterlist; 192 struct skcipher_request **sk_requests; 193 194 struct crypto_shash *journal_mac; 195 196 struct journal_node *journal_tree; 197 struct rb_root journal_tree_root; 198 199 sector_t provided_data_sectors; 200 201 unsigned short journal_entry_size; 202 unsigned char journal_entries_per_sector; 203 unsigned char journal_section_entries; 204 unsigned short journal_section_sectors; 205 unsigned int journal_sections; 206 unsigned int journal_entries; 207 sector_t data_device_sectors; 208 sector_t meta_device_sectors; 209 unsigned int initial_sectors; 210 unsigned int metadata_run; 211 __s8 log2_metadata_run; 212 __u8 log2_buffer_sectors; 213 __u8 sectors_per_block; 214 __u8 log2_blocks_per_bitmap_bit; 215 216 unsigned char mode; 217 218 int failed; 219 220 struct crypto_shash *internal_hash; 221 222 struct dm_target *ti; 223 224 /* these variables are locked with endio_wait.lock */ 225 struct rb_root in_progress; 226 struct list_head wait_list; 227 wait_queue_head_t endio_wait; 228 struct workqueue_struct *wait_wq; 229 struct workqueue_struct *offload_wq; 230 231 unsigned char commit_seq; 232 commit_id_t commit_ids[N_COMMIT_IDS]; 233 234 unsigned int committed_section; 235 unsigned int n_committed_sections; 236 237 unsigned int uncommitted_section; 238 unsigned int n_uncommitted_sections; 239 240 unsigned int free_section; 241 unsigned char free_section_entry; 242 unsigned int free_sectors; 243 244 unsigned int free_sectors_threshold; 245 246 struct workqueue_struct *commit_wq; 247 struct work_struct commit_work; 248 249 struct workqueue_struct *writer_wq; 250 struct work_struct writer_work; 251 252 struct workqueue_struct *recalc_wq; 253 struct work_struct recalc_work; 254 255 struct bio_list flush_bio_list; 256 257 unsigned long autocommit_jiffies; 258 struct timer_list autocommit_timer; 259 unsigned int autocommit_msec; 260 261 wait_queue_head_t copy_to_journal_wait; 262 263 struct completion crypto_backoff; 264 265 bool wrote_to_journal; 266 bool journal_uptodate; 267 bool just_formatted; 268 bool recalculate_flag; 269 bool reset_recalculate_flag; 270 bool discard; 271 bool fix_padding; 272 bool fix_hmac; 273 bool legacy_recalculate; 274 275 struct alg_spec internal_hash_alg; 276 struct alg_spec journal_crypt_alg; 277 struct alg_spec journal_mac_alg; 278 279 atomic64_t number_of_mismatches; 280 281 mempool_t recheck_pool; 282 283 struct notifier_block reboot_notifier; 284 }; 285 286 struct dm_integrity_range { 287 sector_t logical_sector; 288 sector_t n_sectors; 289 bool waiting; 290 union { 291 struct rb_node node; 292 struct { 293 struct task_struct *task; 294 struct list_head wait_entry; 295 }; 296 }; 297 }; 298 299 struct dm_integrity_io { 300 struct work_struct work; 301 302 struct dm_integrity_c *ic; 303 enum req_op op; 304 bool fua; 305 306 struct dm_integrity_range range; 307 308 sector_t metadata_block; 309 unsigned int metadata_offset; 310 311 atomic_t in_flight; 312 blk_status_t bi_status; 313 314 struct completion *completion; 315 316 struct dm_bio_details bio_details; 317 }; 318 319 struct journal_completion { 320 struct dm_integrity_c *ic; 321 atomic_t in_flight; 322 struct completion comp; 323 }; 324 325 struct journal_io { 326 struct dm_integrity_range range; 327 struct journal_completion *comp; 328 }; 329 330 struct bitmap_block_status { 331 struct work_struct work; 332 struct dm_integrity_c *ic; 333 unsigned int idx; 334 unsigned long *bitmap; 335 struct bio_list bio_queue; 336 spinlock_t bio_queue_lock; 337 338 }; 339 340 static struct kmem_cache *journal_io_cache; 341 342 #define JOURNAL_IO_MEMPOOL 32 343 344 #ifdef DEBUG_PRINT 345 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 346 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \ 347 len ? ": " : "", len, bytes) 348 #else 349 #define DEBUG_print(x, ...) do { } while (0) 350 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 351 #endif 352 353 static void dm_integrity_prepare(struct request *rq) 354 { 355 } 356 357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 358 { 359 } 360 361 /* 362 * DM Integrity profile, protection is performed layer above (dm-crypt) 363 */ 364 static const struct blk_integrity_profile dm_integrity_profile = { 365 .name = "DM-DIF-EXT-TAG", 366 .generate_fn = NULL, 367 .verify_fn = NULL, 368 .prepare_fn = dm_integrity_prepare, 369 .complete_fn = dm_integrity_complete, 370 }; 371 372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 373 static void integrity_bio_wait(struct work_struct *w); 374 static void dm_integrity_dtr(struct dm_target *ti); 375 376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 377 { 378 if (err == -EILSEQ) 379 atomic64_inc(&ic->number_of_mismatches); 380 if (!cmpxchg(&ic->failed, 0, err)) 381 DMERR("Error on %s: %d", msg, err); 382 } 383 384 static int dm_integrity_failed(struct dm_integrity_c *ic) 385 { 386 return READ_ONCE(ic->failed); 387 } 388 389 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 390 { 391 if (ic->legacy_recalculate) 392 return false; 393 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 394 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 395 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 396 return true; 397 return false; 398 } 399 400 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i, 401 unsigned int j, unsigned char seq) 402 { 403 /* 404 * Xor the number with section and sector, so that if a piece of 405 * journal is written at wrong place, it is detected. 406 */ 407 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 408 } 409 410 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 411 sector_t *area, sector_t *offset) 412 { 413 if (!ic->meta_dev) { 414 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 415 *area = data_sector >> log2_interleave_sectors; 416 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1); 417 } else { 418 *area = 0; 419 *offset = data_sector; 420 } 421 } 422 423 #define sector_to_block(ic, n) \ 424 do { \ 425 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \ 426 (n) >>= (ic)->sb->log2_sectors_per_block; \ 427 } while (0) 428 429 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 430 sector_t offset, unsigned int *metadata_offset) 431 { 432 __u64 ms; 433 unsigned int mo; 434 435 ms = area << ic->sb->log2_interleave_sectors; 436 if (likely(ic->log2_metadata_run >= 0)) 437 ms += area << ic->log2_metadata_run; 438 else 439 ms += area * ic->metadata_run; 440 ms >>= ic->log2_buffer_sectors; 441 442 sector_to_block(ic, offset); 443 444 if (likely(ic->log2_tag_size >= 0)) { 445 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 446 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 447 } else { 448 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 449 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 450 } 451 *metadata_offset = mo; 452 return ms; 453 } 454 455 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 456 { 457 sector_t result; 458 459 if (ic->meta_dev) 460 return offset; 461 462 result = area << ic->sb->log2_interleave_sectors; 463 if (likely(ic->log2_metadata_run >= 0)) 464 result += (area + 1) << ic->log2_metadata_run; 465 else 466 result += (area + 1) * ic->metadata_run; 467 468 result += (sector_t)ic->initial_sectors + offset; 469 result += ic->start; 470 471 return result; 472 } 473 474 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr) 475 { 476 if (unlikely(*sec_ptr >= ic->journal_sections)) 477 *sec_ptr -= ic->journal_sections; 478 } 479 480 static void sb_set_version(struct dm_integrity_c *ic) 481 { 482 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 483 ic->sb->version = SB_VERSION_5; 484 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 485 ic->sb->version = SB_VERSION_4; 486 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 487 ic->sb->version = SB_VERSION_3; 488 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 489 ic->sb->version = SB_VERSION_2; 490 else 491 ic->sb->version = SB_VERSION_1; 492 } 493 494 static int sb_mac(struct dm_integrity_c *ic, bool wr) 495 { 496 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 497 int r; 498 unsigned int size = crypto_shash_digestsize(ic->journal_mac); 499 500 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) { 501 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 502 return -EINVAL; 503 } 504 505 desc->tfm = ic->journal_mac; 506 507 r = crypto_shash_init(desc); 508 if (unlikely(r < 0)) { 509 dm_integrity_io_error(ic, "crypto_shash_init", r); 510 return r; 511 } 512 513 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size); 514 if (unlikely(r < 0)) { 515 dm_integrity_io_error(ic, "crypto_shash_update", r); 516 return r; 517 } 518 519 if (likely(wr)) { 520 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size); 521 if (unlikely(r < 0)) { 522 dm_integrity_io_error(ic, "crypto_shash_final", r); 523 return r; 524 } 525 } else { 526 __u8 result[HASH_MAX_DIGESTSIZE]; 527 528 r = crypto_shash_final(desc, result); 529 if (unlikely(r < 0)) { 530 dm_integrity_io_error(ic, "crypto_shash_final", r); 531 return r; 532 } 533 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) { 534 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 535 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0); 536 return -EILSEQ; 537 } 538 } 539 540 return 0; 541 } 542 543 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf) 544 { 545 struct dm_io_request io_req; 546 struct dm_io_region io_loc; 547 const enum req_op op = opf & REQ_OP_MASK; 548 int r; 549 550 io_req.bi_opf = opf; 551 io_req.mem.type = DM_IO_KMEM; 552 io_req.mem.ptr.addr = ic->sb; 553 io_req.notify.fn = NULL; 554 io_req.client = ic->io; 555 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 556 io_loc.sector = ic->start; 557 io_loc.count = SB_SECTORS; 558 559 if (op == REQ_OP_WRITE) { 560 sb_set_version(ic); 561 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 562 r = sb_mac(ic, true); 563 if (unlikely(r)) 564 return r; 565 } 566 } 567 568 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 569 if (unlikely(r)) 570 return r; 571 572 if (op == REQ_OP_READ) { 573 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 574 r = sb_mac(ic, false); 575 if (unlikely(r)) 576 return r; 577 } 578 } 579 580 return 0; 581 } 582 583 #define BITMAP_OP_TEST_ALL_SET 0 584 #define BITMAP_OP_TEST_ALL_CLEAR 1 585 #define BITMAP_OP_SET 2 586 #define BITMAP_OP_CLEAR 3 587 588 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 589 sector_t sector, sector_t n_sectors, int mode) 590 { 591 unsigned long bit, end_bit, this_end_bit, page, end_page; 592 unsigned long *data; 593 594 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 595 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 596 sector, 597 n_sectors, 598 ic->sb->log2_sectors_per_block, 599 ic->log2_blocks_per_bitmap_bit, 600 mode); 601 BUG(); 602 } 603 604 if (unlikely(!n_sectors)) 605 return true; 606 607 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 608 end_bit = (sector + n_sectors - 1) >> 609 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 610 611 page = bit / (PAGE_SIZE * 8); 612 bit %= PAGE_SIZE * 8; 613 614 end_page = end_bit / (PAGE_SIZE * 8); 615 end_bit %= PAGE_SIZE * 8; 616 617 repeat: 618 if (page < end_page) 619 this_end_bit = PAGE_SIZE * 8 - 1; 620 else 621 this_end_bit = end_bit; 622 623 data = lowmem_page_address(bitmap[page].page); 624 625 if (mode == BITMAP_OP_TEST_ALL_SET) { 626 while (bit <= this_end_bit) { 627 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 628 do { 629 if (data[bit / BITS_PER_LONG] != -1) 630 return false; 631 bit += BITS_PER_LONG; 632 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 633 continue; 634 } 635 if (!test_bit(bit, data)) 636 return false; 637 bit++; 638 } 639 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 640 while (bit <= this_end_bit) { 641 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 642 do { 643 if (data[bit / BITS_PER_LONG] != 0) 644 return false; 645 bit += BITS_PER_LONG; 646 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 647 continue; 648 } 649 if (test_bit(bit, data)) 650 return false; 651 bit++; 652 } 653 } else if (mode == BITMAP_OP_SET) { 654 while (bit <= this_end_bit) { 655 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 656 do { 657 data[bit / BITS_PER_LONG] = -1; 658 bit += BITS_PER_LONG; 659 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 660 continue; 661 } 662 __set_bit(bit, data); 663 bit++; 664 } 665 } else if (mode == BITMAP_OP_CLEAR) { 666 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 667 clear_page(data); 668 else { 669 while (bit <= this_end_bit) { 670 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 671 do { 672 data[bit / BITS_PER_LONG] = 0; 673 bit += BITS_PER_LONG; 674 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 675 continue; 676 } 677 __clear_bit(bit, data); 678 bit++; 679 } 680 } 681 } else { 682 BUG(); 683 } 684 685 if (unlikely(page < end_page)) { 686 bit = 0; 687 page++; 688 goto repeat; 689 } 690 691 return true; 692 } 693 694 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 695 { 696 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 697 unsigned int i; 698 699 for (i = 0; i < n_bitmap_pages; i++) { 700 unsigned long *dst_data = lowmem_page_address(dst[i].page); 701 unsigned long *src_data = lowmem_page_address(src[i].page); 702 703 copy_page(dst_data, src_data); 704 } 705 } 706 707 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 708 { 709 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 710 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 711 712 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 713 return &ic->bbs[bitmap_block]; 714 } 715 716 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 717 bool e, const char *function) 718 { 719 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 720 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 721 722 if (unlikely(section >= ic->journal_sections) || 723 unlikely(offset >= limit)) { 724 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 725 function, section, offset, ic->journal_sections, limit); 726 BUG(); 727 } 728 #endif 729 } 730 731 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 732 unsigned int *pl_index, unsigned int *pl_offset) 733 { 734 unsigned int sector; 735 736 access_journal_check(ic, section, offset, false, "page_list_location"); 737 738 sector = section * ic->journal_section_sectors + offset; 739 740 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 741 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 742 } 743 744 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 745 unsigned int section, unsigned int offset, unsigned int *n_sectors) 746 { 747 unsigned int pl_index, pl_offset; 748 char *va; 749 750 page_list_location(ic, section, offset, &pl_index, &pl_offset); 751 752 if (n_sectors) 753 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 754 755 va = lowmem_page_address(pl[pl_index].page); 756 757 return (struct journal_sector *)(va + pl_offset); 758 } 759 760 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset) 761 { 762 return access_page_list(ic, ic->journal, section, offset, NULL); 763 } 764 765 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 766 { 767 unsigned int rel_sector, offset; 768 struct journal_sector *js; 769 770 access_journal_check(ic, section, n, true, "access_journal_entry"); 771 772 rel_sector = n % JOURNAL_BLOCK_SECTORS; 773 offset = n / JOURNAL_BLOCK_SECTORS; 774 775 js = access_journal(ic, section, rel_sector); 776 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 777 } 778 779 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 780 { 781 n <<= ic->sb->log2_sectors_per_block; 782 783 n += JOURNAL_BLOCK_SECTORS; 784 785 access_journal_check(ic, section, n, false, "access_journal_data"); 786 787 return access_journal(ic, section, n); 788 } 789 790 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE]) 791 { 792 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 793 int r; 794 unsigned int j, size; 795 796 desc->tfm = ic->journal_mac; 797 798 r = crypto_shash_init(desc); 799 if (unlikely(r < 0)) { 800 dm_integrity_io_error(ic, "crypto_shash_init", r); 801 goto err; 802 } 803 804 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 805 __le64 section_le; 806 807 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 808 if (unlikely(r < 0)) { 809 dm_integrity_io_error(ic, "crypto_shash_update", r); 810 goto err; 811 } 812 813 section_le = cpu_to_le64(section); 814 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le)); 815 if (unlikely(r < 0)) { 816 dm_integrity_io_error(ic, "crypto_shash_update", r); 817 goto err; 818 } 819 } 820 821 for (j = 0; j < ic->journal_section_entries; j++) { 822 struct journal_entry *je = access_journal_entry(ic, section, j); 823 824 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector)); 825 if (unlikely(r < 0)) { 826 dm_integrity_io_error(ic, "crypto_shash_update", r); 827 goto err; 828 } 829 } 830 831 size = crypto_shash_digestsize(ic->journal_mac); 832 833 if (likely(size <= JOURNAL_MAC_SIZE)) { 834 r = crypto_shash_final(desc, result); 835 if (unlikely(r < 0)) { 836 dm_integrity_io_error(ic, "crypto_shash_final", r); 837 goto err; 838 } 839 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 840 } else { 841 __u8 digest[HASH_MAX_DIGESTSIZE]; 842 843 if (WARN_ON(size > sizeof(digest))) { 844 dm_integrity_io_error(ic, "digest_size", -EINVAL); 845 goto err; 846 } 847 r = crypto_shash_final(desc, digest); 848 if (unlikely(r < 0)) { 849 dm_integrity_io_error(ic, "crypto_shash_final", r); 850 goto err; 851 } 852 memcpy(result, digest, JOURNAL_MAC_SIZE); 853 } 854 855 return; 856 err: 857 memset(result, 0, JOURNAL_MAC_SIZE); 858 } 859 860 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr) 861 { 862 __u8 result[JOURNAL_MAC_SIZE]; 863 unsigned int j; 864 865 if (!ic->journal_mac) 866 return; 867 868 section_mac(ic, section, result); 869 870 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 871 struct journal_sector *js = access_journal(ic, section, j); 872 873 if (likely(wr)) 874 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 875 else { 876 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) { 877 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 878 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0); 879 } 880 } 881 } 882 } 883 884 static void complete_journal_op(void *context) 885 { 886 struct journal_completion *comp = context; 887 888 BUG_ON(!atomic_read(&comp->in_flight)); 889 if (likely(atomic_dec_and_test(&comp->in_flight))) 890 complete(&comp->comp); 891 } 892 893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 894 unsigned int n_sections, struct journal_completion *comp) 895 { 896 struct async_submit_ctl submit; 897 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 898 unsigned int pl_index, pl_offset, section_index; 899 struct page_list *source_pl, *target_pl; 900 901 if (likely(encrypt)) { 902 source_pl = ic->journal; 903 target_pl = ic->journal_io; 904 } else { 905 source_pl = ic->journal_io; 906 target_pl = ic->journal; 907 } 908 909 page_list_location(ic, section, 0, &pl_index, &pl_offset); 910 911 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 912 913 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 914 915 section_index = pl_index; 916 917 do { 918 size_t this_step; 919 struct page *src_pages[2]; 920 struct page *dst_page; 921 922 while (unlikely(pl_index == section_index)) { 923 unsigned int dummy; 924 925 if (likely(encrypt)) 926 rw_section_mac(ic, section, true); 927 section++; 928 n_sections--; 929 if (!n_sections) 930 break; 931 page_list_location(ic, section, 0, §ion_index, &dummy); 932 } 933 934 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 935 dst_page = target_pl[pl_index].page; 936 src_pages[0] = source_pl[pl_index].page; 937 src_pages[1] = ic->journal_xor[pl_index].page; 938 939 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 940 941 pl_index++; 942 pl_offset = 0; 943 n_bytes -= this_step; 944 } while (n_bytes); 945 946 BUG_ON(n_sections); 947 948 async_tx_issue_pending_all(); 949 } 950 951 static void complete_journal_encrypt(void *data, int err) 952 { 953 struct journal_completion *comp = data; 954 955 if (unlikely(err)) { 956 if (likely(err == -EINPROGRESS)) { 957 complete(&comp->ic->crypto_backoff); 958 return; 959 } 960 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 961 } 962 complete_journal_op(comp); 963 } 964 965 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 966 { 967 int r; 968 969 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 970 complete_journal_encrypt, comp); 971 if (likely(encrypt)) 972 r = crypto_skcipher_encrypt(req); 973 else 974 r = crypto_skcipher_decrypt(req); 975 if (likely(!r)) 976 return false; 977 if (likely(r == -EINPROGRESS)) 978 return true; 979 if (likely(r == -EBUSY)) { 980 wait_for_completion(&comp->ic->crypto_backoff); 981 reinit_completion(&comp->ic->crypto_backoff); 982 return true; 983 } 984 dm_integrity_io_error(comp->ic, "encrypt", r); 985 return false; 986 } 987 988 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 989 unsigned int n_sections, struct journal_completion *comp) 990 { 991 struct scatterlist **source_sg; 992 struct scatterlist **target_sg; 993 994 atomic_add(2, &comp->in_flight); 995 996 if (likely(encrypt)) { 997 source_sg = ic->journal_scatterlist; 998 target_sg = ic->journal_io_scatterlist; 999 } else { 1000 source_sg = ic->journal_io_scatterlist; 1001 target_sg = ic->journal_scatterlist; 1002 } 1003 1004 do { 1005 struct skcipher_request *req; 1006 unsigned int ivsize; 1007 char *iv; 1008 1009 if (likely(encrypt)) 1010 rw_section_mac(ic, section, true); 1011 1012 req = ic->sk_requests[section]; 1013 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 1014 iv = req->iv; 1015 1016 memcpy(iv, iv + ivsize, ivsize); 1017 1018 req->src = source_sg[section]; 1019 req->dst = target_sg[section]; 1020 1021 if (unlikely(do_crypt(encrypt, req, comp))) 1022 atomic_inc(&comp->in_flight); 1023 1024 section++; 1025 n_sections--; 1026 } while (n_sections); 1027 1028 atomic_dec(&comp->in_flight); 1029 complete_journal_op(comp); 1030 } 1031 1032 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 1033 unsigned int n_sections, struct journal_completion *comp) 1034 { 1035 if (ic->journal_xor) 1036 return xor_journal(ic, encrypt, section, n_sections, comp); 1037 else 1038 return crypt_journal(ic, encrypt, section, n_sections, comp); 1039 } 1040 1041 static void complete_journal_io(unsigned long error, void *context) 1042 { 1043 struct journal_completion *comp = context; 1044 1045 if (unlikely(error != 0)) 1046 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1047 complete_journal_op(comp); 1048 } 1049 1050 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf, 1051 unsigned int sector, unsigned int n_sectors, 1052 struct journal_completion *comp) 1053 { 1054 struct dm_io_request io_req; 1055 struct dm_io_region io_loc; 1056 unsigned int pl_index, pl_offset; 1057 int r; 1058 1059 if (unlikely(dm_integrity_failed(ic))) { 1060 if (comp) 1061 complete_journal_io(-1UL, comp); 1062 return; 1063 } 1064 1065 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1066 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1067 1068 io_req.bi_opf = opf; 1069 io_req.mem.type = DM_IO_PAGE_LIST; 1070 if (ic->journal_io) 1071 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1072 else 1073 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1074 io_req.mem.offset = pl_offset; 1075 if (likely(comp != NULL)) { 1076 io_req.notify.fn = complete_journal_io; 1077 io_req.notify.context = comp; 1078 } else { 1079 io_req.notify.fn = NULL; 1080 } 1081 io_req.client = ic->io; 1082 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1083 io_loc.sector = ic->start + SB_SECTORS + sector; 1084 io_loc.count = n_sectors; 1085 1086 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1087 if (unlikely(r)) { 1088 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ? 1089 "reading journal" : "writing journal", r); 1090 if (comp) { 1091 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1092 complete_journal_io(-1UL, comp); 1093 } 1094 } 1095 } 1096 1097 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf, 1098 unsigned int section, unsigned int n_sections, 1099 struct journal_completion *comp) 1100 { 1101 unsigned int sector, n_sectors; 1102 1103 sector = section * ic->journal_section_sectors; 1104 n_sectors = n_sections * ic->journal_section_sectors; 1105 1106 rw_journal_sectors(ic, opf, sector, n_sectors, comp); 1107 } 1108 1109 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections) 1110 { 1111 struct journal_completion io_comp; 1112 struct journal_completion crypt_comp_1; 1113 struct journal_completion crypt_comp_2; 1114 unsigned int i; 1115 1116 io_comp.ic = ic; 1117 init_completion(&io_comp.comp); 1118 1119 if (commit_start + commit_sections <= ic->journal_sections) { 1120 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1121 if (ic->journal_io) { 1122 crypt_comp_1.ic = ic; 1123 init_completion(&crypt_comp_1.comp); 1124 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1125 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1126 wait_for_completion_io(&crypt_comp_1.comp); 1127 } else { 1128 for (i = 0; i < commit_sections; i++) 1129 rw_section_mac(ic, commit_start + i, true); 1130 } 1131 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start, 1132 commit_sections, &io_comp); 1133 } else { 1134 unsigned int to_end; 1135 1136 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1137 to_end = ic->journal_sections - commit_start; 1138 if (ic->journal_io) { 1139 crypt_comp_1.ic = ic; 1140 init_completion(&crypt_comp_1.comp); 1141 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1142 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1143 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1144 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 1145 commit_start, to_end, &io_comp); 1146 reinit_completion(&crypt_comp_1.comp); 1147 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1148 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1149 wait_for_completion_io(&crypt_comp_1.comp); 1150 } else { 1151 crypt_comp_2.ic = ic; 1152 init_completion(&crypt_comp_2.comp); 1153 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1154 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1155 wait_for_completion_io(&crypt_comp_1.comp); 1156 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1157 wait_for_completion_io(&crypt_comp_2.comp); 1158 } 1159 } else { 1160 for (i = 0; i < to_end; i++) 1161 rw_section_mac(ic, commit_start + i, true); 1162 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1163 for (i = 0; i < commit_sections - to_end; i++) 1164 rw_section_mac(ic, i, true); 1165 } 1166 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp); 1167 } 1168 1169 wait_for_completion_io(&io_comp.comp); 1170 } 1171 1172 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 1173 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data) 1174 { 1175 struct dm_io_request io_req; 1176 struct dm_io_region io_loc; 1177 int r; 1178 unsigned int sector, pl_index, pl_offset; 1179 1180 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1)); 1181 1182 if (unlikely(dm_integrity_failed(ic))) { 1183 fn(-1UL, data); 1184 return; 1185 } 1186 1187 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1188 1189 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1190 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1191 1192 io_req.bi_opf = REQ_OP_WRITE; 1193 io_req.mem.type = DM_IO_PAGE_LIST; 1194 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1195 io_req.mem.offset = pl_offset; 1196 io_req.notify.fn = fn; 1197 io_req.notify.context = data; 1198 io_req.client = ic->io; 1199 io_loc.bdev = ic->dev->bdev; 1200 io_loc.sector = target; 1201 io_loc.count = n_sectors; 1202 1203 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1204 if (unlikely(r)) { 1205 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1206 fn(-1UL, data); 1207 } 1208 } 1209 1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1211 { 1212 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1213 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1214 } 1215 1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1217 { 1218 struct rb_node **n = &ic->in_progress.rb_node; 1219 struct rb_node *parent; 1220 1221 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1)); 1222 1223 if (likely(check_waiting)) { 1224 struct dm_integrity_range *range; 1225 1226 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1227 if (unlikely(ranges_overlap(range, new_range))) 1228 return false; 1229 } 1230 } 1231 1232 parent = NULL; 1233 1234 while (*n) { 1235 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1236 1237 parent = *n; 1238 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) 1239 n = &range->node.rb_left; 1240 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) 1241 n = &range->node.rb_right; 1242 else 1243 return false; 1244 } 1245 1246 rb_link_node(&new_range->node, parent, n); 1247 rb_insert_color(&new_range->node, &ic->in_progress); 1248 1249 return true; 1250 } 1251 1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1253 { 1254 rb_erase(&range->node, &ic->in_progress); 1255 while (unlikely(!list_empty(&ic->wait_list))) { 1256 struct dm_integrity_range *last_range = 1257 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1258 struct task_struct *last_range_task; 1259 1260 last_range_task = last_range->task; 1261 list_del(&last_range->wait_entry); 1262 if (!add_new_range(ic, last_range, false)) { 1263 last_range->task = last_range_task; 1264 list_add(&last_range->wait_entry, &ic->wait_list); 1265 break; 1266 } 1267 last_range->waiting = false; 1268 wake_up_process(last_range_task); 1269 } 1270 } 1271 1272 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1273 { 1274 unsigned long flags; 1275 1276 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1277 remove_range_unlocked(ic, range); 1278 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1279 } 1280 1281 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1282 { 1283 new_range->waiting = true; 1284 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1285 new_range->task = current; 1286 do { 1287 __set_current_state(TASK_UNINTERRUPTIBLE); 1288 spin_unlock_irq(&ic->endio_wait.lock); 1289 io_schedule(); 1290 spin_lock_irq(&ic->endio_wait.lock); 1291 } while (unlikely(new_range->waiting)); 1292 } 1293 1294 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1295 { 1296 if (unlikely(!add_new_range(ic, new_range, true))) 1297 wait_and_add_new_range(ic, new_range); 1298 } 1299 1300 static void init_journal_node(struct journal_node *node) 1301 { 1302 RB_CLEAR_NODE(&node->node); 1303 node->sector = (sector_t)-1; 1304 } 1305 1306 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1307 { 1308 struct rb_node **link; 1309 struct rb_node *parent; 1310 1311 node->sector = sector; 1312 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1313 1314 link = &ic->journal_tree_root.rb_node; 1315 parent = NULL; 1316 1317 while (*link) { 1318 struct journal_node *j; 1319 1320 parent = *link; 1321 j = container_of(parent, struct journal_node, node); 1322 if (sector < j->sector) 1323 link = &j->node.rb_left; 1324 else 1325 link = &j->node.rb_right; 1326 } 1327 1328 rb_link_node(&node->node, parent, link); 1329 rb_insert_color(&node->node, &ic->journal_tree_root); 1330 } 1331 1332 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1333 { 1334 BUG_ON(RB_EMPTY_NODE(&node->node)); 1335 rb_erase(&node->node, &ic->journal_tree_root); 1336 init_journal_node(node); 1337 } 1338 1339 #define NOT_FOUND (-1U) 1340 1341 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1342 { 1343 struct rb_node *n = ic->journal_tree_root.rb_node; 1344 unsigned int found = NOT_FOUND; 1345 1346 *next_sector = (sector_t)-1; 1347 while (n) { 1348 struct journal_node *j = container_of(n, struct journal_node, node); 1349 1350 if (sector == j->sector) 1351 found = j - ic->journal_tree; 1352 1353 if (sector < j->sector) { 1354 *next_sector = j->sector; 1355 n = j->node.rb_left; 1356 } else 1357 n = j->node.rb_right; 1358 } 1359 1360 return found; 1361 } 1362 1363 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector) 1364 { 1365 struct journal_node *node, *next_node; 1366 struct rb_node *next; 1367 1368 if (unlikely(pos >= ic->journal_entries)) 1369 return false; 1370 node = &ic->journal_tree[pos]; 1371 if (unlikely(RB_EMPTY_NODE(&node->node))) 1372 return false; 1373 if (unlikely(node->sector != sector)) 1374 return false; 1375 1376 next = rb_next(&node->node); 1377 if (unlikely(!next)) 1378 return true; 1379 1380 next_node = container_of(next, struct journal_node, node); 1381 return next_node->sector != sector; 1382 } 1383 1384 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1385 { 1386 struct rb_node *next; 1387 struct journal_node *next_node; 1388 unsigned int next_section; 1389 1390 BUG_ON(RB_EMPTY_NODE(&node->node)); 1391 1392 next = rb_next(&node->node); 1393 if (unlikely(!next)) 1394 return false; 1395 1396 next_node = container_of(next, struct journal_node, node); 1397 1398 if (next_node->sector != node->sector) 1399 return false; 1400 1401 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries; 1402 if (next_section >= ic->committed_section && 1403 next_section < ic->committed_section + ic->n_committed_sections) 1404 return true; 1405 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1406 return true; 1407 1408 return false; 1409 } 1410 1411 #define TAG_READ 0 1412 #define TAG_WRITE 1 1413 #define TAG_CMP 2 1414 1415 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1416 unsigned int *metadata_offset, unsigned int total_size, int op) 1417 { 1418 #define MAY_BE_FILLER 1 1419 #define MAY_BE_HASH 2 1420 unsigned int hash_offset = 0; 1421 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1422 1423 do { 1424 unsigned char *data, *dp; 1425 struct dm_buffer *b; 1426 unsigned int to_copy; 1427 int r; 1428 1429 r = dm_integrity_failed(ic); 1430 if (unlikely(r)) 1431 return r; 1432 1433 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1434 if (IS_ERR(data)) 1435 return PTR_ERR(data); 1436 1437 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1438 dp = data + *metadata_offset; 1439 if (op == TAG_READ) { 1440 memcpy(tag, dp, to_copy); 1441 } else if (op == TAG_WRITE) { 1442 if (memcmp(dp, tag, to_copy)) { 1443 memcpy(dp, tag, to_copy); 1444 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1445 } 1446 } else { 1447 /* e.g.: op == TAG_CMP */ 1448 1449 if (likely(is_power_of_2(ic->tag_size))) { 1450 if (unlikely(memcmp(dp, tag, to_copy))) 1451 if (unlikely(!ic->discard) || 1452 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1453 goto thorough_test; 1454 } 1455 } else { 1456 unsigned int i, ts; 1457 thorough_test: 1458 ts = total_size; 1459 1460 for (i = 0; i < to_copy; i++, ts--) { 1461 if (unlikely(dp[i] != tag[i])) 1462 may_be &= ~MAY_BE_HASH; 1463 if (likely(dp[i] != DISCARD_FILLER)) 1464 may_be &= ~MAY_BE_FILLER; 1465 hash_offset++; 1466 if (unlikely(hash_offset == ic->tag_size)) { 1467 if (unlikely(!may_be)) { 1468 dm_bufio_release(b); 1469 return ts; 1470 } 1471 hash_offset = 0; 1472 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1473 } 1474 } 1475 } 1476 } 1477 dm_bufio_release(b); 1478 1479 tag += to_copy; 1480 *metadata_offset += to_copy; 1481 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1482 (*metadata_block)++; 1483 *metadata_offset = 0; 1484 } 1485 1486 if (unlikely(!is_power_of_2(ic->tag_size))) 1487 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1488 1489 total_size -= to_copy; 1490 } while (unlikely(total_size)); 1491 1492 return 0; 1493 #undef MAY_BE_FILLER 1494 #undef MAY_BE_HASH 1495 } 1496 1497 struct flush_request { 1498 struct dm_io_request io_req; 1499 struct dm_io_region io_reg; 1500 struct dm_integrity_c *ic; 1501 struct completion comp; 1502 }; 1503 1504 static void flush_notify(unsigned long error, void *fr_) 1505 { 1506 struct flush_request *fr = fr_; 1507 1508 if (unlikely(error != 0)) 1509 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1510 complete(&fr->comp); 1511 } 1512 1513 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1514 { 1515 int r; 1516 struct flush_request fr; 1517 1518 if (!ic->meta_dev) 1519 flush_data = false; 1520 if (flush_data) { 1521 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 1522 fr.io_req.mem.type = DM_IO_KMEM, 1523 fr.io_req.mem.ptr.addr = NULL, 1524 fr.io_req.notify.fn = flush_notify, 1525 fr.io_req.notify.context = &fr; 1526 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1527 fr.io_reg.bdev = ic->dev->bdev, 1528 fr.io_reg.sector = 0, 1529 fr.io_reg.count = 0, 1530 fr.ic = ic; 1531 init_completion(&fr.comp); 1532 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT); 1533 BUG_ON(r); 1534 } 1535 1536 r = dm_bufio_write_dirty_buffers(ic->bufio); 1537 if (unlikely(r)) 1538 dm_integrity_io_error(ic, "writing tags", r); 1539 1540 if (flush_data) 1541 wait_for_completion(&fr.comp); 1542 } 1543 1544 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1545 { 1546 DECLARE_WAITQUEUE(wait, current); 1547 1548 __add_wait_queue(&ic->endio_wait, &wait); 1549 __set_current_state(TASK_UNINTERRUPTIBLE); 1550 spin_unlock_irq(&ic->endio_wait.lock); 1551 io_schedule(); 1552 spin_lock_irq(&ic->endio_wait.lock); 1553 __remove_wait_queue(&ic->endio_wait, &wait); 1554 } 1555 1556 static void autocommit_fn(struct timer_list *t) 1557 { 1558 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1559 1560 if (likely(!dm_integrity_failed(ic))) 1561 queue_work(ic->commit_wq, &ic->commit_work); 1562 } 1563 1564 static void schedule_autocommit(struct dm_integrity_c *ic) 1565 { 1566 if (!timer_pending(&ic->autocommit_timer)) 1567 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1568 } 1569 1570 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1571 { 1572 struct bio *bio; 1573 unsigned long flags; 1574 1575 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1576 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1577 bio_list_add(&ic->flush_bio_list, bio); 1578 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1579 1580 queue_work(ic->commit_wq, &ic->commit_work); 1581 } 1582 1583 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1584 { 1585 int r; 1586 1587 r = dm_integrity_failed(ic); 1588 if (unlikely(r) && !bio->bi_status) 1589 bio->bi_status = errno_to_blk_status(r); 1590 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1591 unsigned long flags; 1592 1593 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1594 bio_list_add(&ic->synchronous_bios, bio); 1595 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1596 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1597 return; 1598 } 1599 bio_endio(bio); 1600 } 1601 1602 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1603 { 1604 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1605 1606 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1607 submit_flush_bio(ic, dio); 1608 else 1609 do_endio(ic, bio); 1610 } 1611 1612 static void dec_in_flight(struct dm_integrity_io *dio) 1613 { 1614 if (atomic_dec_and_test(&dio->in_flight)) { 1615 struct dm_integrity_c *ic = dio->ic; 1616 struct bio *bio; 1617 1618 remove_range(ic, &dio->range); 1619 1620 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1621 schedule_autocommit(ic); 1622 1623 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1624 if (unlikely(dio->bi_status) && !bio->bi_status) 1625 bio->bi_status = dio->bi_status; 1626 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1627 dio->range.logical_sector += dio->range.n_sectors; 1628 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1629 INIT_WORK(&dio->work, integrity_bio_wait); 1630 queue_work(ic->offload_wq, &dio->work); 1631 return; 1632 } 1633 do_endio_flush(ic, dio); 1634 } 1635 } 1636 1637 static void integrity_end_io(struct bio *bio) 1638 { 1639 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1640 1641 dm_bio_restore(&dio->bio_details, bio); 1642 if (bio->bi_integrity) 1643 bio->bi_opf |= REQ_INTEGRITY; 1644 1645 if (dio->completion) 1646 complete(dio->completion); 1647 1648 dec_in_flight(dio); 1649 } 1650 1651 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1652 const char *data, char *result) 1653 { 1654 __le64 sector_le = cpu_to_le64(sector); 1655 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1656 int r; 1657 unsigned int digest_size; 1658 1659 req->tfm = ic->internal_hash; 1660 1661 r = crypto_shash_init(req); 1662 if (unlikely(r < 0)) { 1663 dm_integrity_io_error(ic, "crypto_shash_init", r); 1664 goto failed; 1665 } 1666 1667 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1668 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1669 if (unlikely(r < 0)) { 1670 dm_integrity_io_error(ic, "crypto_shash_update", r); 1671 goto failed; 1672 } 1673 } 1674 1675 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le)); 1676 if (unlikely(r < 0)) { 1677 dm_integrity_io_error(ic, "crypto_shash_update", r); 1678 goto failed; 1679 } 1680 1681 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1682 if (unlikely(r < 0)) { 1683 dm_integrity_io_error(ic, "crypto_shash_update", r); 1684 goto failed; 1685 } 1686 1687 r = crypto_shash_final(req, result); 1688 if (unlikely(r < 0)) { 1689 dm_integrity_io_error(ic, "crypto_shash_final", r); 1690 goto failed; 1691 } 1692 1693 digest_size = crypto_shash_digestsize(ic->internal_hash); 1694 if (unlikely(digest_size < ic->tag_size)) 1695 memset(result + digest_size, 0, ic->tag_size - digest_size); 1696 1697 return; 1698 1699 failed: 1700 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1701 get_random_bytes(result, ic->tag_size); 1702 } 1703 1704 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum) 1705 { 1706 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1707 struct dm_integrity_c *ic = dio->ic; 1708 struct bvec_iter iter; 1709 struct bio_vec bv; 1710 sector_t sector, logical_sector, area, offset; 1711 struct page *page; 1712 1713 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1714 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, 1715 &dio->metadata_offset); 1716 sector = get_data_sector(ic, area, offset); 1717 logical_sector = dio->range.logical_sector; 1718 1719 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO); 1720 1721 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1722 unsigned pos = 0; 1723 1724 do { 1725 sector_t alignment; 1726 char *mem; 1727 char *buffer = page_to_virt(page); 1728 int r; 1729 struct dm_io_request io_req; 1730 struct dm_io_region io_loc; 1731 io_req.bi_opf = REQ_OP_READ; 1732 io_req.mem.type = DM_IO_KMEM; 1733 io_req.mem.ptr.addr = buffer; 1734 io_req.notify.fn = NULL; 1735 io_req.client = ic->io; 1736 io_loc.bdev = ic->dev->bdev; 1737 io_loc.sector = sector; 1738 io_loc.count = ic->sectors_per_block; 1739 1740 /* Align the bio to logical block size */ 1741 alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT); 1742 alignment &= -alignment; 1743 io_loc.sector = round_down(io_loc.sector, alignment); 1744 io_loc.count += sector - io_loc.sector; 1745 buffer += (sector - io_loc.sector) << SECTOR_SHIFT; 1746 io_loc.count = round_up(io_loc.count, alignment); 1747 1748 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1749 if (unlikely(r)) { 1750 dio->bi_status = errno_to_blk_status(r); 1751 goto free_ret; 1752 } 1753 1754 integrity_sector_checksum(ic, logical_sector, buffer, checksum); 1755 r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block, 1756 &dio->metadata_offset, ic->tag_size, TAG_CMP); 1757 if (r) { 1758 if (r > 0) { 1759 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx", 1760 bio->bi_bdev, logical_sector); 1761 atomic64_inc(&ic->number_of_mismatches); 1762 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 1763 bio, logical_sector, 0); 1764 r = -EILSEQ; 1765 } 1766 dio->bi_status = errno_to_blk_status(r); 1767 goto free_ret; 1768 } 1769 1770 mem = bvec_kmap_local(&bv); 1771 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT); 1772 kunmap_local(mem); 1773 1774 pos += ic->sectors_per_block << SECTOR_SHIFT; 1775 sector += ic->sectors_per_block; 1776 logical_sector += ic->sectors_per_block; 1777 } while (pos < bv.bv_len); 1778 } 1779 free_ret: 1780 mempool_free(page, &ic->recheck_pool); 1781 } 1782 1783 static void integrity_metadata(struct work_struct *w) 1784 { 1785 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1786 struct dm_integrity_c *ic = dio->ic; 1787 1788 int r; 1789 1790 if (ic->internal_hash) { 1791 struct bvec_iter iter; 1792 struct bio_vec bv; 1793 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 1794 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1795 char *checksums; 1796 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1797 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1798 sector_t sector; 1799 unsigned int sectors_to_process; 1800 1801 if (unlikely(ic->mode == 'R')) 1802 goto skip_io; 1803 1804 if (likely(dio->op != REQ_OP_DISCARD)) 1805 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1806 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1807 else 1808 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1809 if (!checksums) { 1810 checksums = checksums_onstack; 1811 if (WARN_ON(extra_space && 1812 digest_size > sizeof(checksums_onstack))) { 1813 r = -EINVAL; 1814 goto error; 1815 } 1816 } 1817 1818 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1819 unsigned int bi_size = dio->bio_details.bi_iter.bi_size; 1820 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1821 unsigned int max_blocks = max_size / ic->tag_size; 1822 1823 memset(checksums, DISCARD_FILLER, max_size); 1824 1825 while (bi_size) { 1826 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1827 1828 this_step_blocks = min(this_step_blocks, max_blocks); 1829 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1830 this_step_blocks * ic->tag_size, TAG_WRITE); 1831 if (unlikely(r)) { 1832 if (likely(checksums != checksums_onstack)) 1833 kfree(checksums); 1834 goto error; 1835 } 1836 1837 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1838 } 1839 1840 if (likely(checksums != checksums_onstack)) 1841 kfree(checksums); 1842 goto skip_io; 1843 } 1844 1845 sector = dio->range.logical_sector; 1846 sectors_to_process = dio->range.n_sectors; 1847 1848 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1849 struct bio_vec bv_copy = bv; 1850 unsigned int pos; 1851 char *mem, *checksums_ptr; 1852 1853 again: 1854 mem = bvec_kmap_local(&bv_copy); 1855 pos = 0; 1856 checksums_ptr = checksums; 1857 do { 1858 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1859 checksums_ptr += ic->tag_size; 1860 sectors_to_process -= ic->sectors_per_block; 1861 pos += ic->sectors_per_block << SECTOR_SHIFT; 1862 sector += ic->sectors_per_block; 1863 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack); 1864 kunmap_local(mem); 1865 1866 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1867 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1868 if (unlikely(r)) { 1869 if (likely(checksums != checksums_onstack)) 1870 kfree(checksums); 1871 if (r > 0) { 1872 integrity_recheck(dio, checksums_onstack); 1873 goto skip_io; 1874 } 1875 goto error; 1876 } 1877 1878 if (!sectors_to_process) 1879 break; 1880 1881 if (unlikely(pos < bv_copy.bv_len)) { 1882 bv_copy.bv_offset += pos; 1883 bv_copy.bv_len -= pos; 1884 goto again; 1885 } 1886 } 1887 1888 if (likely(checksums != checksums_onstack)) 1889 kfree(checksums); 1890 } else { 1891 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1892 1893 if (bip) { 1894 struct bio_vec biv; 1895 struct bvec_iter iter; 1896 unsigned int data_to_process = dio->range.n_sectors; 1897 1898 sector_to_block(ic, data_to_process); 1899 data_to_process *= ic->tag_size; 1900 1901 bip_for_each_vec(biv, bip, iter) { 1902 unsigned char *tag; 1903 unsigned int this_len; 1904 1905 BUG_ON(PageHighMem(biv.bv_page)); 1906 tag = bvec_virt(&biv); 1907 this_len = min(biv.bv_len, data_to_process); 1908 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1909 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1910 if (unlikely(r)) 1911 goto error; 1912 data_to_process -= this_len; 1913 if (!data_to_process) 1914 break; 1915 } 1916 } 1917 } 1918 skip_io: 1919 dec_in_flight(dio); 1920 return; 1921 error: 1922 dio->bi_status = errno_to_blk_status(r); 1923 dec_in_flight(dio); 1924 } 1925 1926 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1927 { 1928 struct dm_integrity_c *ic = ti->private; 1929 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1930 struct bio_integrity_payload *bip; 1931 1932 sector_t area, offset; 1933 1934 dio->ic = ic; 1935 dio->bi_status = 0; 1936 dio->op = bio_op(bio); 1937 1938 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1939 if (ti->max_io_len) { 1940 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1941 unsigned int log2_max_io_len = __fls(ti->max_io_len); 1942 sector_t start_boundary = sec >> log2_max_io_len; 1943 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1944 1945 if (start_boundary < end_boundary) { 1946 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1947 1948 dm_accept_partial_bio(bio, len); 1949 } 1950 } 1951 } 1952 1953 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1954 submit_flush_bio(ic, dio); 1955 return DM_MAPIO_SUBMITTED; 1956 } 1957 1958 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1959 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1960 if (unlikely(dio->fua)) { 1961 /* 1962 * Don't pass down the FUA flag because we have to flush 1963 * disk cache anyway. 1964 */ 1965 bio->bi_opf &= ~REQ_FUA; 1966 } 1967 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1968 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1969 dio->range.logical_sector, bio_sectors(bio), 1970 ic->provided_data_sectors); 1971 return DM_MAPIO_KILL; 1972 } 1973 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) { 1974 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1975 ic->sectors_per_block, 1976 dio->range.logical_sector, bio_sectors(bio)); 1977 return DM_MAPIO_KILL; 1978 } 1979 1980 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1981 struct bvec_iter iter; 1982 struct bio_vec bv; 1983 1984 bio_for_each_segment(bv, bio, iter) { 1985 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1986 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1987 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1988 return DM_MAPIO_KILL; 1989 } 1990 } 1991 } 1992 1993 bip = bio_integrity(bio); 1994 if (!ic->internal_hash) { 1995 if (bip) { 1996 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1997 1998 if (ic->log2_tag_size >= 0) 1999 wanted_tag_size <<= ic->log2_tag_size; 2000 else 2001 wanted_tag_size *= ic->tag_size; 2002 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 2003 DMERR("Invalid integrity data size %u, expected %u", 2004 bip->bip_iter.bi_size, wanted_tag_size); 2005 return DM_MAPIO_KILL; 2006 } 2007 } 2008 } else { 2009 if (unlikely(bip != NULL)) { 2010 DMERR("Unexpected integrity data when using internal hash"); 2011 return DM_MAPIO_KILL; 2012 } 2013 } 2014 2015 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 2016 return DM_MAPIO_KILL; 2017 2018 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2019 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2020 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 2021 2022 dm_integrity_map_continue(dio, true); 2023 return DM_MAPIO_SUBMITTED; 2024 } 2025 2026 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 2027 unsigned int journal_section, unsigned int journal_entry) 2028 { 2029 struct dm_integrity_c *ic = dio->ic; 2030 sector_t logical_sector; 2031 unsigned int n_sectors; 2032 2033 logical_sector = dio->range.logical_sector; 2034 n_sectors = dio->range.n_sectors; 2035 do { 2036 struct bio_vec bv = bio_iovec(bio); 2037 char *mem; 2038 2039 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 2040 bv.bv_len = n_sectors << SECTOR_SHIFT; 2041 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 2042 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 2043 retry_kmap: 2044 mem = kmap_local_page(bv.bv_page); 2045 if (likely(dio->op == REQ_OP_WRITE)) 2046 flush_dcache_page(bv.bv_page); 2047 2048 do { 2049 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 2050 2051 if (unlikely(dio->op == REQ_OP_READ)) { 2052 struct journal_sector *js; 2053 char *mem_ptr; 2054 unsigned int s; 2055 2056 if (unlikely(journal_entry_is_inprogress(je))) { 2057 flush_dcache_page(bv.bv_page); 2058 kunmap_local(mem); 2059 2060 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2061 goto retry_kmap; 2062 } 2063 smp_rmb(); 2064 BUG_ON(journal_entry_get_sector(je) != logical_sector); 2065 js = access_journal_data(ic, journal_section, journal_entry); 2066 mem_ptr = mem + bv.bv_offset; 2067 s = 0; 2068 do { 2069 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 2070 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 2071 js++; 2072 mem_ptr += 1 << SECTOR_SHIFT; 2073 } while (++s < ic->sectors_per_block); 2074 #ifdef INTERNAL_VERIFY 2075 if (ic->internal_hash) { 2076 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2077 2078 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 2079 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 2080 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 2081 logical_sector); 2082 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum", 2083 bio, logical_sector, 0); 2084 } 2085 } 2086 #endif 2087 } 2088 2089 if (!ic->internal_hash) { 2090 struct bio_integrity_payload *bip = bio_integrity(bio); 2091 unsigned int tag_todo = ic->tag_size; 2092 char *tag_ptr = journal_entry_tag(ic, je); 2093 2094 if (bip) { 2095 do { 2096 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2097 unsigned int tag_now = min(biv.bv_len, tag_todo); 2098 char *tag_addr; 2099 2100 BUG_ON(PageHighMem(biv.bv_page)); 2101 tag_addr = bvec_virt(&biv); 2102 if (likely(dio->op == REQ_OP_WRITE)) 2103 memcpy(tag_ptr, tag_addr, tag_now); 2104 else 2105 memcpy(tag_addr, tag_ptr, tag_now); 2106 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2107 tag_ptr += tag_now; 2108 tag_todo -= tag_now; 2109 } while (unlikely(tag_todo)); 2110 } else if (likely(dio->op == REQ_OP_WRITE)) 2111 memset(tag_ptr, 0, tag_todo); 2112 } 2113 2114 if (likely(dio->op == REQ_OP_WRITE)) { 2115 struct journal_sector *js; 2116 unsigned int s; 2117 2118 js = access_journal_data(ic, journal_section, journal_entry); 2119 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2120 2121 s = 0; 2122 do { 2123 je->last_bytes[s] = js[s].commit_id; 2124 } while (++s < ic->sectors_per_block); 2125 2126 if (ic->internal_hash) { 2127 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 2128 2129 if (unlikely(digest_size > ic->tag_size)) { 2130 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2131 2132 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2133 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2134 } else 2135 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2136 } 2137 2138 journal_entry_set_sector(je, logical_sector); 2139 } 2140 logical_sector += ic->sectors_per_block; 2141 2142 journal_entry++; 2143 if (unlikely(journal_entry == ic->journal_section_entries)) { 2144 journal_entry = 0; 2145 journal_section++; 2146 wraparound_section(ic, &journal_section); 2147 } 2148 2149 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2150 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2151 2152 if (unlikely(dio->op == REQ_OP_READ)) 2153 flush_dcache_page(bv.bv_page); 2154 kunmap_local(mem); 2155 } while (n_sectors); 2156 2157 if (likely(dio->op == REQ_OP_WRITE)) { 2158 smp_mb(); 2159 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2160 wake_up(&ic->copy_to_journal_wait); 2161 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2162 queue_work(ic->commit_wq, &ic->commit_work); 2163 else 2164 schedule_autocommit(ic); 2165 } else 2166 remove_range(ic, &dio->range); 2167 2168 if (unlikely(bio->bi_iter.bi_size)) { 2169 sector_t area, offset; 2170 2171 dio->range.logical_sector = logical_sector; 2172 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2173 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2174 return true; 2175 } 2176 2177 return false; 2178 } 2179 2180 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2181 { 2182 struct dm_integrity_c *ic = dio->ic; 2183 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2184 unsigned int journal_section, journal_entry; 2185 unsigned int journal_read_pos; 2186 struct completion read_comp; 2187 bool discard_retried = false; 2188 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2189 2190 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2191 need_sync_io = true; 2192 2193 if (need_sync_io && from_map) { 2194 INIT_WORK(&dio->work, integrity_bio_wait); 2195 queue_work(ic->offload_wq, &dio->work); 2196 return; 2197 } 2198 2199 lock_retry: 2200 spin_lock_irq(&ic->endio_wait.lock); 2201 retry: 2202 if (unlikely(dm_integrity_failed(ic))) { 2203 spin_unlock_irq(&ic->endio_wait.lock); 2204 do_endio(ic, bio); 2205 return; 2206 } 2207 dio->range.n_sectors = bio_sectors(bio); 2208 journal_read_pos = NOT_FOUND; 2209 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2210 if (dio->op == REQ_OP_WRITE) { 2211 unsigned int next_entry, i, pos; 2212 unsigned int ws, we, range_sectors; 2213 2214 dio->range.n_sectors = min(dio->range.n_sectors, 2215 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2216 if (unlikely(!dio->range.n_sectors)) { 2217 if (from_map) 2218 goto offload_to_thread; 2219 sleep_on_endio_wait(ic); 2220 goto retry; 2221 } 2222 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2223 ic->free_sectors -= range_sectors; 2224 journal_section = ic->free_section; 2225 journal_entry = ic->free_section_entry; 2226 2227 next_entry = ic->free_section_entry + range_sectors; 2228 ic->free_section_entry = next_entry % ic->journal_section_entries; 2229 ic->free_section += next_entry / ic->journal_section_entries; 2230 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2231 wraparound_section(ic, &ic->free_section); 2232 2233 pos = journal_section * ic->journal_section_entries + journal_entry; 2234 ws = journal_section; 2235 we = journal_entry; 2236 i = 0; 2237 do { 2238 struct journal_entry *je; 2239 2240 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2241 pos++; 2242 if (unlikely(pos >= ic->journal_entries)) 2243 pos = 0; 2244 2245 je = access_journal_entry(ic, ws, we); 2246 BUG_ON(!journal_entry_is_unused(je)); 2247 journal_entry_set_inprogress(je); 2248 we++; 2249 if (unlikely(we == ic->journal_section_entries)) { 2250 we = 0; 2251 ws++; 2252 wraparound_section(ic, &ws); 2253 } 2254 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2255 2256 spin_unlock_irq(&ic->endio_wait.lock); 2257 goto journal_read_write; 2258 } else { 2259 sector_t next_sector; 2260 2261 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2262 if (likely(journal_read_pos == NOT_FOUND)) { 2263 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2264 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2265 } else { 2266 unsigned int i; 2267 unsigned int jp = journal_read_pos + 1; 2268 2269 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2270 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2271 break; 2272 } 2273 dio->range.n_sectors = i; 2274 } 2275 } 2276 } 2277 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2278 /* 2279 * We must not sleep in the request routine because it could 2280 * stall bios on current->bio_list. 2281 * So, we offload the bio to a workqueue if we have to sleep. 2282 */ 2283 if (from_map) { 2284 offload_to_thread: 2285 spin_unlock_irq(&ic->endio_wait.lock); 2286 INIT_WORK(&dio->work, integrity_bio_wait); 2287 queue_work(ic->wait_wq, &dio->work); 2288 return; 2289 } 2290 if (journal_read_pos != NOT_FOUND) 2291 dio->range.n_sectors = ic->sectors_per_block; 2292 wait_and_add_new_range(ic, &dio->range); 2293 /* 2294 * wait_and_add_new_range drops the spinlock, so the journal 2295 * may have been changed arbitrarily. We need to recheck. 2296 * To simplify the code, we restrict I/O size to just one block. 2297 */ 2298 if (journal_read_pos != NOT_FOUND) { 2299 sector_t next_sector; 2300 unsigned int new_pos; 2301 2302 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2303 if (unlikely(new_pos != journal_read_pos)) { 2304 remove_range_unlocked(ic, &dio->range); 2305 goto retry; 2306 } 2307 } 2308 } 2309 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2310 sector_t next_sector; 2311 unsigned int new_pos; 2312 2313 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2314 if (unlikely(new_pos != NOT_FOUND) || 2315 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2316 remove_range_unlocked(ic, &dio->range); 2317 spin_unlock_irq(&ic->endio_wait.lock); 2318 queue_work(ic->commit_wq, &ic->commit_work); 2319 flush_workqueue(ic->commit_wq); 2320 queue_work(ic->writer_wq, &ic->writer_work); 2321 flush_workqueue(ic->writer_wq); 2322 discard_retried = true; 2323 goto lock_retry; 2324 } 2325 } 2326 spin_unlock_irq(&ic->endio_wait.lock); 2327 2328 if (unlikely(journal_read_pos != NOT_FOUND)) { 2329 journal_section = journal_read_pos / ic->journal_section_entries; 2330 journal_entry = journal_read_pos % ic->journal_section_entries; 2331 goto journal_read_write; 2332 } 2333 2334 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2335 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2336 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2337 struct bitmap_block_status *bbs; 2338 2339 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2340 spin_lock(&bbs->bio_queue_lock); 2341 bio_list_add(&bbs->bio_queue, bio); 2342 spin_unlock(&bbs->bio_queue_lock); 2343 queue_work(ic->writer_wq, &bbs->work); 2344 return; 2345 } 2346 } 2347 2348 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2349 2350 if (need_sync_io) { 2351 init_completion(&read_comp); 2352 dio->completion = &read_comp; 2353 } else 2354 dio->completion = NULL; 2355 2356 dm_bio_record(&dio->bio_details, bio); 2357 bio_set_dev(bio, ic->dev->bdev); 2358 bio->bi_integrity = NULL; 2359 bio->bi_opf &= ~REQ_INTEGRITY; 2360 bio->bi_end_io = integrity_end_io; 2361 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2362 2363 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2364 integrity_metadata(&dio->work); 2365 dm_integrity_flush_buffers(ic, false); 2366 2367 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2368 dio->completion = NULL; 2369 2370 submit_bio_noacct(bio); 2371 2372 return; 2373 } 2374 2375 submit_bio_noacct(bio); 2376 2377 if (need_sync_io) { 2378 wait_for_completion_io(&read_comp); 2379 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2380 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2381 goto skip_check; 2382 if (ic->mode == 'B') { 2383 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2384 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2385 goto skip_check; 2386 } 2387 2388 if (likely(!bio->bi_status)) 2389 integrity_metadata(&dio->work); 2390 else 2391 skip_check: 2392 dec_in_flight(dio); 2393 } else { 2394 INIT_WORK(&dio->work, integrity_metadata); 2395 queue_work(ic->metadata_wq, &dio->work); 2396 } 2397 2398 return; 2399 2400 journal_read_write: 2401 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2402 goto lock_retry; 2403 2404 do_endio_flush(ic, dio); 2405 } 2406 2407 2408 static void integrity_bio_wait(struct work_struct *w) 2409 { 2410 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2411 2412 dm_integrity_map_continue(dio, false); 2413 } 2414 2415 static void pad_uncommitted(struct dm_integrity_c *ic) 2416 { 2417 if (ic->free_section_entry) { 2418 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2419 ic->free_section_entry = 0; 2420 ic->free_section++; 2421 wraparound_section(ic, &ic->free_section); 2422 ic->n_uncommitted_sections++; 2423 } 2424 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2425 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2426 ic->journal_section_entries + ic->free_sectors)) { 2427 DMCRIT("journal_sections %u, journal_section_entries %u, " 2428 "n_uncommitted_sections %u, n_committed_sections %u, " 2429 "journal_section_entries %u, free_sectors %u", 2430 ic->journal_sections, ic->journal_section_entries, 2431 ic->n_uncommitted_sections, ic->n_committed_sections, 2432 ic->journal_section_entries, ic->free_sectors); 2433 } 2434 } 2435 2436 static void integrity_commit(struct work_struct *w) 2437 { 2438 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2439 unsigned int commit_start, commit_sections; 2440 unsigned int i, j, n; 2441 struct bio *flushes; 2442 2443 del_timer(&ic->autocommit_timer); 2444 2445 spin_lock_irq(&ic->endio_wait.lock); 2446 flushes = bio_list_get(&ic->flush_bio_list); 2447 if (unlikely(ic->mode != 'J')) { 2448 spin_unlock_irq(&ic->endio_wait.lock); 2449 dm_integrity_flush_buffers(ic, true); 2450 goto release_flush_bios; 2451 } 2452 2453 pad_uncommitted(ic); 2454 commit_start = ic->uncommitted_section; 2455 commit_sections = ic->n_uncommitted_sections; 2456 spin_unlock_irq(&ic->endio_wait.lock); 2457 2458 if (!commit_sections) 2459 goto release_flush_bios; 2460 2461 ic->wrote_to_journal = true; 2462 2463 i = commit_start; 2464 for (n = 0; n < commit_sections; n++) { 2465 for (j = 0; j < ic->journal_section_entries; j++) { 2466 struct journal_entry *je; 2467 2468 je = access_journal_entry(ic, i, j); 2469 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2470 } 2471 for (j = 0; j < ic->journal_section_sectors; j++) { 2472 struct journal_sector *js; 2473 2474 js = access_journal(ic, i, j); 2475 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2476 } 2477 i++; 2478 if (unlikely(i >= ic->journal_sections)) 2479 ic->commit_seq = next_commit_seq(ic->commit_seq); 2480 wraparound_section(ic, &i); 2481 } 2482 smp_rmb(); 2483 2484 write_journal(ic, commit_start, commit_sections); 2485 2486 spin_lock_irq(&ic->endio_wait.lock); 2487 ic->uncommitted_section += commit_sections; 2488 wraparound_section(ic, &ic->uncommitted_section); 2489 ic->n_uncommitted_sections -= commit_sections; 2490 ic->n_committed_sections += commit_sections; 2491 spin_unlock_irq(&ic->endio_wait.lock); 2492 2493 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2494 queue_work(ic->writer_wq, &ic->writer_work); 2495 2496 release_flush_bios: 2497 while (flushes) { 2498 struct bio *next = flushes->bi_next; 2499 2500 flushes->bi_next = NULL; 2501 do_endio(ic, flushes); 2502 flushes = next; 2503 } 2504 } 2505 2506 static void complete_copy_from_journal(unsigned long error, void *context) 2507 { 2508 struct journal_io *io = context; 2509 struct journal_completion *comp = io->comp; 2510 struct dm_integrity_c *ic = comp->ic; 2511 2512 remove_range(ic, &io->range); 2513 mempool_free(io, &ic->journal_io_mempool); 2514 if (unlikely(error != 0)) 2515 dm_integrity_io_error(ic, "copying from journal", -EIO); 2516 complete_journal_op(comp); 2517 } 2518 2519 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2520 struct journal_entry *je) 2521 { 2522 unsigned int s = 0; 2523 2524 do { 2525 js->commit_id = je->last_bytes[s]; 2526 js++; 2527 } while (++s < ic->sectors_per_block); 2528 } 2529 2530 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start, 2531 unsigned int write_sections, bool from_replay) 2532 { 2533 unsigned int i, j, n; 2534 struct journal_completion comp; 2535 struct blk_plug plug; 2536 2537 blk_start_plug(&plug); 2538 2539 comp.ic = ic; 2540 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2541 init_completion(&comp.comp); 2542 2543 i = write_start; 2544 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2545 #ifndef INTERNAL_VERIFY 2546 if (unlikely(from_replay)) 2547 #endif 2548 rw_section_mac(ic, i, false); 2549 for (j = 0; j < ic->journal_section_entries; j++) { 2550 struct journal_entry *je = access_journal_entry(ic, i, j); 2551 sector_t sec, area, offset; 2552 unsigned int k, l, next_loop; 2553 sector_t metadata_block; 2554 unsigned int metadata_offset; 2555 struct journal_io *io; 2556 2557 if (journal_entry_is_unused(je)) 2558 continue; 2559 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2560 sec = journal_entry_get_sector(je); 2561 if (unlikely(from_replay)) { 2562 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) { 2563 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2564 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2565 } 2566 if (unlikely(sec >= ic->provided_data_sectors)) { 2567 journal_entry_set_unused(je); 2568 continue; 2569 } 2570 } 2571 get_area_and_offset(ic, sec, &area, &offset); 2572 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2573 for (k = j + 1; k < ic->journal_section_entries; k++) { 2574 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2575 sector_t sec2, area2, offset2; 2576 2577 if (journal_entry_is_unused(je2)) 2578 break; 2579 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2580 sec2 = journal_entry_get_sector(je2); 2581 if (unlikely(sec2 >= ic->provided_data_sectors)) 2582 break; 2583 get_area_and_offset(ic, sec2, &area2, &offset2); 2584 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2585 break; 2586 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2587 } 2588 next_loop = k - 1; 2589 2590 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2591 io->comp = ∁ 2592 io->range.logical_sector = sec; 2593 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2594 2595 spin_lock_irq(&ic->endio_wait.lock); 2596 add_new_range_and_wait(ic, &io->range); 2597 2598 if (likely(!from_replay)) { 2599 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2600 2601 /* don't write if there is newer committed sector */ 2602 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2603 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2604 2605 journal_entry_set_unused(je2); 2606 remove_journal_node(ic, §ion_node[j]); 2607 j++; 2608 sec += ic->sectors_per_block; 2609 offset += ic->sectors_per_block; 2610 } 2611 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2612 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2613 2614 journal_entry_set_unused(je2); 2615 remove_journal_node(ic, §ion_node[k - 1]); 2616 k--; 2617 } 2618 if (j == k) { 2619 remove_range_unlocked(ic, &io->range); 2620 spin_unlock_irq(&ic->endio_wait.lock); 2621 mempool_free(io, &ic->journal_io_mempool); 2622 goto skip_io; 2623 } 2624 for (l = j; l < k; l++) 2625 remove_journal_node(ic, §ion_node[l]); 2626 } 2627 spin_unlock_irq(&ic->endio_wait.lock); 2628 2629 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2630 for (l = j; l < k; l++) { 2631 int r; 2632 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2633 2634 if ( 2635 #ifndef INTERNAL_VERIFY 2636 unlikely(from_replay) && 2637 #endif 2638 ic->internal_hash) { 2639 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2640 2641 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2642 (char *)access_journal_data(ic, i, l), test_tag); 2643 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) { 2644 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2645 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0); 2646 } 2647 } 2648 2649 journal_entry_set_unused(je2); 2650 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2651 ic->tag_size, TAG_WRITE); 2652 if (unlikely(r)) 2653 dm_integrity_io_error(ic, "reading tags", r); 2654 } 2655 2656 atomic_inc(&comp.in_flight); 2657 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2658 (k - j) << ic->sb->log2_sectors_per_block, 2659 get_data_sector(ic, area, offset), 2660 complete_copy_from_journal, io); 2661 skip_io: 2662 j = next_loop; 2663 } 2664 } 2665 2666 dm_bufio_write_dirty_buffers_async(ic->bufio); 2667 2668 blk_finish_plug(&plug); 2669 2670 complete_journal_op(&comp); 2671 wait_for_completion_io(&comp.comp); 2672 2673 dm_integrity_flush_buffers(ic, true); 2674 } 2675 2676 static void integrity_writer(struct work_struct *w) 2677 { 2678 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2679 unsigned int write_start, write_sections; 2680 unsigned int prev_free_sectors; 2681 2682 spin_lock_irq(&ic->endio_wait.lock); 2683 write_start = ic->committed_section; 2684 write_sections = ic->n_committed_sections; 2685 spin_unlock_irq(&ic->endio_wait.lock); 2686 2687 if (!write_sections) 2688 return; 2689 2690 do_journal_write(ic, write_start, write_sections, false); 2691 2692 spin_lock_irq(&ic->endio_wait.lock); 2693 2694 ic->committed_section += write_sections; 2695 wraparound_section(ic, &ic->committed_section); 2696 ic->n_committed_sections -= write_sections; 2697 2698 prev_free_sectors = ic->free_sectors; 2699 ic->free_sectors += write_sections * ic->journal_section_entries; 2700 if (unlikely(!prev_free_sectors)) 2701 wake_up_locked(&ic->endio_wait); 2702 2703 spin_unlock_irq(&ic->endio_wait.lock); 2704 } 2705 2706 static void recalc_write_super(struct dm_integrity_c *ic) 2707 { 2708 int r; 2709 2710 dm_integrity_flush_buffers(ic, false); 2711 if (dm_integrity_failed(ic)) 2712 return; 2713 2714 r = sync_rw_sb(ic, REQ_OP_WRITE); 2715 if (unlikely(r)) 2716 dm_integrity_io_error(ic, "writing superblock", r); 2717 } 2718 2719 static void integrity_recalc(struct work_struct *w) 2720 { 2721 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2722 size_t recalc_tags_size; 2723 u8 *recalc_buffer = NULL; 2724 u8 *recalc_tags = NULL; 2725 struct dm_integrity_range range; 2726 struct dm_io_request io_req; 2727 struct dm_io_region io_loc; 2728 sector_t area, offset; 2729 sector_t metadata_block; 2730 unsigned int metadata_offset; 2731 sector_t logical_sector, n_sectors; 2732 __u8 *t; 2733 unsigned int i; 2734 int r; 2735 unsigned int super_counter = 0; 2736 unsigned recalc_sectors = RECALC_SECTORS; 2737 2738 retry: 2739 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO); 2740 if (!recalc_buffer) { 2741 oom: 2742 recalc_sectors >>= 1; 2743 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block) 2744 goto retry; 2745 DMCRIT("out of memory for recalculate buffer - recalculation disabled"); 2746 goto free_ret; 2747 } 2748 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 2749 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size) 2750 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size; 2751 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO); 2752 if (!recalc_tags) { 2753 vfree(recalc_buffer); 2754 recalc_buffer = NULL; 2755 goto oom; 2756 } 2757 2758 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2759 2760 spin_lock_irq(&ic->endio_wait.lock); 2761 2762 next_chunk: 2763 2764 if (unlikely(dm_post_suspending(ic->ti))) 2765 goto unlock_ret; 2766 2767 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2768 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2769 if (ic->mode == 'B') { 2770 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2771 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2772 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2773 } 2774 goto unlock_ret; 2775 } 2776 2777 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2778 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector); 2779 if (!ic->meta_dev) 2780 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset); 2781 2782 add_new_range_and_wait(ic, &range); 2783 spin_unlock_irq(&ic->endio_wait.lock); 2784 logical_sector = range.logical_sector; 2785 n_sectors = range.n_sectors; 2786 2787 if (ic->mode == 'B') { 2788 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2789 goto advance_and_next; 2790 2791 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2792 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2793 logical_sector += ic->sectors_per_block; 2794 n_sectors -= ic->sectors_per_block; 2795 cond_resched(); 2796 } 2797 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2798 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2799 n_sectors -= ic->sectors_per_block; 2800 cond_resched(); 2801 } 2802 get_area_and_offset(ic, logical_sector, &area, &offset); 2803 } 2804 2805 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2806 2807 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2808 recalc_write_super(ic); 2809 if (ic->mode == 'B') 2810 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2811 2812 super_counter = 0; 2813 } 2814 2815 if (unlikely(dm_integrity_failed(ic))) 2816 goto err; 2817 2818 io_req.bi_opf = REQ_OP_READ; 2819 io_req.mem.type = DM_IO_VMA; 2820 io_req.mem.ptr.addr = recalc_buffer; 2821 io_req.notify.fn = NULL; 2822 io_req.client = ic->io; 2823 io_loc.bdev = ic->dev->bdev; 2824 io_loc.sector = get_data_sector(ic, area, offset); 2825 io_loc.count = n_sectors; 2826 2827 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 2828 if (unlikely(r)) { 2829 dm_integrity_io_error(ic, "reading data", r); 2830 goto err; 2831 } 2832 2833 t = recalc_tags; 2834 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2835 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t); 2836 t += ic->tag_size; 2837 } 2838 2839 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2840 2841 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE); 2842 if (unlikely(r)) { 2843 dm_integrity_io_error(ic, "writing tags", r); 2844 goto err; 2845 } 2846 2847 if (ic->mode == 'B') { 2848 sector_t start, end; 2849 2850 start = (range.logical_sector >> 2851 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2852 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2853 end = ((range.logical_sector + range.n_sectors) >> 2854 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2855 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2856 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2857 } 2858 2859 advance_and_next: 2860 cond_resched(); 2861 2862 spin_lock_irq(&ic->endio_wait.lock); 2863 remove_range_unlocked(ic, &range); 2864 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2865 goto next_chunk; 2866 2867 err: 2868 remove_range(ic, &range); 2869 goto free_ret; 2870 2871 unlock_ret: 2872 spin_unlock_irq(&ic->endio_wait.lock); 2873 2874 recalc_write_super(ic); 2875 2876 free_ret: 2877 vfree(recalc_buffer); 2878 kvfree(recalc_tags); 2879 } 2880 2881 static void bitmap_block_work(struct work_struct *w) 2882 { 2883 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2884 struct dm_integrity_c *ic = bbs->ic; 2885 struct bio *bio; 2886 struct bio_list bio_queue; 2887 struct bio_list waiting; 2888 2889 bio_list_init(&waiting); 2890 2891 spin_lock(&bbs->bio_queue_lock); 2892 bio_queue = bbs->bio_queue; 2893 bio_list_init(&bbs->bio_queue); 2894 spin_unlock(&bbs->bio_queue_lock); 2895 2896 while ((bio = bio_list_pop(&bio_queue))) { 2897 struct dm_integrity_io *dio; 2898 2899 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2900 2901 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2902 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2903 remove_range(ic, &dio->range); 2904 INIT_WORK(&dio->work, integrity_bio_wait); 2905 queue_work(ic->offload_wq, &dio->work); 2906 } else { 2907 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2908 dio->range.n_sectors, BITMAP_OP_SET); 2909 bio_list_add(&waiting, bio); 2910 } 2911 } 2912 2913 if (bio_list_empty(&waiting)) 2914 return; 2915 2916 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 2917 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2918 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2919 2920 while ((bio = bio_list_pop(&waiting))) { 2921 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2922 2923 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2924 dio->range.n_sectors, BITMAP_OP_SET); 2925 2926 remove_range(ic, &dio->range); 2927 INIT_WORK(&dio->work, integrity_bio_wait); 2928 queue_work(ic->offload_wq, &dio->work); 2929 } 2930 2931 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2932 } 2933 2934 static void bitmap_flush_work(struct work_struct *work) 2935 { 2936 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2937 struct dm_integrity_range range; 2938 unsigned long limit; 2939 struct bio *bio; 2940 2941 dm_integrity_flush_buffers(ic, false); 2942 2943 range.logical_sector = 0; 2944 range.n_sectors = ic->provided_data_sectors; 2945 2946 spin_lock_irq(&ic->endio_wait.lock); 2947 add_new_range_and_wait(ic, &range); 2948 spin_unlock_irq(&ic->endio_wait.lock); 2949 2950 dm_integrity_flush_buffers(ic, true); 2951 2952 limit = ic->provided_data_sectors; 2953 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2954 limit = le64_to_cpu(ic->sb->recalc_sector) 2955 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2956 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2957 } 2958 /*DEBUG_print("zeroing journal\n");*/ 2959 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2960 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2961 2962 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 2963 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2964 2965 spin_lock_irq(&ic->endio_wait.lock); 2966 remove_range_unlocked(ic, &range); 2967 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2968 bio_endio(bio); 2969 spin_unlock_irq(&ic->endio_wait.lock); 2970 spin_lock_irq(&ic->endio_wait.lock); 2971 } 2972 spin_unlock_irq(&ic->endio_wait.lock); 2973 } 2974 2975 2976 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section, 2977 unsigned int n_sections, unsigned char commit_seq) 2978 { 2979 unsigned int i, j, n; 2980 2981 if (!n_sections) 2982 return; 2983 2984 for (n = 0; n < n_sections; n++) { 2985 i = start_section + n; 2986 wraparound_section(ic, &i); 2987 for (j = 0; j < ic->journal_section_sectors; j++) { 2988 struct journal_sector *js = access_journal(ic, i, j); 2989 2990 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA); 2991 memset(&js->sectors, 0, sizeof(js->sectors)); 2992 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2993 } 2994 for (j = 0; j < ic->journal_section_entries; j++) { 2995 struct journal_entry *je = access_journal_entry(ic, i, j); 2996 2997 journal_entry_set_unused(je); 2998 } 2999 } 3000 3001 write_journal(ic, start_section, n_sections); 3002 } 3003 3004 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id) 3005 { 3006 unsigned char k; 3007 3008 for (k = 0; k < N_COMMIT_IDS; k++) { 3009 if (dm_integrity_commit_id(ic, i, j, k) == id) 3010 return k; 3011 } 3012 dm_integrity_io_error(ic, "journal commit id", -EIO); 3013 return -EIO; 3014 } 3015 3016 static void replay_journal(struct dm_integrity_c *ic) 3017 { 3018 unsigned int i, j; 3019 bool used_commit_ids[N_COMMIT_IDS]; 3020 unsigned int max_commit_id_sections[N_COMMIT_IDS]; 3021 unsigned int write_start, write_sections; 3022 unsigned int continue_section; 3023 bool journal_empty; 3024 unsigned char unused, last_used, want_commit_seq; 3025 3026 if (ic->mode == 'R') 3027 return; 3028 3029 if (ic->journal_uptodate) 3030 return; 3031 3032 last_used = 0; 3033 write_start = 0; 3034 3035 if (!ic->just_formatted) { 3036 DEBUG_print("reading journal\n"); 3037 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL); 3038 if (ic->journal_io) 3039 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 3040 if (ic->journal_io) { 3041 struct journal_completion crypt_comp; 3042 3043 crypt_comp.ic = ic; 3044 init_completion(&crypt_comp.comp); 3045 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 3046 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 3047 wait_for_completion(&crypt_comp.comp); 3048 } 3049 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 3050 } 3051 3052 if (dm_integrity_failed(ic)) 3053 goto clear_journal; 3054 3055 journal_empty = true; 3056 memset(used_commit_ids, 0, sizeof(used_commit_ids)); 3057 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections)); 3058 for (i = 0; i < ic->journal_sections; i++) { 3059 for (j = 0; j < ic->journal_section_sectors; j++) { 3060 int k; 3061 struct journal_sector *js = access_journal(ic, i, j); 3062 3063 k = find_commit_seq(ic, i, j, js->commit_id); 3064 if (k < 0) 3065 goto clear_journal; 3066 used_commit_ids[k] = true; 3067 max_commit_id_sections[k] = i; 3068 } 3069 if (journal_empty) { 3070 for (j = 0; j < ic->journal_section_entries; j++) { 3071 struct journal_entry *je = access_journal_entry(ic, i, j); 3072 3073 if (!journal_entry_is_unused(je)) { 3074 journal_empty = false; 3075 break; 3076 } 3077 } 3078 } 3079 } 3080 3081 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 3082 unused = N_COMMIT_IDS - 1; 3083 while (unused && !used_commit_ids[unused - 1]) 3084 unused--; 3085 } else { 3086 for (unused = 0; unused < N_COMMIT_IDS; unused++) 3087 if (!used_commit_ids[unused]) 3088 break; 3089 if (unused == N_COMMIT_IDS) { 3090 dm_integrity_io_error(ic, "journal commit ids", -EIO); 3091 goto clear_journal; 3092 } 3093 } 3094 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 3095 unused, used_commit_ids[0], used_commit_ids[1], 3096 used_commit_ids[2], used_commit_ids[3]); 3097 3098 last_used = prev_commit_seq(unused); 3099 want_commit_seq = prev_commit_seq(last_used); 3100 3101 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 3102 journal_empty = true; 3103 3104 write_start = max_commit_id_sections[last_used] + 1; 3105 if (unlikely(write_start >= ic->journal_sections)) 3106 want_commit_seq = next_commit_seq(want_commit_seq); 3107 wraparound_section(ic, &write_start); 3108 3109 i = write_start; 3110 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 3111 for (j = 0; j < ic->journal_section_sectors; j++) { 3112 struct journal_sector *js = access_journal(ic, i, j); 3113 3114 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 3115 /* 3116 * This could be caused by crash during writing. 3117 * We won't replay the inconsistent part of the 3118 * journal. 3119 */ 3120 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 3121 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 3122 goto brk; 3123 } 3124 } 3125 i++; 3126 if (unlikely(i >= ic->journal_sections)) 3127 want_commit_seq = next_commit_seq(want_commit_seq); 3128 wraparound_section(ic, &i); 3129 } 3130 brk: 3131 3132 if (!journal_empty) { 3133 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 3134 write_sections, write_start, want_commit_seq); 3135 do_journal_write(ic, write_start, write_sections, true); 3136 } 3137 3138 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3139 continue_section = write_start; 3140 ic->commit_seq = want_commit_seq; 3141 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3142 } else { 3143 unsigned int s; 3144 unsigned char erase_seq; 3145 3146 clear_journal: 3147 DEBUG_print("clearing journal\n"); 3148 3149 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3150 s = write_start; 3151 init_journal(ic, s, 1, erase_seq); 3152 s++; 3153 wraparound_section(ic, &s); 3154 if (ic->journal_sections >= 2) { 3155 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3156 s += ic->journal_sections - 2; 3157 wraparound_section(ic, &s); 3158 init_journal(ic, s, 1, erase_seq); 3159 } 3160 3161 continue_section = 0; 3162 ic->commit_seq = next_commit_seq(erase_seq); 3163 } 3164 3165 ic->committed_section = continue_section; 3166 ic->n_committed_sections = 0; 3167 3168 ic->uncommitted_section = continue_section; 3169 ic->n_uncommitted_sections = 0; 3170 3171 ic->free_section = continue_section; 3172 ic->free_section_entry = 0; 3173 ic->free_sectors = ic->journal_entries; 3174 3175 ic->journal_tree_root = RB_ROOT; 3176 for (i = 0; i < ic->journal_entries; i++) 3177 init_journal_node(&ic->journal_tree[i]); 3178 } 3179 3180 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3181 { 3182 DEBUG_print("%s\n", __func__); 3183 3184 if (ic->mode == 'B') { 3185 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3186 ic->synchronous_mode = 1; 3187 3188 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3189 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3190 flush_workqueue(ic->commit_wq); 3191 } 3192 } 3193 3194 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3195 { 3196 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3197 3198 DEBUG_print("%s\n", __func__); 3199 3200 dm_integrity_enter_synchronous_mode(ic); 3201 3202 return NOTIFY_DONE; 3203 } 3204 3205 static void dm_integrity_postsuspend(struct dm_target *ti) 3206 { 3207 struct dm_integrity_c *ic = ti->private; 3208 int r; 3209 3210 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3211 3212 del_timer_sync(&ic->autocommit_timer); 3213 3214 if (ic->recalc_wq) 3215 drain_workqueue(ic->recalc_wq); 3216 3217 if (ic->mode == 'B') 3218 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3219 3220 queue_work(ic->commit_wq, &ic->commit_work); 3221 drain_workqueue(ic->commit_wq); 3222 3223 if (ic->mode == 'J') { 3224 queue_work(ic->writer_wq, &ic->writer_work); 3225 drain_workqueue(ic->writer_wq); 3226 dm_integrity_flush_buffers(ic, true); 3227 if (ic->wrote_to_journal) { 3228 init_journal(ic, ic->free_section, 3229 ic->journal_sections - ic->free_section, ic->commit_seq); 3230 if (ic->free_section) { 3231 init_journal(ic, 0, ic->free_section, 3232 next_commit_seq(ic->commit_seq)); 3233 } 3234 } 3235 } 3236 3237 if (ic->mode == 'B') { 3238 dm_integrity_flush_buffers(ic, true); 3239 #if 1 3240 /* set to 0 to test bitmap replay code */ 3241 init_journal(ic, 0, ic->journal_sections, 0); 3242 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3243 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3244 if (unlikely(r)) 3245 dm_integrity_io_error(ic, "writing superblock", r); 3246 #endif 3247 } 3248 3249 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3250 3251 ic->journal_uptodate = true; 3252 } 3253 3254 static void dm_integrity_resume(struct dm_target *ti) 3255 { 3256 struct dm_integrity_c *ic = ti->private; 3257 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3258 int r; 3259 3260 DEBUG_print("resume\n"); 3261 3262 ic->wrote_to_journal = false; 3263 3264 if (ic->provided_data_sectors != old_provided_data_sectors) { 3265 if (ic->provided_data_sectors > old_provided_data_sectors && 3266 ic->mode == 'B' && 3267 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3268 rw_journal_sectors(ic, REQ_OP_READ, 0, 3269 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3270 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3271 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3272 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3273 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3274 } 3275 3276 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3277 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3278 if (unlikely(r)) 3279 dm_integrity_io_error(ic, "writing superblock", r); 3280 } 3281 3282 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3283 DEBUG_print("resume dirty_bitmap\n"); 3284 rw_journal_sectors(ic, REQ_OP_READ, 0, 3285 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3286 if (ic->mode == 'B') { 3287 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3288 !ic->reset_recalculate_flag) { 3289 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3290 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3291 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3292 BITMAP_OP_TEST_ALL_CLEAR)) { 3293 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3294 ic->sb->recalc_sector = cpu_to_le64(0); 3295 } 3296 } else { 3297 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3298 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3299 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3300 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3301 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3302 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3303 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3304 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3305 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3306 ic->sb->recalc_sector = cpu_to_le64(0); 3307 } 3308 } else { 3309 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3310 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3311 ic->reset_recalculate_flag) { 3312 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3313 ic->sb->recalc_sector = cpu_to_le64(0); 3314 } 3315 init_journal(ic, 0, ic->journal_sections, 0); 3316 replay_journal(ic); 3317 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3318 } 3319 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3320 if (unlikely(r)) 3321 dm_integrity_io_error(ic, "writing superblock", r); 3322 } else { 3323 replay_journal(ic); 3324 if (ic->reset_recalculate_flag) { 3325 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3326 ic->sb->recalc_sector = cpu_to_le64(0); 3327 } 3328 if (ic->mode == 'B') { 3329 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3330 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3331 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3332 if (unlikely(r)) 3333 dm_integrity_io_error(ic, "writing superblock", r); 3334 3335 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3336 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3337 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3338 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3339 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3340 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3341 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3342 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3343 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3344 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3345 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3346 } 3347 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3348 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3349 } 3350 } 3351 3352 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3353 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3354 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3355 3356 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3357 if (recalc_pos < ic->provided_data_sectors) { 3358 queue_work(ic->recalc_wq, &ic->recalc_work); 3359 } else if (recalc_pos > ic->provided_data_sectors) { 3360 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3361 recalc_write_super(ic); 3362 } 3363 } 3364 3365 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3366 ic->reboot_notifier.next = NULL; 3367 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3368 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3369 3370 #if 0 3371 /* set to 1 to stress test synchronous mode */ 3372 dm_integrity_enter_synchronous_mode(ic); 3373 #endif 3374 } 3375 3376 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3377 unsigned int status_flags, char *result, unsigned int maxlen) 3378 { 3379 struct dm_integrity_c *ic = ti->private; 3380 unsigned int arg_count; 3381 size_t sz = 0; 3382 3383 switch (type) { 3384 case STATUSTYPE_INFO: 3385 DMEMIT("%llu %llu", 3386 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3387 ic->provided_data_sectors); 3388 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3389 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3390 else 3391 DMEMIT(" -"); 3392 break; 3393 3394 case STATUSTYPE_TABLE: { 3395 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3396 3397 watermark_percentage += ic->journal_entries / 2; 3398 do_div(watermark_percentage, ic->journal_entries); 3399 arg_count = 3; 3400 arg_count += !!ic->meta_dev; 3401 arg_count += ic->sectors_per_block != 1; 3402 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3403 arg_count += ic->reset_recalculate_flag; 3404 arg_count += ic->discard; 3405 arg_count += ic->mode == 'J'; 3406 arg_count += ic->mode == 'J'; 3407 arg_count += ic->mode == 'B'; 3408 arg_count += ic->mode == 'B'; 3409 arg_count += !!ic->internal_hash_alg.alg_string; 3410 arg_count += !!ic->journal_crypt_alg.alg_string; 3411 arg_count += !!ic->journal_mac_alg.alg_string; 3412 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3413 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3414 arg_count += ic->legacy_recalculate; 3415 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3416 ic->tag_size, ic->mode, arg_count); 3417 if (ic->meta_dev) 3418 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3419 if (ic->sectors_per_block != 1) 3420 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3421 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3422 DMEMIT(" recalculate"); 3423 if (ic->reset_recalculate_flag) 3424 DMEMIT(" reset_recalculate"); 3425 if (ic->discard) 3426 DMEMIT(" allow_discards"); 3427 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3428 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3429 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3430 if (ic->mode == 'J') { 3431 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage); 3432 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3433 } 3434 if (ic->mode == 'B') { 3435 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3436 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3437 } 3438 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3439 DMEMIT(" fix_padding"); 3440 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3441 DMEMIT(" fix_hmac"); 3442 if (ic->legacy_recalculate) 3443 DMEMIT(" legacy_recalculate"); 3444 3445 #define EMIT_ALG(a, n) \ 3446 do { \ 3447 if (ic->a.alg_string) { \ 3448 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3449 if (ic->a.key_string) \ 3450 DMEMIT(":%s", ic->a.key_string);\ 3451 } \ 3452 } while (0) 3453 EMIT_ALG(internal_hash_alg, "internal_hash"); 3454 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3455 EMIT_ALG(journal_mac_alg, "journal_mac"); 3456 break; 3457 } 3458 case STATUSTYPE_IMA: 3459 DMEMIT_TARGET_NAME_VERSION(ti->type); 3460 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", 3461 ic->dev->name, ic->start, ic->tag_size, ic->mode); 3462 3463 if (ic->meta_dev) 3464 DMEMIT(",meta_device=%s", ic->meta_dev->name); 3465 if (ic->sectors_per_block != 1) 3466 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); 3467 3468 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 3469 'y' : 'n'); 3470 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); 3471 DMEMIT(",fix_padding=%c", 3472 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); 3473 DMEMIT(",fix_hmac=%c", 3474 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); 3475 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); 3476 3477 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); 3478 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); 3479 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); 3480 DMEMIT(";"); 3481 break; 3482 } 3483 } 3484 3485 static int dm_integrity_iterate_devices(struct dm_target *ti, 3486 iterate_devices_callout_fn fn, void *data) 3487 { 3488 struct dm_integrity_c *ic = ti->private; 3489 3490 if (!ic->meta_dev) 3491 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3492 else 3493 return fn(ti, ic->dev, 0, ti->len, data); 3494 } 3495 3496 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3497 { 3498 struct dm_integrity_c *ic = ti->private; 3499 3500 if (ic->sectors_per_block > 1) { 3501 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3502 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3503 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3504 limits->dma_alignment = limits->logical_block_size - 1; 3505 } 3506 } 3507 3508 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3509 { 3510 unsigned int sector_space = JOURNAL_SECTOR_DATA; 3511 3512 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3513 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3514 JOURNAL_ENTRY_ROUNDUP); 3515 3516 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3517 sector_space -= JOURNAL_MAC_PER_SECTOR; 3518 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3519 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3520 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3521 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3522 } 3523 3524 static int calculate_device_limits(struct dm_integrity_c *ic) 3525 { 3526 __u64 initial_sectors; 3527 3528 calculate_journal_section_size(ic); 3529 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3530 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3531 return -EINVAL; 3532 ic->initial_sectors = initial_sectors; 3533 3534 if (!ic->meta_dev) { 3535 sector_t last_sector, last_area, last_offset; 3536 3537 /* we have to maintain excessive padding for compatibility with existing volumes */ 3538 __u64 metadata_run_padding = 3539 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3540 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3541 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3542 3543 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3544 metadata_run_padding) >> SECTOR_SHIFT; 3545 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3546 ic->log2_metadata_run = __ffs(ic->metadata_run); 3547 else 3548 ic->log2_metadata_run = -1; 3549 3550 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3551 last_sector = get_data_sector(ic, last_area, last_offset); 3552 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3553 return -EINVAL; 3554 } else { 3555 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3556 3557 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3558 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3559 meta_size <<= ic->log2_buffer_sectors; 3560 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3561 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3562 return -EINVAL; 3563 ic->metadata_run = 1; 3564 ic->log2_metadata_run = 0; 3565 } 3566 3567 return 0; 3568 } 3569 3570 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3571 { 3572 if (!ic->meta_dev) { 3573 int test_bit; 3574 3575 ic->provided_data_sectors = 0; 3576 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3577 __u64 prev_data_sectors = ic->provided_data_sectors; 3578 3579 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3580 if (calculate_device_limits(ic)) 3581 ic->provided_data_sectors = prev_data_sectors; 3582 } 3583 } else { 3584 ic->provided_data_sectors = ic->data_device_sectors; 3585 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3586 } 3587 } 3588 3589 static int initialize_superblock(struct dm_integrity_c *ic, 3590 unsigned int journal_sectors, unsigned int interleave_sectors) 3591 { 3592 unsigned int journal_sections; 3593 int test_bit; 3594 3595 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3596 memcpy(ic->sb->magic, SB_MAGIC, 8); 3597 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3598 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3599 if (ic->journal_mac_alg.alg_string) 3600 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3601 3602 calculate_journal_section_size(ic); 3603 journal_sections = journal_sectors / ic->journal_section_sectors; 3604 if (!journal_sections) 3605 journal_sections = 1; 3606 3607 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 3608 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 3609 get_random_bytes(ic->sb->salt, SALT_SIZE); 3610 } 3611 3612 if (!ic->meta_dev) { 3613 if (ic->fix_padding) 3614 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3615 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3616 if (!interleave_sectors) 3617 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3618 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3619 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3620 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3621 3622 get_provided_data_sectors(ic); 3623 if (!ic->provided_data_sectors) 3624 return -EINVAL; 3625 } else { 3626 ic->sb->log2_interleave_sectors = 0; 3627 3628 get_provided_data_sectors(ic); 3629 if (!ic->provided_data_sectors) 3630 return -EINVAL; 3631 3632 try_smaller_buffer: 3633 ic->sb->journal_sections = cpu_to_le32(0); 3634 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3635 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3636 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3637 3638 if (test_journal_sections > journal_sections) 3639 continue; 3640 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3641 if (calculate_device_limits(ic)) 3642 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3643 3644 } 3645 if (!le32_to_cpu(ic->sb->journal_sections)) { 3646 if (ic->log2_buffer_sectors > 3) { 3647 ic->log2_buffer_sectors--; 3648 goto try_smaller_buffer; 3649 } 3650 return -EINVAL; 3651 } 3652 } 3653 3654 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3655 3656 sb_set_version(ic); 3657 3658 return 0; 3659 } 3660 3661 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3662 { 3663 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3664 struct blk_integrity bi; 3665 3666 memset(&bi, 0, sizeof(bi)); 3667 bi.profile = &dm_integrity_profile; 3668 bi.tuple_size = ic->tag_size; 3669 bi.tag_size = bi.tuple_size; 3670 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3671 3672 blk_integrity_register(disk, &bi); 3673 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3674 } 3675 3676 static void dm_integrity_free_page_list(struct page_list *pl) 3677 { 3678 unsigned int i; 3679 3680 if (!pl) 3681 return; 3682 for (i = 0; pl[i].page; i++) 3683 __free_page(pl[i].page); 3684 kvfree(pl); 3685 } 3686 3687 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages) 3688 { 3689 struct page_list *pl; 3690 unsigned int i; 3691 3692 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3693 if (!pl) 3694 return NULL; 3695 3696 for (i = 0; i < n_pages; i++) { 3697 pl[i].page = alloc_page(GFP_KERNEL); 3698 if (!pl[i].page) { 3699 dm_integrity_free_page_list(pl); 3700 return NULL; 3701 } 3702 if (i) 3703 pl[i - 1].next = &pl[i]; 3704 } 3705 pl[i].page = NULL; 3706 pl[i].next = NULL; 3707 3708 return pl; 3709 } 3710 3711 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3712 { 3713 unsigned int i; 3714 3715 for (i = 0; i < ic->journal_sections; i++) 3716 kvfree(sl[i]); 3717 kvfree(sl); 3718 } 3719 3720 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3721 struct page_list *pl) 3722 { 3723 struct scatterlist **sl; 3724 unsigned int i; 3725 3726 sl = kvmalloc_array(ic->journal_sections, 3727 sizeof(struct scatterlist *), 3728 GFP_KERNEL | __GFP_ZERO); 3729 if (!sl) 3730 return NULL; 3731 3732 for (i = 0; i < ic->journal_sections; i++) { 3733 struct scatterlist *s; 3734 unsigned int start_index, start_offset; 3735 unsigned int end_index, end_offset; 3736 unsigned int n_pages; 3737 unsigned int idx; 3738 3739 page_list_location(ic, i, 0, &start_index, &start_offset); 3740 page_list_location(ic, i, ic->journal_section_sectors - 1, 3741 &end_index, &end_offset); 3742 3743 n_pages = (end_index - start_index + 1); 3744 3745 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3746 GFP_KERNEL); 3747 if (!s) { 3748 dm_integrity_free_journal_scatterlist(ic, sl); 3749 return NULL; 3750 } 3751 3752 sg_init_table(s, n_pages); 3753 for (idx = start_index; idx <= end_index; idx++) { 3754 char *va = lowmem_page_address(pl[idx].page); 3755 unsigned int start = 0, end = PAGE_SIZE; 3756 3757 if (idx == start_index) 3758 start = start_offset; 3759 if (idx == end_index) 3760 end = end_offset + (1 << SECTOR_SHIFT); 3761 sg_set_buf(&s[idx - start_index], va + start, end - start); 3762 } 3763 3764 sl[i] = s; 3765 } 3766 3767 return sl; 3768 } 3769 3770 static void free_alg(struct alg_spec *a) 3771 { 3772 kfree_sensitive(a->alg_string); 3773 kfree_sensitive(a->key); 3774 memset(a, 0, sizeof(*a)); 3775 } 3776 3777 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3778 { 3779 char *k; 3780 3781 free_alg(a); 3782 3783 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3784 if (!a->alg_string) 3785 goto nomem; 3786 3787 k = strchr(a->alg_string, ':'); 3788 if (k) { 3789 *k = 0; 3790 a->key_string = k + 1; 3791 if (strlen(a->key_string) & 1) 3792 goto inval; 3793 3794 a->key_size = strlen(a->key_string) / 2; 3795 a->key = kmalloc(a->key_size, GFP_KERNEL); 3796 if (!a->key) 3797 goto nomem; 3798 if (hex2bin(a->key, a->key_string, a->key_size)) 3799 goto inval; 3800 } 3801 3802 return 0; 3803 inval: 3804 *error = error_inval; 3805 return -EINVAL; 3806 nomem: 3807 *error = "Out of memory for an argument"; 3808 return -ENOMEM; 3809 } 3810 3811 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3812 char *error_alg, char *error_key) 3813 { 3814 int r; 3815 3816 if (a->alg_string) { 3817 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3818 if (IS_ERR(*hash)) { 3819 *error = error_alg; 3820 r = PTR_ERR(*hash); 3821 *hash = NULL; 3822 return r; 3823 } 3824 3825 if (a->key) { 3826 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3827 if (r) { 3828 *error = error_key; 3829 return r; 3830 } 3831 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3832 *error = error_key; 3833 return -ENOKEY; 3834 } 3835 } 3836 3837 return 0; 3838 } 3839 3840 static int create_journal(struct dm_integrity_c *ic, char **error) 3841 { 3842 int r = 0; 3843 unsigned int i; 3844 __u64 journal_pages, journal_desc_size, journal_tree_size; 3845 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3846 struct skcipher_request *req = NULL; 3847 3848 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3849 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3850 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3851 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3852 3853 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3854 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3855 journal_desc_size = journal_pages * sizeof(struct page_list); 3856 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3857 *error = "Journal doesn't fit into memory"; 3858 r = -ENOMEM; 3859 goto bad; 3860 } 3861 ic->journal_pages = journal_pages; 3862 3863 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3864 if (!ic->journal) { 3865 *error = "Could not allocate memory for journal"; 3866 r = -ENOMEM; 3867 goto bad; 3868 } 3869 if (ic->journal_crypt_alg.alg_string) { 3870 unsigned int ivsize, blocksize; 3871 struct journal_completion comp; 3872 3873 comp.ic = ic; 3874 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3875 if (IS_ERR(ic->journal_crypt)) { 3876 *error = "Invalid journal cipher"; 3877 r = PTR_ERR(ic->journal_crypt); 3878 ic->journal_crypt = NULL; 3879 goto bad; 3880 } 3881 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3882 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3883 3884 if (ic->journal_crypt_alg.key) { 3885 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3886 ic->journal_crypt_alg.key_size); 3887 if (r) { 3888 *error = "Error setting encryption key"; 3889 goto bad; 3890 } 3891 } 3892 DEBUG_print("cipher %s, block size %u iv size %u\n", 3893 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3894 3895 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3896 if (!ic->journal_io) { 3897 *error = "Could not allocate memory for journal io"; 3898 r = -ENOMEM; 3899 goto bad; 3900 } 3901 3902 if (blocksize == 1) { 3903 struct scatterlist *sg; 3904 3905 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3906 if (!req) { 3907 *error = "Could not allocate crypt request"; 3908 r = -ENOMEM; 3909 goto bad; 3910 } 3911 3912 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3913 if (!crypt_iv) { 3914 *error = "Could not allocate iv"; 3915 r = -ENOMEM; 3916 goto bad; 3917 } 3918 3919 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3920 if (!ic->journal_xor) { 3921 *error = "Could not allocate memory for journal xor"; 3922 r = -ENOMEM; 3923 goto bad; 3924 } 3925 3926 sg = kvmalloc_array(ic->journal_pages + 1, 3927 sizeof(struct scatterlist), 3928 GFP_KERNEL); 3929 if (!sg) { 3930 *error = "Unable to allocate sg list"; 3931 r = -ENOMEM; 3932 goto bad; 3933 } 3934 sg_init_table(sg, ic->journal_pages + 1); 3935 for (i = 0; i < ic->journal_pages; i++) { 3936 char *va = lowmem_page_address(ic->journal_xor[i].page); 3937 3938 clear_page(va); 3939 sg_set_buf(&sg[i], va, PAGE_SIZE); 3940 } 3941 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids)); 3942 3943 skcipher_request_set_crypt(req, sg, sg, 3944 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv); 3945 init_completion(&comp.comp); 3946 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3947 if (do_crypt(true, req, &comp)) 3948 wait_for_completion(&comp.comp); 3949 kvfree(sg); 3950 r = dm_integrity_failed(ic); 3951 if (r) { 3952 *error = "Unable to encrypt journal"; 3953 goto bad; 3954 } 3955 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3956 3957 crypto_free_skcipher(ic->journal_crypt); 3958 ic->journal_crypt = NULL; 3959 } else { 3960 unsigned int crypt_len = roundup(ivsize, blocksize); 3961 3962 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3963 if (!req) { 3964 *error = "Could not allocate crypt request"; 3965 r = -ENOMEM; 3966 goto bad; 3967 } 3968 3969 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3970 if (!crypt_iv) { 3971 *error = "Could not allocate iv"; 3972 r = -ENOMEM; 3973 goto bad; 3974 } 3975 3976 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3977 if (!crypt_data) { 3978 *error = "Unable to allocate crypt data"; 3979 r = -ENOMEM; 3980 goto bad; 3981 } 3982 3983 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3984 if (!ic->journal_scatterlist) { 3985 *error = "Unable to allocate sg list"; 3986 r = -ENOMEM; 3987 goto bad; 3988 } 3989 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3990 if (!ic->journal_io_scatterlist) { 3991 *error = "Unable to allocate sg list"; 3992 r = -ENOMEM; 3993 goto bad; 3994 } 3995 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3996 sizeof(struct skcipher_request *), 3997 GFP_KERNEL | __GFP_ZERO); 3998 if (!ic->sk_requests) { 3999 *error = "Unable to allocate sk requests"; 4000 r = -ENOMEM; 4001 goto bad; 4002 } 4003 for (i = 0; i < ic->journal_sections; i++) { 4004 struct scatterlist sg; 4005 struct skcipher_request *section_req; 4006 __le32 section_le = cpu_to_le32(i); 4007 4008 memset(crypt_iv, 0x00, ivsize); 4009 memset(crypt_data, 0x00, crypt_len); 4010 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le))); 4011 4012 sg_init_one(&sg, crypt_data, crypt_len); 4013 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 4014 init_completion(&comp.comp); 4015 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 4016 if (do_crypt(true, req, &comp)) 4017 wait_for_completion(&comp.comp); 4018 4019 r = dm_integrity_failed(ic); 4020 if (r) { 4021 *error = "Unable to generate iv"; 4022 goto bad; 4023 } 4024 4025 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 4026 if (!section_req) { 4027 *error = "Unable to allocate crypt request"; 4028 r = -ENOMEM; 4029 goto bad; 4030 } 4031 section_req->iv = kmalloc_array(ivsize, 2, 4032 GFP_KERNEL); 4033 if (!section_req->iv) { 4034 skcipher_request_free(section_req); 4035 *error = "Unable to allocate iv"; 4036 r = -ENOMEM; 4037 goto bad; 4038 } 4039 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 4040 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 4041 ic->sk_requests[i] = section_req; 4042 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 4043 } 4044 } 4045 } 4046 4047 for (i = 0; i < N_COMMIT_IDS; i++) { 4048 unsigned int j; 4049 4050 retest_commit_id: 4051 for (j = 0; j < i; j++) { 4052 if (ic->commit_ids[j] == ic->commit_ids[i]) { 4053 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 4054 goto retest_commit_id; 4055 } 4056 } 4057 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 4058 } 4059 4060 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 4061 if (journal_tree_size > ULONG_MAX) { 4062 *error = "Journal doesn't fit into memory"; 4063 r = -ENOMEM; 4064 goto bad; 4065 } 4066 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 4067 if (!ic->journal_tree) { 4068 *error = "Could not allocate memory for journal tree"; 4069 r = -ENOMEM; 4070 } 4071 bad: 4072 kfree(crypt_data); 4073 kfree(crypt_iv); 4074 skcipher_request_free(req); 4075 4076 return r; 4077 } 4078 4079 /* 4080 * Construct a integrity mapping 4081 * 4082 * Arguments: 4083 * device 4084 * offset from the start of the device 4085 * tag size 4086 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 4087 * number of optional arguments 4088 * optional arguments: 4089 * journal_sectors 4090 * interleave_sectors 4091 * buffer_sectors 4092 * journal_watermark 4093 * commit_time 4094 * meta_device 4095 * block_size 4096 * sectors_per_bit 4097 * bitmap_flush_interval 4098 * internal_hash 4099 * journal_crypt 4100 * journal_mac 4101 * recalculate 4102 */ 4103 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4104 { 4105 struct dm_integrity_c *ic; 4106 char dummy; 4107 int r; 4108 unsigned int extra_args; 4109 struct dm_arg_set as; 4110 static const struct dm_arg _args[] = { 4111 {0, 18, "Invalid number of feature args"}, 4112 }; 4113 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 4114 bool should_write_sb; 4115 __u64 threshold; 4116 unsigned long long start; 4117 __s8 log2_sectors_per_bitmap_bit = -1; 4118 __s8 log2_blocks_per_bitmap_bit; 4119 __u64 bits_in_journal; 4120 __u64 n_bitmap_bits; 4121 4122 #define DIRECT_ARGUMENTS 4 4123 4124 if (argc <= DIRECT_ARGUMENTS) { 4125 ti->error = "Invalid argument count"; 4126 return -EINVAL; 4127 } 4128 4129 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 4130 if (!ic) { 4131 ti->error = "Cannot allocate integrity context"; 4132 return -ENOMEM; 4133 } 4134 ti->private = ic; 4135 ti->per_io_data_size = sizeof(struct dm_integrity_io); 4136 ic->ti = ti; 4137 4138 ic->in_progress = RB_ROOT; 4139 INIT_LIST_HEAD(&ic->wait_list); 4140 init_waitqueue_head(&ic->endio_wait); 4141 bio_list_init(&ic->flush_bio_list); 4142 init_waitqueue_head(&ic->copy_to_journal_wait); 4143 init_completion(&ic->crypto_backoff); 4144 atomic64_set(&ic->number_of_mismatches, 0); 4145 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 4146 4147 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 4148 if (r) { 4149 ti->error = "Device lookup failed"; 4150 goto bad; 4151 } 4152 4153 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 4154 ti->error = "Invalid starting offset"; 4155 r = -EINVAL; 4156 goto bad; 4157 } 4158 ic->start = start; 4159 4160 if (strcmp(argv[2], "-")) { 4161 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 4162 ti->error = "Invalid tag size"; 4163 r = -EINVAL; 4164 goto bad; 4165 } 4166 } 4167 4168 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 4169 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 4170 ic->mode = argv[3][0]; 4171 } else { 4172 ti->error = "Invalid mode (expecting J, B, D, R)"; 4173 r = -EINVAL; 4174 goto bad; 4175 } 4176 4177 journal_sectors = 0; 4178 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4179 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4180 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4181 sync_msec = DEFAULT_SYNC_MSEC; 4182 ic->sectors_per_block = 1; 4183 4184 as.argc = argc - DIRECT_ARGUMENTS; 4185 as.argv = argv + DIRECT_ARGUMENTS; 4186 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4187 if (r) 4188 goto bad; 4189 4190 while (extra_args--) { 4191 const char *opt_string; 4192 unsigned int val; 4193 unsigned long long llval; 4194 4195 opt_string = dm_shift_arg(&as); 4196 if (!opt_string) { 4197 r = -EINVAL; 4198 ti->error = "Not enough feature arguments"; 4199 goto bad; 4200 } 4201 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4202 journal_sectors = val ? val : 1; 4203 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4204 interleave_sectors = val; 4205 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4206 buffer_sectors = val; 4207 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4208 journal_watermark = val; 4209 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4210 sync_msec = val; 4211 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4212 if (ic->meta_dev) { 4213 dm_put_device(ti, ic->meta_dev); 4214 ic->meta_dev = NULL; 4215 } 4216 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4217 dm_table_get_mode(ti->table), &ic->meta_dev); 4218 if (r) { 4219 ti->error = "Device lookup failed"; 4220 goto bad; 4221 } 4222 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4223 if (val < 1 << SECTOR_SHIFT || 4224 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4225 (val & (val - 1))) { 4226 r = -EINVAL; 4227 ti->error = "Invalid block_size argument"; 4228 goto bad; 4229 } 4230 ic->sectors_per_block = val >> SECTOR_SHIFT; 4231 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4232 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4233 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4234 if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4235 r = -EINVAL; 4236 ti->error = "Invalid bitmap_flush_interval argument"; 4237 goto bad; 4238 } 4239 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4240 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4241 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4242 "Invalid internal_hash argument"); 4243 if (r) 4244 goto bad; 4245 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4246 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4247 "Invalid journal_crypt argument"); 4248 if (r) 4249 goto bad; 4250 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4251 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4252 "Invalid journal_mac argument"); 4253 if (r) 4254 goto bad; 4255 } else if (!strcmp(opt_string, "recalculate")) { 4256 ic->recalculate_flag = true; 4257 } else if (!strcmp(opt_string, "reset_recalculate")) { 4258 ic->recalculate_flag = true; 4259 ic->reset_recalculate_flag = true; 4260 } else if (!strcmp(opt_string, "allow_discards")) { 4261 ic->discard = true; 4262 } else if (!strcmp(opt_string, "fix_padding")) { 4263 ic->fix_padding = true; 4264 } else if (!strcmp(opt_string, "fix_hmac")) { 4265 ic->fix_hmac = true; 4266 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4267 ic->legacy_recalculate = true; 4268 } else { 4269 r = -EINVAL; 4270 ti->error = "Invalid argument"; 4271 goto bad; 4272 } 4273 } 4274 4275 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev); 4276 if (!ic->meta_dev) 4277 ic->meta_device_sectors = ic->data_device_sectors; 4278 else 4279 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev); 4280 4281 if (!journal_sectors) { 4282 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4283 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4284 } 4285 4286 if (!buffer_sectors) 4287 buffer_sectors = 1; 4288 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4289 4290 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4291 "Invalid internal hash", "Error setting internal hash key"); 4292 if (r) 4293 goto bad; 4294 4295 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4296 "Invalid journal mac", "Error setting journal mac key"); 4297 if (r) 4298 goto bad; 4299 4300 if (!ic->tag_size) { 4301 if (!ic->internal_hash) { 4302 ti->error = "Unknown tag size"; 4303 r = -EINVAL; 4304 goto bad; 4305 } 4306 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4307 } 4308 if (ic->tag_size > MAX_TAG_SIZE) { 4309 ti->error = "Too big tag size"; 4310 r = -EINVAL; 4311 goto bad; 4312 } 4313 if (!(ic->tag_size & (ic->tag_size - 1))) 4314 ic->log2_tag_size = __ffs(ic->tag_size); 4315 else 4316 ic->log2_tag_size = -1; 4317 4318 if (ic->mode == 'B' && !ic->internal_hash) { 4319 r = -EINVAL; 4320 ti->error = "Bitmap mode can be only used with internal hash"; 4321 goto bad; 4322 } 4323 4324 if (ic->discard && !ic->internal_hash) { 4325 r = -EINVAL; 4326 ti->error = "Discard can be only used with internal hash"; 4327 goto bad; 4328 } 4329 4330 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4331 ic->autocommit_msec = sync_msec; 4332 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4333 4334 ic->io = dm_io_client_create(); 4335 if (IS_ERR(ic->io)) { 4336 r = PTR_ERR(ic->io); 4337 ic->io = NULL; 4338 ti->error = "Cannot allocate dm io"; 4339 goto bad; 4340 } 4341 4342 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4343 if (r) { 4344 ti->error = "Cannot allocate mempool"; 4345 goto bad; 4346 } 4347 4348 r = mempool_init_page_pool(&ic->recheck_pool, 1, 0); 4349 if (r) { 4350 ti->error = "Cannot allocate mempool"; 4351 goto bad; 4352 } 4353 4354 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4355 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4356 if (!ic->metadata_wq) { 4357 ti->error = "Cannot allocate workqueue"; 4358 r = -ENOMEM; 4359 goto bad; 4360 } 4361 4362 /* 4363 * If this workqueue weren't ordered, it would cause bio reordering 4364 * and reduced performance. 4365 */ 4366 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM); 4367 if (!ic->wait_wq) { 4368 ti->error = "Cannot allocate workqueue"; 4369 r = -ENOMEM; 4370 goto bad; 4371 } 4372 4373 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4374 METADATA_WORKQUEUE_MAX_ACTIVE); 4375 if (!ic->offload_wq) { 4376 ti->error = "Cannot allocate workqueue"; 4377 r = -ENOMEM; 4378 goto bad; 4379 } 4380 4381 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4382 if (!ic->commit_wq) { 4383 ti->error = "Cannot allocate workqueue"; 4384 r = -ENOMEM; 4385 goto bad; 4386 } 4387 INIT_WORK(&ic->commit_work, integrity_commit); 4388 4389 if (ic->mode == 'J' || ic->mode == 'B') { 4390 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4391 if (!ic->writer_wq) { 4392 ti->error = "Cannot allocate workqueue"; 4393 r = -ENOMEM; 4394 goto bad; 4395 } 4396 INIT_WORK(&ic->writer_work, integrity_writer); 4397 } 4398 4399 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4400 if (!ic->sb) { 4401 r = -ENOMEM; 4402 ti->error = "Cannot allocate superblock area"; 4403 goto bad; 4404 } 4405 4406 r = sync_rw_sb(ic, REQ_OP_READ); 4407 if (r) { 4408 ti->error = "Error reading superblock"; 4409 goto bad; 4410 } 4411 should_write_sb = false; 4412 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4413 if (ic->mode != 'R') { 4414 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4415 r = -EINVAL; 4416 ti->error = "The device is not initialized"; 4417 goto bad; 4418 } 4419 } 4420 4421 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4422 if (r) { 4423 ti->error = "Could not initialize superblock"; 4424 goto bad; 4425 } 4426 if (ic->mode != 'R') 4427 should_write_sb = true; 4428 } 4429 4430 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) { 4431 r = -EINVAL; 4432 ti->error = "Unknown version"; 4433 goto bad; 4434 } 4435 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4436 r = -EINVAL; 4437 ti->error = "Tag size doesn't match the information in superblock"; 4438 goto bad; 4439 } 4440 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4441 r = -EINVAL; 4442 ti->error = "Block size doesn't match the information in superblock"; 4443 goto bad; 4444 } 4445 if (!le32_to_cpu(ic->sb->journal_sections)) { 4446 r = -EINVAL; 4447 ti->error = "Corrupted superblock, journal_sections is 0"; 4448 goto bad; 4449 } 4450 /* make sure that ti->max_io_len doesn't overflow */ 4451 if (!ic->meta_dev) { 4452 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4453 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4454 r = -EINVAL; 4455 ti->error = "Invalid interleave_sectors in the superblock"; 4456 goto bad; 4457 } 4458 } else { 4459 if (ic->sb->log2_interleave_sectors) { 4460 r = -EINVAL; 4461 ti->error = "Invalid interleave_sectors in the superblock"; 4462 goto bad; 4463 } 4464 } 4465 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4466 r = -EINVAL; 4467 ti->error = "Journal mac mismatch"; 4468 goto bad; 4469 } 4470 4471 get_provided_data_sectors(ic); 4472 if (!ic->provided_data_sectors) { 4473 r = -EINVAL; 4474 ti->error = "The device is too small"; 4475 goto bad; 4476 } 4477 4478 try_smaller_buffer: 4479 r = calculate_device_limits(ic); 4480 if (r) { 4481 if (ic->meta_dev) { 4482 if (ic->log2_buffer_sectors > 3) { 4483 ic->log2_buffer_sectors--; 4484 goto try_smaller_buffer; 4485 } 4486 } 4487 ti->error = "The device is too small"; 4488 goto bad; 4489 } 4490 4491 if (log2_sectors_per_bitmap_bit < 0) 4492 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4493 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4494 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4495 4496 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4497 if (bits_in_journal > UINT_MAX) 4498 bits_in_journal = UINT_MAX; 4499 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4500 log2_sectors_per_bitmap_bit++; 4501 4502 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4503 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4504 if (should_write_sb) 4505 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4506 4507 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4508 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4509 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4510 4511 if (!ic->meta_dev) 4512 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4513 4514 if (ti->len > ic->provided_data_sectors) { 4515 r = -EINVAL; 4516 ti->error = "Not enough provided sectors for requested mapping size"; 4517 goto bad; 4518 } 4519 4520 4521 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4522 threshold += 50; 4523 do_div(threshold, 100); 4524 ic->free_sectors_threshold = threshold; 4525 4526 DEBUG_print("initialized:\n"); 4527 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4528 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4529 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4530 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4531 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4532 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections)); 4533 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4534 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4535 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev)); 4536 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4537 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4538 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4539 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4540 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4541 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4542 4543 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4544 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4545 ic->sb->recalc_sector = cpu_to_le64(0); 4546 } 4547 4548 if (ic->internal_hash) { 4549 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4550 if (!ic->recalc_wq) { 4551 ti->error = "Cannot allocate workqueue"; 4552 r = -ENOMEM; 4553 goto bad; 4554 } 4555 INIT_WORK(&ic->recalc_work, integrity_recalc); 4556 } else { 4557 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 4558 ti->error = "Recalculate can only be specified with internal_hash"; 4559 r = -EINVAL; 4560 goto bad; 4561 } 4562 } 4563 4564 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 4565 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 4566 dm_integrity_disable_recalculate(ic)) { 4567 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 4568 r = -EOPNOTSUPP; 4569 goto bad; 4570 } 4571 4572 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4573 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0); 4574 if (IS_ERR(ic->bufio)) { 4575 r = PTR_ERR(ic->bufio); 4576 ti->error = "Cannot initialize dm-bufio"; 4577 ic->bufio = NULL; 4578 goto bad; 4579 } 4580 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4581 4582 if (ic->mode != 'R') { 4583 r = create_journal(ic, &ti->error); 4584 if (r) 4585 goto bad; 4586 4587 } 4588 4589 if (ic->mode == 'B') { 4590 unsigned int i; 4591 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4592 4593 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4594 if (!ic->recalc_bitmap) { 4595 r = -ENOMEM; 4596 goto bad; 4597 } 4598 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4599 if (!ic->may_write_bitmap) { 4600 r = -ENOMEM; 4601 goto bad; 4602 } 4603 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4604 if (!ic->bbs) { 4605 r = -ENOMEM; 4606 goto bad; 4607 } 4608 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4609 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4610 struct bitmap_block_status *bbs = &ic->bbs[i]; 4611 unsigned int sector, pl_index, pl_offset; 4612 4613 INIT_WORK(&bbs->work, bitmap_block_work); 4614 bbs->ic = ic; 4615 bbs->idx = i; 4616 bio_list_init(&bbs->bio_queue); 4617 spin_lock_init(&bbs->bio_queue_lock); 4618 4619 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4620 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4621 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4622 4623 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4624 } 4625 } 4626 4627 if (should_write_sb) { 4628 init_journal(ic, 0, ic->journal_sections, 0); 4629 r = dm_integrity_failed(ic); 4630 if (unlikely(r)) { 4631 ti->error = "Error initializing journal"; 4632 goto bad; 4633 } 4634 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 4635 if (r) { 4636 ti->error = "Error initializing superblock"; 4637 goto bad; 4638 } 4639 ic->just_formatted = true; 4640 } 4641 4642 if (!ic->meta_dev) { 4643 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4644 if (r) 4645 goto bad; 4646 } 4647 if (ic->mode == 'B') { 4648 unsigned int max_io_len; 4649 4650 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4651 if (!max_io_len) 4652 max_io_len = 1U << 31; 4653 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4654 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4655 r = dm_set_target_max_io_len(ti, max_io_len); 4656 if (r) 4657 goto bad; 4658 } 4659 } 4660 4661 if (!ic->internal_hash) 4662 dm_integrity_set(ti, ic); 4663 4664 ti->num_flush_bios = 1; 4665 ti->flush_supported = true; 4666 if (ic->discard) 4667 ti->num_discard_bios = 1; 4668 4669 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 4670 return 0; 4671 4672 bad: 4673 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 4674 dm_integrity_dtr(ti); 4675 return r; 4676 } 4677 4678 static void dm_integrity_dtr(struct dm_target *ti) 4679 { 4680 struct dm_integrity_c *ic = ti->private; 4681 4682 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4683 BUG_ON(!list_empty(&ic->wait_list)); 4684 4685 if (ic->mode == 'B') 4686 cancel_delayed_work_sync(&ic->bitmap_flush_work); 4687 if (ic->metadata_wq) 4688 destroy_workqueue(ic->metadata_wq); 4689 if (ic->wait_wq) 4690 destroy_workqueue(ic->wait_wq); 4691 if (ic->offload_wq) 4692 destroy_workqueue(ic->offload_wq); 4693 if (ic->commit_wq) 4694 destroy_workqueue(ic->commit_wq); 4695 if (ic->writer_wq) 4696 destroy_workqueue(ic->writer_wq); 4697 if (ic->recalc_wq) 4698 destroy_workqueue(ic->recalc_wq); 4699 kvfree(ic->bbs); 4700 if (ic->bufio) 4701 dm_bufio_client_destroy(ic->bufio); 4702 mempool_exit(&ic->recheck_pool); 4703 mempool_exit(&ic->journal_io_mempool); 4704 if (ic->io) 4705 dm_io_client_destroy(ic->io); 4706 if (ic->dev) 4707 dm_put_device(ti, ic->dev); 4708 if (ic->meta_dev) 4709 dm_put_device(ti, ic->meta_dev); 4710 dm_integrity_free_page_list(ic->journal); 4711 dm_integrity_free_page_list(ic->journal_io); 4712 dm_integrity_free_page_list(ic->journal_xor); 4713 dm_integrity_free_page_list(ic->recalc_bitmap); 4714 dm_integrity_free_page_list(ic->may_write_bitmap); 4715 if (ic->journal_scatterlist) 4716 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4717 if (ic->journal_io_scatterlist) 4718 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4719 if (ic->sk_requests) { 4720 unsigned int i; 4721 4722 for (i = 0; i < ic->journal_sections; i++) { 4723 struct skcipher_request *req; 4724 4725 req = ic->sk_requests[i]; 4726 if (req) { 4727 kfree_sensitive(req->iv); 4728 skcipher_request_free(req); 4729 } 4730 } 4731 kvfree(ic->sk_requests); 4732 } 4733 kvfree(ic->journal_tree); 4734 if (ic->sb) 4735 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4736 4737 if (ic->internal_hash) 4738 crypto_free_shash(ic->internal_hash); 4739 free_alg(&ic->internal_hash_alg); 4740 4741 if (ic->journal_crypt) 4742 crypto_free_skcipher(ic->journal_crypt); 4743 free_alg(&ic->journal_crypt_alg); 4744 4745 if (ic->journal_mac) 4746 crypto_free_shash(ic->journal_mac); 4747 free_alg(&ic->journal_mac_alg); 4748 4749 kfree(ic); 4750 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 4751 } 4752 4753 static struct target_type integrity_target = { 4754 .name = "integrity", 4755 .version = {1, 10, 0}, 4756 .module = THIS_MODULE, 4757 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4758 .ctr = dm_integrity_ctr, 4759 .dtr = dm_integrity_dtr, 4760 .map = dm_integrity_map, 4761 .postsuspend = dm_integrity_postsuspend, 4762 .resume = dm_integrity_resume, 4763 .status = dm_integrity_status, 4764 .iterate_devices = dm_integrity_iterate_devices, 4765 .io_hints = dm_integrity_io_hints, 4766 }; 4767 4768 static int __init dm_integrity_init(void) 4769 { 4770 int r; 4771 4772 journal_io_cache = kmem_cache_create("integrity_journal_io", 4773 sizeof(struct journal_io), 0, 0, NULL); 4774 if (!journal_io_cache) { 4775 DMERR("can't allocate journal io cache"); 4776 return -ENOMEM; 4777 } 4778 4779 r = dm_register_target(&integrity_target); 4780 if (r < 0) { 4781 kmem_cache_destroy(journal_io_cache); 4782 return r; 4783 } 4784 4785 return 0; 4786 } 4787 4788 static void __exit dm_integrity_exit(void) 4789 { 4790 dm_unregister_target(&integrity_target); 4791 kmem_cache_destroy(journal_io_cache); 4792 } 4793 4794 module_init(dm_integrity_init); 4795 module_exit(dm_integrity_exit); 4796 4797 MODULE_AUTHOR("Milan Broz"); 4798 MODULE_AUTHOR("Mikulas Patocka"); 4799 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4800 MODULE_LICENSE("GPL"); 4801