1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bio-record.h" 10 11 #include <linux/compiler.h> 12 #include <linux/module.h> 13 #include <linux/device-mapper.h> 14 #include <linux/dm-io.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sort.h> 17 #include <linux/rbtree.h> 18 #include <linux/delay.h> 19 #include <linux/random.h> 20 #include <linux/reboot.h> 21 #include <crypto/hash.h> 22 #include <crypto/skcipher.h> 23 #include <linux/async_tx.h> 24 #include <linux/dm-bufio.h> 25 26 #define DM_MSG_PREFIX "integrity" 27 28 #define DEFAULT_INTERLEAVE_SECTORS 32768 29 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 30 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 31 #define DEFAULT_BUFFER_SECTORS 128 32 #define DEFAULT_JOURNAL_WATERMARK 50 33 #define DEFAULT_SYNC_MSEC 10000 34 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 35 #define MIN_LOG2_INTERLEAVE_SECTORS 3 36 #define MAX_LOG2_INTERLEAVE_SECTORS 31 37 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 38 #define RECALC_SECTORS 8192 39 #define RECALC_WRITE_SUPER 16 40 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 41 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 42 #define DISCARD_FILLER 0xf6 43 44 /* 45 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 46 * so it should not be enabled in the official kernel 47 */ 48 //#define DEBUG_PRINT 49 //#define INTERNAL_VERIFY 50 51 /* 52 * On disk structures 53 */ 54 55 #define SB_MAGIC "integrt" 56 #define SB_VERSION_1 1 57 #define SB_VERSION_2 2 58 #define SB_VERSION_3 3 59 #define SB_VERSION_4 4 60 #define SB_SECTORS 8 61 #define MAX_SECTORS_PER_BLOCK 8 62 63 struct superblock { 64 __u8 magic[8]; 65 __u8 version; 66 __u8 log2_interleave_sectors; 67 __u16 integrity_tag_size; 68 __u32 journal_sections; 69 __u64 provided_data_sectors; /* userspace uses this value */ 70 __u32 flags; 71 __u8 log2_sectors_per_block; 72 __u8 log2_blocks_per_bitmap_bit; 73 __u8 pad[2]; 74 __u64 recalc_sector; 75 }; 76 77 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 78 #define SB_FLAG_RECALCULATING 0x2 79 #define SB_FLAG_DIRTY_BITMAP 0x4 80 #define SB_FLAG_FIXED_PADDING 0x8 81 82 #define JOURNAL_ENTRY_ROUNDUP 8 83 84 typedef __u64 commit_id_t; 85 #define JOURNAL_MAC_PER_SECTOR 8 86 87 struct journal_entry { 88 union { 89 struct { 90 __u32 sector_lo; 91 __u32 sector_hi; 92 } s; 93 __u64 sector; 94 } u; 95 commit_id_t last_bytes[]; 96 /* __u8 tag[0]; */ 97 }; 98 99 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 100 101 #if BITS_PER_LONG == 64 102 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 103 #else 104 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 105 #endif 106 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 107 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 108 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 109 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 110 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 111 112 #define JOURNAL_BLOCK_SECTORS 8 113 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 114 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 115 116 struct journal_sector { 117 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 118 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 119 commit_id_t commit_id; 120 }; 121 122 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 123 124 #define METADATA_PADDING_SECTORS 8 125 126 #define N_COMMIT_IDS 4 127 128 static unsigned char prev_commit_seq(unsigned char seq) 129 { 130 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 131 } 132 133 static unsigned char next_commit_seq(unsigned char seq) 134 { 135 return (seq + 1) % N_COMMIT_IDS; 136 } 137 138 /* 139 * In-memory structures 140 */ 141 142 struct journal_node { 143 struct rb_node node; 144 sector_t sector; 145 }; 146 147 struct alg_spec { 148 char *alg_string; 149 char *key_string; 150 __u8 *key; 151 unsigned key_size; 152 }; 153 154 struct dm_integrity_c { 155 struct dm_dev *dev; 156 struct dm_dev *meta_dev; 157 unsigned tag_size; 158 __s8 log2_tag_size; 159 sector_t start; 160 mempool_t journal_io_mempool; 161 struct dm_io_client *io; 162 struct dm_bufio_client *bufio; 163 struct workqueue_struct *metadata_wq; 164 struct superblock *sb; 165 unsigned journal_pages; 166 unsigned n_bitmap_blocks; 167 168 struct page_list *journal; 169 struct page_list *journal_io; 170 struct page_list *journal_xor; 171 struct page_list *recalc_bitmap; 172 struct page_list *may_write_bitmap; 173 struct bitmap_block_status *bbs; 174 unsigned bitmap_flush_interval; 175 int synchronous_mode; 176 struct bio_list synchronous_bios; 177 struct delayed_work bitmap_flush_work; 178 179 struct crypto_skcipher *journal_crypt; 180 struct scatterlist **journal_scatterlist; 181 struct scatterlist **journal_io_scatterlist; 182 struct skcipher_request **sk_requests; 183 184 struct crypto_shash *journal_mac; 185 186 struct journal_node *journal_tree; 187 struct rb_root journal_tree_root; 188 189 sector_t provided_data_sectors; 190 191 unsigned short journal_entry_size; 192 unsigned char journal_entries_per_sector; 193 unsigned char journal_section_entries; 194 unsigned short journal_section_sectors; 195 unsigned journal_sections; 196 unsigned journal_entries; 197 sector_t data_device_sectors; 198 sector_t meta_device_sectors; 199 unsigned initial_sectors; 200 unsigned metadata_run; 201 __s8 log2_metadata_run; 202 __u8 log2_buffer_sectors; 203 __u8 sectors_per_block; 204 __u8 log2_blocks_per_bitmap_bit; 205 206 unsigned char mode; 207 208 int failed; 209 210 struct crypto_shash *internal_hash; 211 212 struct dm_target *ti; 213 214 /* these variables are locked with endio_wait.lock */ 215 struct rb_root in_progress; 216 struct list_head wait_list; 217 wait_queue_head_t endio_wait; 218 struct workqueue_struct *wait_wq; 219 struct workqueue_struct *offload_wq; 220 221 unsigned char commit_seq; 222 commit_id_t commit_ids[N_COMMIT_IDS]; 223 224 unsigned committed_section; 225 unsigned n_committed_sections; 226 227 unsigned uncommitted_section; 228 unsigned n_uncommitted_sections; 229 230 unsigned free_section; 231 unsigned char free_section_entry; 232 unsigned free_sectors; 233 234 unsigned free_sectors_threshold; 235 236 struct workqueue_struct *commit_wq; 237 struct work_struct commit_work; 238 239 struct workqueue_struct *writer_wq; 240 struct work_struct writer_work; 241 242 struct workqueue_struct *recalc_wq; 243 struct work_struct recalc_work; 244 u8 *recalc_buffer; 245 u8 *recalc_tags; 246 247 struct bio_list flush_bio_list; 248 249 unsigned long autocommit_jiffies; 250 struct timer_list autocommit_timer; 251 unsigned autocommit_msec; 252 253 wait_queue_head_t copy_to_journal_wait; 254 255 struct completion crypto_backoff; 256 257 bool journal_uptodate; 258 bool just_formatted; 259 bool recalculate_flag; 260 bool discard; 261 bool fix_padding; 262 bool legacy_recalculate; 263 264 struct alg_spec internal_hash_alg; 265 struct alg_spec journal_crypt_alg; 266 struct alg_spec journal_mac_alg; 267 268 atomic64_t number_of_mismatches; 269 270 struct notifier_block reboot_notifier; 271 }; 272 273 struct dm_integrity_range { 274 sector_t logical_sector; 275 sector_t n_sectors; 276 bool waiting; 277 union { 278 struct rb_node node; 279 struct { 280 struct task_struct *task; 281 struct list_head wait_entry; 282 }; 283 }; 284 }; 285 286 struct dm_integrity_io { 287 struct work_struct work; 288 289 struct dm_integrity_c *ic; 290 enum req_opf op; 291 bool fua; 292 293 struct dm_integrity_range range; 294 295 sector_t metadata_block; 296 unsigned metadata_offset; 297 298 atomic_t in_flight; 299 blk_status_t bi_status; 300 301 struct completion *completion; 302 303 struct dm_bio_details bio_details; 304 }; 305 306 struct journal_completion { 307 struct dm_integrity_c *ic; 308 atomic_t in_flight; 309 struct completion comp; 310 }; 311 312 struct journal_io { 313 struct dm_integrity_range range; 314 struct journal_completion *comp; 315 }; 316 317 struct bitmap_block_status { 318 struct work_struct work; 319 struct dm_integrity_c *ic; 320 unsigned idx; 321 unsigned long *bitmap; 322 struct bio_list bio_queue; 323 spinlock_t bio_queue_lock; 324 325 }; 326 327 static struct kmem_cache *journal_io_cache; 328 329 #define JOURNAL_IO_MEMPOOL 32 330 331 #ifdef DEBUG_PRINT 332 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 333 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 334 { 335 va_list args; 336 va_start(args, msg); 337 vprintk(msg, args); 338 va_end(args); 339 if (len) 340 pr_cont(":"); 341 while (len) { 342 pr_cont(" %02x", *bytes); 343 bytes++; 344 len--; 345 } 346 pr_cont("\n"); 347 } 348 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 349 #else 350 #define DEBUG_print(x, ...) do { } while (0) 351 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 352 #endif 353 354 static void dm_integrity_prepare(struct request *rq) 355 { 356 } 357 358 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 359 { 360 } 361 362 /* 363 * DM Integrity profile, protection is performed layer above (dm-crypt) 364 */ 365 static const struct blk_integrity_profile dm_integrity_profile = { 366 .name = "DM-DIF-EXT-TAG", 367 .generate_fn = NULL, 368 .verify_fn = NULL, 369 .prepare_fn = dm_integrity_prepare, 370 .complete_fn = dm_integrity_complete, 371 }; 372 373 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 374 static void integrity_bio_wait(struct work_struct *w); 375 static void dm_integrity_dtr(struct dm_target *ti); 376 377 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 378 { 379 if (err == -EILSEQ) 380 atomic64_inc(&ic->number_of_mismatches); 381 if (!cmpxchg(&ic->failed, 0, err)) 382 DMERR("Error on %s: %d", msg, err); 383 } 384 385 static int dm_integrity_failed(struct dm_integrity_c *ic) 386 { 387 return READ_ONCE(ic->failed); 388 } 389 390 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 391 { 392 if ((ic->internal_hash_alg.key || ic->journal_mac_alg.key) && 393 !ic->legacy_recalculate) 394 return true; 395 return false; 396 } 397 398 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 399 unsigned j, unsigned char seq) 400 { 401 /* 402 * Xor the number with section and sector, so that if a piece of 403 * journal is written at wrong place, it is detected. 404 */ 405 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 406 } 407 408 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 409 sector_t *area, sector_t *offset) 410 { 411 if (!ic->meta_dev) { 412 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 413 *area = data_sector >> log2_interleave_sectors; 414 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 415 } else { 416 *area = 0; 417 *offset = data_sector; 418 } 419 } 420 421 #define sector_to_block(ic, n) \ 422 do { \ 423 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 424 (n) >>= (ic)->sb->log2_sectors_per_block; \ 425 } while (0) 426 427 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 428 sector_t offset, unsigned *metadata_offset) 429 { 430 __u64 ms; 431 unsigned mo; 432 433 ms = area << ic->sb->log2_interleave_sectors; 434 if (likely(ic->log2_metadata_run >= 0)) 435 ms += area << ic->log2_metadata_run; 436 else 437 ms += area * ic->metadata_run; 438 ms >>= ic->log2_buffer_sectors; 439 440 sector_to_block(ic, offset); 441 442 if (likely(ic->log2_tag_size >= 0)) { 443 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 444 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 445 } else { 446 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 447 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 448 } 449 *metadata_offset = mo; 450 return ms; 451 } 452 453 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 454 { 455 sector_t result; 456 457 if (ic->meta_dev) 458 return offset; 459 460 result = area << ic->sb->log2_interleave_sectors; 461 if (likely(ic->log2_metadata_run >= 0)) 462 result += (area + 1) << ic->log2_metadata_run; 463 else 464 result += (area + 1) * ic->metadata_run; 465 466 result += (sector_t)ic->initial_sectors + offset; 467 result += ic->start; 468 469 return result; 470 } 471 472 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 473 { 474 if (unlikely(*sec_ptr >= ic->journal_sections)) 475 *sec_ptr -= ic->journal_sections; 476 } 477 478 static void sb_set_version(struct dm_integrity_c *ic) 479 { 480 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 481 ic->sb->version = SB_VERSION_4; 482 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 483 ic->sb->version = SB_VERSION_3; 484 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 485 ic->sb->version = SB_VERSION_2; 486 else 487 ic->sb->version = SB_VERSION_1; 488 } 489 490 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 491 { 492 struct dm_io_request io_req; 493 struct dm_io_region io_loc; 494 495 io_req.bi_op = op; 496 io_req.bi_op_flags = op_flags; 497 io_req.mem.type = DM_IO_KMEM; 498 io_req.mem.ptr.addr = ic->sb; 499 io_req.notify.fn = NULL; 500 io_req.client = ic->io; 501 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 502 io_loc.sector = ic->start; 503 io_loc.count = SB_SECTORS; 504 505 if (op == REQ_OP_WRITE) 506 sb_set_version(ic); 507 508 return dm_io(&io_req, 1, &io_loc, NULL); 509 } 510 511 #define BITMAP_OP_TEST_ALL_SET 0 512 #define BITMAP_OP_TEST_ALL_CLEAR 1 513 #define BITMAP_OP_SET 2 514 #define BITMAP_OP_CLEAR 3 515 516 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 517 sector_t sector, sector_t n_sectors, int mode) 518 { 519 unsigned long bit, end_bit, this_end_bit, page, end_page; 520 unsigned long *data; 521 522 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 523 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 524 sector, 525 n_sectors, 526 ic->sb->log2_sectors_per_block, 527 ic->log2_blocks_per_bitmap_bit, 528 mode); 529 BUG(); 530 } 531 532 if (unlikely(!n_sectors)) 533 return true; 534 535 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 536 end_bit = (sector + n_sectors - 1) >> 537 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 538 539 page = bit / (PAGE_SIZE * 8); 540 bit %= PAGE_SIZE * 8; 541 542 end_page = end_bit / (PAGE_SIZE * 8); 543 end_bit %= PAGE_SIZE * 8; 544 545 repeat: 546 if (page < end_page) { 547 this_end_bit = PAGE_SIZE * 8 - 1; 548 } else { 549 this_end_bit = end_bit; 550 } 551 552 data = lowmem_page_address(bitmap[page].page); 553 554 if (mode == BITMAP_OP_TEST_ALL_SET) { 555 while (bit <= this_end_bit) { 556 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 557 do { 558 if (data[bit / BITS_PER_LONG] != -1) 559 return false; 560 bit += BITS_PER_LONG; 561 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 562 continue; 563 } 564 if (!test_bit(bit, data)) 565 return false; 566 bit++; 567 } 568 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 569 while (bit <= this_end_bit) { 570 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 571 do { 572 if (data[bit / BITS_PER_LONG] != 0) 573 return false; 574 bit += BITS_PER_LONG; 575 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 576 continue; 577 } 578 if (test_bit(bit, data)) 579 return false; 580 bit++; 581 } 582 } else if (mode == BITMAP_OP_SET) { 583 while (bit <= this_end_bit) { 584 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 585 do { 586 data[bit / BITS_PER_LONG] = -1; 587 bit += BITS_PER_LONG; 588 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 589 continue; 590 } 591 __set_bit(bit, data); 592 bit++; 593 } 594 } else if (mode == BITMAP_OP_CLEAR) { 595 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 596 clear_page(data); 597 else while (bit <= this_end_bit) { 598 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 599 do { 600 data[bit / BITS_PER_LONG] = 0; 601 bit += BITS_PER_LONG; 602 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 603 continue; 604 } 605 __clear_bit(bit, data); 606 bit++; 607 } 608 } else { 609 BUG(); 610 } 611 612 if (unlikely(page < end_page)) { 613 bit = 0; 614 page++; 615 goto repeat; 616 } 617 618 return true; 619 } 620 621 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 622 { 623 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 624 unsigned i; 625 626 for (i = 0; i < n_bitmap_pages; i++) { 627 unsigned long *dst_data = lowmem_page_address(dst[i].page); 628 unsigned long *src_data = lowmem_page_address(src[i].page); 629 copy_page(dst_data, src_data); 630 } 631 } 632 633 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 634 { 635 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 636 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 637 638 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 639 return &ic->bbs[bitmap_block]; 640 } 641 642 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 643 bool e, const char *function) 644 { 645 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 646 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 647 648 if (unlikely(section >= ic->journal_sections) || 649 unlikely(offset >= limit)) { 650 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 651 function, section, offset, ic->journal_sections, limit); 652 BUG(); 653 } 654 #endif 655 } 656 657 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 658 unsigned *pl_index, unsigned *pl_offset) 659 { 660 unsigned sector; 661 662 access_journal_check(ic, section, offset, false, "page_list_location"); 663 664 sector = section * ic->journal_section_sectors + offset; 665 666 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 667 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 668 } 669 670 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 671 unsigned section, unsigned offset, unsigned *n_sectors) 672 { 673 unsigned pl_index, pl_offset; 674 char *va; 675 676 page_list_location(ic, section, offset, &pl_index, &pl_offset); 677 678 if (n_sectors) 679 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 680 681 va = lowmem_page_address(pl[pl_index].page); 682 683 return (struct journal_sector *)(va + pl_offset); 684 } 685 686 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 687 { 688 return access_page_list(ic, ic->journal, section, offset, NULL); 689 } 690 691 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 692 { 693 unsigned rel_sector, offset; 694 struct journal_sector *js; 695 696 access_journal_check(ic, section, n, true, "access_journal_entry"); 697 698 rel_sector = n % JOURNAL_BLOCK_SECTORS; 699 offset = n / JOURNAL_BLOCK_SECTORS; 700 701 js = access_journal(ic, section, rel_sector); 702 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 703 } 704 705 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 706 { 707 n <<= ic->sb->log2_sectors_per_block; 708 709 n += JOURNAL_BLOCK_SECTORS; 710 711 access_journal_check(ic, section, n, false, "access_journal_data"); 712 713 return access_journal(ic, section, n); 714 } 715 716 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 717 { 718 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 719 int r; 720 unsigned j, size; 721 722 desc->tfm = ic->journal_mac; 723 724 r = crypto_shash_init(desc); 725 if (unlikely(r)) { 726 dm_integrity_io_error(ic, "crypto_shash_init", r); 727 goto err; 728 } 729 730 for (j = 0; j < ic->journal_section_entries; j++) { 731 struct journal_entry *je = access_journal_entry(ic, section, j); 732 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 733 if (unlikely(r)) { 734 dm_integrity_io_error(ic, "crypto_shash_update", r); 735 goto err; 736 } 737 } 738 739 size = crypto_shash_digestsize(ic->journal_mac); 740 741 if (likely(size <= JOURNAL_MAC_SIZE)) { 742 r = crypto_shash_final(desc, result); 743 if (unlikely(r)) { 744 dm_integrity_io_error(ic, "crypto_shash_final", r); 745 goto err; 746 } 747 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 748 } else { 749 __u8 digest[HASH_MAX_DIGESTSIZE]; 750 751 if (WARN_ON(size > sizeof(digest))) { 752 dm_integrity_io_error(ic, "digest_size", -EINVAL); 753 goto err; 754 } 755 r = crypto_shash_final(desc, digest); 756 if (unlikely(r)) { 757 dm_integrity_io_error(ic, "crypto_shash_final", r); 758 goto err; 759 } 760 memcpy(result, digest, JOURNAL_MAC_SIZE); 761 } 762 763 return; 764 err: 765 memset(result, 0, JOURNAL_MAC_SIZE); 766 } 767 768 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 769 { 770 __u8 result[JOURNAL_MAC_SIZE]; 771 unsigned j; 772 773 if (!ic->journal_mac) 774 return; 775 776 section_mac(ic, section, result); 777 778 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 779 struct journal_sector *js = access_journal(ic, section, j); 780 781 if (likely(wr)) 782 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 783 else { 784 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 785 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 786 } 787 } 788 } 789 790 static void complete_journal_op(void *context) 791 { 792 struct journal_completion *comp = context; 793 BUG_ON(!atomic_read(&comp->in_flight)); 794 if (likely(atomic_dec_and_test(&comp->in_flight))) 795 complete(&comp->comp); 796 } 797 798 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 799 unsigned n_sections, struct journal_completion *comp) 800 { 801 struct async_submit_ctl submit; 802 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 803 unsigned pl_index, pl_offset, section_index; 804 struct page_list *source_pl, *target_pl; 805 806 if (likely(encrypt)) { 807 source_pl = ic->journal; 808 target_pl = ic->journal_io; 809 } else { 810 source_pl = ic->journal_io; 811 target_pl = ic->journal; 812 } 813 814 page_list_location(ic, section, 0, &pl_index, &pl_offset); 815 816 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 817 818 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 819 820 section_index = pl_index; 821 822 do { 823 size_t this_step; 824 struct page *src_pages[2]; 825 struct page *dst_page; 826 827 while (unlikely(pl_index == section_index)) { 828 unsigned dummy; 829 if (likely(encrypt)) 830 rw_section_mac(ic, section, true); 831 section++; 832 n_sections--; 833 if (!n_sections) 834 break; 835 page_list_location(ic, section, 0, §ion_index, &dummy); 836 } 837 838 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 839 dst_page = target_pl[pl_index].page; 840 src_pages[0] = source_pl[pl_index].page; 841 src_pages[1] = ic->journal_xor[pl_index].page; 842 843 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 844 845 pl_index++; 846 pl_offset = 0; 847 n_bytes -= this_step; 848 } while (n_bytes); 849 850 BUG_ON(n_sections); 851 852 async_tx_issue_pending_all(); 853 } 854 855 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 856 { 857 struct journal_completion *comp = req->data; 858 if (unlikely(err)) { 859 if (likely(err == -EINPROGRESS)) { 860 complete(&comp->ic->crypto_backoff); 861 return; 862 } 863 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 864 } 865 complete_journal_op(comp); 866 } 867 868 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 869 { 870 int r; 871 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 872 complete_journal_encrypt, comp); 873 if (likely(encrypt)) 874 r = crypto_skcipher_encrypt(req); 875 else 876 r = crypto_skcipher_decrypt(req); 877 if (likely(!r)) 878 return false; 879 if (likely(r == -EINPROGRESS)) 880 return true; 881 if (likely(r == -EBUSY)) { 882 wait_for_completion(&comp->ic->crypto_backoff); 883 reinit_completion(&comp->ic->crypto_backoff); 884 return true; 885 } 886 dm_integrity_io_error(comp->ic, "encrypt", r); 887 return false; 888 } 889 890 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 891 unsigned n_sections, struct journal_completion *comp) 892 { 893 struct scatterlist **source_sg; 894 struct scatterlist **target_sg; 895 896 atomic_add(2, &comp->in_flight); 897 898 if (likely(encrypt)) { 899 source_sg = ic->journal_scatterlist; 900 target_sg = ic->journal_io_scatterlist; 901 } else { 902 source_sg = ic->journal_io_scatterlist; 903 target_sg = ic->journal_scatterlist; 904 } 905 906 do { 907 struct skcipher_request *req; 908 unsigned ivsize; 909 char *iv; 910 911 if (likely(encrypt)) 912 rw_section_mac(ic, section, true); 913 914 req = ic->sk_requests[section]; 915 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 916 iv = req->iv; 917 918 memcpy(iv, iv + ivsize, ivsize); 919 920 req->src = source_sg[section]; 921 req->dst = target_sg[section]; 922 923 if (unlikely(do_crypt(encrypt, req, comp))) 924 atomic_inc(&comp->in_flight); 925 926 section++; 927 n_sections--; 928 } while (n_sections); 929 930 atomic_dec(&comp->in_flight); 931 complete_journal_op(comp); 932 } 933 934 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 935 unsigned n_sections, struct journal_completion *comp) 936 { 937 if (ic->journal_xor) 938 return xor_journal(ic, encrypt, section, n_sections, comp); 939 else 940 return crypt_journal(ic, encrypt, section, n_sections, comp); 941 } 942 943 static void complete_journal_io(unsigned long error, void *context) 944 { 945 struct journal_completion *comp = context; 946 if (unlikely(error != 0)) 947 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 948 complete_journal_op(comp); 949 } 950 951 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 952 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 953 { 954 struct dm_io_request io_req; 955 struct dm_io_region io_loc; 956 unsigned pl_index, pl_offset; 957 int r; 958 959 if (unlikely(dm_integrity_failed(ic))) { 960 if (comp) 961 complete_journal_io(-1UL, comp); 962 return; 963 } 964 965 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 966 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 967 968 io_req.bi_op = op; 969 io_req.bi_op_flags = op_flags; 970 io_req.mem.type = DM_IO_PAGE_LIST; 971 if (ic->journal_io) 972 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 973 else 974 io_req.mem.ptr.pl = &ic->journal[pl_index]; 975 io_req.mem.offset = pl_offset; 976 if (likely(comp != NULL)) { 977 io_req.notify.fn = complete_journal_io; 978 io_req.notify.context = comp; 979 } else { 980 io_req.notify.fn = NULL; 981 } 982 io_req.client = ic->io; 983 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 984 io_loc.sector = ic->start + SB_SECTORS + sector; 985 io_loc.count = n_sectors; 986 987 r = dm_io(&io_req, 1, &io_loc, NULL); 988 if (unlikely(r)) { 989 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 990 if (comp) { 991 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 992 complete_journal_io(-1UL, comp); 993 } 994 } 995 } 996 997 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 998 unsigned n_sections, struct journal_completion *comp) 999 { 1000 unsigned sector, n_sectors; 1001 1002 sector = section * ic->journal_section_sectors; 1003 n_sectors = n_sections * ic->journal_section_sectors; 1004 1005 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 1006 } 1007 1008 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 1009 { 1010 struct journal_completion io_comp; 1011 struct journal_completion crypt_comp_1; 1012 struct journal_completion crypt_comp_2; 1013 unsigned i; 1014 1015 io_comp.ic = ic; 1016 init_completion(&io_comp.comp); 1017 1018 if (commit_start + commit_sections <= ic->journal_sections) { 1019 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1020 if (ic->journal_io) { 1021 crypt_comp_1.ic = ic; 1022 init_completion(&crypt_comp_1.comp); 1023 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1024 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1025 wait_for_completion_io(&crypt_comp_1.comp); 1026 } else { 1027 for (i = 0; i < commit_sections; i++) 1028 rw_section_mac(ic, commit_start + i, true); 1029 } 1030 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1031 commit_sections, &io_comp); 1032 } else { 1033 unsigned to_end; 1034 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1035 to_end = ic->journal_sections - commit_start; 1036 if (ic->journal_io) { 1037 crypt_comp_1.ic = ic; 1038 init_completion(&crypt_comp_1.comp); 1039 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1040 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1041 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1042 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1043 reinit_completion(&crypt_comp_1.comp); 1044 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1045 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1046 wait_for_completion_io(&crypt_comp_1.comp); 1047 } else { 1048 crypt_comp_2.ic = ic; 1049 init_completion(&crypt_comp_2.comp); 1050 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1051 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1052 wait_for_completion_io(&crypt_comp_1.comp); 1053 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1054 wait_for_completion_io(&crypt_comp_2.comp); 1055 } 1056 } else { 1057 for (i = 0; i < to_end; i++) 1058 rw_section_mac(ic, commit_start + i, true); 1059 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1060 for (i = 0; i < commit_sections - to_end; i++) 1061 rw_section_mac(ic, i, true); 1062 } 1063 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1064 } 1065 1066 wait_for_completion_io(&io_comp.comp); 1067 } 1068 1069 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1070 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1071 { 1072 struct dm_io_request io_req; 1073 struct dm_io_region io_loc; 1074 int r; 1075 unsigned sector, pl_index, pl_offset; 1076 1077 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1078 1079 if (unlikely(dm_integrity_failed(ic))) { 1080 fn(-1UL, data); 1081 return; 1082 } 1083 1084 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1085 1086 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1087 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1088 1089 io_req.bi_op = REQ_OP_WRITE; 1090 io_req.bi_op_flags = 0; 1091 io_req.mem.type = DM_IO_PAGE_LIST; 1092 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1093 io_req.mem.offset = pl_offset; 1094 io_req.notify.fn = fn; 1095 io_req.notify.context = data; 1096 io_req.client = ic->io; 1097 io_loc.bdev = ic->dev->bdev; 1098 io_loc.sector = target; 1099 io_loc.count = n_sectors; 1100 1101 r = dm_io(&io_req, 1, &io_loc, NULL); 1102 if (unlikely(r)) { 1103 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1104 fn(-1UL, data); 1105 } 1106 } 1107 1108 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1109 { 1110 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1111 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1112 } 1113 1114 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1115 { 1116 struct rb_node **n = &ic->in_progress.rb_node; 1117 struct rb_node *parent; 1118 1119 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1120 1121 if (likely(check_waiting)) { 1122 struct dm_integrity_range *range; 1123 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1124 if (unlikely(ranges_overlap(range, new_range))) 1125 return false; 1126 } 1127 } 1128 1129 parent = NULL; 1130 1131 while (*n) { 1132 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1133 1134 parent = *n; 1135 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1136 n = &range->node.rb_left; 1137 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1138 n = &range->node.rb_right; 1139 } else { 1140 return false; 1141 } 1142 } 1143 1144 rb_link_node(&new_range->node, parent, n); 1145 rb_insert_color(&new_range->node, &ic->in_progress); 1146 1147 return true; 1148 } 1149 1150 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1151 { 1152 rb_erase(&range->node, &ic->in_progress); 1153 while (unlikely(!list_empty(&ic->wait_list))) { 1154 struct dm_integrity_range *last_range = 1155 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1156 struct task_struct *last_range_task; 1157 last_range_task = last_range->task; 1158 list_del(&last_range->wait_entry); 1159 if (!add_new_range(ic, last_range, false)) { 1160 last_range->task = last_range_task; 1161 list_add(&last_range->wait_entry, &ic->wait_list); 1162 break; 1163 } 1164 last_range->waiting = false; 1165 wake_up_process(last_range_task); 1166 } 1167 } 1168 1169 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1170 { 1171 unsigned long flags; 1172 1173 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1174 remove_range_unlocked(ic, range); 1175 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1176 } 1177 1178 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1179 { 1180 new_range->waiting = true; 1181 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1182 new_range->task = current; 1183 do { 1184 __set_current_state(TASK_UNINTERRUPTIBLE); 1185 spin_unlock_irq(&ic->endio_wait.lock); 1186 io_schedule(); 1187 spin_lock_irq(&ic->endio_wait.lock); 1188 } while (unlikely(new_range->waiting)); 1189 } 1190 1191 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1192 { 1193 if (unlikely(!add_new_range(ic, new_range, true))) 1194 wait_and_add_new_range(ic, new_range); 1195 } 1196 1197 static void init_journal_node(struct journal_node *node) 1198 { 1199 RB_CLEAR_NODE(&node->node); 1200 node->sector = (sector_t)-1; 1201 } 1202 1203 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1204 { 1205 struct rb_node **link; 1206 struct rb_node *parent; 1207 1208 node->sector = sector; 1209 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1210 1211 link = &ic->journal_tree_root.rb_node; 1212 parent = NULL; 1213 1214 while (*link) { 1215 struct journal_node *j; 1216 parent = *link; 1217 j = container_of(parent, struct journal_node, node); 1218 if (sector < j->sector) 1219 link = &j->node.rb_left; 1220 else 1221 link = &j->node.rb_right; 1222 } 1223 1224 rb_link_node(&node->node, parent, link); 1225 rb_insert_color(&node->node, &ic->journal_tree_root); 1226 } 1227 1228 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1229 { 1230 BUG_ON(RB_EMPTY_NODE(&node->node)); 1231 rb_erase(&node->node, &ic->journal_tree_root); 1232 init_journal_node(node); 1233 } 1234 1235 #define NOT_FOUND (-1U) 1236 1237 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1238 { 1239 struct rb_node *n = ic->journal_tree_root.rb_node; 1240 unsigned found = NOT_FOUND; 1241 *next_sector = (sector_t)-1; 1242 while (n) { 1243 struct journal_node *j = container_of(n, struct journal_node, node); 1244 if (sector == j->sector) { 1245 found = j - ic->journal_tree; 1246 } 1247 if (sector < j->sector) { 1248 *next_sector = j->sector; 1249 n = j->node.rb_left; 1250 } else { 1251 n = j->node.rb_right; 1252 } 1253 } 1254 1255 return found; 1256 } 1257 1258 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1259 { 1260 struct journal_node *node, *next_node; 1261 struct rb_node *next; 1262 1263 if (unlikely(pos >= ic->journal_entries)) 1264 return false; 1265 node = &ic->journal_tree[pos]; 1266 if (unlikely(RB_EMPTY_NODE(&node->node))) 1267 return false; 1268 if (unlikely(node->sector != sector)) 1269 return false; 1270 1271 next = rb_next(&node->node); 1272 if (unlikely(!next)) 1273 return true; 1274 1275 next_node = container_of(next, struct journal_node, node); 1276 return next_node->sector != sector; 1277 } 1278 1279 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1280 { 1281 struct rb_node *next; 1282 struct journal_node *next_node; 1283 unsigned next_section; 1284 1285 BUG_ON(RB_EMPTY_NODE(&node->node)); 1286 1287 next = rb_next(&node->node); 1288 if (unlikely(!next)) 1289 return false; 1290 1291 next_node = container_of(next, struct journal_node, node); 1292 1293 if (next_node->sector != node->sector) 1294 return false; 1295 1296 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1297 if (next_section >= ic->committed_section && 1298 next_section < ic->committed_section + ic->n_committed_sections) 1299 return true; 1300 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1301 return true; 1302 1303 return false; 1304 } 1305 1306 #define TAG_READ 0 1307 #define TAG_WRITE 1 1308 #define TAG_CMP 2 1309 1310 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1311 unsigned *metadata_offset, unsigned total_size, int op) 1312 { 1313 #define MAY_BE_FILLER 1 1314 #define MAY_BE_HASH 2 1315 unsigned hash_offset = 0; 1316 unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1317 1318 do { 1319 unsigned char *data, *dp; 1320 struct dm_buffer *b; 1321 unsigned to_copy; 1322 int r; 1323 1324 r = dm_integrity_failed(ic); 1325 if (unlikely(r)) 1326 return r; 1327 1328 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1329 if (IS_ERR(data)) 1330 return PTR_ERR(data); 1331 1332 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1333 dp = data + *metadata_offset; 1334 if (op == TAG_READ) { 1335 memcpy(tag, dp, to_copy); 1336 } else if (op == TAG_WRITE) { 1337 memcpy(dp, tag, to_copy); 1338 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1339 } else { 1340 /* e.g.: op == TAG_CMP */ 1341 1342 if (likely(is_power_of_2(ic->tag_size))) { 1343 if (unlikely(memcmp(dp, tag, to_copy))) 1344 if (unlikely(!ic->discard) || 1345 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1346 goto thorough_test; 1347 } 1348 } else { 1349 unsigned i, ts; 1350 thorough_test: 1351 ts = total_size; 1352 1353 for (i = 0; i < to_copy; i++, ts--) { 1354 if (unlikely(dp[i] != tag[i])) 1355 may_be &= ~MAY_BE_HASH; 1356 if (likely(dp[i] != DISCARD_FILLER)) 1357 may_be &= ~MAY_BE_FILLER; 1358 hash_offset++; 1359 if (unlikely(hash_offset == ic->tag_size)) { 1360 if (unlikely(!may_be)) { 1361 dm_bufio_release(b); 1362 return ts; 1363 } 1364 hash_offset = 0; 1365 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1366 } 1367 } 1368 } 1369 } 1370 dm_bufio_release(b); 1371 1372 tag += to_copy; 1373 *metadata_offset += to_copy; 1374 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1375 (*metadata_block)++; 1376 *metadata_offset = 0; 1377 } 1378 1379 if (unlikely(!is_power_of_2(ic->tag_size))) { 1380 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1381 } 1382 1383 total_size -= to_copy; 1384 } while (unlikely(total_size)); 1385 1386 return 0; 1387 #undef MAY_BE_FILLER 1388 #undef MAY_BE_HASH 1389 } 1390 1391 struct flush_request { 1392 struct dm_io_request io_req; 1393 struct dm_io_region io_reg; 1394 struct dm_integrity_c *ic; 1395 struct completion comp; 1396 }; 1397 1398 static void flush_notify(unsigned long error, void *fr_) 1399 { 1400 struct flush_request *fr = fr_; 1401 if (unlikely(error != 0)) 1402 dm_integrity_io_error(fr->ic, "flusing disk cache", -EIO); 1403 complete(&fr->comp); 1404 } 1405 1406 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1407 { 1408 int r; 1409 1410 struct flush_request fr; 1411 1412 if (!ic->meta_dev) 1413 flush_data = false; 1414 if (flush_data) { 1415 fr.io_req.bi_op = REQ_OP_WRITE, 1416 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1417 fr.io_req.mem.type = DM_IO_KMEM, 1418 fr.io_req.mem.ptr.addr = NULL, 1419 fr.io_req.notify.fn = flush_notify, 1420 fr.io_req.notify.context = &fr; 1421 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1422 fr.io_reg.bdev = ic->dev->bdev, 1423 fr.io_reg.sector = 0, 1424 fr.io_reg.count = 0, 1425 fr.ic = ic; 1426 init_completion(&fr.comp); 1427 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL); 1428 BUG_ON(r); 1429 } 1430 1431 r = dm_bufio_write_dirty_buffers(ic->bufio); 1432 if (unlikely(r)) 1433 dm_integrity_io_error(ic, "writing tags", r); 1434 1435 if (flush_data) 1436 wait_for_completion(&fr.comp); 1437 } 1438 1439 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1440 { 1441 DECLARE_WAITQUEUE(wait, current); 1442 __add_wait_queue(&ic->endio_wait, &wait); 1443 __set_current_state(TASK_UNINTERRUPTIBLE); 1444 spin_unlock_irq(&ic->endio_wait.lock); 1445 io_schedule(); 1446 spin_lock_irq(&ic->endio_wait.lock); 1447 __remove_wait_queue(&ic->endio_wait, &wait); 1448 } 1449 1450 static void autocommit_fn(struct timer_list *t) 1451 { 1452 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1453 1454 if (likely(!dm_integrity_failed(ic))) 1455 queue_work(ic->commit_wq, &ic->commit_work); 1456 } 1457 1458 static void schedule_autocommit(struct dm_integrity_c *ic) 1459 { 1460 if (!timer_pending(&ic->autocommit_timer)) 1461 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1462 } 1463 1464 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1465 { 1466 struct bio *bio; 1467 unsigned long flags; 1468 1469 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1470 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1471 bio_list_add(&ic->flush_bio_list, bio); 1472 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1473 1474 queue_work(ic->commit_wq, &ic->commit_work); 1475 } 1476 1477 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1478 { 1479 int r = dm_integrity_failed(ic); 1480 if (unlikely(r) && !bio->bi_status) 1481 bio->bi_status = errno_to_blk_status(r); 1482 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1483 unsigned long flags; 1484 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1485 bio_list_add(&ic->synchronous_bios, bio); 1486 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1487 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1488 return; 1489 } 1490 bio_endio(bio); 1491 } 1492 1493 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1494 { 1495 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1496 1497 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1498 submit_flush_bio(ic, dio); 1499 else 1500 do_endio(ic, bio); 1501 } 1502 1503 static void dec_in_flight(struct dm_integrity_io *dio) 1504 { 1505 if (atomic_dec_and_test(&dio->in_flight)) { 1506 struct dm_integrity_c *ic = dio->ic; 1507 struct bio *bio; 1508 1509 remove_range(ic, &dio->range); 1510 1511 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1512 schedule_autocommit(ic); 1513 1514 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1515 1516 if (unlikely(dio->bi_status) && !bio->bi_status) 1517 bio->bi_status = dio->bi_status; 1518 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1519 dio->range.logical_sector += dio->range.n_sectors; 1520 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1521 INIT_WORK(&dio->work, integrity_bio_wait); 1522 queue_work(ic->offload_wq, &dio->work); 1523 return; 1524 } 1525 do_endio_flush(ic, dio); 1526 } 1527 } 1528 1529 static void integrity_end_io(struct bio *bio) 1530 { 1531 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1532 1533 dm_bio_restore(&dio->bio_details, bio); 1534 if (bio->bi_integrity) 1535 bio->bi_opf |= REQ_INTEGRITY; 1536 1537 if (dio->completion) 1538 complete(dio->completion); 1539 1540 dec_in_flight(dio); 1541 } 1542 1543 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1544 const char *data, char *result) 1545 { 1546 __u64 sector_le = cpu_to_le64(sector); 1547 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1548 int r; 1549 unsigned digest_size; 1550 1551 req->tfm = ic->internal_hash; 1552 1553 r = crypto_shash_init(req); 1554 if (unlikely(r < 0)) { 1555 dm_integrity_io_error(ic, "crypto_shash_init", r); 1556 goto failed; 1557 } 1558 1559 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1560 if (unlikely(r < 0)) { 1561 dm_integrity_io_error(ic, "crypto_shash_update", r); 1562 goto failed; 1563 } 1564 1565 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1566 if (unlikely(r < 0)) { 1567 dm_integrity_io_error(ic, "crypto_shash_update", r); 1568 goto failed; 1569 } 1570 1571 r = crypto_shash_final(req, result); 1572 if (unlikely(r < 0)) { 1573 dm_integrity_io_error(ic, "crypto_shash_final", r); 1574 goto failed; 1575 } 1576 1577 digest_size = crypto_shash_digestsize(ic->internal_hash); 1578 if (unlikely(digest_size < ic->tag_size)) 1579 memset(result + digest_size, 0, ic->tag_size - digest_size); 1580 1581 return; 1582 1583 failed: 1584 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1585 get_random_bytes(result, ic->tag_size); 1586 } 1587 1588 static void integrity_metadata(struct work_struct *w) 1589 { 1590 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1591 struct dm_integrity_c *ic = dio->ic; 1592 1593 int r; 1594 1595 if (ic->internal_hash) { 1596 struct bvec_iter iter; 1597 struct bio_vec bv; 1598 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1599 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1600 char *checksums; 1601 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1602 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1603 sector_t sector; 1604 unsigned sectors_to_process; 1605 1606 if (unlikely(ic->mode == 'R')) 1607 goto skip_io; 1608 1609 if (likely(dio->op != REQ_OP_DISCARD)) 1610 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1611 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1612 else 1613 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1614 if (!checksums) { 1615 checksums = checksums_onstack; 1616 if (WARN_ON(extra_space && 1617 digest_size > sizeof(checksums_onstack))) { 1618 r = -EINVAL; 1619 goto error; 1620 } 1621 } 1622 1623 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1624 sector_t bi_sector = dio->bio_details.bi_iter.bi_sector; 1625 unsigned bi_size = dio->bio_details.bi_iter.bi_size; 1626 unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1627 unsigned max_blocks = max_size / ic->tag_size; 1628 memset(checksums, DISCARD_FILLER, max_size); 1629 1630 while (bi_size) { 1631 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1632 this_step_blocks = min(this_step_blocks, max_blocks); 1633 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1634 this_step_blocks * ic->tag_size, TAG_WRITE); 1635 if (unlikely(r)) { 1636 if (likely(checksums != checksums_onstack)) 1637 kfree(checksums); 1638 goto error; 1639 } 1640 1641 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) { 1642 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size); 1643 printk("BUGG: this_step_blocks: %u\n", this_step_blocks); 1644 BUG(); 1645 }*/ 1646 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1647 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block; 1648 } 1649 1650 if (likely(checksums != checksums_onstack)) 1651 kfree(checksums); 1652 goto skip_io; 1653 } 1654 1655 sector = dio->range.logical_sector; 1656 sectors_to_process = dio->range.n_sectors; 1657 1658 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1659 unsigned pos; 1660 char *mem, *checksums_ptr; 1661 1662 again: 1663 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1664 pos = 0; 1665 checksums_ptr = checksums; 1666 do { 1667 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1668 checksums_ptr += ic->tag_size; 1669 sectors_to_process -= ic->sectors_per_block; 1670 pos += ic->sectors_per_block << SECTOR_SHIFT; 1671 sector += ic->sectors_per_block; 1672 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1673 kunmap_atomic(mem); 1674 1675 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1676 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1677 if (unlikely(r)) { 1678 if (r > 0) { 1679 char b[BDEVNAME_SIZE]; 1680 DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b), 1681 (sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1682 r = -EILSEQ; 1683 atomic64_inc(&ic->number_of_mismatches); 1684 } 1685 if (likely(checksums != checksums_onstack)) 1686 kfree(checksums); 1687 goto error; 1688 } 1689 1690 if (!sectors_to_process) 1691 break; 1692 1693 if (unlikely(pos < bv.bv_len)) { 1694 bv.bv_offset += pos; 1695 bv.bv_len -= pos; 1696 goto again; 1697 } 1698 } 1699 1700 if (likely(checksums != checksums_onstack)) 1701 kfree(checksums); 1702 } else { 1703 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1704 1705 if (bip) { 1706 struct bio_vec biv; 1707 struct bvec_iter iter; 1708 unsigned data_to_process = dio->range.n_sectors; 1709 sector_to_block(ic, data_to_process); 1710 data_to_process *= ic->tag_size; 1711 1712 bip_for_each_vec(biv, bip, iter) { 1713 unsigned char *tag; 1714 unsigned this_len; 1715 1716 BUG_ON(PageHighMem(biv.bv_page)); 1717 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1718 this_len = min(biv.bv_len, data_to_process); 1719 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1720 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1721 if (unlikely(r)) 1722 goto error; 1723 data_to_process -= this_len; 1724 if (!data_to_process) 1725 break; 1726 } 1727 } 1728 } 1729 skip_io: 1730 dec_in_flight(dio); 1731 return; 1732 error: 1733 dio->bi_status = errno_to_blk_status(r); 1734 dec_in_flight(dio); 1735 } 1736 1737 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1738 { 1739 struct dm_integrity_c *ic = ti->private; 1740 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1741 struct bio_integrity_payload *bip; 1742 1743 sector_t area, offset; 1744 1745 dio->ic = ic; 1746 dio->bi_status = 0; 1747 dio->op = bio_op(bio); 1748 1749 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1750 if (ti->max_io_len) { 1751 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1752 unsigned log2_max_io_len = __fls(ti->max_io_len); 1753 sector_t start_boundary = sec >> log2_max_io_len; 1754 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1755 if (start_boundary < end_boundary) { 1756 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1757 dm_accept_partial_bio(bio, len); 1758 } 1759 } 1760 } 1761 1762 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1763 submit_flush_bio(ic, dio); 1764 return DM_MAPIO_SUBMITTED; 1765 } 1766 1767 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1768 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1769 if (unlikely(dio->fua)) { 1770 /* 1771 * Don't pass down the FUA flag because we have to flush 1772 * disk cache anyway. 1773 */ 1774 bio->bi_opf &= ~REQ_FUA; 1775 } 1776 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1777 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1778 dio->range.logical_sector, bio_sectors(bio), 1779 ic->provided_data_sectors); 1780 return DM_MAPIO_KILL; 1781 } 1782 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1783 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1784 ic->sectors_per_block, 1785 dio->range.logical_sector, bio_sectors(bio)); 1786 return DM_MAPIO_KILL; 1787 } 1788 1789 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1790 struct bvec_iter iter; 1791 struct bio_vec bv; 1792 bio_for_each_segment(bv, bio, iter) { 1793 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1794 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1795 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1796 return DM_MAPIO_KILL; 1797 } 1798 } 1799 } 1800 1801 bip = bio_integrity(bio); 1802 if (!ic->internal_hash) { 1803 if (bip) { 1804 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1805 if (ic->log2_tag_size >= 0) 1806 wanted_tag_size <<= ic->log2_tag_size; 1807 else 1808 wanted_tag_size *= ic->tag_size; 1809 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1810 DMERR("Invalid integrity data size %u, expected %u", 1811 bip->bip_iter.bi_size, wanted_tag_size); 1812 return DM_MAPIO_KILL; 1813 } 1814 } 1815 } else { 1816 if (unlikely(bip != NULL)) { 1817 DMERR("Unexpected integrity data when using internal hash"); 1818 return DM_MAPIO_KILL; 1819 } 1820 } 1821 1822 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 1823 return DM_MAPIO_KILL; 1824 1825 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1826 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1827 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1828 1829 dm_integrity_map_continue(dio, true); 1830 return DM_MAPIO_SUBMITTED; 1831 } 1832 1833 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1834 unsigned journal_section, unsigned journal_entry) 1835 { 1836 struct dm_integrity_c *ic = dio->ic; 1837 sector_t logical_sector; 1838 unsigned n_sectors; 1839 1840 logical_sector = dio->range.logical_sector; 1841 n_sectors = dio->range.n_sectors; 1842 do { 1843 struct bio_vec bv = bio_iovec(bio); 1844 char *mem; 1845 1846 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1847 bv.bv_len = n_sectors << SECTOR_SHIFT; 1848 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1849 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1850 retry_kmap: 1851 mem = kmap_atomic(bv.bv_page); 1852 if (likely(dio->op == REQ_OP_WRITE)) 1853 flush_dcache_page(bv.bv_page); 1854 1855 do { 1856 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1857 1858 if (unlikely(dio->op == REQ_OP_READ)) { 1859 struct journal_sector *js; 1860 char *mem_ptr; 1861 unsigned s; 1862 1863 if (unlikely(journal_entry_is_inprogress(je))) { 1864 flush_dcache_page(bv.bv_page); 1865 kunmap_atomic(mem); 1866 1867 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1868 goto retry_kmap; 1869 } 1870 smp_rmb(); 1871 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1872 js = access_journal_data(ic, journal_section, journal_entry); 1873 mem_ptr = mem + bv.bv_offset; 1874 s = 0; 1875 do { 1876 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1877 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1878 js++; 1879 mem_ptr += 1 << SECTOR_SHIFT; 1880 } while (++s < ic->sectors_per_block); 1881 #ifdef INTERNAL_VERIFY 1882 if (ic->internal_hash) { 1883 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1884 1885 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1886 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1887 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1888 logical_sector); 1889 } 1890 } 1891 #endif 1892 } 1893 1894 if (!ic->internal_hash) { 1895 struct bio_integrity_payload *bip = bio_integrity(bio); 1896 unsigned tag_todo = ic->tag_size; 1897 char *tag_ptr = journal_entry_tag(ic, je); 1898 1899 if (bip) do { 1900 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1901 unsigned tag_now = min(biv.bv_len, tag_todo); 1902 char *tag_addr; 1903 BUG_ON(PageHighMem(biv.bv_page)); 1904 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1905 if (likely(dio->op == REQ_OP_WRITE)) 1906 memcpy(tag_ptr, tag_addr, tag_now); 1907 else 1908 memcpy(tag_addr, tag_ptr, tag_now); 1909 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1910 tag_ptr += tag_now; 1911 tag_todo -= tag_now; 1912 } while (unlikely(tag_todo)); else { 1913 if (likely(dio->op == REQ_OP_WRITE)) 1914 memset(tag_ptr, 0, tag_todo); 1915 } 1916 } 1917 1918 if (likely(dio->op == REQ_OP_WRITE)) { 1919 struct journal_sector *js; 1920 unsigned s; 1921 1922 js = access_journal_data(ic, journal_section, journal_entry); 1923 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1924 1925 s = 0; 1926 do { 1927 je->last_bytes[s] = js[s].commit_id; 1928 } while (++s < ic->sectors_per_block); 1929 1930 if (ic->internal_hash) { 1931 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1932 if (unlikely(digest_size > ic->tag_size)) { 1933 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1934 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1935 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1936 } else 1937 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1938 } 1939 1940 journal_entry_set_sector(je, logical_sector); 1941 } 1942 logical_sector += ic->sectors_per_block; 1943 1944 journal_entry++; 1945 if (unlikely(journal_entry == ic->journal_section_entries)) { 1946 journal_entry = 0; 1947 journal_section++; 1948 wraparound_section(ic, &journal_section); 1949 } 1950 1951 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1952 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1953 1954 if (unlikely(dio->op == REQ_OP_READ)) 1955 flush_dcache_page(bv.bv_page); 1956 kunmap_atomic(mem); 1957 } while (n_sectors); 1958 1959 if (likely(dio->op == REQ_OP_WRITE)) { 1960 smp_mb(); 1961 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1962 wake_up(&ic->copy_to_journal_wait); 1963 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1964 queue_work(ic->commit_wq, &ic->commit_work); 1965 } else { 1966 schedule_autocommit(ic); 1967 } 1968 } else { 1969 remove_range(ic, &dio->range); 1970 } 1971 1972 if (unlikely(bio->bi_iter.bi_size)) { 1973 sector_t area, offset; 1974 1975 dio->range.logical_sector = logical_sector; 1976 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1977 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1978 return true; 1979 } 1980 1981 return false; 1982 } 1983 1984 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1985 { 1986 struct dm_integrity_c *ic = dio->ic; 1987 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1988 unsigned journal_section, journal_entry; 1989 unsigned journal_read_pos; 1990 struct completion read_comp; 1991 bool discard_retried = false; 1992 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 1993 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 1994 need_sync_io = true; 1995 1996 if (need_sync_io && from_map) { 1997 INIT_WORK(&dio->work, integrity_bio_wait); 1998 queue_work(ic->offload_wq, &dio->work); 1999 return; 2000 } 2001 2002 lock_retry: 2003 spin_lock_irq(&ic->endio_wait.lock); 2004 retry: 2005 if (unlikely(dm_integrity_failed(ic))) { 2006 spin_unlock_irq(&ic->endio_wait.lock); 2007 do_endio(ic, bio); 2008 return; 2009 } 2010 dio->range.n_sectors = bio_sectors(bio); 2011 journal_read_pos = NOT_FOUND; 2012 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2013 if (dio->op == REQ_OP_WRITE) { 2014 unsigned next_entry, i, pos; 2015 unsigned ws, we, range_sectors; 2016 2017 dio->range.n_sectors = min(dio->range.n_sectors, 2018 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2019 if (unlikely(!dio->range.n_sectors)) { 2020 if (from_map) 2021 goto offload_to_thread; 2022 sleep_on_endio_wait(ic); 2023 goto retry; 2024 } 2025 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2026 ic->free_sectors -= range_sectors; 2027 journal_section = ic->free_section; 2028 journal_entry = ic->free_section_entry; 2029 2030 next_entry = ic->free_section_entry + range_sectors; 2031 ic->free_section_entry = next_entry % ic->journal_section_entries; 2032 ic->free_section += next_entry / ic->journal_section_entries; 2033 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2034 wraparound_section(ic, &ic->free_section); 2035 2036 pos = journal_section * ic->journal_section_entries + journal_entry; 2037 ws = journal_section; 2038 we = journal_entry; 2039 i = 0; 2040 do { 2041 struct journal_entry *je; 2042 2043 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2044 pos++; 2045 if (unlikely(pos >= ic->journal_entries)) 2046 pos = 0; 2047 2048 je = access_journal_entry(ic, ws, we); 2049 BUG_ON(!journal_entry_is_unused(je)); 2050 journal_entry_set_inprogress(je); 2051 we++; 2052 if (unlikely(we == ic->journal_section_entries)) { 2053 we = 0; 2054 ws++; 2055 wraparound_section(ic, &ws); 2056 } 2057 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2058 2059 spin_unlock_irq(&ic->endio_wait.lock); 2060 goto journal_read_write; 2061 } else { 2062 sector_t next_sector; 2063 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2064 if (likely(journal_read_pos == NOT_FOUND)) { 2065 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2066 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2067 } else { 2068 unsigned i; 2069 unsigned jp = journal_read_pos + 1; 2070 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2071 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2072 break; 2073 } 2074 dio->range.n_sectors = i; 2075 } 2076 } 2077 } 2078 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2079 /* 2080 * We must not sleep in the request routine because it could 2081 * stall bios on current->bio_list. 2082 * So, we offload the bio to a workqueue if we have to sleep. 2083 */ 2084 if (from_map) { 2085 offload_to_thread: 2086 spin_unlock_irq(&ic->endio_wait.lock); 2087 INIT_WORK(&dio->work, integrity_bio_wait); 2088 queue_work(ic->wait_wq, &dio->work); 2089 return; 2090 } 2091 if (journal_read_pos != NOT_FOUND) 2092 dio->range.n_sectors = ic->sectors_per_block; 2093 wait_and_add_new_range(ic, &dio->range); 2094 /* 2095 * wait_and_add_new_range drops the spinlock, so the journal 2096 * may have been changed arbitrarily. We need to recheck. 2097 * To simplify the code, we restrict I/O size to just one block. 2098 */ 2099 if (journal_read_pos != NOT_FOUND) { 2100 sector_t next_sector; 2101 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2102 if (unlikely(new_pos != journal_read_pos)) { 2103 remove_range_unlocked(ic, &dio->range); 2104 goto retry; 2105 } 2106 } 2107 } 2108 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2109 sector_t next_sector; 2110 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2111 if (unlikely(new_pos != NOT_FOUND) || 2112 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2113 remove_range_unlocked(ic, &dio->range); 2114 spin_unlock_irq(&ic->endio_wait.lock); 2115 queue_work(ic->commit_wq, &ic->commit_work); 2116 flush_workqueue(ic->commit_wq); 2117 queue_work(ic->writer_wq, &ic->writer_work); 2118 flush_workqueue(ic->writer_wq); 2119 discard_retried = true; 2120 goto lock_retry; 2121 } 2122 } 2123 spin_unlock_irq(&ic->endio_wait.lock); 2124 2125 if (unlikely(journal_read_pos != NOT_FOUND)) { 2126 journal_section = journal_read_pos / ic->journal_section_entries; 2127 journal_entry = journal_read_pos % ic->journal_section_entries; 2128 goto journal_read_write; 2129 } 2130 2131 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2132 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2133 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2134 struct bitmap_block_status *bbs; 2135 2136 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2137 spin_lock(&bbs->bio_queue_lock); 2138 bio_list_add(&bbs->bio_queue, bio); 2139 spin_unlock(&bbs->bio_queue_lock); 2140 queue_work(ic->writer_wq, &bbs->work); 2141 return; 2142 } 2143 } 2144 2145 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2146 2147 if (need_sync_io) { 2148 init_completion(&read_comp); 2149 dio->completion = &read_comp; 2150 } else 2151 dio->completion = NULL; 2152 2153 dm_bio_record(&dio->bio_details, bio); 2154 bio_set_dev(bio, ic->dev->bdev); 2155 bio->bi_integrity = NULL; 2156 bio->bi_opf &= ~REQ_INTEGRITY; 2157 bio->bi_end_io = integrity_end_io; 2158 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2159 2160 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2161 integrity_metadata(&dio->work); 2162 dm_integrity_flush_buffers(ic, false); 2163 2164 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2165 dio->completion = NULL; 2166 2167 submit_bio_noacct(bio); 2168 2169 return; 2170 } 2171 2172 submit_bio_noacct(bio); 2173 2174 if (need_sync_io) { 2175 wait_for_completion_io(&read_comp); 2176 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2177 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2178 goto skip_check; 2179 if (ic->mode == 'B') { 2180 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2181 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2182 goto skip_check; 2183 } 2184 2185 if (likely(!bio->bi_status)) 2186 integrity_metadata(&dio->work); 2187 else 2188 skip_check: 2189 dec_in_flight(dio); 2190 2191 } else { 2192 INIT_WORK(&dio->work, integrity_metadata); 2193 queue_work(ic->metadata_wq, &dio->work); 2194 } 2195 2196 return; 2197 2198 journal_read_write: 2199 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2200 goto lock_retry; 2201 2202 do_endio_flush(ic, dio); 2203 } 2204 2205 2206 static void integrity_bio_wait(struct work_struct *w) 2207 { 2208 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2209 2210 dm_integrity_map_continue(dio, false); 2211 } 2212 2213 static void pad_uncommitted(struct dm_integrity_c *ic) 2214 { 2215 if (ic->free_section_entry) { 2216 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2217 ic->free_section_entry = 0; 2218 ic->free_section++; 2219 wraparound_section(ic, &ic->free_section); 2220 ic->n_uncommitted_sections++; 2221 } 2222 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2223 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2224 ic->journal_section_entries + ic->free_sectors)) { 2225 DMCRIT("journal_sections %u, journal_section_entries %u, " 2226 "n_uncommitted_sections %u, n_committed_sections %u, " 2227 "journal_section_entries %u, free_sectors %u", 2228 ic->journal_sections, ic->journal_section_entries, 2229 ic->n_uncommitted_sections, ic->n_committed_sections, 2230 ic->journal_section_entries, ic->free_sectors); 2231 } 2232 } 2233 2234 static void integrity_commit(struct work_struct *w) 2235 { 2236 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2237 unsigned commit_start, commit_sections; 2238 unsigned i, j, n; 2239 struct bio *flushes; 2240 2241 del_timer(&ic->autocommit_timer); 2242 2243 spin_lock_irq(&ic->endio_wait.lock); 2244 flushes = bio_list_get(&ic->flush_bio_list); 2245 if (unlikely(ic->mode != 'J')) { 2246 spin_unlock_irq(&ic->endio_wait.lock); 2247 dm_integrity_flush_buffers(ic, true); 2248 goto release_flush_bios; 2249 } 2250 2251 pad_uncommitted(ic); 2252 commit_start = ic->uncommitted_section; 2253 commit_sections = ic->n_uncommitted_sections; 2254 spin_unlock_irq(&ic->endio_wait.lock); 2255 2256 if (!commit_sections) 2257 goto release_flush_bios; 2258 2259 i = commit_start; 2260 for (n = 0; n < commit_sections; n++) { 2261 for (j = 0; j < ic->journal_section_entries; j++) { 2262 struct journal_entry *je; 2263 je = access_journal_entry(ic, i, j); 2264 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2265 } 2266 for (j = 0; j < ic->journal_section_sectors; j++) { 2267 struct journal_sector *js; 2268 js = access_journal(ic, i, j); 2269 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2270 } 2271 i++; 2272 if (unlikely(i >= ic->journal_sections)) 2273 ic->commit_seq = next_commit_seq(ic->commit_seq); 2274 wraparound_section(ic, &i); 2275 } 2276 smp_rmb(); 2277 2278 write_journal(ic, commit_start, commit_sections); 2279 2280 spin_lock_irq(&ic->endio_wait.lock); 2281 ic->uncommitted_section += commit_sections; 2282 wraparound_section(ic, &ic->uncommitted_section); 2283 ic->n_uncommitted_sections -= commit_sections; 2284 ic->n_committed_sections += commit_sections; 2285 spin_unlock_irq(&ic->endio_wait.lock); 2286 2287 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2288 queue_work(ic->writer_wq, &ic->writer_work); 2289 2290 release_flush_bios: 2291 while (flushes) { 2292 struct bio *next = flushes->bi_next; 2293 flushes->bi_next = NULL; 2294 do_endio(ic, flushes); 2295 flushes = next; 2296 } 2297 } 2298 2299 static void complete_copy_from_journal(unsigned long error, void *context) 2300 { 2301 struct journal_io *io = context; 2302 struct journal_completion *comp = io->comp; 2303 struct dm_integrity_c *ic = comp->ic; 2304 remove_range(ic, &io->range); 2305 mempool_free(io, &ic->journal_io_mempool); 2306 if (unlikely(error != 0)) 2307 dm_integrity_io_error(ic, "copying from journal", -EIO); 2308 complete_journal_op(comp); 2309 } 2310 2311 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2312 struct journal_entry *je) 2313 { 2314 unsigned s = 0; 2315 do { 2316 js->commit_id = je->last_bytes[s]; 2317 js++; 2318 } while (++s < ic->sectors_per_block); 2319 } 2320 2321 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2322 unsigned write_sections, bool from_replay) 2323 { 2324 unsigned i, j, n; 2325 struct journal_completion comp; 2326 struct blk_plug plug; 2327 2328 blk_start_plug(&plug); 2329 2330 comp.ic = ic; 2331 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2332 init_completion(&comp.comp); 2333 2334 i = write_start; 2335 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2336 #ifndef INTERNAL_VERIFY 2337 if (unlikely(from_replay)) 2338 #endif 2339 rw_section_mac(ic, i, false); 2340 for (j = 0; j < ic->journal_section_entries; j++) { 2341 struct journal_entry *je = access_journal_entry(ic, i, j); 2342 sector_t sec, area, offset; 2343 unsigned k, l, next_loop; 2344 sector_t metadata_block; 2345 unsigned metadata_offset; 2346 struct journal_io *io; 2347 2348 if (journal_entry_is_unused(je)) 2349 continue; 2350 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2351 sec = journal_entry_get_sector(je); 2352 if (unlikely(from_replay)) { 2353 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2354 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2355 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2356 } 2357 } 2358 if (unlikely(sec >= ic->provided_data_sectors)) 2359 continue; 2360 get_area_and_offset(ic, sec, &area, &offset); 2361 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2362 for (k = j + 1; k < ic->journal_section_entries; k++) { 2363 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2364 sector_t sec2, area2, offset2; 2365 if (journal_entry_is_unused(je2)) 2366 break; 2367 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2368 sec2 = journal_entry_get_sector(je2); 2369 if (unlikely(sec2 >= ic->provided_data_sectors)) 2370 break; 2371 get_area_and_offset(ic, sec2, &area2, &offset2); 2372 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2373 break; 2374 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2375 } 2376 next_loop = k - 1; 2377 2378 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2379 io->comp = ∁ 2380 io->range.logical_sector = sec; 2381 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2382 2383 spin_lock_irq(&ic->endio_wait.lock); 2384 add_new_range_and_wait(ic, &io->range); 2385 2386 if (likely(!from_replay)) { 2387 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2388 2389 /* don't write if there is newer committed sector */ 2390 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2391 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2392 2393 journal_entry_set_unused(je2); 2394 remove_journal_node(ic, §ion_node[j]); 2395 j++; 2396 sec += ic->sectors_per_block; 2397 offset += ic->sectors_per_block; 2398 } 2399 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2400 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2401 2402 journal_entry_set_unused(je2); 2403 remove_journal_node(ic, §ion_node[k - 1]); 2404 k--; 2405 } 2406 if (j == k) { 2407 remove_range_unlocked(ic, &io->range); 2408 spin_unlock_irq(&ic->endio_wait.lock); 2409 mempool_free(io, &ic->journal_io_mempool); 2410 goto skip_io; 2411 } 2412 for (l = j; l < k; l++) { 2413 remove_journal_node(ic, §ion_node[l]); 2414 } 2415 } 2416 spin_unlock_irq(&ic->endio_wait.lock); 2417 2418 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2419 for (l = j; l < k; l++) { 2420 int r; 2421 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2422 2423 if ( 2424 #ifndef INTERNAL_VERIFY 2425 unlikely(from_replay) && 2426 #endif 2427 ic->internal_hash) { 2428 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2429 2430 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2431 (char *)access_journal_data(ic, i, l), test_tag); 2432 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2433 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2434 } 2435 2436 journal_entry_set_unused(je2); 2437 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2438 ic->tag_size, TAG_WRITE); 2439 if (unlikely(r)) { 2440 dm_integrity_io_error(ic, "reading tags", r); 2441 } 2442 } 2443 2444 atomic_inc(&comp.in_flight); 2445 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2446 (k - j) << ic->sb->log2_sectors_per_block, 2447 get_data_sector(ic, area, offset), 2448 complete_copy_from_journal, io); 2449 skip_io: 2450 j = next_loop; 2451 } 2452 } 2453 2454 dm_bufio_write_dirty_buffers_async(ic->bufio); 2455 2456 blk_finish_plug(&plug); 2457 2458 complete_journal_op(&comp); 2459 wait_for_completion_io(&comp.comp); 2460 2461 dm_integrity_flush_buffers(ic, true); 2462 } 2463 2464 static void integrity_writer(struct work_struct *w) 2465 { 2466 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2467 unsigned write_start, write_sections; 2468 2469 unsigned prev_free_sectors; 2470 2471 /* the following test is not needed, but it tests the replay code */ 2472 if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev) 2473 return; 2474 2475 spin_lock_irq(&ic->endio_wait.lock); 2476 write_start = ic->committed_section; 2477 write_sections = ic->n_committed_sections; 2478 spin_unlock_irq(&ic->endio_wait.lock); 2479 2480 if (!write_sections) 2481 return; 2482 2483 do_journal_write(ic, write_start, write_sections, false); 2484 2485 spin_lock_irq(&ic->endio_wait.lock); 2486 2487 ic->committed_section += write_sections; 2488 wraparound_section(ic, &ic->committed_section); 2489 ic->n_committed_sections -= write_sections; 2490 2491 prev_free_sectors = ic->free_sectors; 2492 ic->free_sectors += write_sections * ic->journal_section_entries; 2493 if (unlikely(!prev_free_sectors)) 2494 wake_up_locked(&ic->endio_wait); 2495 2496 spin_unlock_irq(&ic->endio_wait.lock); 2497 } 2498 2499 static void recalc_write_super(struct dm_integrity_c *ic) 2500 { 2501 int r; 2502 2503 dm_integrity_flush_buffers(ic, false); 2504 if (dm_integrity_failed(ic)) 2505 return; 2506 2507 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2508 if (unlikely(r)) 2509 dm_integrity_io_error(ic, "writing superblock", r); 2510 } 2511 2512 static void integrity_recalc(struct work_struct *w) 2513 { 2514 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2515 struct dm_integrity_range range; 2516 struct dm_io_request io_req; 2517 struct dm_io_region io_loc; 2518 sector_t area, offset; 2519 sector_t metadata_block; 2520 unsigned metadata_offset; 2521 sector_t logical_sector, n_sectors; 2522 __u8 *t; 2523 unsigned i; 2524 int r; 2525 unsigned super_counter = 0; 2526 2527 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2528 2529 spin_lock_irq(&ic->endio_wait.lock); 2530 2531 next_chunk: 2532 2533 if (unlikely(dm_post_suspending(ic->ti))) 2534 goto unlock_ret; 2535 2536 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2537 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2538 if (ic->mode == 'B') { 2539 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2540 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2541 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2542 } 2543 goto unlock_ret; 2544 } 2545 2546 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2547 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2548 if (!ic->meta_dev) 2549 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2550 2551 add_new_range_and_wait(ic, &range); 2552 spin_unlock_irq(&ic->endio_wait.lock); 2553 logical_sector = range.logical_sector; 2554 n_sectors = range.n_sectors; 2555 2556 if (ic->mode == 'B') { 2557 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2558 goto advance_and_next; 2559 } 2560 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2561 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2562 logical_sector += ic->sectors_per_block; 2563 n_sectors -= ic->sectors_per_block; 2564 cond_resched(); 2565 } 2566 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2567 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2568 n_sectors -= ic->sectors_per_block; 2569 cond_resched(); 2570 } 2571 get_area_and_offset(ic, logical_sector, &area, &offset); 2572 } 2573 2574 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2575 2576 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2577 recalc_write_super(ic); 2578 if (ic->mode == 'B') { 2579 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2580 } 2581 super_counter = 0; 2582 } 2583 2584 if (unlikely(dm_integrity_failed(ic))) 2585 goto err; 2586 2587 io_req.bi_op = REQ_OP_READ; 2588 io_req.bi_op_flags = 0; 2589 io_req.mem.type = DM_IO_VMA; 2590 io_req.mem.ptr.addr = ic->recalc_buffer; 2591 io_req.notify.fn = NULL; 2592 io_req.client = ic->io; 2593 io_loc.bdev = ic->dev->bdev; 2594 io_loc.sector = get_data_sector(ic, area, offset); 2595 io_loc.count = n_sectors; 2596 2597 r = dm_io(&io_req, 1, &io_loc, NULL); 2598 if (unlikely(r)) { 2599 dm_integrity_io_error(ic, "reading data", r); 2600 goto err; 2601 } 2602 2603 t = ic->recalc_tags; 2604 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2605 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2606 t += ic->tag_size; 2607 } 2608 2609 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2610 2611 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2612 if (unlikely(r)) { 2613 dm_integrity_io_error(ic, "writing tags", r); 2614 goto err; 2615 } 2616 2617 if (ic->mode == 'B') { 2618 sector_t start, end; 2619 start = (range.logical_sector >> 2620 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2621 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2622 end = ((range.logical_sector + range.n_sectors) >> 2623 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2624 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2625 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2626 } 2627 2628 advance_and_next: 2629 cond_resched(); 2630 2631 spin_lock_irq(&ic->endio_wait.lock); 2632 remove_range_unlocked(ic, &range); 2633 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2634 goto next_chunk; 2635 2636 err: 2637 remove_range(ic, &range); 2638 return; 2639 2640 unlock_ret: 2641 spin_unlock_irq(&ic->endio_wait.lock); 2642 2643 recalc_write_super(ic); 2644 } 2645 2646 static void bitmap_block_work(struct work_struct *w) 2647 { 2648 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2649 struct dm_integrity_c *ic = bbs->ic; 2650 struct bio *bio; 2651 struct bio_list bio_queue; 2652 struct bio_list waiting; 2653 2654 bio_list_init(&waiting); 2655 2656 spin_lock(&bbs->bio_queue_lock); 2657 bio_queue = bbs->bio_queue; 2658 bio_list_init(&bbs->bio_queue); 2659 spin_unlock(&bbs->bio_queue_lock); 2660 2661 while ((bio = bio_list_pop(&bio_queue))) { 2662 struct dm_integrity_io *dio; 2663 2664 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2665 2666 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2667 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2668 remove_range(ic, &dio->range); 2669 INIT_WORK(&dio->work, integrity_bio_wait); 2670 queue_work(ic->offload_wq, &dio->work); 2671 } else { 2672 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2673 dio->range.n_sectors, BITMAP_OP_SET); 2674 bio_list_add(&waiting, bio); 2675 } 2676 } 2677 2678 if (bio_list_empty(&waiting)) 2679 return; 2680 2681 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2682 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2683 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2684 2685 while ((bio = bio_list_pop(&waiting))) { 2686 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2687 2688 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2689 dio->range.n_sectors, BITMAP_OP_SET); 2690 2691 remove_range(ic, &dio->range); 2692 INIT_WORK(&dio->work, integrity_bio_wait); 2693 queue_work(ic->offload_wq, &dio->work); 2694 } 2695 2696 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2697 } 2698 2699 static void bitmap_flush_work(struct work_struct *work) 2700 { 2701 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2702 struct dm_integrity_range range; 2703 unsigned long limit; 2704 struct bio *bio; 2705 2706 dm_integrity_flush_buffers(ic, false); 2707 2708 range.logical_sector = 0; 2709 range.n_sectors = ic->provided_data_sectors; 2710 2711 spin_lock_irq(&ic->endio_wait.lock); 2712 add_new_range_and_wait(ic, &range); 2713 spin_unlock_irq(&ic->endio_wait.lock); 2714 2715 dm_integrity_flush_buffers(ic, true); 2716 2717 limit = ic->provided_data_sectors; 2718 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2719 limit = le64_to_cpu(ic->sb->recalc_sector) 2720 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2721 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2722 } 2723 /*DEBUG_print("zeroing journal\n");*/ 2724 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2725 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2726 2727 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2728 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2729 2730 spin_lock_irq(&ic->endio_wait.lock); 2731 remove_range_unlocked(ic, &range); 2732 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2733 bio_endio(bio); 2734 spin_unlock_irq(&ic->endio_wait.lock); 2735 spin_lock_irq(&ic->endio_wait.lock); 2736 } 2737 spin_unlock_irq(&ic->endio_wait.lock); 2738 } 2739 2740 2741 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2742 unsigned n_sections, unsigned char commit_seq) 2743 { 2744 unsigned i, j, n; 2745 2746 if (!n_sections) 2747 return; 2748 2749 for (n = 0; n < n_sections; n++) { 2750 i = start_section + n; 2751 wraparound_section(ic, &i); 2752 for (j = 0; j < ic->journal_section_sectors; j++) { 2753 struct journal_sector *js = access_journal(ic, i, j); 2754 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2755 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2756 } 2757 for (j = 0; j < ic->journal_section_entries; j++) { 2758 struct journal_entry *je = access_journal_entry(ic, i, j); 2759 journal_entry_set_unused(je); 2760 } 2761 } 2762 2763 write_journal(ic, start_section, n_sections); 2764 } 2765 2766 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2767 { 2768 unsigned char k; 2769 for (k = 0; k < N_COMMIT_IDS; k++) { 2770 if (dm_integrity_commit_id(ic, i, j, k) == id) 2771 return k; 2772 } 2773 dm_integrity_io_error(ic, "journal commit id", -EIO); 2774 return -EIO; 2775 } 2776 2777 static void replay_journal(struct dm_integrity_c *ic) 2778 { 2779 unsigned i, j; 2780 bool used_commit_ids[N_COMMIT_IDS]; 2781 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2782 unsigned write_start, write_sections; 2783 unsigned continue_section; 2784 bool journal_empty; 2785 unsigned char unused, last_used, want_commit_seq; 2786 2787 if (ic->mode == 'R') 2788 return; 2789 2790 if (ic->journal_uptodate) 2791 return; 2792 2793 last_used = 0; 2794 write_start = 0; 2795 2796 if (!ic->just_formatted) { 2797 DEBUG_print("reading journal\n"); 2798 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2799 if (ic->journal_io) 2800 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2801 if (ic->journal_io) { 2802 struct journal_completion crypt_comp; 2803 crypt_comp.ic = ic; 2804 init_completion(&crypt_comp.comp); 2805 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2806 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2807 wait_for_completion(&crypt_comp.comp); 2808 } 2809 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2810 } 2811 2812 if (dm_integrity_failed(ic)) 2813 goto clear_journal; 2814 2815 journal_empty = true; 2816 memset(used_commit_ids, 0, sizeof used_commit_ids); 2817 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2818 for (i = 0; i < ic->journal_sections; i++) { 2819 for (j = 0; j < ic->journal_section_sectors; j++) { 2820 int k; 2821 struct journal_sector *js = access_journal(ic, i, j); 2822 k = find_commit_seq(ic, i, j, js->commit_id); 2823 if (k < 0) 2824 goto clear_journal; 2825 used_commit_ids[k] = true; 2826 max_commit_id_sections[k] = i; 2827 } 2828 if (journal_empty) { 2829 for (j = 0; j < ic->journal_section_entries; j++) { 2830 struct journal_entry *je = access_journal_entry(ic, i, j); 2831 if (!journal_entry_is_unused(je)) { 2832 journal_empty = false; 2833 break; 2834 } 2835 } 2836 } 2837 } 2838 2839 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2840 unused = N_COMMIT_IDS - 1; 2841 while (unused && !used_commit_ids[unused - 1]) 2842 unused--; 2843 } else { 2844 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2845 if (!used_commit_ids[unused]) 2846 break; 2847 if (unused == N_COMMIT_IDS) { 2848 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2849 goto clear_journal; 2850 } 2851 } 2852 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2853 unused, used_commit_ids[0], used_commit_ids[1], 2854 used_commit_ids[2], used_commit_ids[3]); 2855 2856 last_used = prev_commit_seq(unused); 2857 want_commit_seq = prev_commit_seq(last_used); 2858 2859 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2860 journal_empty = true; 2861 2862 write_start = max_commit_id_sections[last_used] + 1; 2863 if (unlikely(write_start >= ic->journal_sections)) 2864 want_commit_seq = next_commit_seq(want_commit_seq); 2865 wraparound_section(ic, &write_start); 2866 2867 i = write_start; 2868 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2869 for (j = 0; j < ic->journal_section_sectors; j++) { 2870 struct journal_sector *js = access_journal(ic, i, j); 2871 2872 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2873 /* 2874 * This could be caused by crash during writing. 2875 * We won't replay the inconsistent part of the 2876 * journal. 2877 */ 2878 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2879 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2880 goto brk; 2881 } 2882 } 2883 i++; 2884 if (unlikely(i >= ic->journal_sections)) 2885 want_commit_seq = next_commit_seq(want_commit_seq); 2886 wraparound_section(ic, &i); 2887 } 2888 brk: 2889 2890 if (!journal_empty) { 2891 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2892 write_sections, write_start, want_commit_seq); 2893 do_journal_write(ic, write_start, write_sections, true); 2894 } 2895 2896 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2897 continue_section = write_start; 2898 ic->commit_seq = want_commit_seq; 2899 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2900 } else { 2901 unsigned s; 2902 unsigned char erase_seq; 2903 clear_journal: 2904 DEBUG_print("clearing journal\n"); 2905 2906 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2907 s = write_start; 2908 init_journal(ic, s, 1, erase_seq); 2909 s++; 2910 wraparound_section(ic, &s); 2911 if (ic->journal_sections >= 2) { 2912 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2913 s += ic->journal_sections - 2; 2914 wraparound_section(ic, &s); 2915 init_journal(ic, s, 1, erase_seq); 2916 } 2917 2918 continue_section = 0; 2919 ic->commit_seq = next_commit_seq(erase_seq); 2920 } 2921 2922 ic->committed_section = continue_section; 2923 ic->n_committed_sections = 0; 2924 2925 ic->uncommitted_section = continue_section; 2926 ic->n_uncommitted_sections = 0; 2927 2928 ic->free_section = continue_section; 2929 ic->free_section_entry = 0; 2930 ic->free_sectors = ic->journal_entries; 2931 2932 ic->journal_tree_root = RB_ROOT; 2933 for (i = 0; i < ic->journal_entries; i++) 2934 init_journal_node(&ic->journal_tree[i]); 2935 } 2936 2937 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 2938 { 2939 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 2940 2941 if (ic->mode == 'B') { 2942 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 2943 ic->synchronous_mode = 1; 2944 2945 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2946 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2947 flush_workqueue(ic->commit_wq); 2948 } 2949 } 2950 2951 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 2952 { 2953 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 2954 2955 DEBUG_print("dm_integrity_reboot\n"); 2956 2957 dm_integrity_enter_synchronous_mode(ic); 2958 2959 return NOTIFY_DONE; 2960 } 2961 2962 static void dm_integrity_postsuspend(struct dm_target *ti) 2963 { 2964 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2965 int r; 2966 2967 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 2968 2969 del_timer_sync(&ic->autocommit_timer); 2970 2971 if (ic->recalc_wq) 2972 drain_workqueue(ic->recalc_wq); 2973 2974 if (ic->mode == 'B') 2975 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2976 2977 queue_work(ic->commit_wq, &ic->commit_work); 2978 drain_workqueue(ic->commit_wq); 2979 2980 if (ic->mode == 'J') { 2981 if (ic->meta_dev) 2982 queue_work(ic->writer_wq, &ic->writer_work); 2983 drain_workqueue(ic->writer_wq); 2984 dm_integrity_flush_buffers(ic, true); 2985 } 2986 2987 if (ic->mode == 'B') { 2988 dm_integrity_flush_buffers(ic, true); 2989 #if 1 2990 /* set to 0 to test bitmap replay code */ 2991 init_journal(ic, 0, ic->journal_sections, 0); 2992 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2993 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2994 if (unlikely(r)) 2995 dm_integrity_io_error(ic, "writing superblock", r); 2996 #endif 2997 } 2998 2999 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3000 3001 ic->journal_uptodate = true; 3002 } 3003 3004 static void dm_integrity_resume(struct dm_target *ti) 3005 { 3006 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3007 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3008 int r; 3009 3010 DEBUG_print("resume\n"); 3011 3012 if (ic->provided_data_sectors != old_provided_data_sectors) { 3013 if (ic->provided_data_sectors > old_provided_data_sectors && 3014 ic->mode == 'B' && 3015 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3016 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 3017 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3018 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3019 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3020 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3021 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3022 } 3023 3024 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3025 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3026 if (unlikely(r)) 3027 dm_integrity_io_error(ic, "writing superblock", r); 3028 } 3029 3030 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3031 DEBUG_print("resume dirty_bitmap\n"); 3032 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 3033 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3034 if (ic->mode == 'B') { 3035 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3036 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3037 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3038 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3039 BITMAP_OP_TEST_ALL_CLEAR)) { 3040 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3041 ic->sb->recalc_sector = cpu_to_le64(0); 3042 } 3043 } else { 3044 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3045 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3046 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3047 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3048 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3049 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3050 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3051 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3052 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3053 ic->sb->recalc_sector = cpu_to_le64(0); 3054 } 3055 } else { 3056 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3057 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) { 3058 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3059 ic->sb->recalc_sector = cpu_to_le64(0); 3060 } 3061 init_journal(ic, 0, ic->journal_sections, 0); 3062 replay_journal(ic); 3063 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3064 } 3065 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3066 if (unlikely(r)) 3067 dm_integrity_io_error(ic, "writing superblock", r); 3068 } else { 3069 replay_journal(ic); 3070 if (ic->mode == 'B') { 3071 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3072 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3073 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3074 if (unlikely(r)) 3075 dm_integrity_io_error(ic, "writing superblock", r); 3076 3077 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3078 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3079 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3080 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3081 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3082 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3083 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3084 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3085 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3086 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3087 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3088 } 3089 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3090 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3091 } 3092 } 3093 3094 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3095 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3096 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3097 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3098 if (recalc_pos < ic->provided_data_sectors) { 3099 queue_work(ic->recalc_wq, &ic->recalc_work); 3100 } else if (recalc_pos > ic->provided_data_sectors) { 3101 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3102 recalc_write_super(ic); 3103 } 3104 } 3105 3106 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3107 ic->reboot_notifier.next = NULL; 3108 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3109 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3110 3111 #if 0 3112 /* set to 1 to stress test synchronous mode */ 3113 dm_integrity_enter_synchronous_mode(ic); 3114 #endif 3115 } 3116 3117 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3118 unsigned status_flags, char *result, unsigned maxlen) 3119 { 3120 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3121 unsigned arg_count; 3122 size_t sz = 0; 3123 3124 switch (type) { 3125 case STATUSTYPE_INFO: 3126 DMEMIT("%llu %llu", 3127 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3128 ic->provided_data_sectors); 3129 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3130 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3131 else 3132 DMEMIT(" -"); 3133 break; 3134 3135 case STATUSTYPE_TABLE: { 3136 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3137 watermark_percentage += ic->journal_entries / 2; 3138 do_div(watermark_percentage, ic->journal_entries); 3139 arg_count = 3; 3140 arg_count += !!ic->meta_dev; 3141 arg_count += ic->sectors_per_block != 1; 3142 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3143 arg_count += ic->discard; 3144 arg_count += ic->mode == 'J'; 3145 arg_count += ic->mode == 'J'; 3146 arg_count += ic->mode == 'B'; 3147 arg_count += ic->mode == 'B'; 3148 arg_count += !!ic->internal_hash_alg.alg_string; 3149 arg_count += !!ic->journal_crypt_alg.alg_string; 3150 arg_count += !!ic->journal_mac_alg.alg_string; 3151 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3152 arg_count += ic->legacy_recalculate; 3153 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3154 ic->tag_size, ic->mode, arg_count); 3155 if (ic->meta_dev) 3156 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3157 if (ic->sectors_per_block != 1) 3158 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3159 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3160 DMEMIT(" recalculate"); 3161 if (ic->discard) 3162 DMEMIT(" allow_discards"); 3163 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3164 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3165 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3166 if (ic->mode == 'J') { 3167 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 3168 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3169 } 3170 if (ic->mode == 'B') { 3171 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3172 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3173 } 3174 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3175 DMEMIT(" fix_padding"); 3176 if (ic->legacy_recalculate) 3177 DMEMIT(" legacy_recalculate"); 3178 3179 #define EMIT_ALG(a, n) \ 3180 do { \ 3181 if (ic->a.alg_string) { \ 3182 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3183 if (ic->a.key_string) \ 3184 DMEMIT(":%s", ic->a.key_string);\ 3185 } \ 3186 } while (0) 3187 EMIT_ALG(internal_hash_alg, "internal_hash"); 3188 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3189 EMIT_ALG(journal_mac_alg, "journal_mac"); 3190 break; 3191 } 3192 } 3193 } 3194 3195 static int dm_integrity_iterate_devices(struct dm_target *ti, 3196 iterate_devices_callout_fn fn, void *data) 3197 { 3198 struct dm_integrity_c *ic = ti->private; 3199 3200 if (!ic->meta_dev) 3201 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3202 else 3203 return fn(ti, ic->dev, 0, ti->len, data); 3204 } 3205 3206 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3207 { 3208 struct dm_integrity_c *ic = ti->private; 3209 3210 if (ic->sectors_per_block > 1) { 3211 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3212 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3213 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3214 } 3215 } 3216 3217 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3218 { 3219 unsigned sector_space = JOURNAL_SECTOR_DATA; 3220 3221 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3222 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3223 JOURNAL_ENTRY_ROUNDUP); 3224 3225 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3226 sector_space -= JOURNAL_MAC_PER_SECTOR; 3227 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3228 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3229 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3230 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3231 } 3232 3233 static int calculate_device_limits(struct dm_integrity_c *ic) 3234 { 3235 __u64 initial_sectors; 3236 3237 calculate_journal_section_size(ic); 3238 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3239 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3240 return -EINVAL; 3241 ic->initial_sectors = initial_sectors; 3242 3243 if (!ic->meta_dev) { 3244 sector_t last_sector, last_area, last_offset; 3245 3246 /* we have to maintain excessive padding for compatibility with existing volumes */ 3247 __u64 metadata_run_padding = 3248 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3249 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3250 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3251 3252 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3253 metadata_run_padding) >> SECTOR_SHIFT; 3254 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3255 ic->log2_metadata_run = __ffs(ic->metadata_run); 3256 else 3257 ic->log2_metadata_run = -1; 3258 3259 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3260 last_sector = get_data_sector(ic, last_area, last_offset); 3261 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3262 return -EINVAL; 3263 } else { 3264 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3265 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3266 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3267 meta_size <<= ic->log2_buffer_sectors; 3268 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3269 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3270 return -EINVAL; 3271 ic->metadata_run = 1; 3272 ic->log2_metadata_run = 0; 3273 } 3274 3275 return 0; 3276 } 3277 3278 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3279 { 3280 if (!ic->meta_dev) { 3281 int test_bit; 3282 ic->provided_data_sectors = 0; 3283 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3284 __u64 prev_data_sectors = ic->provided_data_sectors; 3285 3286 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3287 if (calculate_device_limits(ic)) 3288 ic->provided_data_sectors = prev_data_sectors; 3289 } 3290 } else { 3291 ic->provided_data_sectors = ic->data_device_sectors; 3292 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3293 } 3294 } 3295 3296 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3297 { 3298 unsigned journal_sections; 3299 int test_bit; 3300 3301 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3302 memcpy(ic->sb->magic, SB_MAGIC, 8); 3303 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3304 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3305 if (ic->journal_mac_alg.alg_string) 3306 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3307 3308 calculate_journal_section_size(ic); 3309 journal_sections = journal_sectors / ic->journal_section_sectors; 3310 if (!journal_sections) 3311 journal_sections = 1; 3312 3313 if (!ic->meta_dev) { 3314 if (ic->fix_padding) 3315 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3316 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3317 if (!interleave_sectors) 3318 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3319 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3320 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3321 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3322 3323 get_provided_data_sectors(ic); 3324 if (!ic->provided_data_sectors) 3325 return -EINVAL; 3326 } else { 3327 ic->sb->log2_interleave_sectors = 0; 3328 3329 get_provided_data_sectors(ic); 3330 if (!ic->provided_data_sectors) 3331 return -EINVAL; 3332 3333 try_smaller_buffer: 3334 ic->sb->journal_sections = cpu_to_le32(0); 3335 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3336 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3337 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3338 if (test_journal_sections > journal_sections) 3339 continue; 3340 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3341 if (calculate_device_limits(ic)) 3342 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3343 3344 } 3345 if (!le32_to_cpu(ic->sb->journal_sections)) { 3346 if (ic->log2_buffer_sectors > 3) { 3347 ic->log2_buffer_sectors--; 3348 goto try_smaller_buffer; 3349 } 3350 return -EINVAL; 3351 } 3352 } 3353 3354 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3355 3356 sb_set_version(ic); 3357 3358 return 0; 3359 } 3360 3361 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3362 { 3363 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3364 struct blk_integrity bi; 3365 3366 memset(&bi, 0, sizeof(bi)); 3367 bi.profile = &dm_integrity_profile; 3368 bi.tuple_size = ic->tag_size; 3369 bi.tag_size = bi.tuple_size; 3370 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3371 3372 blk_integrity_register(disk, &bi); 3373 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3374 } 3375 3376 static void dm_integrity_free_page_list(struct page_list *pl) 3377 { 3378 unsigned i; 3379 3380 if (!pl) 3381 return; 3382 for (i = 0; pl[i].page; i++) 3383 __free_page(pl[i].page); 3384 kvfree(pl); 3385 } 3386 3387 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3388 { 3389 struct page_list *pl; 3390 unsigned i; 3391 3392 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3393 if (!pl) 3394 return NULL; 3395 3396 for (i = 0; i < n_pages; i++) { 3397 pl[i].page = alloc_page(GFP_KERNEL); 3398 if (!pl[i].page) { 3399 dm_integrity_free_page_list(pl); 3400 return NULL; 3401 } 3402 if (i) 3403 pl[i - 1].next = &pl[i]; 3404 } 3405 pl[i].page = NULL; 3406 pl[i].next = NULL; 3407 3408 return pl; 3409 } 3410 3411 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3412 { 3413 unsigned i; 3414 for (i = 0; i < ic->journal_sections; i++) 3415 kvfree(sl[i]); 3416 kvfree(sl); 3417 } 3418 3419 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3420 struct page_list *pl) 3421 { 3422 struct scatterlist **sl; 3423 unsigned i; 3424 3425 sl = kvmalloc_array(ic->journal_sections, 3426 sizeof(struct scatterlist *), 3427 GFP_KERNEL | __GFP_ZERO); 3428 if (!sl) 3429 return NULL; 3430 3431 for (i = 0; i < ic->journal_sections; i++) { 3432 struct scatterlist *s; 3433 unsigned start_index, start_offset; 3434 unsigned end_index, end_offset; 3435 unsigned n_pages; 3436 unsigned idx; 3437 3438 page_list_location(ic, i, 0, &start_index, &start_offset); 3439 page_list_location(ic, i, ic->journal_section_sectors - 1, 3440 &end_index, &end_offset); 3441 3442 n_pages = (end_index - start_index + 1); 3443 3444 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3445 GFP_KERNEL); 3446 if (!s) { 3447 dm_integrity_free_journal_scatterlist(ic, sl); 3448 return NULL; 3449 } 3450 3451 sg_init_table(s, n_pages); 3452 for (idx = start_index; idx <= end_index; idx++) { 3453 char *va = lowmem_page_address(pl[idx].page); 3454 unsigned start = 0, end = PAGE_SIZE; 3455 if (idx == start_index) 3456 start = start_offset; 3457 if (idx == end_index) 3458 end = end_offset + (1 << SECTOR_SHIFT); 3459 sg_set_buf(&s[idx - start_index], va + start, end - start); 3460 } 3461 3462 sl[i] = s; 3463 } 3464 3465 return sl; 3466 } 3467 3468 static void free_alg(struct alg_spec *a) 3469 { 3470 kfree_sensitive(a->alg_string); 3471 kfree_sensitive(a->key); 3472 memset(a, 0, sizeof *a); 3473 } 3474 3475 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3476 { 3477 char *k; 3478 3479 free_alg(a); 3480 3481 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3482 if (!a->alg_string) 3483 goto nomem; 3484 3485 k = strchr(a->alg_string, ':'); 3486 if (k) { 3487 *k = 0; 3488 a->key_string = k + 1; 3489 if (strlen(a->key_string) & 1) 3490 goto inval; 3491 3492 a->key_size = strlen(a->key_string) / 2; 3493 a->key = kmalloc(a->key_size, GFP_KERNEL); 3494 if (!a->key) 3495 goto nomem; 3496 if (hex2bin(a->key, a->key_string, a->key_size)) 3497 goto inval; 3498 } 3499 3500 return 0; 3501 inval: 3502 *error = error_inval; 3503 return -EINVAL; 3504 nomem: 3505 *error = "Out of memory for an argument"; 3506 return -ENOMEM; 3507 } 3508 3509 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3510 char *error_alg, char *error_key) 3511 { 3512 int r; 3513 3514 if (a->alg_string) { 3515 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3516 if (IS_ERR(*hash)) { 3517 *error = error_alg; 3518 r = PTR_ERR(*hash); 3519 *hash = NULL; 3520 return r; 3521 } 3522 3523 if (a->key) { 3524 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3525 if (r) { 3526 *error = error_key; 3527 return r; 3528 } 3529 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3530 *error = error_key; 3531 return -ENOKEY; 3532 } 3533 } 3534 3535 return 0; 3536 } 3537 3538 static int create_journal(struct dm_integrity_c *ic, char **error) 3539 { 3540 int r = 0; 3541 unsigned i; 3542 __u64 journal_pages, journal_desc_size, journal_tree_size; 3543 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3544 struct skcipher_request *req = NULL; 3545 3546 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3547 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3548 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3549 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3550 3551 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3552 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3553 journal_desc_size = journal_pages * sizeof(struct page_list); 3554 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3555 *error = "Journal doesn't fit into memory"; 3556 r = -ENOMEM; 3557 goto bad; 3558 } 3559 ic->journal_pages = journal_pages; 3560 3561 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3562 if (!ic->journal) { 3563 *error = "Could not allocate memory for journal"; 3564 r = -ENOMEM; 3565 goto bad; 3566 } 3567 if (ic->journal_crypt_alg.alg_string) { 3568 unsigned ivsize, blocksize; 3569 struct journal_completion comp; 3570 3571 comp.ic = ic; 3572 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3573 if (IS_ERR(ic->journal_crypt)) { 3574 *error = "Invalid journal cipher"; 3575 r = PTR_ERR(ic->journal_crypt); 3576 ic->journal_crypt = NULL; 3577 goto bad; 3578 } 3579 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3580 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3581 3582 if (ic->journal_crypt_alg.key) { 3583 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3584 ic->journal_crypt_alg.key_size); 3585 if (r) { 3586 *error = "Error setting encryption key"; 3587 goto bad; 3588 } 3589 } 3590 DEBUG_print("cipher %s, block size %u iv size %u\n", 3591 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3592 3593 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3594 if (!ic->journal_io) { 3595 *error = "Could not allocate memory for journal io"; 3596 r = -ENOMEM; 3597 goto bad; 3598 } 3599 3600 if (blocksize == 1) { 3601 struct scatterlist *sg; 3602 3603 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3604 if (!req) { 3605 *error = "Could not allocate crypt request"; 3606 r = -ENOMEM; 3607 goto bad; 3608 } 3609 3610 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3611 if (!crypt_iv) { 3612 *error = "Could not allocate iv"; 3613 r = -ENOMEM; 3614 goto bad; 3615 } 3616 3617 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3618 if (!ic->journal_xor) { 3619 *error = "Could not allocate memory for journal xor"; 3620 r = -ENOMEM; 3621 goto bad; 3622 } 3623 3624 sg = kvmalloc_array(ic->journal_pages + 1, 3625 sizeof(struct scatterlist), 3626 GFP_KERNEL); 3627 if (!sg) { 3628 *error = "Unable to allocate sg list"; 3629 r = -ENOMEM; 3630 goto bad; 3631 } 3632 sg_init_table(sg, ic->journal_pages + 1); 3633 for (i = 0; i < ic->journal_pages; i++) { 3634 char *va = lowmem_page_address(ic->journal_xor[i].page); 3635 clear_page(va); 3636 sg_set_buf(&sg[i], va, PAGE_SIZE); 3637 } 3638 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3639 3640 skcipher_request_set_crypt(req, sg, sg, 3641 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3642 init_completion(&comp.comp); 3643 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3644 if (do_crypt(true, req, &comp)) 3645 wait_for_completion(&comp.comp); 3646 kvfree(sg); 3647 r = dm_integrity_failed(ic); 3648 if (r) { 3649 *error = "Unable to encrypt journal"; 3650 goto bad; 3651 } 3652 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3653 3654 crypto_free_skcipher(ic->journal_crypt); 3655 ic->journal_crypt = NULL; 3656 } else { 3657 unsigned crypt_len = roundup(ivsize, blocksize); 3658 3659 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3660 if (!req) { 3661 *error = "Could not allocate crypt request"; 3662 r = -ENOMEM; 3663 goto bad; 3664 } 3665 3666 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3667 if (!crypt_iv) { 3668 *error = "Could not allocate iv"; 3669 r = -ENOMEM; 3670 goto bad; 3671 } 3672 3673 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3674 if (!crypt_data) { 3675 *error = "Unable to allocate crypt data"; 3676 r = -ENOMEM; 3677 goto bad; 3678 } 3679 3680 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3681 if (!ic->journal_scatterlist) { 3682 *error = "Unable to allocate sg list"; 3683 r = -ENOMEM; 3684 goto bad; 3685 } 3686 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3687 if (!ic->journal_io_scatterlist) { 3688 *error = "Unable to allocate sg list"; 3689 r = -ENOMEM; 3690 goto bad; 3691 } 3692 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3693 sizeof(struct skcipher_request *), 3694 GFP_KERNEL | __GFP_ZERO); 3695 if (!ic->sk_requests) { 3696 *error = "Unable to allocate sk requests"; 3697 r = -ENOMEM; 3698 goto bad; 3699 } 3700 for (i = 0; i < ic->journal_sections; i++) { 3701 struct scatterlist sg; 3702 struct skcipher_request *section_req; 3703 __u32 section_le = cpu_to_le32(i); 3704 3705 memset(crypt_iv, 0x00, ivsize); 3706 memset(crypt_data, 0x00, crypt_len); 3707 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3708 3709 sg_init_one(&sg, crypt_data, crypt_len); 3710 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3711 init_completion(&comp.comp); 3712 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3713 if (do_crypt(true, req, &comp)) 3714 wait_for_completion(&comp.comp); 3715 3716 r = dm_integrity_failed(ic); 3717 if (r) { 3718 *error = "Unable to generate iv"; 3719 goto bad; 3720 } 3721 3722 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3723 if (!section_req) { 3724 *error = "Unable to allocate crypt request"; 3725 r = -ENOMEM; 3726 goto bad; 3727 } 3728 section_req->iv = kmalloc_array(ivsize, 2, 3729 GFP_KERNEL); 3730 if (!section_req->iv) { 3731 skcipher_request_free(section_req); 3732 *error = "Unable to allocate iv"; 3733 r = -ENOMEM; 3734 goto bad; 3735 } 3736 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3737 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3738 ic->sk_requests[i] = section_req; 3739 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3740 } 3741 } 3742 } 3743 3744 for (i = 0; i < N_COMMIT_IDS; i++) { 3745 unsigned j; 3746 retest_commit_id: 3747 for (j = 0; j < i; j++) { 3748 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3749 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3750 goto retest_commit_id; 3751 } 3752 } 3753 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3754 } 3755 3756 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3757 if (journal_tree_size > ULONG_MAX) { 3758 *error = "Journal doesn't fit into memory"; 3759 r = -ENOMEM; 3760 goto bad; 3761 } 3762 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3763 if (!ic->journal_tree) { 3764 *error = "Could not allocate memory for journal tree"; 3765 r = -ENOMEM; 3766 } 3767 bad: 3768 kfree(crypt_data); 3769 kfree(crypt_iv); 3770 skcipher_request_free(req); 3771 3772 return r; 3773 } 3774 3775 /* 3776 * Construct a integrity mapping 3777 * 3778 * Arguments: 3779 * device 3780 * offset from the start of the device 3781 * tag size 3782 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3783 * number of optional arguments 3784 * optional arguments: 3785 * journal_sectors 3786 * interleave_sectors 3787 * buffer_sectors 3788 * journal_watermark 3789 * commit_time 3790 * meta_device 3791 * block_size 3792 * sectors_per_bit 3793 * bitmap_flush_interval 3794 * internal_hash 3795 * journal_crypt 3796 * journal_mac 3797 * recalculate 3798 */ 3799 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3800 { 3801 struct dm_integrity_c *ic; 3802 char dummy; 3803 int r; 3804 unsigned extra_args; 3805 struct dm_arg_set as; 3806 static const struct dm_arg _args[] = { 3807 {0, 16, "Invalid number of feature args"}, 3808 }; 3809 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3810 bool should_write_sb; 3811 __u64 threshold; 3812 unsigned long long start; 3813 __s8 log2_sectors_per_bitmap_bit = -1; 3814 __s8 log2_blocks_per_bitmap_bit; 3815 __u64 bits_in_journal; 3816 __u64 n_bitmap_bits; 3817 3818 #define DIRECT_ARGUMENTS 4 3819 3820 if (argc <= DIRECT_ARGUMENTS) { 3821 ti->error = "Invalid argument count"; 3822 return -EINVAL; 3823 } 3824 3825 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3826 if (!ic) { 3827 ti->error = "Cannot allocate integrity context"; 3828 return -ENOMEM; 3829 } 3830 ti->private = ic; 3831 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3832 ic->ti = ti; 3833 3834 ic->in_progress = RB_ROOT; 3835 INIT_LIST_HEAD(&ic->wait_list); 3836 init_waitqueue_head(&ic->endio_wait); 3837 bio_list_init(&ic->flush_bio_list); 3838 init_waitqueue_head(&ic->copy_to_journal_wait); 3839 init_completion(&ic->crypto_backoff); 3840 atomic64_set(&ic->number_of_mismatches, 0); 3841 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 3842 3843 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3844 if (r) { 3845 ti->error = "Device lookup failed"; 3846 goto bad; 3847 } 3848 3849 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3850 ti->error = "Invalid starting offset"; 3851 r = -EINVAL; 3852 goto bad; 3853 } 3854 ic->start = start; 3855 3856 if (strcmp(argv[2], "-")) { 3857 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3858 ti->error = "Invalid tag size"; 3859 r = -EINVAL; 3860 goto bad; 3861 } 3862 } 3863 3864 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 3865 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 3866 ic->mode = argv[3][0]; 3867 } else { 3868 ti->error = "Invalid mode (expecting J, B, D, R)"; 3869 r = -EINVAL; 3870 goto bad; 3871 } 3872 3873 journal_sectors = 0; 3874 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3875 buffer_sectors = DEFAULT_BUFFER_SECTORS; 3876 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 3877 sync_msec = DEFAULT_SYNC_MSEC; 3878 ic->sectors_per_block = 1; 3879 3880 as.argc = argc - DIRECT_ARGUMENTS; 3881 as.argv = argv + DIRECT_ARGUMENTS; 3882 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 3883 if (r) 3884 goto bad; 3885 3886 while (extra_args--) { 3887 const char *opt_string; 3888 unsigned val; 3889 unsigned long long llval; 3890 opt_string = dm_shift_arg(&as); 3891 if (!opt_string) { 3892 r = -EINVAL; 3893 ti->error = "Not enough feature arguments"; 3894 goto bad; 3895 } 3896 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 3897 journal_sectors = val ? val : 1; 3898 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 3899 interleave_sectors = val; 3900 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 3901 buffer_sectors = val; 3902 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 3903 journal_watermark = val; 3904 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 3905 sync_msec = val; 3906 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 3907 if (ic->meta_dev) { 3908 dm_put_device(ti, ic->meta_dev); 3909 ic->meta_dev = NULL; 3910 } 3911 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 3912 dm_table_get_mode(ti->table), &ic->meta_dev); 3913 if (r) { 3914 ti->error = "Device lookup failed"; 3915 goto bad; 3916 } 3917 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 3918 if (val < 1 << SECTOR_SHIFT || 3919 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 3920 (val & (val -1))) { 3921 r = -EINVAL; 3922 ti->error = "Invalid block_size argument"; 3923 goto bad; 3924 } 3925 ic->sectors_per_block = val >> SECTOR_SHIFT; 3926 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 3927 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 3928 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 3929 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 3930 r = -EINVAL; 3931 ti->error = "Invalid bitmap_flush_interval argument"; 3932 } 3933 ic->bitmap_flush_interval = msecs_to_jiffies(val); 3934 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 3935 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 3936 "Invalid internal_hash argument"); 3937 if (r) 3938 goto bad; 3939 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 3940 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 3941 "Invalid journal_crypt argument"); 3942 if (r) 3943 goto bad; 3944 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 3945 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 3946 "Invalid journal_mac argument"); 3947 if (r) 3948 goto bad; 3949 } else if (!strcmp(opt_string, "recalculate")) { 3950 ic->recalculate_flag = true; 3951 } else if (!strcmp(opt_string, "allow_discards")) { 3952 ic->discard = true; 3953 } else if (!strcmp(opt_string, "fix_padding")) { 3954 ic->fix_padding = true; 3955 } else if (!strcmp(opt_string, "legacy_recalculate")) { 3956 ic->legacy_recalculate = true; 3957 } else { 3958 r = -EINVAL; 3959 ti->error = "Invalid argument"; 3960 goto bad; 3961 } 3962 } 3963 3964 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 3965 if (!ic->meta_dev) 3966 ic->meta_device_sectors = ic->data_device_sectors; 3967 else 3968 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 3969 3970 if (!journal_sectors) { 3971 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 3972 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 3973 } 3974 3975 if (!buffer_sectors) 3976 buffer_sectors = 1; 3977 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 3978 3979 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 3980 "Invalid internal hash", "Error setting internal hash key"); 3981 if (r) 3982 goto bad; 3983 3984 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 3985 "Invalid journal mac", "Error setting journal mac key"); 3986 if (r) 3987 goto bad; 3988 3989 if (!ic->tag_size) { 3990 if (!ic->internal_hash) { 3991 ti->error = "Unknown tag size"; 3992 r = -EINVAL; 3993 goto bad; 3994 } 3995 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 3996 } 3997 if (ic->tag_size > MAX_TAG_SIZE) { 3998 ti->error = "Too big tag size"; 3999 r = -EINVAL; 4000 goto bad; 4001 } 4002 if (!(ic->tag_size & (ic->tag_size - 1))) 4003 ic->log2_tag_size = __ffs(ic->tag_size); 4004 else 4005 ic->log2_tag_size = -1; 4006 4007 if (ic->mode == 'B' && !ic->internal_hash) { 4008 r = -EINVAL; 4009 ti->error = "Bitmap mode can be only used with internal hash"; 4010 goto bad; 4011 } 4012 4013 if (ic->discard && !ic->internal_hash) { 4014 r = -EINVAL; 4015 ti->error = "Discard can be only used with internal hash"; 4016 goto bad; 4017 } 4018 4019 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4020 ic->autocommit_msec = sync_msec; 4021 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4022 4023 ic->io = dm_io_client_create(); 4024 if (IS_ERR(ic->io)) { 4025 r = PTR_ERR(ic->io); 4026 ic->io = NULL; 4027 ti->error = "Cannot allocate dm io"; 4028 goto bad; 4029 } 4030 4031 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4032 if (r) { 4033 ti->error = "Cannot allocate mempool"; 4034 goto bad; 4035 } 4036 4037 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4038 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4039 if (!ic->metadata_wq) { 4040 ti->error = "Cannot allocate workqueue"; 4041 r = -ENOMEM; 4042 goto bad; 4043 } 4044 4045 /* 4046 * If this workqueue were percpu, it would cause bio reordering 4047 * and reduced performance. 4048 */ 4049 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4050 if (!ic->wait_wq) { 4051 ti->error = "Cannot allocate workqueue"; 4052 r = -ENOMEM; 4053 goto bad; 4054 } 4055 4056 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4057 METADATA_WORKQUEUE_MAX_ACTIVE); 4058 if (!ic->offload_wq) { 4059 ti->error = "Cannot allocate workqueue"; 4060 r = -ENOMEM; 4061 goto bad; 4062 } 4063 4064 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4065 if (!ic->commit_wq) { 4066 ti->error = "Cannot allocate workqueue"; 4067 r = -ENOMEM; 4068 goto bad; 4069 } 4070 INIT_WORK(&ic->commit_work, integrity_commit); 4071 4072 if (ic->mode == 'J' || ic->mode == 'B') { 4073 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4074 if (!ic->writer_wq) { 4075 ti->error = "Cannot allocate workqueue"; 4076 r = -ENOMEM; 4077 goto bad; 4078 } 4079 INIT_WORK(&ic->writer_work, integrity_writer); 4080 } 4081 4082 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4083 if (!ic->sb) { 4084 r = -ENOMEM; 4085 ti->error = "Cannot allocate superblock area"; 4086 goto bad; 4087 } 4088 4089 r = sync_rw_sb(ic, REQ_OP_READ, 0); 4090 if (r) { 4091 ti->error = "Error reading superblock"; 4092 goto bad; 4093 } 4094 should_write_sb = false; 4095 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4096 if (ic->mode != 'R') { 4097 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4098 r = -EINVAL; 4099 ti->error = "The device is not initialized"; 4100 goto bad; 4101 } 4102 } 4103 4104 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4105 if (r) { 4106 ti->error = "Could not initialize superblock"; 4107 goto bad; 4108 } 4109 if (ic->mode != 'R') 4110 should_write_sb = true; 4111 } 4112 4113 if (!ic->sb->version || ic->sb->version > SB_VERSION_4) { 4114 r = -EINVAL; 4115 ti->error = "Unknown version"; 4116 goto bad; 4117 } 4118 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4119 r = -EINVAL; 4120 ti->error = "Tag size doesn't match the information in superblock"; 4121 goto bad; 4122 } 4123 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4124 r = -EINVAL; 4125 ti->error = "Block size doesn't match the information in superblock"; 4126 goto bad; 4127 } 4128 if (!le32_to_cpu(ic->sb->journal_sections)) { 4129 r = -EINVAL; 4130 ti->error = "Corrupted superblock, journal_sections is 0"; 4131 goto bad; 4132 } 4133 /* make sure that ti->max_io_len doesn't overflow */ 4134 if (!ic->meta_dev) { 4135 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4136 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4137 r = -EINVAL; 4138 ti->error = "Invalid interleave_sectors in the superblock"; 4139 goto bad; 4140 } 4141 } else { 4142 if (ic->sb->log2_interleave_sectors) { 4143 r = -EINVAL; 4144 ti->error = "Invalid interleave_sectors in the superblock"; 4145 goto bad; 4146 } 4147 } 4148 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4149 r = -EINVAL; 4150 ti->error = "Journal mac mismatch"; 4151 goto bad; 4152 } 4153 4154 get_provided_data_sectors(ic); 4155 if (!ic->provided_data_sectors) { 4156 r = -EINVAL; 4157 ti->error = "The device is too small"; 4158 goto bad; 4159 } 4160 4161 try_smaller_buffer: 4162 r = calculate_device_limits(ic); 4163 if (r) { 4164 if (ic->meta_dev) { 4165 if (ic->log2_buffer_sectors > 3) { 4166 ic->log2_buffer_sectors--; 4167 goto try_smaller_buffer; 4168 } 4169 } 4170 ti->error = "The device is too small"; 4171 goto bad; 4172 } 4173 4174 if (log2_sectors_per_bitmap_bit < 0) 4175 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4176 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4177 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4178 4179 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4180 if (bits_in_journal > UINT_MAX) 4181 bits_in_journal = UINT_MAX; 4182 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4183 log2_sectors_per_bitmap_bit++; 4184 4185 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4186 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4187 if (should_write_sb) { 4188 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4189 } 4190 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4191 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4192 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4193 4194 if (!ic->meta_dev) 4195 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4196 4197 if (ti->len > ic->provided_data_sectors) { 4198 r = -EINVAL; 4199 ti->error = "Not enough provided sectors for requested mapping size"; 4200 goto bad; 4201 } 4202 4203 4204 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4205 threshold += 50; 4206 do_div(threshold, 100); 4207 ic->free_sectors_threshold = threshold; 4208 4209 DEBUG_print("initialized:\n"); 4210 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4211 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4212 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4213 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4214 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4215 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 4216 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4217 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4218 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT); 4219 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4220 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4221 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4222 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4223 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4224 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4225 4226 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4227 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4228 ic->sb->recalc_sector = cpu_to_le64(0); 4229 } 4230 4231 if (ic->internal_hash) { 4232 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4233 if (!ic->recalc_wq ) { 4234 ti->error = "Cannot allocate workqueue"; 4235 r = -ENOMEM; 4236 goto bad; 4237 } 4238 INIT_WORK(&ic->recalc_work, integrity_recalc); 4239 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 4240 if (!ic->recalc_buffer) { 4241 ti->error = "Cannot allocate buffer for recalculating"; 4242 r = -ENOMEM; 4243 goto bad; 4244 } 4245 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 4246 ic->tag_size, GFP_KERNEL); 4247 if (!ic->recalc_tags) { 4248 ti->error = "Cannot allocate tags for recalculating"; 4249 r = -ENOMEM; 4250 goto bad; 4251 } 4252 } else { 4253 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 4254 ti->error = "Recalculate can only be specified with internal_hash"; 4255 r = -EINVAL; 4256 goto bad; 4257 } 4258 } 4259 4260 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 4261 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 4262 dm_integrity_disable_recalculate(ic)) { 4263 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 4264 r = -EOPNOTSUPP; 4265 goto bad; 4266 } 4267 4268 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4269 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 4270 if (IS_ERR(ic->bufio)) { 4271 r = PTR_ERR(ic->bufio); 4272 ti->error = "Cannot initialize dm-bufio"; 4273 ic->bufio = NULL; 4274 goto bad; 4275 } 4276 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4277 4278 if (ic->mode != 'R') { 4279 r = create_journal(ic, &ti->error); 4280 if (r) 4281 goto bad; 4282 4283 } 4284 4285 if (ic->mode == 'B') { 4286 unsigned i; 4287 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4288 4289 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4290 if (!ic->recalc_bitmap) { 4291 r = -ENOMEM; 4292 goto bad; 4293 } 4294 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4295 if (!ic->may_write_bitmap) { 4296 r = -ENOMEM; 4297 goto bad; 4298 } 4299 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4300 if (!ic->bbs) { 4301 r = -ENOMEM; 4302 goto bad; 4303 } 4304 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4305 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4306 struct bitmap_block_status *bbs = &ic->bbs[i]; 4307 unsigned sector, pl_index, pl_offset; 4308 4309 INIT_WORK(&bbs->work, bitmap_block_work); 4310 bbs->ic = ic; 4311 bbs->idx = i; 4312 bio_list_init(&bbs->bio_queue); 4313 spin_lock_init(&bbs->bio_queue_lock); 4314 4315 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4316 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4317 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4318 4319 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4320 } 4321 } 4322 4323 if (should_write_sb) { 4324 int r; 4325 4326 init_journal(ic, 0, ic->journal_sections, 0); 4327 r = dm_integrity_failed(ic); 4328 if (unlikely(r)) { 4329 ti->error = "Error initializing journal"; 4330 goto bad; 4331 } 4332 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4333 if (r) { 4334 ti->error = "Error initializing superblock"; 4335 goto bad; 4336 } 4337 ic->just_formatted = true; 4338 } 4339 4340 if (!ic->meta_dev) { 4341 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4342 if (r) 4343 goto bad; 4344 } 4345 if (ic->mode == 'B') { 4346 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4347 if (!max_io_len) 4348 max_io_len = 1U << 31; 4349 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4350 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4351 r = dm_set_target_max_io_len(ti, max_io_len); 4352 if (r) 4353 goto bad; 4354 } 4355 } 4356 4357 if (!ic->internal_hash) 4358 dm_integrity_set(ti, ic); 4359 4360 ti->num_flush_bios = 1; 4361 ti->flush_supported = true; 4362 if (ic->discard) 4363 ti->num_discard_bios = 1; 4364 4365 return 0; 4366 4367 bad: 4368 dm_integrity_dtr(ti); 4369 return r; 4370 } 4371 4372 static void dm_integrity_dtr(struct dm_target *ti) 4373 { 4374 struct dm_integrity_c *ic = ti->private; 4375 4376 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4377 BUG_ON(!list_empty(&ic->wait_list)); 4378 4379 if (ic->metadata_wq) 4380 destroy_workqueue(ic->metadata_wq); 4381 if (ic->wait_wq) 4382 destroy_workqueue(ic->wait_wq); 4383 if (ic->offload_wq) 4384 destroy_workqueue(ic->offload_wq); 4385 if (ic->commit_wq) 4386 destroy_workqueue(ic->commit_wq); 4387 if (ic->writer_wq) 4388 destroy_workqueue(ic->writer_wq); 4389 if (ic->recalc_wq) 4390 destroy_workqueue(ic->recalc_wq); 4391 vfree(ic->recalc_buffer); 4392 kvfree(ic->recalc_tags); 4393 kvfree(ic->bbs); 4394 if (ic->bufio) 4395 dm_bufio_client_destroy(ic->bufio); 4396 mempool_exit(&ic->journal_io_mempool); 4397 if (ic->io) 4398 dm_io_client_destroy(ic->io); 4399 if (ic->dev) 4400 dm_put_device(ti, ic->dev); 4401 if (ic->meta_dev) 4402 dm_put_device(ti, ic->meta_dev); 4403 dm_integrity_free_page_list(ic->journal); 4404 dm_integrity_free_page_list(ic->journal_io); 4405 dm_integrity_free_page_list(ic->journal_xor); 4406 dm_integrity_free_page_list(ic->recalc_bitmap); 4407 dm_integrity_free_page_list(ic->may_write_bitmap); 4408 if (ic->journal_scatterlist) 4409 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4410 if (ic->journal_io_scatterlist) 4411 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4412 if (ic->sk_requests) { 4413 unsigned i; 4414 4415 for (i = 0; i < ic->journal_sections; i++) { 4416 struct skcipher_request *req = ic->sk_requests[i]; 4417 if (req) { 4418 kfree_sensitive(req->iv); 4419 skcipher_request_free(req); 4420 } 4421 } 4422 kvfree(ic->sk_requests); 4423 } 4424 kvfree(ic->journal_tree); 4425 if (ic->sb) 4426 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4427 4428 if (ic->internal_hash) 4429 crypto_free_shash(ic->internal_hash); 4430 free_alg(&ic->internal_hash_alg); 4431 4432 if (ic->journal_crypt) 4433 crypto_free_skcipher(ic->journal_crypt); 4434 free_alg(&ic->journal_crypt_alg); 4435 4436 if (ic->journal_mac) 4437 crypto_free_shash(ic->journal_mac); 4438 free_alg(&ic->journal_mac_alg); 4439 4440 kfree(ic); 4441 } 4442 4443 static struct target_type integrity_target = { 4444 .name = "integrity", 4445 .version = {1, 6, 0}, 4446 .module = THIS_MODULE, 4447 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4448 .ctr = dm_integrity_ctr, 4449 .dtr = dm_integrity_dtr, 4450 .map = dm_integrity_map, 4451 .postsuspend = dm_integrity_postsuspend, 4452 .resume = dm_integrity_resume, 4453 .status = dm_integrity_status, 4454 .iterate_devices = dm_integrity_iterate_devices, 4455 .io_hints = dm_integrity_io_hints, 4456 }; 4457 4458 static int __init dm_integrity_init(void) 4459 { 4460 int r; 4461 4462 journal_io_cache = kmem_cache_create("integrity_journal_io", 4463 sizeof(struct journal_io), 0, 0, NULL); 4464 if (!journal_io_cache) { 4465 DMERR("can't allocate journal io cache"); 4466 return -ENOMEM; 4467 } 4468 4469 r = dm_register_target(&integrity_target); 4470 4471 if (r < 0) 4472 DMERR("register failed %d", r); 4473 4474 return r; 4475 } 4476 4477 static void __exit dm_integrity_exit(void) 4478 { 4479 dm_unregister_target(&integrity_target); 4480 kmem_cache_destroy(journal_io_cache); 4481 } 4482 4483 module_init(dm_integrity_init); 4484 module_exit(dm_integrity_exit); 4485 4486 MODULE_AUTHOR("Milan Broz"); 4487 MODULE_AUTHOR("Mikulas Patocka"); 4488 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4489 MODULE_LICENSE("GPL"); 4490