1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/compiler.h> 10 #include <linux/module.h> 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/vmalloc.h> 14 #include <linux/sort.h> 15 #include <linux/rbtree.h> 16 #include <linux/delay.h> 17 #include <linux/random.h> 18 #include <crypto/hash.h> 19 #include <crypto/skcipher.h> 20 #include <linux/async_tx.h> 21 #include <linux/dm-bufio.h> 22 23 #define DM_MSG_PREFIX "integrity" 24 25 #define DEFAULT_INTERLEAVE_SECTORS 32768 26 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 27 #define DEFAULT_BUFFER_SECTORS 128 28 #define DEFAULT_JOURNAL_WATERMARK 50 29 #define DEFAULT_SYNC_MSEC 10000 30 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 31 #define MIN_LOG2_INTERLEAVE_SECTORS 3 32 #define MAX_LOG2_INTERLEAVE_SECTORS 31 33 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 34 #define RECALC_SECTORS 8192 35 #define RECALC_WRITE_SUPER 16 36 37 /* 38 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 39 * so it should not be enabled in the official kernel 40 */ 41 //#define DEBUG_PRINT 42 //#define INTERNAL_VERIFY 43 44 /* 45 * On disk structures 46 */ 47 48 #define SB_MAGIC "integrt" 49 #define SB_VERSION_1 1 50 #define SB_VERSION_2 2 51 #define SB_SECTORS 8 52 #define MAX_SECTORS_PER_BLOCK 8 53 54 struct superblock { 55 __u8 magic[8]; 56 __u8 version; 57 __u8 log2_interleave_sectors; 58 __u16 integrity_tag_size; 59 __u32 journal_sections; 60 __u64 provided_data_sectors; /* userspace uses this value */ 61 __u32 flags; 62 __u8 log2_sectors_per_block; 63 __u8 pad[3]; 64 __u64 recalc_sector; 65 }; 66 67 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 68 #define SB_FLAG_RECALCULATING 0x2 69 70 #define JOURNAL_ENTRY_ROUNDUP 8 71 72 typedef __u64 commit_id_t; 73 #define JOURNAL_MAC_PER_SECTOR 8 74 75 struct journal_entry { 76 union { 77 struct { 78 __u32 sector_lo; 79 __u32 sector_hi; 80 } s; 81 __u64 sector; 82 } u; 83 commit_id_t last_bytes[0]; 84 /* __u8 tag[0]; */ 85 }; 86 87 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 88 89 #if BITS_PER_LONG == 64 90 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 91 #else 92 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 93 #endif 94 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 95 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 96 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 97 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 98 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 99 100 #define JOURNAL_BLOCK_SECTORS 8 101 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 102 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 103 104 struct journal_sector { 105 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 106 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 107 commit_id_t commit_id; 108 }; 109 110 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 111 112 #define METADATA_PADDING_SECTORS 8 113 114 #define N_COMMIT_IDS 4 115 116 static unsigned char prev_commit_seq(unsigned char seq) 117 { 118 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 119 } 120 121 static unsigned char next_commit_seq(unsigned char seq) 122 { 123 return (seq + 1) % N_COMMIT_IDS; 124 } 125 126 /* 127 * In-memory structures 128 */ 129 130 struct journal_node { 131 struct rb_node node; 132 sector_t sector; 133 }; 134 135 struct alg_spec { 136 char *alg_string; 137 char *key_string; 138 __u8 *key; 139 unsigned key_size; 140 }; 141 142 struct dm_integrity_c { 143 struct dm_dev *dev; 144 struct dm_dev *meta_dev; 145 unsigned tag_size; 146 __s8 log2_tag_size; 147 sector_t start; 148 mempool_t journal_io_mempool; 149 struct dm_io_client *io; 150 struct dm_bufio_client *bufio; 151 struct workqueue_struct *metadata_wq; 152 struct superblock *sb; 153 unsigned journal_pages; 154 struct page_list *journal; 155 struct page_list *journal_io; 156 struct page_list *journal_xor; 157 158 struct crypto_skcipher *journal_crypt; 159 struct scatterlist **journal_scatterlist; 160 struct scatterlist **journal_io_scatterlist; 161 struct skcipher_request **sk_requests; 162 163 struct crypto_shash *journal_mac; 164 165 struct journal_node *journal_tree; 166 struct rb_root journal_tree_root; 167 168 sector_t provided_data_sectors; 169 170 unsigned short journal_entry_size; 171 unsigned char journal_entries_per_sector; 172 unsigned char journal_section_entries; 173 unsigned short journal_section_sectors; 174 unsigned journal_sections; 175 unsigned journal_entries; 176 sector_t data_device_sectors; 177 sector_t meta_device_sectors; 178 unsigned initial_sectors; 179 unsigned metadata_run; 180 __s8 log2_metadata_run; 181 __u8 log2_buffer_sectors; 182 __u8 sectors_per_block; 183 184 unsigned char mode; 185 int suspending; 186 187 int failed; 188 189 struct crypto_shash *internal_hash; 190 191 /* these variables are locked with endio_wait.lock */ 192 struct rb_root in_progress; 193 struct list_head wait_list; 194 wait_queue_head_t endio_wait; 195 struct workqueue_struct *wait_wq; 196 197 unsigned char commit_seq; 198 commit_id_t commit_ids[N_COMMIT_IDS]; 199 200 unsigned committed_section; 201 unsigned n_committed_sections; 202 203 unsigned uncommitted_section; 204 unsigned n_uncommitted_sections; 205 206 unsigned free_section; 207 unsigned char free_section_entry; 208 unsigned free_sectors; 209 210 unsigned free_sectors_threshold; 211 212 struct workqueue_struct *commit_wq; 213 struct work_struct commit_work; 214 215 struct workqueue_struct *writer_wq; 216 struct work_struct writer_work; 217 218 struct workqueue_struct *recalc_wq; 219 struct work_struct recalc_work; 220 u8 *recalc_buffer; 221 u8 *recalc_tags; 222 223 struct bio_list flush_bio_list; 224 225 unsigned long autocommit_jiffies; 226 struct timer_list autocommit_timer; 227 unsigned autocommit_msec; 228 229 wait_queue_head_t copy_to_journal_wait; 230 231 struct completion crypto_backoff; 232 233 bool journal_uptodate; 234 bool just_formatted; 235 236 struct alg_spec internal_hash_alg; 237 struct alg_spec journal_crypt_alg; 238 struct alg_spec journal_mac_alg; 239 240 atomic64_t number_of_mismatches; 241 }; 242 243 struct dm_integrity_range { 244 sector_t logical_sector; 245 unsigned n_sectors; 246 bool waiting; 247 union { 248 struct rb_node node; 249 struct { 250 struct task_struct *task; 251 struct list_head wait_entry; 252 }; 253 }; 254 }; 255 256 struct dm_integrity_io { 257 struct work_struct work; 258 259 struct dm_integrity_c *ic; 260 bool write; 261 bool fua; 262 263 struct dm_integrity_range range; 264 265 sector_t metadata_block; 266 unsigned metadata_offset; 267 268 atomic_t in_flight; 269 blk_status_t bi_status; 270 271 struct completion *completion; 272 273 struct gendisk *orig_bi_disk; 274 u8 orig_bi_partno; 275 bio_end_io_t *orig_bi_end_io; 276 struct bio_integrity_payload *orig_bi_integrity; 277 struct bvec_iter orig_bi_iter; 278 }; 279 280 struct journal_completion { 281 struct dm_integrity_c *ic; 282 atomic_t in_flight; 283 struct completion comp; 284 }; 285 286 struct journal_io { 287 struct dm_integrity_range range; 288 struct journal_completion *comp; 289 }; 290 291 static struct kmem_cache *journal_io_cache; 292 293 #define JOURNAL_IO_MEMPOOL 32 294 295 #ifdef DEBUG_PRINT 296 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 297 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 298 { 299 va_list args; 300 va_start(args, msg); 301 vprintk(msg, args); 302 va_end(args); 303 if (len) 304 pr_cont(":"); 305 while (len) { 306 pr_cont(" %02x", *bytes); 307 bytes++; 308 len--; 309 } 310 pr_cont("\n"); 311 } 312 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 313 #else 314 #define DEBUG_print(x, ...) do { } while (0) 315 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 316 #endif 317 318 /* 319 * DM Integrity profile, protection is performed layer above (dm-crypt) 320 */ 321 static const struct blk_integrity_profile dm_integrity_profile = { 322 .name = "DM-DIF-EXT-TAG", 323 .generate_fn = NULL, 324 .verify_fn = NULL, 325 }; 326 327 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 328 static void integrity_bio_wait(struct work_struct *w); 329 static void dm_integrity_dtr(struct dm_target *ti); 330 331 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 332 { 333 if (err == -EILSEQ) 334 atomic64_inc(&ic->number_of_mismatches); 335 if (!cmpxchg(&ic->failed, 0, err)) 336 DMERR("Error on %s: %d", msg, err); 337 } 338 339 static int dm_integrity_failed(struct dm_integrity_c *ic) 340 { 341 return READ_ONCE(ic->failed); 342 } 343 344 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 345 unsigned j, unsigned char seq) 346 { 347 /* 348 * Xor the number with section and sector, so that if a piece of 349 * journal is written at wrong place, it is detected. 350 */ 351 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 352 } 353 354 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 355 sector_t *area, sector_t *offset) 356 { 357 if (!ic->meta_dev) { 358 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 359 *area = data_sector >> log2_interleave_sectors; 360 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 361 } else { 362 *area = 0; 363 *offset = data_sector; 364 } 365 } 366 367 #define sector_to_block(ic, n) \ 368 do { \ 369 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 370 (n) >>= (ic)->sb->log2_sectors_per_block; \ 371 } while (0) 372 373 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 374 sector_t offset, unsigned *metadata_offset) 375 { 376 __u64 ms; 377 unsigned mo; 378 379 ms = area << ic->sb->log2_interleave_sectors; 380 if (likely(ic->log2_metadata_run >= 0)) 381 ms += area << ic->log2_metadata_run; 382 else 383 ms += area * ic->metadata_run; 384 ms >>= ic->log2_buffer_sectors; 385 386 sector_to_block(ic, offset); 387 388 if (likely(ic->log2_tag_size >= 0)) { 389 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 390 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 391 } else { 392 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 393 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 394 } 395 *metadata_offset = mo; 396 return ms; 397 } 398 399 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 400 { 401 sector_t result; 402 403 if (ic->meta_dev) 404 return offset; 405 406 result = area << ic->sb->log2_interleave_sectors; 407 if (likely(ic->log2_metadata_run >= 0)) 408 result += (area + 1) << ic->log2_metadata_run; 409 else 410 result += (area + 1) * ic->metadata_run; 411 412 result += (sector_t)ic->initial_sectors + offset; 413 result += ic->start; 414 415 return result; 416 } 417 418 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 419 { 420 if (unlikely(*sec_ptr >= ic->journal_sections)) 421 *sec_ptr -= ic->journal_sections; 422 } 423 424 static void sb_set_version(struct dm_integrity_c *ic) 425 { 426 if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 427 ic->sb->version = SB_VERSION_2; 428 else 429 ic->sb->version = SB_VERSION_1; 430 } 431 432 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 433 { 434 struct dm_io_request io_req; 435 struct dm_io_region io_loc; 436 437 io_req.bi_op = op; 438 io_req.bi_op_flags = op_flags; 439 io_req.mem.type = DM_IO_KMEM; 440 io_req.mem.ptr.addr = ic->sb; 441 io_req.notify.fn = NULL; 442 io_req.client = ic->io; 443 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 444 io_loc.sector = ic->start; 445 io_loc.count = SB_SECTORS; 446 447 return dm_io(&io_req, 1, &io_loc, NULL); 448 } 449 450 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 451 bool e, const char *function) 452 { 453 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 454 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 455 456 if (unlikely(section >= ic->journal_sections) || 457 unlikely(offset >= limit)) { 458 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n", 459 function, section, offset, ic->journal_sections, limit); 460 BUG(); 461 } 462 #endif 463 } 464 465 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 466 unsigned *pl_index, unsigned *pl_offset) 467 { 468 unsigned sector; 469 470 access_journal_check(ic, section, offset, false, "page_list_location"); 471 472 sector = section * ic->journal_section_sectors + offset; 473 474 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 475 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 476 } 477 478 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 479 unsigned section, unsigned offset, unsigned *n_sectors) 480 { 481 unsigned pl_index, pl_offset; 482 char *va; 483 484 page_list_location(ic, section, offset, &pl_index, &pl_offset); 485 486 if (n_sectors) 487 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 488 489 va = lowmem_page_address(pl[pl_index].page); 490 491 return (struct journal_sector *)(va + pl_offset); 492 } 493 494 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 495 { 496 return access_page_list(ic, ic->journal, section, offset, NULL); 497 } 498 499 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 500 { 501 unsigned rel_sector, offset; 502 struct journal_sector *js; 503 504 access_journal_check(ic, section, n, true, "access_journal_entry"); 505 506 rel_sector = n % JOURNAL_BLOCK_SECTORS; 507 offset = n / JOURNAL_BLOCK_SECTORS; 508 509 js = access_journal(ic, section, rel_sector); 510 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 511 } 512 513 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 514 { 515 n <<= ic->sb->log2_sectors_per_block; 516 517 n += JOURNAL_BLOCK_SECTORS; 518 519 access_journal_check(ic, section, n, false, "access_journal_data"); 520 521 return access_journal(ic, section, n); 522 } 523 524 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 525 { 526 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 527 int r; 528 unsigned j, size; 529 530 desc->tfm = ic->journal_mac; 531 532 r = crypto_shash_init(desc); 533 if (unlikely(r)) { 534 dm_integrity_io_error(ic, "crypto_shash_init", r); 535 goto err; 536 } 537 538 for (j = 0; j < ic->journal_section_entries; j++) { 539 struct journal_entry *je = access_journal_entry(ic, section, j); 540 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 541 if (unlikely(r)) { 542 dm_integrity_io_error(ic, "crypto_shash_update", r); 543 goto err; 544 } 545 } 546 547 size = crypto_shash_digestsize(ic->journal_mac); 548 549 if (likely(size <= JOURNAL_MAC_SIZE)) { 550 r = crypto_shash_final(desc, result); 551 if (unlikely(r)) { 552 dm_integrity_io_error(ic, "crypto_shash_final", r); 553 goto err; 554 } 555 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 556 } else { 557 __u8 digest[HASH_MAX_DIGESTSIZE]; 558 559 if (WARN_ON(size > sizeof(digest))) { 560 dm_integrity_io_error(ic, "digest_size", -EINVAL); 561 goto err; 562 } 563 r = crypto_shash_final(desc, digest); 564 if (unlikely(r)) { 565 dm_integrity_io_error(ic, "crypto_shash_final", r); 566 goto err; 567 } 568 memcpy(result, digest, JOURNAL_MAC_SIZE); 569 } 570 571 return; 572 err: 573 memset(result, 0, JOURNAL_MAC_SIZE); 574 } 575 576 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 577 { 578 __u8 result[JOURNAL_MAC_SIZE]; 579 unsigned j; 580 581 if (!ic->journal_mac) 582 return; 583 584 section_mac(ic, section, result); 585 586 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 587 struct journal_sector *js = access_journal(ic, section, j); 588 589 if (likely(wr)) 590 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 591 else { 592 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 593 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 594 } 595 } 596 } 597 598 static void complete_journal_op(void *context) 599 { 600 struct journal_completion *comp = context; 601 BUG_ON(!atomic_read(&comp->in_flight)); 602 if (likely(atomic_dec_and_test(&comp->in_flight))) 603 complete(&comp->comp); 604 } 605 606 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 607 unsigned n_sections, struct journal_completion *comp) 608 { 609 struct async_submit_ctl submit; 610 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 611 unsigned pl_index, pl_offset, section_index; 612 struct page_list *source_pl, *target_pl; 613 614 if (likely(encrypt)) { 615 source_pl = ic->journal; 616 target_pl = ic->journal_io; 617 } else { 618 source_pl = ic->journal_io; 619 target_pl = ic->journal; 620 } 621 622 page_list_location(ic, section, 0, &pl_index, &pl_offset); 623 624 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 625 626 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 627 628 section_index = pl_index; 629 630 do { 631 size_t this_step; 632 struct page *src_pages[2]; 633 struct page *dst_page; 634 635 while (unlikely(pl_index == section_index)) { 636 unsigned dummy; 637 if (likely(encrypt)) 638 rw_section_mac(ic, section, true); 639 section++; 640 n_sections--; 641 if (!n_sections) 642 break; 643 page_list_location(ic, section, 0, §ion_index, &dummy); 644 } 645 646 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 647 dst_page = target_pl[pl_index].page; 648 src_pages[0] = source_pl[pl_index].page; 649 src_pages[1] = ic->journal_xor[pl_index].page; 650 651 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 652 653 pl_index++; 654 pl_offset = 0; 655 n_bytes -= this_step; 656 } while (n_bytes); 657 658 BUG_ON(n_sections); 659 660 async_tx_issue_pending_all(); 661 } 662 663 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 664 { 665 struct journal_completion *comp = req->data; 666 if (unlikely(err)) { 667 if (likely(err == -EINPROGRESS)) { 668 complete(&comp->ic->crypto_backoff); 669 return; 670 } 671 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 672 } 673 complete_journal_op(comp); 674 } 675 676 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 677 { 678 int r; 679 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 680 complete_journal_encrypt, comp); 681 if (likely(encrypt)) 682 r = crypto_skcipher_encrypt(req); 683 else 684 r = crypto_skcipher_decrypt(req); 685 if (likely(!r)) 686 return false; 687 if (likely(r == -EINPROGRESS)) 688 return true; 689 if (likely(r == -EBUSY)) { 690 wait_for_completion(&comp->ic->crypto_backoff); 691 reinit_completion(&comp->ic->crypto_backoff); 692 return true; 693 } 694 dm_integrity_io_error(comp->ic, "encrypt", r); 695 return false; 696 } 697 698 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 699 unsigned n_sections, struct journal_completion *comp) 700 { 701 struct scatterlist **source_sg; 702 struct scatterlist **target_sg; 703 704 atomic_add(2, &comp->in_flight); 705 706 if (likely(encrypt)) { 707 source_sg = ic->journal_scatterlist; 708 target_sg = ic->journal_io_scatterlist; 709 } else { 710 source_sg = ic->journal_io_scatterlist; 711 target_sg = ic->journal_scatterlist; 712 } 713 714 do { 715 struct skcipher_request *req; 716 unsigned ivsize; 717 char *iv; 718 719 if (likely(encrypt)) 720 rw_section_mac(ic, section, true); 721 722 req = ic->sk_requests[section]; 723 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 724 iv = req->iv; 725 726 memcpy(iv, iv + ivsize, ivsize); 727 728 req->src = source_sg[section]; 729 req->dst = target_sg[section]; 730 731 if (unlikely(do_crypt(encrypt, req, comp))) 732 atomic_inc(&comp->in_flight); 733 734 section++; 735 n_sections--; 736 } while (n_sections); 737 738 atomic_dec(&comp->in_flight); 739 complete_journal_op(comp); 740 } 741 742 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 743 unsigned n_sections, struct journal_completion *comp) 744 { 745 if (ic->journal_xor) 746 return xor_journal(ic, encrypt, section, n_sections, comp); 747 else 748 return crypt_journal(ic, encrypt, section, n_sections, comp); 749 } 750 751 static void complete_journal_io(unsigned long error, void *context) 752 { 753 struct journal_completion *comp = context; 754 if (unlikely(error != 0)) 755 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 756 complete_journal_op(comp); 757 } 758 759 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 760 unsigned n_sections, struct journal_completion *comp) 761 { 762 struct dm_io_request io_req; 763 struct dm_io_region io_loc; 764 unsigned sector, n_sectors, pl_index, pl_offset; 765 int r; 766 767 if (unlikely(dm_integrity_failed(ic))) { 768 if (comp) 769 complete_journal_io(-1UL, comp); 770 return; 771 } 772 773 sector = section * ic->journal_section_sectors; 774 n_sectors = n_sections * ic->journal_section_sectors; 775 776 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 777 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 778 779 io_req.bi_op = op; 780 io_req.bi_op_flags = op_flags; 781 io_req.mem.type = DM_IO_PAGE_LIST; 782 if (ic->journal_io) 783 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 784 else 785 io_req.mem.ptr.pl = &ic->journal[pl_index]; 786 io_req.mem.offset = pl_offset; 787 if (likely(comp != NULL)) { 788 io_req.notify.fn = complete_journal_io; 789 io_req.notify.context = comp; 790 } else { 791 io_req.notify.fn = NULL; 792 } 793 io_req.client = ic->io; 794 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 795 io_loc.sector = ic->start + SB_SECTORS + sector; 796 io_loc.count = n_sectors; 797 798 r = dm_io(&io_req, 1, &io_loc, NULL); 799 if (unlikely(r)) { 800 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 801 if (comp) { 802 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 803 complete_journal_io(-1UL, comp); 804 } 805 } 806 } 807 808 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 809 { 810 struct journal_completion io_comp; 811 struct journal_completion crypt_comp_1; 812 struct journal_completion crypt_comp_2; 813 unsigned i; 814 815 io_comp.ic = ic; 816 init_completion(&io_comp.comp); 817 818 if (commit_start + commit_sections <= ic->journal_sections) { 819 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 820 if (ic->journal_io) { 821 crypt_comp_1.ic = ic; 822 init_completion(&crypt_comp_1.comp); 823 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 824 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 825 wait_for_completion_io(&crypt_comp_1.comp); 826 } else { 827 for (i = 0; i < commit_sections; i++) 828 rw_section_mac(ic, commit_start + i, true); 829 } 830 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 831 commit_sections, &io_comp); 832 } else { 833 unsigned to_end; 834 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 835 to_end = ic->journal_sections - commit_start; 836 if (ic->journal_io) { 837 crypt_comp_1.ic = ic; 838 init_completion(&crypt_comp_1.comp); 839 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 840 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 841 if (try_wait_for_completion(&crypt_comp_1.comp)) { 842 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 843 reinit_completion(&crypt_comp_1.comp); 844 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 845 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 846 wait_for_completion_io(&crypt_comp_1.comp); 847 } else { 848 crypt_comp_2.ic = ic; 849 init_completion(&crypt_comp_2.comp); 850 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 851 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 852 wait_for_completion_io(&crypt_comp_1.comp); 853 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 854 wait_for_completion_io(&crypt_comp_2.comp); 855 } 856 } else { 857 for (i = 0; i < to_end; i++) 858 rw_section_mac(ic, commit_start + i, true); 859 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 860 for (i = 0; i < commit_sections - to_end; i++) 861 rw_section_mac(ic, i, true); 862 } 863 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 864 } 865 866 wait_for_completion_io(&io_comp.comp); 867 } 868 869 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 870 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 871 { 872 struct dm_io_request io_req; 873 struct dm_io_region io_loc; 874 int r; 875 unsigned sector, pl_index, pl_offset; 876 877 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 878 879 if (unlikely(dm_integrity_failed(ic))) { 880 fn(-1UL, data); 881 return; 882 } 883 884 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 885 886 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 887 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 888 889 io_req.bi_op = REQ_OP_WRITE; 890 io_req.bi_op_flags = 0; 891 io_req.mem.type = DM_IO_PAGE_LIST; 892 io_req.mem.ptr.pl = &ic->journal[pl_index]; 893 io_req.mem.offset = pl_offset; 894 io_req.notify.fn = fn; 895 io_req.notify.context = data; 896 io_req.client = ic->io; 897 io_loc.bdev = ic->dev->bdev; 898 io_loc.sector = target; 899 io_loc.count = n_sectors; 900 901 r = dm_io(&io_req, 1, &io_loc, NULL); 902 if (unlikely(r)) { 903 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 904 fn(-1UL, data); 905 } 906 } 907 908 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 909 { 910 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 911 range1->logical_sector + range1->n_sectors > range2->logical_sector; 912 } 913 914 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 915 { 916 struct rb_node **n = &ic->in_progress.rb_node; 917 struct rb_node *parent; 918 919 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 920 921 if (likely(check_waiting)) { 922 struct dm_integrity_range *range; 923 list_for_each_entry(range, &ic->wait_list, wait_entry) { 924 if (unlikely(ranges_overlap(range, new_range))) 925 return false; 926 } 927 } 928 929 parent = NULL; 930 931 while (*n) { 932 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 933 934 parent = *n; 935 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 936 n = &range->node.rb_left; 937 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 938 n = &range->node.rb_right; 939 } else { 940 return false; 941 } 942 } 943 944 rb_link_node(&new_range->node, parent, n); 945 rb_insert_color(&new_range->node, &ic->in_progress); 946 947 return true; 948 } 949 950 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 951 { 952 rb_erase(&range->node, &ic->in_progress); 953 while (unlikely(!list_empty(&ic->wait_list))) { 954 struct dm_integrity_range *last_range = 955 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 956 struct task_struct *last_range_task; 957 last_range_task = last_range->task; 958 list_del(&last_range->wait_entry); 959 if (!add_new_range(ic, last_range, false)) { 960 last_range->task = last_range_task; 961 list_add(&last_range->wait_entry, &ic->wait_list); 962 break; 963 } 964 last_range->waiting = false; 965 wake_up_process(last_range_task); 966 } 967 } 968 969 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 970 { 971 unsigned long flags; 972 973 spin_lock_irqsave(&ic->endio_wait.lock, flags); 974 remove_range_unlocked(ic, range); 975 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 976 } 977 978 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 979 { 980 new_range->waiting = true; 981 list_add_tail(&new_range->wait_entry, &ic->wait_list); 982 new_range->task = current; 983 do { 984 __set_current_state(TASK_UNINTERRUPTIBLE); 985 spin_unlock_irq(&ic->endio_wait.lock); 986 io_schedule(); 987 spin_lock_irq(&ic->endio_wait.lock); 988 } while (unlikely(new_range->waiting)); 989 } 990 991 static void init_journal_node(struct journal_node *node) 992 { 993 RB_CLEAR_NODE(&node->node); 994 node->sector = (sector_t)-1; 995 } 996 997 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 998 { 999 struct rb_node **link; 1000 struct rb_node *parent; 1001 1002 node->sector = sector; 1003 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1004 1005 link = &ic->journal_tree_root.rb_node; 1006 parent = NULL; 1007 1008 while (*link) { 1009 struct journal_node *j; 1010 parent = *link; 1011 j = container_of(parent, struct journal_node, node); 1012 if (sector < j->sector) 1013 link = &j->node.rb_left; 1014 else 1015 link = &j->node.rb_right; 1016 } 1017 1018 rb_link_node(&node->node, parent, link); 1019 rb_insert_color(&node->node, &ic->journal_tree_root); 1020 } 1021 1022 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1023 { 1024 BUG_ON(RB_EMPTY_NODE(&node->node)); 1025 rb_erase(&node->node, &ic->journal_tree_root); 1026 init_journal_node(node); 1027 } 1028 1029 #define NOT_FOUND (-1U) 1030 1031 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1032 { 1033 struct rb_node *n = ic->journal_tree_root.rb_node; 1034 unsigned found = NOT_FOUND; 1035 *next_sector = (sector_t)-1; 1036 while (n) { 1037 struct journal_node *j = container_of(n, struct journal_node, node); 1038 if (sector == j->sector) { 1039 found = j - ic->journal_tree; 1040 } 1041 if (sector < j->sector) { 1042 *next_sector = j->sector; 1043 n = j->node.rb_left; 1044 } else { 1045 n = j->node.rb_right; 1046 } 1047 } 1048 1049 return found; 1050 } 1051 1052 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1053 { 1054 struct journal_node *node, *next_node; 1055 struct rb_node *next; 1056 1057 if (unlikely(pos >= ic->journal_entries)) 1058 return false; 1059 node = &ic->journal_tree[pos]; 1060 if (unlikely(RB_EMPTY_NODE(&node->node))) 1061 return false; 1062 if (unlikely(node->sector != sector)) 1063 return false; 1064 1065 next = rb_next(&node->node); 1066 if (unlikely(!next)) 1067 return true; 1068 1069 next_node = container_of(next, struct journal_node, node); 1070 return next_node->sector != sector; 1071 } 1072 1073 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1074 { 1075 struct rb_node *next; 1076 struct journal_node *next_node; 1077 unsigned next_section; 1078 1079 BUG_ON(RB_EMPTY_NODE(&node->node)); 1080 1081 next = rb_next(&node->node); 1082 if (unlikely(!next)) 1083 return false; 1084 1085 next_node = container_of(next, struct journal_node, node); 1086 1087 if (next_node->sector != node->sector) 1088 return false; 1089 1090 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1091 if (next_section >= ic->committed_section && 1092 next_section < ic->committed_section + ic->n_committed_sections) 1093 return true; 1094 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1095 return true; 1096 1097 return false; 1098 } 1099 1100 #define TAG_READ 0 1101 #define TAG_WRITE 1 1102 #define TAG_CMP 2 1103 1104 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1105 unsigned *metadata_offset, unsigned total_size, int op) 1106 { 1107 do { 1108 unsigned char *data, *dp; 1109 struct dm_buffer *b; 1110 unsigned to_copy; 1111 int r; 1112 1113 r = dm_integrity_failed(ic); 1114 if (unlikely(r)) 1115 return r; 1116 1117 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1118 if (IS_ERR(data)) 1119 return PTR_ERR(data); 1120 1121 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1122 dp = data + *metadata_offset; 1123 if (op == TAG_READ) { 1124 memcpy(tag, dp, to_copy); 1125 } else if (op == TAG_WRITE) { 1126 memcpy(dp, tag, to_copy); 1127 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1128 } else { 1129 /* e.g.: op == TAG_CMP */ 1130 if (unlikely(memcmp(dp, tag, to_copy))) { 1131 unsigned i; 1132 1133 for (i = 0; i < to_copy; i++) { 1134 if (dp[i] != tag[i]) 1135 break; 1136 total_size--; 1137 } 1138 dm_bufio_release(b); 1139 return total_size; 1140 } 1141 } 1142 dm_bufio_release(b); 1143 1144 tag += to_copy; 1145 *metadata_offset += to_copy; 1146 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1147 (*metadata_block)++; 1148 *metadata_offset = 0; 1149 } 1150 total_size -= to_copy; 1151 } while (unlikely(total_size)); 1152 1153 return 0; 1154 } 1155 1156 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic) 1157 { 1158 int r; 1159 r = dm_bufio_write_dirty_buffers(ic->bufio); 1160 if (unlikely(r)) 1161 dm_integrity_io_error(ic, "writing tags", r); 1162 } 1163 1164 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1165 { 1166 DECLARE_WAITQUEUE(wait, current); 1167 __add_wait_queue(&ic->endio_wait, &wait); 1168 __set_current_state(TASK_UNINTERRUPTIBLE); 1169 spin_unlock_irq(&ic->endio_wait.lock); 1170 io_schedule(); 1171 spin_lock_irq(&ic->endio_wait.lock); 1172 __remove_wait_queue(&ic->endio_wait, &wait); 1173 } 1174 1175 static void autocommit_fn(struct timer_list *t) 1176 { 1177 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1178 1179 if (likely(!dm_integrity_failed(ic))) 1180 queue_work(ic->commit_wq, &ic->commit_work); 1181 } 1182 1183 static void schedule_autocommit(struct dm_integrity_c *ic) 1184 { 1185 if (!timer_pending(&ic->autocommit_timer)) 1186 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1187 } 1188 1189 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1190 { 1191 struct bio *bio; 1192 unsigned long flags; 1193 1194 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1195 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1196 bio_list_add(&ic->flush_bio_list, bio); 1197 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1198 1199 queue_work(ic->commit_wq, &ic->commit_work); 1200 } 1201 1202 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1203 { 1204 int r = dm_integrity_failed(ic); 1205 if (unlikely(r) && !bio->bi_status) 1206 bio->bi_status = errno_to_blk_status(r); 1207 bio_endio(bio); 1208 } 1209 1210 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1211 { 1212 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1213 1214 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1215 submit_flush_bio(ic, dio); 1216 else 1217 do_endio(ic, bio); 1218 } 1219 1220 static void dec_in_flight(struct dm_integrity_io *dio) 1221 { 1222 if (atomic_dec_and_test(&dio->in_flight)) { 1223 struct dm_integrity_c *ic = dio->ic; 1224 struct bio *bio; 1225 1226 remove_range(ic, &dio->range); 1227 1228 if (unlikely(dio->write)) 1229 schedule_autocommit(ic); 1230 1231 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1232 1233 if (unlikely(dio->bi_status) && !bio->bi_status) 1234 bio->bi_status = dio->bi_status; 1235 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1236 dio->range.logical_sector += dio->range.n_sectors; 1237 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1238 INIT_WORK(&dio->work, integrity_bio_wait); 1239 queue_work(ic->wait_wq, &dio->work); 1240 return; 1241 } 1242 do_endio_flush(ic, dio); 1243 } 1244 } 1245 1246 static void integrity_end_io(struct bio *bio) 1247 { 1248 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1249 1250 bio->bi_iter = dio->orig_bi_iter; 1251 bio->bi_disk = dio->orig_bi_disk; 1252 bio->bi_partno = dio->orig_bi_partno; 1253 if (dio->orig_bi_integrity) { 1254 bio->bi_integrity = dio->orig_bi_integrity; 1255 bio->bi_opf |= REQ_INTEGRITY; 1256 } 1257 bio->bi_end_io = dio->orig_bi_end_io; 1258 1259 if (dio->completion) 1260 complete(dio->completion); 1261 1262 dec_in_flight(dio); 1263 } 1264 1265 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1266 const char *data, char *result) 1267 { 1268 __u64 sector_le = cpu_to_le64(sector); 1269 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1270 int r; 1271 unsigned digest_size; 1272 1273 req->tfm = ic->internal_hash; 1274 1275 r = crypto_shash_init(req); 1276 if (unlikely(r < 0)) { 1277 dm_integrity_io_error(ic, "crypto_shash_init", r); 1278 goto failed; 1279 } 1280 1281 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1282 if (unlikely(r < 0)) { 1283 dm_integrity_io_error(ic, "crypto_shash_update", r); 1284 goto failed; 1285 } 1286 1287 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1288 if (unlikely(r < 0)) { 1289 dm_integrity_io_error(ic, "crypto_shash_update", r); 1290 goto failed; 1291 } 1292 1293 r = crypto_shash_final(req, result); 1294 if (unlikely(r < 0)) { 1295 dm_integrity_io_error(ic, "crypto_shash_final", r); 1296 goto failed; 1297 } 1298 1299 digest_size = crypto_shash_digestsize(ic->internal_hash); 1300 if (unlikely(digest_size < ic->tag_size)) 1301 memset(result + digest_size, 0, ic->tag_size - digest_size); 1302 1303 return; 1304 1305 failed: 1306 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1307 get_random_bytes(result, ic->tag_size); 1308 } 1309 1310 static void integrity_metadata(struct work_struct *w) 1311 { 1312 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1313 struct dm_integrity_c *ic = dio->ic; 1314 1315 int r; 1316 1317 if (ic->internal_hash) { 1318 struct bvec_iter iter; 1319 struct bio_vec bv; 1320 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1321 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1322 char *checksums; 1323 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1324 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1325 unsigned sectors_to_process = dio->range.n_sectors; 1326 sector_t sector = dio->range.logical_sector; 1327 1328 if (unlikely(ic->mode == 'R')) 1329 goto skip_io; 1330 1331 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1332 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1333 if (!checksums) { 1334 checksums = checksums_onstack; 1335 if (WARN_ON(extra_space && 1336 digest_size > sizeof(checksums_onstack))) { 1337 r = -EINVAL; 1338 goto error; 1339 } 1340 } 1341 1342 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) { 1343 unsigned pos; 1344 char *mem, *checksums_ptr; 1345 1346 again: 1347 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1348 pos = 0; 1349 checksums_ptr = checksums; 1350 do { 1351 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1352 checksums_ptr += ic->tag_size; 1353 sectors_to_process -= ic->sectors_per_block; 1354 pos += ic->sectors_per_block << SECTOR_SHIFT; 1355 sector += ic->sectors_per_block; 1356 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1357 kunmap_atomic(mem); 1358 1359 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1360 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE); 1361 if (unlikely(r)) { 1362 if (r > 0) { 1363 DMERR_LIMIT("Checksum failed at sector 0x%llx", 1364 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1365 r = -EILSEQ; 1366 atomic64_inc(&ic->number_of_mismatches); 1367 } 1368 if (likely(checksums != checksums_onstack)) 1369 kfree(checksums); 1370 goto error; 1371 } 1372 1373 if (!sectors_to_process) 1374 break; 1375 1376 if (unlikely(pos < bv.bv_len)) { 1377 bv.bv_offset += pos; 1378 bv.bv_len -= pos; 1379 goto again; 1380 } 1381 } 1382 1383 if (likely(checksums != checksums_onstack)) 1384 kfree(checksums); 1385 } else { 1386 struct bio_integrity_payload *bip = dio->orig_bi_integrity; 1387 1388 if (bip) { 1389 struct bio_vec biv; 1390 struct bvec_iter iter; 1391 unsigned data_to_process = dio->range.n_sectors; 1392 sector_to_block(ic, data_to_process); 1393 data_to_process *= ic->tag_size; 1394 1395 bip_for_each_vec(biv, bip, iter) { 1396 unsigned char *tag; 1397 unsigned this_len; 1398 1399 BUG_ON(PageHighMem(biv.bv_page)); 1400 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1401 this_len = min(biv.bv_len, data_to_process); 1402 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1403 this_len, !dio->write ? TAG_READ : TAG_WRITE); 1404 if (unlikely(r)) 1405 goto error; 1406 data_to_process -= this_len; 1407 if (!data_to_process) 1408 break; 1409 } 1410 } 1411 } 1412 skip_io: 1413 dec_in_flight(dio); 1414 return; 1415 error: 1416 dio->bi_status = errno_to_blk_status(r); 1417 dec_in_flight(dio); 1418 } 1419 1420 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1421 { 1422 struct dm_integrity_c *ic = ti->private; 1423 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1424 struct bio_integrity_payload *bip; 1425 1426 sector_t area, offset; 1427 1428 dio->ic = ic; 1429 dio->bi_status = 0; 1430 1431 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1432 submit_flush_bio(ic, dio); 1433 return DM_MAPIO_SUBMITTED; 1434 } 1435 1436 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1437 dio->write = bio_op(bio) == REQ_OP_WRITE; 1438 dio->fua = dio->write && bio->bi_opf & REQ_FUA; 1439 if (unlikely(dio->fua)) { 1440 /* 1441 * Don't pass down the FUA flag because we have to flush 1442 * disk cache anyway. 1443 */ 1444 bio->bi_opf &= ~REQ_FUA; 1445 } 1446 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1447 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1448 (unsigned long long)dio->range.logical_sector, bio_sectors(bio), 1449 (unsigned long long)ic->provided_data_sectors); 1450 return DM_MAPIO_KILL; 1451 } 1452 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1453 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1454 ic->sectors_per_block, 1455 (unsigned long long)dio->range.logical_sector, bio_sectors(bio)); 1456 return DM_MAPIO_KILL; 1457 } 1458 1459 if (ic->sectors_per_block > 1) { 1460 struct bvec_iter iter; 1461 struct bio_vec bv; 1462 bio_for_each_segment(bv, bio, iter) { 1463 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1464 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1465 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1466 return DM_MAPIO_KILL; 1467 } 1468 } 1469 } 1470 1471 bip = bio_integrity(bio); 1472 if (!ic->internal_hash) { 1473 if (bip) { 1474 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1475 if (ic->log2_tag_size >= 0) 1476 wanted_tag_size <<= ic->log2_tag_size; 1477 else 1478 wanted_tag_size *= ic->tag_size; 1479 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1480 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size); 1481 return DM_MAPIO_KILL; 1482 } 1483 } 1484 } else { 1485 if (unlikely(bip != NULL)) { 1486 DMERR("Unexpected integrity data when using internal hash"); 1487 return DM_MAPIO_KILL; 1488 } 1489 } 1490 1491 if (unlikely(ic->mode == 'R') && unlikely(dio->write)) 1492 return DM_MAPIO_KILL; 1493 1494 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1495 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1496 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1497 1498 dm_integrity_map_continue(dio, true); 1499 return DM_MAPIO_SUBMITTED; 1500 } 1501 1502 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1503 unsigned journal_section, unsigned journal_entry) 1504 { 1505 struct dm_integrity_c *ic = dio->ic; 1506 sector_t logical_sector; 1507 unsigned n_sectors; 1508 1509 logical_sector = dio->range.logical_sector; 1510 n_sectors = dio->range.n_sectors; 1511 do { 1512 struct bio_vec bv = bio_iovec(bio); 1513 char *mem; 1514 1515 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1516 bv.bv_len = n_sectors << SECTOR_SHIFT; 1517 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1518 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1519 retry_kmap: 1520 mem = kmap_atomic(bv.bv_page); 1521 if (likely(dio->write)) 1522 flush_dcache_page(bv.bv_page); 1523 1524 do { 1525 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1526 1527 if (unlikely(!dio->write)) { 1528 struct journal_sector *js; 1529 char *mem_ptr; 1530 unsigned s; 1531 1532 if (unlikely(journal_entry_is_inprogress(je))) { 1533 flush_dcache_page(bv.bv_page); 1534 kunmap_atomic(mem); 1535 1536 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1537 goto retry_kmap; 1538 } 1539 smp_rmb(); 1540 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1541 js = access_journal_data(ic, journal_section, journal_entry); 1542 mem_ptr = mem + bv.bv_offset; 1543 s = 0; 1544 do { 1545 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1546 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1547 js++; 1548 mem_ptr += 1 << SECTOR_SHIFT; 1549 } while (++s < ic->sectors_per_block); 1550 #ifdef INTERNAL_VERIFY 1551 if (ic->internal_hash) { 1552 char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1553 1554 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1555 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1556 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1557 (unsigned long long)logical_sector); 1558 } 1559 } 1560 #endif 1561 } 1562 1563 if (!ic->internal_hash) { 1564 struct bio_integrity_payload *bip = bio_integrity(bio); 1565 unsigned tag_todo = ic->tag_size; 1566 char *tag_ptr = journal_entry_tag(ic, je); 1567 1568 if (bip) do { 1569 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1570 unsigned tag_now = min(biv.bv_len, tag_todo); 1571 char *tag_addr; 1572 BUG_ON(PageHighMem(biv.bv_page)); 1573 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1574 if (likely(dio->write)) 1575 memcpy(tag_ptr, tag_addr, tag_now); 1576 else 1577 memcpy(tag_addr, tag_ptr, tag_now); 1578 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1579 tag_ptr += tag_now; 1580 tag_todo -= tag_now; 1581 } while (unlikely(tag_todo)); else { 1582 if (likely(dio->write)) 1583 memset(tag_ptr, 0, tag_todo); 1584 } 1585 } 1586 1587 if (likely(dio->write)) { 1588 struct journal_sector *js; 1589 unsigned s; 1590 1591 js = access_journal_data(ic, journal_section, journal_entry); 1592 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1593 1594 s = 0; 1595 do { 1596 je->last_bytes[s] = js[s].commit_id; 1597 } while (++s < ic->sectors_per_block); 1598 1599 if (ic->internal_hash) { 1600 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1601 if (unlikely(digest_size > ic->tag_size)) { 1602 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1603 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1604 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1605 } else 1606 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1607 } 1608 1609 journal_entry_set_sector(je, logical_sector); 1610 } 1611 logical_sector += ic->sectors_per_block; 1612 1613 journal_entry++; 1614 if (unlikely(journal_entry == ic->journal_section_entries)) { 1615 journal_entry = 0; 1616 journal_section++; 1617 wraparound_section(ic, &journal_section); 1618 } 1619 1620 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1621 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1622 1623 if (unlikely(!dio->write)) 1624 flush_dcache_page(bv.bv_page); 1625 kunmap_atomic(mem); 1626 } while (n_sectors); 1627 1628 if (likely(dio->write)) { 1629 smp_mb(); 1630 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1631 wake_up(&ic->copy_to_journal_wait); 1632 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1633 queue_work(ic->commit_wq, &ic->commit_work); 1634 } else { 1635 schedule_autocommit(ic); 1636 } 1637 } else { 1638 remove_range(ic, &dio->range); 1639 } 1640 1641 if (unlikely(bio->bi_iter.bi_size)) { 1642 sector_t area, offset; 1643 1644 dio->range.logical_sector = logical_sector; 1645 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1646 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1647 return true; 1648 } 1649 1650 return false; 1651 } 1652 1653 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1654 { 1655 struct dm_integrity_c *ic = dio->ic; 1656 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1657 unsigned journal_section, journal_entry; 1658 unsigned journal_read_pos; 1659 struct completion read_comp; 1660 bool need_sync_io = ic->internal_hash && !dio->write; 1661 1662 if (need_sync_io && from_map) { 1663 INIT_WORK(&dio->work, integrity_bio_wait); 1664 queue_work(ic->metadata_wq, &dio->work); 1665 return; 1666 } 1667 1668 lock_retry: 1669 spin_lock_irq(&ic->endio_wait.lock); 1670 retry: 1671 if (unlikely(dm_integrity_failed(ic))) { 1672 spin_unlock_irq(&ic->endio_wait.lock); 1673 do_endio(ic, bio); 1674 return; 1675 } 1676 dio->range.n_sectors = bio_sectors(bio); 1677 journal_read_pos = NOT_FOUND; 1678 if (likely(ic->mode == 'J')) { 1679 if (dio->write) { 1680 unsigned next_entry, i, pos; 1681 unsigned ws, we, range_sectors; 1682 1683 dio->range.n_sectors = min(dio->range.n_sectors, 1684 ic->free_sectors << ic->sb->log2_sectors_per_block); 1685 if (unlikely(!dio->range.n_sectors)) { 1686 if (from_map) 1687 goto offload_to_thread; 1688 sleep_on_endio_wait(ic); 1689 goto retry; 1690 } 1691 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 1692 ic->free_sectors -= range_sectors; 1693 journal_section = ic->free_section; 1694 journal_entry = ic->free_section_entry; 1695 1696 next_entry = ic->free_section_entry + range_sectors; 1697 ic->free_section_entry = next_entry % ic->journal_section_entries; 1698 ic->free_section += next_entry / ic->journal_section_entries; 1699 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 1700 wraparound_section(ic, &ic->free_section); 1701 1702 pos = journal_section * ic->journal_section_entries + journal_entry; 1703 ws = journal_section; 1704 we = journal_entry; 1705 i = 0; 1706 do { 1707 struct journal_entry *je; 1708 1709 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 1710 pos++; 1711 if (unlikely(pos >= ic->journal_entries)) 1712 pos = 0; 1713 1714 je = access_journal_entry(ic, ws, we); 1715 BUG_ON(!journal_entry_is_unused(je)); 1716 journal_entry_set_inprogress(je); 1717 we++; 1718 if (unlikely(we == ic->journal_section_entries)) { 1719 we = 0; 1720 ws++; 1721 wraparound_section(ic, &ws); 1722 } 1723 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 1724 1725 spin_unlock_irq(&ic->endio_wait.lock); 1726 goto journal_read_write; 1727 } else { 1728 sector_t next_sector; 1729 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1730 if (likely(journal_read_pos == NOT_FOUND)) { 1731 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 1732 dio->range.n_sectors = next_sector - dio->range.logical_sector; 1733 } else { 1734 unsigned i; 1735 unsigned jp = journal_read_pos + 1; 1736 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 1737 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 1738 break; 1739 } 1740 dio->range.n_sectors = i; 1741 } 1742 } 1743 } 1744 if (unlikely(!add_new_range(ic, &dio->range, true))) { 1745 /* 1746 * We must not sleep in the request routine because it could 1747 * stall bios on current->bio_list. 1748 * So, we offload the bio to a workqueue if we have to sleep. 1749 */ 1750 if (from_map) { 1751 offload_to_thread: 1752 spin_unlock_irq(&ic->endio_wait.lock); 1753 INIT_WORK(&dio->work, integrity_bio_wait); 1754 queue_work(ic->wait_wq, &dio->work); 1755 return; 1756 } 1757 wait_and_add_new_range(ic, &dio->range); 1758 } 1759 spin_unlock_irq(&ic->endio_wait.lock); 1760 1761 if (unlikely(journal_read_pos != NOT_FOUND)) { 1762 journal_section = journal_read_pos / ic->journal_section_entries; 1763 journal_entry = journal_read_pos % ic->journal_section_entries; 1764 goto journal_read_write; 1765 } 1766 1767 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 1768 1769 if (need_sync_io) { 1770 init_completion(&read_comp); 1771 dio->completion = &read_comp; 1772 } else 1773 dio->completion = NULL; 1774 1775 dio->orig_bi_iter = bio->bi_iter; 1776 1777 dio->orig_bi_disk = bio->bi_disk; 1778 dio->orig_bi_partno = bio->bi_partno; 1779 bio_set_dev(bio, ic->dev->bdev); 1780 1781 dio->orig_bi_integrity = bio_integrity(bio); 1782 bio->bi_integrity = NULL; 1783 bio->bi_opf &= ~REQ_INTEGRITY; 1784 1785 dio->orig_bi_end_io = bio->bi_end_io; 1786 bio->bi_end_io = integrity_end_io; 1787 1788 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 1789 generic_make_request(bio); 1790 1791 if (need_sync_io) { 1792 wait_for_completion_io(&read_comp); 1793 if (unlikely(ic->recalc_wq != NULL) && 1794 ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 1795 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 1796 goto skip_check; 1797 if (likely(!bio->bi_status)) 1798 integrity_metadata(&dio->work); 1799 else 1800 skip_check: 1801 dec_in_flight(dio); 1802 1803 } else { 1804 INIT_WORK(&dio->work, integrity_metadata); 1805 queue_work(ic->metadata_wq, &dio->work); 1806 } 1807 1808 return; 1809 1810 journal_read_write: 1811 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 1812 goto lock_retry; 1813 1814 do_endio_flush(ic, dio); 1815 } 1816 1817 1818 static void integrity_bio_wait(struct work_struct *w) 1819 { 1820 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1821 1822 dm_integrity_map_continue(dio, false); 1823 } 1824 1825 static void pad_uncommitted(struct dm_integrity_c *ic) 1826 { 1827 if (ic->free_section_entry) { 1828 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 1829 ic->free_section_entry = 0; 1830 ic->free_section++; 1831 wraparound_section(ic, &ic->free_section); 1832 ic->n_uncommitted_sections++; 1833 } 1834 WARN_ON(ic->journal_sections * ic->journal_section_entries != 1835 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors); 1836 } 1837 1838 static void integrity_commit(struct work_struct *w) 1839 { 1840 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 1841 unsigned commit_start, commit_sections; 1842 unsigned i, j, n; 1843 struct bio *flushes; 1844 1845 del_timer(&ic->autocommit_timer); 1846 1847 spin_lock_irq(&ic->endio_wait.lock); 1848 flushes = bio_list_get(&ic->flush_bio_list); 1849 if (unlikely(ic->mode != 'J')) { 1850 spin_unlock_irq(&ic->endio_wait.lock); 1851 dm_integrity_flush_buffers(ic); 1852 goto release_flush_bios; 1853 } 1854 1855 pad_uncommitted(ic); 1856 commit_start = ic->uncommitted_section; 1857 commit_sections = ic->n_uncommitted_sections; 1858 spin_unlock_irq(&ic->endio_wait.lock); 1859 1860 if (!commit_sections) 1861 goto release_flush_bios; 1862 1863 i = commit_start; 1864 for (n = 0; n < commit_sections; n++) { 1865 for (j = 0; j < ic->journal_section_entries; j++) { 1866 struct journal_entry *je; 1867 je = access_journal_entry(ic, i, j); 1868 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1869 } 1870 for (j = 0; j < ic->journal_section_sectors; j++) { 1871 struct journal_sector *js; 1872 js = access_journal(ic, i, j); 1873 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 1874 } 1875 i++; 1876 if (unlikely(i >= ic->journal_sections)) 1877 ic->commit_seq = next_commit_seq(ic->commit_seq); 1878 wraparound_section(ic, &i); 1879 } 1880 smp_rmb(); 1881 1882 write_journal(ic, commit_start, commit_sections); 1883 1884 spin_lock_irq(&ic->endio_wait.lock); 1885 ic->uncommitted_section += commit_sections; 1886 wraparound_section(ic, &ic->uncommitted_section); 1887 ic->n_uncommitted_sections -= commit_sections; 1888 ic->n_committed_sections += commit_sections; 1889 spin_unlock_irq(&ic->endio_wait.lock); 1890 1891 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 1892 queue_work(ic->writer_wq, &ic->writer_work); 1893 1894 release_flush_bios: 1895 while (flushes) { 1896 struct bio *next = flushes->bi_next; 1897 flushes->bi_next = NULL; 1898 do_endio(ic, flushes); 1899 flushes = next; 1900 } 1901 } 1902 1903 static void complete_copy_from_journal(unsigned long error, void *context) 1904 { 1905 struct journal_io *io = context; 1906 struct journal_completion *comp = io->comp; 1907 struct dm_integrity_c *ic = comp->ic; 1908 remove_range(ic, &io->range); 1909 mempool_free(io, &ic->journal_io_mempool); 1910 if (unlikely(error != 0)) 1911 dm_integrity_io_error(ic, "copying from journal", -EIO); 1912 complete_journal_op(comp); 1913 } 1914 1915 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 1916 struct journal_entry *je) 1917 { 1918 unsigned s = 0; 1919 do { 1920 js->commit_id = je->last_bytes[s]; 1921 js++; 1922 } while (++s < ic->sectors_per_block); 1923 } 1924 1925 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 1926 unsigned write_sections, bool from_replay) 1927 { 1928 unsigned i, j, n; 1929 struct journal_completion comp; 1930 struct blk_plug plug; 1931 1932 blk_start_plug(&plug); 1933 1934 comp.ic = ic; 1935 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1936 init_completion(&comp.comp); 1937 1938 i = write_start; 1939 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 1940 #ifndef INTERNAL_VERIFY 1941 if (unlikely(from_replay)) 1942 #endif 1943 rw_section_mac(ic, i, false); 1944 for (j = 0; j < ic->journal_section_entries; j++) { 1945 struct journal_entry *je = access_journal_entry(ic, i, j); 1946 sector_t sec, area, offset; 1947 unsigned k, l, next_loop; 1948 sector_t metadata_block; 1949 unsigned metadata_offset; 1950 struct journal_io *io; 1951 1952 if (journal_entry_is_unused(je)) 1953 continue; 1954 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 1955 sec = journal_entry_get_sector(je); 1956 if (unlikely(from_replay)) { 1957 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 1958 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 1959 sec &= ~(sector_t)(ic->sectors_per_block - 1); 1960 } 1961 } 1962 get_area_and_offset(ic, sec, &area, &offset); 1963 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 1964 for (k = j + 1; k < ic->journal_section_entries; k++) { 1965 struct journal_entry *je2 = access_journal_entry(ic, i, k); 1966 sector_t sec2, area2, offset2; 1967 if (journal_entry_is_unused(je2)) 1968 break; 1969 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 1970 sec2 = journal_entry_get_sector(je2); 1971 get_area_and_offset(ic, sec2, &area2, &offset2); 1972 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 1973 break; 1974 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 1975 } 1976 next_loop = k - 1; 1977 1978 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 1979 io->comp = ∁ 1980 io->range.logical_sector = sec; 1981 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 1982 1983 spin_lock_irq(&ic->endio_wait.lock); 1984 if (unlikely(!add_new_range(ic, &io->range, true))) 1985 wait_and_add_new_range(ic, &io->range); 1986 1987 if (likely(!from_replay)) { 1988 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 1989 1990 /* don't write if there is newer committed sector */ 1991 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 1992 struct journal_entry *je2 = access_journal_entry(ic, i, j); 1993 1994 journal_entry_set_unused(je2); 1995 remove_journal_node(ic, §ion_node[j]); 1996 j++; 1997 sec += ic->sectors_per_block; 1998 offset += ic->sectors_per_block; 1999 } 2000 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2001 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2002 2003 journal_entry_set_unused(je2); 2004 remove_journal_node(ic, §ion_node[k - 1]); 2005 k--; 2006 } 2007 if (j == k) { 2008 remove_range_unlocked(ic, &io->range); 2009 spin_unlock_irq(&ic->endio_wait.lock); 2010 mempool_free(io, &ic->journal_io_mempool); 2011 goto skip_io; 2012 } 2013 for (l = j; l < k; l++) { 2014 remove_journal_node(ic, §ion_node[l]); 2015 } 2016 } 2017 spin_unlock_irq(&ic->endio_wait.lock); 2018 2019 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2020 for (l = j; l < k; l++) { 2021 int r; 2022 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2023 2024 if ( 2025 #ifndef INTERNAL_VERIFY 2026 unlikely(from_replay) && 2027 #endif 2028 ic->internal_hash) { 2029 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2030 2031 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2032 (char *)access_journal_data(ic, i, l), test_tag); 2033 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2034 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2035 } 2036 2037 journal_entry_set_unused(je2); 2038 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2039 ic->tag_size, TAG_WRITE); 2040 if (unlikely(r)) { 2041 dm_integrity_io_error(ic, "reading tags", r); 2042 } 2043 } 2044 2045 atomic_inc(&comp.in_flight); 2046 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2047 (k - j) << ic->sb->log2_sectors_per_block, 2048 get_data_sector(ic, area, offset), 2049 complete_copy_from_journal, io); 2050 skip_io: 2051 j = next_loop; 2052 } 2053 } 2054 2055 dm_bufio_write_dirty_buffers_async(ic->bufio); 2056 2057 blk_finish_plug(&plug); 2058 2059 complete_journal_op(&comp); 2060 wait_for_completion_io(&comp.comp); 2061 2062 dm_integrity_flush_buffers(ic); 2063 } 2064 2065 static void integrity_writer(struct work_struct *w) 2066 { 2067 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2068 unsigned write_start, write_sections; 2069 2070 unsigned prev_free_sectors; 2071 2072 /* the following test is not needed, but it tests the replay code */ 2073 if (READ_ONCE(ic->suspending) && !ic->meta_dev) 2074 return; 2075 2076 spin_lock_irq(&ic->endio_wait.lock); 2077 write_start = ic->committed_section; 2078 write_sections = ic->n_committed_sections; 2079 spin_unlock_irq(&ic->endio_wait.lock); 2080 2081 if (!write_sections) 2082 return; 2083 2084 do_journal_write(ic, write_start, write_sections, false); 2085 2086 spin_lock_irq(&ic->endio_wait.lock); 2087 2088 ic->committed_section += write_sections; 2089 wraparound_section(ic, &ic->committed_section); 2090 ic->n_committed_sections -= write_sections; 2091 2092 prev_free_sectors = ic->free_sectors; 2093 ic->free_sectors += write_sections * ic->journal_section_entries; 2094 if (unlikely(!prev_free_sectors)) 2095 wake_up_locked(&ic->endio_wait); 2096 2097 spin_unlock_irq(&ic->endio_wait.lock); 2098 } 2099 2100 static void recalc_write_super(struct dm_integrity_c *ic) 2101 { 2102 int r; 2103 2104 dm_integrity_flush_buffers(ic); 2105 if (dm_integrity_failed(ic)) 2106 return; 2107 2108 sb_set_version(ic); 2109 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2110 if (unlikely(r)) 2111 dm_integrity_io_error(ic, "writing superblock", r); 2112 } 2113 2114 static void integrity_recalc(struct work_struct *w) 2115 { 2116 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2117 struct dm_integrity_range range; 2118 struct dm_io_request io_req; 2119 struct dm_io_region io_loc; 2120 sector_t area, offset; 2121 sector_t metadata_block; 2122 unsigned metadata_offset; 2123 __u8 *t; 2124 unsigned i; 2125 int r; 2126 unsigned super_counter = 0; 2127 2128 spin_lock_irq(&ic->endio_wait.lock); 2129 2130 next_chunk: 2131 2132 if (unlikely(READ_ONCE(ic->suspending))) 2133 goto unlock_ret; 2134 2135 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2136 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) 2137 goto unlock_ret; 2138 2139 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2140 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2141 if (!ic->meta_dev) 2142 range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2143 2144 if (unlikely(!add_new_range(ic, &range, true))) 2145 wait_and_add_new_range(ic, &range); 2146 2147 spin_unlock_irq(&ic->endio_wait.lock); 2148 2149 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2150 recalc_write_super(ic); 2151 super_counter = 0; 2152 } 2153 2154 if (unlikely(dm_integrity_failed(ic))) 2155 goto err; 2156 2157 io_req.bi_op = REQ_OP_READ; 2158 io_req.bi_op_flags = 0; 2159 io_req.mem.type = DM_IO_VMA; 2160 io_req.mem.ptr.addr = ic->recalc_buffer; 2161 io_req.notify.fn = NULL; 2162 io_req.client = ic->io; 2163 io_loc.bdev = ic->dev->bdev; 2164 io_loc.sector = get_data_sector(ic, area, offset); 2165 io_loc.count = range.n_sectors; 2166 2167 r = dm_io(&io_req, 1, &io_loc, NULL); 2168 if (unlikely(r)) { 2169 dm_integrity_io_error(ic, "reading data", r); 2170 goto err; 2171 } 2172 2173 t = ic->recalc_tags; 2174 for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) { 2175 integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2176 t += ic->tag_size; 2177 } 2178 2179 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2180 2181 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2182 if (unlikely(r)) { 2183 dm_integrity_io_error(ic, "writing tags", r); 2184 goto err; 2185 } 2186 2187 spin_lock_irq(&ic->endio_wait.lock); 2188 remove_range_unlocked(ic, &range); 2189 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2190 goto next_chunk; 2191 2192 err: 2193 remove_range(ic, &range); 2194 return; 2195 2196 unlock_ret: 2197 spin_unlock_irq(&ic->endio_wait.lock); 2198 2199 recalc_write_super(ic); 2200 } 2201 2202 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2203 unsigned n_sections, unsigned char commit_seq) 2204 { 2205 unsigned i, j, n; 2206 2207 if (!n_sections) 2208 return; 2209 2210 for (n = 0; n < n_sections; n++) { 2211 i = start_section + n; 2212 wraparound_section(ic, &i); 2213 for (j = 0; j < ic->journal_section_sectors; j++) { 2214 struct journal_sector *js = access_journal(ic, i, j); 2215 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2216 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2217 } 2218 for (j = 0; j < ic->journal_section_entries; j++) { 2219 struct journal_entry *je = access_journal_entry(ic, i, j); 2220 journal_entry_set_unused(je); 2221 } 2222 } 2223 2224 write_journal(ic, start_section, n_sections); 2225 } 2226 2227 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2228 { 2229 unsigned char k; 2230 for (k = 0; k < N_COMMIT_IDS; k++) { 2231 if (dm_integrity_commit_id(ic, i, j, k) == id) 2232 return k; 2233 } 2234 dm_integrity_io_error(ic, "journal commit id", -EIO); 2235 return -EIO; 2236 } 2237 2238 static void replay_journal(struct dm_integrity_c *ic) 2239 { 2240 unsigned i, j; 2241 bool used_commit_ids[N_COMMIT_IDS]; 2242 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2243 unsigned write_start, write_sections; 2244 unsigned continue_section; 2245 bool journal_empty; 2246 unsigned char unused, last_used, want_commit_seq; 2247 2248 if (ic->mode == 'R') 2249 return; 2250 2251 if (ic->journal_uptodate) 2252 return; 2253 2254 last_used = 0; 2255 write_start = 0; 2256 2257 if (!ic->just_formatted) { 2258 DEBUG_print("reading journal\n"); 2259 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2260 if (ic->journal_io) 2261 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2262 if (ic->journal_io) { 2263 struct journal_completion crypt_comp; 2264 crypt_comp.ic = ic; 2265 init_completion(&crypt_comp.comp); 2266 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2267 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2268 wait_for_completion(&crypt_comp.comp); 2269 } 2270 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2271 } 2272 2273 if (dm_integrity_failed(ic)) 2274 goto clear_journal; 2275 2276 journal_empty = true; 2277 memset(used_commit_ids, 0, sizeof used_commit_ids); 2278 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2279 for (i = 0; i < ic->journal_sections; i++) { 2280 for (j = 0; j < ic->journal_section_sectors; j++) { 2281 int k; 2282 struct journal_sector *js = access_journal(ic, i, j); 2283 k = find_commit_seq(ic, i, j, js->commit_id); 2284 if (k < 0) 2285 goto clear_journal; 2286 used_commit_ids[k] = true; 2287 max_commit_id_sections[k] = i; 2288 } 2289 if (journal_empty) { 2290 for (j = 0; j < ic->journal_section_entries; j++) { 2291 struct journal_entry *je = access_journal_entry(ic, i, j); 2292 if (!journal_entry_is_unused(je)) { 2293 journal_empty = false; 2294 break; 2295 } 2296 } 2297 } 2298 } 2299 2300 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2301 unused = N_COMMIT_IDS - 1; 2302 while (unused && !used_commit_ids[unused - 1]) 2303 unused--; 2304 } else { 2305 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2306 if (!used_commit_ids[unused]) 2307 break; 2308 if (unused == N_COMMIT_IDS) { 2309 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2310 goto clear_journal; 2311 } 2312 } 2313 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2314 unused, used_commit_ids[0], used_commit_ids[1], 2315 used_commit_ids[2], used_commit_ids[3]); 2316 2317 last_used = prev_commit_seq(unused); 2318 want_commit_seq = prev_commit_seq(last_used); 2319 2320 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2321 journal_empty = true; 2322 2323 write_start = max_commit_id_sections[last_used] + 1; 2324 if (unlikely(write_start >= ic->journal_sections)) 2325 want_commit_seq = next_commit_seq(want_commit_seq); 2326 wraparound_section(ic, &write_start); 2327 2328 i = write_start; 2329 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2330 for (j = 0; j < ic->journal_section_sectors; j++) { 2331 struct journal_sector *js = access_journal(ic, i, j); 2332 2333 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2334 /* 2335 * This could be caused by crash during writing. 2336 * We won't replay the inconsistent part of the 2337 * journal. 2338 */ 2339 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2340 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2341 goto brk; 2342 } 2343 } 2344 i++; 2345 if (unlikely(i >= ic->journal_sections)) 2346 want_commit_seq = next_commit_seq(want_commit_seq); 2347 wraparound_section(ic, &i); 2348 } 2349 brk: 2350 2351 if (!journal_empty) { 2352 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2353 write_sections, write_start, want_commit_seq); 2354 do_journal_write(ic, write_start, write_sections, true); 2355 } 2356 2357 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2358 continue_section = write_start; 2359 ic->commit_seq = want_commit_seq; 2360 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2361 } else { 2362 unsigned s; 2363 unsigned char erase_seq; 2364 clear_journal: 2365 DEBUG_print("clearing journal\n"); 2366 2367 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2368 s = write_start; 2369 init_journal(ic, s, 1, erase_seq); 2370 s++; 2371 wraparound_section(ic, &s); 2372 if (ic->journal_sections >= 2) { 2373 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2374 s += ic->journal_sections - 2; 2375 wraparound_section(ic, &s); 2376 init_journal(ic, s, 1, erase_seq); 2377 } 2378 2379 continue_section = 0; 2380 ic->commit_seq = next_commit_seq(erase_seq); 2381 } 2382 2383 ic->committed_section = continue_section; 2384 ic->n_committed_sections = 0; 2385 2386 ic->uncommitted_section = continue_section; 2387 ic->n_uncommitted_sections = 0; 2388 2389 ic->free_section = continue_section; 2390 ic->free_section_entry = 0; 2391 ic->free_sectors = ic->journal_entries; 2392 2393 ic->journal_tree_root = RB_ROOT; 2394 for (i = 0; i < ic->journal_entries; i++) 2395 init_journal_node(&ic->journal_tree[i]); 2396 } 2397 2398 static void dm_integrity_postsuspend(struct dm_target *ti) 2399 { 2400 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2401 2402 del_timer_sync(&ic->autocommit_timer); 2403 2404 WRITE_ONCE(ic->suspending, 1); 2405 2406 if (ic->recalc_wq) 2407 drain_workqueue(ic->recalc_wq); 2408 2409 queue_work(ic->commit_wq, &ic->commit_work); 2410 drain_workqueue(ic->commit_wq); 2411 2412 if (ic->mode == 'J') { 2413 if (ic->meta_dev) 2414 queue_work(ic->writer_wq, &ic->writer_work); 2415 drain_workqueue(ic->writer_wq); 2416 dm_integrity_flush_buffers(ic); 2417 } 2418 2419 WRITE_ONCE(ic->suspending, 0); 2420 2421 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2422 2423 ic->journal_uptodate = true; 2424 } 2425 2426 static void dm_integrity_resume(struct dm_target *ti) 2427 { 2428 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2429 2430 replay_journal(ic); 2431 2432 if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2433 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 2434 if (recalc_pos < ic->provided_data_sectors) { 2435 queue_work(ic->recalc_wq, &ic->recalc_work); 2436 } else if (recalc_pos > ic->provided_data_sectors) { 2437 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 2438 recalc_write_super(ic); 2439 } 2440 } 2441 } 2442 2443 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 2444 unsigned status_flags, char *result, unsigned maxlen) 2445 { 2446 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2447 unsigned arg_count; 2448 size_t sz = 0; 2449 2450 switch (type) { 2451 case STATUSTYPE_INFO: 2452 DMEMIT("%llu %llu", 2453 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 2454 (unsigned long long)ic->provided_data_sectors); 2455 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 2456 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector)); 2457 else 2458 DMEMIT(" -"); 2459 break; 2460 2461 case STATUSTYPE_TABLE: { 2462 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 2463 watermark_percentage += ic->journal_entries / 2; 2464 do_div(watermark_percentage, ic->journal_entries); 2465 arg_count = 5; 2466 arg_count += !!ic->meta_dev; 2467 arg_count += ic->sectors_per_block != 1; 2468 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 2469 arg_count += !!ic->internal_hash_alg.alg_string; 2470 arg_count += !!ic->journal_crypt_alg.alg_string; 2471 arg_count += !!ic->journal_mac_alg.alg_string; 2472 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start, 2473 ic->tag_size, ic->mode, arg_count); 2474 if (ic->meta_dev) 2475 DMEMIT(" meta_device:%s", ic->meta_dev->name); 2476 if (ic->sectors_per_block != 1) 2477 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 2478 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 2479 DMEMIT(" recalculate"); 2480 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 2481 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 2482 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 2483 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 2484 DMEMIT(" commit_time:%u", ic->autocommit_msec); 2485 2486 #define EMIT_ALG(a, n) \ 2487 do { \ 2488 if (ic->a.alg_string) { \ 2489 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 2490 if (ic->a.key_string) \ 2491 DMEMIT(":%s", ic->a.key_string);\ 2492 } \ 2493 } while (0) 2494 EMIT_ALG(internal_hash_alg, "internal_hash"); 2495 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 2496 EMIT_ALG(journal_mac_alg, "journal_mac"); 2497 break; 2498 } 2499 } 2500 } 2501 2502 static int dm_integrity_iterate_devices(struct dm_target *ti, 2503 iterate_devices_callout_fn fn, void *data) 2504 { 2505 struct dm_integrity_c *ic = ti->private; 2506 2507 if (!ic->meta_dev) 2508 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 2509 else 2510 return fn(ti, ic->dev, 0, ti->len, data); 2511 } 2512 2513 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 2514 { 2515 struct dm_integrity_c *ic = ti->private; 2516 2517 if (ic->sectors_per_block > 1) { 2518 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2519 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2520 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 2521 } 2522 } 2523 2524 static void calculate_journal_section_size(struct dm_integrity_c *ic) 2525 { 2526 unsigned sector_space = JOURNAL_SECTOR_DATA; 2527 2528 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 2529 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 2530 JOURNAL_ENTRY_ROUNDUP); 2531 2532 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 2533 sector_space -= JOURNAL_MAC_PER_SECTOR; 2534 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 2535 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 2536 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 2537 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 2538 } 2539 2540 static int calculate_device_limits(struct dm_integrity_c *ic) 2541 { 2542 __u64 initial_sectors; 2543 2544 calculate_journal_section_size(ic); 2545 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 2546 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 2547 return -EINVAL; 2548 ic->initial_sectors = initial_sectors; 2549 2550 if (!ic->meta_dev) { 2551 sector_t last_sector, last_area, last_offset; 2552 2553 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 2554 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT; 2555 if (!(ic->metadata_run & (ic->metadata_run - 1))) 2556 ic->log2_metadata_run = __ffs(ic->metadata_run); 2557 else 2558 ic->log2_metadata_run = -1; 2559 2560 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 2561 last_sector = get_data_sector(ic, last_area, last_offset); 2562 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 2563 return -EINVAL; 2564 } else { 2565 __u64 meta_size = ic->provided_data_sectors * ic->tag_size; 2566 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 2567 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 2568 meta_size <<= ic->log2_buffer_sectors; 2569 if (ic->initial_sectors + meta_size < ic->initial_sectors || 2570 ic->initial_sectors + meta_size > ic->meta_device_sectors) 2571 return -EINVAL; 2572 ic->metadata_run = 1; 2573 ic->log2_metadata_run = 0; 2574 } 2575 2576 return 0; 2577 } 2578 2579 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 2580 { 2581 unsigned journal_sections; 2582 int test_bit; 2583 2584 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 2585 memcpy(ic->sb->magic, SB_MAGIC, 8); 2586 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 2587 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 2588 if (ic->journal_mac_alg.alg_string) 2589 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 2590 2591 calculate_journal_section_size(ic); 2592 journal_sections = journal_sectors / ic->journal_section_sectors; 2593 if (!journal_sections) 2594 journal_sections = 1; 2595 2596 if (!ic->meta_dev) { 2597 ic->sb->journal_sections = cpu_to_le32(journal_sections); 2598 if (!interleave_sectors) 2599 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 2600 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 2601 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 2602 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 2603 2604 ic->provided_data_sectors = 0; 2605 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 2606 __u64 prev_data_sectors = ic->provided_data_sectors; 2607 2608 ic->provided_data_sectors |= (sector_t)1 << test_bit; 2609 if (calculate_device_limits(ic)) 2610 ic->provided_data_sectors = prev_data_sectors; 2611 } 2612 if (!ic->provided_data_sectors) 2613 return -EINVAL; 2614 } else { 2615 ic->sb->log2_interleave_sectors = 0; 2616 ic->provided_data_sectors = ic->data_device_sectors; 2617 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 2618 2619 try_smaller_buffer: 2620 ic->sb->journal_sections = cpu_to_le32(0); 2621 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 2622 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 2623 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 2624 if (test_journal_sections > journal_sections) 2625 continue; 2626 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 2627 if (calculate_device_limits(ic)) 2628 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 2629 2630 } 2631 if (!le32_to_cpu(ic->sb->journal_sections)) { 2632 if (ic->log2_buffer_sectors > 3) { 2633 ic->log2_buffer_sectors--; 2634 goto try_smaller_buffer; 2635 } 2636 return -EINVAL; 2637 } 2638 } 2639 2640 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 2641 2642 sb_set_version(ic); 2643 2644 return 0; 2645 } 2646 2647 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 2648 { 2649 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 2650 struct blk_integrity bi; 2651 2652 memset(&bi, 0, sizeof(bi)); 2653 bi.profile = &dm_integrity_profile; 2654 bi.tuple_size = ic->tag_size; 2655 bi.tag_size = bi.tuple_size; 2656 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 2657 2658 blk_integrity_register(disk, &bi); 2659 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 2660 } 2661 2662 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl) 2663 { 2664 unsigned i; 2665 2666 if (!pl) 2667 return; 2668 for (i = 0; i < ic->journal_pages; i++) 2669 if (pl[i].page) 2670 __free_page(pl[i].page); 2671 kvfree(pl); 2672 } 2673 2674 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic) 2675 { 2676 size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list); 2677 struct page_list *pl; 2678 unsigned i; 2679 2680 pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO); 2681 if (!pl) 2682 return NULL; 2683 2684 for (i = 0; i < ic->journal_pages; i++) { 2685 pl[i].page = alloc_page(GFP_KERNEL); 2686 if (!pl[i].page) { 2687 dm_integrity_free_page_list(ic, pl); 2688 return NULL; 2689 } 2690 if (i) 2691 pl[i - 1].next = &pl[i]; 2692 } 2693 2694 return pl; 2695 } 2696 2697 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 2698 { 2699 unsigned i; 2700 for (i = 0; i < ic->journal_sections; i++) 2701 kvfree(sl[i]); 2702 kvfree(sl); 2703 } 2704 2705 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl) 2706 { 2707 struct scatterlist **sl; 2708 unsigned i; 2709 2710 sl = kvmalloc_array(ic->journal_sections, 2711 sizeof(struct scatterlist *), 2712 GFP_KERNEL | __GFP_ZERO); 2713 if (!sl) 2714 return NULL; 2715 2716 for (i = 0; i < ic->journal_sections; i++) { 2717 struct scatterlist *s; 2718 unsigned start_index, start_offset; 2719 unsigned end_index, end_offset; 2720 unsigned n_pages; 2721 unsigned idx; 2722 2723 page_list_location(ic, i, 0, &start_index, &start_offset); 2724 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset); 2725 2726 n_pages = (end_index - start_index + 1); 2727 2728 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 2729 GFP_KERNEL); 2730 if (!s) { 2731 dm_integrity_free_journal_scatterlist(ic, sl); 2732 return NULL; 2733 } 2734 2735 sg_init_table(s, n_pages); 2736 for (idx = start_index; idx <= end_index; idx++) { 2737 char *va = lowmem_page_address(pl[idx].page); 2738 unsigned start = 0, end = PAGE_SIZE; 2739 if (idx == start_index) 2740 start = start_offset; 2741 if (idx == end_index) 2742 end = end_offset + (1 << SECTOR_SHIFT); 2743 sg_set_buf(&s[idx - start_index], va + start, end - start); 2744 } 2745 2746 sl[i] = s; 2747 } 2748 2749 return sl; 2750 } 2751 2752 static void free_alg(struct alg_spec *a) 2753 { 2754 kzfree(a->alg_string); 2755 kzfree(a->key); 2756 memset(a, 0, sizeof *a); 2757 } 2758 2759 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 2760 { 2761 char *k; 2762 2763 free_alg(a); 2764 2765 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 2766 if (!a->alg_string) 2767 goto nomem; 2768 2769 k = strchr(a->alg_string, ':'); 2770 if (k) { 2771 *k = 0; 2772 a->key_string = k + 1; 2773 if (strlen(a->key_string) & 1) 2774 goto inval; 2775 2776 a->key_size = strlen(a->key_string) / 2; 2777 a->key = kmalloc(a->key_size, GFP_KERNEL); 2778 if (!a->key) 2779 goto nomem; 2780 if (hex2bin(a->key, a->key_string, a->key_size)) 2781 goto inval; 2782 } 2783 2784 return 0; 2785 inval: 2786 *error = error_inval; 2787 return -EINVAL; 2788 nomem: 2789 *error = "Out of memory for an argument"; 2790 return -ENOMEM; 2791 } 2792 2793 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 2794 char *error_alg, char *error_key) 2795 { 2796 int r; 2797 2798 if (a->alg_string) { 2799 *hash = crypto_alloc_shash(a->alg_string, 0, 0); 2800 if (IS_ERR(*hash)) { 2801 *error = error_alg; 2802 r = PTR_ERR(*hash); 2803 *hash = NULL; 2804 return r; 2805 } 2806 2807 if (a->key) { 2808 r = crypto_shash_setkey(*hash, a->key, a->key_size); 2809 if (r) { 2810 *error = error_key; 2811 return r; 2812 } 2813 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 2814 *error = error_key; 2815 return -ENOKEY; 2816 } 2817 } 2818 2819 return 0; 2820 } 2821 2822 static int create_journal(struct dm_integrity_c *ic, char **error) 2823 { 2824 int r = 0; 2825 unsigned i; 2826 __u64 journal_pages, journal_desc_size, journal_tree_size; 2827 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 2828 struct skcipher_request *req = NULL; 2829 2830 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 2831 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 2832 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 2833 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 2834 2835 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 2836 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 2837 journal_desc_size = journal_pages * sizeof(struct page_list); 2838 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 2839 *error = "Journal doesn't fit into memory"; 2840 r = -ENOMEM; 2841 goto bad; 2842 } 2843 ic->journal_pages = journal_pages; 2844 2845 ic->journal = dm_integrity_alloc_page_list(ic); 2846 if (!ic->journal) { 2847 *error = "Could not allocate memory for journal"; 2848 r = -ENOMEM; 2849 goto bad; 2850 } 2851 if (ic->journal_crypt_alg.alg_string) { 2852 unsigned ivsize, blocksize; 2853 struct journal_completion comp; 2854 2855 comp.ic = ic; 2856 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0); 2857 if (IS_ERR(ic->journal_crypt)) { 2858 *error = "Invalid journal cipher"; 2859 r = PTR_ERR(ic->journal_crypt); 2860 ic->journal_crypt = NULL; 2861 goto bad; 2862 } 2863 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 2864 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 2865 2866 if (ic->journal_crypt_alg.key) { 2867 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 2868 ic->journal_crypt_alg.key_size); 2869 if (r) { 2870 *error = "Error setting encryption key"; 2871 goto bad; 2872 } 2873 } 2874 DEBUG_print("cipher %s, block size %u iv size %u\n", 2875 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 2876 2877 ic->journal_io = dm_integrity_alloc_page_list(ic); 2878 if (!ic->journal_io) { 2879 *error = "Could not allocate memory for journal io"; 2880 r = -ENOMEM; 2881 goto bad; 2882 } 2883 2884 if (blocksize == 1) { 2885 struct scatterlist *sg; 2886 2887 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 2888 if (!req) { 2889 *error = "Could not allocate crypt request"; 2890 r = -ENOMEM; 2891 goto bad; 2892 } 2893 2894 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 2895 if (!crypt_iv) { 2896 *error = "Could not allocate iv"; 2897 r = -ENOMEM; 2898 goto bad; 2899 } 2900 2901 ic->journal_xor = dm_integrity_alloc_page_list(ic); 2902 if (!ic->journal_xor) { 2903 *error = "Could not allocate memory for journal xor"; 2904 r = -ENOMEM; 2905 goto bad; 2906 } 2907 2908 sg = kvmalloc_array(ic->journal_pages + 1, 2909 sizeof(struct scatterlist), 2910 GFP_KERNEL); 2911 if (!sg) { 2912 *error = "Unable to allocate sg list"; 2913 r = -ENOMEM; 2914 goto bad; 2915 } 2916 sg_init_table(sg, ic->journal_pages + 1); 2917 for (i = 0; i < ic->journal_pages; i++) { 2918 char *va = lowmem_page_address(ic->journal_xor[i].page); 2919 clear_page(va); 2920 sg_set_buf(&sg[i], va, PAGE_SIZE); 2921 } 2922 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 2923 memset(crypt_iv, 0x00, ivsize); 2924 2925 skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 2926 init_completion(&comp.comp); 2927 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2928 if (do_crypt(true, req, &comp)) 2929 wait_for_completion(&comp.comp); 2930 kvfree(sg); 2931 r = dm_integrity_failed(ic); 2932 if (r) { 2933 *error = "Unable to encrypt journal"; 2934 goto bad; 2935 } 2936 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 2937 2938 crypto_free_skcipher(ic->journal_crypt); 2939 ic->journal_crypt = NULL; 2940 } else { 2941 unsigned crypt_len = roundup(ivsize, blocksize); 2942 2943 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 2944 if (!req) { 2945 *error = "Could not allocate crypt request"; 2946 r = -ENOMEM; 2947 goto bad; 2948 } 2949 2950 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 2951 if (!crypt_iv) { 2952 *error = "Could not allocate iv"; 2953 r = -ENOMEM; 2954 goto bad; 2955 } 2956 2957 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 2958 if (!crypt_data) { 2959 *error = "Unable to allocate crypt data"; 2960 r = -ENOMEM; 2961 goto bad; 2962 } 2963 2964 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 2965 if (!ic->journal_scatterlist) { 2966 *error = "Unable to allocate sg list"; 2967 r = -ENOMEM; 2968 goto bad; 2969 } 2970 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 2971 if (!ic->journal_io_scatterlist) { 2972 *error = "Unable to allocate sg list"; 2973 r = -ENOMEM; 2974 goto bad; 2975 } 2976 ic->sk_requests = kvmalloc_array(ic->journal_sections, 2977 sizeof(struct skcipher_request *), 2978 GFP_KERNEL | __GFP_ZERO); 2979 if (!ic->sk_requests) { 2980 *error = "Unable to allocate sk requests"; 2981 r = -ENOMEM; 2982 goto bad; 2983 } 2984 for (i = 0; i < ic->journal_sections; i++) { 2985 struct scatterlist sg; 2986 struct skcipher_request *section_req; 2987 __u32 section_le = cpu_to_le32(i); 2988 2989 memset(crypt_iv, 0x00, ivsize); 2990 memset(crypt_data, 0x00, crypt_len); 2991 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 2992 2993 sg_init_one(&sg, crypt_data, crypt_len); 2994 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 2995 init_completion(&comp.comp); 2996 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2997 if (do_crypt(true, req, &comp)) 2998 wait_for_completion(&comp.comp); 2999 3000 r = dm_integrity_failed(ic); 3001 if (r) { 3002 *error = "Unable to generate iv"; 3003 goto bad; 3004 } 3005 3006 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3007 if (!section_req) { 3008 *error = "Unable to allocate crypt request"; 3009 r = -ENOMEM; 3010 goto bad; 3011 } 3012 section_req->iv = kmalloc_array(ivsize, 2, 3013 GFP_KERNEL); 3014 if (!section_req->iv) { 3015 skcipher_request_free(section_req); 3016 *error = "Unable to allocate iv"; 3017 r = -ENOMEM; 3018 goto bad; 3019 } 3020 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3021 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3022 ic->sk_requests[i] = section_req; 3023 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3024 } 3025 } 3026 } 3027 3028 for (i = 0; i < N_COMMIT_IDS; i++) { 3029 unsigned j; 3030 retest_commit_id: 3031 for (j = 0; j < i; j++) { 3032 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3033 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3034 goto retest_commit_id; 3035 } 3036 } 3037 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3038 } 3039 3040 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3041 if (journal_tree_size > ULONG_MAX) { 3042 *error = "Journal doesn't fit into memory"; 3043 r = -ENOMEM; 3044 goto bad; 3045 } 3046 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3047 if (!ic->journal_tree) { 3048 *error = "Could not allocate memory for journal tree"; 3049 r = -ENOMEM; 3050 } 3051 bad: 3052 kfree(crypt_data); 3053 kfree(crypt_iv); 3054 skcipher_request_free(req); 3055 3056 return r; 3057 } 3058 3059 /* 3060 * Construct a integrity mapping 3061 * 3062 * Arguments: 3063 * device 3064 * offset from the start of the device 3065 * tag size 3066 * D - direct writes, J - journal writes, R - recovery mode 3067 * number of optional arguments 3068 * optional arguments: 3069 * journal_sectors 3070 * interleave_sectors 3071 * buffer_sectors 3072 * journal_watermark 3073 * commit_time 3074 * internal_hash 3075 * journal_crypt 3076 * journal_mac 3077 * block_size 3078 */ 3079 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3080 { 3081 struct dm_integrity_c *ic; 3082 char dummy; 3083 int r; 3084 unsigned extra_args; 3085 struct dm_arg_set as; 3086 static const struct dm_arg _args[] = { 3087 {0, 9, "Invalid number of feature args"}, 3088 }; 3089 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3090 bool recalculate; 3091 bool should_write_sb; 3092 __u64 threshold; 3093 unsigned long long start; 3094 3095 #define DIRECT_ARGUMENTS 4 3096 3097 if (argc <= DIRECT_ARGUMENTS) { 3098 ti->error = "Invalid argument count"; 3099 return -EINVAL; 3100 } 3101 3102 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3103 if (!ic) { 3104 ti->error = "Cannot allocate integrity context"; 3105 return -ENOMEM; 3106 } 3107 ti->private = ic; 3108 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3109 3110 ic->in_progress = RB_ROOT; 3111 INIT_LIST_HEAD(&ic->wait_list); 3112 init_waitqueue_head(&ic->endio_wait); 3113 bio_list_init(&ic->flush_bio_list); 3114 init_waitqueue_head(&ic->copy_to_journal_wait); 3115 init_completion(&ic->crypto_backoff); 3116 atomic64_set(&ic->number_of_mismatches, 0); 3117 3118 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3119 if (r) { 3120 ti->error = "Device lookup failed"; 3121 goto bad; 3122 } 3123 3124 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3125 ti->error = "Invalid starting offset"; 3126 r = -EINVAL; 3127 goto bad; 3128 } 3129 ic->start = start; 3130 3131 if (strcmp(argv[2], "-")) { 3132 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3133 ti->error = "Invalid tag size"; 3134 r = -EINVAL; 3135 goto bad; 3136 } 3137 } 3138 3139 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) 3140 ic->mode = argv[3][0]; 3141 else { 3142 ti->error = "Invalid mode (expecting J, D, R)"; 3143 r = -EINVAL; 3144 goto bad; 3145 } 3146 3147 journal_sectors = 0; 3148 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3149 buffer_sectors = DEFAULT_BUFFER_SECTORS; 3150 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 3151 sync_msec = DEFAULT_SYNC_MSEC; 3152 recalculate = false; 3153 ic->sectors_per_block = 1; 3154 3155 as.argc = argc - DIRECT_ARGUMENTS; 3156 as.argv = argv + DIRECT_ARGUMENTS; 3157 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 3158 if (r) 3159 goto bad; 3160 3161 while (extra_args--) { 3162 const char *opt_string; 3163 unsigned val; 3164 opt_string = dm_shift_arg(&as); 3165 if (!opt_string) { 3166 r = -EINVAL; 3167 ti->error = "Not enough feature arguments"; 3168 goto bad; 3169 } 3170 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 3171 journal_sectors = val ? val : 1; 3172 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 3173 interleave_sectors = val; 3174 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 3175 buffer_sectors = val; 3176 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 3177 journal_watermark = val; 3178 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 3179 sync_msec = val; 3180 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 3181 if (ic->meta_dev) { 3182 dm_put_device(ti, ic->meta_dev); 3183 ic->meta_dev = NULL; 3184 } 3185 r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev); 3186 if (r) { 3187 ti->error = "Device lookup failed"; 3188 goto bad; 3189 } 3190 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 3191 if (val < 1 << SECTOR_SHIFT || 3192 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 3193 (val & (val -1))) { 3194 r = -EINVAL; 3195 ti->error = "Invalid block_size argument"; 3196 goto bad; 3197 } 3198 ic->sectors_per_block = val >> SECTOR_SHIFT; 3199 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 3200 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 3201 "Invalid internal_hash argument"); 3202 if (r) 3203 goto bad; 3204 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 3205 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 3206 "Invalid journal_crypt argument"); 3207 if (r) 3208 goto bad; 3209 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 3210 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 3211 "Invalid journal_mac argument"); 3212 if (r) 3213 goto bad; 3214 } else if (!strcmp(opt_string, "recalculate")) { 3215 recalculate = true; 3216 } else { 3217 r = -EINVAL; 3218 ti->error = "Invalid argument"; 3219 goto bad; 3220 } 3221 } 3222 3223 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 3224 if (!ic->meta_dev) 3225 ic->meta_device_sectors = ic->data_device_sectors; 3226 else 3227 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 3228 3229 if (!journal_sectors) { 3230 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 3231 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 3232 } 3233 3234 if (!buffer_sectors) 3235 buffer_sectors = 1; 3236 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 3237 3238 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 3239 "Invalid internal hash", "Error setting internal hash key"); 3240 if (r) 3241 goto bad; 3242 3243 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 3244 "Invalid journal mac", "Error setting journal mac key"); 3245 if (r) 3246 goto bad; 3247 3248 if (!ic->tag_size) { 3249 if (!ic->internal_hash) { 3250 ti->error = "Unknown tag size"; 3251 r = -EINVAL; 3252 goto bad; 3253 } 3254 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 3255 } 3256 if (ic->tag_size > MAX_TAG_SIZE) { 3257 ti->error = "Too big tag size"; 3258 r = -EINVAL; 3259 goto bad; 3260 } 3261 if (!(ic->tag_size & (ic->tag_size - 1))) 3262 ic->log2_tag_size = __ffs(ic->tag_size); 3263 else 3264 ic->log2_tag_size = -1; 3265 3266 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 3267 ic->autocommit_msec = sync_msec; 3268 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 3269 3270 ic->io = dm_io_client_create(); 3271 if (IS_ERR(ic->io)) { 3272 r = PTR_ERR(ic->io); 3273 ic->io = NULL; 3274 ti->error = "Cannot allocate dm io"; 3275 goto bad; 3276 } 3277 3278 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 3279 if (r) { 3280 ti->error = "Cannot allocate mempool"; 3281 goto bad; 3282 } 3283 3284 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 3285 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 3286 if (!ic->metadata_wq) { 3287 ti->error = "Cannot allocate workqueue"; 3288 r = -ENOMEM; 3289 goto bad; 3290 } 3291 3292 /* 3293 * If this workqueue were percpu, it would cause bio reordering 3294 * and reduced performance. 3295 */ 3296 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3297 if (!ic->wait_wq) { 3298 ti->error = "Cannot allocate workqueue"; 3299 r = -ENOMEM; 3300 goto bad; 3301 } 3302 3303 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 3304 if (!ic->commit_wq) { 3305 ti->error = "Cannot allocate workqueue"; 3306 r = -ENOMEM; 3307 goto bad; 3308 } 3309 INIT_WORK(&ic->commit_work, integrity_commit); 3310 3311 if (ic->mode == 'J') { 3312 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 3313 if (!ic->writer_wq) { 3314 ti->error = "Cannot allocate workqueue"; 3315 r = -ENOMEM; 3316 goto bad; 3317 } 3318 INIT_WORK(&ic->writer_work, integrity_writer); 3319 } 3320 3321 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 3322 if (!ic->sb) { 3323 r = -ENOMEM; 3324 ti->error = "Cannot allocate superblock area"; 3325 goto bad; 3326 } 3327 3328 r = sync_rw_sb(ic, REQ_OP_READ, 0); 3329 if (r) { 3330 ti->error = "Error reading superblock"; 3331 goto bad; 3332 } 3333 should_write_sb = false; 3334 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 3335 if (ic->mode != 'R') { 3336 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 3337 r = -EINVAL; 3338 ti->error = "The device is not initialized"; 3339 goto bad; 3340 } 3341 } 3342 3343 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 3344 if (r) { 3345 ti->error = "Could not initialize superblock"; 3346 goto bad; 3347 } 3348 if (ic->mode != 'R') 3349 should_write_sb = true; 3350 } 3351 3352 if (!ic->sb->version || ic->sb->version > SB_VERSION_2) { 3353 r = -EINVAL; 3354 ti->error = "Unknown version"; 3355 goto bad; 3356 } 3357 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 3358 r = -EINVAL; 3359 ti->error = "Tag size doesn't match the information in superblock"; 3360 goto bad; 3361 } 3362 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 3363 r = -EINVAL; 3364 ti->error = "Block size doesn't match the information in superblock"; 3365 goto bad; 3366 } 3367 if (!le32_to_cpu(ic->sb->journal_sections)) { 3368 r = -EINVAL; 3369 ti->error = "Corrupted superblock, journal_sections is 0"; 3370 goto bad; 3371 } 3372 /* make sure that ti->max_io_len doesn't overflow */ 3373 if (!ic->meta_dev) { 3374 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 3375 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 3376 r = -EINVAL; 3377 ti->error = "Invalid interleave_sectors in the superblock"; 3378 goto bad; 3379 } 3380 } else { 3381 if (ic->sb->log2_interleave_sectors) { 3382 r = -EINVAL; 3383 ti->error = "Invalid interleave_sectors in the superblock"; 3384 goto bad; 3385 } 3386 } 3387 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3388 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) { 3389 /* test for overflow */ 3390 r = -EINVAL; 3391 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors"; 3392 goto bad; 3393 } 3394 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 3395 r = -EINVAL; 3396 ti->error = "Journal mac mismatch"; 3397 goto bad; 3398 } 3399 3400 try_smaller_buffer: 3401 r = calculate_device_limits(ic); 3402 if (r) { 3403 if (ic->meta_dev) { 3404 if (ic->log2_buffer_sectors > 3) { 3405 ic->log2_buffer_sectors--; 3406 goto try_smaller_buffer; 3407 } 3408 } 3409 ti->error = "The device is too small"; 3410 goto bad; 3411 } 3412 if (!ic->meta_dev) 3413 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 3414 3415 if (ti->len > ic->provided_data_sectors) { 3416 r = -EINVAL; 3417 ti->error = "Not enough provided sectors for requested mapping size"; 3418 goto bad; 3419 } 3420 3421 3422 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 3423 threshold += 50; 3424 do_div(threshold, 100); 3425 ic->free_sectors_threshold = threshold; 3426 3427 DEBUG_print("initialized:\n"); 3428 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 3429 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 3430 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 3431 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 3432 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 3433 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 3434 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 3435 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 3436 DEBUG_print(" device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors); 3437 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 3438 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 3439 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 3440 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors, 3441 (unsigned long long)ic->provided_data_sectors); 3442 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 3443 3444 if (recalculate && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 3445 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3446 ic->sb->recalc_sector = cpu_to_le64(0); 3447 } 3448 3449 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3450 if (!ic->internal_hash) { 3451 r = -EINVAL; 3452 ti->error = "Recalculate is only valid with internal hash"; 3453 goto bad; 3454 } 3455 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 3456 if (!ic->recalc_wq ) { 3457 ti->error = "Cannot allocate workqueue"; 3458 r = -ENOMEM; 3459 goto bad; 3460 } 3461 INIT_WORK(&ic->recalc_work, integrity_recalc); 3462 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 3463 if (!ic->recalc_buffer) { 3464 ti->error = "Cannot allocate buffer for recalculating"; 3465 r = -ENOMEM; 3466 goto bad; 3467 } 3468 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 3469 ic->tag_size, GFP_KERNEL); 3470 if (!ic->recalc_tags) { 3471 ti->error = "Cannot allocate tags for recalculating"; 3472 r = -ENOMEM; 3473 goto bad; 3474 } 3475 } 3476 3477 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 3478 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 3479 if (IS_ERR(ic->bufio)) { 3480 r = PTR_ERR(ic->bufio); 3481 ti->error = "Cannot initialize dm-bufio"; 3482 ic->bufio = NULL; 3483 goto bad; 3484 } 3485 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 3486 3487 if (ic->mode != 'R') { 3488 r = create_journal(ic, &ti->error); 3489 if (r) 3490 goto bad; 3491 } 3492 3493 if (should_write_sb) { 3494 int r; 3495 3496 init_journal(ic, 0, ic->journal_sections, 0); 3497 r = dm_integrity_failed(ic); 3498 if (unlikely(r)) { 3499 ti->error = "Error initializing journal"; 3500 goto bad; 3501 } 3502 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3503 if (r) { 3504 ti->error = "Error initializing superblock"; 3505 goto bad; 3506 } 3507 ic->just_formatted = true; 3508 } 3509 3510 if (!ic->meta_dev) { 3511 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 3512 if (r) 3513 goto bad; 3514 } 3515 3516 if (!ic->internal_hash) 3517 dm_integrity_set(ti, ic); 3518 3519 ti->num_flush_bios = 1; 3520 ti->flush_supported = true; 3521 3522 return 0; 3523 bad: 3524 dm_integrity_dtr(ti); 3525 return r; 3526 } 3527 3528 static void dm_integrity_dtr(struct dm_target *ti) 3529 { 3530 struct dm_integrity_c *ic = ti->private; 3531 3532 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3533 BUG_ON(!list_empty(&ic->wait_list)); 3534 3535 if (ic->metadata_wq) 3536 destroy_workqueue(ic->metadata_wq); 3537 if (ic->wait_wq) 3538 destroy_workqueue(ic->wait_wq); 3539 if (ic->commit_wq) 3540 destroy_workqueue(ic->commit_wq); 3541 if (ic->writer_wq) 3542 destroy_workqueue(ic->writer_wq); 3543 if (ic->recalc_wq) 3544 destroy_workqueue(ic->recalc_wq); 3545 if (ic->recalc_buffer) 3546 vfree(ic->recalc_buffer); 3547 if (ic->recalc_tags) 3548 kvfree(ic->recalc_tags); 3549 if (ic->bufio) 3550 dm_bufio_client_destroy(ic->bufio); 3551 mempool_exit(&ic->journal_io_mempool); 3552 if (ic->io) 3553 dm_io_client_destroy(ic->io); 3554 if (ic->dev) 3555 dm_put_device(ti, ic->dev); 3556 if (ic->meta_dev) 3557 dm_put_device(ti, ic->meta_dev); 3558 dm_integrity_free_page_list(ic, ic->journal); 3559 dm_integrity_free_page_list(ic, ic->journal_io); 3560 dm_integrity_free_page_list(ic, ic->journal_xor); 3561 if (ic->journal_scatterlist) 3562 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 3563 if (ic->journal_io_scatterlist) 3564 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 3565 if (ic->sk_requests) { 3566 unsigned i; 3567 3568 for (i = 0; i < ic->journal_sections; i++) { 3569 struct skcipher_request *req = ic->sk_requests[i]; 3570 if (req) { 3571 kzfree(req->iv); 3572 skcipher_request_free(req); 3573 } 3574 } 3575 kvfree(ic->sk_requests); 3576 } 3577 kvfree(ic->journal_tree); 3578 if (ic->sb) 3579 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 3580 3581 if (ic->internal_hash) 3582 crypto_free_shash(ic->internal_hash); 3583 free_alg(&ic->internal_hash_alg); 3584 3585 if (ic->journal_crypt) 3586 crypto_free_skcipher(ic->journal_crypt); 3587 free_alg(&ic->journal_crypt_alg); 3588 3589 if (ic->journal_mac) 3590 crypto_free_shash(ic->journal_mac); 3591 free_alg(&ic->journal_mac_alg); 3592 3593 kfree(ic); 3594 } 3595 3596 static struct target_type integrity_target = { 3597 .name = "integrity", 3598 .version = {1, 2, 0}, 3599 .module = THIS_MODULE, 3600 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 3601 .ctr = dm_integrity_ctr, 3602 .dtr = dm_integrity_dtr, 3603 .map = dm_integrity_map, 3604 .postsuspend = dm_integrity_postsuspend, 3605 .resume = dm_integrity_resume, 3606 .status = dm_integrity_status, 3607 .iterate_devices = dm_integrity_iterate_devices, 3608 .io_hints = dm_integrity_io_hints, 3609 }; 3610 3611 static int __init dm_integrity_init(void) 3612 { 3613 int r; 3614 3615 journal_io_cache = kmem_cache_create("integrity_journal_io", 3616 sizeof(struct journal_io), 0, 0, NULL); 3617 if (!journal_io_cache) { 3618 DMERR("can't allocate journal io cache"); 3619 return -ENOMEM; 3620 } 3621 3622 r = dm_register_target(&integrity_target); 3623 3624 if (r < 0) 3625 DMERR("register failed %d", r); 3626 3627 return r; 3628 } 3629 3630 static void __exit dm_integrity_exit(void) 3631 { 3632 dm_unregister_target(&integrity_target); 3633 kmem_cache_destroy(journal_io_cache); 3634 } 3635 3636 module_init(dm_integrity_init); 3637 module_exit(dm_integrity_exit); 3638 3639 MODULE_AUTHOR("Milan Broz"); 3640 MODULE_AUTHOR("Mikulas Patocka"); 3641 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 3642 MODULE_LICENSE("GPL"); 3643