xref: /openbmc/linux/drivers/md/dm-integrity.c (revision 6d99a79c)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <crypto/hash.h>
19 #include <crypto/skcipher.h>
20 #include <linux/async_tx.h>
21 #include <linux/dm-bufio.h>
22 
23 #define DM_MSG_PREFIX "integrity"
24 
25 #define DEFAULT_INTERLEAVE_SECTORS	32768
26 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
27 #define DEFAULT_BUFFER_SECTORS		128
28 #define DEFAULT_JOURNAL_WATERMARK	50
29 #define DEFAULT_SYNC_MSEC		10000
30 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
31 #define MIN_LOG2_INTERLEAVE_SECTORS	3
32 #define MAX_LOG2_INTERLEAVE_SECTORS	31
33 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
34 #define RECALC_SECTORS			8192
35 #define RECALC_WRITE_SUPER		16
36 
37 /*
38  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
39  * so it should not be enabled in the official kernel
40  */
41 //#define DEBUG_PRINT
42 //#define INTERNAL_VERIFY
43 
44 /*
45  * On disk structures
46  */
47 
48 #define SB_MAGIC			"integrt"
49 #define SB_VERSION_1			1
50 #define SB_VERSION_2			2
51 #define SB_SECTORS			8
52 #define MAX_SECTORS_PER_BLOCK		8
53 
54 struct superblock {
55 	__u8 magic[8];
56 	__u8 version;
57 	__u8 log2_interleave_sectors;
58 	__u16 integrity_tag_size;
59 	__u32 journal_sections;
60 	__u64 provided_data_sectors;	/* userspace uses this value */
61 	__u32 flags;
62 	__u8 log2_sectors_per_block;
63 	__u8 pad[3];
64 	__u64 recalc_sector;
65 };
66 
67 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
68 #define SB_FLAG_RECALCULATING		0x2
69 
70 #define	JOURNAL_ENTRY_ROUNDUP		8
71 
72 typedef __u64 commit_id_t;
73 #define JOURNAL_MAC_PER_SECTOR		8
74 
75 struct journal_entry {
76 	union {
77 		struct {
78 			__u32 sector_lo;
79 			__u32 sector_hi;
80 		} s;
81 		__u64 sector;
82 	} u;
83 	commit_id_t last_bytes[0];
84 	/* __u8 tag[0]; */
85 };
86 
87 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
88 
89 #if BITS_PER_LONG == 64
90 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
91 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
92 #elif defined(CONFIG_LBDAF)
93 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
94 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
95 #else
96 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
97 #define journal_entry_get_sector(je)		le32_to_cpu((je)->u.s.sector_lo)
98 #endif
99 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
100 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
101 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
102 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
103 
104 #define JOURNAL_BLOCK_SECTORS		8
105 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
106 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
107 
108 struct journal_sector {
109 	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
110 	__u8 mac[JOURNAL_MAC_PER_SECTOR];
111 	commit_id_t commit_id;
112 };
113 
114 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
115 
116 #define METADATA_PADDING_SECTORS	8
117 
118 #define N_COMMIT_IDS			4
119 
120 static unsigned char prev_commit_seq(unsigned char seq)
121 {
122 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
123 }
124 
125 static unsigned char next_commit_seq(unsigned char seq)
126 {
127 	return (seq + 1) % N_COMMIT_IDS;
128 }
129 
130 /*
131  * In-memory structures
132  */
133 
134 struct journal_node {
135 	struct rb_node node;
136 	sector_t sector;
137 };
138 
139 struct alg_spec {
140 	char *alg_string;
141 	char *key_string;
142 	__u8 *key;
143 	unsigned key_size;
144 };
145 
146 struct dm_integrity_c {
147 	struct dm_dev *dev;
148 	struct dm_dev *meta_dev;
149 	unsigned tag_size;
150 	__s8 log2_tag_size;
151 	sector_t start;
152 	mempool_t journal_io_mempool;
153 	struct dm_io_client *io;
154 	struct dm_bufio_client *bufio;
155 	struct workqueue_struct *metadata_wq;
156 	struct superblock *sb;
157 	unsigned journal_pages;
158 	struct page_list *journal;
159 	struct page_list *journal_io;
160 	struct page_list *journal_xor;
161 
162 	struct crypto_skcipher *journal_crypt;
163 	struct scatterlist **journal_scatterlist;
164 	struct scatterlist **journal_io_scatterlist;
165 	struct skcipher_request **sk_requests;
166 
167 	struct crypto_shash *journal_mac;
168 
169 	struct journal_node *journal_tree;
170 	struct rb_root journal_tree_root;
171 
172 	sector_t provided_data_sectors;
173 
174 	unsigned short journal_entry_size;
175 	unsigned char journal_entries_per_sector;
176 	unsigned char journal_section_entries;
177 	unsigned short journal_section_sectors;
178 	unsigned journal_sections;
179 	unsigned journal_entries;
180 	sector_t data_device_sectors;
181 	sector_t meta_device_sectors;
182 	unsigned initial_sectors;
183 	unsigned metadata_run;
184 	__s8 log2_metadata_run;
185 	__u8 log2_buffer_sectors;
186 	__u8 sectors_per_block;
187 
188 	unsigned char mode;
189 	int suspending;
190 
191 	int failed;
192 
193 	struct crypto_shash *internal_hash;
194 
195 	/* these variables are locked with endio_wait.lock */
196 	struct rb_root in_progress;
197 	struct list_head wait_list;
198 	wait_queue_head_t endio_wait;
199 	struct workqueue_struct *wait_wq;
200 
201 	unsigned char commit_seq;
202 	commit_id_t commit_ids[N_COMMIT_IDS];
203 
204 	unsigned committed_section;
205 	unsigned n_committed_sections;
206 
207 	unsigned uncommitted_section;
208 	unsigned n_uncommitted_sections;
209 
210 	unsigned free_section;
211 	unsigned char free_section_entry;
212 	unsigned free_sectors;
213 
214 	unsigned free_sectors_threshold;
215 
216 	struct workqueue_struct *commit_wq;
217 	struct work_struct commit_work;
218 
219 	struct workqueue_struct *writer_wq;
220 	struct work_struct writer_work;
221 
222 	struct workqueue_struct *recalc_wq;
223 	struct work_struct recalc_work;
224 	u8 *recalc_buffer;
225 	u8 *recalc_tags;
226 
227 	struct bio_list flush_bio_list;
228 
229 	unsigned long autocommit_jiffies;
230 	struct timer_list autocommit_timer;
231 	unsigned autocommit_msec;
232 
233 	wait_queue_head_t copy_to_journal_wait;
234 
235 	struct completion crypto_backoff;
236 
237 	bool journal_uptodate;
238 	bool just_formatted;
239 
240 	struct alg_spec internal_hash_alg;
241 	struct alg_spec journal_crypt_alg;
242 	struct alg_spec journal_mac_alg;
243 
244 	atomic64_t number_of_mismatches;
245 };
246 
247 struct dm_integrity_range {
248 	sector_t logical_sector;
249 	unsigned n_sectors;
250 	bool waiting;
251 	union {
252 		struct rb_node node;
253 		struct {
254 			struct task_struct *task;
255 			struct list_head wait_entry;
256 		};
257 	};
258 };
259 
260 struct dm_integrity_io {
261 	struct work_struct work;
262 
263 	struct dm_integrity_c *ic;
264 	bool write;
265 	bool fua;
266 
267 	struct dm_integrity_range range;
268 
269 	sector_t metadata_block;
270 	unsigned metadata_offset;
271 
272 	atomic_t in_flight;
273 	blk_status_t bi_status;
274 
275 	struct completion *completion;
276 
277 	struct gendisk *orig_bi_disk;
278 	u8 orig_bi_partno;
279 	bio_end_io_t *orig_bi_end_io;
280 	struct bio_integrity_payload *orig_bi_integrity;
281 	struct bvec_iter orig_bi_iter;
282 };
283 
284 struct journal_completion {
285 	struct dm_integrity_c *ic;
286 	atomic_t in_flight;
287 	struct completion comp;
288 };
289 
290 struct journal_io {
291 	struct dm_integrity_range range;
292 	struct journal_completion *comp;
293 };
294 
295 static struct kmem_cache *journal_io_cache;
296 
297 #define JOURNAL_IO_MEMPOOL	32
298 
299 #ifdef DEBUG_PRINT
300 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
301 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
302 {
303 	va_list args;
304 	va_start(args, msg);
305 	vprintk(msg, args);
306 	va_end(args);
307 	if (len)
308 		pr_cont(":");
309 	while (len) {
310 		pr_cont(" %02x", *bytes);
311 		bytes++;
312 		len--;
313 	}
314 	pr_cont("\n");
315 }
316 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
317 #else
318 #define DEBUG_print(x, ...)			do { } while (0)
319 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
320 #endif
321 
322 /*
323  * DM Integrity profile, protection is performed layer above (dm-crypt)
324  */
325 static const struct blk_integrity_profile dm_integrity_profile = {
326 	.name			= "DM-DIF-EXT-TAG",
327 	.generate_fn		= NULL,
328 	.verify_fn		= NULL,
329 };
330 
331 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
332 static void integrity_bio_wait(struct work_struct *w);
333 static void dm_integrity_dtr(struct dm_target *ti);
334 
335 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
336 {
337 	if (err == -EILSEQ)
338 		atomic64_inc(&ic->number_of_mismatches);
339 	if (!cmpxchg(&ic->failed, 0, err))
340 		DMERR("Error on %s: %d", msg, err);
341 }
342 
343 static int dm_integrity_failed(struct dm_integrity_c *ic)
344 {
345 	return READ_ONCE(ic->failed);
346 }
347 
348 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
349 					  unsigned j, unsigned char seq)
350 {
351 	/*
352 	 * Xor the number with section and sector, so that if a piece of
353 	 * journal is written at wrong place, it is detected.
354 	 */
355 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
356 }
357 
358 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
359 				sector_t *area, sector_t *offset)
360 {
361 	if (!ic->meta_dev) {
362 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
363 		*area = data_sector >> log2_interleave_sectors;
364 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
365 	} else {
366 		*area = 0;
367 		*offset = data_sector;
368 	}
369 }
370 
371 #define sector_to_block(ic, n)						\
372 do {									\
373 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
374 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
375 } while (0)
376 
377 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
378 					    sector_t offset, unsigned *metadata_offset)
379 {
380 	__u64 ms;
381 	unsigned mo;
382 
383 	ms = area << ic->sb->log2_interleave_sectors;
384 	if (likely(ic->log2_metadata_run >= 0))
385 		ms += area << ic->log2_metadata_run;
386 	else
387 		ms += area * ic->metadata_run;
388 	ms >>= ic->log2_buffer_sectors;
389 
390 	sector_to_block(ic, offset);
391 
392 	if (likely(ic->log2_tag_size >= 0)) {
393 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
394 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
395 	} else {
396 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
397 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
398 	}
399 	*metadata_offset = mo;
400 	return ms;
401 }
402 
403 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
404 {
405 	sector_t result;
406 
407 	if (ic->meta_dev)
408 		return offset;
409 
410 	result = area << ic->sb->log2_interleave_sectors;
411 	if (likely(ic->log2_metadata_run >= 0))
412 		result += (area + 1) << ic->log2_metadata_run;
413 	else
414 		result += (area + 1) * ic->metadata_run;
415 
416 	result += (sector_t)ic->initial_sectors + offset;
417 	result += ic->start;
418 
419 	return result;
420 }
421 
422 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
423 {
424 	if (unlikely(*sec_ptr >= ic->journal_sections))
425 		*sec_ptr -= ic->journal_sections;
426 }
427 
428 static void sb_set_version(struct dm_integrity_c *ic)
429 {
430 	if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
431 		ic->sb->version = SB_VERSION_2;
432 	else
433 		ic->sb->version = SB_VERSION_1;
434 }
435 
436 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
437 {
438 	struct dm_io_request io_req;
439 	struct dm_io_region io_loc;
440 
441 	io_req.bi_op = op;
442 	io_req.bi_op_flags = op_flags;
443 	io_req.mem.type = DM_IO_KMEM;
444 	io_req.mem.ptr.addr = ic->sb;
445 	io_req.notify.fn = NULL;
446 	io_req.client = ic->io;
447 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
448 	io_loc.sector = ic->start;
449 	io_loc.count = SB_SECTORS;
450 
451 	return dm_io(&io_req, 1, &io_loc, NULL);
452 }
453 
454 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
455 				 bool e, const char *function)
456 {
457 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
458 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
459 
460 	if (unlikely(section >= ic->journal_sections) ||
461 	    unlikely(offset >= limit)) {
462 		printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
463 			function, section, offset, ic->journal_sections, limit);
464 		BUG();
465 	}
466 #endif
467 }
468 
469 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
470 			       unsigned *pl_index, unsigned *pl_offset)
471 {
472 	unsigned sector;
473 
474 	access_journal_check(ic, section, offset, false, "page_list_location");
475 
476 	sector = section * ic->journal_section_sectors + offset;
477 
478 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
479 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
480 }
481 
482 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
483 					       unsigned section, unsigned offset, unsigned *n_sectors)
484 {
485 	unsigned pl_index, pl_offset;
486 	char *va;
487 
488 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
489 
490 	if (n_sectors)
491 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
492 
493 	va = lowmem_page_address(pl[pl_index].page);
494 
495 	return (struct journal_sector *)(va + pl_offset);
496 }
497 
498 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
499 {
500 	return access_page_list(ic, ic->journal, section, offset, NULL);
501 }
502 
503 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
504 {
505 	unsigned rel_sector, offset;
506 	struct journal_sector *js;
507 
508 	access_journal_check(ic, section, n, true, "access_journal_entry");
509 
510 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
511 	offset = n / JOURNAL_BLOCK_SECTORS;
512 
513 	js = access_journal(ic, section, rel_sector);
514 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
515 }
516 
517 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
518 {
519 	n <<= ic->sb->log2_sectors_per_block;
520 
521 	n += JOURNAL_BLOCK_SECTORS;
522 
523 	access_journal_check(ic, section, n, false, "access_journal_data");
524 
525 	return access_journal(ic, section, n);
526 }
527 
528 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
529 {
530 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
531 	int r;
532 	unsigned j, size;
533 
534 	desc->tfm = ic->journal_mac;
535 	desc->flags = 0;
536 
537 	r = crypto_shash_init(desc);
538 	if (unlikely(r)) {
539 		dm_integrity_io_error(ic, "crypto_shash_init", r);
540 		goto err;
541 	}
542 
543 	for (j = 0; j < ic->journal_section_entries; j++) {
544 		struct journal_entry *je = access_journal_entry(ic, section, j);
545 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
546 		if (unlikely(r)) {
547 			dm_integrity_io_error(ic, "crypto_shash_update", r);
548 			goto err;
549 		}
550 	}
551 
552 	size = crypto_shash_digestsize(ic->journal_mac);
553 
554 	if (likely(size <= JOURNAL_MAC_SIZE)) {
555 		r = crypto_shash_final(desc, result);
556 		if (unlikely(r)) {
557 			dm_integrity_io_error(ic, "crypto_shash_final", r);
558 			goto err;
559 		}
560 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
561 	} else {
562 		__u8 digest[HASH_MAX_DIGESTSIZE];
563 
564 		if (WARN_ON(size > sizeof(digest))) {
565 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
566 			goto err;
567 		}
568 		r = crypto_shash_final(desc, digest);
569 		if (unlikely(r)) {
570 			dm_integrity_io_error(ic, "crypto_shash_final", r);
571 			goto err;
572 		}
573 		memcpy(result, digest, JOURNAL_MAC_SIZE);
574 	}
575 
576 	return;
577 err:
578 	memset(result, 0, JOURNAL_MAC_SIZE);
579 }
580 
581 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
582 {
583 	__u8 result[JOURNAL_MAC_SIZE];
584 	unsigned j;
585 
586 	if (!ic->journal_mac)
587 		return;
588 
589 	section_mac(ic, section, result);
590 
591 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
592 		struct journal_sector *js = access_journal(ic, section, j);
593 
594 		if (likely(wr))
595 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
596 		else {
597 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
598 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
599 		}
600 	}
601 }
602 
603 static void complete_journal_op(void *context)
604 {
605 	struct journal_completion *comp = context;
606 	BUG_ON(!atomic_read(&comp->in_flight));
607 	if (likely(atomic_dec_and_test(&comp->in_flight)))
608 		complete(&comp->comp);
609 }
610 
611 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
612 			unsigned n_sections, struct journal_completion *comp)
613 {
614 	struct async_submit_ctl submit;
615 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
616 	unsigned pl_index, pl_offset, section_index;
617 	struct page_list *source_pl, *target_pl;
618 
619 	if (likely(encrypt)) {
620 		source_pl = ic->journal;
621 		target_pl = ic->journal_io;
622 	} else {
623 		source_pl = ic->journal_io;
624 		target_pl = ic->journal;
625 	}
626 
627 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
628 
629 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
630 
631 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
632 
633 	section_index = pl_index;
634 
635 	do {
636 		size_t this_step;
637 		struct page *src_pages[2];
638 		struct page *dst_page;
639 
640 		while (unlikely(pl_index == section_index)) {
641 			unsigned dummy;
642 			if (likely(encrypt))
643 				rw_section_mac(ic, section, true);
644 			section++;
645 			n_sections--;
646 			if (!n_sections)
647 				break;
648 			page_list_location(ic, section, 0, &section_index, &dummy);
649 		}
650 
651 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
652 		dst_page = target_pl[pl_index].page;
653 		src_pages[0] = source_pl[pl_index].page;
654 		src_pages[1] = ic->journal_xor[pl_index].page;
655 
656 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
657 
658 		pl_index++;
659 		pl_offset = 0;
660 		n_bytes -= this_step;
661 	} while (n_bytes);
662 
663 	BUG_ON(n_sections);
664 
665 	async_tx_issue_pending_all();
666 }
667 
668 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
669 {
670 	struct journal_completion *comp = req->data;
671 	if (unlikely(err)) {
672 		if (likely(err == -EINPROGRESS)) {
673 			complete(&comp->ic->crypto_backoff);
674 			return;
675 		}
676 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
677 	}
678 	complete_journal_op(comp);
679 }
680 
681 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
682 {
683 	int r;
684 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
685 				      complete_journal_encrypt, comp);
686 	if (likely(encrypt))
687 		r = crypto_skcipher_encrypt(req);
688 	else
689 		r = crypto_skcipher_decrypt(req);
690 	if (likely(!r))
691 		return false;
692 	if (likely(r == -EINPROGRESS))
693 		return true;
694 	if (likely(r == -EBUSY)) {
695 		wait_for_completion(&comp->ic->crypto_backoff);
696 		reinit_completion(&comp->ic->crypto_backoff);
697 		return true;
698 	}
699 	dm_integrity_io_error(comp->ic, "encrypt", r);
700 	return false;
701 }
702 
703 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
704 			  unsigned n_sections, struct journal_completion *comp)
705 {
706 	struct scatterlist **source_sg;
707 	struct scatterlist **target_sg;
708 
709 	atomic_add(2, &comp->in_flight);
710 
711 	if (likely(encrypt)) {
712 		source_sg = ic->journal_scatterlist;
713 		target_sg = ic->journal_io_scatterlist;
714 	} else {
715 		source_sg = ic->journal_io_scatterlist;
716 		target_sg = ic->journal_scatterlist;
717 	}
718 
719 	do {
720 		struct skcipher_request *req;
721 		unsigned ivsize;
722 		char *iv;
723 
724 		if (likely(encrypt))
725 			rw_section_mac(ic, section, true);
726 
727 		req = ic->sk_requests[section];
728 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
729 		iv = req->iv;
730 
731 		memcpy(iv, iv + ivsize, ivsize);
732 
733 		req->src = source_sg[section];
734 		req->dst = target_sg[section];
735 
736 		if (unlikely(do_crypt(encrypt, req, comp)))
737 			atomic_inc(&comp->in_flight);
738 
739 		section++;
740 		n_sections--;
741 	} while (n_sections);
742 
743 	atomic_dec(&comp->in_flight);
744 	complete_journal_op(comp);
745 }
746 
747 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
748 			    unsigned n_sections, struct journal_completion *comp)
749 {
750 	if (ic->journal_xor)
751 		return xor_journal(ic, encrypt, section, n_sections, comp);
752 	else
753 		return crypt_journal(ic, encrypt, section, n_sections, comp);
754 }
755 
756 static void complete_journal_io(unsigned long error, void *context)
757 {
758 	struct journal_completion *comp = context;
759 	if (unlikely(error != 0))
760 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
761 	complete_journal_op(comp);
762 }
763 
764 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
765 		       unsigned n_sections, struct journal_completion *comp)
766 {
767 	struct dm_io_request io_req;
768 	struct dm_io_region io_loc;
769 	unsigned sector, n_sectors, pl_index, pl_offset;
770 	int r;
771 
772 	if (unlikely(dm_integrity_failed(ic))) {
773 		if (comp)
774 			complete_journal_io(-1UL, comp);
775 		return;
776 	}
777 
778 	sector = section * ic->journal_section_sectors;
779 	n_sectors = n_sections * ic->journal_section_sectors;
780 
781 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
782 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
783 
784 	io_req.bi_op = op;
785 	io_req.bi_op_flags = op_flags;
786 	io_req.mem.type = DM_IO_PAGE_LIST;
787 	if (ic->journal_io)
788 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
789 	else
790 		io_req.mem.ptr.pl = &ic->journal[pl_index];
791 	io_req.mem.offset = pl_offset;
792 	if (likely(comp != NULL)) {
793 		io_req.notify.fn = complete_journal_io;
794 		io_req.notify.context = comp;
795 	} else {
796 		io_req.notify.fn = NULL;
797 	}
798 	io_req.client = ic->io;
799 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
800 	io_loc.sector = ic->start + SB_SECTORS + sector;
801 	io_loc.count = n_sectors;
802 
803 	r = dm_io(&io_req, 1, &io_loc, NULL);
804 	if (unlikely(r)) {
805 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
806 		if (comp) {
807 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
808 			complete_journal_io(-1UL, comp);
809 		}
810 	}
811 }
812 
813 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
814 {
815 	struct journal_completion io_comp;
816 	struct journal_completion crypt_comp_1;
817 	struct journal_completion crypt_comp_2;
818 	unsigned i;
819 
820 	io_comp.ic = ic;
821 	init_completion(&io_comp.comp);
822 
823 	if (commit_start + commit_sections <= ic->journal_sections) {
824 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
825 		if (ic->journal_io) {
826 			crypt_comp_1.ic = ic;
827 			init_completion(&crypt_comp_1.comp);
828 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
829 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
830 			wait_for_completion_io(&crypt_comp_1.comp);
831 		} else {
832 			for (i = 0; i < commit_sections; i++)
833 				rw_section_mac(ic, commit_start + i, true);
834 		}
835 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
836 			   commit_sections, &io_comp);
837 	} else {
838 		unsigned to_end;
839 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
840 		to_end = ic->journal_sections - commit_start;
841 		if (ic->journal_io) {
842 			crypt_comp_1.ic = ic;
843 			init_completion(&crypt_comp_1.comp);
844 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
845 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
846 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
847 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
848 				reinit_completion(&crypt_comp_1.comp);
849 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
850 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
851 				wait_for_completion_io(&crypt_comp_1.comp);
852 			} else {
853 				crypt_comp_2.ic = ic;
854 				init_completion(&crypt_comp_2.comp);
855 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
856 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
857 				wait_for_completion_io(&crypt_comp_1.comp);
858 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
859 				wait_for_completion_io(&crypt_comp_2.comp);
860 			}
861 		} else {
862 			for (i = 0; i < to_end; i++)
863 				rw_section_mac(ic, commit_start + i, true);
864 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
865 			for (i = 0; i < commit_sections - to_end; i++)
866 				rw_section_mac(ic, i, true);
867 		}
868 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
869 	}
870 
871 	wait_for_completion_io(&io_comp.comp);
872 }
873 
874 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
875 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
876 {
877 	struct dm_io_request io_req;
878 	struct dm_io_region io_loc;
879 	int r;
880 	unsigned sector, pl_index, pl_offset;
881 
882 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
883 
884 	if (unlikely(dm_integrity_failed(ic))) {
885 		fn(-1UL, data);
886 		return;
887 	}
888 
889 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
890 
891 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
892 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
893 
894 	io_req.bi_op = REQ_OP_WRITE;
895 	io_req.bi_op_flags = 0;
896 	io_req.mem.type = DM_IO_PAGE_LIST;
897 	io_req.mem.ptr.pl = &ic->journal[pl_index];
898 	io_req.mem.offset = pl_offset;
899 	io_req.notify.fn = fn;
900 	io_req.notify.context = data;
901 	io_req.client = ic->io;
902 	io_loc.bdev = ic->dev->bdev;
903 	io_loc.sector = target;
904 	io_loc.count = n_sectors;
905 
906 	r = dm_io(&io_req, 1, &io_loc, NULL);
907 	if (unlikely(r)) {
908 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
909 		fn(-1UL, data);
910 	}
911 }
912 
913 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
914 {
915 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
916 	       range2->logical_sector + range2->n_sectors > range2->logical_sector;
917 }
918 
919 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
920 {
921 	struct rb_node **n = &ic->in_progress.rb_node;
922 	struct rb_node *parent;
923 
924 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
925 
926 	if (likely(check_waiting)) {
927 		struct dm_integrity_range *range;
928 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
929 			if (unlikely(ranges_overlap(range, new_range)))
930 				return false;
931 		}
932 	}
933 
934 	parent = NULL;
935 
936 	while (*n) {
937 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
938 
939 		parent = *n;
940 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
941 			n = &range->node.rb_left;
942 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
943 			n = &range->node.rb_right;
944 		} else {
945 			return false;
946 		}
947 	}
948 
949 	rb_link_node(&new_range->node, parent, n);
950 	rb_insert_color(&new_range->node, &ic->in_progress);
951 
952 	return true;
953 }
954 
955 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
956 {
957 	rb_erase(&range->node, &ic->in_progress);
958 	while (unlikely(!list_empty(&ic->wait_list))) {
959 		struct dm_integrity_range *last_range =
960 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
961 		struct task_struct *last_range_task;
962 		if (!ranges_overlap(range, last_range))
963 			break;
964 		last_range_task = last_range->task;
965 		list_del(&last_range->wait_entry);
966 		if (!add_new_range(ic, last_range, false)) {
967 			last_range->task = last_range_task;
968 			list_add(&last_range->wait_entry, &ic->wait_list);
969 			break;
970 		}
971 		last_range->waiting = false;
972 		wake_up_process(last_range_task);
973 	}
974 }
975 
976 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
977 {
978 	unsigned long flags;
979 
980 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
981 	remove_range_unlocked(ic, range);
982 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
983 }
984 
985 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
986 {
987 	new_range->waiting = true;
988 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
989 	new_range->task = current;
990 	do {
991 		__set_current_state(TASK_UNINTERRUPTIBLE);
992 		spin_unlock_irq(&ic->endio_wait.lock);
993 		io_schedule();
994 		spin_lock_irq(&ic->endio_wait.lock);
995 	} while (unlikely(new_range->waiting));
996 }
997 
998 static void init_journal_node(struct journal_node *node)
999 {
1000 	RB_CLEAR_NODE(&node->node);
1001 	node->sector = (sector_t)-1;
1002 }
1003 
1004 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1005 {
1006 	struct rb_node **link;
1007 	struct rb_node *parent;
1008 
1009 	node->sector = sector;
1010 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1011 
1012 	link = &ic->journal_tree_root.rb_node;
1013 	parent = NULL;
1014 
1015 	while (*link) {
1016 		struct journal_node *j;
1017 		parent = *link;
1018 		j = container_of(parent, struct journal_node, node);
1019 		if (sector < j->sector)
1020 			link = &j->node.rb_left;
1021 		else
1022 			link = &j->node.rb_right;
1023 	}
1024 
1025 	rb_link_node(&node->node, parent, link);
1026 	rb_insert_color(&node->node, &ic->journal_tree_root);
1027 }
1028 
1029 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1030 {
1031 	BUG_ON(RB_EMPTY_NODE(&node->node));
1032 	rb_erase(&node->node, &ic->journal_tree_root);
1033 	init_journal_node(node);
1034 }
1035 
1036 #define NOT_FOUND	(-1U)
1037 
1038 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1039 {
1040 	struct rb_node *n = ic->journal_tree_root.rb_node;
1041 	unsigned found = NOT_FOUND;
1042 	*next_sector = (sector_t)-1;
1043 	while (n) {
1044 		struct journal_node *j = container_of(n, struct journal_node, node);
1045 		if (sector == j->sector) {
1046 			found = j - ic->journal_tree;
1047 		}
1048 		if (sector < j->sector) {
1049 			*next_sector = j->sector;
1050 			n = j->node.rb_left;
1051 		} else {
1052 			n = j->node.rb_right;
1053 		}
1054 	}
1055 
1056 	return found;
1057 }
1058 
1059 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1060 {
1061 	struct journal_node *node, *next_node;
1062 	struct rb_node *next;
1063 
1064 	if (unlikely(pos >= ic->journal_entries))
1065 		return false;
1066 	node = &ic->journal_tree[pos];
1067 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1068 		return false;
1069 	if (unlikely(node->sector != sector))
1070 		return false;
1071 
1072 	next = rb_next(&node->node);
1073 	if (unlikely(!next))
1074 		return true;
1075 
1076 	next_node = container_of(next, struct journal_node, node);
1077 	return next_node->sector != sector;
1078 }
1079 
1080 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1081 {
1082 	struct rb_node *next;
1083 	struct journal_node *next_node;
1084 	unsigned next_section;
1085 
1086 	BUG_ON(RB_EMPTY_NODE(&node->node));
1087 
1088 	next = rb_next(&node->node);
1089 	if (unlikely(!next))
1090 		return false;
1091 
1092 	next_node = container_of(next, struct journal_node, node);
1093 
1094 	if (next_node->sector != node->sector)
1095 		return false;
1096 
1097 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1098 	if (next_section >= ic->committed_section &&
1099 	    next_section < ic->committed_section + ic->n_committed_sections)
1100 		return true;
1101 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1102 		return true;
1103 
1104 	return false;
1105 }
1106 
1107 #define TAG_READ	0
1108 #define TAG_WRITE	1
1109 #define TAG_CMP		2
1110 
1111 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1112 			       unsigned *metadata_offset, unsigned total_size, int op)
1113 {
1114 	do {
1115 		unsigned char *data, *dp;
1116 		struct dm_buffer *b;
1117 		unsigned to_copy;
1118 		int r;
1119 
1120 		r = dm_integrity_failed(ic);
1121 		if (unlikely(r))
1122 			return r;
1123 
1124 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1125 		if (unlikely(IS_ERR(data)))
1126 			return PTR_ERR(data);
1127 
1128 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1129 		dp = data + *metadata_offset;
1130 		if (op == TAG_READ) {
1131 			memcpy(tag, dp, to_copy);
1132 		} else if (op == TAG_WRITE) {
1133 			memcpy(dp, tag, to_copy);
1134 			dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1135 		} else  {
1136 			/* e.g.: op == TAG_CMP */
1137 			if (unlikely(memcmp(dp, tag, to_copy))) {
1138 				unsigned i;
1139 
1140 				for (i = 0; i < to_copy; i++) {
1141 					if (dp[i] != tag[i])
1142 						break;
1143 					total_size--;
1144 				}
1145 				dm_bufio_release(b);
1146 				return total_size;
1147 			}
1148 		}
1149 		dm_bufio_release(b);
1150 
1151 		tag += to_copy;
1152 		*metadata_offset += to_copy;
1153 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1154 			(*metadata_block)++;
1155 			*metadata_offset = 0;
1156 		}
1157 		total_size -= to_copy;
1158 	} while (unlikely(total_size));
1159 
1160 	return 0;
1161 }
1162 
1163 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1164 {
1165 	int r;
1166 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1167 	if (unlikely(r))
1168 		dm_integrity_io_error(ic, "writing tags", r);
1169 }
1170 
1171 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1172 {
1173 	DECLARE_WAITQUEUE(wait, current);
1174 	__add_wait_queue(&ic->endio_wait, &wait);
1175 	__set_current_state(TASK_UNINTERRUPTIBLE);
1176 	spin_unlock_irq(&ic->endio_wait.lock);
1177 	io_schedule();
1178 	spin_lock_irq(&ic->endio_wait.lock);
1179 	__remove_wait_queue(&ic->endio_wait, &wait);
1180 }
1181 
1182 static void autocommit_fn(struct timer_list *t)
1183 {
1184 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1185 
1186 	if (likely(!dm_integrity_failed(ic)))
1187 		queue_work(ic->commit_wq, &ic->commit_work);
1188 }
1189 
1190 static void schedule_autocommit(struct dm_integrity_c *ic)
1191 {
1192 	if (!timer_pending(&ic->autocommit_timer))
1193 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1194 }
1195 
1196 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1197 {
1198 	struct bio *bio;
1199 	unsigned long flags;
1200 
1201 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1202 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1203 	bio_list_add(&ic->flush_bio_list, bio);
1204 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1205 
1206 	queue_work(ic->commit_wq, &ic->commit_work);
1207 }
1208 
1209 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1210 {
1211 	int r = dm_integrity_failed(ic);
1212 	if (unlikely(r) && !bio->bi_status)
1213 		bio->bi_status = errno_to_blk_status(r);
1214 	bio_endio(bio);
1215 }
1216 
1217 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1218 {
1219 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1220 
1221 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1222 		submit_flush_bio(ic, dio);
1223 	else
1224 		do_endio(ic, bio);
1225 }
1226 
1227 static void dec_in_flight(struct dm_integrity_io *dio)
1228 {
1229 	if (atomic_dec_and_test(&dio->in_flight)) {
1230 		struct dm_integrity_c *ic = dio->ic;
1231 		struct bio *bio;
1232 
1233 		remove_range(ic, &dio->range);
1234 
1235 		if (unlikely(dio->write))
1236 			schedule_autocommit(ic);
1237 
1238 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1239 
1240 		if (unlikely(dio->bi_status) && !bio->bi_status)
1241 			bio->bi_status = dio->bi_status;
1242 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1243 			dio->range.logical_sector += dio->range.n_sectors;
1244 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1245 			INIT_WORK(&dio->work, integrity_bio_wait);
1246 			queue_work(ic->wait_wq, &dio->work);
1247 			return;
1248 		}
1249 		do_endio_flush(ic, dio);
1250 	}
1251 }
1252 
1253 static void integrity_end_io(struct bio *bio)
1254 {
1255 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1256 
1257 	bio->bi_iter = dio->orig_bi_iter;
1258 	bio->bi_disk = dio->orig_bi_disk;
1259 	bio->bi_partno = dio->orig_bi_partno;
1260 	if (dio->orig_bi_integrity) {
1261 		bio->bi_integrity = dio->orig_bi_integrity;
1262 		bio->bi_opf |= REQ_INTEGRITY;
1263 	}
1264 	bio->bi_end_io = dio->orig_bi_end_io;
1265 
1266 	if (dio->completion)
1267 		complete(dio->completion);
1268 
1269 	dec_in_flight(dio);
1270 }
1271 
1272 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1273 				      const char *data, char *result)
1274 {
1275 	__u64 sector_le = cpu_to_le64(sector);
1276 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1277 	int r;
1278 	unsigned digest_size;
1279 
1280 	req->tfm = ic->internal_hash;
1281 	req->flags = 0;
1282 
1283 	r = crypto_shash_init(req);
1284 	if (unlikely(r < 0)) {
1285 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1286 		goto failed;
1287 	}
1288 
1289 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1290 	if (unlikely(r < 0)) {
1291 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1292 		goto failed;
1293 	}
1294 
1295 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1296 	if (unlikely(r < 0)) {
1297 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1298 		goto failed;
1299 	}
1300 
1301 	r = crypto_shash_final(req, result);
1302 	if (unlikely(r < 0)) {
1303 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1304 		goto failed;
1305 	}
1306 
1307 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1308 	if (unlikely(digest_size < ic->tag_size))
1309 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1310 
1311 	return;
1312 
1313 failed:
1314 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1315 	get_random_bytes(result, ic->tag_size);
1316 }
1317 
1318 static void integrity_metadata(struct work_struct *w)
1319 {
1320 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1321 	struct dm_integrity_c *ic = dio->ic;
1322 
1323 	int r;
1324 
1325 	if (ic->internal_hash) {
1326 		struct bvec_iter iter;
1327 		struct bio_vec bv;
1328 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1329 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1330 		char *checksums;
1331 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1332 		char checksums_onstack[HASH_MAX_DIGESTSIZE];
1333 		unsigned sectors_to_process = dio->range.n_sectors;
1334 		sector_t sector = dio->range.logical_sector;
1335 
1336 		if (unlikely(ic->mode == 'R'))
1337 			goto skip_io;
1338 
1339 		checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1340 				    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1341 		if (!checksums) {
1342 			checksums = checksums_onstack;
1343 			if (WARN_ON(extra_space &&
1344 				    digest_size > sizeof(checksums_onstack))) {
1345 				r = -EINVAL;
1346 				goto error;
1347 			}
1348 		}
1349 
1350 		__bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1351 			unsigned pos;
1352 			char *mem, *checksums_ptr;
1353 
1354 again:
1355 			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1356 			pos = 0;
1357 			checksums_ptr = checksums;
1358 			do {
1359 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1360 				checksums_ptr += ic->tag_size;
1361 				sectors_to_process -= ic->sectors_per_block;
1362 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1363 				sector += ic->sectors_per_block;
1364 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1365 			kunmap_atomic(mem);
1366 
1367 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1368 						checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1369 			if (unlikely(r)) {
1370 				if (r > 0) {
1371 					DMERR("Checksum failed at sector 0x%llx",
1372 					      (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1373 					r = -EILSEQ;
1374 					atomic64_inc(&ic->number_of_mismatches);
1375 				}
1376 				if (likely(checksums != checksums_onstack))
1377 					kfree(checksums);
1378 				goto error;
1379 			}
1380 
1381 			if (!sectors_to_process)
1382 				break;
1383 
1384 			if (unlikely(pos < bv.bv_len)) {
1385 				bv.bv_offset += pos;
1386 				bv.bv_len -= pos;
1387 				goto again;
1388 			}
1389 		}
1390 
1391 		if (likely(checksums != checksums_onstack))
1392 			kfree(checksums);
1393 	} else {
1394 		struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1395 
1396 		if (bip) {
1397 			struct bio_vec biv;
1398 			struct bvec_iter iter;
1399 			unsigned data_to_process = dio->range.n_sectors;
1400 			sector_to_block(ic, data_to_process);
1401 			data_to_process *= ic->tag_size;
1402 
1403 			bip_for_each_vec(biv, bip, iter) {
1404 				unsigned char *tag;
1405 				unsigned this_len;
1406 
1407 				BUG_ON(PageHighMem(biv.bv_page));
1408 				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1409 				this_len = min(biv.bv_len, data_to_process);
1410 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1411 							this_len, !dio->write ? TAG_READ : TAG_WRITE);
1412 				if (unlikely(r))
1413 					goto error;
1414 				data_to_process -= this_len;
1415 				if (!data_to_process)
1416 					break;
1417 			}
1418 		}
1419 	}
1420 skip_io:
1421 	dec_in_flight(dio);
1422 	return;
1423 error:
1424 	dio->bi_status = errno_to_blk_status(r);
1425 	dec_in_flight(dio);
1426 }
1427 
1428 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1429 {
1430 	struct dm_integrity_c *ic = ti->private;
1431 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1432 	struct bio_integrity_payload *bip;
1433 
1434 	sector_t area, offset;
1435 
1436 	dio->ic = ic;
1437 	dio->bi_status = 0;
1438 
1439 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1440 		submit_flush_bio(ic, dio);
1441 		return DM_MAPIO_SUBMITTED;
1442 	}
1443 
1444 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1445 	dio->write = bio_op(bio) == REQ_OP_WRITE;
1446 	dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1447 	if (unlikely(dio->fua)) {
1448 		/*
1449 		 * Don't pass down the FUA flag because we have to flush
1450 		 * disk cache anyway.
1451 		 */
1452 		bio->bi_opf &= ~REQ_FUA;
1453 	}
1454 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1455 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1456 		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1457 		      (unsigned long long)ic->provided_data_sectors);
1458 		return DM_MAPIO_KILL;
1459 	}
1460 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1461 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1462 		      ic->sectors_per_block,
1463 		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1464 		return DM_MAPIO_KILL;
1465 	}
1466 
1467 	if (ic->sectors_per_block > 1) {
1468 		struct bvec_iter iter;
1469 		struct bio_vec bv;
1470 		bio_for_each_segment(bv, bio, iter) {
1471 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1472 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1473 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1474 				return DM_MAPIO_KILL;
1475 			}
1476 		}
1477 	}
1478 
1479 	bip = bio_integrity(bio);
1480 	if (!ic->internal_hash) {
1481 		if (bip) {
1482 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1483 			if (ic->log2_tag_size >= 0)
1484 				wanted_tag_size <<= ic->log2_tag_size;
1485 			else
1486 				wanted_tag_size *= ic->tag_size;
1487 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1488 				DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1489 				return DM_MAPIO_KILL;
1490 			}
1491 		}
1492 	} else {
1493 		if (unlikely(bip != NULL)) {
1494 			DMERR("Unexpected integrity data when using internal hash");
1495 			return DM_MAPIO_KILL;
1496 		}
1497 	}
1498 
1499 	if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1500 		return DM_MAPIO_KILL;
1501 
1502 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1503 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1504 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1505 
1506 	dm_integrity_map_continue(dio, true);
1507 	return DM_MAPIO_SUBMITTED;
1508 }
1509 
1510 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1511 				 unsigned journal_section, unsigned journal_entry)
1512 {
1513 	struct dm_integrity_c *ic = dio->ic;
1514 	sector_t logical_sector;
1515 	unsigned n_sectors;
1516 
1517 	logical_sector = dio->range.logical_sector;
1518 	n_sectors = dio->range.n_sectors;
1519 	do {
1520 		struct bio_vec bv = bio_iovec(bio);
1521 		char *mem;
1522 
1523 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1524 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1525 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1526 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1527 retry_kmap:
1528 		mem = kmap_atomic(bv.bv_page);
1529 		if (likely(dio->write))
1530 			flush_dcache_page(bv.bv_page);
1531 
1532 		do {
1533 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1534 
1535 			if (unlikely(!dio->write)) {
1536 				struct journal_sector *js;
1537 				char *mem_ptr;
1538 				unsigned s;
1539 
1540 				if (unlikely(journal_entry_is_inprogress(je))) {
1541 					flush_dcache_page(bv.bv_page);
1542 					kunmap_atomic(mem);
1543 
1544 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1545 					goto retry_kmap;
1546 				}
1547 				smp_rmb();
1548 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1549 				js = access_journal_data(ic, journal_section, journal_entry);
1550 				mem_ptr = mem + bv.bv_offset;
1551 				s = 0;
1552 				do {
1553 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1554 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1555 					js++;
1556 					mem_ptr += 1 << SECTOR_SHIFT;
1557 				} while (++s < ic->sectors_per_block);
1558 #ifdef INTERNAL_VERIFY
1559 				if (ic->internal_hash) {
1560 					char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1561 
1562 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1563 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1564 						DMERR("Checksum failed when reading from journal, at sector 0x%llx",
1565 						      (unsigned long long)logical_sector);
1566 					}
1567 				}
1568 #endif
1569 			}
1570 
1571 			if (!ic->internal_hash) {
1572 				struct bio_integrity_payload *bip = bio_integrity(bio);
1573 				unsigned tag_todo = ic->tag_size;
1574 				char *tag_ptr = journal_entry_tag(ic, je);
1575 
1576 				if (bip) do {
1577 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1578 					unsigned tag_now = min(biv.bv_len, tag_todo);
1579 					char *tag_addr;
1580 					BUG_ON(PageHighMem(biv.bv_page));
1581 					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1582 					if (likely(dio->write))
1583 						memcpy(tag_ptr, tag_addr, tag_now);
1584 					else
1585 						memcpy(tag_addr, tag_ptr, tag_now);
1586 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1587 					tag_ptr += tag_now;
1588 					tag_todo -= tag_now;
1589 				} while (unlikely(tag_todo)); else {
1590 					if (likely(dio->write))
1591 						memset(tag_ptr, 0, tag_todo);
1592 				}
1593 			}
1594 
1595 			if (likely(dio->write)) {
1596 				struct journal_sector *js;
1597 				unsigned s;
1598 
1599 				js = access_journal_data(ic, journal_section, journal_entry);
1600 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1601 
1602 				s = 0;
1603 				do {
1604 					je->last_bytes[s] = js[s].commit_id;
1605 				} while (++s < ic->sectors_per_block);
1606 
1607 				if (ic->internal_hash) {
1608 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1609 					if (unlikely(digest_size > ic->tag_size)) {
1610 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
1611 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1612 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1613 					} else
1614 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1615 				}
1616 
1617 				journal_entry_set_sector(je, logical_sector);
1618 			}
1619 			logical_sector += ic->sectors_per_block;
1620 
1621 			journal_entry++;
1622 			if (unlikely(journal_entry == ic->journal_section_entries)) {
1623 				journal_entry = 0;
1624 				journal_section++;
1625 				wraparound_section(ic, &journal_section);
1626 			}
1627 
1628 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1629 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1630 
1631 		if (unlikely(!dio->write))
1632 			flush_dcache_page(bv.bv_page);
1633 		kunmap_atomic(mem);
1634 	} while (n_sectors);
1635 
1636 	if (likely(dio->write)) {
1637 		smp_mb();
1638 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1639 			wake_up(&ic->copy_to_journal_wait);
1640 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1641 			queue_work(ic->commit_wq, &ic->commit_work);
1642 		} else {
1643 			schedule_autocommit(ic);
1644 		}
1645 	} else {
1646 		remove_range(ic, &dio->range);
1647 	}
1648 
1649 	if (unlikely(bio->bi_iter.bi_size)) {
1650 		sector_t area, offset;
1651 
1652 		dio->range.logical_sector = logical_sector;
1653 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1654 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1655 		return true;
1656 	}
1657 
1658 	return false;
1659 }
1660 
1661 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1662 {
1663 	struct dm_integrity_c *ic = dio->ic;
1664 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1665 	unsigned journal_section, journal_entry;
1666 	unsigned journal_read_pos;
1667 	struct completion read_comp;
1668 	bool need_sync_io = ic->internal_hash && !dio->write;
1669 
1670 	if (need_sync_io && from_map) {
1671 		INIT_WORK(&dio->work, integrity_bio_wait);
1672 		queue_work(ic->metadata_wq, &dio->work);
1673 		return;
1674 	}
1675 
1676 lock_retry:
1677 	spin_lock_irq(&ic->endio_wait.lock);
1678 retry:
1679 	if (unlikely(dm_integrity_failed(ic))) {
1680 		spin_unlock_irq(&ic->endio_wait.lock);
1681 		do_endio(ic, bio);
1682 		return;
1683 	}
1684 	dio->range.n_sectors = bio_sectors(bio);
1685 	journal_read_pos = NOT_FOUND;
1686 	if (likely(ic->mode == 'J')) {
1687 		if (dio->write) {
1688 			unsigned next_entry, i, pos;
1689 			unsigned ws, we, range_sectors;
1690 
1691 			dio->range.n_sectors = min(dio->range.n_sectors,
1692 						   ic->free_sectors << ic->sb->log2_sectors_per_block);
1693 			if (unlikely(!dio->range.n_sectors)) {
1694 				if (from_map)
1695 					goto offload_to_thread;
1696 				sleep_on_endio_wait(ic);
1697 				goto retry;
1698 			}
1699 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1700 			ic->free_sectors -= range_sectors;
1701 			journal_section = ic->free_section;
1702 			journal_entry = ic->free_section_entry;
1703 
1704 			next_entry = ic->free_section_entry + range_sectors;
1705 			ic->free_section_entry = next_entry % ic->journal_section_entries;
1706 			ic->free_section += next_entry / ic->journal_section_entries;
1707 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1708 			wraparound_section(ic, &ic->free_section);
1709 
1710 			pos = journal_section * ic->journal_section_entries + journal_entry;
1711 			ws = journal_section;
1712 			we = journal_entry;
1713 			i = 0;
1714 			do {
1715 				struct journal_entry *je;
1716 
1717 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1718 				pos++;
1719 				if (unlikely(pos >= ic->journal_entries))
1720 					pos = 0;
1721 
1722 				je = access_journal_entry(ic, ws, we);
1723 				BUG_ON(!journal_entry_is_unused(je));
1724 				journal_entry_set_inprogress(je);
1725 				we++;
1726 				if (unlikely(we == ic->journal_section_entries)) {
1727 					we = 0;
1728 					ws++;
1729 					wraparound_section(ic, &ws);
1730 				}
1731 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1732 
1733 			spin_unlock_irq(&ic->endio_wait.lock);
1734 			goto journal_read_write;
1735 		} else {
1736 			sector_t next_sector;
1737 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1738 			if (likely(journal_read_pos == NOT_FOUND)) {
1739 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1740 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
1741 			} else {
1742 				unsigned i;
1743 				unsigned jp = journal_read_pos + 1;
1744 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1745 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1746 						break;
1747 				}
1748 				dio->range.n_sectors = i;
1749 			}
1750 		}
1751 	}
1752 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
1753 		/*
1754 		 * We must not sleep in the request routine because it could
1755 		 * stall bios on current->bio_list.
1756 		 * So, we offload the bio to a workqueue if we have to sleep.
1757 		 */
1758 		if (from_map) {
1759 offload_to_thread:
1760 			spin_unlock_irq(&ic->endio_wait.lock);
1761 			INIT_WORK(&dio->work, integrity_bio_wait);
1762 			queue_work(ic->wait_wq, &dio->work);
1763 			return;
1764 		}
1765 		wait_and_add_new_range(ic, &dio->range);
1766 	}
1767 	spin_unlock_irq(&ic->endio_wait.lock);
1768 
1769 	if (unlikely(journal_read_pos != NOT_FOUND)) {
1770 		journal_section = journal_read_pos / ic->journal_section_entries;
1771 		journal_entry = journal_read_pos % ic->journal_section_entries;
1772 		goto journal_read_write;
1773 	}
1774 
1775 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1776 
1777 	if (need_sync_io) {
1778 		init_completion(&read_comp);
1779 		dio->completion = &read_comp;
1780 	} else
1781 		dio->completion = NULL;
1782 
1783 	dio->orig_bi_iter = bio->bi_iter;
1784 
1785 	dio->orig_bi_disk = bio->bi_disk;
1786 	dio->orig_bi_partno = bio->bi_partno;
1787 	bio_set_dev(bio, ic->dev->bdev);
1788 
1789 	dio->orig_bi_integrity = bio_integrity(bio);
1790 	bio->bi_integrity = NULL;
1791 	bio->bi_opf &= ~REQ_INTEGRITY;
1792 
1793 	dio->orig_bi_end_io = bio->bi_end_io;
1794 	bio->bi_end_io = integrity_end_io;
1795 
1796 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1797 	generic_make_request(bio);
1798 
1799 	if (need_sync_io) {
1800 		wait_for_completion_io(&read_comp);
1801 		if (unlikely(ic->recalc_wq != NULL) &&
1802 		    ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
1803 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
1804 			goto skip_check;
1805 		if (likely(!bio->bi_status))
1806 			integrity_metadata(&dio->work);
1807 		else
1808 skip_check:
1809 			dec_in_flight(dio);
1810 
1811 	} else {
1812 		INIT_WORK(&dio->work, integrity_metadata);
1813 		queue_work(ic->metadata_wq, &dio->work);
1814 	}
1815 
1816 	return;
1817 
1818 journal_read_write:
1819 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1820 		goto lock_retry;
1821 
1822 	do_endio_flush(ic, dio);
1823 }
1824 
1825 
1826 static void integrity_bio_wait(struct work_struct *w)
1827 {
1828 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1829 
1830 	dm_integrity_map_continue(dio, false);
1831 }
1832 
1833 static void pad_uncommitted(struct dm_integrity_c *ic)
1834 {
1835 	if (ic->free_section_entry) {
1836 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1837 		ic->free_section_entry = 0;
1838 		ic->free_section++;
1839 		wraparound_section(ic, &ic->free_section);
1840 		ic->n_uncommitted_sections++;
1841 	}
1842 	WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1843 		(ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1844 }
1845 
1846 static void integrity_commit(struct work_struct *w)
1847 {
1848 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1849 	unsigned commit_start, commit_sections;
1850 	unsigned i, j, n;
1851 	struct bio *flushes;
1852 
1853 	del_timer(&ic->autocommit_timer);
1854 
1855 	spin_lock_irq(&ic->endio_wait.lock);
1856 	flushes = bio_list_get(&ic->flush_bio_list);
1857 	if (unlikely(ic->mode != 'J')) {
1858 		spin_unlock_irq(&ic->endio_wait.lock);
1859 		dm_integrity_flush_buffers(ic);
1860 		goto release_flush_bios;
1861 	}
1862 
1863 	pad_uncommitted(ic);
1864 	commit_start = ic->uncommitted_section;
1865 	commit_sections = ic->n_uncommitted_sections;
1866 	spin_unlock_irq(&ic->endio_wait.lock);
1867 
1868 	if (!commit_sections)
1869 		goto release_flush_bios;
1870 
1871 	i = commit_start;
1872 	for (n = 0; n < commit_sections; n++) {
1873 		for (j = 0; j < ic->journal_section_entries; j++) {
1874 			struct journal_entry *je;
1875 			je = access_journal_entry(ic, i, j);
1876 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1877 		}
1878 		for (j = 0; j < ic->journal_section_sectors; j++) {
1879 			struct journal_sector *js;
1880 			js = access_journal(ic, i, j);
1881 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1882 		}
1883 		i++;
1884 		if (unlikely(i >= ic->journal_sections))
1885 			ic->commit_seq = next_commit_seq(ic->commit_seq);
1886 		wraparound_section(ic, &i);
1887 	}
1888 	smp_rmb();
1889 
1890 	write_journal(ic, commit_start, commit_sections);
1891 
1892 	spin_lock_irq(&ic->endio_wait.lock);
1893 	ic->uncommitted_section += commit_sections;
1894 	wraparound_section(ic, &ic->uncommitted_section);
1895 	ic->n_uncommitted_sections -= commit_sections;
1896 	ic->n_committed_sections += commit_sections;
1897 	spin_unlock_irq(&ic->endio_wait.lock);
1898 
1899 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1900 		queue_work(ic->writer_wq, &ic->writer_work);
1901 
1902 release_flush_bios:
1903 	while (flushes) {
1904 		struct bio *next = flushes->bi_next;
1905 		flushes->bi_next = NULL;
1906 		do_endio(ic, flushes);
1907 		flushes = next;
1908 	}
1909 }
1910 
1911 static void complete_copy_from_journal(unsigned long error, void *context)
1912 {
1913 	struct journal_io *io = context;
1914 	struct journal_completion *comp = io->comp;
1915 	struct dm_integrity_c *ic = comp->ic;
1916 	remove_range(ic, &io->range);
1917 	mempool_free(io, &ic->journal_io_mempool);
1918 	if (unlikely(error != 0))
1919 		dm_integrity_io_error(ic, "copying from journal", -EIO);
1920 	complete_journal_op(comp);
1921 }
1922 
1923 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1924 			       struct journal_entry *je)
1925 {
1926 	unsigned s = 0;
1927 	do {
1928 		js->commit_id = je->last_bytes[s];
1929 		js++;
1930 	} while (++s < ic->sectors_per_block);
1931 }
1932 
1933 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1934 			     unsigned write_sections, bool from_replay)
1935 {
1936 	unsigned i, j, n;
1937 	struct journal_completion comp;
1938 	struct blk_plug plug;
1939 
1940 	blk_start_plug(&plug);
1941 
1942 	comp.ic = ic;
1943 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1944 	init_completion(&comp.comp);
1945 
1946 	i = write_start;
1947 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1948 #ifndef INTERNAL_VERIFY
1949 		if (unlikely(from_replay))
1950 #endif
1951 			rw_section_mac(ic, i, false);
1952 		for (j = 0; j < ic->journal_section_entries; j++) {
1953 			struct journal_entry *je = access_journal_entry(ic, i, j);
1954 			sector_t sec, area, offset;
1955 			unsigned k, l, next_loop;
1956 			sector_t metadata_block;
1957 			unsigned metadata_offset;
1958 			struct journal_io *io;
1959 
1960 			if (journal_entry_is_unused(je))
1961 				continue;
1962 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1963 			sec = journal_entry_get_sector(je);
1964 			if (unlikely(from_replay)) {
1965 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1966 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1967 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
1968 				}
1969 			}
1970 			get_area_and_offset(ic, sec, &area, &offset);
1971 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1972 			for (k = j + 1; k < ic->journal_section_entries; k++) {
1973 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
1974 				sector_t sec2, area2, offset2;
1975 				if (journal_entry_is_unused(je2))
1976 					break;
1977 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1978 				sec2 = journal_entry_get_sector(je2);
1979 				get_area_and_offset(ic, sec2, &area2, &offset2);
1980 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1981 					break;
1982 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1983 			}
1984 			next_loop = k - 1;
1985 
1986 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
1987 			io->comp = &comp;
1988 			io->range.logical_sector = sec;
1989 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1990 
1991 			spin_lock_irq(&ic->endio_wait.lock);
1992 			if (unlikely(!add_new_range(ic, &io->range, true)))
1993 				wait_and_add_new_range(ic, &io->range);
1994 
1995 			if (likely(!from_replay)) {
1996 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1997 
1998 				/* don't write if there is newer committed sector */
1999 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2000 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2001 
2002 					journal_entry_set_unused(je2);
2003 					remove_journal_node(ic, &section_node[j]);
2004 					j++;
2005 					sec += ic->sectors_per_block;
2006 					offset += ic->sectors_per_block;
2007 				}
2008 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2009 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2010 
2011 					journal_entry_set_unused(je2);
2012 					remove_journal_node(ic, &section_node[k - 1]);
2013 					k--;
2014 				}
2015 				if (j == k) {
2016 					remove_range_unlocked(ic, &io->range);
2017 					spin_unlock_irq(&ic->endio_wait.lock);
2018 					mempool_free(io, &ic->journal_io_mempool);
2019 					goto skip_io;
2020 				}
2021 				for (l = j; l < k; l++) {
2022 					remove_journal_node(ic, &section_node[l]);
2023 				}
2024 			}
2025 			spin_unlock_irq(&ic->endio_wait.lock);
2026 
2027 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2028 			for (l = j; l < k; l++) {
2029 				int r;
2030 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2031 
2032 				if (
2033 #ifndef INTERNAL_VERIFY
2034 				    unlikely(from_replay) &&
2035 #endif
2036 				    ic->internal_hash) {
2037 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2038 
2039 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2040 								  (char *)access_journal_data(ic, i, l), test_tag);
2041 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2042 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2043 				}
2044 
2045 				journal_entry_set_unused(je2);
2046 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2047 							ic->tag_size, TAG_WRITE);
2048 				if (unlikely(r)) {
2049 					dm_integrity_io_error(ic, "reading tags", r);
2050 				}
2051 			}
2052 
2053 			atomic_inc(&comp.in_flight);
2054 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2055 					  (k - j) << ic->sb->log2_sectors_per_block,
2056 					  get_data_sector(ic, area, offset),
2057 					  complete_copy_from_journal, io);
2058 skip_io:
2059 			j = next_loop;
2060 		}
2061 	}
2062 
2063 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2064 
2065 	blk_finish_plug(&plug);
2066 
2067 	complete_journal_op(&comp);
2068 	wait_for_completion_io(&comp.comp);
2069 
2070 	dm_integrity_flush_buffers(ic);
2071 }
2072 
2073 static void integrity_writer(struct work_struct *w)
2074 {
2075 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2076 	unsigned write_start, write_sections;
2077 
2078 	unsigned prev_free_sectors;
2079 
2080 	/* the following test is not needed, but it tests the replay code */
2081 	if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2082 		return;
2083 
2084 	spin_lock_irq(&ic->endio_wait.lock);
2085 	write_start = ic->committed_section;
2086 	write_sections = ic->n_committed_sections;
2087 	spin_unlock_irq(&ic->endio_wait.lock);
2088 
2089 	if (!write_sections)
2090 		return;
2091 
2092 	do_journal_write(ic, write_start, write_sections, false);
2093 
2094 	spin_lock_irq(&ic->endio_wait.lock);
2095 
2096 	ic->committed_section += write_sections;
2097 	wraparound_section(ic, &ic->committed_section);
2098 	ic->n_committed_sections -= write_sections;
2099 
2100 	prev_free_sectors = ic->free_sectors;
2101 	ic->free_sectors += write_sections * ic->journal_section_entries;
2102 	if (unlikely(!prev_free_sectors))
2103 		wake_up_locked(&ic->endio_wait);
2104 
2105 	spin_unlock_irq(&ic->endio_wait.lock);
2106 }
2107 
2108 static void recalc_write_super(struct dm_integrity_c *ic)
2109 {
2110 	int r;
2111 
2112 	dm_integrity_flush_buffers(ic);
2113 	if (dm_integrity_failed(ic))
2114 		return;
2115 
2116 	sb_set_version(ic);
2117 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2118 	if (unlikely(r))
2119 		dm_integrity_io_error(ic, "writing superblock", r);
2120 }
2121 
2122 static void integrity_recalc(struct work_struct *w)
2123 {
2124 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2125 	struct dm_integrity_range range;
2126 	struct dm_io_request io_req;
2127 	struct dm_io_region io_loc;
2128 	sector_t area, offset;
2129 	sector_t metadata_block;
2130 	unsigned metadata_offset;
2131 	__u8 *t;
2132 	unsigned i;
2133 	int r;
2134 	unsigned super_counter = 0;
2135 
2136 	spin_lock_irq(&ic->endio_wait.lock);
2137 
2138 next_chunk:
2139 
2140 	if (unlikely(READ_ONCE(ic->suspending)))
2141 		goto unlock_ret;
2142 
2143 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2144 	if (unlikely(range.logical_sector >= ic->provided_data_sectors))
2145 		goto unlock_ret;
2146 
2147 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2148 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2149 	if (!ic->meta_dev)
2150 		range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2151 
2152 	if (unlikely(!add_new_range(ic, &range, true)))
2153 		wait_and_add_new_range(ic, &range);
2154 
2155 	spin_unlock_irq(&ic->endio_wait.lock);
2156 
2157 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2158 		recalc_write_super(ic);
2159 		super_counter = 0;
2160 	}
2161 
2162 	if (unlikely(dm_integrity_failed(ic)))
2163 		goto err;
2164 
2165 	io_req.bi_op = REQ_OP_READ;
2166 	io_req.bi_op_flags = 0;
2167 	io_req.mem.type = DM_IO_VMA;
2168 	io_req.mem.ptr.addr = ic->recalc_buffer;
2169 	io_req.notify.fn = NULL;
2170 	io_req.client = ic->io;
2171 	io_loc.bdev = ic->dev->bdev;
2172 	io_loc.sector = get_data_sector(ic, area, offset);
2173 	io_loc.count = range.n_sectors;
2174 
2175 	r = dm_io(&io_req, 1, &io_loc, NULL);
2176 	if (unlikely(r)) {
2177 		dm_integrity_io_error(ic, "reading data", r);
2178 		goto err;
2179 	}
2180 
2181 	t = ic->recalc_tags;
2182 	for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
2183 		integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2184 		t += ic->tag_size;
2185 	}
2186 
2187 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2188 
2189 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2190 	if (unlikely(r)) {
2191 		dm_integrity_io_error(ic, "writing tags", r);
2192 		goto err;
2193 	}
2194 
2195 	spin_lock_irq(&ic->endio_wait.lock);
2196 	remove_range_unlocked(ic, &range);
2197 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2198 	goto next_chunk;
2199 
2200 err:
2201 	remove_range(ic, &range);
2202 	return;
2203 
2204 unlock_ret:
2205 	spin_unlock_irq(&ic->endio_wait.lock);
2206 
2207 	recalc_write_super(ic);
2208 }
2209 
2210 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2211 			 unsigned n_sections, unsigned char commit_seq)
2212 {
2213 	unsigned i, j, n;
2214 
2215 	if (!n_sections)
2216 		return;
2217 
2218 	for (n = 0; n < n_sections; n++) {
2219 		i = start_section + n;
2220 		wraparound_section(ic, &i);
2221 		for (j = 0; j < ic->journal_section_sectors; j++) {
2222 			struct journal_sector *js = access_journal(ic, i, j);
2223 			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2224 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2225 		}
2226 		for (j = 0; j < ic->journal_section_entries; j++) {
2227 			struct journal_entry *je = access_journal_entry(ic, i, j);
2228 			journal_entry_set_unused(je);
2229 		}
2230 	}
2231 
2232 	write_journal(ic, start_section, n_sections);
2233 }
2234 
2235 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2236 {
2237 	unsigned char k;
2238 	for (k = 0; k < N_COMMIT_IDS; k++) {
2239 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2240 			return k;
2241 	}
2242 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2243 	return -EIO;
2244 }
2245 
2246 static void replay_journal(struct dm_integrity_c *ic)
2247 {
2248 	unsigned i, j;
2249 	bool used_commit_ids[N_COMMIT_IDS];
2250 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2251 	unsigned write_start, write_sections;
2252 	unsigned continue_section;
2253 	bool journal_empty;
2254 	unsigned char unused, last_used, want_commit_seq;
2255 
2256 	if (ic->mode == 'R')
2257 		return;
2258 
2259 	if (ic->journal_uptodate)
2260 		return;
2261 
2262 	last_used = 0;
2263 	write_start = 0;
2264 
2265 	if (!ic->just_formatted) {
2266 		DEBUG_print("reading journal\n");
2267 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2268 		if (ic->journal_io)
2269 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2270 		if (ic->journal_io) {
2271 			struct journal_completion crypt_comp;
2272 			crypt_comp.ic = ic;
2273 			init_completion(&crypt_comp.comp);
2274 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2275 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2276 			wait_for_completion(&crypt_comp.comp);
2277 		}
2278 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2279 	}
2280 
2281 	if (dm_integrity_failed(ic))
2282 		goto clear_journal;
2283 
2284 	journal_empty = true;
2285 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2286 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2287 	for (i = 0; i < ic->journal_sections; i++) {
2288 		for (j = 0; j < ic->journal_section_sectors; j++) {
2289 			int k;
2290 			struct journal_sector *js = access_journal(ic, i, j);
2291 			k = find_commit_seq(ic, i, j, js->commit_id);
2292 			if (k < 0)
2293 				goto clear_journal;
2294 			used_commit_ids[k] = true;
2295 			max_commit_id_sections[k] = i;
2296 		}
2297 		if (journal_empty) {
2298 			for (j = 0; j < ic->journal_section_entries; j++) {
2299 				struct journal_entry *je = access_journal_entry(ic, i, j);
2300 				if (!journal_entry_is_unused(je)) {
2301 					journal_empty = false;
2302 					break;
2303 				}
2304 			}
2305 		}
2306 	}
2307 
2308 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2309 		unused = N_COMMIT_IDS - 1;
2310 		while (unused && !used_commit_ids[unused - 1])
2311 			unused--;
2312 	} else {
2313 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2314 			if (!used_commit_ids[unused])
2315 				break;
2316 		if (unused == N_COMMIT_IDS) {
2317 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2318 			goto clear_journal;
2319 		}
2320 	}
2321 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2322 		    unused, used_commit_ids[0], used_commit_ids[1],
2323 		    used_commit_ids[2], used_commit_ids[3]);
2324 
2325 	last_used = prev_commit_seq(unused);
2326 	want_commit_seq = prev_commit_seq(last_used);
2327 
2328 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2329 		journal_empty = true;
2330 
2331 	write_start = max_commit_id_sections[last_used] + 1;
2332 	if (unlikely(write_start >= ic->journal_sections))
2333 		want_commit_seq = next_commit_seq(want_commit_seq);
2334 	wraparound_section(ic, &write_start);
2335 
2336 	i = write_start;
2337 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2338 		for (j = 0; j < ic->journal_section_sectors; j++) {
2339 			struct journal_sector *js = access_journal(ic, i, j);
2340 
2341 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2342 				/*
2343 				 * This could be caused by crash during writing.
2344 				 * We won't replay the inconsistent part of the
2345 				 * journal.
2346 				 */
2347 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2348 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2349 				goto brk;
2350 			}
2351 		}
2352 		i++;
2353 		if (unlikely(i >= ic->journal_sections))
2354 			want_commit_seq = next_commit_seq(want_commit_seq);
2355 		wraparound_section(ic, &i);
2356 	}
2357 brk:
2358 
2359 	if (!journal_empty) {
2360 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2361 			    write_sections, write_start, want_commit_seq);
2362 		do_journal_write(ic, write_start, write_sections, true);
2363 	}
2364 
2365 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2366 		continue_section = write_start;
2367 		ic->commit_seq = want_commit_seq;
2368 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2369 	} else {
2370 		unsigned s;
2371 		unsigned char erase_seq;
2372 clear_journal:
2373 		DEBUG_print("clearing journal\n");
2374 
2375 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2376 		s = write_start;
2377 		init_journal(ic, s, 1, erase_seq);
2378 		s++;
2379 		wraparound_section(ic, &s);
2380 		if (ic->journal_sections >= 2) {
2381 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2382 			s += ic->journal_sections - 2;
2383 			wraparound_section(ic, &s);
2384 			init_journal(ic, s, 1, erase_seq);
2385 		}
2386 
2387 		continue_section = 0;
2388 		ic->commit_seq = next_commit_seq(erase_seq);
2389 	}
2390 
2391 	ic->committed_section = continue_section;
2392 	ic->n_committed_sections = 0;
2393 
2394 	ic->uncommitted_section = continue_section;
2395 	ic->n_uncommitted_sections = 0;
2396 
2397 	ic->free_section = continue_section;
2398 	ic->free_section_entry = 0;
2399 	ic->free_sectors = ic->journal_entries;
2400 
2401 	ic->journal_tree_root = RB_ROOT;
2402 	for (i = 0; i < ic->journal_entries; i++)
2403 		init_journal_node(&ic->journal_tree[i]);
2404 }
2405 
2406 static void dm_integrity_postsuspend(struct dm_target *ti)
2407 {
2408 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2409 
2410 	del_timer_sync(&ic->autocommit_timer);
2411 
2412 	WRITE_ONCE(ic->suspending, 1);
2413 
2414 	if (ic->recalc_wq)
2415 		drain_workqueue(ic->recalc_wq);
2416 
2417 	queue_work(ic->commit_wq, &ic->commit_work);
2418 	drain_workqueue(ic->commit_wq);
2419 
2420 	if (ic->mode == 'J') {
2421 		if (ic->meta_dev)
2422 			queue_work(ic->writer_wq, &ic->writer_work);
2423 		drain_workqueue(ic->writer_wq);
2424 		dm_integrity_flush_buffers(ic);
2425 	}
2426 
2427 	WRITE_ONCE(ic->suspending, 0);
2428 
2429 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2430 
2431 	ic->journal_uptodate = true;
2432 }
2433 
2434 static void dm_integrity_resume(struct dm_target *ti)
2435 {
2436 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2437 
2438 	replay_journal(ic);
2439 
2440 	if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2441 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2442 		if (recalc_pos < ic->provided_data_sectors) {
2443 			queue_work(ic->recalc_wq, &ic->recalc_work);
2444 		} else if (recalc_pos > ic->provided_data_sectors) {
2445 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2446 			recalc_write_super(ic);
2447 		}
2448 	}
2449 }
2450 
2451 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2452 				unsigned status_flags, char *result, unsigned maxlen)
2453 {
2454 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2455 	unsigned arg_count;
2456 	size_t sz = 0;
2457 
2458 	switch (type) {
2459 	case STATUSTYPE_INFO:
2460 		DMEMIT("%llu %llu",
2461 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
2462 			(unsigned long long)ic->provided_data_sectors);
2463 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2464 			DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2465 		else
2466 			DMEMIT(" -");
2467 		break;
2468 
2469 	case STATUSTYPE_TABLE: {
2470 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2471 		watermark_percentage += ic->journal_entries / 2;
2472 		do_div(watermark_percentage, ic->journal_entries);
2473 		arg_count = 5;
2474 		arg_count += !!ic->meta_dev;
2475 		arg_count += ic->sectors_per_block != 1;
2476 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2477 		arg_count += !!ic->internal_hash_alg.alg_string;
2478 		arg_count += !!ic->journal_crypt_alg.alg_string;
2479 		arg_count += !!ic->journal_mac_alg.alg_string;
2480 		DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2481 		       ic->tag_size, ic->mode, arg_count);
2482 		if (ic->meta_dev)
2483 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
2484 		if (ic->sectors_per_block != 1)
2485 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2486 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2487 			DMEMIT(" recalculate");
2488 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2489 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2490 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2491 		DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2492 		DMEMIT(" commit_time:%u", ic->autocommit_msec);
2493 
2494 #define EMIT_ALG(a, n)							\
2495 		do {							\
2496 			if (ic->a.alg_string) {				\
2497 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
2498 				if (ic->a.key_string)			\
2499 					DMEMIT(":%s", ic->a.key_string);\
2500 			}						\
2501 		} while (0)
2502 		EMIT_ALG(internal_hash_alg, "internal_hash");
2503 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
2504 		EMIT_ALG(journal_mac_alg, "journal_mac");
2505 		break;
2506 	}
2507 	}
2508 }
2509 
2510 static int dm_integrity_iterate_devices(struct dm_target *ti,
2511 					iterate_devices_callout_fn fn, void *data)
2512 {
2513 	struct dm_integrity_c *ic = ti->private;
2514 
2515 	if (!ic->meta_dev)
2516 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2517 	else
2518 		return fn(ti, ic->dev, 0, ti->len, data);
2519 }
2520 
2521 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2522 {
2523 	struct dm_integrity_c *ic = ti->private;
2524 
2525 	if (ic->sectors_per_block > 1) {
2526 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2527 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2528 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2529 	}
2530 }
2531 
2532 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2533 {
2534 	unsigned sector_space = JOURNAL_SECTOR_DATA;
2535 
2536 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2537 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2538 					 JOURNAL_ENTRY_ROUNDUP);
2539 
2540 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2541 		sector_space -= JOURNAL_MAC_PER_SECTOR;
2542 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2543 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2544 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2545 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2546 }
2547 
2548 static int calculate_device_limits(struct dm_integrity_c *ic)
2549 {
2550 	__u64 initial_sectors;
2551 
2552 	calculate_journal_section_size(ic);
2553 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2554 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
2555 		return -EINVAL;
2556 	ic->initial_sectors = initial_sectors;
2557 
2558 	if (!ic->meta_dev) {
2559 		sector_t last_sector, last_area, last_offset;
2560 
2561 		ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2562 					   (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2563 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
2564 			ic->log2_metadata_run = __ffs(ic->metadata_run);
2565 		else
2566 			ic->log2_metadata_run = -1;
2567 
2568 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2569 		last_sector = get_data_sector(ic, last_area, last_offset);
2570 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
2571 			return -EINVAL;
2572 	} else {
2573 		__u64 meta_size = ic->provided_data_sectors * ic->tag_size;
2574 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
2575 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
2576 		meta_size <<= ic->log2_buffer_sectors;
2577 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
2578 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
2579 			return -EINVAL;
2580 		ic->metadata_run = 1;
2581 		ic->log2_metadata_run = 0;
2582 	}
2583 
2584 	return 0;
2585 }
2586 
2587 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2588 {
2589 	unsigned journal_sections;
2590 	int test_bit;
2591 
2592 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2593 	memcpy(ic->sb->magic, SB_MAGIC, 8);
2594 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2595 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2596 	if (ic->journal_mac_alg.alg_string)
2597 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2598 
2599 	calculate_journal_section_size(ic);
2600 	journal_sections = journal_sectors / ic->journal_section_sectors;
2601 	if (!journal_sections)
2602 		journal_sections = 1;
2603 
2604 	if (!ic->meta_dev) {
2605 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
2606 		if (!interleave_sectors)
2607 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2608 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2609 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2610 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2611 
2612 		ic->provided_data_sectors = 0;
2613 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
2614 			__u64 prev_data_sectors = ic->provided_data_sectors;
2615 
2616 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
2617 			if (calculate_device_limits(ic))
2618 				ic->provided_data_sectors = prev_data_sectors;
2619 		}
2620 		if (!ic->provided_data_sectors)
2621 			return -EINVAL;
2622 	} else {
2623 		ic->sb->log2_interleave_sectors = 0;
2624 		ic->provided_data_sectors = ic->data_device_sectors;
2625 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
2626 
2627 try_smaller_buffer:
2628 		ic->sb->journal_sections = cpu_to_le32(0);
2629 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
2630 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
2631 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
2632 			if (test_journal_sections > journal_sections)
2633 				continue;
2634 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
2635 			if (calculate_device_limits(ic))
2636 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
2637 
2638 		}
2639 		if (!le32_to_cpu(ic->sb->journal_sections)) {
2640 			if (ic->log2_buffer_sectors > 3) {
2641 				ic->log2_buffer_sectors--;
2642 				goto try_smaller_buffer;
2643 			}
2644 			return -EINVAL;
2645 		}
2646 	}
2647 
2648 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2649 
2650 	sb_set_version(ic);
2651 
2652 	return 0;
2653 }
2654 
2655 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2656 {
2657 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2658 	struct blk_integrity bi;
2659 
2660 	memset(&bi, 0, sizeof(bi));
2661 	bi.profile = &dm_integrity_profile;
2662 	bi.tuple_size = ic->tag_size;
2663 	bi.tag_size = bi.tuple_size;
2664 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2665 
2666 	blk_integrity_register(disk, &bi);
2667 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2668 }
2669 
2670 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2671 {
2672 	unsigned i;
2673 
2674 	if (!pl)
2675 		return;
2676 	for (i = 0; i < ic->journal_pages; i++)
2677 		if (pl[i].page)
2678 			__free_page(pl[i].page);
2679 	kvfree(pl);
2680 }
2681 
2682 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2683 {
2684 	size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2685 	struct page_list *pl;
2686 	unsigned i;
2687 
2688 	pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2689 	if (!pl)
2690 		return NULL;
2691 
2692 	for (i = 0; i < ic->journal_pages; i++) {
2693 		pl[i].page = alloc_page(GFP_KERNEL);
2694 		if (!pl[i].page) {
2695 			dm_integrity_free_page_list(ic, pl);
2696 			return NULL;
2697 		}
2698 		if (i)
2699 			pl[i - 1].next = &pl[i];
2700 	}
2701 
2702 	return pl;
2703 }
2704 
2705 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2706 {
2707 	unsigned i;
2708 	for (i = 0; i < ic->journal_sections; i++)
2709 		kvfree(sl[i]);
2710 	kvfree(sl);
2711 }
2712 
2713 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2714 {
2715 	struct scatterlist **sl;
2716 	unsigned i;
2717 
2718 	sl = kvmalloc_array(ic->journal_sections,
2719 			    sizeof(struct scatterlist *),
2720 			    GFP_KERNEL | __GFP_ZERO);
2721 	if (!sl)
2722 		return NULL;
2723 
2724 	for (i = 0; i < ic->journal_sections; i++) {
2725 		struct scatterlist *s;
2726 		unsigned start_index, start_offset;
2727 		unsigned end_index, end_offset;
2728 		unsigned n_pages;
2729 		unsigned idx;
2730 
2731 		page_list_location(ic, i, 0, &start_index, &start_offset);
2732 		page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2733 
2734 		n_pages = (end_index - start_index + 1);
2735 
2736 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
2737 				   GFP_KERNEL);
2738 		if (!s) {
2739 			dm_integrity_free_journal_scatterlist(ic, sl);
2740 			return NULL;
2741 		}
2742 
2743 		sg_init_table(s, n_pages);
2744 		for (idx = start_index; idx <= end_index; idx++) {
2745 			char *va = lowmem_page_address(pl[idx].page);
2746 			unsigned start = 0, end = PAGE_SIZE;
2747 			if (idx == start_index)
2748 				start = start_offset;
2749 			if (idx == end_index)
2750 				end = end_offset + (1 << SECTOR_SHIFT);
2751 			sg_set_buf(&s[idx - start_index], va + start, end - start);
2752 		}
2753 
2754 		sl[i] = s;
2755 	}
2756 
2757 	return sl;
2758 }
2759 
2760 static void free_alg(struct alg_spec *a)
2761 {
2762 	kzfree(a->alg_string);
2763 	kzfree(a->key);
2764 	memset(a, 0, sizeof *a);
2765 }
2766 
2767 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2768 {
2769 	char *k;
2770 
2771 	free_alg(a);
2772 
2773 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2774 	if (!a->alg_string)
2775 		goto nomem;
2776 
2777 	k = strchr(a->alg_string, ':');
2778 	if (k) {
2779 		*k = 0;
2780 		a->key_string = k + 1;
2781 		if (strlen(a->key_string) & 1)
2782 			goto inval;
2783 
2784 		a->key_size = strlen(a->key_string) / 2;
2785 		a->key = kmalloc(a->key_size, GFP_KERNEL);
2786 		if (!a->key)
2787 			goto nomem;
2788 		if (hex2bin(a->key, a->key_string, a->key_size))
2789 			goto inval;
2790 	}
2791 
2792 	return 0;
2793 inval:
2794 	*error = error_inval;
2795 	return -EINVAL;
2796 nomem:
2797 	*error = "Out of memory for an argument";
2798 	return -ENOMEM;
2799 }
2800 
2801 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2802 		   char *error_alg, char *error_key)
2803 {
2804 	int r;
2805 
2806 	if (a->alg_string) {
2807 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
2808 		if (IS_ERR(*hash)) {
2809 			*error = error_alg;
2810 			r = PTR_ERR(*hash);
2811 			*hash = NULL;
2812 			return r;
2813 		}
2814 
2815 		if (a->key) {
2816 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
2817 			if (r) {
2818 				*error = error_key;
2819 				return r;
2820 			}
2821 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
2822 			*error = error_key;
2823 			return -ENOKEY;
2824 		}
2825 	}
2826 
2827 	return 0;
2828 }
2829 
2830 static int create_journal(struct dm_integrity_c *ic, char **error)
2831 {
2832 	int r = 0;
2833 	unsigned i;
2834 	__u64 journal_pages, journal_desc_size, journal_tree_size;
2835 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
2836 	struct skcipher_request *req = NULL;
2837 
2838 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2839 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2840 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2841 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2842 
2843 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2844 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2845 	journal_desc_size = journal_pages * sizeof(struct page_list);
2846 	if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
2847 		*error = "Journal doesn't fit into memory";
2848 		r = -ENOMEM;
2849 		goto bad;
2850 	}
2851 	ic->journal_pages = journal_pages;
2852 
2853 	ic->journal = dm_integrity_alloc_page_list(ic);
2854 	if (!ic->journal) {
2855 		*error = "Could not allocate memory for journal";
2856 		r = -ENOMEM;
2857 		goto bad;
2858 	}
2859 	if (ic->journal_crypt_alg.alg_string) {
2860 		unsigned ivsize, blocksize;
2861 		struct journal_completion comp;
2862 
2863 		comp.ic = ic;
2864 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2865 		if (IS_ERR(ic->journal_crypt)) {
2866 			*error = "Invalid journal cipher";
2867 			r = PTR_ERR(ic->journal_crypt);
2868 			ic->journal_crypt = NULL;
2869 			goto bad;
2870 		}
2871 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2872 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2873 
2874 		if (ic->journal_crypt_alg.key) {
2875 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2876 						   ic->journal_crypt_alg.key_size);
2877 			if (r) {
2878 				*error = "Error setting encryption key";
2879 				goto bad;
2880 			}
2881 		}
2882 		DEBUG_print("cipher %s, block size %u iv size %u\n",
2883 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2884 
2885 		ic->journal_io = dm_integrity_alloc_page_list(ic);
2886 		if (!ic->journal_io) {
2887 			*error = "Could not allocate memory for journal io";
2888 			r = -ENOMEM;
2889 			goto bad;
2890 		}
2891 
2892 		if (blocksize == 1) {
2893 			struct scatterlist *sg;
2894 
2895 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2896 			if (!req) {
2897 				*error = "Could not allocate crypt request";
2898 				r = -ENOMEM;
2899 				goto bad;
2900 			}
2901 
2902 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2903 			if (!crypt_iv) {
2904 				*error = "Could not allocate iv";
2905 				r = -ENOMEM;
2906 				goto bad;
2907 			}
2908 
2909 			ic->journal_xor = dm_integrity_alloc_page_list(ic);
2910 			if (!ic->journal_xor) {
2911 				*error = "Could not allocate memory for journal xor";
2912 				r = -ENOMEM;
2913 				goto bad;
2914 			}
2915 
2916 			sg = kvmalloc_array(ic->journal_pages + 1,
2917 					    sizeof(struct scatterlist),
2918 					    GFP_KERNEL);
2919 			if (!sg) {
2920 				*error = "Unable to allocate sg list";
2921 				r = -ENOMEM;
2922 				goto bad;
2923 			}
2924 			sg_init_table(sg, ic->journal_pages + 1);
2925 			for (i = 0; i < ic->journal_pages; i++) {
2926 				char *va = lowmem_page_address(ic->journal_xor[i].page);
2927 				clear_page(va);
2928 				sg_set_buf(&sg[i], va, PAGE_SIZE);
2929 			}
2930 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2931 			memset(crypt_iv, 0x00, ivsize);
2932 
2933 			skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
2934 			init_completion(&comp.comp);
2935 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2936 			if (do_crypt(true, req, &comp))
2937 				wait_for_completion(&comp.comp);
2938 			kvfree(sg);
2939 			r = dm_integrity_failed(ic);
2940 			if (r) {
2941 				*error = "Unable to encrypt journal";
2942 				goto bad;
2943 			}
2944 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2945 
2946 			crypto_free_skcipher(ic->journal_crypt);
2947 			ic->journal_crypt = NULL;
2948 		} else {
2949 			unsigned crypt_len = roundup(ivsize, blocksize);
2950 
2951 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2952 			if (!req) {
2953 				*error = "Could not allocate crypt request";
2954 				r = -ENOMEM;
2955 				goto bad;
2956 			}
2957 
2958 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2959 			if (!crypt_iv) {
2960 				*error = "Could not allocate iv";
2961 				r = -ENOMEM;
2962 				goto bad;
2963 			}
2964 
2965 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2966 			if (!crypt_data) {
2967 				*error = "Unable to allocate crypt data";
2968 				r = -ENOMEM;
2969 				goto bad;
2970 			}
2971 
2972 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2973 			if (!ic->journal_scatterlist) {
2974 				*error = "Unable to allocate sg list";
2975 				r = -ENOMEM;
2976 				goto bad;
2977 			}
2978 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2979 			if (!ic->journal_io_scatterlist) {
2980 				*error = "Unable to allocate sg list";
2981 				r = -ENOMEM;
2982 				goto bad;
2983 			}
2984 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
2985 							 sizeof(struct skcipher_request *),
2986 							 GFP_KERNEL | __GFP_ZERO);
2987 			if (!ic->sk_requests) {
2988 				*error = "Unable to allocate sk requests";
2989 				r = -ENOMEM;
2990 				goto bad;
2991 			}
2992 			for (i = 0; i < ic->journal_sections; i++) {
2993 				struct scatterlist sg;
2994 				struct skcipher_request *section_req;
2995 				__u32 section_le = cpu_to_le32(i);
2996 
2997 				memset(crypt_iv, 0x00, ivsize);
2998 				memset(crypt_data, 0x00, crypt_len);
2999 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3000 
3001 				sg_init_one(&sg, crypt_data, crypt_len);
3002 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3003 				init_completion(&comp.comp);
3004 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3005 				if (do_crypt(true, req, &comp))
3006 					wait_for_completion(&comp.comp);
3007 
3008 				r = dm_integrity_failed(ic);
3009 				if (r) {
3010 					*error = "Unable to generate iv";
3011 					goto bad;
3012 				}
3013 
3014 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3015 				if (!section_req) {
3016 					*error = "Unable to allocate crypt request";
3017 					r = -ENOMEM;
3018 					goto bad;
3019 				}
3020 				section_req->iv = kmalloc_array(ivsize, 2,
3021 								GFP_KERNEL);
3022 				if (!section_req->iv) {
3023 					skcipher_request_free(section_req);
3024 					*error = "Unable to allocate iv";
3025 					r = -ENOMEM;
3026 					goto bad;
3027 				}
3028 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3029 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3030 				ic->sk_requests[i] = section_req;
3031 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3032 			}
3033 		}
3034 	}
3035 
3036 	for (i = 0; i < N_COMMIT_IDS; i++) {
3037 		unsigned j;
3038 retest_commit_id:
3039 		for (j = 0; j < i; j++) {
3040 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3041 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3042 				goto retest_commit_id;
3043 			}
3044 		}
3045 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3046 	}
3047 
3048 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3049 	if (journal_tree_size > ULONG_MAX) {
3050 		*error = "Journal doesn't fit into memory";
3051 		r = -ENOMEM;
3052 		goto bad;
3053 	}
3054 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3055 	if (!ic->journal_tree) {
3056 		*error = "Could not allocate memory for journal tree";
3057 		r = -ENOMEM;
3058 	}
3059 bad:
3060 	kfree(crypt_data);
3061 	kfree(crypt_iv);
3062 	skcipher_request_free(req);
3063 
3064 	return r;
3065 }
3066 
3067 /*
3068  * Construct a integrity mapping
3069  *
3070  * Arguments:
3071  *	device
3072  *	offset from the start of the device
3073  *	tag size
3074  *	D - direct writes, J - journal writes, R - recovery mode
3075  *	number of optional arguments
3076  *	optional arguments:
3077  *		journal_sectors
3078  *		interleave_sectors
3079  *		buffer_sectors
3080  *		journal_watermark
3081  *		commit_time
3082  *		internal_hash
3083  *		journal_crypt
3084  *		journal_mac
3085  *		block_size
3086  */
3087 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3088 {
3089 	struct dm_integrity_c *ic;
3090 	char dummy;
3091 	int r;
3092 	unsigned extra_args;
3093 	struct dm_arg_set as;
3094 	static const struct dm_arg _args[] = {
3095 		{0, 9, "Invalid number of feature args"},
3096 	};
3097 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3098 	bool recalculate;
3099 	bool should_write_sb;
3100 	__u64 threshold;
3101 	unsigned long long start;
3102 
3103 #define DIRECT_ARGUMENTS	4
3104 
3105 	if (argc <= DIRECT_ARGUMENTS) {
3106 		ti->error = "Invalid argument count";
3107 		return -EINVAL;
3108 	}
3109 
3110 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3111 	if (!ic) {
3112 		ti->error = "Cannot allocate integrity context";
3113 		return -ENOMEM;
3114 	}
3115 	ti->private = ic;
3116 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3117 
3118 	ic->in_progress = RB_ROOT;
3119 	INIT_LIST_HEAD(&ic->wait_list);
3120 	init_waitqueue_head(&ic->endio_wait);
3121 	bio_list_init(&ic->flush_bio_list);
3122 	init_waitqueue_head(&ic->copy_to_journal_wait);
3123 	init_completion(&ic->crypto_backoff);
3124 	atomic64_set(&ic->number_of_mismatches, 0);
3125 
3126 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3127 	if (r) {
3128 		ti->error = "Device lookup failed";
3129 		goto bad;
3130 	}
3131 
3132 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3133 		ti->error = "Invalid starting offset";
3134 		r = -EINVAL;
3135 		goto bad;
3136 	}
3137 	ic->start = start;
3138 
3139 	if (strcmp(argv[2], "-")) {
3140 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3141 			ti->error = "Invalid tag size";
3142 			r = -EINVAL;
3143 			goto bad;
3144 		}
3145 	}
3146 
3147 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
3148 		ic->mode = argv[3][0];
3149 	else {
3150 		ti->error = "Invalid mode (expecting J, D, R)";
3151 		r = -EINVAL;
3152 		goto bad;
3153 	}
3154 
3155 	journal_sectors = 0;
3156 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3157 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
3158 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3159 	sync_msec = DEFAULT_SYNC_MSEC;
3160 	recalculate = false;
3161 	ic->sectors_per_block = 1;
3162 
3163 	as.argc = argc - DIRECT_ARGUMENTS;
3164 	as.argv = argv + DIRECT_ARGUMENTS;
3165 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3166 	if (r)
3167 		goto bad;
3168 
3169 	while (extra_args--) {
3170 		const char *opt_string;
3171 		unsigned val;
3172 		opt_string = dm_shift_arg(&as);
3173 		if (!opt_string) {
3174 			r = -EINVAL;
3175 			ti->error = "Not enough feature arguments";
3176 			goto bad;
3177 		}
3178 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3179 			journal_sectors = val ? val : 1;
3180 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3181 			interleave_sectors = val;
3182 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3183 			buffer_sectors = val;
3184 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3185 			journal_watermark = val;
3186 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3187 			sync_msec = val;
3188 		else if (!memcmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3189 			if (ic->meta_dev) {
3190 				dm_put_device(ti, ic->meta_dev);
3191 				ic->meta_dev = NULL;
3192 			}
3193 			r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev);
3194 			if (r) {
3195 				ti->error = "Device lookup failed";
3196 				goto bad;
3197 			}
3198 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3199 			if (val < 1 << SECTOR_SHIFT ||
3200 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3201 			    (val & (val -1))) {
3202 				r = -EINVAL;
3203 				ti->error = "Invalid block_size argument";
3204 				goto bad;
3205 			}
3206 			ic->sectors_per_block = val >> SECTOR_SHIFT;
3207 		} else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3208 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3209 					    "Invalid internal_hash argument");
3210 			if (r)
3211 				goto bad;
3212 		} else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3213 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3214 					    "Invalid journal_crypt argument");
3215 			if (r)
3216 				goto bad;
3217 		} else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3218 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3219 					    "Invalid journal_mac argument");
3220 			if (r)
3221 				goto bad;
3222 		} else if (!strcmp(opt_string, "recalculate")) {
3223 			recalculate = true;
3224 		} else {
3225 			r = -EINVAL;
3226 			ti->error = "Invalid argument";
3227 			goto bad;
3228 		}
3229 	}
3230 
3231 	ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3232 	if (!ic->meta_dev)
3233 		ic->meta_device_sectors = ic->data_device_sectors;
3234 	else
3235 		ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3236 
3237 	if (!journal_sectors) {
3238 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3239 			ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3240 	}
3241 
3242 	if (!buffer_sectors)
3243 		buffer_sectors = 1;
3244 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3245 
3246 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3247 		    "Invalid internal hash", "Error setting internal hash key");
3248 	if (r)
3249 		goto bad;
3250 
3251 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3252 		    "Invalid journal mac", "Error setting journal mac key");
3253 	if (r)
3254 		goto bad;
3255 
3256 	if (!ic->tag_size) {
3257 		if (!ic->internal_hash) {
3258 			ti->error = "Unknown tag size";
3259 			r = -EINVAL;
3260 			goto bad;
3261 		}
3262 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3263 	}
3264 	if (ic->tag_size > MAX_TAG_SIZE) {
3265 		ti->error = "Too big tag size";
3266 		r = -EINVAL;
3267 		goto bad;
3268 	}
3269 	if (!(ic->tag_size & (ic->tag_size - 1)))
3270 		ic->log2_tag_size = __ffs(ic->tag_size);
3271 	else
3272 		ic->log2_tag_size = -1;
3273 
3274 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3275 	ic->autocommit_msec = sync_msec;
3276 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3277 
3278 	ic->io = dm_io_client_create();
3279 	if (IS_ERR(ic->io)) {
3280 		r = PTR_ERR(ic->io);
3281 		ic->io = NULL;
3282 		ti->error = "Cannot allocate dm io";
3283 		goto bad;
3284 	}
3285 
3286 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3287 	if (r) {
3288 		ti->error = "Cannot allocate mempool";
3289 		goto bad;
3290 	}
3291 
3292 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3293 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3294 	if (!ic->metadata_wq) {
3295 		ti->error = "Cannot allocate workqueue";
3296 		r = -ENOMEM;
3297 		goto bad;
3298 	}
3299 
3300 	/*
3301 	 * If this workqueue were percpu, it would cause bio reordering
3302 	 * and reduced performance.
3303 	 */
3304 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3305 	if (!ic->wait_wq) {
3306 		ti->error = "Cannot allocate workqueue";
3307 		r = -ENOMEM;
3308 		goto bad;
3309 	}
3310 
3311 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3312 	if (!ic->commit_wq) {
3313 		ti->error = "Cannot allocate workqueue";
3314 		r = -ENOMEM;
3315 		goto bad;
3316 	}
3317 	INIT_WORK(&ic->commit_work, integrity_commit);
3318 
3319 	if (ic->mode == 'J') {
3320 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3321 		if (!ic->writer_wq) {
3322 			ti->error = "Cannot allocate workqueue";
3323 			r = -ENOMEM;
3324 			goto bad;
3325 		}
3326 		INIT_WORK(&ic->writer_work, integrity_writer);
3327 	}
3328 
3329 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3330 	if (!ic->sb) {
3331 		r = -ENOMEM;
3332 		ti->error = "Cannot allocate superblock area";
3333 		goto bad;
3334 	}
3335 
3336 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
3337 	if (r) {
3338 		ti->error = "Error reading superblock";
3339 		goto bad;
3340 	}
3341 	should_write_sb = false;
3342 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3343 		if (ic->mode != 'R') {
3344 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3345 				r = -EINVAL;
3346 				ti->error = "The device is not initialized";
3347 				goto bad;
3348 			}
3349 		}
3350 
3351 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3352 		if (r) {
3353 			ti->error = "Could not initialize superblock";
3354 			goto bad;
3355 		}
3356 		if (ic->mode != 'R')
3357 			should_write_sb = true;
3358 	}
3359 
3360 	if (!ic->sb->version || ic->sb->version > SB_VERSION_2) {
3361 		r = -EINVAL;
3362 		ti->error = "Unknown version";
3363 		goto bad;
3364 	}
3365 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3366 		r = -EINVAL;
3367 		ti->error = "Tag size doesn't match the information in superblock";
3368 		goto bad;
3369 	}
3370 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3371 		r = -EINVAL;
3372 		ti->error = "Block size doesn't match the information in superblock";
3373 		goto bad;
3374 	}
3375 	if (!le32_to_cpu(ic->sb->journal_sections)) {
3376 		r = -EINVAL;
3377 		ti->error = "Corrupted superblock, journal_sections is 0";
3378 		goto bad;
3379 	}
3380 	/* make sure that ti->max_io_len doesn't overflow */
3381 	if (!ic->meta_dev) {
3382 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3383 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3384 			r = -EINVAL;
3385 			ti->error = "Invalid interleave_sectors in the superblock";
3386 			goto bad;
3387 		}
3388 	} else {
3389 		if (ic->sb->log2_interleave_sectors) {
3390 			r = -EINVAL;
3391 			ti->error = "Invalid interleave_sectors in the superblock";
3392 			goto bad;
3393 		}
3394 	}
3395 	ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3396 	if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3397 		/* test for overflow */
3398 		r = -EINVAL;
3399 		ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3400 		goto bad;
3401 	}
3402 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3403 		r = -EINVAL;
3404 		ti->error = "Journal mac mismatch";
3405 		goto bad;
3406 	}
3407 
3408 try_smaller_buffer:
3409 	r = calculate_device_limits(ic);
3410 	if (r) {
3411 		if (ic->meta_dev) {
3412 			if (ic->log2_buffer_sectors > 3) {
3413 				ic->log2_buffer_sectors--;
3414 				goto try_smaller_buffer;
3415 			}
3416 		}
3417 		ti->error = "The device is too small";
3418 		goto bad;
3419 	}
3420 	if (!ic->meta_dev)
3421 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3422 
3423 	if (ti->len > ic->provided_data_sectors) {
3424 		r = -EINVAL;
3425 		ti->error = "Not enough provided sectors for requested mapping size";
3426 		goto bad;
3427 	}
3428 
3429 
3430 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3431 	threshold += 50;
3432 	do_div(threshold, 100);
3433 	ic->free_sectors_threshold = threshold;
3434 
3435 	DEBUG_print("initialized:\n");
3436 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3437 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
3438 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3439 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
3440 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
3441 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3442 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
3443 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3444 	DEBUG_print("	device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors);
3445 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
3446 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
3447 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
3448 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3449 		    (unsigned long long)ic->provided_data_sectors);
3450 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3451 
3452 	if (recalculate && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
3453 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3454 		ic->sb->recalc_sector = cpu_to_le64(0);
3455 	}
3456 
3457 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3458 		if (!ic->internal_hash) {
3459 			r = -EINVAL;
3460 			ti->error = "Recalculate is only valid with internal hash";
3461 			goto bad;
3462 		}
3463 		ic->recalc_wq = alloc_workqueue("dm-intergrity-recalc", WQ_MEM_RECLAIM, 1);
3464 		if (!ic->recalc_wq ) {
3465 			ti->error = "Cannot allocate workqueue";
3466 			r = -ENOMEM;
3467 			goto bad;
3468 		}
3469 		INIT_WORK(&ic->recalc_work, integrity_recalc);
3470 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
3471 		if (!ic->recalc_buffer) {
3472 			ti->error = "Cannot allocate buffer for recalculating";
3473 			r = -ENOMEM;
3474 			goto bad;
3475 		}
3476 		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
3477 						 ic->tag_size, GFP_KERNEL);
3478 		if (!ic->recalc_tags) {
3479 			ti->error = "Cannot allocate tags for recalculating";
3480 			r = -ENOMEM;
3481 			goto bad;
3482 		}
3483 	}
3484 
3485 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
3486 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
3487 	if (IS_ERR(ic->bufio)) {
3488 		r = PTR_ERR(ic->bufio);
3489 		ti->error = "Cannot initialize dm-bufio";
3490 		ic->bufio = NULL;
3491 		goto bad;
3492 	}
3493 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3494 
3495 	if (ic->mode != 'R') {
3496 		r = create_journal(ic, &ti->error);
3497 		if (r)
3498 			goto bad;
3499 	}
3500 
3501 	if (should_write_sb) {
3502 		int r;
3503 
3504 		init_journal(ic, 0, ic->journal_sections, 0);
3505 		r = dm_integrity_failed(ic);
3506 		if (unlikely(r)) {
3507 			ti->error = "Error initializing journal";
3508 			goto bad;
3509 		}
3510 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3511 		if (r) {
3512 			ti->error = "Error initializing superblock";
3513 			goto bad;
3514 		}
3515 		ic->just_formatted = true;
3516 	}
3517 
3518 	if (!ic->meta_dev) {
3519 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3520 		if (r)
3521 			goto bad;
3522 	}
3523 
3524 	if (!ic->internal_hash)
3525 		dm_integrity_set(ti, ic);
3526 
3527 	ti->num_flush_bios = 1;
3528 	ti->flush_supported = true;
3529 
3530 	return 0;
3531 bad:
3532 	dm_integrity_dtr(ti);
3533 	return r;
3534 }
3535 
3536 static void dm_integrity_dtr(struct dm_target *ti)
3537 {
3538 	struct dm_integrity_c *ic = ti->private;
3539 
3540 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3541 	BUG_ON(!list_empty(&ic->wait_list));
3542 
3543 	if (ic->metadata_wq)
3544 		destroy_workqueue(ic->metadata_wq);
3545 	if (ic->wait_wq)
3546 		destroy_workqueue(ic->wait_wq);
3547 	if (ic->commit_wq)
3548 		destroy_workqueue(ic->commit_wq);
3549 	if (ic->writer_wq)
3550 		destroy_workqueue(ic->writer_wq);
3551 	if (ic->recalc_wq)
3552 		destroy_workqueue(ic->recalc_wq);
3553 	if (ic->recalc_buffer)
3554 		vfree(ic->recalc_buffer);
3555 	if (ic->recalc_tags)
3556 		kvfree(ic->recalc_tags);
3557 	if (ic->bufio)
3558 		dm_bufio_client_destroy(ic->bufio);
3559 	mempool_exit(&ic->journal_io_mempool);
3560 	if (ic->io)
3561 		dm_io_client_destroy(ic->io);
3562 	if (ic->dev)
3563 		dm_put_device(ti, ic->dev);
3564 	if (ic->meta_dev)
3565 		dm_put_device(ti, ic->meta_dev);
3566 	dm_integrity_free_page_list(ic, ic->journal);
3567 	dm_integrity_free_page_list(ic, ic->journal_io);
3568 	dm_integrity_free_page_list(ic, ic->journal_xor);
3569 	if (ic->journal_scatterlist)
3570 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3571 	if (ic->journal_io_scatterlist)
3572 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3573 	if (ic->sk_requests) {
3574 		unsigned i;
3575 
3576 		for (i = 0; i < ic->journal_sections; i++) {
3577 			struct skcipher_request *req = ic->sk_requests[i];
3578 			if (req) {
3579 				kzfree(req->iv);
3580 				skcipher_request_free(req);
3581 			}
3582 		}
3583 		kvfree(ic->sk_requests);
3584 	}
3585 	kvfree(ic->journal_tree);
3586 	if (ic->sb)
3587 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3588 
3589 	if (ic->internal_hash)
3590 		crypto_free_shash(ic->internal_hash);
3591 	free_alg(&ic->internal_hash_alg);
3592 
3593 	if (ic->journal_crypt)
3594 		crypto_free_skcipher(ic->journal_crypt);
3595 	free_alg(&ic->journal_crypt_alg);
3596 
3597 	if (ic->journal_mac)
3598 		crypto_free_shash(ic->journal_mac);
3599 	free_alg(&ic->journal_mac_alg);
3600 
3601 	kfree(ic);
3602 }
3603 
3604 static struct target_type integrity_target = {
3605 	.name			= "integrity",
3606 	.version		= {1, 2, 0},
3607 	.module			= THIS_MODULE,
3608 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3609 	.ctr			= dm_integrity_ctr,
3610 	.dtr			= dm_integrity_dtr,
3611 	.map			= dm_integrity_map,
3612 	.postsuspend		= dm_integrity_postsuspend,
3613 	.resume			= dm_integrity_resume,
3614 	.status			= dm_integrity_status,
3615 	.iterate_devices	= dm_integrity_iterate_devices,
3616 	.io_hints		= dm_integrity_io_hints,
3617 };
3618 
3619 int __init dm_integrity_init(void)
3620 {
3621 	int r;
3622 
3623 	journal_io_cache = kmem_cache_create("integrity_journal_io",
3624 					     sizeof(struct journal_io), 0, 0, NULL);
3625 	if (!journal_io_cache) {
3626 		DMERR("can't allocate journal io cache");
3627 		return -ENOMEM;
3628 	}
3629 
3630 	r = dm_register_target(&integrity_target);
3631 
3632 	if (r < 0)
3633 		DMERR("register failed %d", r);
3634 
3635 	return r;
3636 }
3637 
3638 void dm_integrity_exit(void)
3639 {
3640 	dm_unregister_target(&integrity_target);
3641 	kmem_cache_destroy(journal_io_cache);
3642 }
3643 
3644 module_init(dm_integrity_init);
3645 module_exit(dm_integrity_exit);
3646 
3647 MODULE_AUTHOR("Milan Broz");
3648 MODULE_AUTHOR("Mikulas Patocka");
3649 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3650 MODULE_LICENSE("GPL");
3651