xref: /openbmc/linux/drivers/md/dm-integrity.c (revision 6c33a6f4)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bio-record.h"
10 
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25 
26 #define DM_MSG_PREFIX "integrity"
27 
28 #define DEFAULT_INTERLEAVE_SECTORS	32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
31 #define DEFAULT_BUFFER_SECTORS		128
32 #define DEFAULT_JOURNAL_WATERMARK	50
33 #define DEFAULT_SYNC_MSEC		10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS	3
36 #define MAX_LOG2_INTERLEAVE_SECTORS	31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
38 #define RECALC_SECTORS			8192
39 #define RECALC_WRITE_SUPER		16
40 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
41 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
42 
43 /*
44  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
45  * so it should not be enabled in the official kernel
46  */
47 //#define DEBUG_PRINT
48 //#define INTERNAL_VERIFY
49 
50 /*
51  * On disk structures
52  */
53 
54 #define SB_MAGIC			"integrt"
55 #define SB_VERSION_1			1
56 #define SB_VERSION_2			2
57 #define SB_VERSION_3			3
58 #define SB_VERSION_4			4
59 #define SB_SECTORS			8
60 #define MAX_SECTORS_PER_BLOCK		8
61 
62 struct superblock {
63 	__u8 magic[8];
64 	__u8 version;
65 	__u8 log2_interleave_sectors;
66 	__u16 integrity_tag_size;
67 	__u32 journal_sections;
68 	__u64 provided_data_sectors;	/* userspace uses this value */
69 	__u32 flags;
70 	__u8 log2_sectors_per_block;
71 	__u8 log2_blocks_per_bitmap_bit;
72 	__u8 pad[2];
73 	__u64 recalc_sector;
74 };
75 
76 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
77 #define SB_FLAG_RECALCULATING		0x2
78 #define SB_FLAG_DIRTY_BITMAP		0x4
79 #define SB_FLAG_FIXED_PADDING		0x8
80 
81 #define	JOURNAL_ENTRY_ROUNDUP		8
82 
83 typedef __u64 commit_id_t;
84 #define JOURNAL_MAC_PER_SECTOR		8
85 
86 struct journal_entry {
87 	union {
88 		struct {
89 			__u32 sector_lo;
90 			__u32 sector_hi;
91 		} s;
92 		__u64 sector;
93 	} u;
94 	commit_id_t last_bytes[0];
95 	/* __u8 tag[0]; */
96 };
97 
98 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
99 
100 #if BITS_PER_LONG == 64
101 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
102 #else
103 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
104 #endif
105 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
106 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
107 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
108 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
109 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
110 
111 #define JOURNAL_BLOCK_SECTORS		8
112 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
113 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
114 
115 struct journal_sector {
116 	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
117 	__u8 mac[JOURNAL_MAC_PER_SECTOR];
118 	commit_id_t commit_id;
119 };
120 
121 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
122 
123 #define METADATA_PADDING_SECTORS	8
124 
125 #define N_COMMIT_IDS			4
126 
127 static unsigned char prev_commit_seq(unsigned char seq)
128 {
129 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
130 }
131 
132 static unsigned char next_commit_seq(unsigned char seq)
133 {
134 	return (seq + 1) % N_COMMIT_IDS;
135 }
136 
137 /*
138  * In-memory structures
139  */
140 
141 struct journal_node {
142 	struct rb_node node;
143 	sector_t sector;
144 };
145 
146 struct alg_spec {
147 	char *alg_string;
148 	char *key_string;
149 	__u8 *key;
150 	unsigned key_size;
151 };
152 
153 struct dm_integrity_c {
154 	struct dm_dev *dev;
155 	struct dm_dev *meta_dev;
156 	unsigned tag_size;
157 	__s8 log2_tag_size;
158 	sector_t start;
159 	mempool_t journal_io_mempool;
160 	struct dm_io_client *io;
161 	struct dm_bufio_client *bufio;
162 	struct workqueue_struct *metadata_wq;
163 	struct superblock *sb;
164 	unsigned journal_pages;
165 	unsigned n_bitmap_blocks;
166 
167 	struct page_list *journal;
168 	struct page_list *journal_io;
169 	struct page_list *journal_xor;
170 	struct page_list *recalc_bitmap;
171 	struct page_list *may_write_bitmap;
172 	struct bitmap_block_status *bbs;
173 	unsigned bitmap_flush_interval;
174 	int synchronous_mode;
175 	struct bio_list synchronous_bios;
176 	struct delayed_work bitmap_flush_work;
177 
178 	struct crypto_skcipher *journal_crypt;
179 	struct scatterlist **journal_scatterlist;
180 	struct scatterlist **journal_io_scatterlist;
181 	struct skcipher_request **sk_requests;
182 
183 	struct crypto_shash *journal_mac;
184 
185 	struct journal_node *journal_tree;
186 	struct rb_root journal_tree_root;
187 
188 	sector_t provided_data_sectors;
189 
190 	unsigned short journal_entry_size;
191 	unsigned char journal_entries_per_sector;
192 	unsigned char journal_section_entries;
193 	unsigned short journal_section_sectors;
194 	unsigned journal_sections;
195 	unsigned journal_entries;
196 	sector_t data_device_sectors;
197 	sector_t meta_device_sectors;
198 	unsigned initial_sectors;
199 	unsigned metadata_run;
200 	__s8 log2_metadata_run;
201 	__u8 log2_buffer_sectors;
202 	__u8 sectors_per_block;
203 	__u8 log2_blocks_per_bitmap_bit;
204 
205 	unsigned char mode;
206 
207 	int failed;
208 
209 	struct crypto_shash *internal_hash;
210 
211 	struct dm_target *ti;
212 
213 	/* these variables are locked with endio_wait.lock */
214 	struct rb_root in_progress;
215 	struct list_head wait_list;
216 	wait_queue_head_t endio_wait;
217 	struct workqueue_struct *wait_wq;
218 	struct workqueue_struct *offload_wq;
219 
220 	unsigned char commit_seq;
221 	commit_id_t commit_ids[N_COMMIT_IDS];
222 
223 	unsigned committed_section;
224 	unsigned n_committed_sections;
225 
226 	unsigned uncommitted_section;
227 	unsigned n_uncommitted_sections;
228 
229 	unsigned free_section;
230 	unsigned char free_section_entry;
231 	unsigned free_sectors;
232 
233 	unsigned free_sectors_threshold;
234 
235 	struct workqueue_struct *commit_wq;
236 	struct work_struct commit_work;
237 
238 	struct workqueue_struct *writer_wq;
239 	struct work_struct writer_work;
240 
241 	struct workqueue_struct *recalc_wq;
242 	struct work_struct recalc_work;
243 	u8 *recalc_buffer;
244 	u8 *recalc_tags;
245 
246 	struct bio_list flush_bio_list;
247 
248 	unsigned long autocommit_jiffies;
249 	struct timer_list autocommit_timer;
250 	unsigned autocommit_msec;
251 
252 	wait_queue_head_t copy_to_journal_wait;
253 
254 	struct completion crypto_backoff;
255 
256 	bool journal_uptodate;
257 	bool just_formatted;
258 	bool recalculate_flag;
259 	bool fix_padding;
260 
261 	struct alg_spec internal_hash_alg;
262 	struct alg_spec journal_crypt_alg;
263 	struct alg_spec journal_mac_alg;
264 
265 	atomic64_t number_of_mismatches;
266 
267 	struct notifier_block reboot_notifier;
268 };
269 
270 struct dm_integrity_range {
271 	sector_t logical_sector;
272 	sector_t n_sectors;
273 	bool waiting;
274 	union {
275 		struct rb_node node;
276 		struct {
277 			struct task_struct *task;
278 			struct list_head wait_entry;
279 		};
280 	};
281 };
282 
283 struct dm_integrity_io {
284 	struct work_struct work;
285 
286 	struct dm_integrity_c *ic;
287 	bool write;
288 	bool fua;
289 
290 	struct dm_integrity_range range;
291 
292 	sector_t metadata_block;
293 	unsigned metadata_offset;
294 
295 	atomic_t in_flight;
296 	blk_status_t bi_status;
297 
298 	struct completion *completion;
299 
300 	struct dm_bio_details bio_details;
301 };
302 
303 struct journal_completion {
304 	struct dm_integrity_c *ic;
305 	atomic_t in_flight;
306 	struct completion comp;
307 };
308 
309 struct journal_io {
310 	struct dm_integrity_range range;
311 	struct journal_completion *comp;
312 };
313 
314 struct bitmap_block_status {
315 	struct work_struct work;
316 	struct dm_integrity_c *ic;
317 	unsigned idx;
318 	unsigned long *bitmap;
319 	struct bio_list bio_queue;
320 	spinlock_t bio_queue_lock;
321 
322 };
323 
324 static struct kmem_cache *journal_io_cache;
325 
326 #define JOURNAL_IO_MEMPOOL	32
327 
328 #ifdef DEBUG_PRINT
329 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
330 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
331 {
332 	va_list args;
333 	va_start(args, msg);
334 	vprintk(msg, args);
335 	va_end(args);
336 	if (len)
337 		pr_cont(":");
338 	while (len) {
339 		pr_cont(" %02x", *bytes);
340 		bytes++;
341 		len--;
342 	}
343 	pr_cont("\n");
344 }
345 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
346 #else
347 #define DEBUG_print(x, ...)			do { } while (0)
348 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
349 #endif
350 
351 static void dm_integrity_prepare(struct request *rq)
352 {
353 }
354 
355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
356 {
357 }
358 
359 /*
360  * DM Integrity profile, protection is performed layer above (dm-crypt)
361  */
362 static const struct blk_integrity_profile dm_integrity_profile = {
363 	.name			= "DM-DIF-EXT-TAG",
364 	.generate_fn		= NULL,
365 	.verify_fn		= NULL,
366 	.prepare_fn		= dm_integrity_prepare,
367 	.complete_fn		= dm_integrity_complete,
368 };
369 
370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
371 static void integrity_bio_wait(struct work_struct *w);
372 static void dm_integrity_dtr(struct dm_target *ti);
373 
374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
375 {
376 	if (err == -EILSEQ)
377 		atomic64_inc(&ic->number_of_mismatches);
378 	if (!cmpxchg(&ic->failed, 0, err))
379 		DMERR("Error on %s: %d", msg, err);
380 }
381 
382 static int dm_integrity_failed(struct dm_integrity_c *ic)
383 {
384 	return READ_ONCE(ic->failed);
385 }
386 
387 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
388 					  unsigned j, unsigned char seq)
389 {
390 	/*
391 	 * Xor the number with section and sector, so that if a piece of
392 	 * journal is written at wrong place, it is detected.
393 	 */
394 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
395 }
396 
397 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
398 				sector_t *area, sector_t *offset)
399 {
400 	if (!ic->meta_dev) {
401 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
402 		*area = data_sector >> log2_interleave_sectors;
403 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
404 	} else {
405 		*area = 0;
406 		*offset = data_sector;
407 	}
408 }
409 
410 #define sector_to_block(ic, n)						\
411 do {									\
412 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
413 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
414 } while (0)
415 
416 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
417 					    sector_t offset, unsigned *metadata_offset)
418 {
419 	__u64 ms;
420 	unsigned mo;
421 
422 	ms = area << ic->sb->log2_interleave_sectors;
423 	if (likely(ic->log2_metadata_run >= 0))
424 		ms += area << ic->log2_metadata_run;
425 	else
426 		ms += area * ic->metadata_run;
427 	ms >>= ic->log2_buffer_sectors;
428 
429 	sector_to_block(ic, offset);
430 
431 	if (likely(ic->log2_tag_size >= 0)) {
432 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
433 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
434 	} else {
435 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
436 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
437 	}
438 	*metadata_offset = mo;
439 	return ms;
440 }
441 
442 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
443 {
444 	sector_t result;
445 
446 	if (ic->meta_dev)
447 		return offset;
448 
449 	result = area << ic->sb->log2_interleave_sectors;
450 	if (likely(ic->log2_metadata_run >= 0))
451 		result += (area + 1) << ic->log2_metadata_run;
452 	else
453 		result += (area + 1) * ic->metadata_run;
454 
455 	result += (sector_t)ic->initial_sectors + offset;
456 	result += ic->start;
457 
458 	return result;
459 }
460 
461 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
462 {
463 	if (unlikely(*sec_ptr >= ic->journal_sections))
464 		*sec_ptr -= ic->journal_sections;
465 }
466 
467 static void sb_set_version(struct dm_integrity_c *ic)
468 {
469 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
470 		ic->sb->version = SB_VERSION_4;
471 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
472 		ic->sb->version = SB_VERSION_3;
473 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
474 		ic->sb->version = SB_VERSION_2;
475 	else
476 		ic->sb->version = SB_VERSION_1;
477 }
478 
479 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
480 {
481 	struct dm_io_request io_req;
482 	struct dm_io_region io_loc;
483 
484 	io_req.bi_op = op;
485 	io_req.bi_op_flags = op_flags;
486 	io_req.mem.type = DM_IO_KMEM;
487 	io_req.mem.ptr.addr = ic->sb;
488 	io_req.notify.fn = NULL;
489 	io_req.client = ic->io;
490 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
491 	io_loc.sector = ic->start;
492 	io_loc.count = SB_SECTORS;
493 
494 	if (op == REQ_OP_WRITE)
495 		sb_set_version(ic);
496 
497 	return dm_io(&io_req, 1, &io_loc, NULL);
498 }
499 
500 #define BITMAP_OP_TEST_ALL_SET		0
501 #define BITMAP_OP_TEST_ALL_CLEAR	1
502 #define BITMAP_OP_SET			2
503 #define BITMAP_OP_CLEAR			3
504 
505 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
506 			    sector_t sector, sector_t n_sectors, int mode)
507 {
508 	unsigned long bit, end_bit, this_end_bit, page, end_page;
509 	unsigned long *data;
510 
511 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
512 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
513 			(unsigned long long)sector,
514 			(unsigned long long)n_sectors,
515 			ic->sb->log2_sectors_per_block,
516 			ic->log2_blocks_per_bitmap_bit,
517 			mode);
518 		BUG();
519 	}
520 
521 	if (unlikely(!n_sectors))
522 		return true;
523 
524 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
525 	end_bit = (sector + n_sectors - 1) >>
526 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
527 
528 	page = bit / (PAGE_SIZE * 8);
529 	bit %= PAGE_SIZE * 8;
530 
531 	end_page = end_bit / (PAGE_SIZE * 8);
532 	end_bit %= PAGE_SIZE * 8;
533 
534 repeat:
535 	if (page < end_page) {
536 		this_end_bit = PAGE_SIZE * 8 - 1;
537 	} else {
538 		this_end_bit = end_bit;
539 	}
540 
541 	data = lowmem_page_address(bitmap[page].page);
542 
543 	if (mode == BITMAP_OP_TEST_ALL_SET) {
544 		while (bit <= this_end_bit) {
545 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
546 				do {
547 					if (data[bit / BITS_PER_LONG] != -1)
548 						return false;
549 					bit += BITS_PER_LONG;
550 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
551 				continue;
552 			}
553 			if (!test_bit(bit, data))
554 				return false;
555 			bit++;
556 		}
557 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
558 		while (bit <= this_end_bit) {
559 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
560 				do {
561 					if (data[bit / BITS_PER_LONG] != 0)
562 						return false;
563 					bit += BITS_PER_LONG;
564 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
565 				continue;
566 			}
567 			if (test_bit(bit, data))
568 				return false;
569 			bit++;
570 		}
571 	} else if (mode == BITMAP_OP_SET) {
572 		while (bit <= this_end_bit) {
573 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
574 				do {
575 					data[bit / BITS_PER_LONG] = -1;
576 					bit += BITS_PER_LONG;
577 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
578 				continue;
579 			}
580 			__set_bit(bit, data);
581 			bit++;
582 		}
583 	} else if (mode == BITMAP_OP_CLEAR) {
584 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
585 			clear_page(data);
586 		else while (bit <= this_end_bit) {
587 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
588 				do {
589 					data[bit / BITS_PER_LONG] = 0;
590 					bit += BITS_PER_LONG;
591 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
592 				continue;
593 			}
594 			__clear_bit(bit, data);
595 			bit++;
596 		}
597 	} else {
598 		BUG();
599 	}
600 
601 	if (unlikely(page < end_page)) {
602 		bit = 0;
603 		page++;
604 		goto repeat;
605 	}
606 
607 	return true;
608 }
609 
610 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
611 {
612 	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
613 	unsigned i;
614 
615 	for (i = 0; i < n_bitmap_pages; i++) {
616 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
617 		unsigned long *src_data = lowmem_page_address(src[i].page);
618 		copy_page(dst_data, src_data);
619 	}
620 }
621 
622 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
623 {
624 	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
625 	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
626 
627 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
628 	return &ic->bbs[bitmap_block];
629 }
630 
631 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
632 				 bool e, const char *function)
633 {
634 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
635 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
636 
637 	if (unlikely(section >= ic->journal_sections) ||
638 	    unlikely(offset >= limit)) {
639 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
640 		       function, section, offset, ic->journal_sections, limit);
641 		BUG();
642 	}
643 #endif
644 }
645 
646 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
647 			       unsigned *pl_index, unsigned *pl_offset)
648 {
649 	unsigned sector;
650 
651 	access_journal_check(ic, section, offset, false, "page_list_location");
652 
653 	sector = section * ic->journal_section_sectors + offset;
654 
655 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
656 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
657 }
658 
659 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
660 					       unsigned section, unsigned offset, unsigned *n_sectors)
661 {
662 	unsigned pl_index, pl_offset;
663 	char *va;
664 
665 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
666 
667 	if (n_sectors)
668 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
669 
670 	va = lowmem_page_address(pl[pl_index].page);
671 
672 	return (struct journal_sector *)(va + pl_offset);
673 }
674 
675 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
676 {
677 	return access_page_list(ic, ic->journal, section, offset, NULL);
678 }
679 
680 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
681 {
682 	unsigned rel_sector, offset;
683 	struct journal_sector *js;
684 
685 	access_journal_check(ic, section, n, true, "access_journal_entry");
686 
687 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
688 	offset = n / JOURNAL_BLOCK_SECTORS;
689 
690 	js = access_journal(ic, section, rel_sector);
691 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
692 }
693 
694 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
695 {
696 	n <<= ic->sb->log2_sectors_per_block;
697 
698 	n += JOURNAL_BLOCK_SECTORS;
699 
700 	access_journal_check(ic, section, n, false, "access_journal_data");
701 
702 	return access_journal(ic, section, n);
703 }
704 
705 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
706 {
707 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
708 	int r;
709 	unsigned j, size;
710 
711 	desc->tfm = ic->journal_mac;
712 
713 	r = crypto_shash_init(desc);
714 	if (unlikely(r)) {
715 		dm_integrity_io_error(ic, "crypto_shash_init", r);
716 		goto err;
717 	}
718 
719 	for (j = 0; j < ic->journal_section_entries; j++) {
720 		struct journal_entry *je = access_journal_entry(ic, section, j);
721 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
722 		if (unlikely(r)) {
723 			dm_integrity_io_error(ic, "crypto_shash_update", r);
724 			goto err;
725 		}
726 	}
727 
728 	size = crypto_shash_digestsize(ic->journal_mac);
729 
730 	if (likely(size <= JOURNAL_MAC_SIZE)) {
731 		r = crypto_shash_final(desc, result);
732 		if (unlikely(r)) {
733 			dm_integrity_io_error(ic, "crypto_shash_final", r);
734 			goto err;
735 		}
736 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
737 	} else {
738 		__u8 digest[HASH_MAX_DIGESTSIZE];
739 
740 		if (WARN_ON(size > sizeof(digest))) {
741 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
742 			goto err;
743 		}
744 		r = crypto_shash_final(desc, digest);
745 		if (unlikely(r)) {
746 			dm_integrity_io_error(ic, "crypto_shash_final", r);
747 			goto err;
748 		}
749 		memcpy(result, digest, JOURNAL_MAC_SIZE);
750 	}
751 
752 	return;
753 err:
754 	memset(result, 0, JOURNAL_MAC_SIZE);
755 }
756 
757 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
758 {
759 	__u8 result[JOURNAL_MAC_SIZE];
760 	unsigned j;
761 
762 	if (!ic->journal_mac)
763 		return;
764 
765 	section_mac(ic, section, result);
766 
767 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
768 		struct journal_sector *js = access_journal(ic, section, j);
769 
770 		if (likely(wr))
771 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
772 		else {
773 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
774 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
775 		}
776 	}
777 }
778 
779 static void complete_journal_op(void *context)
780 {
781 	struct journal_completion *comp = context;
782 	BUG_ON(!atomic_read(&comp->in_flight));
783 	if (likely(atomic_dec_and_test(&comp->in_flight)))
784 		complete(&comp->comp);
785 }
786 
787 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
788 			unsigned n_sections, struct journal_completion *comp)
789 {
790 	struct async_submit_ctl submit;
791 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
792 	unsigned pl_index, pl_offset, section_index;
793 	struct page_list *source_pl, *target_pl;
794 
795 	if (likely(encrypt)) {
796 		source_pl = ic->journal;
797 		target_pl = ic->journal_io;
798 	} else {
799 		source_pl = ic->journal_io;
800 		target_pl = ic->journal;
801 	}
802 
803 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
804 
805 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
806 
807 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
808 
809 	section_index = pl_index;
810 
811 	do {
812 		size_t this_step;
813 		struct page *src_pages[2];
814 		struct page *dst_page;
815 
816 		while (unlikely(pl_index == section_index)) {
817 			unsigned dummy;
818 			if (likely(encrypt))
819 				rw_section_mac(ic, section, true);
820 			section++;
821 			n_sections--;
822 			if (!n_sections)
823 				break;
824 			page_list_location(ic, section, 0, &section_index, &dummy);
825 		}
826 
827 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
828 		dst_page = target_pl[pl_index].page;
829 		src_pages[0] = source_pl[pl_index].page;
830 		src_pages[1] = ic->journal_xor[pl_index].page;
831 
832 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
833 
834 		pl_index++;
835 		pl_offset = 0;
836 		n_bytes -= this_step;
837 	} while (n_bytes);
838 
839 	BUG_ON(n_sections);
840 
841 	async_tx_issue_pending_all();
842 }
843 
844 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
845 {
846 	struct journal_completion *comp = req->data;
847 	if (unlikely(err)) {
848 		if (likely(err == -EINPROGRESS)) {
849 			complete(&comp->ic->crypto_backoff);
850 			return;
851 		}
852 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
853 	}
854 	complete_journal_op(comp);
855 }
856 
857 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
858 {
859 	int r;
860 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
861 				      complete_journal_encrypt, comp);
862 	if (likely(encrypt))
863 		r = crypto_skcipher_encrypt(req);
864 	else
865 		r = crypto_skcipher_decrypt(req);
866 	if (likely(!r))
867 		return false;
868 	if (likely(r == -EINPROGRESS))
869 		return true;
870 	if (likely(r == -EBUSY)) {
871 		wait_for_completion(&comp->ic->crypto_backoff);
872 		reinit_completion(&comp->ic->crypto_backoff);
873 		return true;
874 	}
875 	dm_integrity_io_error(comp->ic, "encrypt", r);
876 	return false;
877 }
878 
879 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
880 			  unsigned n_sections, struct journal_completion *comp)
881 {
882 	struct scatterlist **source_sg;
883 	struct scatterlist **target_sg;
884 
885 	atomic_add(2, &comp->in_flight);
886 
887 	if (likely(encrypt)) {
888 		source_sg = ic->journal_scatterlist;
889 		target_sg = ic->journal_io_scatterlist;
890 	} else {
891 		source_sg = ic->journal_io_scatterlist;
892 		target_sg = ic->journal_scatterlist;
893 	}
894 
895 	do {
896 		struct skcipher_request *req;
897 		unsigned ivsize;
898 		char *iv;
899 
900 		if (likely(encrypt))
901 			rw_section_mac(ic, section, true);
902 
903 		req = ic->sk_requests[section];
904 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
905 		iv = req->iv;
906 
907 		memcpy(iv, iv + ivsize, ivsize);
908 
909 		req->src = source_sg[section];
910 		req->dst = target_sg[section];
911 
912 		if (unlikely(do_crypt(encrypt, req, comp)))
913 			atomic_inc(&comp->in_flight);
914 
915 		section++;
916 		n_sections--;
917 	} while (n_sections);
918 
919 	atomic_dec(&comp->in_flight);
920 	complete_journal_op(comp);
921 }
922 
923 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
924 			    unsigned n_sections, struct journal_completion *comp)
925 {
926 	if (ic->journal_xor)
927 		return xor_journal(ic, encrypt, section, n_sections, comp);
928 	else
929 		return crypt_journal(ic, encrypt, section, n_sections, comp);
930 }
931 
932 static void complete_journal_io(unsigned long error, void *context)
933 {
934 	struct journal_completion *comp = context;
935 	if (unlikely(error != 0))
936 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
937 	complete_journal_op(comp);
938 }
939 
940 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
941 			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
942 {
943 	struct dm_io_request io_req;
944 	struct dm_io_region io_loc;
945 	unsigned pl_index, pl_offset;
946 	int r;
947 
948 	if (unlikely(dm_integrity_failed(ic))) {
949 		if (comp)
950 			complete_journal_io(-1UL, comp);
951 		return;
952 	}
953 
954 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
955 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
956 
957 	io_req.bi_op = op;
958 	io_req.bi_op_flags = op_flags;
959 	io_req.mem.type = DM_IO_PAGE_LIST;
960 	if (ic->journal_io)
961 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
962 	else
963 		io_req.mem.ptr.pl = &ic->journal[pl_index];
964 	io_req.mem.offset = pl_offset;
965 	if (likely(comp != NULL)) {
966 		io_req.notify.fn = complete_journal_io;
967 		io_req.notify.context = comp;
968 	} else {
969 		io_req.notify.fn = NULL;
970 	}
971 	io_req.client = ic->io;
972 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
973 	io_loc.sector = ic->start + SB_SECTORS + sector;
974 	io_loc.count = n_sectors;
975 
976 	r = dm_io(&io_req, 1, &io_loc, NULL);
977 	if (unlikely(r)) {
978 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
979 		if (comp) {
980 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
981 			complete_journal_io(-1UL, comp);
982 		}
983 	}
984 }
985 
986 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
987 		       unsigned n_sections, struct journal_completion *comp)
988 {
989 	unsigned sector, n_sectors;
990 
991 	sector = section * ic->journal_section_sectors;
992 	n_sectors = n_sections * ic->journal_section_sectors;
993 
994 	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
995 }
996 
997 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
998 {
999 	struct journal_completion io_comp;
1000 	struct journal_completion crypt_comp_1;
1001 	struct journal_completion crypt_comp_2;
1002 	unsigned i;
1003 
1004 	io_comp.ic = ic;
1005 	init_completion(&io_comp.comp);
1006 
1007 	if (commit_start + commit_sections <= ic->journal_sections) {
1008 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1009 		if (ic->journal_io) {
1010 			crypt_comp_1.ic = ic;
1011 			init_completion(&crypt_comp_1.comp);
1012 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1013 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1014 			wait_for_completion_io(&crypt_comp_1.comp);
1015 		} else {
1016 			for (i = 0; i < commit_sections; i++)
1017 				rw_section_mac(ic, commit_start + i, true);
1018 		}
1019 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1020 			   commit_sections, &io_comp);
1021 	} else {
1022 		unsigned to_end;
1023 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1024 		to_end = ic->journal_sections - commit_start;
1025 		if (ic->journal_io) {
1026 			crypt_comp_1.ic = ic;
1027 			init_completion(&crypt_comp_1.comp);
1028 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1029 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1030 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1031 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1032 				reinit_completion(&crypt_comp_1.comp);
1033 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1034 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1035 				wait_for_completion_io(&crypt_comp_1.comp);
1036 			} else {
1037 				crypt_comp_2.ic = ic;
1038 				init_completion(&crypt_comp_2.comp);
1039 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1040 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1041 				wait_for_completion_io(&crypt_comp_1.comp);
1042 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1043 				wait_for_completion_io(&crypt_comp_2.comp);
1044 			}
1045 		} else {
1046 			for (i = 0; i < to_end; i++)
1047 				rw_section_mac(ic, commit_start + i, true);
1048 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1049 			for (i = 0; i < commit_sections - to_end; i++)
1050 				rw_section_mac(ic, i, true);
1051 		}
1052 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1053 	}
1054 
1055 	wait_for_completion_io(&io_comp.comp);
1056 }
1057 
1058 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1059 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1060 {
1061 	struct dm_io_request io_req;
1062 	struct dm_io_region io_loc;
1063 	int r;
1064 	unsigned sector, pl_index, pl_offset;
1065 
1066 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1067 
1068 	if (unlikely(dm_integrity_failed(ic))) {
1069 		fn(-1UL, data);
1070 		return;
1071 	}
1072 
1073 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1074 
1075 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1076 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1077 
1078 	io_req.bi_op = REQ_OP_WRITE;
1079 	io_req.bi_op_flags = 0;
1080 	io_req.mem.type = DM_IO_PAGE_LIST;
1081 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1082 	io_req.mem.offset = pl_offset;
1083 	io_req.notify.fn = fn;
1084 	io_req.notify.context = data;
1085 	io_req.client = ic->io;
1086 	io_loc.bdev = ic->dev->bdev;
1087 	io_loc.sector = target;
1088 	io_loc.count = n_sectors;
1089 
1090 	r = dm_io(&io_req, 1, &io_loc, NULL);
1091 	if (unlikely(r)) {
1092 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1093 		fn(-1UL, data);
1094 	}
1095 }
1096 
1097 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1098 {
1099 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1100 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1101 }
1102 
1103 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1104 {
1105 	struct rb_node **n = &ic->in_progress.rb_node;
1106 	struct rb_node *parent;
1107 
1108 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1109 
1110 	if (likely(check_waiting)) {
1111 		struct dm_integrity_range *range;
1112 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1113 			if (unlikely(ranges_overlap(range, new_range)))
1114 				return false;
1115 		}
1116 	}
1117 
1118 	parent = NULL;
1119 
1120 	while (*n) {
1121 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1122 
1123 		parent = *n;
1124 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1125 			n = &range->node.rb_left;
1126 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1127 			n = &range->node.rb_right;
1128 		} else {
1129 			return false;
1130 		}
1131 	}
1132 
1133 	rb_link_node(&new_range->node, parent, n);
1134 	rb_insert_color(&new_range->node, &ic->in_progress);
1135 
1136 	return true;
1137 }
1138 
1139 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1140 {
1141 	rb_erase(&range->node, &ic->in_progress);
1142 	while (unlikely(!list_empty(&ic->wait_list))) {
1143 		struct dm_integrity_range *last_range =
1144 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1145 		struct task_struct *last_range_task;
1146 		last_range_task = last_range->task;
1147 		list_del(&last_range->wait_entry);
1148 		if (!add_new_range(ic, last_range, false)) {
1149 			last_range->task = last_range_task;
1150 			list_add(&last_range->wait_entry, &ic->wait_list);
1151 			break;
1152 		}
1153 		last_range->waiting = false;
1154 		wake_up_process(last_range_task);
1155 	}
1156 }
1157 
1158 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1159 {
1160 	unsigned long flags;
1161 
1162 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1163 	remove_range_unlocked(ic, range);
1164 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1165 }
1166 
1167 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1168 {
1169 	new_range->waiting = true;
1170 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1171 	new_range->task = current;
1172 	do {
1173 		__set_current_state(TASK_UNINTERRUPTIBLE);
1174 		spin_unlock_irq(&ic->endio_wait.lock);
1175 		io_schedule();
1176 		spin_lock_irq(&ic->endio_wait.lock);
1177 	} while (unlikely(new_range->waiting));
1178 }
1179 
1180 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1181 {
1182 	if (unlikely(!add_new_range(ic, new_range, true)))
1183 		wait_and_add_new_range(ic, new_range);
1184 }
1185 
1186 static void init_journal_node(struct journal_node *node)
1187 {
1188 	RB_CLEAR_NODE(&node->node);
1189 	node->sector = (sector_t)-1;
1190 }
1191 
1192 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1193 {
1194 	struct rb_node **link;
1195 	struct rb_node *parent;
1196 
1197 	node->sector = sector;
1198 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1199 
1200 	link = &ic->journal_tree_root.rb_node;
1201 	parent = NULL;
1202 
1203 	while (*link) {
1204 		struct journal_node *j;
1205 		parent = *link;
1206 		j = container_of(parent, struct journal_node, node);
1207 		if (sector < j->sector)
1208 			link = &j->node.rb_left;
1209 		else
1210 			link = &j->node.rb_right;
1211 	}
1212 
1213 	rb_link_node(&node->node, parent, link);
1214 	rb_insert_color(&node->node, &ic->journal_tree_root);
1215 }
1216 
1217 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1218 {
1219 	BUG_ON(RB_EMPTY_NODE(&node->node));
1220 	rb_erase(&node->node, &ic->journal_tree_root);
1221 	init_journal_node(node);
1222 }
1223 
1224 #define NOT_FOUND	(-1U)
1225 
1226 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1227 {
1228 	struct rb_node *n = ic->journal_tree_root.rb_node;
1229 	unsigned found = NOT_FOUND;
1230 	*next_sector = (sector_t)-1;
1231 	while (n) {
1232 		struct journal_node *j = container_of(n, struct journal_node, node);
1233 		if (sector == j->sector) {
1234 			found = j - ic->journal_tree;
1235 		}
1236 		if (sector < j->sector) {
1237 			*next_sector = j->sector;
1238 			n = j->node.rb_left;
1239 		} else {
1240 			n = j->node.rb_right;
1241 		}
1242 	}
1243 
1244 	return found;
1245 }
1246 
1247 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1248 {
1249 	struct journal_node *node, *next_node;
1250 	struct rb_node *next;
1251 
1252 	if (unlikely(pos >= ic->journal_entries))
1253 		return false;
1254 	node = &ic->journal_tree[pos];
1255 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1256 		return false;
1257 	if (unlikely(node->sector != sector))
1258 		return false;
1259 
1260 	next = rb_next(&node->node);
1261 	if (unlikely(!next))
1262 		return true;
1263 
1264 	next_node = container_of(next, struct journal_node, node);
1265 	return next_node->sector != sector;
1266 }
1267 
1268 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1269 {
1270 	struct rb_node *next;
1271 	struct journal_node *next_node;
1272 	unsigned next_section;
1273 
1274 	BUG_ON(RB_EMPTY_NODE(&node->node));
1275 
1276 	next = rb_next(&node->node);
1277 	if (unlikely(!next))
1278 		return false;
1279 
1280 	next_node = container_of(next, struct journal_node, node);
1281 
1282 	if (next_node->sector != node->sector)
1283 		return false;
1284 
1285 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1286 	if (next_section >= ic->committed_section &&
1287 	    next_section < ic->committed_section + ic->n_committed_sections)
1288 		return true;
1289 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1290 		return true;
1291 
1292 	return false;
1293 }
1294 
1295 #define TAG_READ	0
1296 #define TAG_WRITE	1
1297 #define TAG_CMP		2
1298 
1299 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1300 			       unsigned *metadata_offset, unsigned total_size, int op)
1301 {
1302 	do {
1303 		unsigned char *data, *dp;
1304 		struct dm_buffer *b;
1305 		unsigned to_copy;
1306 		int r;
1307 
1308 		r = dm_integrity_failed(ic);
1309 		if (unlikely(r))
1310 			return r;
1311 
1312 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1313 		if (IS_ERR(data))
1314 			return PTR_ERR(data);
1315 
1316 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1317 		dp = data + *metadata_offset;
1318 		if (op == TAG_READ) {
1319 			memcpy(tag, dp, to_copy);
1320 		} else if (op == TAG_WRITE) {
1321 			memcpy(dp, tag, to_copy);
1322 			dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1323 		} else  {
1324 			/* e.g.: op == TAG_CMP */
1325 			if (unlikely(memcmp(dp, tag, to_copy))) {
1326 				unsigned i;
1327 
1328 				for (i = 0; i < to_copy; i++) {
1329 					if (dp[i] != tag[i])
1330 						break;
1331 					total_size--;
1332 				}
1333 				dm_bufio_release(b);
1334 				return total_size;
1335 			}
1336 		}
1337 		dm_bufio_release(b);
1338 
1339 		tag += to_copy;
1340 		*metadata_offset += to_copy;
1341 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1342 			(*metadata_block)++;
1343 			*metadata_offset = 0;
1344 		}
1345 		total_size -= to_copy;
1346 	} while (unlikely(total_size));
1347 
1348 	return 0;
1349 }
1350 
1351 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1352 {
1353 	int r;
1354 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1355 	if (unlikely(r))
1356 		dm_integrity_io_error(ic, "writing tags", r);
1357 }
1358 
1359 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1360 {
1361 	DECLARE_WAITQUEUE(wait, current);
1362 	__add_wait_queue(&ic->endio_wait, &wait);
1363 	__set_current_state(TASK_UNINTERRUPTIBLE);
1364 	spin_unlock_irq(&ic->endio_wait.lock);
1365 	io_schedule();
1366 	spin_lock_irq(&ic->endio_wait.lock);
1367 	__remove_wait_queue(&ic->endio_wait, &wait);
1368 }
1369 
1370 static void autocommit_fn(struct timer_list *t)
1371 {
1372 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1373 
1374 	if (likely(!dm_integrity_failed(ic)))
1375 		queue_work(ic->commit_wq, &ic->commit_work);
1376 }
1377 
1378 static void schedule_autocommit(struct dm_integrity_c *ic)
1379 {
1380 	if (!timer_pending(&ic->autocommit_timer))
1381 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1382 }
1383 
1384 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1385 {
1386 	struct bio *bio;
1387 	unsigned long flags;
1388 
1389 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1390 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1391 	bio_list_add(&ic->flush_bio_list, bio);
1392 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1393 
1394 	queue_work(ic->commit_wq, &ic->commit_work);
1395 }
1396 
1397 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1398 {
1399 	int r = dm_integrity_failed(ic);
1400 	if (unlikely(r) && !bio->bi_status)
1401 		bio->bi_status = errno_to_blk_status(r);
1402 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1403 		unsigned long flags;
1404 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1405 		bio_list_add(&ic->synchronous_bios, bio);
1406 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1407 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1408 		return;
1409 	}
1410 	bio_endio(bio);
1411 }
1412 
1413 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1414 {
1415 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1416 
1417 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1418 		submit_flush_bio(ic, dio);
1419 	else
1420 		do_endio(ic, bio);
1421 }
1422 
1423 static void dec_in_flight(struct dm_integrity_io *dio)
1424 {
1425 	if (atomic_dec_and_test(&dio->in_flight)) {
1426 		struct dm_integrity_c *ic = dio->ic;
1427 		struct bio *bio;
1428 
1429 		remove_range(ic, &dio->range);
1430 
1431 		if (unlikely(dio->write))
1432 			schedule_autocommit(ic);
1433 
1434 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1435 
1436 		if (unlikely(dio->bi_status) && !bio->bi_status)
1437 			bio->bi_status = dio->bi_status;
1438 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1439 			dio->range.logical_sector += dio->range.n_sectors;
1440 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1441 			INIT_WORK(&dio->work, integrity_bio_wait);
1442 			queue_work(ic->offload_wq, &dio->work);
1443 			return;
1444 		}
1445 		do_endio_flush(ic, dio);
1446 	}
1447 }
1448 
1449 static void integrity_end_io(struct bio *bio)
1450 {
1451 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1452 
1453 	dm_bio_restore(&dio->bio_details, bio);
1454 	if (bio->bi_integrity)
1455 		bio->bi_opf |= REQ_INTEGRITY;
1456 
1457 	if (dio->completion)
1458 		complete(dio->completion);
1459 
1460 	dec_in_flight(dio);
1461 }
1462 
1463 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1464 				      const char *data, char *result)
1465 {
1466 	__u64 sector_le = cpu_to_le64(sector);
1467 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1468 	int r;
1469 	unsigned digest_size;
1470 
1471 	req->tfm = ic->internal_hash;
1472 
1473 	r = crypto_shash_init(req);
1474 	if (unlikely(r < 0)) {
1475 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1476 		goto failed;
1477 	}
1478 
1479 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1480 	if (unlikely(r < 0)) {
1481 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1482 		goto failed;
1483 	}
1484 
1485 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1486 	if (unlikely(r < 0)) {
1487 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1488 		goto failed;
1489 	}
1490 
1491 	r = crypto_shash_final(req, result);
1492 	if (unlikely(r < 0)) {
1493 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1494 		goto failed;
1495 	}
1496 
1497 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1498 	if (unlikely(digest_size < ic->tag_size))
1499 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1500 
1501 	return;
1502 
1503 failed:
1504 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1505 	get_random_bytes(result, ic->tag_size);
1506 }
1507 
1508 static void integrity_metadata(struct work_struct *w)
1509 {
1510 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1511 	struct dm_integrity_c *ic = dio->ic;
1512 
1513 	int r;
1514 
1515 	if (ic->internal_hash) {
1516 		struct bvec_iter iter;
1517 		struct bio_vec bv;
1518 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1519 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1520 		char *checksums;
1521 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1522 		char checksums_onstack[HASH_MAX_DIGESTSIZE];
1523 		unsigned sectors_to_process = dio->range.n_sectors;
1524 		sector_t sector = dio->range.logical_sector;
1525 
1526 		if (unlikely(ic->mode == 'R'))
1527 			goto skip_io;
1528 
1529 		checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1530 				    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1531 		if (!checksums) {
1532 			checksums = checksums_onstack;
1533 			if (WARN_ON(extra_space &&
1534 				    digest_size > sizeof(checksums_onstack))) {
1535 				r = -EINVAL;
1536 				goto error;
1537 			}
1538 		}
1539 
1540 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1541 			unsigned pos;
1542 			char *mem, *checksums_ptr;
1543 
1544 again:
1545 			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1546 			pos = 0;
1547 			checksums_ptr = checksums;
1548 			do {
1549 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1550 				checksums_ptr += ic->tag_size;
1551 				sectors_to_process -= ic->sectors_per_block;
1552 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1553 				sector += ic->sectors_per_block;
1554 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1555 			kunmap_atomic(mem);
1556 
1557 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1558 						checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1559 			if (unlikely(r)) {
1560 				if (r > 0) {
1561 					DMERR_LIMIT("Checksum failed at sector 0x%llx",
1562 						    (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1563 					r = -EILSEQ;
1564 					atomic64_inc(&ic->number_of_mismatches);
1565 				}
1566 				if (likely(checksums != checksums_onstack))
1567 					kfree(checksums);
1568 				goto error;
1569 			}
1570 
1571 			if (!sectors_to_process)
1572 				break;
1573 
1574 			if (unlikely(pos < bv.bv_len)) {
1575 				bv.bv_offset += pos;
1576 				bv.bv_len -= pos;
1577 				goto again;
1578 			}
1579 		}
1580 
1581 		if (likely(checksums != checksums_onstack))
1582 			kfree(checksums);
1583 	} else {
1584 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1585 
1586 		if (bip) {
1587 			struct bio_vec biv;
1588 			struct bvec_iter iter;
1589 			unsigned data_to_process = dio->range.n_sectors;
1590 			sector_to_block(ic, data_to_process);
1591 			data_to_process *= ic->tag_size;
1592 
1593 			bip_for_each_vec(biv, bip, iter) {
1594 				unsigned char *tag;
1595 				unsigned this_len;
1596 
1597 				BUG_ON(PageHighMem(biv.bv_page));
1598 				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1599 				this_len = min(biv.bv_len, data_to_process);
1600 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1601 							this_len, !dio->write ? TAG_READ : TAG_WRITE);
1602 				if (unlikely(r))
1603 					goto error;
1604 				data_to_process -= this_len;
1605 				if (!data_to_process)
1606 					break;
1607 			}
1608 		}
1609 	}
1610 skip_io:
1611 	dec_in_flight(dio);
1612 	return;
1613 error:
1614 	dio->bi_status = errno_to_blk_status(r);
1615 	dec_in_flight(dio);
1616 }
1617 
1618 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1619 {
1620 	struct dm_integrity_c *ic = ti->private;
1621 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1622 	struct bio_integrity_payload *bip;
1623 
1624 	sector_t area, offset;
1625 
1626 	dio->ic = ic;
1627 	dio->bi_status = 0;
1628 
1629 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1630 		submit_flush_bio(ic, dio);
1631 		return DM_MAPIO_SUBMITTED;
1632 	}
1633 
1634 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1635 	dio->write = bio_op(bio) == REQ_OP_WRITE;
1636 	dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1637 	if (unlikely(dio->fua)) {
1638 		/*
1639 		 * Don't pass down the FUA flag because we have to flush
1640 		 * disk cache anyway.
1641 		 */
1642 		bio->bi_opf &= ~REQ_FUA;
1643 	}
1644 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1645 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1646 		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1647 		      (unsigned long long)ic->provided_data_sectors);
1648 		return DM_MAPIO_KILL;
1649 	}
1650 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1651 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1652 		      ic->sectors_per_block,
1653 		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1654 		return DM_MAPIO_KILL;
1655 	}
1656 
1657 	if (ic->sectors_per_block > 1) {
1658 		struct bvec_iter iter;
1659 		struct bio_vec bv;
1660 		bio_for_each_segment(bv, bio, iter) {
1661 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1662 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1663 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1664 				return DM_MAPIO_KILL;
1665 			}
1666 		}
1667 	}
1668 
1669 	bip = bio_integrity(bio);
1670 	if (!ic->internal_hash) {
1671 		if (bip) {
1672 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1673 			if (ic->log2_tag_size >= 0)
1674 				wanted_tag_size <<= ic->log2_tag_size;
1675 			else
1676 				wanted_tag_size *= ic->tag_size;
1677 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1678 				DMERR("Invalid integrity data size %u, expected %u",
1679 				      bip->bip_iter.bi_size, wanted_tag_size);
1680 				return DM_MAPIO_KILL;
1681 			}
1682 		}
1683 	} else {
1684 		if (unlikely(bip != NULL)) {
1685 			DMERR("Unexpected integrity data when using internal hash");
1686 			return DM_MAPIO_KILL;
1687 		}
1688 	}
1689 
1690 	if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1691 		return DM_MAPIO_KILL;
1692 
1693 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1694 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1695 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1696 
1697 	dm_integrity_map_continue(dio, true);
1698 	return DM_MAPIO_SUBMITTED;
1699 }
1700 
1701 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1702 				 unsigned journal_section, unsigned journal_entry)
1703 {
1704 	struct dm_integrity_c *ic = dio->ic;
1705 	sector_t logical_sector;
1706 	unsigned n_sectors;
1707 
1708 	logical_sector = dio->range.logical_sector;
1709 	n_sectors = dio->range.n_sectors;
1710 	do {
1711 		struct bio_vec bv = bio_iovec(bio);
1712 		char *mem;
1713 
1714 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1715 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1716 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1717 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1718 retry_kmap:
1719 		mem = kmap_atomic(bv.bv_page);
1720 		if (likely(dio->write))
1721 			flush_dcache_page(bv.bv_page);
1722 
1723 		do {
1724 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1725 
1726 			if (unlikely(!dio->write)) {
1727 				struct journal_sector *js;
1728 				char *mem_ptr;
1729 				unsigned s;
1730 
1731 				if (unlikely(journal_entry_is_inprogress(je))) {
1732 					flush_dcache_page(bv.bv_page);
1733 					kunmap_atomic(mem);
1734 
1735 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1736 					goto retry_kmap;
1737 				}
1738 				smp_rmb();
1739 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1740 				js = access_journal_data(ic, journal_section, journal_entry);
1741 				mem_ptr = mem + bv.bv_offset;
1742 				s = 0;
1743 				do {
1744 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1745 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1746 					js++;
1747 					mem_ptr += 1 << SECTOR_SHIFT;
1748 				} while (++s < ic->sectors_per_block);
1749 #ifdef INTERNAL_VERIFY
1750 				if (ic->internal_hash) {
1751 					char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1752 
1753 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1754 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1755 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1756 							    (unsigned long long)logical_sector);
1757 					}
1758 				}
1759 #endif
1760 			}
1761 
1762 			if (!ic->internal_hash) {
1763 				struct bio_integrity_payload *bip = bio_integrity(bio);
1764 				unsigned tag_todo = ic->tag_size;
1765 				char *tag_ptr = journal_entry_tag(ic, je);
1766 
1767 				if (bip) do {
1768 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1769 					unsigned tag_now = min(biv.bv_len, tag_todo);
1770 					char *tag_addr;
1771 					BUG_ON(PageHighMem(biv.bv_page));
1772 					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1773 					if (likely(dio->write))
1774 						memcpy(tag_ptr, tag_addr, tag_now);
1775 					else
1776 						memcpy(tag_addr, tag_ptr, tag_now);
1777 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1778 					tag_ptr += tag_now;
1779 					tag_todo -= tag_now;
1780 				} while (unlikely(tag_todo)); else {
1781 					if (likely(dio->write))
1782 						memset(tag_ptr, 0, tag_todo);
1783 				}
1784 			}
1785 
1786 			if (likely(dio->write)) {
1787 				struct journal_sector *js;
1788 				unsigned s;
1789 
1790 				js = access_journal_data(ic, journal_section, journal_entry);
1791 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1792 
1793 				s = 0;
1794 				do {
1795 					je->last_bytes[s] = js[s].commit_id;
1796 				} while (++s < ic->sectors_per_block);
1797 
1798 				if (ic->internal_hash) {
1799 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1800 					if (unlikely(digest_size > ic->tag_size)) {
1801 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
1802 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1803 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1804 					} else
1805 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1806 				}
1807 
1808 				journal_entry_set_sector(je, logical_sector);
1809 			}
1810 			logical_sector += ic->sectors_per_block;
1811 
1812 			journal_entry++;
1813 			if (unlikely(journal_entry == ic->journal_section_entries)) {
1814 				journal_entry = 0;
1815 				journal_section++;
1816 				wraparound_section(ic, &journal_section);
1817 			}
1818 
1819 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1820 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1821 
1822 		if (unlikely(!dio->write))
1823 			flush_dcache_page(bv.bv_page);
1824 		kunmap_atomic(mem);
1825 	} while (n_sectors);
1826 
1827 	if (likely(dio->write)) {
1828 		smp_mb();
1829 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1830 			wake_up(&ic->copy_to_journal_wait);
1831 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1832 			queue_work(ic->commit_wq, &ic->commit_work);
1833 		} else {
1834 			schedule_autocommit(ic);
1835 		}
1836 	} else {
1837 		remove_range(ic, &dio->range);
1838 	}
1839 
1840 	if (unlikely(bio->bi_iter.bi_size)) {
1841 		sector_t area, offset;
1842 
1843 		dio->range.logical_sector = logical_sector;
1844 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1845 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1846 		return true;
1847 	}
1848 
1849 	return false;
1850 }
1851 
1852 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1853 {
1854 	struct dm_integrity_c *ic = dio->ic;
1855 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1856 	unsigned journal_section, journal_entry;
1857 	unsigned journal_read_pos;
1858 	struct completion read_comp;
1859 	bool need_sync_io = ic->internal_hash && !dio->write;
1860 
1861 	if (need_sync_io && from_map) {
1862 		INIT_WORK(&dio->work, integrity_bio_wait);
1863 		queue_work(ic->offload_wq, &dio->work);
1864 		return;
1865 	}
1866 
1867 lock_retry:
1868 	spin_lock_irq(&ic->endio_wait.lock);
1869 retry:
1870 	if (unlikely(dm_integrity_failed(ic))) {
1871 		spin_unlock_irq(&ic->endio_wait.lock);
1872 		do_endio(ic, bio);
1873 		return;
1874 	}
1875 	dio->range.n_sectors = bio_sectors(bio);
1876 	journal_read_pos = NOT_FOUND;
1877 	if (likely(ic->mode == 'J')) {
1878 		if (dio->write) {
1879 			unsigned next_entry, i, pos;
1880 			unsigned ws, we, range_sectors;
1881 
1882 			dio->range.n_sectors = min(dio->range.n_sectors,
1883 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1884 			if (unlikely(!dio->range.n_sectors)) {
1885 				if (from_map)
1886 					goto offload_to_thread;
1887 				sleep_on_endio_wait(ic);
1888 				goto retry;
1889 			}
1890 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1891 			ic->free_sectors -= range_sectors;
1892 			journal_section = ic->free_section;
1893 			journal_entry = ic->free_section_entry;
1894 
1895 			next_entry = ic->free_section_entry + range_sectors;
1896 			ic->free_section_entry = next_entry % ic->journal_section_entries;
1897 			ic->free_section += next_entry / ic->journal_section_entries;
1898 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1899 			wraparound_section(ic, &ic->free_section);
1900 
1901 			pos = journal_section * ic->journal_section_entries + journal_entry;
1902 			ws = journal_section;
1903 			we = journal_entry;
1904 			i = 0;
1905 			do {
1906 				struct journal_entry *je;
1907 
1908 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1909 				pos++;
1910 				if (unlikely(pos >= ic->journal_entries))
1911 					pos = 0;
1912 
1913 				je = access_journal_entry(ic, ws, we);
1914 				BUG_ON(!journal_entry_is_unused(je));
1915 				journal_entry_set_inprogress(je);
1916 				we++;
1917 				if (unlikely(we == ic->journal_section_entries)) {
1918 					we = 0;
1919 					ws++;
1920 					wraparound_section(ic, &ws);
1921 				}
1922 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1923 
1924 			spin_unlock_irq(&ic->endio_wait.lock);
1925 			goto journal_read_write;
1926 		} else {
1927 			sector_t next_sector;
1928 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1929 			if (likely(journal_read_pos == NOT_FOUND)) {
1930 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1931 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
1932 			} else {
1933 				unsigned i;
1934 				unsigned jp = journal_read_pos + 1;
1935 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1936 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1937 						break;
1938 				}
1939 				dio->range.n_sectors = i;
1940 			}
1941 		}
1942 	}
1943 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
1944 		/*
1945 		 * We must not sleep in the request routine because it could
1946 		 * stall bios on current->bio_list.
1947 		 * So, we offload the bio to a workqueue if we have to sleep.
1948 		 */
1949 		if (from_map) {
1950 offload_to_thread:
1951 			spin_unlock_irq(&ic->endio_wait.lock);
1952 			INIT_WORK(&dio->work, integrity_bio_wait);
1953 			queue_work(ic->wait_wq, &dio->work);
1954 			return;
1955 		}
1956 		if (journal_read_pos != NOT_FOUND)
1957 			dio->range.n_sectors = ic->sectors_per_block;
1958 		wait_and_add_new_range(ic, &dio->range);
1959 		/*
1960 		 * wait_and_add_new_range drops the spinlock, so the journal
1961 		 * may have been changed arbitrarily. We need to recheck.
1962 		 * To simplify the code, we restrict I/O size to just one block.
1963 		 */
1964 		if (journal_read_pos != NOT_FOUND) {
1965 			sector_t next_sector;
1966 			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1967 			if (unlikely(new_pos != journal_read_pos)) {
1968 				remove_range_unlocked(ic, &dio->range);
1969 				goto retry;
1970 			}
1971 		}
1972 	}
1973 	spin_unlock_irq(&ic->endio_wait.lock);
1974 
1975 	if (unlikely(journal_read_pos != NOT_FOUND)) {
1976 		journal_section = journal_read_pos / ic->journal_section_entries;
1977 		journal_entry = journal_read_pos % ic->journal_section_entries;
1978 		goto journal_read_write;
1979 	}
1980 
1981 	if (ic->mode == 'B' && dio->write) {
1982 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
1983 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
1984 			struct bitmap_block_status *bbs;
1985 
1986 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
1987 			spin_lock(&bbs->bio_queue_lock);
1988 			bio_list_add(&bbs->bio_queue, bio);
1989 			spin_unlock(&bbs->bio_queue_lock);
1990 			queue_work(ic->writer_wq, &bbs->work);
1991 			return;
1992 		}
1993 	}
1994 
1995 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1996 
1997 	if (need_sync_io) {
1998 		init_completion(&read_comp);
1999 		dio->completion = &read_comp;
2000 	} else
2001 		dio->completion = NULL;
2002 
2003 	dm_bio_record(&dio->bio_details, bio);
2004 	bio_set_dev(bio, ic->dev->bdev);
2005 	bio->bi_integrity = NULL;
2006 	bio->bi_opf &= ~REQ_INTEGRITY;
2007 	bio->bi_end_io = integrity_end_io;
2008 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2009 
2010 	generic_make_request(bio);
2011 
2012 	if (need_sync_io) {
2013 		wait_for_completion_io(&read_comp);
2014 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2015 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2016 			goto skip_check;
2017 		if (ic->mode == 'B') {
2018 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2019 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2020 				goto skip_check;
2021 		}
2022 
2023 		if (likely(!bio->bi_status))
2024 			integrity_metadata(&dio->work);
2025 		else
2026 skip_check:
2027 			dec_in_flight(dio);
2028 
2029 	} else {
2030 		INIT_WORK(&dio->work, integrity_metadata);
2031 		queue_work(ic->metadata_wq, &dio->work);
2032 	}
2033 
2034 	return;
2035 
2036 journal_read_write:
2037 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2038 		goto lock_retry;
2039 
2040 	do_endio_flush(ic, dio);
2041 }
2042 
2043 
2044 static void integrity_bio_wait(struct work_struct *w)
2045 {
2046 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2047 
2048 	dm_integrity_map_continue(dio, false);
2049 }
2050 
2051 static void pad_uncommitted(struct dm_integrity_c *ic)
2052 {
2053 	if (ic->free_section_entry) {
2054 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2055 		ic->free_section_entry = 0;
2056 		ic->free_section++;
2057 		wraparound_section(ic, &ic->free_section);
2058 		ic->n_uncommitted_sections++;
2059 	}
2060 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2061 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2062 		    ic->journal_section_entries + ic->free_sectors)) {
2063 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2064 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2065 		       "journal_section_entries %u, free_sectors %u",
2066 		       ic->journal_sections, ic->journal_section_entries,
2067 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2068 		       ic->journal_section_entries, ic->free_sectors);
2069 	}
2070 }
2071 
2072 static void integrity_commit(struct work_struct *w)
2073 {
2074 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2075 	unsigned commit_start, commit_sections;
2076 	unsigned i, j, n;
2077 	struct bio *flushes;
2078 
2079 	del_timer(&ic->autocommit_timer);
2080 
2081 	spin_lock_irq(&ic->endio_wait.lock);
2082 	flushes = bio_list_get(&ic->flush_bio_list);
2083 	if (unlikely(ic->mode != 'J')) {
2084 		spin_unlock_irq(&ic->endio_wait.lock);
2085 		dm_integrity_flush_buffers(ic);
2086 		goto release_flush_bios;
2087 	}
2088 
2089 	pad_uncommitted(ic);
2090 	commit_start = ic->uncommitted_section;
2091 	commit_sections = ic->n_uncommitted_sections;
2092 	spin_unlock_irq(&ic->endio_wait.lock);
2093 
2094 	if (!commit_sections)
2095 		goto release_flush_bios;
2096 
2097 	i = commit_start;
2098 	for (n = 0; n < commit_sections; n++) {
2099 		for (j = 0; j < ic->journal_section_entries; j++) {
2100 			struct journal_entry *je;
2101 			je = access_journal_entry(ic, i, j);
2102 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2103 		}
2104 		for (j = 0; j < ic->journal_section_sectors; j++) {
2105 			struct journal_sector *js;
2106 			js = access_journal(ic, i, j);
2107 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2108 		}
2109 		i++;
2110 		if (unlikely(i >= ic->journal_sections))
2111 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2112 		wraparound_section(ic, &i);
2113 	}
2114 	smp_rmb();
2115 
2116 	write_journal(ic, commit_start, commit_sections);
2117 
2118 	spin_lock_irq(&ic->endio_wait.lock);
2119 	ic->uncommitted_section += commit_sections;
2120 	wraparound_section(ic, &ic->uncommitted_section);
2121 	ic->n_uncommitted_sections -= commit_sections;
2122 	ic->n_committed_sections += commit_sections;
2123 	spin_unlock_irq(&ic->endio_wait.lock);
2124 
2125 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2126 		queue_work(ic->writer_wq, &ic->writer_work);
2127 
2128 release_flush_bios:
2129 	while (flushes) {
2130 		struct bio *next = flushes->bi_next;
2131 		flushes->bi_next = NULL;
2132 		do_endio(ic, flushes);
2133 		flushes = next;
2134 	}
2135 }
2136 
2137 static void complete_copy_from_journal(unsigned long error, void *context)
2138 {
2139 	struct journal_io *io = context;
2140 	struct journal_completion *comp = io->comp;
2141 	struct dm_integrity_c *ic = comp->ic;
2142 	remove_range(ic, &io->range);
2143 	mempool_free(io, &ic->journal_io_mempool);
2144 	if (unlikely(error != 0))
2145 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2146 	complete_journal_op(comp);
2147 }
2148 
2149 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2150 			       struct journal_entry *je)
2151 {
2152 	unsigned s = 0;
2153 	do {
2154 		js->commit_id = je->last_bytes[s];
2155 		js++;
2156 	} while (++s < ic->sectors_per_block);
2157 }
2158 
2159 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2160 			     unsigned write_sections, bool from_replay)
2161 {
2162 	unsigned i, j, n;
2163 	struct journal_completion comp;
2164 	struct blk_plug plug;
2165 
2166 	blk_start_plug(&plug);
2167 
2168 	comp.ic = ic;
2169 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2170 	init_completion(&comp.comp);
2171 
2172 	i = write_start;
2173 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2174 #ifndef INTERNAL_VERIFY
2175 		if (unlikely(from_replay))
2176 #endif
2177 			rw_section_mac(ic, i, false);
2178 		for (j = 0; j < ic->journal_section_entries; j++) {
2179 			struct journal_entry *je = access_journal_entry(ic, i, j);
2180 			sector_t sec, area, offset;
2181 			unsigned k, l, next_loop;
2182 			sector_t metadata_block;
2183 			unsigned metadata_offset;
2184 			struct journal_io *io;
2185 
2186 			if (journal_entry_is_unused(je))
2187 				continue;
2188 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2189 			sec = journal_entry_get_sector(je);
2190 			if (unlikely(from_replay)) {
2191 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2192 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2193 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2194 				}
2195 			}
2196 			get_area_and_offset(ic, sec, &area, &offset);
2197 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2198 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2199 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2200 				sector_t sec2, area2, offset2;
2201 				if (journal_entry_is_unused(je2))
2202 					break;
2203 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2204 				sec2 = journal_entry_get_sector(je2);
2205 				get_area_and_offset(ic, sec2, &area2, &offset2);
2206 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2207 					break;
2208 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2209 			}
2210 			next_loop = k - 1;
2211 
2212 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2213 			io->comp = &comp;
2214 			io->range.logical_sector = sec;
2215 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2216 
2217 			spin_lock_irq(&ic->endio_wait.lock);
2218 			add_new_range_and_wait(ic, &io->range);
2219 
2220 			if (likely(!from_replay)) {
2221 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2222 
2223 				/* don't write if there is newer committed sector */
2224 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2225 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2226 
2227 					journal_entry_set_unused(je2);
2228 					remove_journal_node(ic, &section_node[j]);
2229 					j++;
2230 					sec += ic->sectors_per_block;
2231 					offset += ic->sectors_per_block;
2232 				}
2233 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2234 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2235 
2236 					journal_entry_set_unused(je2);
2237 					remove_journal_node(ic, &section_node[k - 1]);
2238 					k--;
2239 				}
2240 				if (j == k) {
2241 					remove_range_unlocked(ic, &io->range);
2242 					spin_unlock_irq(&ic->endio_wait.lock);
2243 					mempool_free(io, &ic->journal_io_mempool);
2244 					goto skip_io;
2245 				}
2246 				for (l = j; l < k; l++) {
2247 					remove_journal_node(ic, &section_node[l]);
2248 				}
2249 			}
2250 			spin_unlock_irq(&ic->endio_wait.lock);
2251 
2252 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2253 			for (l = j; l < k; l++) {
2254 				int r;
2255 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2256 
2257 				if (
2258 #ifndef INTERNAL_VERIFY
2259 				    unlikely(from_replay) &&
2260 #endif
2261 				    ic->internal_hash) {
2262 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2263 
2264 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2265 								  (char *)access_journal_data(ic, i, l), test_tag);
2266 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2267 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2268 				}
2269 
2270 				journal_entry_set_unused(je2);
2271 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2272 							ic->tag_size, TAG_WRITE);
2273 				if (unlikely(r)) {
2274 					dm_integrity_io_error(ic, "reading tags", r);
2275 				}
2276 			}
2277 
2278 			atomic_inc(&comp.in_flight);
2279 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2280 					  (k - j) << ic->sb->log2_sectors_per_block,
2281 					  get_data_sector(ic, area, offset),
2282 					  complete_copy_from_journal, io);
2283 skip_io:
2284 			j = next_loop;
2285 		}
2286 	}
2287 
2288 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2289 
2290 	blk_finish_plug(&plug);
2291 
2292 	complete_journal_op(&comp);
2293 	wait_for_completion_io(&comp.comp);
2294 
2295 	dm_integrity_flush_buffers(ic);
2296 }
2297 
2298 static void integrity_writer(struct work_struct *w)
2299 {
2300 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2301 	unsigned write_start, write_sections;
2302 
2303 	unsigned prev_free_sectors;
2304 
2305 	/* the following test is not needed, but it tests the replay code */
2306 	if (unlikely(dm_suspended(ic->ti)) && !ic->meta_dev)
2307 		return;
2308 
2309 	spin_lock_irq(&ic->endio_wait.lock);
2310 	write_start = ic->committed_section;
2311 	write_sections = ic->n_committed_sections;
2312 	spin_unlock_irq(&ic->endio_wait.lock);
2313 
2314 	if (!write_sections)
2315 		return;
2316 
2317 	do_journal_write(ic, write_start, write_sections, false);
2318 
2319 	spin_lock_irq(&ic->endio_wait.lock);
2320 
2321 	ic->committed_section += write_sections;
2322 	wraparound_section(ic, &ic->committed_section);
2323 	ic->n_committed_sections -= write_sections;
2324 
2325 	prev_free_sectors = ic->free_sectors;
2326 	ic->free_sectors += write_sections * ic->journal_section_entries;
2327 	if (unlikely(!prev_free_sectors))
2328 		wake_up_locked(&ic->endio_wait);
2329 
2330 	spin_unlock_irq(&ic->endio_wait.lock);
2331 }
2332 
2333 static void recalc_write_super(struct dm_integrity_c *ic)
2334 {
2335 	int r;
2336 
2337 	dm_integrity_flush_buffers(ic);
2338 	if (dm_integrity_failed(ic))
2339 		return;
2340 
2341 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2342 	if (unlikely(r))
2343 		dm_integrity_io_error(ic, "writing superblock", r);
2344 }
2345 
2346 static void integrity_recalc(struct work_struct *w)
2347 {
2348 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2349 	struct dm_integrity_range range;
2350 	struct dm_io_request io_req;
2351 	struct dm_io_region io_loc;
2352 	sector_t area, offset;
2353 	sector_t metadata_block;
2354 	unsigned metadata_offset;
2355 	sector_t logical_sector, n_sectors;
2356 	__u8 *t;
2357 	unsigned i;
2358 	int r;
2359 	unsigned super_counter = 0;
2360 
2361 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2362 
2363 	spin_lock_irq(&ic->endio_wait.lock);
2364 
2365 next_chunk:
2366 
2367 	if (unlikely(dm_suspended(ic->ti)))
2368 		goto unlock_ret;
2369 
2370 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2371 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2372 		if (ic->mode == 'B') {
2373 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2374 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2375 		}
2376 		goto unlock_ret;
2377 	}
2378 
2379 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2380 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2381 	if (!ic->meta_dev)
2382 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2383 
2384 	add_new_range_and_wait(ic, &range);
2385 	spin_unlock_irq(&ic->endio_wait.lock);
2386 	logical_sector = range.logical_sector;
2387 	n_sectors = range.n_sectors;
2388 
2389 	if (ic->mode == 'B') {
2390 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2391 			goto advance_and_next;
2392 		}
2393 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2394 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2395 			logical_sector += ic->sectors_per_block;
2396 			n_sectors -= ic->sectors_per_block;
2397 			cond_resched();
2398 		}
2399 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2400 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2401 			n_sectors -= ic->sectors_per_block;
2402 			cond_resched();
2403 		}
2404 		get_area_and_offset(ic, logical_sector, &area, &offset);
2405 	}
2406 
2407 	DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors);
2408 
2409 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2410 		recalc_write_super(ic);
2411 		if (ic->mode == 'B') {
2412 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2413 		}
2414 		super_counter = 0;
2415 	}
2416 
2417 	if (unlikely(dm_integrity_failed(ic)))
2418 		goto err;
2419 
2420 	io_req.bi_op = REQ_OP_READ;
2421 	io_req.bi_op_flags = 0;
2422 	io_req.mem.type = DM_IO_VMA;
2423 	io_req.mem.ptr.addr = ic->recalc_buffer;
2424 	io_req.notify.fn = NULL;
2425 	io_req.client = ic->io;
2426 	io_loc.bdev = ic->dev->bdev;
2427 	io_loc.sector = get_data_sector(ic, area, offset);
2428 	io_loc.count = n_sectors;
2429 
2430 	r = dm_io(&io_req, 1, &io_loc, NULL);
2431 	if (unlikely(r)) {
2432 		dm_integrity_io_error(ic, "reading data", r);
2433 		goto err;
2434 	}
2435 
2436 	t = ic->recalc_tags;
2437 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2438 		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2439 		t += ic->tag_size;
2440 	}
2441 
2442 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2443 
2444 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2445 	if (unlikely(r)) {
2446 		dm_integrity_io_error(ic, "writing tags", r);
2447 		goto err;
2448 	}
2449 
2450 advance_and_next:
2451 	cond_resched();
2452 
2453 	spin_lock_irq(&ic->endio_wait.lock);
2454 	remove_range_unlocked(ic, &range);
2455 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2456 	goto next_chunk;
2457 
2458 err:
2459 	remove_range(ic, &range);
2460 	return;
2461 
2462 unlock_ret:
2463 	spin_unlock_irq(&ic->endio_wait.lock);
2464 
2465 	recalc_write_super(ic);
2466 }
2467 
2468 static void bitmap_block_work(struct work_struct *w)
2469 {
2470 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2471 	struct dm_integrity_c *ic = bbs->ic;
2472 	struct bio *bio;
2473 	struct bio_list bio_queue;
2474 	struct bio_list waiting;
2475 
2476 	bio_list_init(&waiting);
2477 
2478 	spin_lock(&bbs->bio_queue_lock);
2479 	bio_queue = bbs->bio_queue;
2480 	bio_list_init(&bbs->bio_queue);
2481 	spin_unlock(&bbs->bio_queue_lock);
2482 
2483 	while ((bio = bio_list_pop(&bio_queue))) {
2484 		struct dm_integrity_io *dio;
2485 
2486 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2487 
2488 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2489 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2490 			remove_range(ic, &dio->range);
2491 			INIT_WORK(&dio->work, integrity_bio_wait);
2492 			queue_work(ic->offload_wq, &dio->work);
2493 		} else {
2494 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2495 					dio->range.n_sectors, BITMAP_OP_SET);
2496 			bio_list_add(&waiting, bio);
2497 		}
2498 	}
2499 
2500 	if (bio_list_empty(&waiting))
2501 		return;
2502 
2503 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2504 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2505 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2506 
2507 	while ((bio = bio_list_pop(&waiting))) {
2508 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2509 
2510 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2511 				dio->range.n_sectors, BITMAP_OP_SET);
2512 
2513 		remove_range(ic, &dio->range);
2514 		INIT_WORK(&dio->work, integrity_bio_wait);
2515 		queue_work(ic->offload_wq, &dio->work);
2516 	}
2517 
2518 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2519 }
2520 
2521 static void bitmap_flush_work(struct work_struct *work)
2522 {
2523 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2524 	struct dm_integrity_range range;
2525 	unsigned long limit;
2526 	struct bio *bio;
2527 
2528 	dm_integrity_flush_buffers(ic);
2529 
2530 	range.logical_sector = 0;
2531 	range.n_sectors = ic->provided_data_sectors;
2532 
2533 	spin_lock_irq(&ic->endio_wait.lock);
2534 	add_new_range_and_wait(ic, &range);
2535 	spin_unlock_irq(&ic->endio_wait.lock);
2536 
2537 	dm_integrity_flush_buffers(ic);
2538 	if (ic->meta_dev)
2539 		blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL);
2540 
2541 	limit = ic->provided_data_sectors;
2542 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2543 		limit = le64_to_cpu(ic->sb->recalc_sector)
2544 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2545 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2546 	}
2547 	/*DEBUG_print("zeroing journal\n");*/
2548 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2549 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2550 
2551 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2552 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2553 
2554 	spin_lock_irq(&ic->endio_wait.lock);
2555 	remove_range_unlocked(ic, &range);
2556 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2557 		bio_endio(bio);
2558 		spin_unlock_irq(&ic->endio_wait.lock);
2559 		spin_lock_irq(&ic->endio_wait.lock);
2560 	}
2561 	spin_unlock_irq(&ic->endio_wait.lock);
2562 }
2563 
2564 
2565 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2566 			 unsigned n_sections, unsigned char commit_seq)
2567 {
2568 	unsigned i, j, n;
2569 
2570 	if (!n_sections)
2571 		return;
2572 
2573 	for (n = 0; n < n_sections; n++) {
2574 		i = start_section + n;
2575 		wraparound_section(ic, &i);
2576 		for (j = 0; j < ic->journal_section_sectors; j++) {
2577 			struct journal_sector *js = access_journal(ic, i, j);
2578 			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2579 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2580 		}
2581 		for (j = 0; j < ic->journal_section_entries; j++) {
2582 			struct journal_entry *je = access_journal_entry(ic, i, j);
2583 			journal_entry_set_unused(je);
2584 		}
2585 	}
2586 
2587 	write_journal(ic, start_section, n_sections);
2588 }
2589 
2590 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2591 {
2592 	unsigned char k;
2593 	for (k = 0; k < N_COMMIT_IDS; k++) {
2594 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2595 			return k;
2596 	}
2597 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2598 	return -EIO;
2599 }
2600 
2601 static void replay_journal(struct dm_integrity_c *ic)
2602 {
2603 	unsigned i, j;
2604 	bool used_commit_ids[N_COMMIT_IDS];
2605 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2606 	unsigned write_start, write_sections;
2607 	unsigned continue_section;
2608 	bool journal_empty;
2609 	unsigned char unused, last_used, want_commit_seq;
2610 
2611 	if (ic->mode == 'R')
2612 		return;
2613 
2614 	if (ic->journal_uptodate)
2615 		return;
2616 
2617 	last_used = 0;
2618 	write_start = 0;
2619 
2620 	if (!ic->just_formatted) {
2621 		DEBUG_print("reading journal\n");
2622 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2623 		if (ic->journal_io)
2624 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2625 		if (ic->journal_io) {
2626 			struct journal_completion crypt_comp;
2627 			crypt_comp.ic = ic;
2628 			init_completion(&crypt_comp.comp);
2629 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2630 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2631 			wait_for_completion(&crypt_comp.comp);
2632 		}
2633 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2634 	}
2635 
2636 	if (dm_integrity_failed(ic))
2637 		goto clear_journal;
2638 
2639 	journal_empty = true;
2640 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2641 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2642 	for (i = 0; i < ic->journal_sections; i++) {
2643 		for (j = 0; j < ic->journal_section_sectors; j++) {
2644 			int k;
2645 			struct journal_sector *js = access_journal(ic, i, j);
2646 			k = find_commit_seq(ic, i, j, js->commit_id);
2647 			if (k < 0)
2648 				goto clear_journal;
2649 			used_commit_ids[k] = true;
2650 			max_commit_id_sections[k] = i;
2651 		}
2652 		if (journal_empty) {
2653 			for (j = 0; j < ic->journal_section_entries; j++) {
2654 				struct journal_entry *je = access_journal_entry(ic, i, j);
2655 				if (!journal_entry_is_unused(je)) {
2656 					journal_empty = false;
2657 					break;
2658 				}
2659 			}
2660 		}
2661 	}
2662 
2663 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2664 		unused = N_COMMIT_IDS - 1;
2665 		while (unused && !used_commit_ids[unused - 1])
2666 			unused--;
2667 	} else {
2668 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2669 			if (!used_commit_ids[unused])
2670 				break;
2671 		if (unused == N_COMMIT_IDS) {
2672 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2673 			goto clear_journal;
2674 		}
2675 	}
2676 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2677 		    unused, used_commit_ids[0], used_commit_ids[1],
2678 		    used_commit_ids[2], used_commit_ids[3]);
2679 
2680 	last_used = prev_commit_seq(unused);
2681 	want_commit_seq = prev_commit_seq(last_used);
2682 
2683 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2684 		journal_empty = true;
2685 
2686 	write_start = max_commit_id_sections[last_used] + 1;
2687 	if (unlikely(write_start >= ic->journal_sections))
2688 		want_commit_seq = next_commit_seq(want_commit_seq);
2689 	wraparound_section(ic, &write_start);
2690 
2691 	i = write_start;
2692 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2693 		for (j = 0; j < ic->journal_section_sectors; j++) {
2694 			struct journal_sector *js = access_journal(ic, i, j);
2695 
2696 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2697 				/*
2698 				 * This could be caused by crash during writing.
2699 				 * We won't replay the inconsistent part of the
2700 				 * journal.
2701 				 */
2702 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2703 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2704 				goto brk;
2705 			}
2706 		}
2707 		i++;
2708 		if (unlikely(i >= ic->journal_sections))
2709 			want_commit_seq = next_commit_seq(want_commit_seq);
2710 		wraparound_section(ic, &i);
2711 	}
2712 brk:
2713 
2714 	if (!journal_empty) {
2715 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2716 			    write_sections, write_start, want_commit_seq);
2717 		do_journal_write(ic, write_start, write_sections, true);
2718 	}
2719 
2720 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2721 		continue_section = write_start;
2722 		ic->commit_seq = want_commit_seq;
2723 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2724 	} else {
2725 		unsigned s;
2726 		unsigned char erase_seq;
2727 clear_journal:
2728 		DEBUG_print("clearing journal\n");
2729 
2730 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2731 		s = write_start;
2732 		init_journal(ic, s, 1, erase_seq);
2733 		s++;
2734 		wraparound_section(ic, &s);
2735 		if (ic->journal_sections >= 2) {
2736 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2737 			s += ic->journal_sections - 2;
2738 			wraparound_section(ic, &s);
2739 			init_journal(ic, s, 1, erase_seq);
2740 		}
2741 
2742 		continue_section = 0;
2743 		ic->commit_seq = next_commit_seq(erase_seq);
2744 	}
2745 
2746 	ic->committed_section = continue_section;
2747 	ic->n_committed_sections = 0;
2748 
2749 	ic->uncommitted_section = continue_section;
2750 	ic->n_uncommitted_sections = 0;
2751 
2752 	ic->free_section = continue_section;
2753 	ic->free_section_entry = 0;
2754 	ic->free_sectors = ic->journal_entries;
2755 
2756 	ic->journal_tree_root = RB_ROOT;
2757 	for (i = 0; i < ic->journal_entries; i++)
2758 		init_journal_node(&ic->journal_tree[i]);
2759 }
2760 
2761 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2762 {
2763 	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2764 
2765 	if (ic->mode == 'B') {
2766 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2767 		ic->synchronous_mode = 1;
2768 
2769 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2770 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2771 		flush_workqueue(ic->commit_wq);
2772 	}
2773 }
2774 
2775 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2776 {
2777 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2778 
2779 	DEBUG_print("dm_integrity_reboot\n");
2780 
2781 	dm_integrity_enter_synchronous_mode(ic);
2782 
2783 	return NOTIFY_DONE;
2784 }
2785 
2786 static void dm_integrity_postsuspend(struct dm_target *ti)
2787 {
2788 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2789 	int r;
2790 
2791 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2792 
2793 	del_timer_sync(&ic->autocommit_timer);
2794 
2795 	if (ic->recalc_wq)
2796 		drain_workqueue(ic->recalc_wq);
2797 
2798 	if (ic->mode == 'B')
2799 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2800 
2801 	queue_work(ic->commit_wq, &ic->commit_work);
2802 	drain_workqueue(ic->commit_wq);
2803 
2804 	if (ic->mode == 'J') {
2805 		if (ic->meta_dev)
2806 			queue_work(ic->writer_wq, &ic->writer_work);
2807 		drain_workqueue(ic->writer_wq);
2808 		dm_integrity_flush_buffers(ic);
2809 	}
2810 
2811 	if (ic->mode == 'B') {
2812 		dm_integrity_flush_buffers(ic);
2813 #if 1
2814 		/* set to 0 to test bitmap replay code */
2815 		init_journal(ic, 0, ic->journal_sections, 0);
2816 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2817 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2818 		if (unlikely(r))
2819 			dm_integrity_io_error(ic, "writing superblock", r);
2820 #endif
2821 	}
2822 
2823 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2824 
2825 	ic->journal_uptodate = true;
2826 }
2827 
2828 static void dm_integrity_resume(struct dm_target *ti)
2829 {
2830 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2831 	int r;
2832 	DEBUG_print("resume\n");
2833 
2834 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2835 		DEBUG_print("resume dirty_bitmap\n");
2836 		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2837 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2838 		if (ic->mode == 'B') {
2839 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2840 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2841 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2842 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2843 						     BITMAP_OP_TEST_ALL_CLEAR)) {
2844 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2845 					ic->sb->recalc_sector = cpu_to_le64(0);
2846 				}
2847 			} else {
2848 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2849 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2850 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2851 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2852 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2853 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2854 				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2855 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2856 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2857 				ic->sb->recalc_sector = cpu_to_le64(0);
2858 			}
2859 		} else {
2860 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
2861 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
2862 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2863 				ic->sb->recalc_sector = cpu_to_le64(0);
2864 			}
2865 			init_journal(ic, 0, ic->journal_sections, 0);
2866 			replay_journal(ic);
2867 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2868 		}
2869 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2870 		if (unlikely(r))
2871 			dm_integrity_io_error(ic, "writing superblock", r);
2872 	} else {
2873 		replay_journal(ic);
2874 		if (ic->mode == 'B') {
2875 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2876 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2877 			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2878 			if (unlikely(r))
2879 				dm_integrity_io_error(ic, "writing superblock", r);
2880 
2881 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2882 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2883 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2884 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2885 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
2886 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
2887 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2888 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
2889 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2890 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
2891 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2892 			}
2893 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2894 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2895 		}
2896 	}
2897 
2898 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
2899 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2900 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2901 		DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors);
2902 		if (recalc_pos < ic->provided_data_sectors) {
2903 			queue_work(ic->recalc_wq, &ic->recalc_work);
2904 		} else if (recalc_pos > ic->provided_data_sectors) {
2905 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2906 			recalc_write_super(ic);
2907 		}
2908 	}
2909 
2910 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
2911 	ic->reboot_notifier.next = NULL;
2912 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
2913 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
2914 
2915 #if 0
2916 	/* set to 1 to stress test synchronous mode */
2917 	dm_integrity_enter_synchronous_mode(ic);
2918 #endif
2919 }
2920 
2921 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2922 				unsigned status_flags, char *result, unsigned maxlen)
2923 {
2924 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2925 	unsigned arg_count;
2926 	size_t sz = 0;
2927 
2928 	switch (type) {
2929 	case STATUSTYPE_INFO:
2930 		DMEMIT("%llu %llu",
2931 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
2932 			(unsigned long long)ic->provided_data_sectors);
2933 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2934 			DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2935 		else
2936 			DMEMIT(" -");
2937 		break;
2938 
2939 	case STATUSTYPE_TABLE: {
2940 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2941 		watermark_percentage += ic->journal_entries / 2;
2942 		do_div(watermark_percentage, ic->journal_entries);
2943 		arg_count = 3;
2944 		arg_count += !!ic->meta_dev;
2945 		arg_count += ic->sectors_per_block != 1;
2946 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2947 		arg_count += ic->mode == 'J';
2948 		arg_count += ic->mode == 'J';
2949 		arg_count += ic->mode == 'B';
2950 		arg_count += ic->mode == 'B';
2951 		arg_count += !!ic->internal_hash_alg.alg_string;
2952 		arg_count += !!ic->journal_crypt_alg.alg_string;
2953 		arg_count += !!ic->journal_mac_alg.alg_string;
2954 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
2955 		DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2956 		       ic->tag_size, ic->mode, arg_count);
2957 		if (ic->meta_dev)
2958 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
2959 		if (ic->sectors_per_block != 1)
2960 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2961 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2962 			DMEMIT(" recalculate");
2963 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2964 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2965 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2966 		if (ic->mode == 'J') {
2967 			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2968 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
2969 		}
2970 		if (ic->mode == 'B') {
2971 			DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
2972 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
2973 		}
2974 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
2975 			DMEMIT(" fix_padding");
2976 
2977 #define EMIT_ALG(a, n)							\
2978 		do {							\
2979 			if (ic->a.alg_string) {				\
2980 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
2981 				if (ic->a.key_string)			\
2982 					DMEMIT(":%s", ic->a.key_string);\
2983 			}						\
2984 		} while (0)
2985 		EMIT_ALG(internal_hash_alg, "internal_hash");
2986 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
2987 		EMIT_ALG(journal_mac_alg, "journal_mac");
2988 		break;
2989 	}
2990 	}
2991 }
2992 
2993 static int dm_integrity_iterate_devices(struct dm_target *ti,
2994 					iterate_devices_callout_fn fn, void *data)
2995 {
2996 	struct dm_integrity_c *ic = ti->private;
2997 
2998 	if (!ic->meta_dev)
2999 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3000 	else
3001 		return fn(ti, ic->dev, 0, ti->len, data);
3002 }
3003 
3004 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3005 {
3006 	struct dm_integrity_c *ic = ti->private;
3007 
3008 	if (ic->sectors_per_block > 1) {
3009 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3010 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3011 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3012 	}
3013 }
3014 
3015 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3016 {
3017 	unsigned sector_space = JOURNAL_SECTOR_DATA;
3018 
3019 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3020 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3021 					 JOURNAL_ENTRY_ROUNDUP);
3022 
3023 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3024 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3025 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3026 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3027 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3028 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3029 }
3030 
3031 static int calculate_device_limits(struct dm_integrity_c *ic)
3032 {
3033 	__u64 initial_sectors;
3034 
3035 	calculate_journal_section_size(ic);
3036 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3037 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3038 		return -EINVAL;
3039 	ic->initial_sectors = initial_sectors;
3040 
3041 	if (!ic->meta_dev) {
3042 		sector_t last_sector, last_area, last_offset;
3043 
3044 		/* we have to maintain excessive padding for compatibility with existing volumes */
3045 		__u64 metadata_run_padding =
3046 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3047 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3048 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3049 
3050 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3051 					    metadata_run_padding) >> SECTOR_SHIFT;
3052 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3053 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3054 		else
3055 			ic->log2_metadata_run = -1;
3056 
3057 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3058 		last_sector = get_data_sector(ic, last_area, last_offset);
3059 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3060 			return -EINVAL;
3061 	} else {
3062 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3063 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3064 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3065 		meta_size <<= ic->log2_buffer_sectors;
3066 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3067 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3068 			return -EINVAL;
3069 		ic->metadata_run = 1;
3070 		ic->log2_metadata_run = 0;
3071 	}
3072 
3073 	return 0;
3074 }
3075 
3076 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3077 {
3078 	unsigned journal_sections;
3079 	int test_bit;
3080 
3081 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3082 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3083 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3084 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3085 	if (ic->journal_mac_alg.alg_string)
3086 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3087 
3088 	calculate_journal_section_size(ic);
3089 	journal_sections = journal_sectors / ic->journal_section_sectors;
3090 	if (!journal_sections)
3091 		journal_sections = 1;
3092 
3093 	if (!ic->meta_dev) {
3094 		if (ic->fix_padding)
3095 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3096 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3097 		if (!interleave_sectors)
3098 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3099 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3100 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3101 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3102 
3103 		ic->provided_data_sectors = 0;
3104 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3105 			__u64 prev_data_sectors = ic->provided_data_sectors;
3106 
3107 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3108 			if (calculate_device_limits(ic))
3109 				ic->provided_data_sectors = prev_data_sectors;
3110 		}
3111 		if (!ic->provided_data_sectors)
3112 			return -EINVAL;
3113 	} else {
3114 		ic->sb->log2_interleave_sectors = 0;
3115 		ic->provided_data_sectors = ic->data_device_sectors;
3116 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3117 
3118 try_smaller_buffer:
3119 		ic->sb->journal_sections = cpu_to_le32(0);
3120 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3121 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3122 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3123 			if (test_journal_sections > journal_sections)
3124 				continue;
3125 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3126 			if (calculate_device_limits(ic))
3127 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3128 
3129 		}
3130 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3131 			if (ic->log2_buffer_sectors > 3) {
3132 				ic->log2_buffer_sectors--;
3133 				goto try_smaller_buffer;
3134 			}
3135 			return -EINVAL;
3136 		}
3137 	}
3138 
3139 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3140 
3141 	sb_set_version(ic);
3142 
3143 	return 0;
3144 }
3145 
3146 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3147 {
3148 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3149 	struct blk_integrity bi;
3150 
3151 	memset(&bi, 0, sizeof(bi));
3152 	bi.profile = &dm_integrity_profile;
3153 	bi.tuple_size = ic->tag_size;
3154 	bi.tag_size = bi.tuple_size;
3155 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3156 
3157 	blk_integrity_register(disk, &bi);
3158 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3159 }
3160 
3161 static void dm_integrity_free_page_list(struct page_list *pl)
3162 {
3163 	unsigned i;
3164 
3165 	if (!pl)
3166 		return;
3167 	for (i = 0; pl[i].page; i++)
3168 		__free_page(pl[i].page);
3169 	kvfree(pl);
3170 }
3171 
3172 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3173 {
3174 	struct page_list *pl;
3175 	unsigned i;
3176 
3177 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3178 	if (!pl)
3179 		return NULL;
3180 
3181 	for (i = 0; i < n_pages; i++) {
3182 		pl[i].page = alloc_page(GFP_KERNEL);
3183 		if (!pl[i].page) {
3184 			dm_integrity_free_page_list(pl);
3185 			return NULL;
3186 		}
3187 		if (i)
3188 			pl[i - 1].next = &pl[i];
3189 	}
3190 	pl[i].page = NULL;
3191 	pl[i].next = NULL;
3192 
3193 	return pl;
3194 }
3195 
3196 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3197 {
3198 	unsigned i;
3199 	for (i = 0; i < ic->journal_sections; i++)
3200 		kvfree(sl[i]);
3201 	kvfree(sl);
3202 }
3203 
3204 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3205 								   struct page_list *pl)
3206 {
3207 	struct scatterlist **sl;
3208 	unsigned i;
3209 
3210 	sl = kvmalloc_array(ic->journal_sections,
3211 			    sizeof(struct scatterlist *),
3212 			    GFP_KERNEL | __GFP_ZERO);
3213 	if (!sl)
3214 		return NULL;
3215 
3216 	for (i = 0; i < ic->journal_sections; i++) {
3217 		struct scatterlist *s;
3218 		unsigned start_index, start_offset;
3219 		unsigned end_index, end_offset;
3220 		unsigned n_pages;
3221 		unsigned idx;
3222 
3223 		page_list_location(ic, i, 0, &start_index, &start_offset);
3224 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3225 				   &end_index, &end_offset);
3226 
3227 		n_pages = (end_index - start_index + 1);
3228 
3229 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3230 				   GFP_KERNEL);
3231 		if (!s) {
3232 			dm_integrity_free_journal_scatterlist(ic, sl);
3233 			return NULL;
3234 		}
3235 
3236 		sg_init_table(s, n_pages);
3237 		for (idx = start_index; idx <= end_index; idx++) {
3238 			char *va = lowmem_page_address(pl[idx].page);
3239 			unsigned start = 0, end = PAGE_SIZE;
3240 			if (idx == start_index)
3241 				start = start_offset;
3242 			if (idx == end_index)
3243 				end = end_offset + (1 << SECTOR_SHIFT);
3244 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3245 		}
3246 
3247 		sl[i] = s;
3248 	}
3249 
3250 	return sl;
3251 }
3252 
3253 static void free_alg(struct alg_spec *a)
3254 {
3255 	kzfree(a->alg_string);
3256 	kzfree(a->key);
3257 	memset(a, 0, sizeof *a);
3258 }
3259 
3260 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3261 {
3262 	char *k;
3263 
3264 	free_alg(a);
3265 
3266 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3267 	if (!a->alg_string)
3268 		goto nomem;
3269 
3270 	k = strchr(a->alg_string, ':');
3271 	if (k) {
3272 		*k = 0;
3273 		a->key_string = k + 1;
3274 		if (strlen(a->key_string) & 1)
3275 			goto inval;
3276 
3277 		a->key_size = strlen(a->key_string) / 2;
3278 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3279 		if (!a->key)
3280 			goto nomem;
3281 		if (hex2bin(a->key, a->key_string, a->key_size))
3282 			goto inval;
3283 	}
3284 
3285 	return 0;
3286 inval:
3287 	*error = error_inval;
3288 	return -EINVAL;
3289 nomem:
3290 	*error = "Out of memory for an argument";
3291 	return -ENOMEM;
3292 }
3293 
3294 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3295 		   char *error_alg, char *error_key)
3296 {
3297 	int r;
3298 
3299 	if (a->alg_string) {
3300 		*hash = crypto_alloc_shash(a->alg_string, 0, 0);
3301 		if (IS_ERR(*hash)) {
3302 			*error = error_alg;
3303 			r = PTR_ERR(*hash);
3304 			*hash = NULL;
3305 			return r;
3306 		}
3307 
3308 		if (a->key) {
3309 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3310 			if (r) {
3311 				*error = error_key;
3312 				return r;
3313 			}
3314 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3315 			*error = error_key;
3316 			return -ENOKEY;
3317 		}
3318 	}
3319 
3320 	return 0;
3321 }
3322 
3323 static int create_journal(struct dm_integrity_c *ic, char **error)
3324 {
3325 	int r = 0;
3326 	unsigned i;
3327 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3328 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3329 	struct skcipher_request *req = NULL;
3330 
3331 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3332 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3333 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3334 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3335 
3336 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3337 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3338 	journal_desc_size = journal_pages * sizeof(struct page_list);
3339 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3340 		*error = "Journal doesn't fit into memory";
3341 		r = -ENOMEM;
3342 		goto bad;
3343 	}
3344 	ic->journal_pages = journal_pages;
3345 
3346 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3347 	if (!ic->journal) {
3348 		*error = "Could not allocate memory for journal";
3349 		r = -ENOMEM;
3350 		goto bad;
3351 	}
3352 	if (ic->journal_crypt_alg.alg_string) {
3353 		unsigned ivsize, blocksize;
3354 		struct journal_completion comp;
3355 
3356 		comp.ic = ic;
3357 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
3358 		if (IS_ERR(ic->journal_crypt)) {
3359 			*error = "Invalid journal cipher";
3360 			r = PTR_ERR(ic->journal_crypt);
3361 			ic->journal_crypt = NULL;
3362 			goto bad;
3363 		}
3364 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3365 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3366 
3367 		if (ic->journal_crypt_alg.key) {
3368 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3369 						   ic->journal_crypt_alg.key_size);
3370 			if (r) {
3371 				*error = "Error setting encryption key";
3372 				goto bad;
3373 			}
3374 		}
3375 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3376 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3377 
3378 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3379 		if (!ic->journal_io) {
3380 			*error = "Could not allocate memory for journal io";
3381 			r = -ENOMEM;
3382 			goto bad;
3383 		}
3384 
3385 		if (blocksize == 1) {
3386 			struct scatterlist *sg;
3387 
3388 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3389 			if (!req) {
3390 				*error = "Could not allocate crypt request";
3391 				r = -ENOMEM;
3392 				goto bad;
3393 			}
3394 
3395 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3396 			if (!crypt_iv) {
3397 				*error = "Could not allocate iv";
3398 				r = -ENOMEM;
3399 				goto bad;
3400 			}
3401 
3402 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3403 			if (!ic->journal_xor) {
3404 				*error = "Could not allocate memory for journal xor";
3405 				r = -ENOMEM;
3406 				goto bad;
3407 			}
3408 
3409 			sg = kvmalloc_array(ic->journal_pages + 1,
3410 					    sizeof(struct scatterlist),
3411 					    GFP_KERNEL);
3412 			if (!sg) {
3413 				*error = "Unable to allocate sg list";
3414 				r = -ENOMEM;
3415 				goto bad;
3416 			}
3417 			sg_init_table(sg, ic->journal_pages + 1);
3418 			for (i = 0; i < ic->journal_pages; i++) {
3419 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3420 				clear_page(va);
3421 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3422 			}
3423 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3424 
3425 			skcipher_request_set_crypt(req, sg, sg,
3426 						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3427 			init_completion(&comp.comp);
3428 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3429 			if (do_crypt(true, req, &comp))
3430 				wait_for_completion(&comp.comp);
3431 			kvfree(sg);
3432 			r = dm_integrity_failed(ic);
3433 			if (r) {
3434 				*error = "Unable to encrypt journal";
3435 				goto bad;
3436 			}
3437 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3438 
3439 			crypto_free_skcipher(ic->journal_crypt);
3440 			ic->journal_crypt = NULL;
3441 		} else {
3442 			unsigned crypt_len = roundup(ivsize, blocksize);
3443 
3444 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3445 			if (!req) {
3446 				*error = "Could not allocate crypt request";
3447 				r = -ENOMEM;
3448 				goto bad;
3449 			}
3450 
3451 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3452 			if (!crypt_iv) {
3453 				*error = "Could not allocate iv";
3454 				r = -ENOMEM;
3455 				goto bad;
3456 			}
3457 
3458 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3459 			if (!crypt_data) {
3460 				*error = "Unable to allocate crypt data";
3461 				r = -ENOMEM;
3462 				goto bad;
3463 			}
3464 
3465 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3466 			if (!ic->journal_scatterlist) {
3467 				*error = "Unable to allocate sg list";
3468 				r = -ENOMEM;
3469 				goto bad;
3470 			}
3471 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3472 			if (!ic->journal_io_scatterlist) {
3473 				*error = "Unable to allocate sg list";
3474 				r = -ENOMEM;
3475 				goto bad;
3476 			}
3477 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3478 							 sizeof(struct skcipher_request *),
3479 							 GFP_KERNEL | __GFP_ZERO);
3480 			if (!ic->sk_requests) {
3481 				*error = "Unable to allocate sk requests";
3482 				r = -ENOMEM;
3483 				goto bad;
3484 			}
3485 			for (i = 0; i < ic->journal_sections; i++) {
3486 				struct scatterlist sg;
3487 				struct skcipher_request *section_req;
3488 				__u32 section_le = cpu_to_le32(i);
3489 
3490 				memset(crypt_iv, 0x00, ivsize);
3491 				memset(crypt_data, 0x00, crypt_len);
3492 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3493 
3494 				sg_init_one(&sg, crypt_data, crypt_len);
3495 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3496 				init_completion(&comp.comp);
3497 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3498 				if (do_crypt(true, req, &comp))
3499 					wait_for_completion(&comp.comp);
3500 
3501 				r = dm_integrity_failed(ic);
3502 				if (r) {
3503 					*error = "Unable to generate iv";
3504 					goto bad;
3505 				}
3506 
3507 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3508 				if (!section_req) {
3509 					*error = "Unable to allocate crypt request";
3510 					r = -ENOMEM;
3511 					goto bad;
3512 				}
3513 				section_req->iv = kmalloc_array(ivsize, 2,
3514 								GFP_KERNEL);
3515 				if (!section_req->iv) {
3516 					skcipher_request_free(section_req);
3517 					*error = "Unable to allocate iv";
3518 					r = -ENOMEM;
3519 					goto bad;
3520 				}
3521 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3522 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3523 				ic->sk_requests[i] = section_req;
3524 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3525 			}
3526 		}
3527 	}
3528 
3529 	for (i = 0; i < N_COMMIT_IDS; i++) {
3530 		unsigned j;
3531 retest_commit_id:
3532 		for (j = 0; j < i; j++) {
3533 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3534 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3535 				goto retest_commit_id;
3536 			}
3537 		}
3538 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3539 	}
3540 
3541 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3542 	if (journal_tree_size > ULONG_MAX) {
3543 		*error = "Journal doesn't fit into memory";
3544 		r = -ENOMEM;
3545 		goto bad;
3546 	}
3547 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3548 	if (!ic->journal_tree) {
3549 		*error = "Could not allocate memory for journal tree";
3550 		r = -ENOMEM;
3551 	}
3552 bad:
3553 	kfree(crypt_data);
3554 	kfree(crypt_iv);
3555 	skcipher_request_free(req);
3556 
3557 	return r;
3558 }
3559 
3560 /*
3561  * Construct a integrity mapping
3562  *
3563  * Arguments:
3564  *	device
3565  *	offset from the start of the device
3566  *	tag size
3567  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3568  *	number of optional arguments
3569  *	optional arguments:
3570  *		journal_sectors
3571  *		interleave_sectors
3572  *		buffer_sectors
3573  *		journal_watermark
3574  *		commit_time
3575  *		meta_device
3576  *		block_size
3577  *		sectors_per_bit
3578  *		bitmap_flush_interval
3579  *		internal_hash
3580  *		journal_crypt
3581  *		journal_mac
3582  *		recalculate
3583  */
3584 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3585 {
3586 	struct dm_integrity_c *ic;
3587 	char dummy;
3588 	int r;
3589 	unsigned extra_args;
3590 	struct dm_arg_set as;
3591 	static const struct dm_arg _args[] = {
3592 		{0, 9, "Invalid number of feature args"},
3593 	};
3594 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3595 	bool should_write_sb;
3596 	__u64 threshold;
3597 	unsigned long long start;
3598 	__s8 log2_sectors_per_bitmap_bit = -1;
3599 	__s8 log2_blocks_per_bitmap_bit;
3600 	__u64 bits_in_journal;
3601 	__u64 n_bitmap_bits;
3602 
3603 #define DIRECT_ARGUMENTS	4
3604 
3605 	if (argc <= DIRECT_ARGUMENTS) {
3606 		ti->error = "Invalid argument count";
3607 		return -EINVAL;
3608 	}
3609 
3610 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3611 	if (!ic) {
3612 		ti->error = "Cannot allocate integrity context";
3613 		return -ENOMEM;
3614 	}
3615 	ti->private = ic;
3616 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3617 	ic->ti = ti;
3618 
3619 	ic->in_progress = RB_ROOT;
3620 	INIT_LIST_HEAD(&ic->wait_list);
3621 	init_waitqueue_head(&ic->endio_wait);
3622 	bio_list_init(&ic->flush_bio_list);
3623 	init_waitqueue_head(&ic->copy_to_journal_wait);
3624 	init_completion(&ic->crypto_backoff);
3625 	atomic64_set(&ic->number_of_mismatches, 0);
3626 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3627 
3628 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3629 	if (r) {
3630 		ti->error = "Device lookup failed";
3631 		goto bad;
3632 	}
3633 
3634 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3635 		ti->error = "Invalid starting offset";
3636 		r = -EINVAL;
3637 		goto bad;
3638 	}
3639 	ic->start = start;
3640 
3641 	if (strcmp(argv[2], "-")) {
3642 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3643 			ti->error = "Invalid tag size";
3644 			r = -EINVAL;
3645 			goto bad;
3646 		}
3647 	}
3648 
3649 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3650 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3651 		ic->mode = argv[3][0];
3652 	} else {
3653 		ti->error = "Invalid mode (expecting J, B, D, R)";
3654 		r = -EINVAL;
3655 		goto bad;
3656 	}
3657 
3658 	journal_sectors = 0;
3659 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3660 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
3661 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3662 	sync_msec = DEFAULT_SYNC_MSEC;
3663 	ic->sectors_per_block = 1;
3664 
3665 	as.argc = argc - DIRECT_ARGUMENTS;
3666 	as.argv = argv + DIRECT_ARGUMENTS;
3667 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3668 	if (r)
3669 		goto bad;
3670 
3671 	while (extra_args--) {
3672 		const char *opt_string;
3673 		unsigned val;
3674 		unsigned long long llval;
3675 		opt_string = dm_shift_arg(&as);
3676 		if (!opt_string) {
3677 			r = -EINVAL;
3678 			ti->error = "Not enough feature arguments";
3679 			goto bad;
3680 		}
3681 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3682 			journal_sectors = val ? val : 1;
3683 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3684 			interleave_sectors = val;
3685 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3686 			buffer_sectors = val;
3687 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3688 			journal_watermark = val;
3689 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3690 			sync_msec = val;
3691 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3692 			if (ic->meta_dev) {
3693 				dm_put_device(ti, ic->meta_dev);
3694 				ic->meta_dev = NULL;
3695 			}
3696 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3697 					  dm_table_get_mode(ti->table), &ic->meta_dev);
3698 			if (r) {
3699 				ti->error = "Device lookup failed";
3700 				goto bad;
3701 			}
3702 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3703 			if (val < 1 << SECTOR_SHIFT ||
3704 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3705 			    (val & (val -1))) {
3706 				r = -EINVAL;
3707 				ti->error = "Invalid block_size argument";
3708 				goto bad;
3709 			}
3710 			ic->sectors_per_block = val >> SECTOR_SHIFT;
3711 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3712 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3713 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3714 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3715 				r = -EINVAL;
3716 				ti->error = "Invalid bitmap_flush_interval argument";
3717 			}
3718 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
3719 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3720 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3721 					    "Invalid internal_hash argument");
3722 			if (r)
3723 				goto bad;
3724 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3725 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3726 					    "Invalid journal_crypt argument");
3727 			if (r)
3728 				goto bad;
3729 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3730 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3731 					    "Invalid journal_mac argument");
3732 			if (r)
3733 				goto bad;
3734 		} else if (!strcmp(opt_string, "recalculate")) {
3735 			ic->recalculate_flag = true;
3736 		} else if (!strcmp(opt_string, "fix_padding")) {
3737 			ic->fix_padding = true;
3738 		} else {
3739 			r = -EINVAL;
3740 			ti->error = "Invalid argument";
3741 			goto bad;
3742 		}
3743 	}
3744 
3745 	ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3746 	if (!ic->meta_dev)
3747 		ic->meta_device_sectors = ic->data_device_sectors;
3748 	else
3749 		ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3750 
3751 	if (!journal_sectors) {
3752 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3753 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3754 	}
3755 
3756 	if (!buffer_sectors)
3757 		buffer_sectors = 1;
3758 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3759 
3760 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3761 		    "Invalid internal hash", "Error setting internal hash key");
3762 	if (r)
3763 		goto bad;
3764 
3765 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3766 		    "Invalid journal mac", "Error setting journal mac key");
3767 	if (r)
3768 		goto bad;
3769 
3770 	if (!ic->tag_size) {
3771 		if (!ic->internal_hash) {
3772 			ti->error = "Unknown tag size";
3773 			r = -EINVAL;
3774 			goto bad;
3775 		}
3776 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3777 	}
3778 	if (ic->tag_size > MAX_TAG_SIZE) {
3779 		ti->error = "Too big tag size";
3780 		r = -EINVAL;
3781 		goto bad;
3782 	}
3783 	if (!(ic->tag_size & (ic->tag_size - 1)))
3784 		ic->log2_tag_size = __ffs(ic->tag_size);
3785 	else
3786 		ic->log2_tag_size = -1;
3787 
3788 	if (ic->mode == 'B' && !ic->internal_hash) {
3789 		r = -EINVAL;
3790 		ti->error = "Bitmap mode can be only used with internal hash";
3791 		goto bad;
3792 	}
3793 
3794 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3795 	ic->autocommit_msec = sync_msec;
3796 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3797 
3798 	ic->io = dm_io_client_create();
3799 	if (IS_ERR(ic->io)) {
3800 		r = PTR_ERR(ic->io);
3801 		ic->io = NULL;
3802 		ti->error = "Cannot allocate dm io";
3803 		goto bad;
3804 	}
3805 
3806 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3807 	if (r) {
3808 		ti->error = "Cannot allocate mempool";
3809 		goto bad;
3810 	}
3811 
3812 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3813 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3814 	if (!ic->metadata_wq) {
3815 		ti->error = "Cannot allocate workqueue";
3816 		r = -ENOMEM;
3817 		goto bad;
3818 	}
3819 
3820 	/*
3821 	 * If this workqueue were percpu, it would cause bio reordering
3822 	 * and reduced performance.
3823 	 */
3824 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3825 	if (!ic->wait_wq) {
3826 		ti->error = "Cannot allocate workqueue";
3827 		r = -ENOMEM;
3828 		goto bad;
3829 	}
3830 
3831 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
3832 					  METADATA_WORKQUEUE_MAX_ACTIVE);
3833 	if (!ic->offload_wq) {
3834 		ti->error = "Cannot allocate workqueue";
3835 		r = -ENOMEM;
3836 		goto bad;
3837 	}
3838 
3839 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3840 	if (!ic->commit_wq) {
3841 		ti->error = "Cannot allocate workqueue";
3842 		r = -ENOMEM;
3843 		goto bad;
3844 	}
3845 	INIT_WORK(&ic->commit_work, integrity_commit);
3846 
3847 	if (ic->mode == 'J' || ic->mode == 'B') {
3848 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3849 		if (!ic->writer_wq) {
3850 			ti->error = "Cannot allocate workqueue";
3851 			r = -ENOMEM;
3852 			goto bad;
3853 		}
3854 		INIT_WORK(&ic->writer_work, integrity_writer);
3855 	}
3856 
3857 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3858 	if (!ic->sb) {
3859 		r = -ENOMEM;
3860 		ti->error = "Cannot allocate superblock area";
3861 		goto bad;
3862 	}
3863 
3864 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
3865 	if (r) {
3866 		ti->error = "Error reading superblock";
3867 		goto bad;
3868 	}
3869 	should_write_sb = false;
3870 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3871 		if (ic->mode != 'R') {
3872 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3873 				r = -EINVAL;
3874 				ti->error = "The device is not initialized";
3875 				goto bad;
3876 			}
3877 		}
3878 
3879 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3880 		if (r) {
3881 			ti->error = "Could not initialize superblock";
3882 			goto bad;
3883 		}
3884 		if (ic->mode != 'R')
3885 			should_write_sb = true;
3886 	}
3887 
3888 	if (!ic->sb->version || ic->sb->version > SB_VERSION_4) {
3889 		r = -EINVAL;
3890 		ti->error = "Unknown version";
3891 		goto bad;
3892 	}
3893 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3894 		r = -EINVAL;
3895 		ti->error = "Tag size doesn't match the information in superblock";
3896 		goto bad;
3897 	}
3898 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3899 		r = -EINVAL;
3900 		ti->error = "Block size doesn't match the information in superblock";
3901 		goto bad;
3902 	}
3903 	if (!le32_to_cpu(ic->sb->journal_sections)) {
3904 		r = -EINVAL;
3905 		ti->error = "Corrupted superblock, journal_sections is 0";
3906 		goto bad;
3907 	}
3908 	/* make sure that ti->max_io_len doesn't overflow */
3909 	if (!ic->meta_dev) {
3910 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3911 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3912 			r = -EINVAL;
3913 			ti->error = "Invalid interleave_sectors in the superblock";
3914 			goto bad;
3915 		}
3916 	} else {
3917 		if (ic->sb->log2_interleave_sectors) {
3918 			r = -EINVAL;
3919 			ti->error = "Invalid interleave_sectors in the superblock";
3920 			goto bad;
3921 		}
3922 	}
3923 	ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3924 	if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3925 		/* test for overflow */
3926 		r = -EINVAL;
3927 		ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3928 		goto bad;
3929 	}
3930 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3931 		r = -EINVAL;
3932 		ti->error = "Journal mac mismatch";
3933 		goto bad;
3934 	}
3935 
3936 try_smaller_buffer:
3937 	r = calculate_device_limits(ic);
3938 	if (r) {
3939 		if (ic->meta_dev) {
3940 			if (ic->log2_buffer_sectors > 3) {
3941 				ic->log2_buffer_sectors--;
3942 				goto try_smaller_buffer;
3943 			}
3944 		}
3945 		ti->error = "The device is too small";
3946 		goto bad;
3947 	}
3948 
3949 	if (log2_sectors_per_bitmap_bit < 0)
3950 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
3951 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
3952 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
3953 
3954 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
3955 	if (bits_in_journal > UINT_MAX)
3956 		bits_in_journal = UINT_MAX;
3957 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
3958 		log2_sectors_per_bitmap_bit++;
3959 
3960 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
3961 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3962 	if (should_write_sb) {
3963 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3964 	}
3965 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
3966 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
3967 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
3968 
3969 	if (!ic->meta_dev)
3970 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3971 
3972 	if (ti->len > ic->provided_data_sectors) {
3973 		r = -EINVAL;
3974 		ti->error = "Not enough provided sectors for requested mapping size";
3975 		goto bad;
3976 	}
3977 
3978 
3979 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3980 	threshold += 50;
3981 	do_div(threshold, 100);
3982 	ic->free_sectors_threshold = threshold;
3983 
3984 	DEBUG_print("initialized:\n");
3985 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3986 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
3987 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3988 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
3989 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
3990 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3991 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
3992 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3993 	DEBUG_print("	data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
3994 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
3995 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
3996 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
3997 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3998 		    (unsigned long long)ic->provided_data_sectors);
3999 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4000 	DEBUG_print("	bits_in_journal %llu\n", (unsigned long long)bits_in_journal);
4001 
4002 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4003 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4004 		ic->sb->recalc_sector = cpu_to_le64(0);
4005 	}
4006 
4007 	if (ic->internal_hash) {
4008 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4009 		if (!ic->recalc_wq ) {
4010 			ti->error = "Cannot allocate workqueue";
4011 			r = -ENOMEM;
4012 			goto bad;
4013 		}
4014 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4015 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4016 		if (!ic->recalc_buffer) {
4017 			ti->error = "Cannot allocate buffer for recalculating";
4018 			r = -ENOMEM;
4019 			goto bad;
4020 		}
4021 		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4022 						 ic->tag_size, GFP_KERNEL);
4023 		if (!ic->recalc_tags) {
4024 			ti->error = "Cannot allocate tags for recalculating";
4025 			r = -ENOMEM;
4026 			goto bad;
4027 		}
4028 	}
4029 
4030 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4031 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4032 	if (IS_ERR(ic->bufio)) {
4033 		r = PTR_ERR(ic->bufio);
4034 		ti->error = "Cannot initialize dm-bufio";
4035 		ic->bufio = NULL;
4036 		goto bad;
4037 	}
4038 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4039 
4040 	if (ic->mode != 'R') {
4041 		r = create_journal(ic, &ti->error);
4042 		if (r)
4043 			goto bad;
4044 
4045 	}
4046 
4047 	if (ic->mode == 'B') {
4048 		unsigned i;
4049 		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4050 
4051 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4052 		if (!ic->recalc_bitmap) {
4053 			r = -ENOMEM;
4054 			goto bad;
4055 		}
4056 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4057 		if (!ic->may_write_bitmap) {
4058 			r = -ENOMEM;
4059 			goto bad;
4060 		}
4061 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4062 		if (!ic->bbs) {
4063 			r = -ENOMEM;
4064 			goto bad;
4065 		}
4066 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4067 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4068 			struct bitmap_block_status *bbs = &ic->bbs[i];
4069 			unsigned sector, pl_index, pl_offset;
4070 
4071 			INIT_WORK(&bbs->work, bitmap_block_work);
4072 			bbs->ic = ic;
4073 			bbs->idx = i;
4074 			bio_list_init(&bbs->bio_queue);
4075 			spin_lock_init(&bbs->bio_queue_lock);
4076 
4077 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4078 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4079 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4080 
4081 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4082 		}
4083 	}
4084 
4085 	if (should_write_sb) {
4086 		int r;
4087 
4088 		init_journal(ic, 0, ic->journal_sections, 0);
4089 		r = dm_integrity_failed(ic);
4090 		if (unlikely(r)) {
4091 			ti->error = "Error initializing journal";
4092 			goto bad;
4093 		}
4094 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4095 		if (r) {
4096 			ti->error = "Error initializing superblock";
4097 			goto bad;
4098 		}
4099 		ic->just_formatted = true;
4100 	}
4101 
4102 	if (!ic->meta_dev) {
4103 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4104 		if (r)
4105 			goto bad;
4106 	}
4107 	if (ic->mode == 'B') {
4108 		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4109 		if (!max_io_len)
4110 			max_io_len = 1U << 31;
4111 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4112 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4113 			r = dm_set_target_max_io_len(ti, max_io_len);
4114 			if (r)
4115 				goto bad;
4116 		}
4117 	}
4118 
4119 	if (!ic->internal_hash)
4120 		dm_integrity_set(ti, ic);
4121 
4122 	ti->num_flush_bios = 1;
4123 	ti->flush_supported = true;
4124 
4125 	return 0;
4126 
4127 bad:
4128 	dm_integrity_dtr(ti);
4129 	return r;
4130 }
4131 
4132 static void dm_integrity_dtr(struct dm_target *ti)
4133 {
4134 	struct dm_integrity_c *ic = ti->private;
4135 
4136 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4137 	BUG_ON(!list_empty(&ic->wait_list));
4138 
4139 	if (ic->metadata_wq)
4140 		destroy_workqueue(ic->metadata_wq);
4141 	if (ic->wait_wq)
4142 		destroy_workqueue(ic->wait_wq);
4143 	if (ic->offload_wq)
4144 		destroy_workqueue(ic->offload_wq);
4145 	if (ic->commit_wq)
4146 		destroy_workqueue(ic->commit_wq);
4147 	if (ic->writer_wq)
4148 		destroy_workqueue(ic->writer_wq);
4149 	if (ic->recalc_wq)
4150 		destroy_workqueue(ic->recalc_wq);
4151 	vfree(ic->recalc_buffer);
4152 	kvfree(ic->recalc_tags);
4153 	kvfree(ic->bbs);
4154 	if (ic->bufio)
4155 		dm_bufio_client_destroy(ic->bufio);
4156 	mempool_exit(&ic->journal_io_mempool);
4157 	if (ic->io)
4158 		dm_io_client_destroy(ic->io);
4159 	if (ic->dev)
4160 		dm_put_device(ti, ic->dev);
4161 	if (ic->meta_dev)
4162 		dm_put_device(ti, ic->meta_dev);
4163 	dm_integrity_free_page_list(ic->journal);
4164 	dm_integrity_free_page_list(ic->journal_io);
4165 	dm_integrity_free_page_list(ic->journal_xor);
4166 	dm_integrity_free_page_list(ic->recalc_bitmap);
4167 	dm_integrity_free_page_list(ic->may_write_bitmap);
4168 	if (ic->journal_scatterlist)
4169 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4170 	if (ic->journal_io_scatterlist)
4171 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4172 	if (ic->sk_requests) {
4173 		unsigned i;
4174 
4175 		for (i = 0; i < ic->journal_sections; i++) {
4176 			struct skcipher_request *req = ic->sk_requests[i];
4177 			if (req) {
4178 				kzfree(req->iv);
4179 				skcipher_request_free(req);
4180 			}
4181 		}
4182 		kvfree(ic->sk_requests);
4183 	}
4184 	kvfree(ic->journal_tree);
4185 	if (ic->sb)
4186 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4187 
4188 	if (ic->internal_hash)
4189 		crypto_free_shash(ic->internal_hash);
4190 	free_alg(&ic->internal_hash_alg);
4191 
4192 	if (ic->journal_crypt)
4193 		crypto_free_skcipher(ic->journal_crypt);
4194 	free_alg(&ic->journal_crypt_alg);
4195 
4196 	if (ic->journal_mac)
4197 		crypto_free_shash(ic->journal_mac);
4198 	free_alg(&ic->journal_mac_alg);
4199 
4200 	kfree(ic);
4201 }
4202 
4203 static struct target_type integrity_target = {
4204 	.name			= "integrity",
4205 	.version		= {1, 5, 0},
4206 	.module			= THIS_MODULE,
4207 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4208 	.ctr			= dm_integrity_ctr,
4209 	.dtr			= dm_integrity_dtr,
4210 	.map			= dm_integrity_map,
4211 	.postsuspend		= dm_integrity_postsuspend,
4212 	.resume			= dm_integrity_resume,
4213 	.status			= dm_integrity_status,
4214 	.iterate_devices	= dm_integrity_iterate_devices,
4215 	.io_hints		= dm_integrity_io_hints,
4216 };
4217 
4218 static int __init dm_integrity_init(void)
4219 {
4220 	int r;
4221 
4222 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4223 					     sizeof(struct journal_io), 0, 0, NULL);
4224 	if (!journal_io_cache) {
4225 		DMERR("can't allocate journal io cache");
4226 		return -ENOMEM;
4227 	}
4228 
4229 	r = dm_register_target(&integrity_target);
4230 
4231 	if (r < 0)
4232 		DMERR("register failed %d", r);
4233 
4234 	return r;
4235 }
4236 
4237 static void __exit dm_integrity_exit(void)
4238 {
4239 	dm_unregister_target(&integrity_target);
4240 	kmem_cache_destroy(journal_io_cache);
4241 }
4242 
4243 module_init(dm_integrity_init);
4244 module_exit(dm_integrity_exit);
4245 
4246 MODULE_AUTHOR("Milan Broz");
4247 MODULE_AUTHOR("Mikulas Patocka");
4248 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4249 MODULE_LICENSE("GPL");
4250