1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/compiler.h> 10 #include <linux/module.h> 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/vmalloc.h> 14 #include <linux/sort.h> 15 #include <linux/rbtree.h> 16 #include <linux/delay.h> 17 #include <linux/random.h> 18 #include <linux/reboot.h> 19 #include <crypto/hash.h> 20 #include <crypto/skcipher.h> 21 #include <linux/async_tx.h> 22 #include <linux/dm-bufio.h> 23 24 #define DM_MSG_PREFIX "integrity" 25 26 #define DEFAULT_INTERLEAVE_SECTORS 32768 27 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 28 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 29 #define DEFAULT_BUFFER_SECTORS 128 30 #define DEFAULT_JOURNAL_WATERMARK 50 31 #define DEFAULT_SYNC_MSEC 10000 32 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 33 #define MIN_LOG2_INTERLEAVE_SECTORS 3 34 #define MAX_LOG2_INTERLEAVE_SECTORS 31 35 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 36 #define RECALC_SECTORS 8192 37 #define RECALC_WRITE_SUPER 16 38 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 39 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 40 41 /* 42 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 43 * so it should not be enabled in the official kernel 44 */ 45 //#define DEBUG_PRINT 46 //#define INTERNAL_VERIFY 47 48 /* 49 * On disk structures 50 */ 51 52 #define SB_MAGIC "integrt" 53 #define SB_VERSION_1 1 54 #define SB_VERSION_2 2 55 #define SB_VERSION_3 3 56 #define SB_SECTORS 8 57 #define MAX_SECTORS_PER_BLOCK 8 58 59 struct superblock { 60 __u8 magic[8]; 61 __u8 version; 62 __u8 log2_interleave_sectors; 63 __u16 integrity_tag_size; 64 __u32 journal_sections; 65 __u64 provided_data_sectors; /* userspace uses this value */ 66 __u32 flags; 67 __u8 log2_sectors_per_block; 68 __u8 log2_blocks_per_bitmap_bit; 69 __u8 pad[2]; 70 __u64 recalc_sector; 71 }; 72 73 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 74 #define SB_FLAG_RECALCULATING 0x2 75 #define SB_FLAG_DIRTY_BITMAP 0x4 76 77 #define JOURNAL_ENTRY_ROUNDUP 8 78 79 typedef __u64 commit_id_t; 80 #define JOURNAL_MAC_PER_SECTOR 8 81 82 struct journal_entry { 83 union { 84 struct { 85 __u32 sector_lo; 86 __u32 sector_hi; 87 } s; 88 __u64 sector; 89 } u; 90 commit_id_t last_bytes[0]; 91 /* __u8 tag[0]; */ 92 }; 93 94 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 95 96 #if BITS_PER_LONG == 64 97 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 98 #else 99 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 100 #endif 101 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 102 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 103 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 104 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 105 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 106 107 #define JOURNAL_BLOCK_SECTORS 8 108 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 109 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 110 111 struct journal_sector { 112 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 113 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 114 commit_id_t commit_id; 115 }; 116 117 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 118 119 #define METADATA_PADDING_SECTORS 8 120 121 #define N_COMMIT_IDS 4 122 123 static unsigned char prev_commit_seq(unsigned char seq) 124 { 125 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 126 } 127 128 static unsigned char next_commit_seq(unsigned char seq) 129 { 130 return (seq + 1) % N_COMMIT_IDS; 131 } 132 133 /* 134 * In-memory structures 135 */ 136 137 struct journal_node { 138 struct rb_node node; 139 sector_t sector; 140 }; 141 142 struct alg_spec { 143 char *alg_string; 144 char *key_string; 145 __u8 *key; 146 unsigned key_size; 147 }; 148 149 struct dm_integrity_c { 150 struct dm_dev *dev; 151 struct dm_dev *meta_dev; 152 unsigned tag_size; 153 __s8 log2_tag_size; 154 sector_t start; 155 mempool_t journal_io_mempool; 156 struct dm_io_client *io; 157 struct dm_bufio_client *bufio; 158 struct workqueue_struct *metadata_wq; 159 struct superblock *sb; 160 unsigned journal_pages; 161 unsigned n_bitmap_blocks; 162 163 struct page_list *journal; 164 struct page_list *journal_io; 165 struct page_list *journal_xor; 166 struct page_list *recalc_bitmap; 167 struct page_list *may_write_bitmap; 168 struct bitmap_block_status *bbs; 169 unsigned bitmap_flush_interval; 170 int synchronous_mode; 171 struct bio_list synchronous_bios; 172 struct delayed_work bitmap_flush_work; 173 174 struct crypto_skcipher *journal_crypt; 175 struct scatterlist **journal_scatterlist; 176 struct scatterlist **journal_io_scatterlist; 177 struct skcipher_request **sk_requests; 178 179 struct crypto_shash *journal_mac; 180 181 struct journal_node *journal_tree; 182 struct rb_root journal_tree_root; 183 184 sector_t provided_data_sectors; 185 186 unsigned short journal_entry_size; 187 unsigned char journal_entries_per_sector; 188 unsigned char journal_section_entries; 189 unsigned short journal_section_sectors; 190 unsigned journal_sections; 191 unsigned journal_entries; 192 sector_t data_device_sectors; 193 sector_t meta_device_sectors; 194 unsigned initial_sectors; 195 unsigned metadata_run; 196 __s8 log2_metadata_run; 197 __u8 log2_buffer_sectors; 198 __u8 sectors_per_block; 199 __u8 log2_blocks_per_bitmap_bit; 200 201 unsigned char mode; 202 int suspending; 203 204 int failed; 205 206 struct crypto_shash *internal_hash; 207 208 /* these variables are locked with endio_wait.lock */ 209 struct rb_root in_progress; 210 struct list_head wait_list; 211 wait_queue_head_t endio_wait; 212 struct workqueue_struct *wait_wq; 213 214 unsigned char commit_seq; 215 commit_id_t commit_ids[N_COMMIT_IDS]; 216 217 unsigned committed_section; 218 unsigned n_committed_sections; 219 220 unsigned uncommitted_section; 221 unsigned n_uncommitted_sections; 222 223 unsigned free_section; 224 unsigned char free_section_entry; 225 unsigned free_sectors; 226 227 unsigned free_sectors_threshold; 228 229 struct workqueue_struct *commit_wq; 230 struct work_struct commit_work; 231 232 struct workqueue_struct *writer_wq; 233 struct work_struct writer_work; 234 235 struct workqueue_struct *recalc_wq; 236 struct work_struct recalc_work; 237 u8 *recalc_buffer; 238 u8 *recalc_tags; 239 240 struct bio_list flush_bio_list; 241 242 unsigned long autocommit_jiffies; 243 struct timer_list autocommit_timer; 244 unsigned autocommit_msec; 245 246 wait_queue_head_t copy_to_journal_wait; 247 248 struct completion crypto_backoff; 249 250 bool journal_uptodate; 251 bool just_formatted; 252 bool recalculate_flag; 253 254 struct alg_spec internal_hash_alg; 255 struct alg_spec journal_crypt_alg; 256 struct alg_spec journal_mac_alg; 257 258 atomic64_t number_of_mismatches; 259 260 struct notifier_block reboot_notifier; 261 }; 262 263 struct dm_integrity_range { 264 sector_t logical_sector; 265 sector_t n_sectors; 266 bool waiting; 267 union { 268 struct rb_node node; 269 struct { 270 struct task_struct *task; 271 struct list_head wait_entry; 272 }; 273 }; 274 }; 275 276 struct dm_integrity_io { 277 struct work_struct work; 278 279 struct dm_integrity_c *ic; 280 bool write; 281 bool fua; 282 283 struct dm_integrity_range range; 284 285 sector_t metadata_block; 286 unsigned metadata_offset; 287 288 atomic_t in_flight; 289 blk_status_t bi_status; 290 291 struct completion *completion; 292 293 struct gendisk *orig_bi_disk; 294 u8 orig_bi_partno; 295 bio_end_io_t *orig_bi_end_io; 296 struct bio_integrity_payload *orig_bi_integrity; 297 struct bvec_iter orig_bi_iter; 298 }; 299 300 struct journal_completion { 301 struct dm_integrity_c *ic; 302 atomic_t in_flight; 303 struct completion comp; 304 }; 305 306 struct journal_io { 307 struct dm_integrity_range range; 308 struct journal_completion *comp; 309 }; 310 311 struct bitmap_block_status { 312 struct work_struct work; 313 struct dm_integrity_c *ic; 314 unsigned idx; 315 unsigned long *bitmap; 316 struct bio_list bio_queue; 317 spinlock_t bio_queue_lock; 318 319 }; 320 321 static struct kmem_cache *journal_io_cache; 322 323 #define JOURNAL_IO_MEMPOOL 32 324 325 #ifdef DEBUG_PRINT 326 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 327 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 328 { 329 va_list args; 330 va_start(args, msg); 331 vprintk(msg, args); 332 va_end(args); 333 if (len) 334 pr_cont(":"); 335 while (len) { 336 pr_cont(" %02x", *bytes); 337 bytes++; 338 len--; 339 } 340 pr_cont("\n"); 341 } 342 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 343 #else 344 #define DEBUG_print(x, ...) do { } while (0) 345 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 346 #endif 347 348 /* 349 * DM Integrity profile, protection is performed layer above (dm-crypt) 350 */ 351 static const struct blk_integrity_profile dm_integrity_profile = { 352 .name = "DM-DIF-EXT-TAG", 353 .generate_fn = NULL, 354 .verify_fn = NULL, 355 }; 356 357 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 358 static void integrity_bio_wait(struct work_struct *w); 359 static void dm_integrity_dtr(struct dm_target *ti); 360 361 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 362 { 363 if (err == -EILSEQ) 364 atomic64_inc(&ic->number_of_mismatches); 365 if (!cmpxchg(&ic->failed, 0, err)) 366 DMERR("Error on %s: %d", msg, err); 367 } 368 369 static int dm_integrity_failed(struct dm_integrity_c *ic) 370 { 371 return READ_ONCE(ic->failed); 372 } 373 374 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 375 unsigned j, unsigned char seq) 376 { 377 /* 378 * Xor the number with section and sector, so that if a piece of 379 * journal is written at wrong place, it is detected. 380 */ 381 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 382 } 383 384 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 385 sector_t *area, sector_t *offset) 386 { 387 if (!ic->meta_dev) { 388 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 389 *area = data_sector >> log2_interleave_sectors; 390 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 391 } else { 392 *area = 0; 393 *offset = data_sector; 394 } 395 } 396 397 #define sector_to_block(ic, n) \ 398 do { \ 399 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 400 (n) >>= (ic)->sb->log2_sectors_per_block; \ 401 } while (0) 402 403 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 404 sector_t offset, unsigned *metadata_offset) 405 { 406 __u64 ms; 407 unsigned mo; 408 409 ms = area << ic->sb->log2_interleave_sectors; 410 if (likely(ic->log2_metadata_run >= 0)) 411 ms += area << ic->log2_metadata_run; 412 else 413 ms += area * ic->metadata_run; 414 ms >>= ic->log2_buffer_sectors; 415 416 sector_to_block(ic, offset); 417 418 if (likely(ic->log2_tag_size >= 0)) { 419 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 420 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 421 } else { 422 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 423 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 424 } 425 *metadata_offset = mo; 426 return ms; 427 } 428 429 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 430 { 431 sector_t result; 432 433 if (ic->meta_dev) 434 return offset; 435 436 result = area << ic->sb->log2_interleave_sectors; 437 if (likely(ic->log2_metadata_run >= 0)) 438 result += (area + 1) << ic->log2_metadata_run; 439 else 440 result += (area + 1) * ic->metadata_run; 441 442 result += (sector_t)ic->initial_sectors + offset; 443 result += ic->start; 444 445 return result; 446 } 447 448 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 449 { 450 if (unlikely(*sec_ptr >= ic->journal_sections)) 451 *sec_ptr -= ic->journal_sections; 452 } 453 454 static void sb_set_version(struct dm_integrity_c *ic) 455 { 456 if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 457 ic->sb->version = SB_VERSION_3; 458 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 459 ic->sb->version = SB_VERSION_2; 460 else 461 ic->sb->version = SB_VERSION_1; 462 } 463 464 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 465 { 466 struct dm_io_request io_req; 467 struct dm_io_region io_loc; 468 469 io_req.bi_op = op; 470 io_req.bi_op_flags = op_flags; 471 io_req.mem.type = DM_IO_KMEM; 472 io_req.mem.ptr.addr = ic->sb; 473 io_req.notify.fn = NULL; 474 io_req.client = ic->io; 475 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 476 io_loc.sector = ic->start; 477 io_loc.count = SB_SECTORS; 478 479 return dm_io(&io_req, 1, &io_loc, NULL); 480 } 481 482 #define BITMAP_OP_TEST_ALL_SET 0 483 #define BITMAP_OP_TEST_ALL_CLEAR 1 484 #define BITMAP_OP_SET 2 485 #define BITMAP_OP_CLEAR 3 486 487 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 488 sector_t sector, sector_t n_sectors, int mode) 489 { 490 unsigned long bit, end_bit, this_end_bit, page, end_page; 491 unsigned long *data; 492 493 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 494 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 495 (unsigned long long)sector, 496 (unsigned long long)n_sectors, 497 ic->sb->log2_sectors_per_block, 498 ic->log2_blocks_per_bitmap_bit, 499 mode); 500 BUG(); 501 } 502 503 if (unlikely(!n_sectors)) 504 return true; 505 506 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 507 end_bit = (sector + n_sectors - 1) >> 508 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 509 510 page = bit / (PAGE_SIZE * 8); 511 bit %= PAGE_SIZE * 8; 512 513 end_page = end_bit / (PAGE_SIZE * 8); 514 end_bit %= PAGE_SIZE * 8; 515 516 repeat: 517 if (page < end_page) { 518 this_end_bit = PAGE_SIZE * 8 - 1; 519 } else { 520 this_end_bit = end_bit; 521 } 522 523 data = lowmem_page_address(bitmap[page].page); 524 525 if (mode == BITMAP_OP_TEST_ALL_SET) { 526 while (bit <= this_end_bit) { 527 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 528 do { 529 if (data[bit / BITS_PER_LONG] != -1) 530 return false; 531 bit += BITS_PER_LONG; 532 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 533 continue; 534 } 535 if (!test_bit(bit, data)) 536 return false; 537 bit++; 538 } 539 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 540 while (bit <= this_end_bit) { 541 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 542 do { 543 if (data[bit / BITS_PER_LONG] != 0) 544 return false; 545 bit += BITS_PER_LONG; 546 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 547 continue; 548 } 549 if (test_bit(bit, data)) 550 return false; 551 bit++; 552 } 553 } else if (mode == BITMAP_OP_SET) { 554 while (bit <= this_end_bit) { 555 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 556 do { 557 data[bit / BITS_PER_LONG] = -1; 558 bit += BITS_PER_LONG; 559 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 560 continue; 561 } 562 __set_bit(bit, data); 563 bit++; 564 } 565 } else if (mode == BITMAP_OP_CLEAR) { 566 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 567 clear_page(data); 568 else while (bit <= this_end_bit) { 569 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 570 do { 571 data[bit / BITS_PER_LONG] = 0; 572 bit += BITS_PER_LONG; 573 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 574 continue; 575 } 576 __clear_bit(bit, data); 577 bit++; 578 } 579 } else { 580 BUG(); 581 } 582 583 if (unlikely(page < end_page)) { 584 bit = 0; 585 page++; 586 goto repeat; 587 } 588 589 return true; 590 } 591 592 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 593 { 594 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 595 unsigned i; 596 597 for (i = 0; i < n_bitmap_pages; i++) { 598 unsigned long *dst_data = lowmem_page_address(dst[i].page); 599 unsigned long *src_data = lowmem_page_address(src[i].page); 600 copy_page(dst_data, src_data); 601 } 602 } 603 604 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 605 { 606 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 607 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 608 609 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 610 return &ic->bbs[bitmap_block]; 611 } 612 613 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 614 bool e, const char *function) 615 { 616 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 617 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 618 619 if (unlikely(section >= ic->journal_sections) || 620 unlikely(offset >= limit)) { 621 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 622 function, section, offset, ic->journal_sections, limit); 623 BUG(); 624 } 625 #endif 626 } 627 628 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 629 unsigned *pl_index, unsigned *pl_offset) 630 { 631 unsigned sector; 632 633 access_journal_check(ic, section, offset, false, "page_list_location"); 634 635 sector = section * ic->journal_section_sectors + offset; 636 637 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 638 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 639 } 640 641 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 642 unsigned section, unsigned offset, unsigned *n_sectors) 643 { 644 unsigned pl_index, pl_offset; 645 char *va; 646 647 page_list_location(ic, section, offset, &pl_index, &pl_offset); 648 649 if (n_sectors) 650 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 651 652 va = lowmem_page_address(pl[pl_index].page); 653 654 return (struct journal_sector *)(va + pl_offset); 655 } 656 657 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 658 { 659 return access_page_list(ic, ic->journal, section, offset, NULL); 660 } 661 662 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 663 { 664 unsigned rel_sector, offset; 665 struct journal_sector *js; 666 667 access_journal_check(ic, section, n, true, "access_journal_entry"); 668 669 rel_sector = n % JOURNAL_BLOCK_SECTORS; 670 offset = n / JOURNAL_BLOCK_SECTORS; 671 672 js = access_journal(ic, section, rel_sector); 673 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 674 } 675 676 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 677 { 678 n <<= ic->sb->log2_sectors_per_block; 679 680 n += JOURNAL_BLOCK_SECTORS; 681 682 access_journal_check(ic, section, n, false, "access_journal_data"); 683 684 return access_journal(ic, section, n); 685 } 686 687 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 688 { 689 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 690 int r; 691 unsigned j, size; 692 693 desc->tfm = ic->journal_mac; 694 695 r = crypto_shash_init(desc); 696 if (unlikely(r)) { 697 dm_integrity_io_error(ic, "crypto_shash_init", r); 698 goto err; 699 } 700 701 for (j = 0; j < ic->journal_section_entries; j++) { 702 struct journal_entry *je = access_journal_entry(ic, section, j); 703 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 704 if (unlikely(r)) { 705 dm_integrity_io_error(ic, "crypto_shash_update", r); 706 goto err; 707 } 708 } 709 710 size = crypto_shash_digestsize(ic->journal_mac); 711 712 if (likely(size <= JOURNAL_MAC_SIZE)) { 713 r = crypto_shash_final(desc, result); 714 if (unlikely(r)) { 715 dm_integrity_io_error(ic, "crypto_shash_final", r); 716 goto err; 717 } 718 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 719 } else { 720 __u8 digest[HASH_MAX_DIGESTSIZE]; 721 722 if (WARN_ON(size > sizeof(digest))) { 723 dm_integrity_io_error(ic, "digest_size", -EINVAL); 724 goto err; 725 } 726 r = crypto_shash_final(desc, digest); 727 if (unlikely(r)) { 728 dm_integrity_io_error(ic, "crypto_shash_final", r); 729 goto err; 730 } 731 memcpy(result, digest, JOURNAL_MAC_SIZE); 732 } 733 734 return; 735 err: 736 memset(result, 0, JOURNAL_MAC_SIZE); 737 } 738 739 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 740 { 741 __u8 result[JOURNAL_MAC_SIZE]; 742 unsigned j; 743 744 if (!ic->journal_mac) 745 return; 746 747 section_mac(ic, section, result); 748 749 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 750 struct journal_sector *js = access_journal(ic, section, j); 751 752 if (likely(wr)) 753 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 754 else { 755 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 756 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 757 } 758 } 759 } 760 761 static void complete_journal_op(void *context) 762 { 763 struct journal_completion *comp = context; 764 BUG_ON(!atomic_read(&comp->in_flight)); 765 if (likely(atomic_dec_and_test(&comp->in_flight))) 766 complete(&comp->comp); 767 } 768 769 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 770 unsigned n_sections, struct journal_completion *comp) 771 { 772 struct async_submit_ctl submit; 773 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 774 unsigned pl_index, pl_offset, section_index; 775 struct page_list *source_pl, *target_pl; 776 777 if (likely(encrypt)) { 778 source_pl = ic->journal; 779 target_pl = ic->journal_io; 780 } else { 781 source_pl = ic->journal_io; 782 target_pl = ic->journal; 783 } 784 785 page_list_location(ic, section, 0, &pl_index, &pl_offset); 786 787 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 788 789 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 790 791 section_index = pl_index; 792 793 do { 794 size_t this_step; 795 struct page *src_pages[2]; 796 struct page *dst_page; 797 798 while (unlikely(pl_index == section_index)) { 799 unsigned dummy; 800 if (likely(encrypt)) 801 rw_section_mac(ic, section, true); 802 section++; 803 n_sections--; 804 if (!n_sections) 805 break; 806 page_list_location(ic, section, 0, §ion_index, &dummy); 807 } 808 809 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 810 dst_page = target_pl[pl_index].page; 811 src_pages[0] = source_pl[pl_index].page; 812 src_pages[1] = ic->journal_xor[pl_index].page; 813 814 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 815 816 pl_index++; 817 pl_offset = 0; 818 n_bytes -= this_step; 819 } while (n_bytes); 820 821 BUG_ON(n_sections); 822 823 async_tx_issue_pending_all(); 824 } 825 826 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 827 { 828 struct journal_completion *comp = req->data; 829 if (unlikely(err)) { 830 if (likely(err == -EINPROGRESS)) { 831 complete(&comp->ic->crypto_backoff); 832 return; 833 } 834 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 835 } 836 complete_journal_op(comp); 837 } 838 839 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 840 { 841 int r; 842 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 843 complete_journal_encrypt, comp); 844 if (likely(encrypt)) 845 r = crypto_skcipher_encrypt(req); 846 else 847 r = crypto_skcipher_decrypt(req); 848 if (likely(!r)) 849 return false; 850 if (likely(r == -EINPROGRESS)) 851 return true; 852 if (likely(r == -EBUSY)) { 853 wait_for_completion(&comp->ic->crypto_backoff); 854 reinit_completion(&comp->ic->crypto_backoff); 855 return true; 856 } 857 dm_integrity_io_error(comp->ic, "encrypt", r); 858 return false; 859 } 860 861 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 862 unsigned n_sections, struct journal_completion *comp) 863 { 864 struct scatterlist **source_sg; 865 struct scatterlist **target_sg; 866 867 atomic_add(2, &comp->in_flight); 868 869 if (likely(encrypt)) { 870 source_sg = ic->journal_scatterlist; 871 target_sg = ic->journal_io_scatterlist; 872 } else { 873 source_sg = ic->journal_io_scatterlist; 874 target_sg = ic->journal_scatterlist; 875 } 876 877 do { 878 struct skcipher_request *req; 879 unsigned ivsize; 880 char *iv; 881 882 if (likely(encrypt)) 883 rw_section_mac(ic, section, true); 884 885 req = ic->sk_requests[section]; 886 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 887 iv = req->iv; 888 889 memcpy(iv, iv + ivsize, ivsize); 890 891 req->src = source_sg[section]; 892 req->dst = target_sg[section]; 893 894 if (unlikely(do_crypt(encrypt, req, comp))) 895 atomic_inc(&comp->in_flight); 896 897 section++; 898 n_sections--; 899 } while (n_sections); 900 901 atomic_dec(&comp->in_flight); 902 complete_journal_op(comp); 903 } 904 905 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 906 unsigned n_sections, struct journal_completion *comp) 907 { 908 if (ic->journal_xor) 909 return xor_journal(ic, encrypt, section, n_sections, comp); 910 else 911 return crypt_journal(ic, encrypt, section, n_sections, comp); 912 } 913 914 static void complete_journal_io(unsigned long error, void *context) 915 { 916 struct journal_completion *comp = context; 917 if (unlikely(error != 0)) 918 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 919 complete_journal_op(comp); 920 } 921 922 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 923 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 924 { 925 struct dm_io_request io_req; 926 struct dm_io_region io_loc; 927 unsigned pl_index, pl_offset; 928 int r; 929 930 if (unlikely(dm_integrity_failed(ic))) { 931 if (comp) 932 complete_journal_io(-1UL, comp); 933 return; 934 } 935 936 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 937 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 938 939 io_req.bi_op = op; 940 io_req.bi_op_flags = op_flags; 941 io_req.mem.type = DM_IO_PAGE_LIST; 942 if (ic->journal_io) 943 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 944 else 945 io_req.mem.ptr.pl = &ic->journal[pl_index]; 946 io_req.mem.offset = pl_offset; 947 if (likely(comp != NULL)) { 948 io_req.notify.fn = complete_journal_io; 949 io_req.notify.context = comp; 950 } else { 951 io_req.notify.fn = NULL; 952 } 953 io_req.client = ic->io; 954 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 955 io_loc.sector = ic->start + SB_SECTORS + sector; 956 io_loc.count = n_sectors; 957 958 r = dm_io(&io_req, 1, &io_loc, NULL); 959 if (unlikely(r)) { 960 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 961 if (comp) { 962 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 963 complete_journal_io(-1UL, comp); 964 } 965 } 966 } 967 968 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 969 unsigned n_sections, struct journal_completion *comp) 970 { 971 unsigned sector, n_sectors; 972 973 sector = section * ic->journal_section_sectors; 974 n_sectors = n_sections * ic->journal_section_sectors; 975 976 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 977 } 978 979 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 980 { 981 struct journal_completion io_comp; 982 struct journal_completion crypt_comp_1; 983 struct journal_completion crypt_comp_2; 984 unsigned i; 985 986 io_comp.ic = ic; 987 init_completion(&io_comp.comp); 988 989 if (commit_start + commit_sections <= ic->journal_sections) { 990 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 991 if (ic->journal_io) { 992 crypt_comp_1.ic = ic; 993 init_completion(&crypt_comp_1.comp); 994 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 995 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 996 wait_for_completion_io(&crypt_comp_1.comp); 997 } else { 998 for (i = 0; i < commit_sections; i++) 999 rw_section_mac(ic, commit_start + i, true); 1000 } 1001 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1002 commit_sections, &io_comp); 1003 } else { 1004 unsigned to_end; 1005 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1006 to_end = ic->journal_sections - commit_start; 1007 if (ic->journal_io) { 1008 crypt_comp_1.ic = ic; 1009 init_completion(&crypt_comp_1.comp); 1010 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1011 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1012 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1013 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1014 reinit_completion(&crypt_comp_1.comp); 1015 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1016 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1017 wait_for_completion_io(&crypt_comp_1.comp); 1018 } else { 1019 crypt_comp_2.ic = ic; 1020 init_completion(&crypt_comp_2.comp); 1021 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1022 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1023 wait_for_completion_io(&crypt_comp_1.comp); 1024 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1025 wait_for_completion_io(&crypt_comp_2.comp); 1026 } 1027 } else { 1028 for (i = 0; i < to_end; i++) 1029 rw_section_mac(ic, commit_start + i, true); 1030 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1031 for (i = 0; i < commit_sections - to_end; i++) 1032 rw_section_mac(ic, i, true); 1033 } 1034 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1035 } 1036 1037 wait_for_completion_io(&io_comp.comp); 1038 } 1039 1040 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1041 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1042 { 1043 struct dm_io_request io_req; 1044 struct dm_io_region io_loc; 1045 int r; 1046 unsigned sector, pl_index, pl_offset; 1047 1048 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1049 1050 if (unlikely(dm_integrity_failed(ic))) { 1051 fn(-1UL, data); 1052 return; 1053 } 1054 1055 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1056 1057 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1058 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1059 1060 io_req.bi_op = REQ_OP_WRITE; 1061 io_req.bi_op_flags = 0; 1062 io_req.mem.type = DM_IO_PAGE_LIST; 1063 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1064 io_req.mem.offset = pl_offset; 1065 io_req.notify.fn = fn; 1066 io_req.notify.context = data; 1067 io_req.client = ic->io; 1068 io_loc.bdev = ic->dev->bdev; 1069 io_loc.sector = target; 1070 io_loc.count = n_sectors; 1071 1072 r = dm_io(&io_req, 1, &io_loc, NULL); 1073 if (unlikely(r)) { 1074 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1075 fn(-1UL, data); 1076 } 1077 } 1078 1079 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1080 { 1081 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1082 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1083 } 1084 1085 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1086 { 1087 struct rb_node **n = &ic->in_progress.rb_node; 1088 struct rb_node *parent; 1089 1090 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1091 1092 if (likely(check_waiting)) { 1093 struct dm_integrity_range *range; 1094 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1095 if (unlikely(ranges_overlap(range, new_range))) 1096 return false; 1097 } 1098 } 1099 1100 parent = NULL; 1101 1102 while (*n) { 1103 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1104 1105 parent = *n; 1106 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1107 n = &range->node.rb_left; 1108 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1109 n = &range->node.rb_right; 1110 } else { 1111 return false; 1112 } 1113 } 1114 1115 rb_link_node(&new_range->node, parent, n); 1116 rb_insert_color(&new_range->node, &ic->in_progress); 1117 1118 return true; 1119 } 1120 1121 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1122 { 1123 rb_erase(&range->node, &ic->in_progress); 1124 while (unlikely(!list_empty(&ic->wait_list))) { 1125 struct dm_integrity_range *last_range = 1126 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1127 struct task_struct *last_range_task; 1128 last_range_task = last_range->task; 1129 list_del(&last_range->wait_entry); 1130 if (!add_new_range(ic, last_range, false)) { 1131 last_range->task = last_range_task; 1132 list_add(&last_range->wait_entry, &ic->wait_list); 1133 break; 1134 } 1135 last_range->waiting = false; 1136 wake_up_process(last_range_task); 1137 } 1138 } 1139 1140 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1141 { 1142 unsigned long flags; 1143 1144 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1145 remove_range_unlocked(ic, range); 1146 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1147 } 1148 1149 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1150 { 1151 new_range->waiting = true; 1152 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1153 new_range->task = current; 1154 do { 1155 __set_current_state(TASK_UNINTERRUPTIBLE); 1156 spin_unlock_irq(&ic->endio_wait.lock); 1157 io_schedule(); 1158 spin_lock_irq(&ic->endio_wait.lock); 1159 } while (unlikely(new_range->waiting)); 1160 } 1161 1162 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1163 { 1164 if (unlikely(!add_new_range(ic, new_range, true))) 1165 wait_and_add_new_range(ic, new_range); 1166 } 1167 1168 static void init_journal_node(struct journal_node *node) 1169 { 1170 RB_CLEAR_NODE(&node->node); 1171 node->sector = (sector_t)-1; 1172 } 1173 1174 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1175 { 1176 struct rb_node **link; 1177 struct rb_node *parent; 1178 1179 node->sector = sector; 1180 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1181 1182 link = &ic->journal_tree_root.rb_node; 1183 parent = NULL; 1184 1185 while (*link) { 1186 struct journal_node *j; 1187 parent = *link; 1188 j = container_of(parent, struct journal_node, node); 1189 if (sector < j->sector) 1190 link = &j->node.rb_left; 1191 else 1192 link = &j->node.rb_right; 1193 } 1194 1195 rb_link_node(&node->node, parent, link); 1196 rb_insert_color(&node->node, &ic->journal_tree_root); 1197 } 1198 1199 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1200 { 1201 BUG_ON(RB_EMPTY_NODE(&node->node)); 1202 rb_erase(&node->node, &ic->journal_tree_root); 1203 init_journal_node(node); 1204 } 1205 1206 #define NOT_FOUND (-1U) 1207 1208 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1209 { 1210 struct rb_node *n = ic->journal_tree_root.rb_node; 1211 unsigned found = NOT_FOUND; 1212 *next_sector = (sector_t)-1; 1213 while (n) { 1214 struct journal_node *j = container_of(n, struct journal_node, node); 1215 if (sector == j->sector) { 1216 found = j - ic->journal_tree; 1217 } 1218 if (sector < j->sector) { 1219 *next_sector = j->sector; 1220 n = j->node.rb_left; 1221 } else { 1222 n = j->node.rb_right; 1223 } 1224 } 1225 1226 return found; 1227 } 1228 1229 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1230 { 1231 struct journal_node *node, *next_node; 1232 struct rb_node *next; 1233 1234 if (unlikely(pos >= ic->journal_entries)) 1235 return false; 1236 node = &ic->journal_tree[pos]; 1237 if (unlikely(RB_EMPTY_NODE(&node->node))) 1238 return false; 1239 if (unlikely(node->sector != sector)) 1240 return false; 1241 1242 next = rb_next(&node->node); 1243 if (unlikely(!next)) 1244 return true; 1245 1246 next_node = container_of(next, struct journal_node, node); 1247 return next_node->sector != sector; 1248 } 1249 1250 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1251 { 1252 struct rb_node *next; 1253 struct journal_node *next_node; 1254 unsigned next_section; 1255 1256 BUG_ON(RB_EMPTY_NODE(&node->node)); 1257 1258 next = rb_next(&node->node); 1259 if (unlikely(!next)) 1260 return false; 1261 1262 next_node = container_of(next, struct journal_node, node); 1263 1264 if (next_node->sector != node->sector) 1265 return false; 1266 1267 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1268 if (next_section >= ic->committed_section && 1269 next_section < ic->committed_section + ic->n_committed_sections) 1270 return true; 1271 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1272 return true; 1273 1274 return false; 1275 } 1276 1277 #define TAG_READ 0 1278 #define TAG_WRITE 1 1279 #define TAG_CMP 2 1280 1281 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1282 unsigned *metadata_offset, unsigned total_size, int op) 1283 { 1284 do { 1285 unsigned char *data, *dp; 1286 struct dm_buffer *b; 1287 unsigned to_copy; 1288 int r; 1289 1290 r = dm_integrity_failed(ic); 1291 if (unlikely(r)) 1292 return r; 1293 1294 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1295 if (IS_ERR(data)) 1296 return PTR_ERR(data); 1297 1298 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1299 dp = data + *metadata_offset; 1300 if (op == TAG_READ) { 1301 memcpy(tag, dp, to_copy); 1302 } else if (op == TAG_WRITE) { 1303 memcpy(dp, tag, to_copy); 1304 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1305 } else { 1306 /* e.g.: op == TAG_CMP */ 1307 if (unlikely(memcmp(dp, tag, to_copy))) { 1308 unsigned i; 1309 1310 for (i = 0; i < to_copy; i++) { 1311 if (dp[i] != tag[i]) 1312 break; 1313 total_size--; 1314 } 1315 dm_bufio_release(b); 1316 return total_size; 1317 } 1318 } 1319 dm_bufio_release(b); 1320 1321 tag += to_copy; 1322 *metadata_offset += to_copy; 1323 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1324 (*metadata_block)++; 1325 *metadata_offset = 0; 1326 } 1327 total_size -= to_copy; 1328 } while (unlikely(total_size)); 1329 1330 return 0; 1331 } 1332 1333 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic) 1334 { 1335 int r; 1336 r = dm_bufio_write_dirty_buffers(ic->bufio); 1337 if (unlikely(r)) 1338 dm_integrity_io_error(ic, "writing tags", r); 1339 } 1340 1341 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1342 { 1343 DECLARE_WAITQUEUE(wait, current); 1344 __add_wait_queue(&ic->endio_wait, &wait); 1345 __set_current_state(TASK_UNINTERRUPTIBLE); 1346 spin_unlock_irq(&ic->endio_wait.lock); 1347 io_schedule(); 1348 spin_lock_irq(&ic->endio_wait.lock); 1349 __remove_wait_queue(&ic->endio_wait, &wait); 1350 } 1351 1352 static void autocommit_fn(struct timer_list *t) 1353 { 1354 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1355 1356 if (likely(!dm_integrity_failed(ic))) 1357 queue_work(ic->commit_wq, &ic->commit_work); 1358 } 1359 1360 static void schedule_autocommit(struct dm_integrity_c *ic) 1361 { 1362 if (!timer_pending(&ic->autocommit_timer)) 1363 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1364 } 1365 1366 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1367 { 1368 struct bio *bio; 1369 unsigned long flags; 1370 1371 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1372 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1373 bio_list_add(&ic->flush_bio_list, bio); 1374 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1375 1376 queue_work(ic->commit_wq, &ic->commit_work); 1377 } 1378 1379 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1380 { 1381 int r = dm_integrity_failed(ic); 1382 if (unlikely(r) && !bio->bi_status) 1383 bio->bi_status = errno_to_blk_status(r); 1384 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1385 unsigned long flags; 1386 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1387 bio_list_add(&ic->synchronous_bios, bio); 1388 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1389 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1390 return; 1391 } 1392 bio_endio(bio); 1393 } 1394 1395 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1396 { 1397 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1398 1399 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1400 submit_flush_bio(ic, dio); 1401 else 1402 do_endio(ic, bio); 1403 } 1404 1405 static void dec_in_flight(struct dm_integrity_io *dio) 1406 { 1407 if (atomic_dec_and_test(&dio->in_flight)) { 1408 struct dm_integrity_c *ic = dio->ic; 1409 struct bio *bio; 1410 1411 remove_range(ic, &dio->range); 1412 1413 if (unlikely(dio->write)) 1414 schedule_autocommit(ic); 1415 1416 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1417 1418 if (unlikely(dio->bi_status) && !bio->bi_status) 1419 bio->bi_status = dio->bi_status; 1420 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1421 dio->range.logical_sector += dio->range.n_sectors; 1422 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1423 INIT_WORK(&dio->work, integrity_bio_wait); 1424 queue_work(ic->wait_wq, &dio->work); 1425 return; 1426 } 1427 do_endio_flush(ic, dio); 1428 } 1429 } 1430 1431 static void integrity_end_io(struct bio *bio) 1432 { 1433 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1434 1435 bio->bi_iter = dio->orig_bi_iter; 1436 bio->bi_disk = dio->orig_bi_disk; 1437 bio->bi_partno = dio->orig_bi_partno; 1438 if (dio->orig_bi_integrity) { 1439 bio->bi_integrity = dio->orig_bi_integrity; 1440 bio->bi_opf |= REQ_INTEGRITY; 1441 } 1442 bio->bi_end_io = dio->orig_bi_end_io; 1443 1444 if (dio->completion) 1445 complete(dio->completion); 1446 1447 dec_in_flight(dio); 1448 } 1449 1450 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1451 const char *data, char *result) 1452 { 1453 __u64 sector_le = cpu_to_le64(sector); 1454 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1455 int r; 1456 unsigned digest_size; 1457 1458 req->tfm = ic->internal_hash; 1459 1460 r = crypto_shash_init(req); 1461 if (unlikely(r < 0)) { 1462 dm_integrity_io_error(ic, "crypto_shash_init", r); 1463 goto failed; 1464 } 1465 1466 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1467 if (unlikely(r < 0)) { 1468 dm_integrity_io_error(ic, "crypto_shash_update", r); 1469 goto failed; 1470 } 1471 1472 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1473 if (unlikely(r < 0)) { 1474 dm_integrity_io_error(ic, "crypto_shash_update", r); 1475 goto failed; 1476 } 1477 1478 r = crypto_shash_final(req, result); 1479 if (unlikely(r < 0)) { 1480 dm_integrity_io_error(ic, "crypto_shash_final", r); 1481 goto failed; 1482 } 1483 1484 digest_size = crypto_shash_digestsize(ic->internal_hash); 1485 if (unlikely(digest_size < ic->tag_size)) 1486 memset(result + digest_size, 0, ic->tag_size - digest_size); 1487 1488 return; 1489 1490 failed: 1491 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1492 get_random_bytes(result, ic->tag_size); 1493 } 1494 1495 static void integrity_metadata(struct work_struct *w) 1496 { 1497 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1498 struct dm_integrity_c *ic = dio->ic; 1499 1500 int r; 1501 1502 if (ic->internal_hash) { 1503 struct bvec_iter iter; 1504 struct bio_vec bv; 1505 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1506 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1507 char *checksums; 1508 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1509 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1510 unsigned sectors_to_process = dio->range.n_sectors; 1511 sector_t sector = dio->range.logical_sector; 1512 1513 if (unlikely(ic->mode == 'R')) 1514 goto skip_io; 1515 1516 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1517 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1518 if (!checksums) { 1519 checksums = checksums_onstack; 1520 if (WARN_ON(extra_space && 1521 digest_size > sizeof(checksums_onstack))) { 1522 r = -EINVAL; 1523 goto error; 1524 } 1525 } 1526 1527 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) { 1528 unsigned pos; 1529 char *mem, *checksums_ptr; 1530 1531 again: 1532 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1533 pos = 0; 1534 checksums_ptr = checksums; 1535 do { 1536 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1537 checksums_ptr += ic->tag_size; 1538 sectors_to_process -= ic->sectors_per_block; 1539 pos += ic->sectors_per_block << SECTOR_SHIFT; 1540 sector += ic->sectors_per_block; 1541 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1542 kunmap_atomic(mem); 1543 1544 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1545 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE); 1546 if (unlikely(r)) { 1547 if (r > 0) { 1548 DMERR_LIMIT("Checksum failed at sector 0x%llx", 1549 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1550 r = -EILSEQ; 1551 atomic64_inc(&ic->number_of_mismatches); 1552 } 1553 if (likely(checksums != checksums_onstack)) 1554 kfree(checksums); 1555 goto error; 1556 } 1557 1558 if (!sectors_to_process) 1559 break; 1560 1561 if (unlikely(pos < bv.bv_len)) { 1562 bv.bv_offset += pos; 1563 bv.bv_len -= pos; 1564 goto again; 1565 } 1566 } 1567 1568 if (likely(checksums != checksums_onstack)) 1569 kfree(checksums); 1570 } else { 1571 struct bio_integrity_payload *bip = dio->orig_bi_integrity; 1572 1573 if (bip) { 1574 struct bio_vec biv; 1575 struct bvec_iter iter; 1576 unsigned data_to_process = dio->range.n_sectors; 1577 sector_to_block(ic, data_to_process); 1578 data_to_process *= ic->tag_size; 1579 1580 bip_for_each_vec(biv, bip, iter) { 1581 unsigned char *tag; 1582 unsigned this_len; 1583 1584 BUG_ON(PageHighMem(biv.bv_page)); 1585 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1586 this_len = min(biv.bv_len, data_to_process); 1587 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1588 this_len, !dio->write ? TAG_READ : TAG_WRITE); 1589 if (unlikely(r)) 1590 goto error; 1591 data_to_process -= this_len; 1592 if (!data_to_process) 1593 break; 1594 } 1595 } 1596 } 1597 skip_io: 1598 dec_in_flight(dio); 1599 return; 1600 error: 1601 dio->bi_status = errno_to_blk_status(r); 1602 dec_in_flight(dio); 1603 } 1604 1605 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1606 { 1607 struct dm_integrity_c *ic = ti->private; 1608 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1609 struct bio_integrity_payload *bip; 1610 1611 sector_t area, offset; 1612 1613 dio->ic = ic; 1614 dio->bi_status = 0; 1615 1616 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1617 submit_flush_bio(ic, dio); 1618 return DM_MAPIO_SUBMITTED; 1619 } 1620 1621 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1622 dio->write = bio_op(bio) == REQ_OP_WRITE; 1623 dio->fua = dio->write && bio->bi_opf & REQ_FUA; 1624 if (unlikely(dio->fua)) { 1625 /* 1626 * Don't pass down the FUA flag because we have to flush 1627 * disk cache anyway. 1628 */ 1629 bio->bi_opf &= ~REQ_FUA; 1630 } 1631 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1632 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1633 (unsigned long long)dio->range.logical_sector, bio_sectors(bio), 1634 (unsigned long long)ic->provided_data_sectors); 1635 return DM_MAPIO_KILL; 1636 } 1637 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1638 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1639 ic->sectors_per_block, 1640 (unsigned long long)dio->range.logical_sector, bio_sectors(bio)); 1641 return DM_MAPIO_KILL; 1642 } 1643 1644 if (ic->sectors_per_block > 1) { 1645 struct bvec_iter iter; 1646 struct bio_vec bv; 1647 bio_for_each_segment(bv, bio, iter) { 1648 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1649 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1650 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1651 return DM_MAPIO_KILL; 1652 } 1653 } 1654 } 1655 1656 bip = bio_integrity(bio); 1657 if (!ic->internal_hash) { 1658 if (bip) { 1659 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1660 if (ic->log2_tag_size >= 0) 1661 wanted_tag_size <<= ic->log2_tag_size; 1662 else 1663 wanted_tag_size *= ic->tag_size; 1664 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1665 DMERR("Invalid integrity data size %u, expected %u", 1666 bip->bip_iter.bi_size, wanted_tag_size); 1667 return DM_MAPIO_KILL; 1668 } 1669 } 1670 } else { 1671 if (unlikely(bip != NULL)) { 1672 DMERR("Unexpected integrity data when using internal hash"); 1673 return DM_MAPIO_KILL; 1674 } 1675 } 1676 1677 if (unlikely(ic->mode == 'R') && unlikely(dio->write)) 1678 return DM_MAPIO_KILL; 1679 1680 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1681 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1682 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1683 1684 dm_integrity_map_continue(dio, true); 1685 return DM_MAPIO_SUBMITTED; 1686 } 1687 1688 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1689 unsigned journal_section, unsigned journal_entry) 1690 { 1691 struct dm_integrity_c *ic = dio->ic; 1692 sector_t logical_sector; 1693 unsigned n_sectors; 1694 1695 logical_sector = dio->range.logical_sector; 1696 n_sectors = dio->range.n_sectors; 1697 do { 1698 struct bio_vec bv = bio_iovec(bio); 1699 char *mem; 1700 1701 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1702 bv.bv_len = n_sectors << SECTOR_SHIFT; 1703 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1704 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1705 retry_kmap: 1706 mem = kmap_atomic(bv.bv_page); 1707 if (likely(dio->write)) 1708 flush_dcache_page(bv.bv_page); 1709 1710 do { 1711 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1712 1713 if (unlikely(!dio->write)) { 1714 struct journal_sector *js; 1715 char *mem_ptr; 1716 unsigned s; 1717 1718 if (unlikely(journal_entry_is_inprogress(je))) { 1719 flush_dcache_page(bv.bv_page); 1720 kunmap_atomic(mem); 1721 1722 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1723 goto retry_kmap; 1724 } 1725 smp_rmb(); 1726 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1727 js = access_journal_data(ic, journal_section, journal_entry); 1728 mem_ptr = mem + bv.bv_offset; 1729 s = 0; 1730 do { 1731 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1732 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1733 js++; 1734 mem_ptr += 1 << SECTOR_SHIFT; 1735 } while (++s < ic->sectors_per_block); 1736 #ifdef INTERNAL_VERIFY 1737 if (ic->internal_hash) { 1738 char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1739 1740 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1741 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1742 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1743 (unsigned long long)logical_sector); 1744 } 1745 } 1746 #endif 1747 } 1748 1749 if (!ic->internal_hash) { 1750 struct bio_integrity_payload *bip = bio_integrity(bio); 1751 unsigned tag_todo = ic->tag_size; 1752 char *tag_ptr = journal_entry_tag(ic, je); 1753 1754 if (bip) do { 1755 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1756 unsigned tag_now = min(biv.bv_len, tag_todo); 1757 char *tag_addr; 1758 BUG_ON(PageHighMem(biv.bv_page)); 1759 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1760 if (likely(dio->write)) 1761 memcpy(tag_ptr, tag_addr, tag_now); 1762 else 1763 memcpy(tag_addr, tag_ptr, tag_now); 1764 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1765 tag_ptr += tag_now; 1766 tag_todo -= tag_now; 1767 } while (unlikely(tag_todo)); else { 1768 if (likely(dio->write)) 1769 memset(tag_ptr, 0, tag_todo); 1770 } 1771 } 1772 1773 if (likely(dio->write)) { 1774 struct journal_sector *js; 1775 unsigned s; 1776 1777 js = access_journal_data(ic, journal_section, journal_entry); 1778 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1779 1780 s = 0; 1781 do { 1782 je->last_bytes[s] = js[s].commit_id; 1783 } while (++s < ic->sectors_per_block); 1784 1785 if (ic->internal_hash) { 1786 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1787 if (unlikely(digest_size > ic->tag_size)) { 1788 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1789 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1790 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1791 } else 1792 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1793 } 1794 1795 journal_entry_set_sector(je, logical_sector); 1796 } 1797 logical_sector += ic->sectors_per_block; 1798 1799 journal_entry++; 1800 if (unlikely(journal_entry == ic->journal_section_entries)) { 1801 journal_entry = 0; 1802 journal_section++; 1803 wraparound_section(ic, &journal_section); 1804 } 1805 1806 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1807 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1808 1809 if (unlikely(!dio->write)) 1810 flush_dcache_page(bv.bv_page); 1811 kunmap_atomic(mem); 1812 } while (n_sectors); 1813 1814 if (likely(dio->write)) { 1815 smp_mb(); 1816 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1817 wake_up(&ic->copy_to_journal_wait); 1818 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1819 queue_work(ic->commit_wq, &ic->commit_work); 1820 } else { 1821 schedule_autocommit(ic); 1822 } 1823 } else { 1824 remove_range(ic, &dio->range); 1825 } 1826 1827 if (unlikely(bio->bi_iter.bi_size)) { 1828 sector_t area, offset; 1829 1830 dio->range.logical_sector = logical_sector; 1831 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1832 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1833 return true; 1834 } 1835 1836 return false; 1837 } 1838 1839 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1840 { 1841 struct dm_integrity_c *ic = dio->ic; 1842 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1843 unsigned journal_section, journal_entry; 1844 unsigned journal_read_pos; 1845 struct completion read_comp; 1846 bool need_sync_io = ic->internal_hash && !dio->write; 1847 1848 if (need_sync_io && from_map) { 1849 INIT_WORK(&dio->work, integrity_bio_wait); 1850 queue_work(ic->metadata_wq, &dio->work); 1851 return; 1852 } 1853 1854 lock_retry: 1855 spin_lock_irq(&ic->endio_wait.lock); 1856 retry: 1857 if (unlikely(dm_integrity_failed(ic))) { 1858 spin_unlock_irq(&ic->endio_wait.lock); 1859 do_endio(ic, bio); 1860 return; 1861 } 1862 dio->range.n_sectors = bio_sectors(bio); 1863 journal_read_pos = NOT_FOUND; 1864 if (likely(ic->mode == 'J')) { 1865 if (dio->write) { 1866 unsigned next_entry, i, pos; 1867 unsigned ws, we, range_sectors; 1868 1869 dio->range.n_sectors = min(dio->range.n_sectors, 1870 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 1871 if (unlikely(!dio->range.n_sectors)) { 1872 if (from_map) 1873 goto offload_to_thread; 1874 sleep_on_endio_wait(ic); 1875 goto retry; 1876 } 1877 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 1878 ic->free_sectors -= range_sectors; 1879 journal_section = ic->free_section; 1880 journal_entry = ic->free_section_entry; 1881 1882 next_entry = ic->free_section_entry + range_sectors; 1883 ic->free_section_entry = next_entry % ic->journal_section_entries; 1884 ic->free_section += next_entry / ic->journal_section_entries; 1885 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 1886 wraparound_section(ic, &ic->free_section); 1887 1888 pos = journal_section * ic->journal_section_entries + journal_entry; 1889 ws = journal_section; 1890 we = journal_entry; 1891 i = 0; 1892 do { 1893 struct journal_entry *je; 1894 1895 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 1896 pos++; 1897 if (unlikely(pos >= ic->journal_entries)) 1898 pos = 0; 1899 1900 je = access_journal_entry(ic, ws, we); 1901 BUG_ON(!journal_entry_is_unused(je)); 1902 journal_entry_set_inprogress(je); 1903 we++; 1904 if (unlikely(we == ic->journal_section_entries)) { 1905 we = 0; 1906 ws++; 1907 wraparound_section(ic, &ws); 1908 } 1909 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 1910 1911 spin_unlock_irq(&ic->endio_wait.lock); 1912 goto journal_read_write; 1913 } else { 1914 sector_t next_sector; 1915 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1916 if (likely(journal_read_pos == NOT_FOUND)) { 1917 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 1918 dio->range.n_sectors = next_sector - dio->range.logical_sector; 1919 } else { 1920 unsigned i; 1921 unsigned jp = journal_read_pos + 1; 1922 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 1923 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 1924 break; 1925 } 1926 dio->range.n_sectors = i; 1927 } 1928 } 1929 } 1930 if (unlikely(!add_new_range(ic, &dio->range, true))) { 1931 /* 1932 * We must not sleep in the request routine because it could 1933 * stall bios on current->bio_list. 1934 * So, we offload the bio to a workqueue if we have to sleep. 1935 */ 1936 if (from_map) { 1937 offload_to_thread: 1938 spin_unlock_irq(&ic->endio_wait.lock); 1939 INIT_WORK(&dio->work, integrity_bio_wait); 1940 queue_work(ic->wait_wq, &dio->work); 1941 return; 1942 } 1943 wait_and_add_new_range(ic, &dio->range); 1944 } 1945 spin_unlock_irq(&ic->endio_wait.lock); 1946 1947 if (unlikely(journal_read_pos != NOT_FOUND)) { 1948 journal_section = journal_read_pos / ic->journal_section_entries; 1949 journal_entry = journal_read_pos % ic->journal_section_entries; 1950 goto journal_read_write; 1951 } 1952 1953 if (ic->mode == 'B' && dio->write) { 1954 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 1955 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 1956 struct bitmap_block_status *bbs; 1957 1958 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 1959 spin_lock(&bbs->bio_queue_lock); 1960 bio_list_add(&bbs->bio_queue, bio); 1961 spin_unlock(&bbs->bio_queue_lock); 1962 queue_work(ic->writer_wq, &bbs->work); 1963 return; 1964 } 1965 } 1966 1967 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 1968 1969 if (need_sync_io) { 1970 init_completion(&read_comp); 1971 dio->completion = &read_comp; 1972 } else 1973 dio->completion = NULL; 1974 1975 dio->orig_bi_iter = bio->bi_iter; 1976 1977 dio->orig_bi_disk = bio->bi_disk; 1978 dio->orig_bi_partno = bio->bi_partno; 1979 bio_set_dev(bio, ic->dev->bdev); 1980 1981 dio->orig_bi_integrity = bio_integrity(bio); 1982 bio->bi_integrity = NULL; 1983 bio->bi_opf &= ~REQ_INTEGRITY; 1984 1985 dio->orig_bi_end_io = bio->bi_end_io; 1986 bio->bi_end_io = integrity_end_io; 1987 1988 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 1989 generic_make_request(bio); 1990 1991 if (need_sync_io) { 1992 wait_for_completion_io(&read_comp); 1993 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 1994 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 1995 goto skip_check; 1996 if (ic->mode == 'B') { 1997 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 1998 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 1999 goto skip_check; 2000 } 2001 2002 if (likely(!bio->bi_status)) 2003 integrity_metadata(&dio->work); 2004 else 2005 skip_check: 2006 dec_in_flight(dio); 2007 2008 } else { 2009 INIT_WORK(&dio->work, integrity_metadata); 2010 queue_work(ic->metadata_wq, &dio->work); 2011 } 2012 2013 return; 2014 2015 journal_read_write: 2016 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2017 goto lock_retry; 2018 2019 do_endio_flush(ic, dio); 2020 } 2021 2022 2023 static void integrity_bio_wait(struct work_struct *w) 2024 { 2025 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2026 2027 dm_integrity_map_continue(dio, false); 2028 } 2029 2030 static void pad_uncommitted(struct dm_integrity_c *ic) 2031 { 2032 if (ic->free_section_entry) { 2033 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2034 ic->free_section_entry = 0; 2035 ic->free_section++; 2036 wraparound_section(ic, &ic->free_section); 2037 ic->n_uncommitted_sections++; 2038 } 2039 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2040 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2041 ic->journal_section_entries + ic->free_sectors)) { 2042 DMCRIT("journal_sections %u, journal_section_entries %u, " 2043 "n_uncommitted_sections %u, n_committed_sections %u, " 2044 "journal_section_entries %u, free_sectors %u", 2045 ic->journal_sections, ic->journal_section_entries, 2046 ic->n_uncommitted_sections, ic->n_committed_sections, 2047 ic->journal_section_entries, ic->free_sectors); 2048 } 2049 } 2050 2051 static void integrity_commit(struct work_struct *w) 2052 { 2053 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2054 unsigned commit_start, commit_sections; 2055 unsigned i, j, n; 2056 struct bio *flushes; 2057 2058 del_timer(&ic->autocommit_timer); 2059 2060 spin_lock_irq(&ic->endio_wait.lock); 2061 flushes = bio_list_get(&ic->flush_bio_list); 2062 if (unlikely(ic->mode != 'J')) { 2063 spin_unlock_irq(&ic->endio_wait.lock); 2064 dm_integrity_flush_buffers(ic); 2065 goto release_flush_bios; 2066 } 2067 2068 pad_uncommitted(ic); 2069 commit_start = ic->uncommitted_section; 2070 commit_sections = ic->n_uncommitted_sections; 2071 spin_unlock_irq(&ic->endio_wait.lock); 2072 2073 if (!commit_sections) 2074 goto release_flush_bios; 2075 2076 i = commit_start; 2077 for (n = 0; n < commit_sections; n++) { 2078 for (j = 0; j < ic->journal_section_entries; j++) { 2079 struct journal_entry *je; 2080 je = access_journal_entry(ic, i, j); 2081 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2082 } 2083 for (j = 0; j < ic->journal_section_sectors; j++) { 2084 struct journal_sector *js; 2085 js = access_journal(ic, i, j); 2086 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2087 } 2088 i++; 2089 if (unlikely(i >= ic->journal_sections)) 2090 ic->commit_seq = next_commit_seq(ic->commit_seq); 2091 wraparound_section(ic, &i); 2092 } 2093 smp_rmb(); 2094 2095 write_journal(ic, commit_start, commit_sections); 2096 2097 spin_lock_irq(&ic->endio_wait.lock); 2098 ic->uncommitted_section += commit_sections; 2099 wraparound_section(ic, &ic->uncommitted_section); 2100 ic->n_uncommitted_sections -= commit_sections; 2101 ic->n_committed_sections += commit_sections; 2102 spin_unlock_irq(&ic->endio_wait.lock); 2103 2104 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2105 queue_work(ic->writer_wq, &ic->writer_work); 2106 2107 release_flush_bios: 2108 while (flushes) { 2109 struct bio *next = flushes->bi_next; 2110 flushes->bi_next = NULL; 2111 do_endio(ic, flushes); 2112 flushes = next; 2113 } 2114 } 2115 2116 static void complete_copy_from_journal(unsigned long error, void *context) 2117 { 2118 struct journal_io *io = context; 2119 struct journal_completion *comp = io->comp; 2120 struct dm_integrity_c *ic = comp->ic; 2121 remove_range(ic, &io->range); 2122 mempool_free(io, &ic->journal_io_mempool); 2123 if (unlikely(error != 0)) 2124 dm_integrity_io_error(ic, "copying from journal", -EIO); 2125 complete_journal_op(comp); 2126 } 2127 2128 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2129 struct journal_entry *je) 2130 { 2131 unsigned s = 0; 2132 do { 2133 js->commit_id = je->last_bytes[s]; 2134 js++; 2135 } while (++s < ic->sectors_per_block); 2136 } 2137 2138 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2139 unsigned write_sections, bool from_replay) 2140 { 2141 unsigned i, j, n; 2142 struct journal_completion comp; 2143 struct blk_plug plug; 2144 2145 blk_start_plug(&plug); 2146 2147 comp.ic = ic; 2148 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2149 init_completion(&comp.comp); 2150 2151 i = write_start; 2152 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2153 #ifndef INTERNAL_VERIFY 2154 if (unlikely(from_replay)) 2155 #endif 2156 rw_section_mac(ic, i, false); 2157 for (j = 0; j < ic->journal_section_entries; j++) { 2158 struct journal_entry *je = access_journal_entry(ic, i, j); 2159 sector_t sec, area, offset; 2160 unsigned k, l, next_loop; 2161 sector_t metadata_block; 2162 unsigned metadata_offset; 2163 struct journal_io *io; 2164 2165 if (journal_entry_is_unused(je)) 2166 continue; 2167 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2168 sec = journal_entry_get_sector(je); 2169 if (unlikely(from_replay)) { 2170 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2171 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2172 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2173 } 2174 } 2175 get_area_and_offset(ic, sec, &area, &offset); 2176 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2177 for (k = j + 1; k < ic->journal_section_entries; k++) { 2178 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2179 sector_t sec2, area2, offset2; 2180 if (journal_entry_is_unused(je2)) 2181 break; 2182 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2183 sec2 = journal_entry_get_sector(je2); 2184 get_area_and_offset(ic, sec2, &area2, &offset2); 2185 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2186 break; 2187 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2188 } 2189 next_loop = k - 1; 2190 2191 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2192 io->comp = ∁ 2193 io->range.logical_sector = sec; 2194 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2195 2196 spin_lock_irq(&ic->endio_wait.lock); 2197 add_new_range_and_wait(ic, &io->range); 2198 2199 if (likely(!from_replay)) { 2200 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2201 2202 /* don't write if there is newer committed sector */ 2203 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2204 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2205 2206 journal_entry_set_unused(je2); 2207 remove_journal_node(ic, §ion_node[j]); 2208 j++; 2209 sec += ic->sectors_per_block; 2210 offset += ic->sectors_per_block; 2211 } 2212 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2213 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2214 2215 journal_entry_set_unused(je2); 2216 remove_journal_node(ic, §ion_node[k - 1]); 2217 k--; 2218 } 2219 if (j == k) { 2220 remove_range_unlocked(ic, &io->range); 2221 spin_unlock_irq(&ic->endio_wait.lock); 2222 mempool_free(io, &ic->journal_io_mempool); 2223 goto skip_io; 2224 } 2225 for (l = j; l < k; l++) { 2226 remove_journal_node(ic, §ion_node[l]); 2227 } 2228 } 2229 spin_unlock_irq(&ic->endio_wait.lock); 2230 2231 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2232 for (l = j; l < k; l++) { 2233 int r; 2234 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2235 2236 if ( 2237 #ifndef INTERNAL_VERIFY 2238 unlikely(from_replay) && 2239 #endif 2240 ic->internal_hash) { 2241 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2242 2243 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2244 (char *)access_journal_data(ic, i, l), test_tag); 2245 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2246 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2247 } 2248 2249 journal_entry_set_unused(je2); 2250 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2251 ic->tag_size, TAG_WRITE); 2252 if (unlikely(r)) { 2253 dm_integrity_io_error(ic, "reading tags", r); 2254 } 2255 } 2256 2257 atomic_inc(&comp.in_flight); 2258 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2259 (k - j) << ic->sb->log2_sectors_per_block, 2260 get_data_sector(ic, area, offset), 2261 complete_copy_from_journal, io); 2262 skip_io: 2263 j = next_loop; 2264 } 2265 } 2266 2267 dm_bufio_write_dirty_buffers_async(ic->bufio); 2268 2269 blk_finish_plug(&plug); 2270 2271 complete_journal_op(&comp); 2272 wait_for_completion_io(&comp.comp); 2273 2274 dm_integrity_flush_buffers(ic); 2275 } 2276 2277 static void integrity_writer(struct work_struct *w) 2278 { 2279 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2280 unsigned write_start, write_sections; 2281 2282 unsigned prev_free_sectors; 2283 2284 /* the following test is not needed, but it tests the replay code */ 2285 if (READ_ONCE(ic->suspending) && !ic->meta_dev) 2286 return; 2287 2288 spin_lock_irq(&ic->endio_wait.lock); 2289 write_start = ic->committed_section; 2290 write_sections = ic->n_committed_sections; 2291 spin_unlock_irq(&ic->endio_wait.lock); 2292 2293 if (!write_sections) 2294 return; 2295 2296 do_journal_write(ic, write_start, write_sections, false); 2297 2298 spin_lock_irq(&ic->endio_wait.lock); 2299 2300 ic->committed_section += write_sections; 2301 wraparound_section(ic, &ic->committed_section); 2302 ic->n_committed_sections -= write_sections; 2303 2304 prev_free_sectors = ic->free_sectors; 2305 ic->free_sectors += write_sections * ic->journal_section_entries; 2306 if (unlikely(!prev_free_sectors)) 2307 wake_up_locked(&ic->endio_wait); 2308 2309 spin_unlock_irq(&ic->endio_wait.lock); 2310 } 2311 2312 static void recalc_write_super(struct dm_integrity_c *ic) 2313 { 2314 int r; 2315 2316 dm_integrity_flush_buffers(ic); 2317 if (dm_integrity_failed(ic)) 2318 return; 2319 2320 sb_set_version(ic); 2321 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2322 if (unlikely(r)) 2323 dm_integrity_io_error(ic, "writing superblock", r); 2324 } 2325 2326 static void integrity_recalc(struct work_struct *w) 2327 { 2328 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2329 struct dm_integrity_range range; 2330 struct dm_io_request io_req; 2331 struct dm_io_region io_loc; 2332 sector_t area, offset; 2333 sector_t metadata_block; 2334 unsigned metadata_offset; 2335 sector_t logical_sector, n_sectors; 2336 __u8 *t; 2337 unsigned i; 2338 int r; 2339 unsigned super_counter = 0; 2340 2341 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2342 2343 spin_lock_irq(&ic->endio_wait.lock); 2344 2345 next_chunk: 2346 2347 if (unlikely(READ_ONCE(ic->suspending))) 2348 goto unlock_ret; 2349 2350 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2351 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2352 if (ic->mode == 'B') { 2353 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2354 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2355 } 2356 goto unlock_ret; 2357 } 2358 2359 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2360 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2361 if (!ic->meta_dev) 2362 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2363 2364 add_new_range_and_wait(ic, &range); 2365 spin_unlock_irq(&ic->endio_wait.lock); 2366 logical_sector = range.logical_sector; 2367 n_sectors = range.n_sectors; 2368 2369 if (ic->mode == 'B') { 2370 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2371 goto advance_and_next; 2372 } 2373 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2374 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2375 logical_sector += ic->sectors_per_block; 2376 n_sectors -= ic->sectors_per_block; 2377 cond_resched(); 2378 } 2379 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2380 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2381 n_sectors -= ic->sectors_per_block; 2382 cond_resched(); 2383 } 2384 get_area_and_offset(ic, logical_sector, &area, &offset); 2385 } 2386 2387 DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors); 2388 2389 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2390 recalc_write_super(ic); 2391 if (ic->mode == 'B') { 2392 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2393 } 2394 super_counter = 0; 2395 } 2396 2397 if (unlikely(dm_integrity_failed(ic))) 2398 goto err; 2399 2400 io_req.bi_op = REQ_OP_READ; 2401 io_req.bi_op_flags = 0; 2402 io_req.mem.type = DM_IO_VMA; 2403 io_req.mem.ptr.addr = ic->recalc_buffer; 2404 io_req.notify.fn = NULL; 2405 io_req.client = ic->io; 2406 io_loc.bdev = ic->dev->bdev; 2407 io_loc.sector = get_data_sector(ic, area, offset); 2408 io_loc.count = n_sectors; 2409 2410 r = dm_io(&io_req, 1, &io_loc, NULL); 2411 if (unlikely(r)) { 2412 dm_integrity_io_error(ic, "reading data", r); 2413 goto err; 2414 } 2415 2416 t = ic->recalc_tags; 2417 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2418 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2419 t += ic->tag_size; 2420 } 2421 2422 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2423 2424 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2425 if (unlikely(r)) { 2426 dm_integrity_io_error(ic, "writing tags", r); 2427 goto err; 2428 } 2429 2430 advance_and_next: 2431 cond_resched(); 2432 2433 spin_lock_irq(&ic->endio_wait.lock); 2434 remove_range_unlocked(ic, &range); 2435 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2436 goto next_chunk; 2437 2438 err: 2439 remove_range(ic, &range); 2440 return; 2441 2442 unlock_ret: 2443 spin_unlock_irq(&ic->endio_wait.lock); 2444 2445 recalc_write_super(ic); 2446 } 2447 2448 static void bitmap_block_work(struct work_struct *w) 2449 { 2450 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2451 struct dm_integrity_c *ic = bbs->ic; 2452 struct bio *bio; 2453 struct bio_list bio_queue; 2454 struct bio_list waiting; 2455 2456 bio_list_init(&waiting); 2457 2458 spin_lock(&bbs->bio_queue_lock); 2459 bio_queue = bbs->bio_queue; 2460 bio_list_init(&bbs->bio_queue); 2461 spin_unlock(&bbs->bio_queue_lock); 2462 2463 while ((bio = bio_list_pop(&bio_queue))) { 2464 struct dm_integrity_io *dio; 2465 2466 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2467 2468 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2469 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2470 remove_range(ic, &dio->range); 2471 INIT_WORK(&dio->work, integrity_bio_wait); 2472 queue_work(ic->wait_wq, &dio->work); 2473 } else { 2474 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2475 dio->range.n_sectors, BITMAP_OP_SET); 2476 bio_list_add(&waiting, bio); 2477 } 2478 } 2479 2480 if (bio_list_empty(&waiting)) 2481 return; 2482 2483 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2484 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2485 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2486 2487 while ((bio = bio_list_pop(&waiting))) { 2488 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2489 2490 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2491 dio->range.n_sectors, BITMAP_OP_SET); 2492 2493 remove_range(ic, &dio->range); 2494 INIT_WORK(&dio->work, integrity_bio_wait); 2495 queue_work(ic->wait_wq, &dio->work); 2496 } 2497 2498 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2499 } 2500 2501 static void bitmap_flush_work(struct work_struct *work) 2502 { 2503 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2504 struct dm_integrity_range range; 2505 unsigned long limit; 2506 struct bio *bio; 2507 2508 dm_integrity_flush_buffers(ic); 2509 2510 range.logical_sector = 0; 2511 range.n_sectors = ic->provided_data_sectors; 2512 2513 spin_lock_irq(&ic->endio_wait.lock); 2514 add_new_range_and_wait(ic, &range); 2515 spin_unlock_irq(&ic->endio_wait.lock); 2516 2517 dm_integrity_flush_buffers(ic); 2518 if (ic->meta_dev) 2519 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL); 2520 2521 limit = ic->provided_data_sectors; 2522 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2523 limit = le64_to_cpu(ic->sb->recalc_sector) 2524 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2525 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2526 } 2527 /*DEBUG_print("zeroing journal\n");*/ 2528 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2529 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2530 2531 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2532 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2533 2534 spin_lock_irq(&ic->endio_wait.lock); 2535 remove_range_unlocked(ic, &range); 2536 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2537 bio_endio(bio); 2538 spin_unlock_irq(&ic->endio_wait.lock); 2539 spin_lock_irq(&ic->endio_wait.lock); 2540 } 2541 spin_unlock_irq(&ic->endio_wait.lock); 2542 } 2543 2544 2545 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2546 unsigned n_sections, unsigned char commit_seq) 2547 { 2548 unsigned i, j, n; 2549 2550 if (!n_sections) 2551 return; 2552 2553 for (n = 0; n < n_sections; n++) { 2554 i = start_section + n; 2555 wraparound_section(ic, &i); 2556 for (j = 0; j < ic->journal_section_sectors; j++) { 2557 struct journal_sector *js = access_journal(ic, i, j); 2558 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2559 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2560 } 2561 for (j = 0; j < ic->journal_section_entries; j++) { 2562 struct journal_entry *je = access_journal_entry(ic, i, j); 2563 journal_entry_set_unused(je); 2564 } 2565 } 2566 2567 write_journal(ic, start_section, n_sections); 2568 } 2569 2570 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2571 { 2572 unsigned char k; 2573 for (k = 0; k < N_COMMIT_IDS; k++) { 2574 if (dm_integrity_commit_id(ic, i, j, k) == id) 2575 return k; 2576 } 2577 dm_integrity_io_error(ic, "journal commit id", -EIO); 2578 return -EIO; 2579 } 2580 2581 static void replay_journal(struct dm_integrity_c *ic) 2582 { 2583 unsigned i, j; 2584 bool used_commit_ids[N_COMMIT_IDS]; 2585 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2586 unsigned write_start, write_sections; 2587 unsigned continue_section; 2588 bool journal_empty; 2589 unsigned char unused, last_used, want_commit_seq; 2590 2591 if (ic->mode == 'R') 2592 return; 2593 2594 if (ic->journal_uptodate) 2595 return; 2596 2597 last_used = 0; 2598 write_start = 0; 2599 2600 if (!ic->just_formatted) { 2601 DEBUG_print("reading journal\n"); 2602 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2603 if (ic->journal_io) 2604 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2605 if (ic->journal_io) { 2606 struct journal_completion crypt_comp; 2607 crypt_comp.ic = ic; 2608 init_completion(&crypt_comp.comp); 2609 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2610 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2611 wait_for_completion(&crypt_comp.comp); 2612 } 2613 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2614 } 2615 2616 if (dm_integrity_failed(ic)) 2617 goto clear_journal; 2618 2619 journal_empty = true; 2620 memset(used_commit_ids, 0, sizeof used_commit_ids); 2621 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2622 for (i = 0; i < ic->journal_sections; i++) { 2623 for (j = 0; j < ic->journal_section_sectors; j++) { 2624 int k; 2625 struct journal_sector *js = access_journal(ic, i, j); 2626 k = find_commit_seq(ic, i, j, js->commit_id); 2627 if (k < 0) 2628 goto clear_journal; 2629 used_commit_ids[k] = true; 2630 max_commit_id_sections[k] = i; 2631 } 2632 if (journal_empty) { 2633 for (j = 0; j < ic->journal_section_entries; j++) { 2634 struct journal_entry *je = access_journal_entry(ic, i, j); 2635 if (!journal_entry_is_unused(je)) { 2636 journal_empty = false; 2637 break; 2638 } 2639 } 2640 } 2641 } 2642 2643 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2644 unused = N_COMMIT_IDS - 1; 2645 while (unused && !used_commit_ids[unused - 1]) 2646 unused--; 2647 } else { 2648 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2649 if (!used_commit_ids[unused]) 2650 break; 2651 if (unused == N_COMMIT_IDS) { 2652 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2653 goto clear_journal; 2654 } 2655 } 2656 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2657 unused, used_commit_ids[0], used_commit_ids[1], 2658 used_commit_ids[2], used_commit_ids[3]); 2659 2660 last_used = prev_commit_seq(unused); 2661 want_commit_seq = prev_commit_seq(last_used); 2662 2663 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2664 journal_empty = true; 2665 2666 write_start = max_commit_id_sections[last_used] + 1; 2667 if (unlikely(write_start >= ic->journal_sections)) 2668 want_commit_seq = next_commit_seq(want_commit_seq); 2669 wraparound_section(ic, &write_start); 2670 2671 i = write_start; 2672 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2673 for (j = 0; j < ic->journal_section_sectors; j++) { 2674 struct journal_sector *js = access_journal(ic, i, j); 2675 2676 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2677 /* 2678 * This could be caused by crash during writing. 2679 * We won't replay the inconsistent part of the 2680 * journal. 2681 */ 2682 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2683 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2684 goto brk; 2685 } 2686 } 2687 i++; 2688 if (unlikely(i >= ic->journal_sections)) 2689 want_commit_seq = next_commit_seq(want_commit_seq); 2690 wraparound_section(ic, &i); 2691 } 2692 brk: 2693 2694 if (!journal_empty) { 2695 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2696 write_sections, write_start, want_commit_seq); 2697 do_journal_write(ic, write_start, write_sections, true); 2698 } 2699 2700 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2701 continue_section = write_start; 2702 ic->commit_seq = want_commit_seq; 2703 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2704 } else { 2705 unsigned s; 2706 unsigned char erase_seq; 2707 clear_journal: 2708 DEBUG_print("clearing journal\n"); 2709 2710 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2711 s = write_start; 2712 init_journal(ic, s, 1, erase_seq); 2713 s++; 2714 wraparound_section(ic, &s); 2715 if (ic->journal_sections >= 2) { 2716 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2717 s += ic->journal_sections - 2; 2718 wraparound_section(ic, &s); 2719 init_journal(ic, s, 1, erase_seq); 2720 } 2721 2722 continue_section = 0; 2723 ic->commit_seq = next_commit_seq(erase_seq); 2724 } 2725 2726 ic->committed_section = continue_section; 2727 ic->n_committed_sections = 0; 2728 2729 ic->uncommitted_section = continue_section; 2730 ic->n_uncommitted_sections = 0; 2731 2732 ic->free_section = continue_section; 2733 ic->free_section_entry = 0; 2734 ic->free_sectors = ic->journal_entries; 2735 2736 ic->journal_tree_root = RB_ROOT; 2737 for (i = 0; i < ic->journal_entries; i++) 2738 init_journal_node(&ic->journal_tree[i]); 2739 } 2740 2741 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 2742 { 2743 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 2744 2745 if (ic->mode == 'B') { 2746 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 2747 ic->synchronous_mode = 1; 2748 2749 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2750 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2751 flush_workqueue(ic->commit_wq); 2752 } 2753 } 2754 2755 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 2756 { 2757 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 2758 2759 DEBUG_print("dm_integrity_reboot\n"); 2760 2761 dm_integrity_enter_synchronous_mode(ic); 2762 2763 return NOTIFY_DONE; 2764 } 2765 2766 static void dm_integrity_postsuspend(struct dm_target *ti) 2767 { 2768 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2769 int r; 2770 2771 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 2772 2773 del_timer_sync(&ic->autocommit_timer); 2774 2775 WRITE_ONCE(ic->suspending, 1); 2776 2777 if (ic->recalc_wq) 2778 drain_workqueue(ic->recalc_wq); 2779 2780 if (ic->mode == 'B') 2781 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2782 2783 queue_work(ic->commit_wq, &ic->commit_work); 2784 drain_workqueue(ic->commit_wq); 2785 2786 if (ic->mode == 'J') { 2787 if (ic->meta_dev) 2788 queue_work(ic->writer_wq, &ic->writer_work); 2789 drain_workqueue(ic->writer_wq); 2790 dm_integrity_flush_buffers(ic); 2791 } 2792 2793 if (ic->mode == 'B') { 2794 dm_integrity_flush_buffers(ic); 2795 #if 1 2796 /* set to 0 to test bitmap replay code */ 2797 init_journal(ic, 0, ic->journal_sections, 0); 2798 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2799 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2800 if (unlikely(r)) 2801 dm_integrity_io_error(ic, "writing superblock", r); 2802 #endif 2803 } 2804 2805 WRITE_ONCE(ic->suspending, 0); 2806 2807 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2808 2809 ic->journal_uptodate = true; 2810 } 2811 2812 static void dm_integrity_resume(struct dm_target *ti) 2813 { 2814 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2815 int r; 2816 DEBUG_print("resume\n"); 2817 2818 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 2819 DEBUG_print("resume dirty_bitmap\n"); 2820 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 2821 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2822 if (ic->mode == 'B') { 2823 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 2824 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 2825 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 2826 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 2827 BITMAP_OP_TEST_ALL_CLEAR)) { 2828 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2829 ic->sb->recalc_sector = cpu_to_le64(0); 2830 } 2831 } else { 2832 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 2833 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 2834 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 2835 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2836 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2837 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2838 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2839 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2840 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2841 ic->sb->recalc_sector = cpu_to_le64(0); 2842 } 2843 } else { 2844 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 2845 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) { 2846 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2847 ic->sb->recalc_sector = cpu_to_le64(0); 2848 } 2849 init_journal(ic, 0, ic->journal_sections, 0); 2850 replay_journal(ic); 2851 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2852 } 2853 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2854 if (unlikely(r)) 2855 dm_integrity_io_error(ic, "writing superblock", r); 2856 } else { 2857 replay_journal(ic); 2858 if (ic->mode == 'B') { 2859 int mode; 2860 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2861 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 2862 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2863 if (unlikely(r)) 2864 dm_integrity_io_error(ic, "writing superblock", r); 2865 2866 mode = ic->recalculate_flag ? BITMAP_OP_SET : BITMAP_OP_CLEAR; 2867 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, mode); 2868 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, mode); 2869 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, mode); 2870 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2871 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2872 } 2873 } 2874 2875 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 2876 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2877 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 2878 DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors); 2879 if (recalc_pos < ic->provided_data_sectors) { 2880 queue_work(ic->recalc_wq, &ic->recalc_work); 2881 } else if (recalc_pos > ic->provided_data_sectors) { 2882 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 2883 recalc_write_super(ic); 2884 } 2885 } 2886 2887 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 2888 ic->reboot_notifier.next = NULL; 2889 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 2890 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 2891 2892 #if 0 2893 /* set to 1 to stress test synchronous mode */ 2894 dm_integrity_enter_synchronous_mode(ic); 2895 #endif 2896 } 2897 2898 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 2899 unsigned status_flags, char *result, unsigned maxlen) 2900 { 2901 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2902 unsigned arg_count; 2903 size_t sz = 0; 2904 2905 switch (type) { 2906 case STATUSTYPE_INFO: 2907 DMEMIT("%llu %llu", 2908 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 2909 (unsigned long long)ic->provided_data_sectors); 2910 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 2911 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector)); 2912 else 2913 DMEMIT(" -"); 2914 break; 2915 2916 case STATUSTYPE_TABLE: { 2917 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 2918 watermark_percentage += ic->journal_entries / 2; 2919 do_div(watermark_percentage, ic->journal_entries); 2920 arg_count = 3; 2921 arg_count += !!ic->meta_dev; 2922 arg_count += ic->sectors_per_block != 1; 2923 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 2924 arg_count += ic->mode == 'J'; 2925 arg_count += ic->mode == 'J'; 2926 arg_count += ic->mode == 'B'; 2927 arg_count += ic->mode == 'B'; 2928 arg_count += !!ic->internal_hash_alg.alg_string; 2929 arg_count += !!ic->journal_crypt_alg.alg_string; 2930 arg_count += !!ic->journal_mac_alg.alg_string; 2931 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start, 2932 ic->tag_size, ic->mode, arg_count); 2933 if (ic->meta_dev) 2934 DMEMIT(" meta_device:%s", ic->meta_dev->name); 2935 if (ic->sectors_per_block != 1) 2936 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 2937 if (ic->recalculate_flag) 2938 DMEMIT(" recalculate"); 2939 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 2940 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 2941 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 2942 if (ic->mode == 'J') { 2943 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 2944 DMEMIT(" commit_time:%u", ic->autocommit_msec); 2945 } 2946 if (ic->mode == 'B') { 2947 DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 2948 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 2949 } 2950 2951 #define EMIT_ALG(a, n) \ 2952 do { \ 2953 if (ic->a.alg_string) { \ 2954 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 2955 if (ic->a.key_string) \ 2956 DMEMIT(":%s", ic->a.key_string);\ 2957 } \ 2958 } while (0) 2959 EMIT_ALG(internal_hash_alg, "internal_hash"); 2960 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 2961 EMIT_ALG(journal_mac_alg, "journal_mac"); 2962 break; 2963 } 2964 } 2965 } 2966 2967 static int dm_integrity_iterate_devices(struct dm_target *ti, 2968 iterate_devices_callout_fn fn, void *data) 2969 { 2970 struct dm_integrity_c *ic = ti->private; 2971 2972 if (!ic->meta_dev) 2973 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 2974 else 2975 return fn(ti, ic->dev, 0, ti->len, data); 2976 } 2977 2978 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 2979 { 2980 struct dm_integrity_c *ic = ti->private; 2981 2982 if (ic->sectors_per_block > 1) { 2983 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2984 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2985 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 2986 } 2987 } 2988 2989 static void calculate_journal_section_size(struct dm_integrity_c *ic) 2990 { 2991 unsigned sector_space = JOURNAL_SECTOR_DATA; 2992 2993 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 2994 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 2995 JOURNAL_ENTRY_ROUNDUP); 2996 2997 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 2998 sector_space -= JOURNAL_MAC_PER_SECTOR; 2999 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3000 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3001 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3002 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3003 } 3004 3005 static int calculate_device_limits(struct dm_integrity_c *ic) 3006 { 3007 __u64 initial_sectors; 3008 3009 calculate_journal_section_size(ic); 3010 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3011 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3012 return -EINVAL; 3013 ic->initial_sectors = initial_sectors; 3014 3015 if (!ic->meta_dev) { 3016 sector_t last_sector, last_area, last_offset; 3017 3018 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3019 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT; 3020 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3021 ic->log2_metadata_run = __ffs(ic->metadata_run); 3022 else 3023 ic->log2_metadata_run = -1; 3024 3025 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3026 last_sector = get_data_sector(ic, last_area, last_offset); 3027 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3028 return -EINVAL; 3029 } else { 3030 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3031 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3032 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3033 meta_size <<= ic->log2_buffer_sectors; 3034 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3035 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3036 return -EINVAL; 3037 ic->metadata_run = 1; 3038 ic->log2_metadata_run = 0; 3039 } 3040 3041 return 0; 3042 } 3043 3044 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3045 { 3046 unsigned journal_sections; 3047 int test_bit; 3048 3049 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3050 memcpy(ic->sb->magic, SB_MAGIC, 8); 3051 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3052 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3053 if (ic->journal_mac_alg.alg_string) 3054 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3055 3056 calculate_journal_section_size(ic); 3057 journal_sections = journal_sectors / ic->journal_section_sectors; 3058 if (!journal_sections) 3059 journal_sections = 1; 3060 3061 if (!ic->meta_dev) { 3062 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3063 if (!interleave_sectors) 3064 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3065 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3066 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3067 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3068 3069 ic->provided_data_sectors = 0; 3070 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3071 __u64 prev_data_sectors = ic->provided_data_sectors; 3072 3073 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3074 if (calculate_device_limits(ic)) 3075 ic->provided_data_sectors = prev_data_sectors; 3076 } 3077 if (!ic->provided_data_sectors) 3078 return -EINVAL; 3079 } else { 3080 ic->sb->log2_interleave_sectors = 0; 3081 ic->provided_data_sectors = ic->data_device_sectors; 3082 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3083 3084 try_smaller_buffer: 3085 ic->sb->journal_sections = cpu_to_le32(0); 3086 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3087 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3088 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3089 if (test_journal_sections > journal_sections) 3090 continue; 3091 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3092 if (calculate_device_limits(ic)) 3093 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3094 3095 } 3096 if (!le32_to_cpu(ic->sb->journal_sections)) { 3097 if (ic->log2_buffer_sectors > 3) { 3098 ic->log2_buffer_sectors--; 3099 goto try_smaller_buffer; 3100 } 3101 return -EINVAL; 3102 } 3103 } 3104 3105 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3106 3107 sb_set_version(ic); 3108 3109 return 0; 3110 } 3111 3112 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3113 { 3114 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3115 struct blk_integrity bi; 3116 3117 memset(&bi, 0, sizeof(bi)); 3118 bi.profile = &dm_integrity_profile; 3119 bi.tuple_size = ic->tag_size; 3120 bi.tag_size = bi.tuple_size; 3121 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3122 3123 blk_integrity_register(disk, &bi); 3124 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3125 } 3126 3127 static void dm_integrity_free_page_list(struct page_list *pl) 3128 { 3129 unsigned i; 3130 3131 if (!pl) 3132 return; 3133 for (i = 0; pl[i].page; i++) 3134 __free_page(pl[i].page); 3135 kvfree(pl); 3136 } 3137 3138 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3139 { 3140 struct page_list *pl; 3141 unsigned i; 3142 3143 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3144 if (!pl) 3145 return NULL; 3146 3147 for (i = 0; i < n_pages; i++) { 3148 pl[i].page = alloc_page(GFP_KERNEL); 3149 if (!pl[i].page) { 3150 dm_integrity_free_page_list(pl); 3151 return NULL; 3152 } 3153 if (i) 3154 pl[i - 1].next = &pl[i]; 3155 } 3156 pl[i].page = NULL; 3157 pl[i].next = NULL; 3158 3159 return pl; 3160 } 3161 3162 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3163 { 3164 unsigned i; 3165 for (i = 0; i < ic->journal_sections; i++) 3166 kvfree(sl[i]); 3167 kvfree(sl); 3168 } 3169 3170 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3171 struct page_list *pl) 3172 { 3173 struct scatterlist **sl; 3174 unsigned i; 3175 3176 sl = kvmalloc_array(ic->journal_sections, 3177 sizeof(struct scatterlist *), 3178 GFP_KERNEL | __GFP_ZERO); 3179 if (!sl) 3180 return NULL; 3181 3182 for (i = 0; i < ic->journal_sections; i++) { 3183 struct scatterlist *s; 3184 unsigned start_index, start_offset; 3185 unsigned end_index, end_offset; 3186 unsigned n_pages; 3187 unsigned idx; 3188 3189 page_list_location(ic, i, 0, &start_index, &start_offset); 3190 page_list_location(ic, i, ic->journal_section_sectors - 1, 3191 &end_index, &end_offset); 3192 3193 n_pages = (end_index - start_index + 1); 3194 3195 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3196 GFP_KERNEL); 3197 if (!s) { 3198 dm_integrity_free_journal_scatterlist(ic, sl); 3199 return NULL; 3200 } 3201 3202 sg_init_table(s, n_pages); 3203 for (idx = start_index; idx <= end_index; idx++) { 3204 char *va = lowmem_page_address(pl[idx].page); 3205 unsigned start = 0, end = PAGE_SIZE; 3206 if (idx == start_index) 3207 start = start_offset; 3208 if (idx == end_index) 3209 end = end_offset + (1 << SECTOR_SHIFT); 3210 sg_set_buf(&s[idx - start_index], va + start, end - start); 3211 } 3212 3213 sl[i] = s; 3214 } 3215 3216 return sl; 3217 } 3218 3219 static void free_alg(struct alg_spec *a) 3220 { 3221 kzfree(a->alg_string); 3222 kzfree(a->key); 3223 memset(a, 0, sizeof *a); 3224 } 3225 3226 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3227 { 3228 char *k; 3229 3230 free_alg(a); 3231 3232 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3233 if (!a->alg_string) 3234 goto nomem; 3235 3236 k = strchr(a->alg_string, ':'); 3237 if (k) { 3238 *k = 0; 3239 a->key_string = k + 1; 3240 if (strlen(a->key_string) & 1) 3241 goto inval; 3242 3243 a->key_size = strlen(a->key_string) / 2; 3244 a->key = kmalloc(a->key_size, GFP_KERNEL); 3245 if (!a->key) 3246 goto nomem; 3247 if (hex2bin(a->key, a->key_string, a->key_size)) 3248 goto inval; 3249 } 3250 3251 return 0; 3252 inval: 3253 *error = error_inval; 3254 return -EINVAL; 3255 nomem: 3256 *error = "Out of memory for an argument"; 3257 return -ENOMEM; 3258 } 3259 3260 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3261 char *error_alg, char *error_key) 3262 { 3263 int r; 3264 3265 if (a->alg_string) { 3266 *hash = crypto_alloc_shash(a->alg_string, 0, 0); 3267 if (IS_ERR(*hash)) { 3268 *error = error_alg; 3269 r = PTR_ERR(*hash); 3270 *hash = NULL; 3271 return r; 3272 } 3273 3274 if (a->key) { 3275 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3276 if (r) { 3277 *error = error_key; 3278 return r; 3279 } 3280 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3281 *error = error_key; 3282 return -ENOKEY; 3283 } 3284 } 3285 3286 return 0; 3287 } 3288 3289 static int create_journal(struct dm_integrity_c *ic, char **error) 3290 { 3291 int r = 0; 3292 unsigned i; 3293 __u64 journal_pages, journal_desc_size, journal_tree_size; 3294 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3295 struct skcipher_request *req = NULL; 3296 3297 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3298 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3299 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3300 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3301 3302 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3303 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3304 journal_desc_size = journal_pages * sizeof(struct page_list); 3305 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3306 *error = "Journal doesn't fit into memory"; 3307 r = -ENOMEM; 3308 goto bad; 3309 } 3310 ic->journal_pages = journal_pages; 3311 3312 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3313 if (!ic->journal) { 3314 *error = "Could not allocate memory for journal"; 3315 r = -ENOMEM; 3316 goto bad; 3317 } 3318 if (ic->journal_crypt_alg.alg_string) { 3319 unsigned ivsize, blocksize; 3320 struct journal_completion comp; 3321 3322 comp.ic = ic; 3323 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0); 3324 if (IS_ERR(ic->journal_crypt)) { 3325 *error = "Invalid journal cipher"; 3326 r = PTR_ERR(ic->journal_crypt); 3327 ic->journal_crypt = NULL; 3328 goto bad; 3329 } 3330 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3331 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3332 3333 if (ic->journal_crypt_alg.key) { 3334 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3335 ic->journal_crypt_alg.key_size); 3336 if (r) { 3337 *error = "Error setting encryption key"; 3338 goto bad; 3339 } 3340 } 3341 DEBUG_print("cipher %s, block size %u iv size %u\n", 3342 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3343 3344 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3345 if (!ic->journal_io) { 3346 *error = "Could not allocate memory for journal io"; 3347 r = -ENOMEM; 3348 goto bad; 3349 } 3350 3351 if (blocksize == 1) { 3352 struct scatterlist *sg; 3353 3354 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3355 if (!req) { 3356 *error = "Could not allocate crypt request"; 3357 r = -ENOMEM; 3358 goto bad; 3359 } 3360 3361 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3362 if (!crypt_iv) { 3363 *error = "Could not allocate iv"; 3364 r = -ENOMEM; 3365 goto bad; 3366 } 3367 3368 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3369 if (!ic->journal_xor) { 3370 *error = "Could not allocate memory for journal xor"; 3371 r = -ENOMEM; 3372 goto bad; 3373 } 3374 3375 sg = kvmalloc_array(ic->journal_pages + 1, 3376 sizeof(struct scatterlist), 3377 GFP_KERNEL); 3378 if (!sg) { 3379 *error = "Unable to allocate sg list"; 3380 r = -ENOMEM; 3381 goto bad; 3382 } 3383 sg_init_table(sg, ic->journal_pages + 1); 3384 for (i = 0; i < ic->journal_pages; i++) { 3385 char *va = lowmem_page_address(ic->journal_xor[i].page); 3386 clear_page(va); 3387 sg_set_buf(&sg[i], va, PAGE_SIZE); 3388 } 3389 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3390 memset(crypt_iv, 0x00, ivsize); 3391 3392 skcipher_request_set_crypt(req, sg, sg, 3393 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3394 init_completion(&comp.comp); 3395 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3396 if (do_crypt(true, req, &comp)) 3397 wait_for_completion(&comp.comp); 3398 kvfree(sg); 3399 r = dm_integrity_failed(ic); 3400 if (r) { 3401 *error = "Unable to encrypt journal"; 3402 goto bad; 3403 } 3404 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3405 3406 crypto_free_skcipher(ic->journal_crypt); 3407 ic->journal_crypt = NULL; 3408 } else { 3409 unsigned crypt_len = roundup(ivsize, blocksize); 3410 3411 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3412 if (!req) { 3413 *error = "Could not allocate crypt request"; 3414 r = -ENOMEM; 3415 goto bad; 3416 } 3417 3418 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3419 if (!crypt_iv) { 3420 *error = "Could not allocate iv"; 3421 r = -ENOMEM; 3422 goto bad; 3423 } 3424 3425 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3426 if (!crypt_data) { 3427 *error = "Unable to allocate crypt data"; 3428 r = -ENOMEM; 3429 goto bad; 3430 } 3431 3432 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3433 if (!ic->journal_scatterlist) { 3434 *error = "Unable to allocate sg list"; 3435 r = -ENOMEM; 3436 goto bad; 3437 } 3438 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3439 if (!ic->journal_io_scatterlist) { 3440 *error = "Unable to allocate sg list"; 3441 r = -ENOMEM; 3442 goto bad; 3443 } 3444 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3445 sizeof(struct skcipher_request *), 3446 GFP_KERNEL | __GFP_ZERO); 3447 if (!ic->sk_requests) { 3448 *error = "Unable to allocate sk requests"; 3449 r = -ENOMEM; 3450 goto bad; 3451 } 3452 for (i = 0; i < ic->journal_sections; i++) { 3453 struct scatterlist sg; 3454 struct skcipher_request *section_req; 3455 __u32 section_le = cpu_to_le32(i); 3456 3457 memset(crypt_iv, 0x00, ivsize); 3458 memset(crypt_data, 0x00, crypt_len); 3459 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3460 3461 sg_init_one(&sg, crypt_data, crypt_len); 3462 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3463 init_completion(&comp.comp); 3464 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3465 if (do_crypt(true, req, &comp)) 3466 wait_for_completion(&comp.comp); 3467 3468 r = dm_integrity_failed(ic); 3469 if (r) { 3470 *error = "Unable to generate iv"; 3471 goto bad; 3472 } 3473 3474 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3475 if (!section_req) { 3476 *error = "Unable to allocate crypt request"; 3477 r = -ENOMEM; 3478 goto bad; 3479 } 3480 section_req->iv = kmalloc_array(ivsize, 2, 3481 GFP_KERNEL); 3482 if (!section_req->iv) { 3483 skcipher_request_free(section_req); 3484 *error = "Unable to allocate iv"; 3485 r = -ENOMEM; 3486 goto bad; 3487 } 3488 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3489 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3490 ic->sk_requests[i] = section_req; 3491 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3492 } 3493 } 3494 } 3495 3496 for (i = 0; i < N_COMMIT_IDS; i++) { 3497 unsigned j; 3498 retest_commit_id: 3499 for (j = 0; j < i; j++) { 3500 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3501 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3502 goto retest_commit_id; 3503 } 3504 } 3505 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3506 } 3507 3508 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3509 if (journal_tree_size > ULONG_MAX) { 3510 *error = "Journal doesn't fit into memory"; 3511 r = -ENOMEM; 3512 goto bad; 3513 } 3514 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3515 if (!ic->journal_tree) { 3516 *error = "Could not allocate memory for journal tree"; 3517 r = -ENOMEM; 3518 } 3519 bad: 3520 kfree(crypt_data); 3521 kfree(crypt_iv); 3522 skcipher_request_free(req); 3523 3524 return r; 3525 } 3526 3527 /* 3528 * Construct a integrity mapping 3529 * 3530 * Arguments: 3531 * device 3532 * offset from the start of the device 3533 * tag size 3534 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3535 * number of optional arguments 3536 * optional arguments: 3537 * journal_sectors 3538 * interleave_sectors 3539 * buffer_sectors 3540 * journal_watermark 3541 * commit_time 3542 * meta_device 3543 * block_size 3544 * sectors_per_bit 3545 * bitmap_flush_interval 3546 * internal_hash 3547 * journal_crypt 3548 * journal_mac 3549 * recalculate 3550 */ 3551 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3552 { 3553 struct dm_integrity_c *ic; 3554 char dummy; 3555 int r; 3556 unsigned extra_args; 3557 struct dm_arg_set as; 3558 static const struct dm_arg _args[] = { 3559 {0, 9, "Invalid number of feature args"}, 3560 }; 3561 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3562 bool should_write_sb; 3563 __u64 threshold; 3564 unsigned long long start; 3565 __s8 log2_sectors_per_bitmap_bit = -1; 3566 __s8 log2_blocks_per_bitmap_bit; 3567 __u64 bits_in_journal; 3568 __u64 n_bitmap_bits; 3569 3570 #define DIRECT_ARGUMENTS 4 3571 3572 if (argc <= DIRECT_ARGUMENTS) { 3573 ti->error = "Invalid argument count"; 3574 return -EINVAL; 3575 } 3576 3577 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3578 if (!ic) { 3579 ti->error = "Cannot allocate integrity context"; 3580 return -ENOMEM; 3581 } 3582 ti->private = ic; 3583 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3584 3585 ic->in_progress = RB_ROOT; 3586 INIT_LIST_HEAD(&ic->wait_list); 3587 init_waitqueue_head(&ic->endio_wait); 3588 bio_list_init(&ic->flush_bio_list); 3589 init_waitqueue_head(&ic->copy_to_journal_wait); 3590 init_completion(&ic->crypto_backoff); 3591 atomic64_set(&ic->number_of_mismatches, 0); 3592 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 3593 3594 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3595 if (r) { 3596 ti->error = "Device lookup failed"; 3597 goto bad; 3598 } 3599 3600 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3601 ti->error = "Invalid starting offset"; 3602 r = -EINVAL; 3603 goto bad; 3604 } 3605 ic->start = start; 3606 3607 if (strcmp(argv[2], "-")) { 3608 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3609 ti->error = "Invalid tag size"; 3610 r = -EINVAL; 3611 goto bad; 3612 } 3613 } 3614 3615 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 3616 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 3617 ic->mode = argv[3][0]; 3618 } else { 3619 ti->error = "Invalid mode (expecting J, B, D, R)"; 3620 r = -EINVAL; 3621 goto bad; 3622 } 3623 3624 journal_sectors = 0; 3625 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3626 buffer_sectors = DEFAULT_BUFFER_SECTORS; 3627 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 3628 sync_msec = DEFAULT_SYNC_MSEC; 3629 ic->sectors_per_block = 1; 3630 3631 as.argc = argc - DIRECT_ARGUMENTS; 3632 as.argv = argv + DIRECT_ARGUMENTS; 3633 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 3634 if (r) 3635 goto bad; 3636 3637 while (extra_args--) { 3638 const char *opt_string; 3639 unsigned val; 3640 unsigned long long llval; 3641 opt_string = dm_shift_arg(&as); 3642 if (!opt_string) { 3643 r = -EINVAL; 3644 ti->error = "Not enough feature arguments"; 3645 goto bad; 3646 } 3647 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 3648 journal_sectors = val ? val : 1; 3649 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 3650 interleave_sectors = val; 3651 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 3652 buffer_sectors = val; 3653 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 3654 journal_watermark = val; 3655 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 3656 sync_msec = val; 3657 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 3658 if (ic->meta_dev) { 3659 dm_put_device(ti, ic->meta_dev); 3660 ic->meta_dev = NULL; 3661 } 3662 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 3663 dm_table_get_mode(ti->table), &ic->meta_dev); 3664 if (r) { 3665 ti->error = "Device lookup failed"; 3666 goto bad; 3667 } 3668 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 3669 if (val < 1 << SECTOR_SHIFT || 3670 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 3671 (val & (val -1))) { 3672 r = -EINVAL; 3673 ti->error = "Invalid block_size argument"; 3674 goto bad; 3675 } 3676 ic->sectors_per_block = val >> SECTOR_SHIFT; 3677 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 3678 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 3679 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 3680 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 3681 r = -EINVAL; 3682 ti->error = "Invalid bitmap_flush_interval argument"; 3683 } 3684 ic->bitmap_flush_interval = msecs_to_jiffies(val); 3685 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 3686 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 3687 "Invalid internal_hash argument"); 3688 if (r) 3689 goto bad; 3690 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 3691 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 3692 "Invalid journal_crypt argument"); 3693 if (r) 3694 goto bad; 3695 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 3696 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 3697 "Invalid journal_mac argument"); 3698 if (r) 3699 goto bad; 3700 } else if (!strcmp(opt_string, "recalculate")) { 3701 ic->recalculate_flag = true; 3702 } else { 3703 r = -EINVAL; 3704 ti->error = "Invalid argument"; 3705 goto bad; 3706 } 3707 } 3708 3709 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 3710 if (!ic->meta_dev) 3711 ic->meta_device_sectors = ic->data_device_sectors; 3712 else 3713 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 3714 3715 if (!journal_sectors) { 3716 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 3717 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 3718 } 3719 3720 if (!buffer_sectors) 3721 buffer_sectors = 1; 3722 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 3723 3724 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 3725 "Invalid internal hash", "Error setting internal hash key"); 3726 if (r) 3727 goto bad; 3728 3729 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 3730 "Invalid journal mac", "Error setting journal mac key"); 3731 if (r) 3732 goto bad; 3733 3734 if (!ic->tag_size) { 3735 if (!ic->internal_hash) { 3736 ti->error = "Unknown tag size"; 3737 r = -EINVAL; 3738 goto bad; 3739 } 3740 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 3741 } 3742 if (ic->tag_size > MAX_TAG_SIZE) { 3743 ti->error = "Too big tag size"; 3744 r = -EINVAL; 3745 goto bad; 3746 } 3747 if (!(ic->tag_size & (ic->tag_size - 1))) 3748 ic->log2_tag_size = __ffs(ic->tag_size); 3749 else 3750 ic->log2_tag_size = -1; 3751 3752 if (ic->mode == 'B' && !ic->internal_hash) { 3753 r = -EINVAL; 3754 ti->error = "Bitmap mode can be only used with internal hash"; 3755 goto bad; 3756 } 3757 3758 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 3759 ic->autocommit_msec = sync_msec; 3760 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 3761 3762 ic->io = dm_io_client_create(); 3763 if (IS_ERR(ic->io)) { 3764 r = PTR_ERR(ic->io); 3765 ic->io = NULL; 3766 ti->error = "Cannot allocate dm io"; 3767 goto bad; 3768 } 3769 3770 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 3771 if (r) { 3772 ti->error = "Cannot allocate mempool"; 3773 goto bad; 3774 } 3775 3776 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 3777 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 3778 if (!ic->metadata_wq) { 3779 ti->error = "Cannot allocate workqueue"; 3780 r = -ENOMEM; 3781 goto bad; 3782 } 3783 3784 /* 3785 * If this workqueue were percpu, it would cause bio reordering 3786 * and reduced performance. 3787 */ 3788 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3789 if (!ic->wait_wq) { 3790 ti->error = "Cannot allocate workqueue"; 3791 r = -ENOMEM; 3792 goto bad; 3793 } 3794 3795 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 3796 if (!ic->commit_wq) { 3797 ti->error = "Cannot allocate workqueue"; 3798 r = -ENOMEM; 3799 goto bad; 3800 } 3801 INIT_WORK(&ic->commit_work, integrity_commit); 3802 3803 if (ic->mode == 'J' || ic->mode == 'B') { 3804 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 3805 if (!ic->writer_wq) { 3806 ti->error = "Cannot allocate workqueue"; 3807 r = -ENOMEM; 3808 goto bad; 3809 } 3810 INIT_WORK(&ic->writer_work, integrity_writer); 3811 } 3812 3813 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 3814 if (!ic->sb) { 3815 r = -ENOMEM; 3816 ti->error = "Cannot allocate superblock area"; 3817 goto bad; 3818 } 3819 3820 r = sync_rw_sb(ic, REQ_OP_READ, 0); 3821 if (r) { 3822 ti->error = "Error reading superblock"; 3823 goto bad; 3824 } 3825 should_write_sb = false; 3826 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 3827 if (ic->mode != 'R') { 3828 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 3829 r = -EINVAL; 3830 ti->error = "The device is not initialized"; 3831 goto bad; 3832 } 3833 } 3834 3835 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 3836 if (r) { 3837 ti->error = "Could not initialize superblock"; 3838 goto bad; 3839 } 3840 if (ic->mode != 'R') 3841 should_write_sb = true; 3842 } 3843 3844 if (!ic->sb->version || ic->sb->version > SB_VERSION_3) { 3845 r = -EINVAL; 3846 ti->error = "Unknown version"; 3847 goto bad; 3848 } 3849 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 3850 r = -EINVAL; 3851 ti->error = "Tag size doesn't match the information in superblock"; 3852 goto bad; 3853 } 3854 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 3855 r = -EINVAL; 3856 ti->error = "Block size doesn't match the information in superblock"; 3857 goto bad; 3858 } 3859 if (!le32_to_cpu(ic->sb->journal_sections)) { 3860 r = -EINVAL; 3861 ti->error = "Corrupted superblock, journal_sections is 0"; 3862 goto bad; 3863 } 3864 /* make sure that ti->max_io_len doesn't overflow */ 3865 if (!ic->meta_dev) { 3866 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 3867 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 3868 r = -EINVAL; 3869 ti->error = "Invalid interleave_sectors in the superblock"; 3870 goto bad; 3871 } 3872 } else { 3873 if (ic->sb->log2_interleave_sectors) { 3874 r = -EINVAL; 3875 ti->error = "Invalid interleave_sectors in the superblock"; 3876 goto bad; 3877 } 3878 } 3879 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3880 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) { 3881 /* test for overflow */ 3882 r = -EINVAL; 3883 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors"; 3884 goto bad; 3885 } 3886 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 3887 r = -EINVAL; 3888 ti->error = "Journal mac mismatch"; 3889 goto bad; 3890 } 3891 3892 try_smaller_buffer: 3893 r = calculate_device_limits(ic); 3894 if (r) { 3895 if (ic->meta_dev) { 3896 if (ic->log2_buffer_sectors > 3) { 3897 ic->log2_buffer_sectors--; 3898 goto try_smaller_buffer; 3899 } 3900 } 3901 ti->error = "The device is too small"; 3902 goto bad; 3903 } 3904 3905 if (log2_sectors_per_bitmap_bit < 0) 3906 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 3907 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 3908 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 3909 3910 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 3911 if (bits_in_journal > UINT_MAX) 3912 bits_in_journal = UINT_MAX; 3913 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 3914 log2_sectors_per_bitmap_bit++; 3915 3916 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 3917 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 3918 if (should_write_sb) { 3919 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 3920 } 3921 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 3922 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 3923 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 3924 3925 if (!ic->meta_dev) 3926 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 3927 3928 if (ti->len > ic->provided_data_sectors) { 3929 r = -EINVAL; 3930 ti->error = "Not enough provided sectors for requested mapping size"; 3931 goto bad; 3932 } 3933 3934 3935 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 3936 threshold += 50; 3937 do_div(threshold, 100); 3938 ic->free_sectors_threshold = threshold; 3939 3940 DEBUG_print("initialized:\n"); 3941 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 3942 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 3943 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 3944 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 3945 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 3946 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 3947 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 3948 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 3949 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT); 3950 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 3951 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 3952 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 3953 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors, 3954 (unsigned long long)ic->provided_data_sectors); 3955 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 3956 DEBUG_print(" bits_in_journal %llu\n", (unsigned long long)bits_in_journal); 3957 3958 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 3959 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3960 ic->sb->recalc_sector = cpu_to_le64(0); 3961 } 3962 3963 if (ic->internal_hash) { 3964 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 3965 if (!ic->recalc_wq ) { 3966 ti->error = "Cannot allocate workqueue"; 3967 r = -ENOMEM; 3968 goto bad; 3969 } 3970 INIT_WORK(&ic->recalc_work, integrity_recalc); 3971 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 3972 if (!ic->recalc_buffer) { 3973 ti->error = "Cannot allocate buffer for recalculating"; 3974 r = -ENOMEM; 3975 goto bad; 3976 } 3977 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 3978 ic->tag_size, GFP_KERNEL); 3979 if (!ic->recalc_tags) { 3980 ti->error = "Cannot allocate tags for recalculating"; 3981 r = -ENOMEM; 3982 goto bad; 3983 } 3984 } 3985 3986 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 3987 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 3988 if (IS_ERR(ic->bufio)) { 3989 r = PTR_ERR(ic->bufio); 3990 ti->error = "Cannot initialize dm-bufio"; 3991 ic->bufio = NULL; 3992 goto bad; 3993 } 3994 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 3995 3996 if (ic->mode != 'R') { 3997 r = create_journal(ic, &ti->error); 3998 if (r) 3999 goto bad; 4000 4001 } 4002 4003 if (ic->mode == 'B') { 4004 unsigned i; 4005 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4006 4007 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4008 if (!ic->recalc_bitmap) { 4009 r = -ENOMEM; 4010 goto bad; 4011 } 4012 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4013 if (!ic->may_write_bitmap) { 4014 r = -ENOMEM; 4015 goto bad; 4016 } 4017 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4018 if (!ic->bbs) { 4019 r = -ENOMEM; 4020 goto bad; 4021 } 4022 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4023 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4024 struct bitmap_block_status *bbs = &ic->bbs[i]; 4025 unsigned sector, pl_index, pl_offset; 4026 4027 INIT_WORK(&bbs->work, bitmap_block_work); 4028 bbs->ic = ic; 4029 bbs->idx = i; 4030 bio_list_init(&bbs->bio_queue); 4031 spin_lock_init(&bbs->bio_queue_lock); 4032 4033 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4034 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4035 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4036 4037 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4038 } 4039 } 4040 4041 if (should_write_sb) { 4042 int r; 4043 4044 init_journal(ic, 0, ic->journal_sections, 0); 4045 r = dm_integrity_failed(ic); 4046 if (unlikely(r)) { 4047 ti->error = "Error initializing journal"; 4048 goto bad; 4049 } 4050 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4051 if (r) { 4052 ti->error = "Error initializing superblock"; 4053 goto bad; 4054 } 4055 ic->just_formatted = true; 4056 } 4057 4058 if (!ic->meta_dev) { 4059 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4060 if (r) 4061 goto bad; 4062 } 4063 if (ic->mode == 'B') { 4064 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4065 if (!max_io_len) 4066 max_io_len = 1U << 31; 4067 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4068 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4069 r = dm_set_target_max_io_len(ti, max_io_len); 4070 if (r) 4071 goto bad; 4072 } 4073 } 4074 4075 if (!ic->internal_hash) 4076 dm_integrity_set(ti, ic); 4077 4078 ti->num_flush_bios = 1; 4079 ti->flush_supported = true; 4080 4081 return 0; 4082 4083 bad: 4084 dm_integrity_dtr(ti); 4085 return r; 4086 } 4087 4088 static void dm_integrity_dtr(struct dm_target *ti) 4089 { 4090 struct dm_integrity_c *ic = ti->private; 4091 4092 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4093 BUG_ON(!list_empty(&ic->wait_list)); 4094 4095 if (ic->metadata_wq) 4096 destroy_workqueue(ic->metadata_wq); 4097 if (ic->wait_wq) 4098 destroy_workqueue(ic->wait_wq); 4099 if (ic->commit_wq) 4100 destroy_workqueue(ic->commit_wq); 4101 if (ic->writer_wq) 4102 destroy_workqueue(ic->writer_wq); 4103 if (ic->recalc_wq) 4104 destroy_workqueue(ic->recalc_wq); 4105 vfree(ic->recalc_buffer); 4106 kvfree(ic->recalc_tags); 4107 kvfree(ic->bbs); 4108 if (ic->bufio) 4109 dm_bufio_client_destroy(ic->bufio); 4110 mempool_exit(&ic->journal_io_mempool); 4111 if (ic->io) 4112 dm_io_client_destroy(ic->io); 4113 if (ic->dev) 4114 dm_put_device(ti, ic->dev); 4115 if (ic->meta_dev) 4116 dm_put_device(ti, ic->meta_dev); 4117 dm_integrity_free_page_list(ic->journal); 4118 dm_integrity_free_page_list(ic->journal_io); 4119 dm_integrity_free_page_list(ic->journal_xor); 4120 dm_integrity_free_page_list(ic->recalc_bitmap); 4121 dm_integrity_free_page_list(ic->may_write_bitmap); 4122 if (ic->journal_scatterlist) 4123 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4124 if (ic->journal_io_scatterlist) 4125 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4126 if (ic->sk_requests) { 4127 unsigned i; 4128 4129 for (i = 0; i < ic->journal_sections; i++) { 4130 struct skcipher_request *req = ic->sk_requests[i]; 4131 if (req) { 4132 kzfree(req->iv); 4133 skcipher_request_free(req); 4134 } 4135 } 4136 kvfree(ic->sk_requests); 4137 } 4138 kvfree(ic->journal_tree); 4139 if (ic->sb) 4140 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4141 4142 if (ic->internal_hash) 4143 crypto_free_shash(ic->internal_hash); 4144 free_alg(&ic->internal_hash_alg); 4145 4146 if (ic->journal_crypt) 4147 crypto_free_skcipher(ic->journal_crypt); 4148 free_alg(&ic->journal_crypt_alg); 4149 4150 if (ic->journal_mac) 4151 crypto_free_shash(ic->journal_mac); 4152 free_alg(&ic->journal_mac_alg); 4153 4154 kfree(ic); 4155 } 4156 4157 static struct target_type integrity_target = { 4158 .name = "integrity", 4159 .version = {1, 3, 0}, 4160 .module = THIS_MODULE, 4161 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4162 .ctr = dm_integrity_ctr, 4163 .dtr = dm_integrity_dtr, 4164 .map = dm_integrity_map, 4165 .postsuspend = dm_integrity_postsuspend, 4166 .resume = dm_integrity_resume, 4167 .status = dm_integrity_status, 4168 .iterate_devices = dm_integrity_iterate_devices, 4169 .io_hints = dm_integrity_io_hints, 4170 }; 4171 4172 static int __init dm_integrity_init(void) 4173 { 4174 int r; 4175 4176 journal_io_cache = kmem_cache_create("integrity_journal_io", 4177 sizeof(struct journal_io), 0, 0, NULL); 4178 if (!journal_io_cache) { 4179 DMERR("can't allocate journal io cache"); 4180 return -ENOMEM; 4181 } 4182 4183 r = dm_register_target(&integrity_target); 4184 4185 if (r < 0) 4186 DMERR("register failed %d", r); 4187 4188 return r; 4189 } 4190 4191 static void __exit dm_integrity_exit(void) 4192 { 4193 dm_unregister_target(&integrity_target); 4194 kmem_cache_destroy(journal_io_cache); 4195 } 4196 4197 module_init(dm_integrity_init); 4198 module_exit(dm_integrity_exit); 4199 4200 MODULE_AUTHOR("Milan Broz"); 4201 MODULE_AUTHOR("Mikulas Patocka"); 4202 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4203 MODULE_LICENSE("GPL"); 4204