xref: /openbmc/linux/drivers/md/dm-integrity.c (revision 4b33b5ff)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bio-record.h"
10 
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25 
26 #include "dm-audit.h"
27 
28 #define DM_MSG_PREFIX "integrity"
29 
30 #define DEFAULT_INTERLEAVE_SECTORS	32768
31 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
32 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
33 #define DEFAULT_BUFFER_SECTORS		128
34 #define DEFAULT_JOURNAL_WATERMARK	50
35 #define DEFAULT_SYNC_MSEC		10000
36 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
37 #define MIN_LOG2_INTERLEAVE_SECTORS	3
38 #define MAX_LOG2_INTERLEAVE_SECTORS	31
39 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
40 #define RECALC_SECTORS			32768
41 #define RECALC_WRITE_SUPER		16
42 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
43 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
44 #define DISCARD_FILLER			0xf6
45 #define SALT_SIZE			16
46 
47 /*
48  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
49  * so it should not be enabled in the official kernel
50  */
51 //#define DEBUG_PRINT
52 //#define INTERNAL_VERIFY
53 
54 /*
55  * On disk structures
56  */
57 
58 #define SB_MAGIC			"integrt"
59 #define SB_VERSION_1			1
60 #define SB_VERSION_2			2
61 #define SB_VERSION_3			3
62 #define SB_VERSION_4			4
63 #define SB_VERSION_5			5
64 #define SB_SECTORS			8
65 #define MAX_SECTORS_PER_BLOCK		8
66 
67 struct superblock {
68 	__u8 magic[8];
69 	__u8 version;
70 	__u8 log2_interleave_sectors;
71 	__le16 integrity_tag_size;
72 	__le32 journal_sections;
73 	__le64 provided_data_sectors;	/* userspace uses this value */
74 	__le32 flags;
75 	__u8 log2_sectors_per_block;
76 	__u8 log2_blocks_per_bitmap_bit;
77 	__u8 pad[2];
78 	__le64 recalc_sector;
79 	__u8 pad2[8];
80 	__u8 salt[SALT_SIZE];
81 };
82 
83 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
84 #define SB_FLAG_RECALCULATING		0x2
85 #define SB_FLAG_DIRTY_BITMAP		0x4
86 #define SB_FLAG_FIXED_PADDING		0x8
87 #define SB_FLAG_FIXED_HMAC		0x10
88 
89 #define	JOURNAL_ENTRY_ROUNDUP		8
90 
91 typedef __le64 commit_id_t;
92 #define JOURNAL_MAC_PER_SECTOR		8
93 
94 struct journal_entry {
95 	union {
96 		struct {
97 			__le32 sector_lo;
98 			__le32 sector_hi;
99 		} s;
100 		__le64 sector;
101 	} u;
102 	commit_id_t last_bytes[];
103 	/* __u8 tag[0]; */
104 };
105 
106 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
107 
108 #if BITS_PER_LONG == 64
109 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
110 #else
111 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
112 #endif
113 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
114 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
115 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
116 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
117 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
118 
119 #define JOURNAL_BLOCK_SECTORS		8
120 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
121 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
122 
123 struct journal_sector {
124 	struct_group(sectors,
125 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
126 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
127 	);
128 	commit_id_t commit_id;
129 };
130 
131 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
132 
133 #define METADATA_PADDING_SECTORS	8
134 
135 #define N_COMMIT_IDS			4
136 
137 static unsigned char prev_commit_seq(unsigned char seq)
138 {
139 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
140 }
141 
142 static unsigned char next_commit_seq(unsigned char seq)
143 {
144 	return (seq + 1) % N_COMMIT_IDS;
145 }
146 
147 /*
148  * In-memory structures
149  */
150 
151 struct journal_node {
152 	struct rb_node node;
153 	sector_t sector;
154 };
155 
156 struct alg_spec {
157 	char *alg_string;
158 	char *key_string;
159 	__u8 *key;
160 	unsigned key_size;
161 };
162 
163 struct dm_integrity_c {
164 	struct dm_dev *dev;
165 	struct dm_dev *meta_dev;
166 	unsigned tag_size;
167 	__s8 log2_tag_size;
168 	sector_t start;
169 	mempool_t journal_io_mempool;
170 	struct dm_io_client *io;
171 	struct dm_bufio_client *bufio;
172 	struct workqueue_struct *metadata_wq;
173 	struct superblock *sb;
174 	unsigned journal_pages;
175 	unsigned n_bitmap_blocks;
176 
177 	struct page_list *journal;
178 	struct page_list *journal_io;
179 	struct page_list *journal_xor;
180 	struct page_list *recalc_bitmap;
181 	struct page_list *may_write_bitmap;
182 	struct bitmap_block_status *bbs;
183 	unsigned bitmap_flush_interval;
184 	int synchronous_mode;
185 	struct bio_list synchronous_bios;
186 	struct delayed_work bitmap_flush_work;
187 
188 	struct crypto_skcipher *journal_crypt;
189 	struct scatterlist **journal_scatterlist;
190 	struct scatterlist **journal_io_scatterlist;
191 	struct skcipher_request **sk_requests;
192 
193 	struct crypto_shash *journal_mac;
194 
195 	struct journal_node *journal_tree;
196 	struct rb_root journal_tree_root;
197 
198 	sector_t provided_data_sectors;
199 
200 	unsigned short journal_entry_size;
201 	unsigned char journal_entries_per_sector;
202 	unsigned char journal_section_entries;
203 	unsigned short journal_section_sectors;
204 	unsigned journal_sections;
205 	unsigned journal_entries;
206 	sector_t data_device_sectors;
207 	sector_t meta_device_sectors;
208 	unsigned initial_sectors;
209 	unsigned metadata_run;
210 	__s8 log2_metadata_run;
211 	__u8 log2_buffer_sectors;
212 	__u8 sectors_per_block;
213 	__u8 log2_blocks_per_bitmap_bit;
214 
215 	unsigned char mode;
216 
217 	int failed;
218 
219 	struct crypto_shash *internal_hash;
220 
221 	struct dm_target *ti;
222 
223 	/* these variables are locked with endio_wait.lock */
224 	struct rb_root in_progress;
225 	struct list_head wait_list;
226 	wait_queue_head_t endio_wait;
227 	struct workqueue_struct *wait_wq;
228 	struct workqueue_struct *offload_wq;
229 
230 	unsigned char commit_seq;
231 	commit_id_t commit_ids[N_COMMIT_IDS];
232 
233 	unsigned committed_section;
234 	unsigned n_committed_sections;
235 
236 	unsigned uncommitted_section;
237 	unsigned n_uncommitted_sections;
238 
239 	unsigned free_section;
240 	unsigned char free_section_entry;
241 	unsigned free_sectors;
242 
243 	unsigned free_sectors_threshold;
244 
245 	struct workqueue_struct *commit_wq;
246 	struct work_struct commit_work;
247 
248 	struct workqueue_struct *writer_wq;
249 	struct work_struct writer_work;
250 
251 	struct workqueue_struct *recalc_wq;
252 	struct work_struct recalc_work;
253 	u8 *recalc_buffer;
254 	u8 *recalc_tags;
255 
256 	struct bio_list flush_bio_list;
257 
258 	unsigned long autocommit_jiffies;
259 	struct timer_list autocommit_timer;
260 	unsigned autocommit_msec;
261 
262 	wait_queue_head_t copy_to_journal_wait;
263 
264 	struct completion crypto_backoff;
265 
266 	bool journal_uptodate;
267 	bool just_formatted;
268 	bool recalculate_flag;
269 	bool reset_recalculate_flag;
270 	bool discard;
271 	bool fix_padding;
272 	bool fix_hmac;
273 	bool legacy_recalculate;
274 
275 	struct alg_spec internal_hash_alg;
276 	struct alg_spec journal_crypt_alg;
277 	struct alg_spec journal_mac_alg;
278 
279 	atomic64_t number_of_mismatches;
280 
281 	struct notifier_block reboot_notifier;
282 };
283 
284 struct dm_integrity_range {
285 	sector_t logical_sector;
286 	sector_t n_sectors;
287 	bool waiting;
288 	union {
289 		struct rb_node node;
290 		struct {
291 			struct task_struct *task;
292 			struct list_head wait_entry;
293 		};
294 	};
295 };
296 
297 struct dm_integrity_io {
298 	struct work_struct work;
299 
300 	struct dm_integrity_c *ic;
301 	enum req_opf op;
302 	bool fua;
303 
304 	struct dm_integrity_range range;
305 
306 	sector_t metadata_block;
307 	unsigned metadata_offset;
308 
309 	atomic_t in_flight;
310 	blk_status_t bi_status;
311 
312 	struct completion *completion;
313 
314 	struct dm_bio_details bio_details;
315 };
316 
317 struct journal_completion {
318 	struct dm_integrity_c *ic;
319 	atomic_t in_flight;
320 	struct completion comp;
321 };
322 
323 struct journal_io {
324 	struct dm_integrity_range range;
325 	struct journal_completion *comp;
326 };
327 
328 struct bitmap_block_status {
329 	struct work_struct work;
330 	struct dm_integrity_c *ic;
331 	unsigned idx;
332 	unsigned long *bitmap;
333 	struct bio_list bio_queue;
334 	spinlock_t bio_queue_lock;
335 
336 };
337 
338 static struct kmem_cache *journal_io_cache;
339 
340 #define JOURNAL_IO_MEMPOOL	32
341 
342 #ifdef DEBUG_PRINT
343 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
344 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
345 {
346 	va_list args;
347 	va_start(args, msg);
348 	vprintk(msg, args);
349 	va_end(args);
350 	if (len)
351 		pr_cont(":");
352 	while (len) {
353 		pr_cont(" %02x", *bytes);
354 		bytes++;
355 		len--;
356 	}
357 	pr_cont("\n");
358 }
359 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
360 #else
361 #define DEBUG_print(x, ...)			do { } while (0)
362 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
363 #endif
364 
365 static void dm_integrity_prepare(struct request *rq)
366 {
367 }
368 
369 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
370 {
371 }
372 
373 /*
374  * DM Integrity profile, protection is performed layer above (dm-crypt)
375  */
376 static const struct blk_integrity_profile dm_integrity_profile = {
377 	.name			= "DM-DIF-EXT-TAG",
378 	.generate_fn		= NULL,
379 	.verify_fn		= NULL,
380 	.prepare_fn		= dm_integrity_prepare,
381 	.complete_fn		= dm_integrity_complete,
382 };
383 
384 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
385 static void integrity_bio_wait(struct work_struct *w);
386 static void dm_integrity_dtr(struct dm_target *ti);
387 
388 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
389 {
390 	if (err == -EILSEQ)
391 		atomic64_inc(&ic->number_of_mismatches);
392 	if (!cmpxchg(&ic->failed, 0, err))
393 		DMERR("Error on %s: %d", msg, err);
394 }
395 
396 static int dm_integrity_failed(struct dm_integrity_c *ic)
397 {
398 	return READ_ONCE(ic->failed);
399 }
400 
401 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
402 {
403 	if (ic->legacy_recalculate)
404 		return false;
405 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
406 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
407 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
408 		return true;
409 	return false;
410 }
411 
412 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
413 					  unsigned j, unsigned char seq)
414 {
415 	/*
416 	 * Xor the number with section and sector, so that if a piece of
417 	 * journal is written at wrong place, it is detected.
418 	 */
419 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
420 }
421 
422 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
423 				sector_t *area, sector_t *offset)
424 {
425 	if (!ic->meta_dev) {
426 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
427 		*area = data_sector >> log2_interleave_sectors;
428 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
429 	} else {
430 		*area = 0;
431 		*offset = data_sector;
432 	}
433 }
434 
435 #define sector_to_block(ic, n)						\
436 do {									\
437 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
438 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
439 } while (0)
440 
441 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
442 					    sector_t offset, unsigned *metadata_offset)
443 {
444 	__u64 ms;
445 	unsigned mo;
446 
447 	ms = area << ic->sb->log2_interleave_sectors;
448 	if (likely(ic->log2_metadata_run >= 0))
449 		ms += area << ic->log2_metadata_run;
450 	else
451 		ms += area * ic->metadata_run;
452 	ms >>= ic->log2_buffer_sectors;
453 
454 	sector_to_block(ic, offset);
455 
456 	if (likely(ic->log2_tag_size >= 0)) {
457 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
458 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
459 	} else {
460 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
461 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
462 	}
463 	*metadata_offset = mo;
464 	return ms;
465 }
466 
467 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
468 {
469 	sector_t result;
470 
471 	if (ic->meta_dev)
472 		return offset;
473 
474 	result = area << ic->sb->log2_interleave_sectors;
475 	if (likely(ic->log2_metadata_run >= 0))
476 		result += (area + 1) << ic->log2_metadata_run;
477 	else
478 		result += (area + 1) * ic->metadata_run;
479 
480 	result += (sector_t)ic->initial_sectors + offset;
481 	result += ic->start;
482 
483 	return result;
484 }
485 
486 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
487 {
488 	if (unlikely(*sec_ptr >= ic->journal_sections))
489 		*sec_ptr -= ic->journal_sections;
490 }
491 
492 static void sb_set_version(struct dm_integrity_c *ic)
493 {
494 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
495 		ic->sb->version = SB_VERSION_5;
496 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
497 		ic->sb->version = SB_VERSION_4;
498 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
499 		ic->sb->version = SB_VERSION_3;
500 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
501 		ic->sb->version = SB_VERSION_2;
502 	else
503 		ic->sb->version = SB_VERSION_1;
504 }
505 
506 static int sb_mac(struct dm_integrity_c *ic, bool wr)
507 {
508 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
509 	int r;
510 	unsigned size = crypto_shash_digestsize(ic->journal_mac);
511 
512 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
513 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
514 		return -EINVAL;
515 	}
516 
517 	desc->tfm = ic->journal_mac;
518 
519 	r = crypto_shash_init(desc);
520 	if (unlikely(r < 0)) {
521 		dm_integrity_io_error(ic, "crypto_shash_init", r);
522 		return r;
523 	}
524 
525 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
526 	if (unlikely(r < 0)) {
527 		dm_integrity_io_error(ic, "crypto_shash_update", r);
528 		return r;
529 	}
530 
531 	if (likely(wr)) {
532 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
533 		if (unlikely(r < 0)) {
534 			dm_integrity_io_error(ic, "crypto_shash_final", r);
535 			return r;
536 		}
537 	} else {
538 		__u8 result[HASH_MAX_DIGESTSIZE];
539 		r = crypto_shash_final(desc, result);
540 		if (unlikely(r < 0)) {
541 			dm_integrity_io_error(ic, "crypto_shash_final", r);
542 			return r;
543 		}
544 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
545 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
546 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
547 			return -EILSEQ;
548 		}
549 	}
550 
551 	return 0;
552 }
553 
554 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
555 {
556 	struct dm_io_request io_req;
557 	struct dm_io_region io_loc;
558 	int r;
559 
560 	io_req.bi_op = op;
561 	io_req.bi_op_flags = op_flags;
562 	io_req.mem.type = DM_IO_KMEM;
563 	io_req.mem.ptr.addr = ic->sb;
564 	io_req.notify.fn = NULL;
565 	io_req.client = ic->io;
566 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
567 	io_loc.sector = ic->start;
568 	io_loc.count = SB_SECTORS;
569 
570 	if (op == REQ_OP_WRITE) {
571 		sb_set_version(ic);
572 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
573 			r = sb_mac(ic, true);
574 			if (unlikely(r))
575 				return r;
576 		}
577 	}
578 
579 	r = dm_io(&io_req, 1, &io_loc, NULL);
580 	if (unlikely(r))
581 		return r;
582 
583 	if (op == REQ_OP_READ) {
584 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
585 			r = sb_mac(ic, false);
586 			if (unlikely(r))
587 				return r;
588 		}
589 	}
590 
591 	return 0;
592 }
593 
594 #define BITMAP_OP_TEST_ALL_SET		0
595 #define BITMAP_OP_TEST_ALL_CLEAR	1
596 #define BITMAP_OP_SET			2
597 #define BITMAP_OP_CLEAR			3
598 
599 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
600 			    sector_t sector, sector_t n_sectors, int mode)
601 {
602 	unsigned long bit, end_bit, this_end_bit, page, end_page;
603 	unsigned long *data;
604 
605 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
606 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
607 			sector,
608 			n_sectors,
609 			ic->sb->log2_sectors_per_block,
610 			ic->log2_blocks_per_bitmap_bit,
611 			mode);
612 		BUG();
613 	}
614 
615 	if (unlikely(!n_sectors))
616 		return true;
617 
618 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
619 	end_bit = (sector + n_sectors - 1) >>
620 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
621 
622 	page = bit / (PAGE_SIZE * 8);
623 	bit %= PAGE_SIZE * 8;
624 
625 	end_page = end_bit / (PAGE_SIZE * 8);
626 	end_bit %= PAGE_SIZE * 8;
627 
628 repeat:
629 	if (page < end_page) {
630 		this_end_bit = PAGE_SIZE * 8 - 1;
631 	} else {
632 		this_end_bit = end_bit;
633 	}
634 
635 	data = lowmem_page_address(bitmap[page].page);
636 
637 	if (mode == BITMAP_OP_TEST_ALL_SET) {
638 		while (bit <= this_end_bit) {
639 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
640 				do {
641 					if (data[bit / BITS_PER_LONG] != -1)
642 						return false;
643 					bit += BITS_PER_LONG;
644 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
645 				continue;
646 			}
647 			if (!test_bit(bit, data))
648 				return false;
649 			bit++;
650 		}
651 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
652 		while (bit <= this_end_bit) {
653 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
654 				do {
655 					if (data[bit / BITS_PER_LONG] != 0)
656 						return false;
657 					bit += BITS_PER_LONG;
658 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
659 				continue;
660 			}
661 			if (test_bit(bit, data))
662 				return false;
663 			bit++;
664 		}
665 	} else if (mode == BITMAP_OP_SET) {
666 		while (bit <= this_end_bit) {
667 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
668 				do {
669 					data[bit / BITS_PER_LONG] = -1;
670 					bit += BITS_PER_LONG;
671 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
672 				continue;
673 			}
674 			__set_bit(bit, data);
675 			bit++;
676 		}
677 	} else if (mode == BITMAP_OP_CLEAR) {
678 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
679 			clear_page(data);
680 		else while (bit <= this_end_bit) {
681 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
682 				do {
683 					data[bit / BITS_PER_LONG] = 0;
684 					bit += BITS_PER_LONG;
685 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
686 				continue;
687 			}
688 			__clear_bit(bit, data);
689 			bit++;
690 		}
691 	} else {
692 		BUG();
693 	}
694 
695 	if (unlikely(page < end_page)) {
696 		bit = 0;
697 		page++;
698 		goto repeat;
699 	}
700 
701 	return true;
702 }
703 
704 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
705 {
706 	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
707 	unsigned i;
708 
709 	for (i = 0; i < n_bitmap_pages; i++) {
710 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
711 		unsigned long *src_data = lowmem_page_address(src[i].page);
712 		copy_page(dst_data, src_data);
713 	}
714 }
715 
716 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
717 {
718 	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
719 	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
720 
721 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
722 	return &ic->bbs[bitmap_block];
723 }
724 
725 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
726 				 bool e, const char *function)
727 {
728 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
729 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
730 
731 	if (unlikely(section >= ic->journal_sections) ||
732 	    unlikely(offset >= limit)) {
733 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
734 		       function, section, offset, ic->journal_sections, limit);
735 		BUG();
736 	}
737 #endif
738 }
739 
740 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
741 			       unsigned *pl_index, unsigned *pl_offset)
742 {
743 	unsigned sector;
744 
745 	access_journal_check(ic, section, offset, false, "page_list_location");
746 
747 	sector = section * ic->journal_section_sectors + offset;
748 
749 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
750 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
751 }
752 
753 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
754 					       unsigned section, unsigned offset, unsigned *n_sectors)
755 {
756 	unsigned pl_index, pl_offset;
757 	char *va;
758 
759 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
760 
761 	if (n_sectors)
762 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
763 
764 	va = lowmem_page_address(pl[pl_index].page);
765 
766 	return (struct journal_sector *)(va + pl_offset);
767 }
768 
769 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
770 {
771 	return access_page_list(ic, ic->journal, section, offset, NULL);
772 }
773 
774 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
775 {
776 	unsigned rel_sector, offset;
777 	struct journal_sector *js;
778 
779 	access_journal_check(ic, section, n, true, "access_journal_entry");
780 
781 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
782 	offset = n / JOURNAL_BLOCK_SECTORS;
783 
784 	js = access_journal(ic, section, rel_sector);
785 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
786 }
787 
788 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
789 {
790 	n <<= ic->sb->log2_sectors_per_block;
791 
792 	n += JOURNAL_BLOCK_SECTORS;
793 
794 	access_journal_check(ic, section, n, false, "access_journal_data");
795 
796 	return access_journal(ic, section, n);
797 }
798 
799 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
800 {
801 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
802 	int r;
803 	unsigned j, size;
804 
805 	desc->tfm = ic->journal_mac;
806 
807 	r = crypto_shash_init(desc);
808 	if (unlikely(r < 0)) {
809 		dm_integrity_io_error(ic, "crypto_shash_init", r);
810 		goto err;
811 	}
812 
813 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
814 		__le64 section_le;
815 
816 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
817 		if (unlikely(r < 0)) {
818 			dm_integrity_io_error(ic, "crypto_shash_update", r);
819 			goto err;
820 		}
821 
822 		section_le = cpu_to_le64(section);
823 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
824 		if (unlikely(r < 0)) {
825 			dm_integrity_io_error(ic, "crypto_shash_update", r);
826 			goto err;
827 		}
828 	}
829 
830 	for (j = 0; j < ic->journal_section_entries; j++) {
831 		struct journal_entry *je = access_journal_entry(ic, section, j);
832 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
833 		if (unlikely(r < 0)) {
834 			dm_integrity_io_error(ic, "crypto_shash_update", r);
835 			goto err;
836 		}
837 	}
838 
839 	size = crypto_shash_digestsize(ic->journal_mac);
840 
841 	if (likely(size <= JOURNAL_MAC_SIZE)) {
842 		r = crypto_shash_final(desc, result);
843 		if (unlikely(r < 0)) {
844 			dm_integrity_io_error(ic, "crypto_shash_final", r);
845 			goto err;
846 		}
847 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
848 	} else {
849 		__u8 digest[HASH_MAX_DIGESTSIZE];
850 
851 		if (WARN_ON(size > sizeof(digest))) {
852 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
853 			goto err;
854 		}
855 		r = crypto_shash_final(desc, digest);
856 		if (unlikely(r < 0)) {
857 			dm_integrity_io_error(ic, "crypto_shash_final", r);
858 			goto err;
859 		}
860 		memcpy(result, digest, JOURNAL_MAC_SIZE);
861 	}
862 
863 	return;
864 err:
865 	memset(result, 0, JOURNAL_MAC_SIZE);
866 }
867 
868 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
869 {
870 	__u8 result[JOURNAL_MAC_SIZE];
871 	unsigned j;
872 
873 	if (!ic->journal_mac)
874 		return;
875 
876 	section_mac(ic, section, result);
877 
878 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
879 		struct journal_sector *js = access_journal(ic, section, j);
880 
881 		if (likely(wr))
882 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
883 		else {
884 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
885 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
886 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
887 			}
888 		}
889 	}
890 }
891 
892 static void complete_journal_op(void *context)
893 {
894 	struct journal_completion *comp = context;
895 	BUG_ON(!atomic_read(&comp->in_flight));
896 	if (likely(atomic_dec_and_test(&comp->in_flight)))
897 		complete(&comp->comp);
898 }
899 
900 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
901 			unsigned n_sections, struct journal_completion *comp)
902 {
903 	struct async_submit_ctl submit;
904 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
905 	unsigned pl_index, pl_offset, section_index;
906 	struct page_list *source_pl, *target_pl;
907 
908 	if (likely(encrypt)) {
909 		source_pl = ic->journal;
910 		target_pl = ic->journal_io;
911 	} else {
912 		source_pl = ic->journal_io;
913 		target_pl = ic->journal;
914 	}
915 
916 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
917 
918 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
919 
920 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
921 
922 	section_index = pl_index;
923 
924 	do {
925 		size_t this_step;
926 		struct page *src_pages[2];
927 		struct page *dst_page;
928 
929 		while (unlikely(pl_index == section_index)) {
930 			unsigned dummy;
931 			if (likely(encrypt))
932 				rw_section_mac(ic, section, true);
933 			section++;
934 			n_sections--;
935 			if (!n_sections)
936 				break;
937 			page_list_location(ic, section, 0, &section_index, &dummy);
938 		}
939 
940 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
941 		dst_page = target_pl[pl_index].page;
942 		src_pages[0] = source_pl[pl_index].page;
943 		src_pages[1] = ic->journal_xor[pl_index].page;
944 
945 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
946 
947 		pl_index++;
948 		pl_offset = 0;
949 		n_bytes -= this_step;
950 	} while (n_bytes);
951 
952 	BUG_ON(n_sections);
953 
954 	async_tx_issue_pending_all();
955 }
956 
957 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
958 {
959 	struct journal_completion *comp = req->data;
960 	if (unlikely(err)) {
961 		if (likely(err == -EINPROGRESS)) {
962 			complete(&comp->ic->crypto_backoff);
963 			return;
964 		}
965 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
966 	}
967 	complete_journal_op(comp);
968 }
969 
970 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
971 {
972 	int r;
973 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
974 				      complete_journal_encrypt, comp);
975 	if (likely(encrypt))
976 		r = crypto_skcipher_encrypt(req);
977 	else
978 		r = crypto_skcipher_decrypt(req);
979 	if (likely(!r))
980 		return false;
981 	if (likely(r == -EINPROGRESS))
982 		return true;
983 	if (likely(r == -EBUSY)) {
984 		wait_for_completion(&comp->ic->crypto_backoff);
985 		reinit_completion(&comp->ic->crypto_backoff);
986 		return true;
987 	}
988 	dm_integrity_io_error(comp->ic, "encrypt", r);
989 	return false;
990 }
991 
992 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
993 			  unsigned n_sections, struct journal_completion *comp)
994 {
995 	struct scatterlist **source_sg;
996 	struct scatterlist **target_sg;
997 
998 	atomic_add(2, &comp->in_flight);
999 
1000 	if (likely(encrypt)) {
1001 		source_sg = ic->journal_scatterlist;
1002 		target_sg = ic->journal_io_scatterlist;
1003 	} else {
1004 		source_sg = ic->journal_io_scatterlist;
1005 		target_sg = ic->journal_scatterlist;
1006 	}
1007 
1008 	do {
1009 		struct skcipher_request *req;
1010 		unsigned ivsize;
1011 		char *iv;
1012 
1013 		if (likely(encrypt))
1014 			rw_section_mac(ic, section, true);
1015 
1016 		req = ic->sk_requests[section];
1017 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1018 		iv = req->iv;
1019 
1020 		memcpy(iv, iv + ivsize, ivsize);
1021 
1022 		req->src = source_sg[section];
1023 		req->dst = target_sg[section];
1024 
1025 		if (unlikely(do_crypt(encrypt, req, comp)))
1026 			atomic_inc(&comp->in_flight);
1027 
1028 		section++;
1029 		n_sections--;
1030 	} while (n_sections);
1031 
1032 	atomic_dec(&comp->in_flight);
1033 	complete_journal_op(comp);
1034 }
1035 
1036 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1037 			    unsigned n_sections, struct journal_completion *comp)
1038 {
1039 	if (ic->journal_xor)
1040 		return xor_journal(ic, encrypt, section, n_sections, comp);
1041 	else
1042 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1043 }
1044 
1045 static void complete_journal_io(unsigned long error, void *context)
1046 {
1047 	struct journal_completion *comp = context;
1048 	if (unlikely(error != 0))
1049 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1050 	complete_journal_op(comp);
1051 }
1052 
1053 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1054 			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1055 {
1056 	struct dm_io_request io_req;
1057 	struct dm_io_region io_loc;
1058 	unsigned pl_index, pl_offset;
1059 	int r;
1060 
1061 	if (unlikely(dm_integrity_failed(ic))) {
1062 		if (comp)
1063 			complete_journal_io(-1UL, comp);
1064 		return;
1065 	}
1066 
1067 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1068 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1069 
1070 	io_req.bi_op = op;
1071 	io_req.bi_op_flags = op_flags;
1072 	io_req.mem.type = DM_IO_PAGE_LIST;
1073 	if (ic->journal_io)
1074 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1075 	else
1076 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1077 	io_req.mem.offset = pl_offset;
1078 	if (likely(comp != NULL)) {
1079 		io_req.notify.fn = complete_journal_io;
1080 		io_req.notify.context = comp;
1081 	} else {
1082 		io_req.notify.fn = NULL;
1083 	}
1084 	io_req.client = ic->io;
1085 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1086 	io_loc.sector = ic->start + SB_SECTORS + sector;
1087 	io_loc.count = n_sectors;
1088 
1089 	r = dm_io(&io_req, 1, &io_loc, NULL);
1090 	if (unlikely(r)) {
1091 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1092 		if (comp) {
1093 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1094 			complete_journal_io(-1UL, comp);
1095 		}
1096 	}
1097 }
1098 
1099 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1100 		       unsigned n_sections, struct journal_completion *comp)
1101 {
1102 	unsigned sector, n_sectors;
1103 
1104 	sector = section * ic->journal_section_sectors;
1105 	n_sectors = n_sections * ic->journal_section_sectors;
1106 
1107 	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1108 }
1109 
1110 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1111 {
1112 	struct journal_completion io_comp;
1113 	struct journal_completion crypt_comp_1;
1114 	struct journal_completion crypt_comp_2;
1115 	unsigned i;
1116 
1117 	io_comp.ic = ic;
1118 	init_completion(&io_comp.comp);
1119 
1120 	if (commit_start + commit_sections <= ic->journal_sections) {
1121 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1122 		if (ic->journal_io) {
1123 			crypt_comp_1.ic = ic;
1124 			init_completion(&crypt_comp_1.comp);
1125 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1126 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1127 			wait_for_completion_io(&crypt_comp_1.comp);
1128 		} else {
1129 			for (i = 0; i < commit_sections; i++)
1130 				rw_section_mac(ic, commit_start + i, true);
1131 		}
1132 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1133 			   commit_sections, &io_comp);
1134 	} else {
1135 		unsigned to_end;
1136 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1137 		to_end = ic->journal_sections - commit_start;
1138 		if (ic->journal_io) {
1139 			crypt_comp_1.ic = ic;
1140 			init_completion(&crypt_comp_1.comp);
1141 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1142 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1143 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1144 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1145 				reinit_completion(&crypt_comp_1.comp);
1146 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1147 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1148 				wait_for_completion_io(&crypt_comp_1.comp);
1149 			} else {
1150 				crypt_comp_2.ic = ic;
1151 				init_completion(&crypt_comp_2.comp);
1152 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1153 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1154 				wait_for_completion_io(&crypt_comp_1.comp);
1155 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1156 				wait_for_completion_io(&crypt_comp_2.comp);
1157 			}
1158 		} else {
1159 			for (i = 0; i < to_end; i++)
1160 				rw_section_mac(ic, commit_start + i, true);
1161 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1162 			for (i = 0; i < commit_sections - to_end; i++)
1163 				rw_section_mac(ic, i, true);
1164 		}
1165 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1166 	}
1167 
1168 	wait_for_completion_io(&io_comp.comp);
1169 }
1170 
1171 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1172 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1173 {
1174 	struct dm_io_request io_req;
1175 	struct dm_io_region io_loc;
1176 	int r;
1177 	unsigned sector, pl_index, pl_offset;
1178 
1179 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1180 
1181 	if (unlikely(dm_integrity_failed(ic))) {
1182 		fn(-1UL, data);
1183 		return;
1184 	}
1185 
1186 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1187 
1188 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1189 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1190 
1191 	io_req.bi_op = REQ_OP_WRITE;
1192 	io_req.bi_op_flags = 0;
1193 	io_req.mem.type = DM_IO_PAGE_LIST;
1194 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1195 	io_req.mem.offset = pl_offset;
1196 	io_req.notify.fn = fn;
1197 	io_req.notify.context = data;
1198 	io_req.client = ic->io;
1199 	io_loc.bdev = ic->dev->bdev;
1200 	io_loc.sector = target;
1201 	io_loc.count = n_sectors;
1202 
1203 	r = dm_io(&io_req, 1, &io_loc, NULL);
1204 	if (unlikely(r)) {
1205 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1206 		fn(-1UL, data);
1207 	}
1208 }
1209 
1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1211 {
1212 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1213 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1214 }
1215 
1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1217 {
1218 	struct rb_node **n = &ic->in_progress.rb_node;
1219 	struct rb_node *parent;
1220 
1221 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1222 
1223 	if (likely(check_waiting)) {
1224 		struct dm_integrity_range *range;
1225 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1226 			if (unlikely(ranges_overlap(range, new_range)))
1227 				return false;
1228 		}
1229 	}
1230 
1231 	parent = NULL;
1232 
1233 	while (*n) {
1234 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1235 
1236 		parent = *n;
1237 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1238 			n = &range->node.rb_left;
1239 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1240 			n = &range->node.rb_right;
1241 		} else {
1242 			return false;
1243 		}
1244 	}
1245 
1246 	rb_link_node(&new_range->node, parent, n);
1247 	rb_insert_color(&new_range->node, &ic->in_progress);
1248 
1249 	return true;
1250 }
1251 
1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1253 {
1254 	rb_erase(&range->node, &ic->in_progress);
1255 	while (unlikely(!list_empty(&ic->wait_list))) {
1256 		struct dm_integrity_range *last_range =
1257 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1258 		struct task_struct *last_range_task;
1259 		last_range_task = last_range->task;
1260 		list_del(&last_range->wait_entry);
1261 		if (!add_new_range(ic, last_range, false)) {
1262 			last_range->task = last_range_task;
1263 			list_add(&last_range->wait_entry, &ic->wait_list);
1264 			break;
1265 		}
1266 		last_range->waiting = false;
1267 		wake_up_process(last_range_task);
1268 	}
1269 }
1270 
1271 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1272 {
1273 	unsigned long flags;
1274 
1275 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1276 	remove_range_unlocked(ic, range);
1277 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1278 }
1279 
1280 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1281 {
1282 	new_range->waiting = true;
1283 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1284 	new_range->task = current;
1285 	do {
1286 		__set_current_state(TASK_UNINTERRUPTIBLE);
1287 		spin_unlock_irq(&ic->endio_wait.lock);
1288 		io_schedule();
1289 		spin_lock_irq(&ic->endio_wait.lock);
1290 	} while (unlikely(new_range->waiting));
1291 }
1292 
1293 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1294 {
1295 	if (unlikely(!add_new_range(ic, new_range, true)))
1296 		wait_and_add_new_range(ic, new_range);
1297 }
1298 
1299 static void init_journal_node(struct journal_node *node)
1300 {
1301 	RB_CLEAR_NODE(&node->node);
1302 	node->sector = (sector_t)-1;
1303 }
1304 
1305 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1306 {
1307 	struct rb_node **link;
1308 	struct rb_node *parent;
1309 
1310 	node->sector = sector;
1311 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1312 
1313 	link = &ic->journal_tree_root.rb_node;
1314 	parent = NULL;
1315 
1316 	while (*link) {
1317 		struct journal_node *j;
1318 		parent = *link;
1319 		j = container_of(parent, struct journal_node, node);
1320 		if (sector < j->sector)
1321 			link = &j->node.rb_left;
1322 		else
1323 			link = &j->node.rb_right;
1324 	}
1325 
1326 	rb_link_node(&node->node, parent, link);
1327 	rb_insert_color(&node->node, &ic->journal_tree_root);
1328 }
1329 
1330 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1331 {
1332 	BUG_ON(RB_EMPTY_NODE(&node->node));
1333 	rb_erase(&node->node, &ic->journal_tree_root);
1334 	init_journal_node(node);
1335 }
1336 
1337 #define NOT_FOUND	(-1U)
1338 
1339 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1340 {
1341 	struct rb_node *n = ic->journal_tree_root.rb_node;
1342 	unsigned found = NOT_FOUND;
1343 	*next_sector = (sector_t)-1;
1344 	while (n) {
1345 		struct journal_node *j = container_of(n, struct journal_node, node);
1346 		if (sector == j->sector) {
1347 			found = j - ic->journal_tree;
1348 		}
1349 		if (sector < j->sector) {
1350 			*next_sector = j->sector;
1351 			n = j->node.rb_left;
1352 		} else {
1353 			n = j->node.rb_right;
1354 		}
1355 	}
1356 
1357 	return found;
1358 }
1359 
1360 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1361 {
1362 	struct journal_node *node, *next_node;
1363 	struct rb_node *next;
1364 
1365 	if (unlikely(pos >= ic->journal_entries))
1366 		return false;
1367 	node = &ic->journal_tree[pos];
1368 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1369 		return false;
1370 	if (unlikely(node->sector != sector))
1371 		return false;
1372 
1373 	next = rb_next(&node->node);
1374 	if (unlikely(!next))
1375 		return true;
1376 
1377 	next_node = container_of(next, struct journal_node, node);
1378 	return next_node->sector != sector;
1379 }
1380 
1381 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1382 {
1383 	struct rb_node *next;
1384 	struct journal_node *next_node;
1385 	unsigned next_section;
1386 
1387 	BUG_ON(RB_EMPTY_NODE(&node->node));
1388 
1389 	next = rb_next(&node->node);
1390 	if (unlikely(!next))
1391 		return false;
1392 
1393 	next_node = container_of(next, struct journal_node, node);
1394 
1395 	if (next_node->sector != node->sector)
1396 		return false;
1397 
1398 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1399 	if (next_section >= ic->committed_section &&
1400 	    next_section < ic->committed_section + ic->n_committed_sections)
1401 		return true;
1402 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1403 		return true;
1404 
1405 	return false;
1406 }
1407 
1408 #define TAG_READ	0
1409 #define TAG_WRITE	1
1410 #define TAG_CMP		2
1411 
1412 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1413 			       unsigned *metadata_offset, unsigned total_size, int op)
1414 {
1415 #define MAY_BE_FILLER		1
1416 #define MAY_BE_HASH		2
1417 	unsigned hash_offset = 0;
1418 	unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1419 
1420 	do {
1421 		unsigned char *data, *dp;
1422 		struct dm_buffer *b;
1423 		unsigned to_copy;
1424 		int r;
1425 
1426 		r = dm_integrity_failed(ic);
1427 		if (unlikely(r))
1428 			return r;
1429 
1430 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1431 		if (IS_ERR(data))
1432 			return PTR_ERR(data);
1433 
1434 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1435 		dp = data + *metadata_offset;
1436 		if (op == TAG_READ) {
1437 			memcpy(tag, dp, to_copy);
1438 		} else if (op == TAG_WRITE) {
1439 			if (memcmp(dp, tag, to_copy)) {
1440 				memcpy(dp, tag, to_copy);
1441 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1442 			}
1443 		} else {
1444 			/* e.g.: op == TAG_CMP */
1445 
1446 			if (likely(is_power_of_2(ic->tag_size))) {
1447 				if (unlikely(memcmp(dp, tag, to_copy)))
1448 					if (unlikely(!ic->discard) ||
1449 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1450 						goto thorough_test;
1451 				}
1452 			} else {
1453 				unsigned i, ts;
1454 thorough_test:
1455 				ts = total_size;
1456 
1457 				for (i = 0; i < to_copy; i++, ts--) {
1458 					if (unlikely(dp[i] != tag[i]))
1459 						may_be &= ~MAY_BE_HASH;
1460 					if (likely(dp[i] != DISCARD_FILLER))
1461 						may_be &= ~MAY_BE_FILLER;
1462 					hash_offset++;
1463 					if (unlikely(hash_offset == ic->tag_size)) {
1464 						if (unlikely(!may_be)) {
1465 							dm_bufio_release(b);
1466 							return ts;
1467 						}
1468 						hash_offset = 0;
1469 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1470 					}
1471 				}
1472 			}
1473 		}
1474 		dm_bufio_release(b);
1475 
1476 		tag += to_copy;
1477 		*metadata_offset += to_copy;
1478 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1479 			(*metadata_block)++;
1480 			*metadata_offset = 0;
1481 		}
1482 
1483 		if (unlikely(!is_power_of_2(ic->tag_size))) {
1484 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1485 		}
1486 
1487 		total_size -= to_copy;
1488 	} while (unlikely(total_size));
1489 
1490 	return 0;
1491 #undef MAY_BE_FILLER
1492 #undef MAY_BE_HASH
1493 }
1494 
1495 struct flush_request {
1496 	struct dm_io_request io_req;
1497 	struct dm_io_region io_reg;
1498 	struct dm_integrity_c *ic;
1499 	struct completion comp;
1500 };
1501 
1502 static void flush_notify(unsigned long error, void *fr_)
1503 {
1504 	struct flush_request *fr = fr_;
1505 	if (unlikely(error != 0))
1506 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1507 	complete(&fr->comp);
1508 }
1509 
1510 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1511 {
1512 	int r;
1513 
1514 	struct flush_request fr;
1515 
1516 	if (!ic->meta_dev)
1517 		flush_data = false;
1518 	if (flush_data) {
1519 		fr.io_req.bi_op = REQ_OP_WRITE,
1520 		fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1521 		fr.io_req.mem.type = DM_IO_KMEM,
1522 		fr.io_req.mem.ptr.addr = NULL,
1523 		fr.io_req.notify.fn = flush_notify,
1524 		fr.io_req.notify.context = &fr;
1525 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1526 		fr.io_reg.bdev = ic->dev->bdev,
1527 		fr.io_reg.sector = 0,
1528 		fr.io_reg.count = 0,
1529 		fr.ic = ic;
1530 		init_completion(&fr.comp);
1531 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1532 		BUG_ON(r);
1533 	}
1534 
1535 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1536 	if (unlikely(r))
1537 		dm_integrity_io_error(ic, "writing tags", r);
1538 
1539 	if (flush_data)
1540 		wait_for_completion(&fr.comp);
1541 }
1542 
1543 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1544 {
1545 	DECLARE_WAITQUEUE(wait, current);
1546 	__add_wait_queue(&ic->endio_wait, &wait);
1547 	__set_current_state(TASK_UNINTERRUPTIBLE);
1548 	spin_unlock_irq(&ic->endio_wait.lock);
1549 	io_schedule();
1550 	spin_lock_irq(&ic->endio_wait.lock);
1551 	__remove_wait_queue(&ic->endio_wait, &wait);
1552 }
1553 
1554 static void autocommit_fn(struct timer_list *t)
1555 {
1556 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1557 
1558 	if (likely(!dm_integrity_failed(ic)))
1559 		queue_work(ic->commit_wq, &ic->commit_work);
1560 }
1561 
1562 static void schedule_autocommit(struct dm_integrity_c *ic)
1563 {
1564 	if (!timer_pending(&ic->autocommit_timer))
1565 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1566 }
1567 
1568 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1569 {
1570 	struct bio *bio;
1571 	unsigned long flags;
1572 
1573 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1574 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1575 	bio_list_add(&ic->flush_bio_list, bio);
1576 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1577 
1578 	queue_work(ic->commit_wq, &ic->commit_work);
1579 }
1580 
1581 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1582 {
1583 	int r = dm_integrity_failed(ic);
1584 	if (unlikely(r) && !bio->bi_status)
1585 		bio->bi_status = errno_to_blk_status(r);
1586 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1587 		unsigned long flags;
1588 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1589 		bio_list_add(&ic->synchronous_bios, bio);
1590 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1591 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1592 		return;
1593 	}
1594 	bio_endio(bio);
1595 }
1596 
1597 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1598 {
1599 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1600 
1601 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1602 		submit_flush_bio(ic, dio);
1603 	else
1604 		do_endio(ic, bio);
1605 }
1606 
1607 static void dec_in_flight(struct dm_integrity_io *dio)
1608 {
1609 	if (atomic_dec_and_test(&dio->in_flight)) {
1610 		struct dm_integrity_c *ic = dio->ic;
1611 		struct bio *bio;
1612 
1613 		remove_range(ic, &dio->range);
1614 
1615 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1616 			schedule_autocommit(ic);
1617 
1618 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1619 
1620 		if (unlikely(dio->bi_status) && !bio->bi_status)
1621 			bio->bi_status = dio->bi_status;
1622 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1623 			dio->range.logical_sector += dio->range.n_sectors;
1624 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1625 			INIT_WORK(&dio->work, integrity_bio_wait);
1626 			queue_work(ic->offload_wq, &dio->work);
1627 			return;
1628 		}
1629 		do_endio_flush(ic, dio);
1630 	}
1631 }
1632 
1633 static void integrity_end_io(struct bio *bio)
1634 {
1635 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1636 
1637 	dm_bio_restore(&dio->bio_details, bio);
1638 	if (bio->bi_integrity)
1639 		bio->bi_opf |= REQ_INTEGRITY;
1640 
1641 	if (dio->completion)
1642 		complete(dio->completion);
1643 
1644 	dec_in_flight(dio);
1645 }
1646 
1647 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1648 				      const char *data, char *result)
1649 {
1650 	__le64 sector_le = cpu_to_le64(sector);
1651 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1652 	int r;
1653 	unsigned digest_size;
1654 
1655 	req->tfm = ic->internal_hash;
1656 
1657 	r = crypto_shash_init(req);
1658 	if (unlikely(r < 0)) {
1659 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1660 		goto failed;
1661 	}
1662 
1663 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1664 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1665 		if (unlikely(r < 0)) {
1666 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1667 			goto failed;
1668 		}
1669 	}
1670 
1671 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1672 	if (unlikely(r < 0)) {
1673 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1674 		goto failed;
1675 	}
1676 
1677 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1678 	if (unlikely(r < 0)) {
1679 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1680 		goto failed;
1681 	}
1682 
1683 	r = crypto_shash_final(req, result);
1684 	if (unlikely(r < 0)) {
1685 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1686 		goto failed;
1687 	}
1688 
1689 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1690 	if (unlikely(digest_size < ic->tag_size))
1691 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1692 
1693 	return;
1694 
1695 failed:
1696 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1697 	get_random_bytes(result, ic->tag_size);
1698 }
1699 
1700 static void integrity_metadata(struct work_struct *w)
1701 {
1702 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1703 	struct dm_integrity_c *ic = dio->ic;
1704 
1705 	int r;
1706 
1707 	if (ic->internal_hash) {
1708 		struct bvec_iter iter;
1709 		struct bio_vec bv;
1710 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1711 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1712 		char *checksums;
1713 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1714 		char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1715 		sector_t sector;
1716 		unsigned sectors_to_process;
1717 
1718 		if (unlikely(ic->mode == 'R'))
1719 			goto skip_io;
1720 
1721 		if (likely(dio->op != REQ_OP_DISCARD))
1722 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1723 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1724 		else
1725 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1726 		if (!checksums) {
1727 			checksums = checksums_onstack;
1728 			if (WARN_ON(extra_space &&
1729 				    digest_size > sizeof(checksums_onstack))) {
1730 				r = -EINVAL;
1731 				goto error;
1732 			}
1733 		}
1734 
1735 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1736 			sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1737 			unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1738 			unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1739 			unsigned max_blocks = max_size / ic->tag_size;
1740 			memset(checksums, DISCARD_FILLER, max_size);
1741 
1742 			while (bi_size) {
1743 				unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1744 				this_step_blocks = min(this_step_blocks, max_blocks);
1745 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1746 							this_step_blocks * ic->tag_size, TAG_WRITE);
1747 				if (unlikely(r)) {
1748 					if (likely(checksums != checksums_onstack))
1749 						kfree(checksums);
1750 					goto error;
1751 				}
1752 
1753 				/*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1754 					printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1755 					printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1756 					BUG();
1757 				}*/
1758 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1759 				bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1760 			}
1761 
1762 			if (likely(checksums != checksums_onstack))
1763 				kfree(checksums);
1764 			goto skip_io;
1765 		}
1766 
1767 		sector = dio->range.logical_sector;
1768 		sectors_to_process = dio->range.n_sectors;
1769 
1770 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1771 			unsigned pos;
1772 			char *mem, *checksums_ptr;
1773 
1774 again:
1775 			mem = bvec_kmap_local(&bv);
1776 			pos = 0;
1777 			checksums_ptr = checksums;
1778 			do {
1779 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1780 				checksums_ptr += ic->tag_size;
1781 				sectors_to_process -= ic->sectors_per_block;
1782 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1783 				sector += ic->sectors_per_block;
1784 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1785 			kunmap_local(mem);
1786 
1787 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1788 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1789 			if (unlikely(r)) {
1790 				if (r > 0) {
1791 					sector_t s;
1792 
1793 					s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1794 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1795 						    bio->bi_bdev, s);
1796 					r = -EILSEQ;
1797 					atomic64_inc(&ic->number_of_mismatches);
1798 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1799 							 bio, s, 0);
1800 				}
1801 				if (likely(checksums != checksums_onstack))
1802 					kfree(checksums);
1803 				goto error;
1804 			}
1805 
1806 			if (!sectors_to_process)
1807 				break;
1808 
1809 			if (unlikely(pos < bv.bv_len)) {
1810 				bv.bv_offset += pos;
1811 				bv.bv_len -= pos;
1812 				goto again;
1813 			}
1814 		}
1815 
1816 		if (likely(checksums != checksums_onstack))
1817 			kfree(checksums);
1818 	} else {
1819 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1820 
1821 		if (bip) {
1822 			struct bio_vec biv;
1823 			struct bvec_iter iter;
1824 			unsigned data_to_process = dio->range.n_sectors;
1825 			sector_to_block(ic, data_to_process);
1826 			data_to_process *= ic->tag_size;
1827 
1828 			bip_for_each_vec(biv, bip, iter) {
1829 				unsigned char *tag;
1830 				unsigned this_len;
1831 
1832 				BUG_ON(PageHighMem(biv.bv_page));
1833 				tag = bvec_virt(&biv);
1834 				this_len = min(biv.bv_len, data_to_process);
1835 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1836 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1837 				if (unlikely(r))
1838 					goto error;
1839 				data_to_process -= this_len;
1840 				if (!data_to_process)
1841 					break;
1842 			}
1843 		}
1844 	}
1845 skip_io:
1846 	dec_in_flight(dio);
1847 	return;
1848 error:
1849 	dio->bi_status = errno_to_blk_status(r);
1850 	dec_in_flight(dio);
1851 }
1852 
1853 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1854 {
1855 	struct dm_integrity_c *ic = ti->private;
1856 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1857 	struct bio_integrity_payload *bip;
1858 
1859 	sector_t area, offset;
1860 
1861 	dio->ic = ic;
1862 	dio->bi_status = 0;
1863 	dio->op = bio_op(bio);
1864 
1865 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1866 		if (ti->max_io_len) {
1867 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1868 			unsigned log2_max_io_len = __fls(ti->max_io_len);
1869 			sector_t start_boundary = sec >> log2_max_io_len;
1870 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1871 			if (start_boundary < end_boundary) {
1872 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1873 				dm_accept_partial_bio(bio, len);
1874 			}
1875 		}
1876 	}
1877 
1878 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1879 		submit_flush_bio(ic, dio);
1880 		return DM_MAPIO_SUBMITTED;
1881 	}
1882 
1883 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1884 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1885 	if (unlikely(dio->fua)) {
1886 		/*
1887 		 * Don't pass down the FUA flag because we have to flush
1888 		 * disk cache anyway.
1889 		 */
1890 		bio->bi_opf &= ~REQ_FUA;
1891 	}
1892 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1893 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1894 		      dio->range.logical_sector, bio_sectors(bio),
1895 		      ic->provided_data_sectors);
1896 		return DM_MAPIO_KILL;
1897 	}
1898 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1899 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1900 		      ic->sectors_per_block,
1901 		      dio->range.logical_sector, bio_sectors(bio));
1902 		return DM_MAPIO_KILL;
1903 	}
1904 
1905 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1906 		struct bvec_iter iter;
1907 		struct bio_vec bv;
1908 		bio_for_each_segment(bv, bio, iter) {
1909 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1910 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1911 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1912 				return DM_MAPIO_KILL;
1913 			}
1914 		}
1915 	}
1916 
1917 	bip = bio_integrity(bio);
1918 	if (!ic->internal_hash) {
1919 		if (bip) {
1920 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1921 			if (ic->log2_tag_size >= 0)
1922 				wanted_tag_size <<= ic->log2_tag_size;
1923 			else
1924 				wanted_tag_size *= ic->tag_size;
1925 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1926 				DMERR("Invalid integrity data size %u, expected %u",
1927 				      bip->bip_iter.bi_size, wanted_tag_size);
1928 				return DM_MAPIO_KILL;
1929 			}
1930 		}
1931 	} else {
1932 		if (unlikely(bip != NULL)) {
1933 			DMERR("Unexpected integrity data when using internal hash");
1934 			return DM_MAPIO_KILL;
1935 		}
1936 	}
1937 
1938 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1939 		return DM_MAPIO_KILL;
1940 
1941 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1942 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1943 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1944 
1945 	dm_integrity_map_continue(dio, true);
1946 	return DM_MAPIO_SUBMITTED;
1947 }
1948 
1949 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1950 				 unsigned journal_section, unsigned journal_entry)
1951 {
1952 	struct dm_integrity_c *ic = dio->ic;
1953 	sector_t logical_sector;
1954 	unsigned n_sectors;
1955 
1956 	logical_sector = dio->range.logical_sector;
1957 	n_sectors = dio->range.n_sectors;
1958 	do {
1959 		struct bio_vec bv = bio_iovec(bio);
1960 		char *mem;
1961 
1962 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1963 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1964 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1965 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1966 retry_kmap:
1967 		mem = kmap_local_page(bv.bv_page);
1968 		if (likely(dio->op == REQ_OP_WRITE))
1969 			flush_dcache_page(bv.bv_page);
1970 
1971 		do {
1972 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1973 
1974 			if (unlikely(dio->op == REQ_OP_READ)) {
1975 				struct journal_sector *js;
1976 				char *mem_ptr;
1977 				unsigned s;
1978 
1979 				if (unlikely(journal_entry_is_inprogress(je))) {
1980 					flush_dcache_page(bv.bv_page);
1981 					kunmap_local(mem);
1982 
1983 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1984 					goto retry_kmap;
1985 				}
1986 				smp_rmb();
1987 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1988 				js = access_journal_data(ic, journal_section, journal_entry);
1989 				mem_ptr = mem + bv.bv_offset;
1990 				s = 0;
1991 				do {
1992 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1993 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1994 					js++;
1995 					mem_ptr += 1 << SECTOR_SHIFT;
1996 				} while (++s < ic->sectors_per_block);
1997 #ifdef INTERNAL_VERIFY
1998 				if (ic->internal_hash) {
1999 					char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2000 
2001 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2002 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2003 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2004 							    logical_sector);
2005 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2006 								 bio, logical_sector, 0);
2007 					}
2008 				}
2009 #endif
2010 			}
2011 
2012 			if (!ic->internal_hash) {
2013 				struct bio_integrity_payload *bip = bio_integrity(bio);
2014 				unsigned tag_todo = ic->tag_size;
2015 				char *tag_ptr = journal_entry_tag(ic, je);
2016 
2017 				if (bip) do {
2018 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2019 					unsigned tag_now = min(biv.bv_len, tag_todo);
2020 					char *tag_addr;
2021 					BUG_ON(PageHighMem(biv.bv_page));
2022 					tag_addr = bvec_virt(&biv);
2023 					if (likely(dio->op == REQ_OP_WRITE))
2024 						memcpy(tag_ptr, tag_addr, tag_now);
2025 					else
2026 						memcpy(tag_addr, tag_ptr, tag_now);
2027 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2028 					tag_ptr += tag_now;
2029 					tag_todo -= tag_now;
2030 				} while (unlikely(tag_todo)); else {
2031 					if (likely(dio->op == REQ_OP_WRITE))
2032 						memset(tag_ptr, 0, tag_todo);
2033 				}
2034 			}
2035 
2036 			if (likely(dio->op == REQ_OP_WRITE)) {
2037 				struct journal_sector *js;
2038 				unsigned s;
2039 
2040 				js = access_journal_data(ic, journal_section, journal_entry);
2041 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2042 
2043 				s = 0;
2044 				do {
2045 					je->last_bytes[s] = js[s].commit_id;
2046 				} while (++s < ic->sectors_per_block);
2047 
2048 				if (ic->internal_hash) {
2049 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2050 					if (unlikely(digest_size > ic->tag_size)) {
2051 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2052 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2053 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2054 					} else
2055 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2056 				}
2057 
2058 				journal_entry_set_sector(je, logical_sector);
2059 			}
2060 			logical_sector += ic->sectors_per_block;
2061 
2062 			journal_entry++;
2063 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2064 				journal_entry = 0;
2065 				journal_section++;
2066 				wraparound_section(ic, &journal_section);
2067 			}
2068 
2069 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2070 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2071 
2072 		if (unlikely(dio->op == REQ_OP_READ))
2073 			flush_dcache_page(bv.bv_page);
2074 		kunmap_local(mem);
2075 	} while (n_sectors);
2076 
2077 	if (likely(dio->op == REQ_OP_WRITE)) {
2078 		smp_mb();
2079 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2080 			wake_up(&ic->copy_to_journal_wait);
2081 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2082 			queue_work(ic->commit_wq, &ic->commit_work);
2083 		} else {
2084 			schedule_autocommit(ic);
2085 		}
2086 	} else {
2087 		remove_range(ic, &dio->range);
2088 	}
2089 
2090 	if (unlikely(bio->bi_iter.bi_size)) {
2091 		sector_t area, offset;
2092 
2093 		dio->range.logical_sector = logical_sector;
2094 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2095 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2096 		return true;
2097 	}
2098 
2099 	return false;
2100 }
2101 
2102 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2103 {
2104 	struct dm_integrity_c *ic = dio->ic;
2105 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2106 	unsigned journal_section, journal_entry;
2107 	unsigned journal_read_pos;
2108 	struct completion read_comp;
2109 	bool discard_retried = false;
2110 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2111 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2112 		need_sync_io = true;
2113 
2114 	if (need_sync_io && from_map) {
2115 		INIT_WORK(&dio->work, integrity_bio_wait);
2116 		queue_work(ic->offload_wq, &dio->work);
2117 		return;
2118 	}
2119 
2120 lock_retry:
2121 	spin_lock_irq(&ic->endio_wait.lock);
2122 retry:
2123 	if (unlikely(dm_integrity_failed(ic))) {
2124 		spin_unlock_irq(&ic->endio_wait.lock);
2125 		do_endio(ic, bio);
2126 		return;
2127 	}
2128 	dio->range.n_sectors = bio_sectors(bio);
2129 	journal_read_pos = NOT_FOUND;
2130 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2131 		if (dio->op == REQ_OP_WRITE) {
2132 			unsigned next_entry, i, pos;
2133 			unsigned ws, we, range_sectors;
2134 
2135 			dio->range.n_sectors = min(dio->range.n_sectors,
2136 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2137 			if (unlikely(!dio->range.n_sectors)) {
2138 				if (from_map)
2139 					goto offload_to_thread;
2140 				sleep_on_endio_wait(ic);
2141 				goto retry;
2142 			}
2143 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2144 			ic->free_sectors -= range_sectors;
2145 			journal_section = ic->free_section;
2146 			journal_entry = ic->free_section_entry;
2147 
2148 			next_entry = ic->free_section_entry + range_sectors;
2149 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2150 			ic->free_section += next_entry / ic->journal_section_entries;
2151 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2152 			wraparound_section(ic, &ic->free_section);
2153 
2154 			pos = journal_section * ic->journal_section_entries + journal_entry;
2155 			ws = journal_section;
2156 			we = journal_entry;
2157 			i = 0;
2158 			do {
2159 				struct journal_entry *je;
2160 
2161 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2162 				pos++;
2163 				if (unlikely(pos >= ic->journal_entries))
2164 					pos = 0;
2165 
2166 				je = access_journal_entry(ic, ws, we);
2167 				BUG_ON(!journal_entry_is_unused(je));
2168 				journal_entry_set_inprogress(je);
2169 				we++;
2170 				if (unlikely(we == ic->journal_section_entries)) {
2171 					we = 0;
2172 					ws++;
2173 					wraparound_section(ic, &ws);
2174 				}
2175 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2176 
2177 			spin_unlock_irq(&ic->endio_wait.lock);
2178 			goto journal_read_write;
2179 		} else {
2180 			sector_t next_sector;
2181 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2182 			if (likely(journal_read_pos == NOT_FOUND)) {
2183 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2184 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2185 			} else {
2186 				unsigned i;
2187 				unsigned jp = journal_read_pos + 1;
2188 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2189 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2190 						break;
2191 				}
2192 				dio->range.n_sectors = i;
2193 			}
2194 		}
2195 	}
2196 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2197 		/*
2198 		 * We must not sleep in the request routine because it could
2199 		 * stall bios on current->bio_list.
2200 		 * So, we offload the bio to a workqueue if we have to sleep.
2201 		 */
2202 		if (from_map) {
2203 offload_to_thread:
2204 			spin_unlock_irq(&ic->endio_wait.lock);
2205 			INIT_WORK(&dio->work, integrity_bio_wait);
2206 			queue_work(ic->wait_wq, &dio->work);
2207 			return;
2208 		}
2209 		if (journal_read_pos != NOT_FOUND)
2210 			dio->range.n_sectors = ic->sectors_per_block;
2211 		wait_and_add_new_range(ic, &dio->range);
2212 		/*
2213 		 * wait_and_add_new_range drops the spinlock, so the journal
2214 		 * may have been changed arbitrarily. We need to recheck.
2215 		 * To simplify the code, we restrict I/O size to just one block.
2216 		 */
2217 		if (journal_read_pos != NOT_FOUND) {
2218 			sector_t next_sector;
2219 			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2220 			if (unlikely(new_pos != journal_read_pos)) {
2221 				remove_range_unlocked(ic, &dio->range);
2222 				goto retry;
2223 			}
2224 		}
2225 	}
2226 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2227 		sector_t next_sector;
2228 		unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2229 		if (unlikely(new_pos != NOT_FOUND) ||
2230 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2231 			remove_range_unlocked(ic, &dio->range);
2232 			spin_unlock_irq(&ic->endio_wait.lock);
2233 			queue_work(ic->commit_wq, &ic->commit_work);
2234 			flush_workqueue(ic->commit_wq);
2235 			queue_work(ic->writer_wq, &ic->writer_work);
2236 			flush_workqueue(ic->writer_wq);
2237 			discard_retried = true;
2238 			goto lock_retry;
2239 		}
2240 	}
2241 	spin_unlock_irq(&ic->endio_wait.lock);
2242 
2243 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2244 		journal_section = journal_read_pos / ic->journal_section_entries;
2245 		journal_entry = journal_read_pos % ic->journal_section_entries;
2246 		goto journal_read_write;
2247 	}
2248 
2249 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2250 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2251 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2252 			struct bitmap_block_status *bbs;
2253 
2254 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2255 			spin_lock(&bbs->bio_queue_lock);
2256 			bio_list_add(&bbs->bio_queue, bio);
2257 			spin_unlock(&bbs->bio_queue_lock);
2258 			queue_work(ic->writer_wq, &bbs->work);
2259 			return;
2260 		}
2261 	}
2262 
2263 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2264 
2265 	if (need_sync_io) {
2266 		init_completion(&read_comp);
2267 		dio->completion = &read_comp;
2268 	} else
2269 		dio->completion = NULL;
2270 
2271 	dm_bio_record(&dio->bio_details, bio);
2272 	bio_set_dev(bio, ic->dev->bdev);
2273 	bio->bi_integrity = NULL;
2274 	bio->bi_opf &= ~REQ_INTEGRITY;
2275 	bio->bi_end_io = integrity_end_io;
2276 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2277 
2278 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2279 		integrity_metadata(&dio->work);
2280 		dm_integrity_flush_buffers(ic, false);
2281 
2282 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2283 		dio->completion = NULL;
2284 
2285 		submit_bio_noacct(bio);
2286 
2287 		return;
2288 	}
2289 
2290 	submit_bio_noacct(bio);
2291 
2292 	if (need_sync_io) {
2293 		wait_for_completion_io(&read_comp);
2294 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2295 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2296 			goto skip_check;
2297 		if (ic->mode == 'B') {
2298 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2299 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2300 				goto skip_check;
2301 		}
2302 
2303 		if (likely(!bio->bi_status))
2304 			integrity_metadata(&dio->work);
2305 		else
2306 skip_check:
2307 			dec_in_flight(dio);
2308 
2309 	} else {
2310 		INIT_WORK(&dio->work, integrity_metadata);
2311 		queue_work(ic->metadata_wq, &dio->work);
2312 	}
2313 
2314 	return;
2315 
2316 journal_read_write:
2317 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2318 		goto lock_retry;
2319 
2320 	do_endio_flush(ic, dio);
2321 }
2322 
2323 
2324 static void integrity_bio_wait(struct work_struct *w)
2325 {
2326 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2327 
2328 	dm_integrity_map_continue(dio, false);
2329 }
2330 
2331 static void pad_uncommitted(struct dm_integrity_c *ic)
2332 {
2333 	if (ic->free_section_entry) {
2334 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2335 		ic->free_section_entry = 0;
2336 		ic->free_section++;
2337 		wraparound_section(ic, &ic->free_section);
2338 		ic->n_uncommitted_sections++;
2339 	}
2340 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2341 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2342 		    ic->journal_section_entries + ic->free_sectors)) {
2343 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2344 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2345 		       "journal_section_entries %u, free_sectors %u",
2346 		       ic->journal_sections, ic->journal_section_entries,
2347 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2348 		       ic->journal_section_entries, ic->free_sectors);
2349 	}
2350 }
2351 
2352 static void integrity_commit(struct work_struct *w)
2353 {
2354 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2355 	unsigned commit_start, commit_sections;
2356 	unsigned i, j, n;
2357 	struct bio *flushes;
2358 
2359 	del_timer(&ic->autocommit_timer);
2360 
2361 	spin_lock_irq(&ic->endio_wait.lock);
2362 	flushes = bio_list_get(&ic->flush_bio_list);
2363 	if (unlikely(ic->mode != 'J')) {
2364 		spin_unlock_irq(&ic->endio_wait.lock);
2365 		dm_integrity_flush_buffers(ic, true);
2366 		goto release_flush_bios;
2367 	}
2368 
2369 	pad_uncommitted(ic);
2370 	commit_start = ic->uncommitted_section;
2371 	commit_sections = ic->n_uncommitted_sections;
2372 	spin_unlock_irq(&ic->endio_wait.lock);
2373 
2374 	if (!commit_sections)
2375 		goto release_flush_bios;
2376 
2377 	i = commit_start;
2378 	for (n = 0; n < commit_sections; n++) {
2379 		for (j = 0; j < ic->journal_section_entries; j++) {
2380 			struct journal_entry *je;
2381 			je = access_journal_entry(ic, i, j);
2382 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2383 		}
2384 		for (j = 0; j < ic->journal_section_sectors; j++) {
2385 			struct journal_sector *js;
2386 			js = access_journal(ic, i, j);
2387 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2388 		}
2389 		i++;
2390 		if (unlikely(i >= ic->journal_sections))
2391 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2392 		wraparound_section(ic, &i);
2393 	}
2394 	smp_rmb();
2395 
2396 	write_journal(ic, commit_start, commit_sections);
2397 
2398 	spin_lock_irq(&ic->endio_wait.lock);
2399 	ic->uncommitted_section += commit_sections;
2400 	wraparound_section(ic, &ic->uncommitted_section);
2401 	ic->n_uncommitted_sections -= commit_sections;
2402 	ic->n_committed_sections += commit_sections;
2403 	spin_unlock_irq(&ic->endio_wait.lock);
2404 
2405 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2406 		queue_work(ic->writer_wq, &ic->writer_work);
2407 
2408 release_flush_bios:
2409 	while (flushes) {
2410 		struct bio *next = flushes->bi_next;
2411 		flushes->bi_next = NULL;
2412 		do_endio(ic, flushes);
2413 		flushes = next;
2414 	}
2415 }
2416 
2417 static void complete_copy_from_journal(unsigned long error, void *context)
2418 {
2419 	struct journal_io *io = context;
2420 	struct journal_completion *comp = io->comp;
2421 	struct dm_integrity_c *ic = comp->ic;
2422 	remove_range(ic, &io->range);
2423 	mempool_free(io, &ic->journal_io_mempool);
2424 	if (unlikely(error != 0))
2425 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2426 	complete_journal_op(comp);
2427 }
2428 
2429 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2430 			       struct journal_entry *je)
2431 {
2432 	unsigned s = 0;
2433 	do {
2434 		js->commit_id = je->last_bytes[s];
2435 		js++;
2436 	} while (++s < ic->sectors_per_block);
2437 }
2438 
2439 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2440 			     unsigned write_sections, bool from_replay)
2441 {
2442 	unsigned i, j, n;
2443 	struct journal_completion comp;
2444 	struct blk_plug plug;
2445 
2446 	blk_start_plug(&plug);
2447 
2448 	comp.ic = ic;
2449 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2450 	init_completion(&comp.comp);
2451 
2452 	i = write_start;
2453 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2454 #ifndef INTERNAL_VERIFY
2455 		if (unlikely(from_replay))
2456 #endif
2457 			rw_section_mac(ic, i, false);
2458 		for (j = 0; j < ic->journal_section_entries; j++) {
2459 			struct journal_entry *je = access_journal_entry(ic, i, j);
2460 			sector_t sec, area, offset;
2461 			unsigned k, l, next_loop;
2462 			sector_t metadata_block;
2463 			unsigned metadata_offset;
2464 			struct journal_io *io;
2465 
2466 			if (journal_entry_is_unused(je))
2467 				continue;
2468 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2469 			sec = journal_entry_get_sector(je);
2470 			if (unlikely(from_replay)) {
2471 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2472 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2473 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2474 				}
2475 				if (unlikely(sec >= ic->provided_data_sectors)) {
2476 					journal_entry_set_unused(je);
2477 					continue;
2478 				}
2479 			}
2480 			get_area_and_offset(ic, sec, &area, &offset);
2481 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2482 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2483 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2484 				sector_t sec2, area2, offset2;
2485 				if (journal_entry_is_unused(je2))
2486 					break;
2487 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2488 				sec2 = journal_entry_get_sector(je2);
2489 				if (unlikely(sec2 >= ic->provided_data_sectors))
2490 					break;
2491 				get_area_and_offset(ic, sec2, &area2, &offset2);
2492 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2493 					break;
2494 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2495 			}
2496 			next_loop = k - 1;
2497 
2498 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2499 			io->comp = &comp;
2500 			io->range.logical_sector = sec;
2501 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2502 
2503 			spin_lock_irq(&ic->endio_wait.lock);
2504 			add_new_range_and_wait(ic, &io->range);
2505 
2506 			if (likely(!from_replay)) {
2507 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2508 
2509 				/* don't write if there is newer committed sector */
2510 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2511 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2512 
2513 					journal_entry_set_unused(je2);
2514 					remove_journal_node(ic, &section_node[j]);
2515 					j++;
2516 					sec += ic->sectors_per_block;
2517 					offset += ic->sectors_per_block;
2518 				}
2519 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2520 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2521 
2522 					journal_entry_set_unused(je2);
2523 					remove_journal_node(ic, &section_node[k - 1]);
2524 					k--;
2525 				}
2526 				if (j == k) {
2527 					remove_range_unlocked(ic, &io->range);
2528 					spin_unlock_irq(&ic->endio_wait.lock);
2529 					mempool_free(io, &ic->journal_io_mempool);
2530 					goto skip_io;
2531 				}
2532 				for (l = j; l < k; l++) {
2533 					remove_journal_node(ic, &section_node[l]);
2534 				}
2535 			}
2536 			spin_unlock_irq(&ic->endio_wait.lock);
2537 
2538 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2539 			for (l = j; l < k; l++) {
2540 				int r;
2541 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2542 
2543 				if (
2544 #ifndef INTERNAL_VERIFY
2545 				    unlikely(from_replay) &&
2546 #endif
2547 				    ic->internal_hash) {
2548 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2549 
2550 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2551 								  (char *)access_journal_data(ic, i, l), test_tag);
2552 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2553 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2554 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2555 					}
2556 				}
2557 
2558 				journal_entry_set_unused(je2);
2559 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2560 							ic->tag_size, TAG_WRITE);
2561 				if (unlikely(r)) {
2562 					dm_integrity_io_error(ic, "reading tags", r);
2563 				}
2564 			}
2565 
2566 			atomic_inc(&comp.in_flight);
2567 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2568 					  (k - j) << ic->sb->log2_sectors_per_block,
2569 					  get_data_sector(ic, area, offset),
2570 					  complete_copy_from_journal, io);
2571 skip_io:
2572 			j = next_loop;
2573 		}
2574 	}
2575 
2576 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2577 
2578 	blk_finish_plug(&plug);
2579 
2580 	complete_journal_op(&comp);
2581 	wait_for_completion_io(&comp.comp);
2582 
2583 	dm_integrity_flush_buffers(ic, true);
2584 }
2585 
2586 static void integrity_writer(struct work_struct *w)
2587 {
2588 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2589 	unsigned write_start, write_sections;
2590 
2591 	unsigned prev_free_sectors;
2592 
2593 	/* the following test is not needed, but it tests the replay code */
2594 	if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2595 		return;
2596 
2597 	spin_lock_irq(&ic->endio_wait.lock);
2598 	write_start = ic->committed_section;
2599 	write_sections = ic->n_committed_sections;
2600 	spin_unlock_irq(&ic->endio_wait.lock);
2601 
2602 	if (!write_sections)
2603 		return;
2604 
2605 	do_journal_write(ic, write_start, write_sections, false);
2606 
2607 	spin_lock_irq(&ic->endio_wait.lock);
2608 
2609 	ic->committed_section += write_sections;
2610 	wraparound_section(ic, &ic->committed_section);
2611 	ic->n_committed_sections -= write_sections;
2612 
2613 	prev_free_sectors = ic->free_sectors;
2614 	ic->free_sectors += write_sections * ic->journal_section_entries;
2615 	if (unlikely(!prev_free_sectors))
2616 		wake_up_locked(&ic->endio_wait);
2617 
2618 	spin_unlock_irq(&ic->endio_wait.lock);
2619 }
2620 
2621 static void recalc_write_super(struct dm_integrity_c *ic)
2622 {
2623 	int r;
2624 
2625 	dm_integrity_flush_buffers(ic, false);
2626 	if (dm_integrity_failed(ic))
2627 		return;
2628 
2629 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2630 	if (unlikely(r))
2631 		dm_integrity_io_error(ic, "writing superblock", r);
2632 }
2633 
2634 static void integrity_recalc(struct work_struct *w)
2635 {
2636 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2637 	struct dm_integrity_range range;
2638 	struct dm_io_request io_req;
2639 	struct dm_io_region io_loc;
2640 	sector_t area, offset;
2641 	sector_t metadata_block;
2642 	unsigned metadata_offset;
2643 	sector_t logical_sector, n_sectors;
2644 	__u8 *t;
2645 	unsigned i;
2646 	int r;
2647 	unsigned super_counter = 0;
2648 
2649 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2650 
2651 	spin_lock_irq(&ic->endio_wait.lock);
2652 
2653 next_chunk:
2654 
2655 	if (unlikely(dm_post_suspending(ic->ti)))
2656 		goto unlock_ret;
2657 
2658 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2659 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2660 		if (ic->mode == 'B') {
2661 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2662 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2663 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2664 		}
2665 		goto unlock_ret;
2666 	}
2667 
2668 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2669 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2670 	if (!ic->meta_dev)
2671 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2672 
2673 	add_new_range_and_wait(ic, &range);
2674 	spin_unlock_irq(&ic->endio_wait.lock);
2675 	logical_sector = range.logical_sector;
2676 	n_sectors = range.n_sectors;
2677 
2678 	if (ic->mode == 'B') {
2679 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2680 			goto advance_and_next;
2681 		}
2682 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2683 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2684 			logical_sector += ic->sectors_per_block;
2685 			n_sectors -= ic->sectors_per_block;
2686 			cond_resched();
2687 		}
2688 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2689 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2690 			n_sectors -= ic->sectors_per_block;
2691 			cond_resched();
2692 		}
2693 		get_area_and_offset(ic, logical_sector, &area, &offset);
2694 	}
2695 
2696 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2697 
2698 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2699 		recalc_write_super(ic);
2700 		if (ic->mode == 'B') {
2701 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2702 		}
2703 		super_counter = 0;
2704 	}
2705 
2706 	if (unlikely(dm_integrity_failed(ic)))
2707 		goto err;
2708 
2709 	io_req.bi_op = REQ_OP_READ;
2710 	io_req.bi_op_flags = 0;
2711 	io_req.mem.type = DM_IO_VMA;
2712 	io_req.mem.ptr.addr = ic->recalc_buffer;
2713 	io_req.notify.fn = NULL;
2714 	io_req.client = ic->io;
2715 	io_loc.bdev = ic->dev->bdev;
2716 	io_loc.sector = get_data_sector(ic, area, offset);
2717 	io_loc.count = n_sectors;
2718 
2719 	r = dm_io(&io_req, 1, &io_loc, NULL);
2720 	if (unlikely(r)) {
2721 		dm_integrity_io_error(ic, "reading data", r);
2722 		goto err;
2723 	}
2724 
2725 	t = ic->recalc_tags;
2726 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2727 		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2728 		t += ic->tag_size;
2729 	}
2730 
2731 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2732 
2733 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2734 	if (unlikely(r)) {
2735 		dm_integrity_io_error(ic, "writing tags", r);
2736 		goto err;
2737 	}
2738 
2739 	if (ic->mode == 'B') {
2740 		sector_t start, end;
2741 		start = (range.logical_sector >>
2742 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2743 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2744 		end = ((range.logical_sector + range.n_sectors) >>
2745 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2746 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2747 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2748 	}
2749 
2750 advance_and_next:
2751 	cond_resched();
2752 
2753 	spin_lock_irq(&ic->endio_wait.lock);
2754 	remove_range_unlocked(ic, &range);
2755 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2756 	goto next_chunk;
2757 
2758 err:
2759 	remove_range(ic, &range);
2760 	return;
2761 
2762 unlock_ret:
2763 	spin_unlock_irq(&ic->endio_wait.lock);
2764 
2765 	recalc_write_super(ic);
2766 }
2767 
2768 static void bitmap_block_work(struct work_struct *w)
2769 {
2770 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2771 	struct dm_integrity_c *ic = bbs->ic;
2772 	struct bio *bio;
2773 	struct bio_list bio_queue;
2774 	struct bio_list waiting;
2775 
2776 	bio_list_init(&waiting);
2777 
2778 	spin_lock(&bbs->bio_queue_lock);
2779 	bio_queue = bbs->bio_queue;
2780 	bio_list_init(&bbs->bio_queue);
2781 	spin_unlock(&bbs->bio_queue_lock);
2782 
2783 	while ((bio = bio_list_pop(&bio_queue))) {
2784 		struct dm_integrity_io *dio;
2785 
2786 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2787 
2788 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2789 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2790 			remove_range(ic, &dio->range);
2791 			INIT_WORK(&dio->work, integrity_bio_wait);
2792 			queue_work(ic->offload_wq, &dio->work);
2793 		} else {
2794 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2795 					dio->range.n_sectors, BITMAP_OP_SET);
2796 			bio_list_add(&waiting, bio);
2797 		}
2798 	}
2799 
2800 	if (bio_list_empty(&waiting))
2801 		return;
2802 
2803 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2804 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2805 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2806 
2807 	while ((bio = bio_list_pop(&waiting))) {
2808 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2809 
2810 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2811 				dio->range.n_sectors, BITMAP_OP_SET);
2812 
2813 		remove_range(ic, &dio->range);
2814 		INIT_WORK(&dio->work, integrity_bio_wait);
2815 		queue_work(ic->offload_wq, &dio->work);
2816 	}
2817 
2818 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2819 }
2820 
2821 static void bitmap_flush_work(struct work_struct *work)
2822 {
2823 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2824 	struct dm_integrity_range range;
2825 	unsigned long limit;
2826 	struct bio *bio;
2827 
2828 	dm_integrity_flush_buffers(ic, false);
2829 
2830 	range.logical_sector = 0;
2831 	range.n_sectors = ic->provided_data_sectors;
2832 
2833 	spin_lock_irq(&ic->endio_wait.lock);
2834 	add_new_range_and_wait(ic, &range);
2835 	spin_unlock_irq(&ic->endio_wait.lock);
2836 
2837 	dm_integrity_flush_buffers(ic, true);
2838 
2839 	limit = ic->provided_data_sectors;
2840 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2841 		limit = le64_to_cpu(ic->sb->recalc_sector)
2842 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2843 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2844 	}
2845 	/*DEBUG_print("zeroing journal\n");*/
2846 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2847 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2848 
2849 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2850 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2851 
2852 	spin_lock_irq(&ic->endio_wait.lock);
2853 	remove_range_unlocked(ic, &range);
2854 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2855 		bio_endio(bio);
2856 		spin_unlock_irq(&ic->endio_wait.lock);
2857 		spin_lock_irq(&ic->endio_wait.lock);
2858 	}
2859 	spin_unlock_irq(&ic->endio_wait.lock);
2860 }
2861 
2862 
2863 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2864 			 unsigned n_sections, unsigned char commit_seq)
2865 {
2866 	unsigned i, j, n;
2867 
2868 	if (!n_sections)
2869 		return;
2870 
2871 	for (n = 0; n < n_sections; n++) {
2872 		i = start_section + n;
2873 		wraparound_section(ic, &i);
2874 		for (j = 0; j < ic->journal_section_sectors; j++) {
2875 			struct journal_sector *js = access_journal(ic, i, j);
2876 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2877 			memset(&js->sectors, 0, sizeof(js->sectors));
2878 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2879 		}
2880 		for (j = 0; j < ic->journal_section_entries; j++) {
2881 			struct journal_entry *je = access_journal_entry(ic, i, j);
2882 			journal_entry_set_unused(je);
2883 		}
2884 	}
2885 
2886 	write_journal(ic, start_section, n_sections);
2887 }
2888 
2889 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2890 {
2891 	unsigned char k;
2892 	for (k = 0; k < N_COMMIT_IDS; k++) {
2893 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2894 			return k;
2895 	}
2896 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2897 	return -EIO;
2898 }
2899 
2900 static void replay_journal(struct dm_integrity_c *ic)
2901 {
2902 	unsigned i, j;
2903 	bool used_commit_ids[N_COMMIT_IDS];
2904 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2905 	unsigned write_start, write_sections;
2906 	unsigned continue_section;
2907 	bool journal_empty;
2908 	unsigned char unused, last_used, want_commit_seq;
2909 
2910 	if (ic->mode == 'R')
2911 		return;
2912 
2913 	if (ic->journal_uptodate)
2914 		return;
2915 
2916 	last_used = 0;
2917 	write_start = 0;
2918 
2919 	if (!ic->just_formatted) {
2920 		DEBUG_print("reading journal\n");
2921 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2922 		if (ic->journal_io)
2923 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2924 		if (ic->journal_io) {
2925 			struct journal_completion crypt_comp;
2926 			crypt_comp.ic = ic;
2927 			init_completion(&crypt_comp.comp);
2928 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2929 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2930 			wait_for_completion(&crypt_comp.comp);
2931 		}
2932 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2933 	}
2934 
2935 	if (dm_integrity_failed(ic))
2936 		goto clear_journal;
2937 
2938 	journal_empty = true;
2939 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2940 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2941 	for (i = 0; i < ic->journal_sections; i++) {
2942 		for (j = 0; j < ic->journal_section_sectors; j++) {
2943 			int k;
2944 			struct journal_sector *js = access_journal(ic, i, j);
2945 			k = find_commit_seq(ic, i, j, js->commit_id);
2946 			if (k < 0)
2947 				goto clear_journal;
2948 			used_commit_ids[k] = true;
2949 			max_commit_id_sections[k] = i;
2950 		}
2951 		if (journal_empty) {
2952 			for (j = 0; j < ic->journal_section_entries; j++) {
2953 				struct journal_entry *je = access_journal_entry(ic, i, j);
2954 				if (!journal_entry_is_unused(je)) {
2955 					journal_empty = false;
2956 					break;
2957 				}
2958 			}
2959 		}
2960 	}
2961 
2962 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2963 		unused = N_COMMIT_IDS - 1;
2964 		while (unused && !used_commit_ids[unused - 1])
2965 			unused--;
2966 	} else {
2967 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2968 			if (!used_commit_ids[unused])
2969 				break;
2970 		if (unused == N_COMMIT_IDS) {
2971 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2972 			goto clear_journal;
2973 		}
2974 	}
2975 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2976 		    unused, used_commit_ids[0], used_commit_ids[1],
2977 		    used_commit_ids[2], used_commit_ids[3]);
2978 
2979 	last_used = prev_commit_seq(unused);
2980 	want_commit_seq = prev_commit_seq(last_used);
2981 
2982 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2983 		journal_empty = true;
2984 
2985 	write_start = max_commit_id_sections[last_used] + 1;
2986 	if (unlikely(write_start >= ic->journal_sections))
2987 		want_commit_seq = next_commit_seq(want_commit_seq);
2988 	wraparound_section(ic, &write_start);
2989 
2990 	i = write_start;
2991 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2992 		for (j = 0; j < ic->journal_section_sectors; j++) {
2993 			struct journal_sector *js = access_journal(ic, i, j);
2994 
2995 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2996 				/*
2997 				 * This could be caused by crash during writing.
2998 				 * We won't replay the inconsistent part of the
2999 				 * journal.
3000 				 */
3001 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3002 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3003 				goto brk;
3004 			}
3005 		}
3006 		i++;
3007 		if (unlikely(i >= ic->journal_sections))
3008 			want_commit_seq = next_commit_seq(want_commit_seq);
3009 		wraparound_section(ic, &i);
3010 	}
3011 brk:
3012 
3013 	if (!journal_empty) {
3014 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3015 			    write_sections, write_start, want_commit_seq);
3016 		do_journal_write(ic, write_start, write_sections, true);
3017 	}
3018 
3019 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3020 		continue_section = write_start;
3021 		ic->commit_seq = want_commit_seq;
3022 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3023 	} else {
3024 		unsigned s;
3025 		unsigned char erase_seq;
3026 clear_journal:
3027 		DEBUG_print("clearing journal\n");
3028 
3029 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3030 		s = write_start;
3031 		init_journal(ic, s, 1, erase_seq);
3032 		s++;
3033 		wraparound_section(ic, &s);
3034 		if (ic->journal_sections >= 2) {
3035 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3036 			s += ic->journal_sections - 2;
3037 			wraparound_section(ic, &s);
3038 			init_journal(ic, s, 1, erase_seq);
3039 		}
3040 
3041 		continue_section = 0;
3042 		ic->commit_seq = next_commit_seq(erase_seq);
3043 	}
3044 
3045 	ic->committed_section = continue_section;
3046 	ic->n_committed_sections = 0;
3047 
3048 	ic->uncommitted_section = continue_section;
3049 	ic->n_uncommitted_sections = 0;
3050 
3051 	ic->free_section = continue_section;
3052 	ic->free_section_entry = 0;
3053 	ic->free_sectors = ic->journal_entries;
3054 
3055 	ic->journal_tree_root = RB_ROOT;
3056 	for (i = 0; i < ic->journal_entries; i++)
3057 		init_journal_node(&ic->journal_tree[i]);
3058 }
3059 
3060 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3061 {
3062 	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3063 
3064 	if (ic->mode == 'B') {
3065 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3066 		ic->synchronous_mode = 1;
3067 
3068 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3069 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3070 		flush_workqueue(ic->commit_wq);
3071 	}
3072 }
3073 
3074 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3075 {
3076 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3077 
3078 	DEBUG_print("dm_integrity_reboot\n");
3079 
3080 	dm_integrity_enter_synchronous_mode(ic);
3081 
3082 	return NOTIFY_DONE;
3083 }
3084 
3085 static void dm_integrity_postsuspend(struct dm_target *ti)
3086 {
3087 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3088 	int r;
3089 
3090 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3091 
3092 	del_timer_sync(&ic->autocommit_timer);
3093 
3094 	if (ic->recalc_wq)
3095 		drain_workqueue(ic->recalc_wq);
3096 
3097 	if (ic->mode == 'B')
3098 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3099 
3100 	queue_work(ic->commit_wq, &ic->commit_work);
3101 	drain_workqueue(ic->commit_wq);
3102 
3103 	if (ic->mode == 'J') {
3104 		if (ic->meta_dev)
3105 			queue_work(ic->writer_wq, &ic->writer_work);
3106 		drain_workqueue(ic->writer_wq);
3107 		dm_integrity_flush_buffers(ic, true);
3108 	}
3109 
3110 	if (ic->mode == 'B') {
3111 		dm_integrity_flush_buffers(ic, true);
3112 #if 1
3113 		/* set to 0 to test bitmap replay code */
3114 		init_journal(ic, 0, ic->journal_sections, 0);
3115 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3116 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3117 		if (unlikely(r))
3118 			dm_integrity_io_error(ic, "writing superblock", r);
3119 #endif
3120 	}
3121 
3122 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3123 
3124 	ic->journal_uptodate = true;
3125 }
3126 
3127 static void dm_integrity_resume(struct dm_target *ti)
3128 {
3129 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3130 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3131 	int r;
3132 
3133 	DEBUG_print("resume\n");
3134 
3135 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3136 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3137 		    ic->mode == 'B' &&
3138 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3139 			rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3140 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3141 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3142 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3143 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3144 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3145 		}
3146 
3147 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3148 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3149 		if (unlikely(r))
3150 			dm_integrity_io_error(ic, "writing superblock", r);
3151 	}
3152 
3153 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3154 		DEBUG_print("resume dirty_bitmap\n");
3155 		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3156 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3157 		if (ic->mode == 'B') {
3158 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3159 			    !ic->reset_recalculate_flag) {
3160 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3161 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3162 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3163 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3164 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3165 					ic->sb->recalc_sector = cpu_to_le64(0);
3166 				}
3167 			} else {
3168 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3169 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3170 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3171 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3172 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3173 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3174 				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3175 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3176 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3177 				ic->sb->recalc_sector = cpu_to_le64(0);
3178 			}
3179 		} else {
3180 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3181 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3182 			    ic->reset_recalculate_flag) {
3183 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3184 				ic->sb->recalc_sector = cpu_to_le64(0);
3185 			}
3186 			init_journal(ic, 0, ic->journal_sections, 0);
3187 			replay_journal(ic);
3188 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3189 		}
3190 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3191 		if (unlikely(r))
3192 			dm_integrity_io_error(ic, "writing superblock", r);
3193 	} else {
3194 		replay_journal(ic);
3195 		if (ic->reset_recalculate_flag) {
3196 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3197 			ic->sb->recalc_sector = cpu_to_le64(0);
3198 		}
3199 		if (ic->mode == 'B') {
3200 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3201 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3202 			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3203 			if (unlikely(r))
3204 				dm_integrity_io_error(ic, "writing superblock", r);
3205 
3206 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3207 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3208 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3209 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3210 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3211 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3212 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3213 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3214 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3215 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3216 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3217 			}
3218 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3219 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3220 		}
3221 	}
3222 
3223 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3224 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3225 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3226 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3227 		if (recalc_pos < ic->provided_data_sectors) {
3228 			queue_work(ic->recalc_wq, &ic->recalc_work);
3229 		} else if (recalc_pos > ic->provided_data_sectors) {
3230 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3231 			recalc_write_super(ic);
3232 		}
3233 	}
3234 
3235 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3236 	ic->reboot_notifier.next = NULL;
3237 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3238 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3239 
3240 #if 0
3241 	/* set to 1 to stress test synchronous mode */
3242 	dm_integrity_enter_synchronous_mode(ic);
3243 #endif
3244 }
3245 
3246 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3247 				unsigned status_flags, char *result, unsigned maxlen)
3248 {
3249 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3250 	unsigned arg_count;
3251 	size_t sz = 0;
3252 
3253 	switch (type) {
3254 	case STATUSTYPE_INFO:
3255 		DMEMIT("%llu %llu",
3256 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3257 			ic->provided_data_sectors);
3258 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3259 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3260 		else
3261 			DMEMIT(" -");
3262 		break;
3263 
3264 	case STATUSTYPE_TABLE: {
3265 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3266 		watermark_percentage += ic->journal_entries / 2;
3267 		do_div(watermark_percentage, ic->journal_entries);
3268 		arg_count = 3;
3269 		arg_count += !!ic->meta_dev;
3270 		arg_count += ic->sectors_per_block != 1;
3271 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3272 		arg_count += ic->reset_recalculate_flag;
3273 		arg_count += ic->discard;
3274 		arg_count += ic->mode == 'J';
3275 		arg_count += ic->mode == 'J';
3276 		arg_count += ic->mode == 'B';
3277 		arg_count += ic->mode == 'B';
3278 		arg_count += !!ic->internal_hash_alg.alg_string;
3279 		arg_count += !!ic->journal_crypt_alg.alg_string;
3280 		arg_count += !!ic->journal_mac_alg.alg_string;
3281 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3282 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3283 		arg_count += ic->legacy_recalculate;
3284 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3285 		       ic->tag_size, ic->mode, arg_count);
3286 		if (ic->meta_dev)
3287 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3288 		if (ic->sectors_per_block != 1)
3289 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3290 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3291 			DMEMIT(" recalculate");
3292 		if (ic->reset_recalculate_flag)
3293 			DMEMIT(" reset_recalculate");
3294 		if (ic->discard)
3295 			DMEMIT(" allow_discards");
3296 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3297 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3298 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3299 		if (ic->mode == 'J') {
3300 			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3301 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3302 		}
3303 		if (ic->mode == 'B') {
3304 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3305 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3306 		}
3307 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3308 			DMEMIT(" fix_padding");
3309 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3310 			DMEMIT(" fix_hmac");
3311 		if (ic->legacy_recalculate)
3312 			DMEMIT(" legacy_recalculate");
3313 
3314 #define EMIT_ALG(a, n)							\
3315 		do {							\
3316 			if (ic->a.alg_string) {				\
3317 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3318 				if (ic->a.key_string)			\
3319 					DMEMIT(":%s", ic->a.key_string);\
3320 			}						\
3321 		} while (0)
3322 		EMIT_ALG(internal_hash_alg, "internal_hash");
3323 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3324 		EMIT_ALG(journal_mac_alg, "journal_mac");
3325 		break;
3326 	}
3327 	case STATUSTYPE_IMA:
3328 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3329 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3330 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3331 
3332 		if (ic->meta_dev)
3333 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3334 		if (ic->sectors_per_block != 1)
3335 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3336 
3337 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3338 		       'y' : 'n');
3339 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3340 		DMEMIT(",fix_padding=%c",
3341 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3342 		DMEMIT(",fix_hmac=%c",
3343 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3344 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3345 
3346 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3347 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3348 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3349 		DMEMIT(";");
3350 		break;
3351 	}
3352 }
3353 
3354 static int dm_integrity_iterate_devices(struct dm_target *ti,
3355 					iterate_devices_callout_fn fn, void *data)
3356 {
3357 	struct dm_integrity_c *ic = ti->private;
3358 
3359 	if (!ic->meta_dev)
3360 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3361 	else
3362 		return fn(ti, ic->dev, 0, ti->len, data);
3363 }
3364 
3365 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3366 {
3367 	struct dm_integrity_c *ic = ti->private;
3368 
3369 	if (ic->sectors_per_block > 1) {
3370 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3371 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3372 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3373 	}
3374 }
3375 
3376 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3377 {
3378 	unsigned sector_space = JOURNAL_SECTOR_DATA;
3379 
3380 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3381 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3382 					 JOURNAL_ENTRY_ROUNDUP);
3383 
3384 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3385 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3386 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3387 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3388 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3389 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3390 }
3391 
3392 static int calculate_device_limits(struct dm_integrity_c *ic)
3393 {
3394 	__u64 initial_sectors;
3395 
3396 	calculate_journal_section_size(ic);
3397 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3398 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3399 		return -EINVAL;
3400 	ic->initial_sectors = initial_sectors;
3401 
3402 	if (!ic->meta_dev) {
3403 		sector_t last_sector, last_area, last_offset;
3404 
3405 		/* we have to maintain excessive padding for compatibility with existing volumes */
3406 		__u64 metadata_run_padding =
3407 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3408 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3409 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3410 
3411 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3412 					    metadata_run_padding) >> SECTOR_SHIFT;
3413 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3414 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3415 		else
3416 			ic->log2_metadata_run = -1;
3417 
3418 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3419 		last_sector = get_data_sector(ic, last_area, last_offset);
3420 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3421 			return -EINVAL;
3422 	} else {
3423 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3424 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3425 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3426 		meta_size <<= ic->log2_buffer_sectors;
3427 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3428 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3429 			return -EINVAL;
3430 		ic->metadata_run = 1;
3431 		ic->log2_metadata_run = 0;
3432 	}
3433 
3434 	return 0;
3435 }
3436 
3437 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3438 {
3439 	if (!ic->meta_dev) {
3440 		int test_bit;
3441 		ic->provided_data_sectors = 0;
3442 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3443 			__u64 prev_data_sectors = ic->provided_data_sectors;
3444 
3445 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3446 			if (calculate_device_limits(ic))
3447 				ic->provided_data_sectors = prev_data_sectors;
3448 		}
3449 	} else {
3450 		ic->provided_data_sectors = ic->data_device_sectors;
3451 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3452 	}
3453 }
3454 
3455 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3456 {
3457 	unsigned journal_sections;
3458 	int test_bit;
3459 
3460 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3461 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3462 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3463 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3464 	if (ic->journal_mac_alg.alg_string)
3465 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3466 
3467 	calculate_journal_section_size(ic);
3468 	journal_sections = journal_sectors / ic->journal_section_sectors;
3469 	if (!journal_sections)
3470 		journal_sections = 1;
3471 
3472 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3473 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3474 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3475 	}
3476 
3477 	if (!ic->meta_dev) {
3478 		if (ic->fix_padding)
3479 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3480 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3481 		if (!interleave_sectors)
3482 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3483 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3484 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3485 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3486 
3487 		get_provided_data_sectors(ic);
3488 		if (!ic->provided_data_sectors)
3489 			return -EINVAL;
3490 	} else {
3491 		ic->sb->log2_interleave_sectors = 0;
3492 
3493 		get_provided_data_sectors(ic);
3494 		if (!ic->provided_data_sectors)
3495 			return -EINVAL;
3496 
3497 try_smaller_buffer:
3498 		ic->sb->journal_sections = cpu_to_le32(0);
3499 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3500 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3501 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3502 			if (test_journal_sections > journal_sections)
3503 				continue;
3504 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3505 			if (calculate_device_limits(ic))
3506 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3507 
3508 		}
3509 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3510 			if (ic->log2_buffer_sectors > 3) {
3511 				ic->log2_buffer_sectors--;
3512 				goto try_smaller_buffer;
3513 			}
3514 			return -EINVAL;
3515 		}
3516 	}
3517 
3518 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3519 
3520 	sb_set_version(ic);
3521 
3522 	return 0;
3523 }
3524 
3525 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3526 {
3527 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3528 	struct blk_integrity bi;
3529 
3530 	memset(&bi, 0, sizeof(bi));
3531 	bi.profile = &dm_integrity_profile;
3532 	bi.tuple_size = ic->tag_size;
3533 	bi.tag_size = bi.tuple_size;
3534 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3535 
3536 	blk_integrity_register(disk, &bi);
3537 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3538 }
3539 
3540 static void dm_integrity_free_page_list(struct page_list *pl)
3541 {
3542 	unsigned i;
3543 
3544 	if (!pl)
3545 		return;
3546 	for (i = 0; pl[i].page; i++)
3547 		__free_page(pl[i].page);
3548 	kvfree(pl);
3549 }
3550 
3551 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3552 {
3553 	struct page_list *pl;
3554 	unsigned i;
3555 
3556 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3557 	if (!pl)
3558 		return NULL;
3559 
3560 	for (i = 0; i < n_pages; i++) {
3561 		pl[i].page = alloc_page(GFP_KERNEL);
3562 		if (!pl[i].page) {
3563 			dm_integrity_free_page_list(pl);
3564 			return NULL;
3565 		}
3566 		if (i)
3567 			pl[i - 1].next = &pl[i];
3568 	}
3569 	pl[i].page = NULL;
3570 	pl[i].next = NULL;
3571 
3572 	return pl;
3573 }
3574 
3575 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3576 {
3577 	unsigned i;
3578 	for (i = 0; i < ic->journal_sections; i++)
3579 		kvfree(sl[i]);
3580 	kvfree(sl);
3581 }
3582 
3583 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3584 								   struct page_list *pl)
3585 {
3586 	struct scatterlist **sl;
3587 	unsigned i;
3588 
3589 	sl = kvmalloc_array(ic->journal_sections,
3590 			    sizeof(struct scatterlist *),
3591 			    GFP_KERNEL | __GFP_ZERO);
3592 	if (!sl)
3593 		return NULL;
3594 
3595 	for (i = 0; i < ic->journal_sections; i++) {
3596 		struct scatterlist *s;
3597 		unsigned start_index, start_offset;
3598 		unsigned end_index, end_offset;
3599 		unsigned n_pages;
3600 		unsigned idx;
3601 
3602 		page_list_location(ic, i, 0, &start_index, &start_offset);
3603 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3604 				   &end_index, &end_offset);
3605 
3606 		n_pages = (end_index - start_index + 1);
3607 
3608 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3609 				   GFP_KERNEL);
3610 		if (!s) {
3611 			dm_integrity_free_journal_scatterlist(ic, sl);
3612 			return NULL;
3613 		}
3614 
3615 		sg_init_table(s, n_pages);
3616 		for (idx = start_index; idx <= end_index; idx++) {
3617 			char *va = lowmem_page_address(pl[idx].page);
3618 			unsigned start = 0, end = PAGE_SIZE;
3619 			if (idx == start_index)
3620 				start = start_offset;
3621 			if (idx == end_index)
3622 				end = end_offset + (1 << SECTOR_SHIFT);
3623 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3624 		}
3625 
3626 		sl[i] = s;
3627 	}
3628 
3629 	return sl;
3630 }
3631 
3632 static void free_alg(struct alg_spec *a)
3633 {
3634 	kfree_sensitive(a->alg_string);
3635 	kfree_sensitive(a->key);
3636 	memset(a, 0, sizeof *a);
3637 }
3638 
3639 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3640 {
3641 	char *k;
3642 
3643 	free_alg(a);
3644 
3645 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3646 	if (!a->alg_string)
3647 		goto nomem;
3648 
3649 	k = strchr(a->alg_string, ':');
3650 	if (k) {
3651 		*k = 0;
3652 		a->key_string = k + 1;
3653 		if (strlen(a->key_string) & 1)
3654 			goto inval;
3655 
3656 		a->key_size = strlen(a->key_string) / 2;
3657 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3658 		if (!a->key)
3659 			goto nomem;
3660 		if (hex2bin(a->key, a->key_string, a->key_size))
3661 			goto inval;
3662 	}
3663 
3664 	return 0;
3665 inval:
3666 	*error = error_inval;
3667 	return -EINVAL;
3668 nomem:
3669 	*error = "Out of memory for an argument";
3670 	return -ENOMEM;
3671 }
3672 
3673 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3674 		   char *error_alg, char *error_key)
3675 {
3676 	int r;
3677 
3678 	if (a->alg_string) {
3679 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3680 		if (IS_ERR(*hash)) {
3681 			*error = error_alg;
3682 			r = PTR_ERR(*hash);
3683 			*hash = NULL;
3684 			return r;
3685 		}
3686 
3687 		if (a->key) {
3688 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3689 			if (r) {
3690 				*error = error_key;
3691 				return r;
3692 			}
3693 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3694 			*error = error_key;
3695 			return -ENOKEY;
3696 		}
3697 	}
3698 
3699 	return 0;
3700 }
3701 
3702 static int create_journal(struct dm_integrity_c *ic, char **error)
3703 {
3704 	int r = 0;
3705 	unsigned i;
3706 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3707 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3708 	struct skcipher_request *req = NULL;
3709 
3710 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3711 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3712 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3713 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3714 
3715 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3716 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3717 	journal_desc_size = journal_pages * sizeof(struct page_list);
3718 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3719 		*error = "Journal doesn't fit into memory";
3720 		r = -ENOMEM;
3721 		goto bad;
3722 	}
3723 	ic->journal_pages = journal_pages;
3724 
3725 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3726 	if (!ic->journal) {
3727 		*error = "Could not allocate memory for journal";
3728 		r = -ENOMEM;
3729 		goto bad;
3730 	}
3731 	if (ic->journal_crypt_alg.alg_string) {
3732 		unsigned ivsize, blocksize;
3733 		struct journal_completion comp;
3734 
3735 		comp.ic = ic;
3736 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3737 		if (IS_ERR(ic->journal_crypt)) {
3738 			*error = "Invalid journal cipher";
3739 			r = PTR_ERR(ic->journal_crypt);
3740 			ic->journal_crypt = NULL;
3741 			goto bad;
3742 		}
3743 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3744 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3745 
3746 		if (ic->journal_crypt_alg.key) {
3747 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3748 						   ic->journal_crypt_alg.key_size);
3749 			if (r) {
3750 				*error = "Error setting encryption key";
3751 				goto bad;
3752 			}
3753 		}
3754 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3755 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3756 
3757 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3758 		if (!ic->journal_io) {
3759 			*error = "Could not allocate memory for journal io";
3760 			r = -ENOMEM;
3761 			goto bad;
3762 		}
3763 
3764 		if (blocksize == 1) {
3765 			struct scatterlist *sg;
3766 
3767 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3768 			if (!req) {
3769 				*error = "Could not allocate crypt request";
3770 				r = -ENOMEM;
3771 				goto bad;
3772 			}
3773 
3774 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3775 			if (!crypt_iv) {
3776 				*error = "Could not allocate iv";
3777 				r = -ENOMEM;
3778 				goto bad;
3779 			}
3780 
3781 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3782 			if (!ic->journal_xor) {
3783 				*error = "Could not allocate memory for journal xor";
3784 				r = -ENOMEM;
3785 				goto bad;
3786 			}
3787 
3788 			sg = kvmalloc_array(ic->journal_pages + 1,
3789 					    sizeof(struct scatterlist),
3790 					    GFP_KERNEL);
3791 			if (!sg) {
3792 				*error = "Unable to allocate sg list";
3793 				r = -ENOMEM;
3794 				goto bad;
3795 			}
3796 			sg_init_table(sg, ic->journal_pages + 1);
3797 			for (i = 0; i < ic->journal_pages; i++) {
3798 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3799 				clear_page(va);
3800 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3801 			}
3802 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3803 
3804 			skcipher_request_set_crypt(req, sg, sg,
3805 						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3806 			init_completion(&comp.comp);
3807 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3808 			if (do_crypt(true, req, &comp))
3809 				wait_for_completion(&comp.comp);
3810 			kvfree(sg);
3811 			r = dm_integrity_failed(ic);
3812 			if (r) {
3813 				*error = "Unable to encrypt journal";
3814 				goto bad;
3815 			}
3816 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3817 
3818 			crypto_free_skcipher(ic->journal_crypt);
3819 			ic->journal_crypt = NULL;
3820 		} else {
3821 			unsigned crypt_len = roundup(ivsize, blocksize);
3822 
3823 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3824 			if (!req) {
3825 				*error = "Could not allocate crypt request";
3826 				r = -ENOMEM;
3827 				goto bad;
3828 			}
3829 
3830 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3831 			if (!crypt_iv) {
3832 				*error = "Could not allocate iv";
3833 				r = -ENOMEM;
3834 				goto bad;
3835 			}
3836 
3837 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3838 			if (!crypt_data) {
3839 				*error = "Unable to allocate crypt data";
3840 				r = -ENOMEM;
3841 				goto bad;
3842 			}
3843 
3844 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3845 			if (!ic->journal_scatterlist) {
3846 				*error = "Unable to allocate sg list";
3847 				r = -ENOMEM;
3848 				goto bad;
3849 			}
3850 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3851 			if (!ic->journal_io_scatterlist) {
3852 				*error = "Unable to allocate sg list";
3853 				r = -ENOMEM;
3854 				goto bad;
3855 			}
3856 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3857 							 sizeof(struct skcipher_request *),
3858 							 GFP_KERNEL | __GFP_ZERO);
3859 			if (!ic->sk_requests) {
3860 				*error = "Unable to allocate sk requests";
3861 				r = -ENOMEM;
3862 				goto bad;
3863 			}
3864 			for (i = 0; i < ic->journal_sections; i++) {
3865 				struct scatterlist sg;
3866 				struct skcipher_request *section_req;
3867 				__le32 section_le = cpu_to_le32(i);
3868 
3869 				memset(crypt_iv, 0x00, ivsize);
3870 				memset(crypt_data, 0x00, crypt_len);
3871 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3872 
3873 				sg_init_one(&sg, crypt_data, crypt_len);
3874 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3875 				init_completion(&comp.comp);
3876 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3877 				if (do_crypt(true, req, &comp))
3878 					wait_for_completion(&comp.comp);
3879 
3880 				r = dm_integrity_failed(ic);
3881 				if (r) {
3882 					*error = "Unable to generate iv";
3883 					goto bad;
3884 				}
3885 
3886 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3887 				if (!section_req) {
3888 					*error = "Unable to allocate crypt request";
3889 					r = -ENOMEM;
3890 					goto bad;
3891 				}
3892 				section_req->iv = kmalloc_array(ivsize, 2,
3893 								GFP_KERNEL);
3894 				if (!section_req->iv) {
3895 					skcipher_request_free(section_req);
3896 					*error = "Unable to allocate iv";
3897 					r = -ENOMEM;
3898 					goto bad;
3899 				}
3900 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3901 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3902 				ic->sk_requests[i] = section_req;
3903 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3904 			}
3905 		}
3906 	}
3907 
3908 	for (i = 0; i < N_COMMIT_IDS; i++) {
3909 		unsigned j;
3910 retest_commit_id:
3911 		for (j = 0; j < i; j++) {
3912 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3913 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3914 				goto retest_commit_id;
3915 			}
3916 		}
3917 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3918 	}
3919 
3920 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3921 	if (journal_tree_size > ULONG_MAX) {
3922 		*error = "Journal doesn't fit into memory";
3923 		r = -ENOMEM;
3924 		goto bad;
3925 	}
3926 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3927 	if (!ic->journal_tree) {
3928 		*error = "Could not allocate memory for journal tree";
3929 		r = -ENOMEM;
3930 	}
3931 bad:
3932 	kfree(crypt_data);
3933 	kfree(crypt_iv);
3934 	skcipher_request_free(req);
3935 
3936 	return r;
3937 }
3938 
3939 /*
3940  * Construct a integrity mapping
3941  *
3942  * Arguments:
3943  *	device
3944  *	offset from the start of the device
3945  *	tag size
3946  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3947  *	number of optional arguments
3948  *	optional arguments:
3949  *		journal_sectors
3950  *		interleave_sectors
3951  *		buffer_sectors
3952  *		journal_watermark
3953  *		commit_time
3954  *		meta_device
3955  *		block_size
3956  *		sectors_per_bit
3957  *		bitmap_flush_interval
3958  *		internal_hash
3959  *		journal_crypt
3960  *		journal_mac
3961  *		recalculate
3962  */
3963 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3964 {
3965 	struct dm_integrity_c *ic;
3966 	char dummy;
3967 	int r;
3968 	unsigned extra_args;
3969 	struct dm_arg_set as;
3970 	static const struct dm_arg _args[] = {
3971 		{0, 18, "Invalid number of feature args"},
3972 	};
3973 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3974 	bool should_write_sb;
3975 	__u64 threshold;
3976 	unsigned long long start;
3977 	__s8 log2_sectors_per_bitmap_bit = -1;
3978 	__s8 log2_blocks_per_bitmap_bit;
3979 	__u64 bits_in_journal;
3980 	__u64 n_bitmap_bits;
3981 
3982 #define DIRECT_ARGUMENTS	4
3983 
3984 	if (argc <= DIRECT_ARGUMENTS) {
3985 		ti->error = "Invalid argument count";
3986 		return -EINVAL;
3987 	}
3988 
3989 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3990 	if (!ic) {
3991 		ti->error = "Cannot allocate integrity context";
3992 		return -ENOMEM;
3993 	}
3994 	ti->private = ic;
3995 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3996 	ic->ti = ti;
3997 
3998 	ic->in_progress = RB_ROOT;
3999 	INIT_LIST_HEAD(&ic->wait_list);
4000 	init_waitqueue_head(&ic->endio_wait);
4001 	bio_list_init(&ic->flush_bio_list);
4002 	init_waitqueue_head(&ic->copy_to_journal_wait);
4003 	init_completion(&ic->crypto_backoff);
4004 	atomic64_set(&ic->number_of_mismatches, 0);
4005 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4006 
4007 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4008 	if (r) {
4009 		ti->error = "Device lookup failed";
4010 		goto bad;
4011 	}
4012 
4013 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4014 		ti->error = "Invalid starting offset";
4015 		r = -EINVAL;
4016 		goto bad;
4017 	}
4018 	ic->start = start;
4019 
4020 	if (strcmp(argv[2], "-")) {
4021 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4022 			ti->error = "Invalid tag size";
4023 			r = -EINVAL;
4024 			goto bad;
4025 		}
4026 	}
4027 
4028 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4029 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4030 		ic->mode = argv[3][0];
4031 	} else {
4032 		ti->error = "Invalid mode (expecting J, B, D, R)";
4033 		r = -EINVAL;
4034 		goto bad;
4035 	}
4036 
4037 	journal_sectors = 0;
4038 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4039 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4040 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4041 	sync_msec = DEFAULT_SYNC_MSEC;
4042 	ic->sectors_per_block = 1;
4043 
4044 	as.argc = argc - DIRECT_ARGUMENTS;
4045 	as.argv = argv + DIRECT_ARGUMENTS;
4046 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4047 	if (r)
4048 		goto bad;
4049 
4050 	while (extra_args--) {
4051 		const char *opt_string;
4052 		unsigned val;
4053 		unsigned long long llval;
4054 		opt_string = dm_shift_arg(&as);
4055 		if (!opt_string) {
4056 			r = -EINVAL;
4057 			ti->error = "Not enough feature arguments";
4058 			goto bad;
4059 		}
4060 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4061 			journal_sectors = val ? val : 1;
4062 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4063 			interleave_sectors = val;
4064 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4065 			buffer_sectors = val;
4066 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4067 			journal_watermark = val;
4068 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4069 			sync_msec = val;
4070 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4071 			if (ic->meta_dev) {
4072 				dm_put_device(ti, ic->meta_dev);
4073 				ic->meta_dev = NULL;
4074 			}
4075 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4076 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4077 			if (r) {
4078 				ti->error = "Device lookup failed";
4079 				goto bad;
4080 			}
4081 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4082 			if (val < 1 << SECTOR_SHIFT ||
4083 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4084 			    (val & (val -1))) {
4085 				r = -EINVAL;
4086 				ti->error = "Invalid block_size argument";
4087 				goto bad;
4088 			}
4089 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4090 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4091 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4092 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4093 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4094 				r = -EINVAL;
4095 				ti->error = "Invalid bitmap_flush_interval argument";
4096 				goto bad;
4097 			}
4098 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4099 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4100 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4101 					    "Invalid internal_hash argument");
4102 			if (r)
4103 				goto bad;
4104 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4105 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4106 					    "Invalid journal_crypt argument");
4107 			if (r)
4108 				goto bad;
4109 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4110 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4111 					    "Invalid journal_mac argument");
4112 			if (r)
4113 				goto bad;
4114 		} else if (!strcmp(opt_string, "recalculate")) {
4115 			ic->recalculate_flag = true;
4116 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4117 			ic->recalculate_flag = true;
4118 			ic->reset_recalculate_flag = true;
4119 		} else if (!strcmp(opt_string, "allow_discards")) {
4120 			ic->discard = true;
4121 		} else if (!strcmp(opt_string, "fix_padding")) {
4122 			ic->fix_padding = true;
4123 		} else if (!strcmp(opt_string, "fix_hmac")) {
4124 			ic->fix_hmac = true;
4125 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4126 			ic->legacy_recalculate = true;
4127 		} else {
4128 			r = -EINVAL;
4129 			ti->error = "Invalid argument";
4130 			goto bad;
4131 		}
4132 	}
4133 
4134 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4135 	if (!ic->meta_dev)
4136 		ic->meta_device_sectors = ic->data_device_sectors;
4137 	else
4138 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4139 
4140 	if (!journal_sectors) {
4141 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4142 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4143 	}
4144 
4145 	if (!buffer_sectors)
4146 		buffer_sectors = 1;
4147 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4148 
4149 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4150 		    "Invalid internal hash", "Error setting internal hash key");
4151 	if (r)
4152 		goto bad;
4153 
4154 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4155 		    "Invalid journal mac", "Error setting journal mac key");
4156 	if (r)
4157 		goto bad;
4158 
4159 	if (!ic->tag_size) {
4160 		if (!ic->internal_hash) {
4161 			ti->error = "Unknown tag size";
4162 			r = -EINVAL;
4163 			goto bad;
4164 		}
4165 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4166 	}
4167 	if (ic->tag_size > MAX_TAG_SIZE) {
4168 		ti->error = "Too big tag size";
4169 		r = -EINVAL;
4170 		goto bad;
4171 	}
4172 	if (!(ic->tag_size & (ic->tag_size - 1)))
4173 		ic->log2_tag_size = __ffs(ic->tag_size);
4174 	else
4175 		ic->log2_tag_size = -1;
4176 
4177 	if (ic->mode == 'B' && !ic->internal_hash) {
4178 		r = -EINVAL;
4179 		ti->error = "Bitmap mode can be only used with internal hash";
4180 		goto bad;
4181 	}
4182 
4183 	if (ic->discard && !ic->internal_hash) {
4184 		r = -EINVAL;
4185 		ti->error = "Discard can be only used with internal hash";
4186 		goto bad;
4187 	}
4188 
4189 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4190 	ic->autocommit_msec = sync_msec;
4191 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4192 
4193 	ic->io = dm_io_client_create();
4194 	if (IS_ERR(ic->io)) {
4195 		r = PTR_ERR(ic->io);
4196 		ic->io = NULL;
4197 		ti->error = "Cannot allocate dm io";
4198 		goto bad;
4199 	}
4200 
4201 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4202 	if (r) {
4203 		ti->error = "Cannot allocate mempool";
4204 		goto bad;
4205 	}
4206 
4207 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4208 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4209 	if (!ic->metadata_wq) {
4210 		ti->error = "Cannot allocate workqueue";
4211 		r = -ENOMEM;
4212 		goto bad;
4213 	}
4214 
4215 	/*
4216 	 * If this workqueue were percpu, it would cause bio reordering
4217 	 * and reduced performance.
4218 	 */
4219 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4220 	if (!ic->wait_wq) {
4221 		ti->error = "Cannot allocate workqueue";
4222 		r = -ENOMEM;
4223 		goto bad;
4224 	}
4225 
4226 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4227 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4228 	if (!ic->offload_wq) {
4229 		ti->error = "Cannot allocate workqueue";
4230 		r = -ENOMEM;
4231 		goto bad;
4232 	}
4233 
4234 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4235 	if (!ic->commit_wq) {
4236 		ti->error = "Cannot allocate workqueue";
4237 		r = -ENOMEM;
4238 		goto bad;
4239 	}
4240 	INIT_WORK(&ic->commit_work, integrity_commit);
4241 
4242 	if (ic->mode == 'J' || ic->mode == 'B') {
4243 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4244 		if (!ic->writer_wq) {
4245 			ti->error = "Cannot allocate workqueue";
4246 			r = -ENOMEM;
4247 			goto bad;
4248 		}
4249 		INIT_WORK(&ic->writer_work, integrity_writer);
4250 	}
4251 
4252 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4253 	if (!ic->sb) {
4254 		r = -ENOMEM;
4255 		ti->error = "Cannot allocate superblock area";
4256 		goto bad;
4257 	}
4258 
4259 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
4260 	if (r) {
4261 		ti->error = "Error reading superblock";
4262 		goto bad;
4263 	}
4264 	should_write_sb = false;
4265 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4266 		if (ic->mode != 'R') {
4267 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4268 				r = -EINVAL;
4269 				ti->error = "The device is not initialized";
4270 				goto bad;
4271 			}
4272 		}
4273 
4274 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4275 		if (r) {
4276 			ti->error = "Could not initialize superblock";
4277 			goto bad;
4278 		}
4279 		if (ic->mode != 'R')
4280 			should_write_sb = true;
4281 	}
4282 
4283 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4284 		r = -EINVAL;
4285 		ti->error = "Unknown version";
4286 		goto bad;
4287 	}
4288 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4289 		r = -EINVAL;
4290 		ti->error = "Tag size doesn't match the information in superblock";
4291 		goto bad;
4292 	}
4293 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4294 		r = -EINVAL;
4295 		ti->error = "Block size doesn't match the information in superblock";
4296 		goto bad;
4297 	}
4298 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4299 		r = -EINVAL;
4300 		ti->error = "Corrupted superblock, journal_sections is 0";
4301 		goto bad;
4302 	}
4303 	/* make sure that ti->max_io_len doesn't overflow */
4304 	if (!ic->meta_dev) {
4305 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4306 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4307 			r = -EINVAL;
4308 			ti->error = "Invalid interleave_sectors in the superblock";
4309 			goto bad;
4310 		}
4311 	} else {
4312 		if (ic->sb->log2_interleave_sectors) {
4313 			r = -EINVAL;
4314 			ti->error = "Invalid interleave_sectors in the superblock";
4315 			goto bad;
4316 		}
4317 	}
4318 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4319 		r = -EINVAL;
4320 		ti->error = "Journal mac mismatch";
4321 		goto bad;
4322 	}
4323 
4324 	get_provided_data_sectors(ic);
4325 	if (!ic->provided_data_sectors) {
4326 		r = -EINVAL;
4327 		ti->error = "The device is too small";
4328 		goto bad;
4329 	}
4330 
4331 try_smaller_buffer:
4332 	r = calculate_device_limits(ic);
4333 	if (r) {
4334 		if (ic->meta_dev) {
4335 			if (ic->log2_buffer_sectors > 3) {
4336 				ic->log2_buffer_sectors--;
4337 				goto try_smaller_buffer;
4338 			}
4339 		}
4340 		ti->error = "The device is too small";
4341 		goto bad;
4342 	}
4343 
4344 	if (log2_sectors_per_bitmap_bit < 0)
4345 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4346 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4347 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4348 
4349 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4350 	if (bits_in_journal > UINT_MAX)
4351 		bits_in_journal = UINT_MAX;
4352 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4353 		log2_sectors_per_bitmap_bit++;
4354 
4355 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4356 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4357 	if (should_write_sb) {
4358 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4359 	}
4360 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4361 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4362 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4363 
4364 	if (!ic->meta_dev)
4365 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4366 
4367 	if (ti->len > ic->provided_data_sectors) {
4368 		r = -EINVAL;
4369 		ti->error = "Not enough provided sectors for requested mapping size";
4370 		goto bad;
4371 	}
4372 
4373 
4374 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4375 	threshold += 50;
4376 	do_div(threshold, 100);
4377 	ic->free_sectors_threshold = threshold;
4378 
4379 	DEBUG_print("initialized:\n");
4380 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4381 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4382 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4383 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4384 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4385 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4386 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4387 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4388 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4389 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4390 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4391 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4392 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4393 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4394 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4395 
4396 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4397 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4398 		ic->sb->recalc_sector = cpu_to_le64(0);
4399 	}
4400 
4401 	if (ic->internal_hash) {
4402 		size_t recalc_tags_size;
4403 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4404 		if (!ic->recalc_wq ) {
4405 			ti->error = "Cannot allocate workqueue";
4406 			r = -ENOMEM;
4407 			goto bad;
4408 		}
4409 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4410 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4411 		if (!ic->recalc_buffer) {
4412 			ti->error = "Cannot allocate buffer for recalculating";
4413 			r = -ENOMEM;
4414 			goto bad;
4415 		}
4416 		recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4417 		if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4418 			recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4419 		ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4420 		if (!ic->recalc_tags) {
4421 			ti->error = "Cannot allocate tags for recalculating";
4422 			r = -ENOMEM;
4423 			goto bad;
4424 		}
4425 	} else {
4426 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4427 			ti->error = "Recalculate can only be specified with internal_hash";
4428 			r = -EINVAL;
4429 			goto bad;
4430 		}
4431 	}
4432 
4433 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4434 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4435 	    dm_integrity_disable_recalculate(ic)) {
4436 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4437 		r = -EOPNOTSUPP;
4438 		goto bad;
4439 	}
4440 
4441 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4442 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4443 	if (IS_ERR(ic->bufio)) {
4444 		r = PTR_ERR(ic->bufio);
4445 		ti->error = "Cannot initialize dm-bufio";
4446 		ic->bufio = NULL;
4447 		goto bad;
4448 	}
4449 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4450 
4451 	if (ic->mode != 'R') {
4452 		r = create_journal(ic, &ti->error);
4453 		if (r)
4454 			goto bad;
4455 
4456 	}
4457 
4458 	if (ic->mode == 'B') {
4459 		unsigned i;
4460 		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4461 
4462 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4463 		if (!ic->recalc_bitmap) {
4464 			r = -ENOMEM;
4465 			goto bad;
4466 		}
4467 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4468 		if (!ic->may_write_bitmap) {
4469 			r = -ENOMEM;
4470 			goto bad;
4471 		}
4472 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4473 		if (!ic->bbs) {
4474 			r = -ENOMEM;
4475 			goto bad;
4476 		}
4477 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4478 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4479 			struct bitmap_block_status *bbs = &ic->bbs[i];
4480 			unsigned sector, pl_index, pl_offset;
4481 
4482 			INIT_WORK(&bbs->work, bitmap_block_work);
4483 			bbs->ic = ic;
4484 			bbs->idx = i;
4485 			bio_list_init(&bbs->bio_queue);
4486 			spin_lock_init(&bbs->bio_queue_lock);
4487 
4488 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4489 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4490 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4491 
4492 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4493 		}
4494 	}
4495 
4496 	if (should_write_sb) {
4497 		int r;
4498 
4499 		init_journal(ic, 0, ic->journal_sections, 0);
4500 		r = dm_integrity_failed(ic);
4501 		if (unlikely(r)) {
4502 			ti->error = "Error initializing journal";
4503 			goto bad;
4504 		}
4505 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4506 		if (r) {
4507 			ti->error = "Error initializing superblock";
4508 			goto bad;
4509 		}
4510 		ic->just_formatted = true;
4511 	}
4512 
4513 	if (!ic->meta_dev) {
4514 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4515 		if (r)
4516 			goto bad;
4517 	}
4518 	if (ic->mode == 'B') {
4519 		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4520 		if (!max_io_len)
4521 			max_io_len = 1U << 31;
4522 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4523 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4524 			r = dm_set_target_max_io_len(ti, max_io_len);
4525 			if (r)
4526 				goto bad;
4527 		}
4528 	}
4529 
4530 	if (!ic->internal_hash)
4531 		dm_integrity_set(ti, ic);
4532 
4533 	ti->num_flush_bios = 1;
4534 	ti->flush_supported = true;
4535 	if (ic->discard)
4536 		ti->num_discard_bios = 1;
4537 
4538 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4539 	return 0;
4540 
4541 bad:
4542 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4543 	dm_integrity_dtr(ti);
4544 	return r;
4545 }
4546 
4547 static void dm_integrity_dtr(struct dm_target *ti)
4548 {
4549 	struct dm_integrity_c *ic = ti->private;
4550 
4551 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4552 	BUG_ON(!list_empty(&ic->wait_list));
4553 
4554 	if (ic->metadata_wq)
4555 		destroy_workqueue(ic->metadata_wq);
4556 	if (ic->wait_wq)
4557 		destroy_workqueue(ic->wait_wq);
4558 	if (ic->offload_wq)
4559 		destroy_workqueue(ic->offload_wq);
4560 	if (ic->commit_wq)
4561 		destroy_workqueue(ic->commit_wq);
4562 	if (ic->writer_wq)
4563 		destroy_workqueue(ic->writer_wq);
4564 	if (ic->recalc_wq)
4565 		destroy_workqueue(ic->recalc_wq);
4566 	vfree(ic->recalc_buffer);
4567 	kvfree(ic->recalc_tags);
4568 	kvfree(ic->bbs);
4569 	if (ic->bufio)
4570 		dm_bufio_client_destroy(ic->bufio);
4571 	mempool_exit(&ic->journal_io_mempool);
4572 	if (ic->io)
4573 		dm_io_client_destroy(ic->io);
4574 	if (ic->dev)
4575 		dm_put_device(ti, ic->dev);
4576 	if (ic->meta_dev)
4577 		dm_put_device(ti, ic->meta_dev);
4578 	dm_integrity_free_page_list(ic->journal);
4579 	dm_integrity_free_page_list(ic->journal_io);
4580 	dm_integrity_free_page_list(ic->journal_xor);
4581 	dm_integrity_free_page_list(ic->recalc_bitmap);
4582 	dm_integrity_free_page_list(ic->may_write_bitmap);
4583 	if (ic->journal_scatterlist)
4584 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4585 	if (ic->journal_io_scatterlist)
4586 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4587 	if (ic->sk_requests) {
4588 		unsigned i;
4589 
4590 		for (i = 0; i < ic->journal_sections; i++) {
4591 			struct skcipher_request *req = ic->sk_requests[i];
4592 			if (req) {
4593 				kfree_sensitive(req->iv);
4594 				skcipher_request_free(req);
4595 			}
4596 		}
4597 		kvfree(ic->sk_requests);
4598 	}
4599 	kvfree(ic->journal_tree);
4600 	if (ic->sb)
4601 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4602 
4603 	if (ic->internal_hash)
4604 		crypto_free_shash(ic->internal_hash);
4605 	free_alg(&ic->internal_hash_alg);
4606 
4607 	if (ic->journal_crypt)
4608 		crypto_free_skcipher(ic->journal_crypt);
4609 	free_alg(&ic->journal_crypt_alg);
4610 
4611 	if (ic->journal_mac)
4612 		crypto_free_shash(ic->journal_mac);
4613 	free_alg(&ic->journal_mac_alg);
4614 
4615 	kfree(ic);
4616 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4617 }
4618 
4619 static struct target_type integrity_target = {
4620 	.name			= "integrity",
4621 	.version		= {1, 10, 0},
4622 	.module			= THIS_MODULE,
4623 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4624 	.ctr			= dm_integrity_ctr,
4625 	.dtr			= dm_integrity_dtr,
4626 	.map			= dm_integrity_map,
4627 	.postsuspend		= dm_integrity_postsuspend,
4628 	.resume			= dm_integrity_resume,
4629 	.status			= dm_integrity_status,
4630 	.iterate_devices	= dm_integrity_iterate_devices,
4631 	.io_hints		= dm_integrity_io_hints,
4632 };
4633 
4634 static int __init dm_integrity_init(void)
4635 {
4636 	int r;
4637 
4638 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4639 					     sizeof(struct journal_io), 0, 0, NULL);
4640 	if (!journal_io_cache) {
4641 		DMERR("can't allocate journal io cache");
4642 		return -ENOMEM;
4643 	}
4644 
4645 	r = dm_register_target(&integrity_target);
4646 
4647 	if (r < 0)
4648 		DMERR("register failed %d", r);
4649 
4650 	return r;
4651 }
4652 
4653 static void __exit dm_integrity_exit(void)
4654 {
4655 	dm_unregister_target(&integrity_target);
4656 	kmem_cache_destroy(journal_io_cache);
4657 }
4658 
4659 module_init(dm_integrity_init);
4660 module_exit(dm_integrity_exit);
4661 
4662 MODULE_AUTHOR("Milan Broz");
4663 MODULE_AUTHOR("Mikulas Patocka");
4664 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4665 MODULE_LICENSE("GPL");
4666