xref: /openbmc/linux/drivers/md/dm-integrity.c (revision 439e7271)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sort.h>
14 #include <linux/rbtree.h>
15 #include <linux/delay.h>
16 #include <linux/random.h>
17 #include <crypto/hash.h>
18 #include <crypto/skcipher.h>
19 #include <linux/async_tx.h>
20 #include "dm-bufio.h"
21 
22 #define DM_MSG_PREFIX "integrity"
23 
24 #define DEFAULT_INTERLEAVE_SECTORS	32768
25 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
26 #define DEFAULT_BUFFER_SECTORS		128
27 #define DEFAULT_JOURNAL_WATERMARK	50
28 #define DEFAULT_SYNC_MSEC		10000
29 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
30 #define MIN_LOG2_INTERLEAVE_SECTORS	3
31 #define MAX_LOG2_INTERLEAVE_SECTORS	31
32 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
33 
34 /*
35  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
36  * so it should not be enabled in the official kernel
37  */
38 //#define DEBUG_PRINT
39 //#define INTERNAL_VERIFY
40 
41 /*
42  * On disk structures
43  */
44 
45 #define SB_MAGIC			"integrt"
46 #define SB_VERSION			1
47 #define SB_SECTORS			8
48 #define MAX_SECTORS_PER_BLOCK		8
49 
50 struct superblock {
51 	__u8 magic[8];
52 	__u8 version;
53 	__u8 log2_interleave_sectors;
54 	__u16 integrity_tag_size;
55 	__u32 journal_sections;
56 	__u64 provided_data_sectors;	/* userspace uses this value */
57 	__u32 flags;
58 	__u8 log2_sectors_per_block;
59 };
60 
61 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
62 
63 #define	JOURNAL_ENTRY_ROUNDUP		8
64 
65 typedef __u64 commit_id_t;
66 #define JOURNAL_MAC_PER_SECTOR		8
67 
68 struct journal_entry {
69 	union {
70 		struct {
71 			__u32 sector_lo;
72 			__u32 sector_hi;
73 		} s;
74 		__u64 sector;
75 	} u;
76 	commit_id_t last_bytes[0];
77 	/* __u8 tag[0]; */
78 };
79 
80 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
81 
82 #if BITS_PER_LONG == 64
83 #define journal_entry_set_sector(je, x)		do { smp_wmb(); ACCESS_ONCE((je)->u.sector) = cpu_to_le64(x); } while (0)
84 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
85 #elif defined(CONFIG_LBDAF)
86 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32((x) >> 32); } while (0)
87 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
88 #else
89 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32(0); } while (0)
90 #define journal_entry_get_sector(je)		le32_to_cpu((je)->u.s.sector_lo)
91 #endif
92 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
93 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
94 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
95 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
96 
97 #define JOURNAL_BLOCK_SECTORS		8
98 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
99 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
100 
101 struct journal_sector {
102 	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
103 	__u8 mac[JOURNAL_MAC_PER_SECTOR];
104 	commit_id_t commit_id;
105 };
106 
107 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
108 
109 #define METADATA_PADDING_SECTORS	8
110 
111 #define N_COMMIT_IDS			4
112 
113 static unsigned char prev_commit_seq(unsigned char seq)
114 {
115 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
116 }
117 
118 static unsigned char next_commit_seq(unsigned char seq)
119 {
120 	return (seq + 1) % N_COMMIT_IDS;
121 }
122 
123 /*
124  * In-memory structures
125  */
126 
127 struct journal_node {
128 	struct rb_node node;
129 	sector_t sector;
130 };
131 
132 struct alg_spec {
133 	char *alg_string;
134 	char *key_string;
135 	__u8 *key;
136 	unsigned key_size;
137 };
138 
139 struct dm_integrity_c {
140 	struct dm_dev *dev;
141 	unsigned tag_size;
142 	__s8 log2_tag_size;
143 	sector_t start;
144 	mempool_t *journal_io_mempool;
145 	struct dm_io_client *io;
146 	struct dm_bufio_client *bufio;
147 	struct workqueue_struct *metadata_wq;
148 	struct superblock *sb;
149 	unsigned journal_pages;
150 	struct page_list *journal;
151 	struct page_list *journal_io;
152 	struct page_list *journal_xor;
153 
154 	struct crypto_skcipher *journal_crypt;
155 	struct scatterlist **journal_scatterlist;
156 	struct scatterlist **journal_io_scatterlist;
157 	struct skcipher_request **sk_requests;
158 
159 	struct crypto_shash *journal_mac;
160 
161 	struct journal_node *journal_tree;
162 	struct rb_root journal_tree_root;
163 
164 	sector_t provided_data_sectors;
165 
166 	unsigned short journal_entry_size;
167 	unsigned char journal_entries_per_sector;
168 	unsigned char journal_section_entries;
169 	unsigned short journal_section_sectors;
170 	unsigned journal_sections;
171 	unsigned journal_entries;
172 	sector_t device_sectors;
173 	unsigned initial_sectors;
174 	unsigned metadata_run;
175 	__s8 log2_metadata_run;
176 	__u8 log2_buffer_sectors;
177 	__u8 sectors_per_block;
178 
179 	unsigned char mode;
180 	bool suspending;
181 
182 	int failed;
183 
184 	struct crypto_shash *internal_hash;
185 
186 	/* these variables are locked with endio_wait.lock */
187 	struct rb_root in_progress;
188 	wait_queue_head_t endio_wait;
189 	struct workqueue_struct *wait_wq;
190 
191 	unsigned char commit_seq;
192 	commit_id_t commit_ids[N_COMMIT_IDS];
193 
194 	unsigned committed_section;
195 	unsigned n_committed_sections;
196 
197 	unsigned uncommitted_section;
198 	unsigned n_uncommitted_sections;
199 
200 	unsigned free_section;
201 	unsigned char free_section_entry;
202 	unsigned free_sectors;
203 
204 	unsigned free_sectors_threshold;
205 
206 	struct workqueue_struct *commit_wq;
207 	struct work_struct commit_work;
208 
209 	struct workqueue_struct *writer_wq;
210 	struct work_struct writer_work;
211 
212 	struct bio_list flush_bio_list;
213 
214 	unsigned long autocommit_jiffies;
215 	struct timer_list autocommit_timer;
216 	unsigned autocommit_msec;
217 
218 	wait_queue_head_t copy_to_journal_wait;
219 
220 	struct completion crypto_backoff;
221 
222 	bool journal_uptodate;
223 	bool just_formatted;
224 
225 	struct alg_spec internal_hash_alg;
226 	struct alg_spec journal_crypt_alg;
227 	struct alg_spec journal_mac_alg;
228 };
229 
230 struct dm_integrity_range {
231 	sector_t logical_sector;
232 	unsigned n_sectors;
233 	struct rb_node node;
234 };
235 
236 struct dm_integrity_io {
237 	struct work_struct work;
238 
239 	struct dm_integrity_c *ic;
240 	bool write;
241 	bool fua;
242 
243 	struct dm_integrity_range range;
244 
245 	sector_t metadata_block;
246 	unsigned metadata_offset;
247 
248 	atomic_t in_flight;
249 	int bi_error;
250 
251 	struct completion *completion;
252 
253 	struct block_device *orig_bi_bdev;
254 	bio_end_io_t *orig_bi_end_io;
255 	struct bio_integrity_payload *orig_bi_integrity;
256 	struct bvec_iter orig_bi_iter;
257 };
258 
259 struct journal_completion {
260 	struct dm_integrity_c *ic;
261 	atomic_t in_flight;
262 	struct completion comp;
263 };
264 
265 struct journal_io {
266 	struct dm_integrity_range range;
267 	struct journal_completion *comp;
268 };
269 
270 static struct kmem_cache *journal_io_cache;
271 
272 #define JOURNAL_IO_MEMPOOL	32
273 
274 #ifdef DEBUG_PRINT
275 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
276 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
277 {
278 	va_list args;
279 	va_start(args, msg);
280 	vprintk(msg, args);
281 	va_end(args);
282 	if (len)
283 		pr_cont(":");
284 	while (len) {
285 		pr_cont(" %02x", *bytes);
286 		bytes++;
287 		len--;
288 	}
289 	pr_cont("\n");
290 }
291 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
292 #else
293 #define DEBUG_print(x, ...)			do { } while (0)
294 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
295 #endif
296 
297 /*
298  * DM Integrity profile, protection is performed layer above (dm-crypt)
299  */
300 static struct blk_integrity_profile dm_integrity_profile = {
301 	.name			= "DM-DIF-EXT-TAG",
302 	.generate_fn		= NULL,
303 	.verify_fn		= NULL,
304 };
305 
306 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
307 static void integrity_bio_wait(struct work_struct *w);
308 static void dm_integrity_dtr(struct dm_target *ti);
309 
310 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
311 {
312 	if (!cmpxchg(&ic->failed, 0, err))
313 		DMERR("Error on %s: %d", msg, err);
314 }
315 
316 static int dm_integrity_failed(struct dm_integrity_c *ic)
317 {
318 	return ACCESS_ONCE(ic->failed);
319 }
320 
321 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
322 					  unsigned j, unsigned char seq)
323 {
324 	/*
325 	 * Xor the number with section and sector, so that if a piece of
326 	 * journal is written at wrong place, it is detected.
327 	 */
328 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
329 }
330 
331 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
332 				sector_t *area, sector_t *offset)
333 {
334 	__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
335 
336 	*area = data_sector >> log2_interleave_sectors;
337 	*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
338 }
339 
340 #define sector_to_block(ic, n)						\
341 do {									\
342 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
343 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
344 } while (0)
345 
346 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
347 					    sector_t offset, unsigned *metadata_offset)
348 {
349 	__u64 ms;
350 	unsigned mo;
351 
352 	ms = area << ic->sb->log2_interleave_sectors;
353 	if (likely(ic->log2_metadata_run >= 0))
354 		ms += area << ic->log2_metadata_run;
355 	else
356 		ms += area * ic->metadata_run;
357 	ms >>= ic->log2_buffer_sectors;
358 
359 	sector_to_block(ic, offset);
360 
361 	if (likely(ic->log2_tag_size >= 0)) {
362 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
363 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
364 	} else {
365 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
366 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
367 	}
368 	*metadata_offset = mo;
369 	return ms;
370 }
371 
372 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
373 {
374 	sector_t result;
375 
376 	result = area << ic->sb->log2_interleave_sectors;
377 	if (likely(ic->log2_metadata_run >= 0))
378 		result += (area + 1) << ic->log2_metadata_run;
379 	else
380 		result += (area + 1) * ic->metadata_run;
381 
382 	result += (sector_t)ic->initial_sectors + offset;
383 	return result;
384 }
385 
386 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
387 {
388 	if (unlikely(*sec_ptr >= ic->journal_sections))
389 		*sec_ptr -= ic->journal_sections;
390 }
391 
392 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
393 {
394 	struct dm_io_request io_req;
395 	struct dm_io_region io_loc;
396 
397 	io_req.bi_op = op;
398 	io_req.bi_op_flags = op_flags;
399 	io_req.mem.type = DM_IO_KMEM;
400 	io_req.mem.ptr.addr = ic->sb;
401 	io_req.notify.fn = NULL;
402 	io_req.client = ic->io;
403 	io_loc.bdev = ic->dev->bdev;
404 	io_loc.sector = ic->start;
405 	io_loc.count = SB_SECTORS;
406 
407 	return dm_io(&io_req, 1, &io_loc, NULL);
408 }
409 
410 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
411 				 bool e, const char *function)
412 {
413 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
414 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
415 
416 	if (unlikely(section >= ic->journal_sections) ||
417 	    unlikely(offset >= limit)) {
418 		printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
419 			function, section, offset, ic->journal_sections, limit);
420 		BUG();
421 	}
422 #endif
423 }
424 
425 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
426 			       unsigned *pl_index, unsigned *pl_offset)
427 {
428 	unsigned sector;
429 
430 	access_journal_check(ic, section, offset, false, "page_list_location");
431 
432 	sector = section * ic->journal_section_sectors + offset;
433 
434 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
435 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
436 }
437 
438 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
439 					       unsigned section, unsigned offset, unsigned *n_sectors)
440 {
441 	unsigned pl_index, pl_offset;
442 	char *va;
443 
444 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
445 
446 	if (n_sectors)
447 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
448 
449 	va = lowmem_page_address(pl[pl_index].page);
450 
451 	return (struct journal_sector *)(va + pl_offset);
452 }
453 
454 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
455 {
456 	return access_page_list(ic, ic->journal, section, offset, NULL);
457 }
458 
459 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
460 {
461 	unsigned rel_sector, offset;
462 	struct journal_sector *js;
463 
464 	access_journal_check(ic, section, n, true, "access_journal_entry");
465 
466 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
467 	offset = n / JOURNAL_BLOCK_SECTORS;
468 
469 	js = access_journal(ic, section, rel_sector);
470 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
471 }
472 
473 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
474 {
475 	n <<= ic->sb->log2_sectors_per_block;
476 
477 	n += JOURNAL_BLOCK_SECTORS;
478 
479 	access_journal_check(ic, section, n, false, "access_journal_data");
480 
481 	return access_journal(ic, section, n);
482 }
483 
484 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
485 {
486 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
487 	int r;
488 	unsigned j, size;
489 
490 	desc->tfm = ic->journal_mac;
491 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
492 
493 	r = crypto_shash_init(desc);
494 	if (unlikely(r)) {
495 		dm_integrity_io_error(ic, "crypto_shash_init", r);
496 		goto err;
497 	}
498 
499 	for (j = 0; j < ic->journal_section_entries; j++) {
500 		struct journal_entry *je = access_journal_entry(ic, section, j);
501 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
502 		if (unlikely(r)) {
503 			dm_integrity_io_error(ic, "crypto_shash_update", r);
504 			goto err;
505 		}
506 	}
507 
508 	size = crypto_shash_digestsize(ic->journal_mac);
509 
510 	if (likely(size <= JOURNAL_MAC_SIZE)) {
511 		r = crypto_shash_final(desc, result);
512 		if (unlikely(r)) {
513 			dm_integrity_io_error(ic, "crypto_shash_final", r);
514 			goto err;
515 		}
516 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
517 	} else {
518 		__u8 digest[size];
519 		r = crypto_shash_final(desc, digest);
520 		if (unlikely(r)) {
521 			dm_integrity_io_error(ic, "crypto_shash_final", r);
522 			goto err;
523 		}
524 		memcpy(result, digest, JOURNAL_MAC_SIZE);
525 	}
526 
527 	return;
528 err:
529 	memset(result, 0, JOURNAL_MAC_SIZE);
530 }
531 
532 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
533 {
534 	__u8 result[JOURNAL_MAC_SIZE];
535 	unsigned j;
536 
537 	if (!ic->journal_mac)
538 		return;
539 
540 	section_mac(ic, section, result);
541 
542 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
543 		struct journal_sector *js = access_journal(ic, section, j);
544 
545 		if (likely(wr))
546 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
547 		else {
548 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
549 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
550 		}
551 	}
552 }
553 
554 static void complete_journal_op(void *context)
555 {
556 	struct journal_completion *comp = context;
557 	BUG_ON(!atomic_read(&comp->in_flight));
558 	if (likely(atomic_dec_and_test(&comp->in_flight)))
559 		complete(&comp->comp);
560 }
561 
562 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
563 			unsigned n_sections, struct journal_completion *comp)
564 {
565 	struct async_submit_ctl submit;
566 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
567 	unsigned pl_index, pl_offset, section_index;
568 	struct page_list *source_pl, *target_pl;
569 
570 	if (likely(encrypt)) {
571 		source_pl = ic->journal;
572 		target_pl = ic->journal_io;
573 	} else {
574 		source_pl = ic->journal_io;
575 		target_pl = ic->journal;
576 	}
577 
578 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
579 
580 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
581 
582 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
583 
584 	section_index = pl_index;
585 
586 	do {
587 		size_t this_step;
588 		struct page *src_pages[2];
589 		struct page *dst_page;
590 
591 		while (unlikely(pl_index == section_index)) {
592 			unsigned dummy;
593 			if (likely(encrypt))
594 				rw_section_mac(ic, section, true);
595 			section++;
596 			n_sections--;
597 			if (!n_sections)
598 				break;
599 			page_list_location(ic, section, 0, &section_index, &dummy);
600 		}
601 
602 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
603 		dst_page = target_pl[pl_index].page;
604 		src_pages[0] = source_pl[pl_index].page;
605 		src_pages[1] = ic->journal_xor[pl_index].page;
606 
607 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
608 
609 		pl_index++;
610 		pl_offset = 0;
611 		n_bytes -= this_step;
612 	} while (n_bytes);
613 
614 	BUG_ON(n_sections);
615 
616 	async_tx_issue_pending_all();
617 }
618 
619 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
620 {
621 	struct journal_completion *comp = req->data;
622 	if (unlikely(err)) {
623 		if (likely(err == -EINPROGRESS)) {
624 			complete(&comp->ic->crypto_backoff);
625 			return;
626 		}
627 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
628 	}
629 	complete_journal_op(comp);
630 }
631 
632 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
633 {
634 	int r;
635 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
636 				      complete_journal_encrypt, comp);
637 	if (likely(encrypt))
638 		r = crypto_skcipher_encrypt(req);
639 	else
640 		r = crypto_skcipher_decrypt(req);
641 	if (likely(!r))
642 		return false;
643 	if (likely(r == -EINPROGRESS))
644 		return true;
645 	if (likely(r == -EBUSY)) {
646 		wait_for_completion(&comp->ic->crypto_backoff);
647 		reinit_completion(&comp->ic->crypto_backoff);
648 		return true;
649 	}
650 	dm_integrity_io_error(comp->ic, "encrypt", r);
651 	return false;
652 }
653 
654 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
655 			  unsigned n_sections, struct journal_completion *comp)
656 {
657 	struct scatterlist **source_sg;
658 	struct scatterlist **target_sg;
659 
660 	atomic_add(2, &comp->in_flight);
661 
662 	if (likely(encrypt)) {
663 		source_sg = ic->journal_scatterlist;
664 		target_sg = ic->journal_io_scatterlist;
665 	} else {
666 		source_sg = ic->journal_io_scatterlist;
667 		target_sg = ic->journal_scatterlist;
668 	}
669 
670 	do {
671 		struct skcipher_request *req;
672 		unsigned ivsize;
673 		char *iv;
674 
675 		if (likely(encrypt))
676 			rw_section_mac(ic, section, true);
677 
678 		req = ic->sk_requests[section];
679 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
680 		iv = req->iv;
681 
682 		memcpy(iv, iv + ivsize, ivsize);
683 
684 		req->src = source_sg[section];
685 		req->dst = target_sg[section];
686 
687 		if (unlikely(do_crypt(encrypt, req, comp)))
688 			atomic_inc(&comp->in_flight);
689 
690 		section++;
691 		n_sections--;
692 	} while (n_sections);
693 
694 	atomic_dec(&comp->in_flight);
695 	complete_journal_op(comp);
696 }
697 
698 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
699 			    unsigned n_sections, struct journal_completion *comp)
700 {
701 	if (ic->journal_xor)
702 		return xor_journal(ic, encrypt, section, n_sections, comp);
703 	else
704 		return crypt_journal(ic, encrypt, section, n_sections, comp);
705 }
706 
707 static void complete_journal_io(unsigned long error, void *context)
708 {
709 	struct journal_completion *comp = context;
710 	if (unlikely(error != 0))
711 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
712 	complete_journal_op(comp);
713 }
714 
715 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
716 		       unsigned n_sections, struct journal_completion *comp)
717 {
718 	struct dm_io_request io_req;
719 	struct dm_io_region io_loc;
720 	unsigned sector, n_sectors, pl_index, pl_offset;
721 	int r;
722 
723 	if (unlikely(dm_integrity_failed(ic))) {
724 		if (comp)
725 			complete_journal_io(-1UL, comp);
726 		return;
727 	}
728 
729 	sector = section * ic->journal_section_sectors;
730 	n_sectors = n_sections * ic->journal_section_sectors;
731 
732 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
733 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
734 
735 	io_req.bi_op = op;
736 	io_req.bi_op_flags = op_flags;
737 	io_req.mem.type = DM_IO_PAGE_LIST;
738 	if (ic->journal_io)
739 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
740 	else
741 		io_req.mem.ptr.pl = &ic->journal[pl_index];
742 	io_req.mem.offset = pl_offset;
743 	if (likely(comp != NULL)) {
744 		io_req.notify.fn = complete_journal_io;
745 		io_req.notify.context = comp;
746 	} else {
747 		io_req.notify.fn = NULL;
748 	}
749 	io_req.client = ic->io;
750 	io_loc.bdev = ic->dev->bdev;
751 	io_loc.sector = ic->start + SB_SECTORS + sector;
752 	io_loc.count = n_sectors;
753 
754 	r = dm_io(&io_req, 1, &io_loc, NULL);
755 	if (unlikely(r)) {
756 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
757 		if (comp) {
758 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
759 			complete_journal_io(-1UL, comp);
760 		}
761 	}
762 }
763 
764 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
765 {
766 	struct journal_completion io_comp;
767 	struct journal_completion crypt_comp_1;
768 	struct journal_completion crypt_comp_2;
769 	unsigned i;
770 
771 	io_comp.ic = ic;
772 	io_comp.comp = COMPLETION_INITIALIZER_ONSTACK(io_comp.comp);
773 
774 	if (commit_start + commit_sections <= ic->journal_sections) {
775 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
776 		if (ic->journal_io) {
777 			crypt_comp_1.ic = ic;
778 			crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
779 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
780 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
781 			wait_for_completion_io(&crypt_comp_1.comp);
782 		} else {
783 			for (i = 0; i < commit_sections; i++)
784 				rw_section_mac(ic, commit_start + i, true);
785 		}
786 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
787 			   commit_sections, &io_comp);
788 	} else {
789 		unsigned to_end;
790 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
791 		to_end = ic->journal_sections - commit_start;
792 		if (ic->journal_io) {
793 			crypt_comp_1.ic = ic;
794 			crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
795 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
796 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
797 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
798 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
799 				crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
800 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
801 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
802 				wait_for_completion_io(&crypt_comp_1.comp);
803 			} else {
804 				crypt_comp_2.ic = ic;
805 				crypt_comp_2.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_2.comp);
806 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
807 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
808 				wait_for_completion_io(&crypt_comp_1.comp);
809 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
810 				wait_for_completion_io(&crypt_comp_2.comp);
811 			}
812 		} else {
813 			for (i = 0; i < to_end; i++)
814 				rw_section_mac(ic, commit_start + i, true);
815 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
816 			for (i = 0; i < commit_sections - to_end; i++)
817 				rw_section_mac(ic, i, true);
818 		}
819 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
820 	}
821 
822 	wait_for_completion_io(&io_comp.comp);
823 }
824 
825 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
826 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
827 {
828 	struct dm_io_request io_req;
829 	struct dm_io_region io_loc;
830 	int r;
831 	unsigned sector, pl_index, pl_offset;
832 
833 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
834 
835 	if (unlikely(dm_integrity_failed(ic))) {
836 		fn(-1UL, data);
837 		return;
838 	}
839 
840 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
841 
842 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
843 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
844 
845 	io_req.bi_op = REQ_OP_WRITE;
846 	io_req.bi_op_flags = 0;
847 	io_req.mem.type = DM_IO_PAGE_LIST;
848 	io_req.mem.ptr.pl = &ic->journal[pl_index];
849 	io_req.mem.offset = pl_offset;
850 	io_req.notify.fn = fn;
851 	io_req.notify.context = data;
852 	io_req.client = ic->io;
853 	io_loc.bdev = ic->dev->bdev;
854 	io_loc.sector = ic->start + target;
855 	io_loc.count = n_sectors;
856 
857 	r = dm_io(&io_req, 1, &io_loc, NULL);
858 	if (unlikely(r)) {
859 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
860 		fn(-1UL, data);
861 	}
862 }
863 
864 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
865 {
866 	struct rb_node **n = &ic->in_progress.rb_node;
867 	struct rb_node *parent;
868 
869 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
870 
871 	parent = NULL;
872 
873 	while (*n) {
874 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
875 
876 		parent = *n;
877 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
878 			n = &range->node.rb_left;
879 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
880 			n = &range->node.rb_right;
881 		} else {
882 			return false;
883 		}
884 	}
885 
886 	rb_link_node(&new_range->node, parent, n);
887 	rb_insert_color(&new_range->node, &ic->in_progress);
888 
889 	return true;
890 }
891 
892 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
893 {
894 	rb_erase(&range->node, &ic->in_progress);
895 	wake_up_locked(&ic->endio_wait);
896 }
897 
898 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
899 {
900 	unsigned long flags;
901 
902 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
903 	remove_range_unlocked(ic, range);
904 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
905 }
906 
907 static void init_journal_node(struct journal_node *node)
908 {
909 	RB_CLEAR_NODE(&node->node);
910 	node->sector = (sector_t)-1;
911 }
912 
913 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
914 {
915 	struct rb_node **link;
916 	struct rb_node *parent;
917 
918 	node->sector = sector;
919 	BUG_ON(!RB_EMPTY_NODE(&node->node));
920 
921 	link = &ic->journal_tree_root.rb_node;
922 	parent = NULL;
923 
924 	while (*link) {
925 		struct journal_node *j;
926 		parent = *link;
927 		j = container_of(parent, struct journal_node, node);
928 		if (sector < j->sector)
929 			link = &j->node.rb_left;
930 		else
931 			link = &j->node.rb_right;
932 	}
933 
934 	rb_link_node(&node->node, parent, link);
935 	rb_insert_color(&node->node, &ic->journal_tree_root);
936 }
937 
938 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
939 {
940 	BUG_ON(RB_EMPTY_NODE(&node->node));
941 	rb_erase(&node->node, &ic->journal_tree_root);
942 	init_journal_node(node);
943 }
944 
945 #define NOT_FOUND	(-1U)
946 
947 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
948 {
949 	struct rb_node *n = ic->journal_tree_root.rb_node;
950 	unsigned found = NOT_FOUND;
951 	*next_sector = (sector_t)-1;
952 	while (n) {
953 		struct journal_node *j = container_of(n, struct journal_node, node);
954 		if (sector == j->sector) {
955 			found = j - ic->journal_tree;
956 		}
957 		if (sector < j->sector) {
958 			*next_sector = j->sector;
959 			n = j->node.rb_left;
960 		} else {
961 			n = j->node.rb_right;
962 		}
963 	}
964 
965 	return found;
966 }
967 
968 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
969 {
970 	struct journal_node *node, *next_node;
971 	struct rb_node *next;
972 
973 	if (unlikely(pos >= ic->journal_entries))
974 		return false;
975 	node = &ic->journal_tree[pos];
976 	if (unlikely(RB_EMPTY_NODE(&node->node)))
977 		return false;
978 	if (unlikely(node->sector != sector))
979 		return false;
980 
981 	next = rb_next(&node->node);
982 	if (unlikely(!next))
983 		return true;
984 
985 	next_node = container_of(next, struct journal_node, node);
986 	return next_node->sector != sector;
987 }
988 
989 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
990 {
991 	struct rb_node *next;
992 	struct journal_node *next_node;
993 	unsigned next_section;
994 
995 	BUG_ON(RB_EMPTY_NODE(&node->node));
996 
997 	next = rb_next(&node->node);
998 	if (unlikely(!next))
999 		return false;
1000 
1001 	next_node = container_of(next, struct journal_node, node);
1002 
1003 	if (next_node->sector != node->sector)
1004 		return false;
1005 
1006 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1007 	if (next_section >= ic->committed_section &&
1008 	    next_section < ic->committed_section + ic->n_committed_sections)
1009 		return true;
1010 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1011 		return true;
1012 
1013 	return false;
1014 }
1015 
1016 #define TAG_READ	0
1017 #define TAG_WRITE	1
1018 #define TAG_CMP		2
1019 
1020 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1021 			       unsigned *metadata_offset, unsigned total_size, int op)
1022 {
1023 	do {
1024 		unsigned char *data, *dp;
1025 		struct dm_buffer *b;
1026 		unsigned to_copy;
1027 		int r;
1028 
1029 		r = dm_integrity_failed(ic);
1030 		if (unlikely(r))
1031 			return r;
1032 
1033 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1034 		if (unlikely(IS_ERR(data)))
1035 			return PTR_ERR(data);
1036 
1037 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1038 		dp = data + *metadata_offset;
1039 		if (op == TAG_READ) {
1040 			memcpy(tag, dp, to_copy);
1041 		} else if (op == TAG_WRITE) {
1042 			memcpy(dp, tag, to_copy);
1043 			dm_bufio_mark_buffer_dirty(b);
1044 		} else  {
1045 			/* e.g.: op == TAG_CMP */
1046 			if (unlikely(memcmp(dp, tag, to_copy))) {
1047 				unsigned i;
1048 
1049 				for (i = 0; i < to_copy; i++) {
1050 					if (dp[i] != tag[i])
1051 						break;
1052 					total_size--;
1053 				}
1054 				dm_bufio_release(b);
1055 				return total_size;
1056 			}
1057 		}
1058 		dm_bufio_release(b);
1059 
1060 		tag += to_copy;
1061 		*metadata_offset += to_copy;
1062 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1063 			(*metadata_block)++;
1064 			*metadata_offset = 0;
1065 		}
1066 		total_size -= to_copy;
1067 	} while (unlikely(total_size));
1068 
1069 	return 0;
1070 }
1071 
1072 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1073 {
1074 	int r;
1075 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1076 	if (unlikely(r))
1077 		dm_integrity_io_error(ic, "writing tags", r);
1078 }
1079 
1080 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1081 {
1082 	DECLARE_WAITQUEUE(wait, current);
1083 	__add_wait_queue(&ic->endio_wait, &wait);
1084 	__set_current_state(TASK_UNINTERRUPTIBLE);
1085 	spin_unlock_irq(&ic->endio_wait.lock);
1086 	io_schedule();
1087 	spin_lock_irq(&ic->endio_wait.lock);
1088 	__remove_wait_queue(&ic->endio_wait, &wait);
1089 }
1090 
1091 static void autocommit_fn(unsigned long data)
1092 {
1093 	struct dm_integrity_c *ic = (struct dm_integrity_c *)data;
1094 
1095 	if (likely(!dm_integrity_failed(ic)))
1096 		queue_work(ic->commit_wq, &ic->commit_work);
1097 }
1098 
1099 static void schedule_autocommit(struct dm_integrity_c *ic)
1100 {
1101 	if (!timer_pending(&ic->autocommit_timer))
1102 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1103 }
1104 
1105 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1106 {
1107 	struct bio *bio;
1108 	spin_lock_irq(&ic->endio_wait.lock);
1109 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1110 	bio_list_add(&ic->flush_bio_list, bio);
1111 	spin_unlock_irq(&ic->endio_wait.lock);
1112 	queue_work(ic->commit_wq, &ic->commit_work);
1113 }
1114 
1115 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1116 {
1117 	int r = dm_integrity_failed(ic);
1118 	if (unlikely(r) && !bio->bi_error)
1119 		bio->bi_error = r;
1120 	bio_endio(bio);
1121 }
1122 
1123 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1124 {
1125 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1126 
1127 	if (unlikely(dio->fua) && likely(!bio->bi_error) && likely(!dm_integrity_failed(ic)))
1128 		submit_flush_bio(ic, dio);
1129 	else
1130 		do_endio(ic, bio);
1131 }
1132 
1133 static void dec_in_flight(struct dm_integrity_io *dio)
1134 {
1135 	if (atomic_dec_and_test(&dio->in_flight)) {
1136 		struct dm_integrity_c *ic = dio->ic;
1137 		struct bio *bio;
1138 
1139 		remove_range(ic, &dio->range);
1140 
1141 		if (unlikely(dio->write))
1142 			schedule_autocommit(ic);
1143 
1144 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1145 
1146 		if (unlikely(dio->bi_error) && !bio->bi_error)
1147 			bio->bi_error = dio->bi_error;
1148 		if (likely(!bio->bi_error) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1149 			dio->range.logical_sector += dio->range.n_sectors;
1150 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1151 			INIT_WORK(&dio->work, integrity_bio_wait);
1152 			queue_work(ic->wait_wq, &dio->work);
1153 			return;
1154 		}
1155 		do_endio_flush(ic, dio);
1156 	}
1157 }
1158 
1159 static void integrity_end_io(struct bio *bio)
1160 {
1161 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1162 
1163 	bio->bi_iter = dio->orig_bi_iter;
1164 	bio->bi_bdev = dio->orig_bi_bdev;
1165 	if (dio->orig_bi_integrity) {
1166 		bio->bi_integrity = dio->orig_bi_integrity;
1167 		bio->bi_opf |= REQ_INTEGRITY;
1168 	}
1169 	bio->bi_end_io = dio->orig_bi_end_io;
1170 
1171 	if (dio->completion)
1172 		complete(dio->completion);
1173 
1174 	dec_in_flight(dio);
1175 }
1176 
1177 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1178 				      const char *data, char *result)
1179 {
1180 	__u64 sector_le = cpu_to_le64(sector);
1181 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1182 	int r;
1183 	unsigned digest_size;
1184 
1185 	req->tfm = ic->internal_hash;
1186 	req->flags = 0;
1187 
1188 	r = crypto_shash_init(req);
1189 	if (unlikely(r < 0)) {
1190 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1191 		goto failed;
1192 	}
1193 
1194 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1195 	if (unlikely(r < 0)) {
1196 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1197 		goto failed;
1198 	}
1199 
1200 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1201 	if (unlikely(r < 0)) {
1202 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1203 		goto failed;
1204 	}
1205 
1206 	r = crypto_shash_final(req, result);
1207 	if (unlikely(r < 0)) {
1208 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1209 		goto failed;
1210 	}
1211 
1212 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1213 	if (unlikely(digest_size < ic->tag_size))
1214 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1215 
1216 	return;
1217 
1218 failed:
1219 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1220 	get_random_bytes(result, ic->tag_size);
1221 }
1222 
1223 static void integrity_metadata(struct work_struct *w)
1224 {
1225 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1226 	struct dm_integrity_c *ic = dio->ic;
1227 
1228 	int r;
1229 
1230 	if (ic->internal_hash) {
1231 		struct bvec_iter iter;
1232 		struct bio_vec bv;
1233 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1234 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1235 		char *checksums;
1236 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1237 		char checksums_onstack[ic->tag_size + extra_space];
1238 		unsigned sectors_to_process = dio->range.n_sectors;
1239 		sector_t sector = dio->range.logical_sector;
1240 
1241 		if (unlikely(ic->mode == 'R'))
1242 			goto skip_io;
1243 
1244 		checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1245 				    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1246 		if (!checksums)
1247 			checksums = checksums_onstack;
1248 
1249 		__bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1250 			unsigned pos;
1251 			char *mem, *checksums_ptr;
1252 
1253 again:
1254 			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1255 			pos = 0;
1256 			checksums_ptr = checksums;
1257 			do {
1258 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1259 				checksums_ptr += ic->tag_size;
1260 				sectors_to_process -= ic->sectors_per_block;
1261 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1262 				sector += ic->sectors_per_block;
1263 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1264 			kunmap_atomic(mem);
1265 
1266 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1267 						checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1268 			if (unlikely(r)) {
1269 				if (r > 0) {
1270 					DMERR("Checksum failed at sector 0x%llx",
1271 					      (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1272 					r = -EILSEQ;
1273 				}
1274 				if (likely(checksums != checksums_onstack))
1275 					kfree(checksums);
1276 				goto error;
1277 			}
1278 
1279 			if (!sectors_to_process)
1280 				break;
1281 
1282 			if (unlikely(pos < bv.bv_len)) {
1283 				bv.bv_offset += pos;
1284 				bv.bv_len -= pos;
1285 				goto again;
1286 			}
1287 		}
1288 
1289 		if (likely(checksums != checksums_onstack))
1290 			kfree(checksums);
1291 	} else {
1292 		struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1293 
1294 		if (bip) {
1295 			struct bio_vec biv;
1296 			struct bvec_iter iter;
1297 			unsigned data_to_process = dio->range.n_sectors;
1298 			sector_to_block(ic, data_to_process);
1299 			data_to_process *= ic->tag_size;
1300 
1301 			bip_for_each_vec(biv, bip, iter) {
1302 				unsigned char *tag;
1303 				unsigned this_len;
1304 
1305 				BUG_ON(PageHighMem(biv.bv_page));
1306 				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1307 				this_len = min(biv.bv_len, data_to_process);
1308 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1309 							this_len, !dio->write ? TAG_READ : TAG_WRITE);
1310 				if (unlikely(r))
1311 					goto error;
1312 				data_to_process -= this_len;
1313 				if (!data_to_process)
1314 					break;
1315 			}
1316 		}
1317 	}
1318 skip_io:
1319 	dec_in_flight(dio);
1320 	return;
1321 error:
1322 	dio->bi_error = r;
1323 	dec_in_flight(dio);
1324 }
1325 
1326 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1327 {
1328 	struct dm_integrity_c *ic = ti->private;
1329 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1330 	struct bio_integrity_payload *bip;
1331 
1332 	sector_t area, offset;
1333 
1334 	dio->ic = ic;
1335 	dio->bi_error = 0;
1336 
1337 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1338 		submit_flush_bio(ic, dio);
1339 		return DM_MAPIO_SUBMITTED;
1340 	}
1341 
1342 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1343 	dio->write = bio_op(bio) == REQ_OP_WRITE;
1344 	dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1345 	if (unlikely(dio->fua)) {
1346 		/*
1347 		 * Don't pass down the FUA flag because we have to flush
1348 		 * disk cache anyway.
1349 		 */
1350 		bio->bi_opf &= ~REQ_FUA;
1351 	}
1352 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1353 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1354 		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1355 		      (unsigned long long)ic->provided_data_sectors);
1356 		return -EIO;
1357 	}
1358 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1359 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1360 		      ic->sectors_per_block,
1361 		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1362 		return -EIO;
1363 	}
1364 
1365 	if (ic->sectors_per_block > 1) {
1366 		struct bvec_iter iter;
1367 		struct bio_vec bv;
1368 		bio_for_each_segment(bv, bio, iter) {
1369 			if (unlikely((bv.bv_offset | bv.bv_len) & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1370 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1371 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1372 				return -EIO;
1373 			}
1374 		}
1375 	}
1376 
1377 	bip = bio_integrity(bio);
1378 	if (!ic->internal_hash) {
1379 		if (bip) {
1380 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1381 			if (ic->log2_tag_size >= 0)
1382 				wanted_tag_size <<= ic->log2_tag_size;
1383 			else
1384 				wanted_tag_size *= ic->tag_size;
1385 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1386 				DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1387 				return -EIO;
1388 			}
1389 		}
1390 	} else {
1391 		if (unlikely(bip != NULL)) {
1392 			DMERR("Unexpected integrity data when using internal hash");
1393 			return -EIO;
1394 		}
1395 	}
1396 
1397 	if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1398 		return -EIO;
1399 
1400 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1401 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1402 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1403 
1404 	dm_integrity_map_continue(dio, true);
1405 	return DM_MAPIO_SUBMITTED;
1406 }
1407 
1408 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1409 				 unsigned journal_section, unsigned journal_entry)
1410 {
1411 	struct dm_integrity_c *ic = dio->ic;
1412 	sector_t logical_sector;
1413 	unsigned n_sectors;
1414 
1415 	logical_sector = dio->range.logical_sector;
1416 	n_sectors = dio->range.n_sectors;
1417 	do {
1418 		struct bio_vec bv = bio_iovec(bio);
1419 		char *mem;
1420 
1421 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1422 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1423 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1424 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1425 retry_kmap:
1426 		mem = kmap_atomic(bv.bv_page);
1427 		if (likely(dio->write))
1428 			flush_dcache_page(bv.bv_page);
1429 
1430 		do {
1431 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1432 
1433 			if (unlikely(!dio->write)) {
1434 				struct journal_sector *js;
1435 				char *mem_ptr;
1436 				unsigned s;
1437 
1438 				if (unlikely(journal_entry_is_inprogress(je))) {
1439 					flush_dcache_page(bv.bv_page);
1440 					kunmap_atomic(mem);
1441 
1442 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1443 					goto retry_kmap;
1444 				}
1445 				smp_rmb();
1446 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1447 				js = access_journal_data(ic, journal_section, journal_entry);
1448 				mem_ptr = mem + bv.bv_offset;
1449 				s = 0;
1450 				do {
1451 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1452 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1453 					js++;
1454 					mem_ptr += 1 << SECTOR_SHIFT;
1455 				} while (++s < ic->sectors_per_block);
1456 #ifdef INTERNAL_VERIFY
1457 				if (ic->internal_hash) {
1458 					char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1459 
1460 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1461 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1462 						DMERR("Checksum failed when reading from journal, at sector 0x%llx",
1463 						      (unsigned long long)logical_sector);
1464 					}
1465 				}
1466 #endif
1467 			}
1468 
1469 			if (!ic->internal_hash) {
1470 				struct bio_integrity_payload *bip = bio_integrity(bio);
1471 				unsigned tag_todo = ic->tag_size;
1472 				char *tag_ptr = journal_entry_tag(ic, je);
1473 
1474 				if (bip) do {
1475 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1476 					unsigned tag_now = min(biv.bv_len, tag_todo);
1477 					char *tag_addr;
1478 					BUG_ON(PageHighMem(biv.bv_page));
1479 					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1480 					if (likely(dio->write))
1481 						memcpy(tag_ptr, tag_addr, tag_now);
1482 					else
1483 						memcpy(tag_addr, tag_ptr, tag_now);
1484 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1485 					tag_ptr += tag_now;
1486 					tag_todo -= tag_now;
1487 				} while (unlikely(tag_todo)); else {
1488 					if (likely(dio->write))
1489 						memset(tag_ptr, 0, tag_todo);
1490 				}
1491 			}
1492 
1493 			if (likely(dio->write)) {
1494 				struct journal_sector *js;
1495 				unsigned s;
1496 
1497 				js = access_journal_data(ic, journal_section, journal_entry);
1498 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1499 
1500 				s = 0;
1501 				do {
1502 					je->last_bytes[s] = js[s].commit_id;
1503 				} while (++s < ic->sectors_per_block);
1504 
1505 				if (ic->internal_hash) {
1506 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1507 					if (unlikely(digest_size > ic->tag_size)) {
1508 						char checksums_onstack[digest_size];
1509 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1510 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1511 					} else
1512 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1513 				}
1514 
1515 				journal_entry_set_sector(je, logical_sector);
1516 			}
1517 			logical_sector += ic->sectors_per_block;
1518 
1519 			journal_entry++;
1520 			if (unlikely(journal_entry == ic->journal_section_entries)) {
1521 				journal_entry = 0;
1522 				journal_section++;
1523 				wraparound_section(ic, &journal_section);
1524 			}
1525 
1526 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1527 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1528 
1529 		if (unlikely(!dio->write))
1530 			flush_dcache_page(bv.bv_page);
1531 		kunmap_atomic(mem);
1532 	} while (n_sectors);
1533 
1534 	if (likely(dio->write)) {
1535 		smp_mb();
1536 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1537 			wake_up(&ic->copy_to_journal_wait);
1538 		if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1539 			queue_work(ic->commit_wq, &ic->commit_work);
1540 		} else {
1541 			schedule_autocommit(ic);
1542 		}
1543 	} else {
1544 		remove_range(ic, &dio->range);
1545 	}
1546 
1547 	if (unlikely(bio->bi_iter.bi_size)) {
1548 		sector_t area, offset;
1549 
1550 		dio->range.logical_sector = logical_sector;
1551 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1552 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1553 		return true;
1554 	}
1555 
1556 	return false;
1557 }
1558 
1559 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1560 {
1561 	struct dm_integrity_c *ic = dio->ic;
1562 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1563 	unsigned journal_section, journal_entry;
1564 	unsigned journal_read_pos;
1565 	struct completion read_comp;
1566 	bool need_sync_io = ic->internal_hash && !dio->write;
1567 
1568 	if (need_sync_io && from_map) {
1569 		INIT_WORK(&dio->work, integrity_bio_wait);
1570 		queue_work(ic->metadata_wq, &dio->work);
1571 		return;
1572 	}
1573 
1574 lock_retry:
1575 	spin_lock_irq(&ic->endio_wait.lock);
1576 retry:
1577 	if (unlikely(dm_integrity_failed(ic))) {
1578 		spin_unlock_irq(&ic->endio_wait.lock);
1579 		do_endio(ic, bio);
1580 		return;
1581 	}
1582 	dio->range.n_sectors = bio_sectors(bio);
1583 	journal_read_pos = NOT_FOUND;
1584 	if (likely(ic->mode == 'J')) {
1585 		if (dio->write) {
1586 			unsigned next_entry, i, pos;
1587 			unsigned ws, we;
1588 
1589 			dio->range.n_sectors = min(dio->range.n_sectors, ic->free_sectors);
1590 			if (unlikely(!dio->range.n_sectors))
1591 				goto sleep;
1592 			ic->free_sectors -= dio->range.n_sectors;
1593 			journal_section = ic->free_section;
1594 			journal_entry = ic->free_section_entry;
1595 
1596 			next_entry = ic->free_section_entry + dio->range.n_sectors;
1597 			ic->free_section_entry = next_entry % ic->journal_section_entries;
1598 			ic->free_section += next_entry / ic->journal_section_entries;
1599 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1600 			wraparound_section(ic, &ic->free_section);
1601 
1602 			pos = journal_section * ic->journal_section_entries + journal_entry;
1603 			ws = journal_section;
1604 			we = journal_entry;
1605 			i = 0;
1606 			do {
1607 				struct journal_entry *je;
1608 
1609 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1610 				pos++;
1611 				if (unlikely(pos >= ic->journal_entries))
1612 					pos = 0;
1613 
1614 				je = access_journal_entry(ic, ws, we);
1615 				BUG_ON(!journal_entry_is_unused(je));
1616 				journal_entry_set_inprogress(je);
1617 				we++;
1618 				if (unlikely(we == ic->journal_section_entries)) {
1619 					we = 0;
1620 					ws++;
1621 					wraparound_section(ic, &ws);
1622 				}
1623 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1624 
1625 			spin_unlock_irq(&ic->endio_wait.lock);
1626 			goto journal_read_write;
1627 		} else {
1628 			sector_t next_sector;
1629 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1630 			if (likely(journal_read_pos == NOT_FOUND)) {
1631 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1632 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
1633 			} else {
1634 				unsigned i;
1635 				unsigned jp = journal_read_pos + 1;
1636 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1637 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1638 						break;
1639 				}
1640 				dio->range.n_sectors = i;
1641 			}
1642 		}
1643 	}
1644 	if (unlikely(!add_new_range(ic, &dio->range))) {
1645 		/*
1646 		 * We must not sleep in the request routine because it could
1647 		 * stall bios on current->bio_list.
1648 		 * So, we offload the bio to a workqueue if we have to sleep.
1649 		 */
1650 sleep:
1651 		if (from_map) {
1652 			spin_unlock_irq(&ic->endio_wait.lock);
1653 			INIT_WORK(&dio->work, integrity_bio_wait);
1654 			queue_work(ic->wait_wq, &dio->work);
1655 			return;
1656 		} else {
1657 			sleep_on_endio_wait(ic);
1658 			goto retry;
1659 		}
1660 	}
1661 	spin_unlock_irq(&ic->endio_wait.lock);
1662 
1663 	if (unlikely(journal_read_pos != NOT_FOUND)) {
1664 		journal_section = journal_read_pos / ic->journal_section_entries;
1665 		journal_entry = journal_read_pos % ic->journal_section_entries;
1666 		goto journal_read_write;
1667 	}
1668 
1669 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1670 
1671 	if (need_sync_io) {
1672 		read_comp = COMPLETION_INITIALIZER_ONSTACK(read_comp);
1673 		dio->completion = &read_comp;
1674 	} else
1675 		dio->completion = NULL;
1676 
1677 	dio->orig_bi_iter = bio->bi_iter;
1678 
1679 	dio->orig_bi_bdev = bio->bi_bdev;
1680 	bio->bi_bdev = ic->dev->bdev;
1681 
1682 	dio->orig_bi_integrity = bio_integrity(bio);
1683 	bio->bi_integrity = NULL;
1684 	bio->bi_opf &= ~REQ_INTEGRITY;
1685 
1686 	dio->orig_bi_end_io = bio->bi_end_io;
1687 	bio->bi_end_io = integrity_end_io;
1688 
1689 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1690 	bio->bi_iter.bi_sector += ic->start;
1691 	generic_make_request(bio);
1692 
1693 	if (need_sync_io) {
1694 		wait_for_completion_io(&read_comp);
1695 		integrity_metadata(&dio->work);
1696 	} else {
1697 		INIT_WORK(&dio->work, integrity_metadata);
1698 		queue_work(ic->metadata_wq, &dio->work);
1699 	}
1700 
1701 	return;
1702 
1703 journal_read_write:
1704 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1705 		goto lock_retry;
1706 
1707 	do_endio_flush(ic, dio);
1708 }
1709 
1710 
1711 static void integrity_bio_wait(struct work_struct *w)
1712 {
1713 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1714 
1715 	dm_integrity_map_continue(dio, false);
1716 }
1717 
1718 static void pad_uncommitted(struct dm_integrity_c *ic)
1719 {
1720 	if (ic->free_section_entry) {
1721 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1722 		ic->free_section_entry = 0;
1723 		ic->free_section++;
1724 		wraparound_section(ic, &ic->free_section);
1725 		ic->n_uncommitted_sections++;
1726 	}
1727 }
1728 
1729 static void integrity_commit(struct work_struct *w)
1730 {
1731 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1732 	unsigned commit_start, commit_sections;
1733 	unsigned i, j, n;
1734 	struct bio *flushes;
1735 
1736 	del_timer(&ic->autocommit_timer);
1737 
1738 	spin_lock_irq(&ic->endio_wait.lock);
1739 	flushes = bio_list_get(&ic->flush_bio_list);
1740 	if (unlikely(ic->mode != 'J')) {
1741 		spin_unlock_irq(&ic->endio_wait.lock);
1742 		dm_integrity_flush_buffers(ic);
1743 		goto release_flush_bios;
1744 	}
1745 
1746 	pad_uncommitted(ic);
1747 	commit_start = ic->uncommitted_section;
1748 	commit_sections = ic->n_uncommitted_sections;
1749 	spin_unlock_irq(&ic->endio_wait.lock);
1750 
1751 	if (!commit_sections)
1752 		goto release_flush_bios;
1753 
1754 	i = commit_start;
1755 	for (n = 0; n < commit_sections; n++) {
1756 		for (j = 0; j < ic->journal_section_entries; j++) {
1757 			struct journal_entry *je;
1758 			je = access_journal_entry(ic, i, j);
1759 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1760 		}
1761 		for (j = 0; j < ic->journal_section_sectors; j++) {
1762 			struct journal_sector *js;
1763 			js = access_journal(ic, i, j);
1764 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1765 		}
1766 		i++;
1767 		if (unlikely(i >= ic->journal_sections))
1768 			ic->commit_seq = next_commit_seq(ic->commit_seq);
1769 		wraparound_section(ic, &i);
1770 	}
1771 	smp_rmb();
1772 
1773 	write_journal(ic, commit_start, commit_sections);
1774 
1775 	spin_lock_irq(&ic->endio_wait.lock);
1776 	ic->uncommitted_section += commit_sections;
1777 	wraparound_section(ic, &ic->uncommitted_section);
1778 	ic->n_uncommitted_sections -= commit_sections;
1779 	ic->n_committed_sections += commit_sections;
1780 	spin_unlock_irq(&ic->endio_wait.lock);
1781 
1782 	if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1783 		queue_work(ic->writer_wq, &ic->writer_work);
1784 
1785 release_flush_bios:
1786 	while (flushes) {
1787 		struct bio *next = flushes->bi_next;
1788 		flushes->bi_next = NULL;
1789 		do_endio(ic, flushes);
1790 		flushes = next;
1791 	}
1792 }
1793 
1794 static void complete_copy_from_journal(unsigned long error, void *context)
1795 {
1796 	struct journal_io *io = context;
1797 	struct journal_completion *comp = io->comp;
1798 	struct dm_integrity_c *ic = comp->ic;
1799 	remove_range(ic, &io->range);
1800 	mempool_free(io, ic->journal_io_mempool);
1801 	if (unlikely(error != 0))
1802 		dm_integrity_io_error(ic, "copying from journal", -EIO);
1803 	complete_journal_op(comp);
1804 }
1805 
1806 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1807 			       struct journal_entry *je)
1808 {
1809 	unsigned s = 0;
1810 	do {
1811 		js->commit_id = je->last_bytes[s];
1812 		js++;
1813 	} while (++s < ic->sectors_per_block);
1814 }
1815 
1816 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1817 			     unsigned write_sections, bool from_replay)
1818 {
1819 	unsigned i, j, n;
1820 	struct journal_completion comp;
1821 
1822 	comp.ic = ic;
1823 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1824 	comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
1825 
1826 	i = write_start;
1827 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1828 #ifndef INTERNAL_VERIFY
1829 		if (unlikely(from_replay))
1830 #endif
1831 			rw_section_mac(ic, i, false);
1832 		for (j = 0; j < ic->journal_section_entries; j++) {
1833 			struct journal_entry *je = access_journal_entry(ic, i, j);
1834 			sector_t sec, area, offset;
1835 			unsigned k, l, next_loop;
1836 			sector_t metadata_block;
1837 			unsigned metadata_offset;
1838 			struct journal_io *io;
1839 
1840 			if (journal_entry_is_unused(je))
1841 				continue;
1842 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1843 			sec = journal_entry_get_sector(je);
1844 			if (unlikely(from_replay)) {
1845 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1846 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1847 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
1848 				}
1849 			}
1850 			get_area_and_offset(ic, sec, &area, &offset);
1851 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1852 			for (k = j + 1; k < ic->journal_section_entries; k++) {
1853 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
1854 				sector_t sec2, area2, offset2;
1855 				if (journal_entry_is_unused(je2))
1856 					break;
1857 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1858 				sec2 = journal_entry_get_sector(je2);
1859 				get_area_and_offset(ic, sec2, &area2, &offset2);
1860 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1861 					break;
1862 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1863 			}
1864 			next_loop = k - 1;
1865 
1866 			io = mempool_alloc(ic->journal_io_mempool, GFP_NOIO);
1867 			io->comp = &comp;
1868 			io->range.logical_sector = sec;
1869 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1870 
1871 			spin_lock_irq(&ic->endio_wait.lock);
1872 			while (unlikely(!add_new_range(ic, &io->range)))
1873 				sleep_on_endio_wait(ic);
1874 
1875 			if (likely(!from_replay)) {
1876 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1877 
1878 				/* don't write if there is newer committed sector */
1879 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
1880 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
1881 
1882 					journal_entry_set_unused(je2);
1883 					remove_journal_node(ic, &section_node[j]);
1884 					j++;
1885 					sec += ic->sectors_per_block;
1886 					offset += ic->sectors_per_block;
1887 				}
1888 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
1889 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
1890 
1891 					journal_entry_set_unused(je2);
1892 					remove_journal_node(ic, &section_node[k - 1]);
1893 					k--;
1894 				}
1895 				if (j == k) {
1896 					remove_range_unlocked(ic, &io->range);
1897 					spin_unlock_irq(&ic->endio_wait.lock);
1898 					mempool_free(io, ic->journal_io_mempool);
1899 					goto skip_io;
1900 				}
1901 				for (l = j; l < k; l++) {
1902 					remove_journal_node(ic, &section_node[l]);
1903 				}
1904 			}
1905 			spin_unlock_irq(&ic->endio_wait.lock);
1906 
1907 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
1908 			for (l = j; l < k; l++) {
1909 				int r;
1910 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
1911 
1912 				if (
1913 #ifndef INTERNAL_VERIFY
1914 				    unlikely(from_replay) &&
1915 #endif
1916 				    ic->internal_hash) {
1917 					char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1918 
1919 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
1920 								  (char *)access_journal_data(ic, i, l), test_tag);
1921 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
1922 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
1923 				}
1924 
1925 				journal_entry_set_unused(je2);
1926 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
1927 							ic->tag_size, TAG_WRITE);
1928 				if (unlikely(r)) {
1929 					dm_integrity_io_error(ic, "reading tags", r);
1930 				}
1931 			}
1932 
1933 			atomic_inc(&comp.in_flight);
1934 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
1935 					  (k - j) << ic->sb->log2_sectors_per_block,
1936 					  get_data_sector(ic, area, offset),
1937 					  complete_copy_from_journal, io);
1938 skip_io:
1939 			j = next_loop;
1940 		}
1941 	}
1942 
1943 	dm_bufio_write_dirty_buffers_async(ic->bufio);
1944 
1945 	complete_journal_op(&comp);
1946 	wait_for_completion_io(&comp.comp);
1947 
1948 	dm_integrity_flush_buffers(ic);
1949 }
1950 
1951 static void integrity_writer(struct work_struct *w)
1952 {
1953 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
1954 	unsigned write_start, write_sections;
1955 
1956 	unsigned prev_free_sectors;
1957 
1958 	/* the following test is not needed, but it tests the replay code */
1959 	if (ACCESS_ONCE(ic->suspending))
1960 		return;
1961 
1962 	spin_lock_irq(&ic->endio_wait.lock);
1963 	write_start = ic->committed_section;
1964 	write_sections = ic->n_committed_sections;
1965 	spin_unlock_irq(&ic->endio_wait.lock);
1966 
1967 	if (!write_sections)
1968 		return;
1969 
1970 	do_journal_write(ic, write_start, write_sections, false);
1971 
1972 	spin_lock_irq(&ic->endio_wait.lock);
1973 
1974 	ic->committed_section += write_sections;
1975 	wraparound_section(ic, &ic->committed_section);
1976 	ic->n_committed_sections -= write_sections;
1977 
1978 	prev_free_sectors = ic->free_sectors;
1979 	ic->free_sectors += write_sections * ic->journal_section_entries;
1980 	if (unlikely(!prev_free_sectors))
1981 		wake_up_locked(&ic->endio_wait);
1982 
1983 	spin_unlock_irq(&ic->endio_wait.lock);
1984 }
1985 
1986 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
1987 			 unsigned n_sections, unsigned char commit_seq)
1988 {
1989 	unsigned i, j, n;
1990 
1991 	if (!n_sections)
1992 		return;
1993 
1994 	for (n = 0; n < n_sections; n++) {
1995 		i = start_section + n;
1996 		wraparound_section(ic, &i);
1997 		for (j = 0; j < ic->journal_section_sectors; j++) {
1998 			struct journal_sector *js = access_journal(ic, i, j);
1999 			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2000 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2001 		}
2002 		for (j = 0; j < ic->journal_section_entries; j++) {
2003 			struct journal_entry *je = access_journal_entry(ic, i, j);
2004 			journal_entry_set_unused(je);
2005 		}
2006 	}
2007 
2008 	write_journal(ic, start_section, n_sections);
2009 }
2010 
2011 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2012 {
2013 	unsigned char k;
2014 	for (k = 0; k < N_COMMIT_IDS; k++) {
2015 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2016 			return k;
2017 	}
2018 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2019 	return -EIO;
2020 }
2021 
2022 static void replay_journal(struct dm_integrity_c *ic)
2023 {
2024 	unsigned i, j;
2025 	bool used_commit_ids[N_COMMIT_IDS];
2026 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2027 	unsigned write_start, write_sections;
2028 	unsigned continue_section;
2029 	bool journal_empty;
2030 	unsigned char unused, last_used, want_commit_seq;
2031 
2032 	if (ic->mode == 'R')
2033 		return;
2034 
2035 	if (ic->journal_uptodate)
2036 		return;
2037 
2038 	last_used = 0;
2039 	write_start = 0;
2040 
2041 	if (!ic->just_formatted) {
2042 		DEBUG_print("reading journal\n");
2043 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2044 		if (ic->journal_io)
2045 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2046 		if (ic->journal_io) {
2047 			struct journal_completion crypt_comp;
2048 			crypt_comp.ic = ic;
2049 			crypt_comp.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp.comp);
2050 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2051 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2052 			wait_for_completion(&crypt_comp.comp);
2053 		}
2054 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2055 	}
2056 
2057 	if (dm_integrity_failed(ic))
2058 		goto clear_journal;
2059 
2060 	journal_empty = true;
2061 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2062 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2063 	for (i = 0; i < ic->journal_sections; i++) {
2064 		for (j = 0; j < ic->journal_section_sectors; j++) {
2065 			int k;
2066 			struct journal_sector *js = access_journal(ic, i, j);
2067 			k = find_commit_seq(ic, i, j, js->commit_id);
2068 			if (k < 0)
2069 				goto clear_journal;
2070 			used_commit_ids[k] = true;
2071 			max_commit_id_sections[k] = i;
2072 		}
2073 		if (journal_empty) {
2074 			for (j = 0; j < ic->journal_section_entries; j++) {
2075 				struct journal_entry *je = access_journal_entry(ic, i, j);
2076 				if (!journal_entry_is_unused(je)) {
2077 					journal_empty = false;
2078 					break;
2079 				}
2080 			}
2081 		}
2082 	}
2083 
2084 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2085 		unused = N_COMMIT_IDS - 1;
2086 		while (unused && !used_commit_ids[unused - 1])
2087 			unused--;
2088 	} else {
2089 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2090 			if (!used_commit_ids[unused])
2091 				break;
2092 		if (unused == N_COMMIT_IDS) {
2093 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2094 			goto clear_journal;
2095 		}
2096 	}
2097 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2098 		    unused, used_commit_ids[0], used_commit_ids[1],
2099 		    used_commit_ids[2], used_commit_ids[3]);
2100 
2101 	last_used = prev_commit_seq(unused);
2102 	want_commit_seq = prev_commit_seq(last_used);
2103 
2104 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2105 		journal_empty = true;
2106 
2107 	write_start = max_commit_id_sections[last_used] + 1;
2108 	if (unlikely(write_start >= ic->journal_sections))
2109 		want_commit_seq = next_commit_seq(want_commit_seq);
2110 	wraparound_section(ic, &write_start);
2111 
2112 	i = write_start;
2113 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2114 		for (j = 0; j < ic->journal_section_sectors; j++) {
2115 			struct journal_sector *js = access_journal(ic, i, j);
2116 
2117 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2118 				/*
2119 				 * This could be caused by crash during writing.
2120 				 * We won't replay the inconsistent part of the
2121 				 * journal.
2122 				 */
2123 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2124 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2125 				goto brk;
2126 			}
2127 		}
2128 		i++;
2129 		if (unlikely(i >= ic->journal_sections))
2130 			want_commit_seq = next_commit_seq(want_commit_seq);
2131 		wraparound_section(ic, &i);
2132 	}
2133 brk:
2134 
2135 	if (!journal_empty) {
2136 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2137 			    write_sections, write_start, want_commit_seq);
2138 		do_journal_write(ic, write_start, write_sections, true);
2139 	}
2140 
2141 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2142 		continue_section = write_start;
2143 		ic->commit_seq = want_commit_seq;
2144 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2145 	} else {
2146 		unsigned s;
2147 		unsigned char erase_seq;
2148 clear_journal:
2149 		DEBUG_print("clearing journal\n");
2150 
2151 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2152 		s = write_start;
2153 		init_journal(ic, s, 1, erase_seq);
2154 		s++;
2155 		wraparound_section(ic, &s);
2156 		if (ic->journal_sections >= 2) {
2157 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2158 			s += ic->journal_sections - 2;
2159 			wraparound_section(ic, &s);
2160 			init_journal(ic, s, 1, erase_seq);
2161 		}
2162 
2163 		continue_section = 0;
2164 		ic->commit_seq = next_commit_seq(erase_seq);
2165 	}
2166 
2167 	ic->committed_section = continue_section;
2168 	ic->n_committed_sections = 0;
2169 
2170 	ic->uncommitted_section = continue_section;
2171 	ic->n_uncommitted_sections = 0;
2172 
2173 	ic->free_section = continue_section;
2174 	ic->free_section_entry = 0;
2175 	ic->free_sectors = ic->journal_entries;
2176 
2177 	ic->journal_tree_root = RB_ROOT;
2178 	for (i = 0; i < ic->journal_entries; i++)
2179 		init_journal_node(&ic->journal_tree[i]);
2180 }
2181 
2182 static void dm_integrity_postsuspend(struct dm_target *ti)
2183 {
2184 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2185 
2186 	del_timer_sync(&ic->autocommit_timer);
2187 
2188 	ic->suspending = true;
2189 
2190 	queue_work(ic->commit_wq, &ic->commit_work);
2191 	drain_workqueue(ic->commit_wq);
2192 
2193 	if (ic->mode == 'J') {
2194 		drain_workqueue(ic->writer_wq);
2195 		dm_integrity_flush_buffers(ic);
2196 	}
2197 
2198 	ic->suspending = false;
2199 
2200 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2201 
2202 	ic->journal_uptodate = true;
2203 }
2204 
2205 static void dm_integrity_resume(struct dm_target *ti)
2206 {
2207 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2208 
2209 	replay_journal(ic);
2210 }
2211 
2212 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2213 				unsigned status_flags, char *result, unsigned maxlen)
2214 {
2215 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2216 	unsigned arg_count;
2217 	size_t sz = 0;
2218 
2219 	switch (type) {
2220 	case STATUSTYPE_INFO:
2221 		result[0] = '\0';
2222 		break;
2223 
2224 	case STATUSTYPE_TABLE: {
2225 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2226 		watermark_percentage += ic->journal_entries / 2;
2227 		do_div(watermark_percentage, ic->journal_entries);
2228 		arg_count = 5;
2229 		arg_count += ic->sectors_per_block != 1;
2230 		arg_count += !!ic->internal_hash_alg.alg_string;
2231 		arg_count += !!ic->journal_crypt_alg.alg_string;
2232 		arg_count += !!ic->journal_mac_alg.alg_string;
2233 		DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2234 		       ic->tag_size, ic->mode, arg_count);
2235 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2236 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2237 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2238 		DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2239 		DMEMIT(" commit_time:%u", ic->autocommit_msec);
2240 		if (ic->sectors_per_block != 1)
2241 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2242 
2243 #define EMIT_ALG(a, n)							\
2244 		do {							\
2245 			if (ic->a.alg_string) {				\
2246 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
2247 				if (ic->a.key_string)			\
2248 					DMEMIT(":%s", ic->a.key_string);\
2249 			}						\
2250 		} while (0)
2251 		EMIT_ALG(internal_hash_alg, "internal_hash");
2252 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
2253 		EMIT_ALG(journal_mac_alg, "journal_mac");
2254 		break;
2255 	}
2256 	}
2257 }
2258 
2259 static int dm_integrity_iterate_devices(struct dm_target *ti,
2260 					iterate_devices_callout_fn fn, void *data)
2261 {
2262 	struct dm_integrity_c *ic = ti->private;
2263 
2264 	return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2265 }
2266 
2267 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2268 {
2269 	struct dm_integrity_c *ic = ti->private;
2270 
2271 	if (ic->sectors_per_block > 1) {
2272 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2273 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2274 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2275 	}
2276 }
2277 
2278 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2279 {
2280 	unsigned sector_space = JOURNAL_SECTOR_DATA;
2281 
2282 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2283 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2284 					 JOURNAL_ENTRY_ROUNDUP);
2285 
2286 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2287 		sector_space -= JOURNAL_MAC_PER_SECTOR;
2288 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2289 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2290 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2291 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2292 }
2293 
2294 static int calculate_device_limits(struct dm_integrity_c *ic)
2295 {
2296 	__u64 initial_sectors;
2297 	sector_t last_sector, last_area, last_offset;
2298 
2299 	calculate_journal_section_size(ic);
2300 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2301 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->device_sectors || initial_sectors > UINT_MAX)
2302 		return -EINVAL;
2303 	ic->initial_sectors = initial_sectors;
2304 
2305 	ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2306 				   (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2307 	if (!(ic->metadata_run & (ic->metadata_run - 1)))
2308 		ic->log2_metadata_run = __ffs(ic->metadata_run);
2309 	else
2310 		ic->log2_metadata_run = -1;
2311 
2312 	get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2313 	last_sector = get_data_sector(ic, last_area, last_offset);
2314 
2315 	if (ic->start + last_sector < last_sector || ic->start + last_sector >= ic->device_sectors)
2316 		return -EINVAL;
2317 
2318 	return 0;
2319 }
2320 
2321 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2322 {
2323 	unsigned journal_sections;
2324 	int test_bit;
2325 
2326 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2327 	memcpy(ic->sb->magic, SB_MAGIC, 8);
2328 	ic->sb->version = SB_VERSION;
2329 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2330 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2331 	if (ic->journal_mac_alg.alg_string)
2332 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2333 
2334 	calculate_journal_section_size(ic);
2335 	journal_sections = journal_sectors / ic->journal_section_sectors;
2336 	if (!journal_sections)
2337 		journal_sections = 1;
2338 	ic->sb->journal_sections = cpu_to_le32(journal_sections);
2339 
2340 	if (!interleave_sectors)
2341 		interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2342 	ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2343 	ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2344 	ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2345 
2346 	ic->provided_data_sectors = 0;
2347 	for (test_bit = fls64(ic->device_sectors) - 1; test_bit >= 3; test_bit--) {
2348 		__u64 prev_data_sectors = ic->provided_data_sectors;
2349 
2350 		ic->provided_data_sectors |= (sector_t)1 << test_bit;
2351 		if (calculate_device_limits(ic))
2352 			ic->provided_data_sectors = prev_data_sectors;
2353 	}
2354 
2355 	if (!ic->provided_data_sectors)
2356 		return -EINVAL;
2357 
2358 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2359 
2360 	return 0;
2361 }
2362 
2363 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2364 {
2365 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2366 	struct blk_integrity bi;
2367 
2368 	memset(&bi, 0, sizeof(bi));
2369 	bi.profile = &dm_integrity_profile;
2370 	bi.tuple_size = ic->tag_size;
2371 	bi.tag_size = bi.tuple_size;
2372 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2373 
2374 	blk_integrity_register(disk, &bi);
2375 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2376 }
2377 
2378 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2379 {
2380 	unsigned i;
2381 
2382 	if (!pl)
2383 		return;
2384 	for (i = 0; i < ic->journal_pages; i++)
2385 		if (pl[i].page)
2386 			__free_page(pl[i].page);
2387 	kvfree(pl);
2388 }
2389 
2390 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2391 {
2392 	size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2393 	struct page_list *pl;
2394 	unsigned i;
2395 
2396 	pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2397 	if (!pl)
2398 		return NULL;
2399 
2400 	for (i = 0; i < ic->journal_pages; i++) {
2401 		pl[i].page = alloc_page(GFP_KERNEL);
2402 		if (!pl[i].page) {
2403 			dm_integrity_free_page_list(ic, pl);
2404 			return NULL;
2405 		}
2406 		if (i)
2407 			pl[i - 1].next = &pl[i];
2408 	}
2409 
2410 	return pl;
2411 }
2412 
2413 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2414 {
2415 	unsigned i;
2416 	for (i = 0; i < ic->journal_sections; i++)
2417 		kvfree(sl[i]);
2418 	kfree(sl);
2419 }
2420 
2421 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2422 {
2423 	struct scatterlist **sl;
2424 	unsigned i;
2425 
2426 	sl = kvmalloc(ic->journal_sections * sizeof(struct scatterlist *), GFP_KERNEL | __GFP_ZERO);
2427 	if (!sl)
2428 		return NULL;
2429 
2430 	for (i = 0; i < ic->journal_sections; i++) {
2431 		struct scatterlist *s;
2432 		unsigned start_index, start_offset;
2433 		unsigned end_index, end_offset;
2434 		unsigned n_pages;
2435 		unsigned idx;
2436 
2437 		page_list_location(ic, i, 0, &start_index, &start_offset);
2438 		page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2439 
2440 		n_pages = (end_index - start_index + 1);
2441 
2442 		s = kvmalloc(n_pages * sizeof(struct scatterlist), GFP_KERNEL);
2443 		if (!s) {
2444 			dm_integrity_free_journal_scatterlist(ic, sl);
2445 			return NULL;
2446 		}
2447 
2448 		sg_init_table(s, n_pages);
2449 		for (idx = start_index; idx <= end_index; idx++) {
2450 			char *va = lowmem_page_address(pl[idx].page);
2451 			unsigned start = 0, end = PAGE_SIZE;
2452 			if (idx == start_index)
2453 				start = start_offset;
2454 			if (idx == end_index)
2455 				end = end_offset + (1 << SECTOR_SHIFT);
2456 			sg_set_buf(&s[idx - start_index], va + start, end - start);
2457 		}
2458 
2459 		sl[i] = s;
2460 	}
2461 
2462 	return sl;
2463 }
2464 
2465 static void free_alg(struct alg_spec *a)
2466 {
2467 	kzfree(a->alg_string);
2468 	kzfree(a->key);
2469 	memset(a, 0, sizeof *a);
2470 }
2471 
2472 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2473 {
2474 	char *k;
2475 
2476 	free_alg(a);
2477 
2478 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2479 	if (!a->alg_string)
2480 		goto nomem;
2481 
2482 	k = strchr(a->alg_string, ':');
2483 	if (k) {
2484 		*k = 0;
2485 		a->key_string = k + 1;
2486 		if (strlen(a->key_string) & 1)
2487 			goto inval;
2488 
2489 		a->key_size = strlen(a->key_string) / 2;
2490 		a->key = kmalloc(a->key_size, GFP_KERNEL);
2491 		if (!a->key)
2492 			goto nomem;
2493 		if (hex2bin(a->key, a->key_string, a->key_size))
2494 			goto inval;
2495 	}
2496 
2497 	return 0;
2498 inval:
2499 	*error = error_inval;
2500 	return -EINVAL;
2501 nomem:
2502 	*error = "Out of memory for an argument";
2503 	return -ENOMEM;
2504 }
2505 
2506 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2507 		   char *error_alg, char *error_key)
2508 {
2509 	int r;
2510 
2511 	if (a->alg_string) {
2512 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
2513 		if (IS_ERR(*hash)) {
2514 			*error = error_alg;
2515 			r = PTR_ERR(*hash);
2516 			*hash = NULL;
2517 			return r;
2518 		}
2519 
2520 		if (a->key) {
2521 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
2522 			if (r) {
2523 				*error = error_key;
2524 				return r;
2525 			}
2526 		}
2527 	}
2528 
2529 	return 0;
2530 }
2531 
2532 static int create_journal(struct dm_integrity_c *ic, char **error)
2533 {
2534 	int r = 0;
2535 	unsigned i;
2536 	__u64 journal_pages, journal_desc_size, journal_tree_size;
2537 	unsigned char *crypt_data = NULL;
2538 
2539 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2540 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2541 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2542 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2543 
2544 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2545 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2546 	journal_desc_size = journal_pages * sizeof(struct page_list);
2547 	if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
2548 		*error = "Journal doesn't fit into memory";
2549 		r = -ENOMEM;
2550 		goto bad;
2551 	}
2552 	ic->journal_pages = journal_pages;
2553 
2554 	ic->journal = dm_integrity_alloc_page_list(ic);
2555 	if (!ic->journal) {
2556 		*error = "Could not allocate memory for journal";
2557 		r = -ENOMEM;
2558 		goto bad;
2559 	}
2560 	if (ic->journal_crypt_alg.alg_string) {
2561 		unsigned ivsize, blocksize;
2562 		struct journal_completion comp;
2563 
2564 		comp.ic = ic;
2565 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2566 		if (IS_ERR(ic->journal_crypt)) {
2567 			*error = "Invalid journal cipher";
2568 			r = PTR_ERR(ic->journal_crypt);
2569 			ic->journal_crypt = NULL;
2570 			goto bad;
2571 		}
2572 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2573 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2574 
2575 		if (ic->journal_crypt_alg.key) {
2576 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2577 						   ic->journal_crypt_alg.key_size);
2578 			if (r) {
2579 				*error = "Error setting encryption key";
2580 				goto bad;
2581 			}
2582 		}
2583 		DEBUG_print("cipher %s, block size %u iv size %u\n",
2584 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2585 
2586 		ic->journal_io = dm_integrity_alloc_page_list(ic);
2587 		if (!ic->journal_io) {
2588 			*error = "Could not allocate memory for journal io";
2589 			r = -ENOMEM;
2590 			goto bad;
2591 		}
2592 
2593 		if (blocksize == 1) {
2594 			struct scatterlist *sg;
2595 			SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt);
2596 			unsigned char iv[ivsize];
2597 			skcipher_request_set_tfm(req, ic->journal_crypt);
2598 
2599 			ic->journal_xor = dm_integrity_alloc_page_list(ic);
2600 			if (!ic->journal_xor) {
2601 				*error = "Could not allocate memory for journal xor";
2602 				r = -ENOMEM;
2603 				goto bad;
2604 			}
2605 
2606 			sg = kvmalloc((ic->journal_pages + 1) * sizeof(struct scatterlist), GFP_KERNEL);
2607 			if (!sg) {
2608 				*error = "Unable to allocate sg list";
2609 				r = -ENOMEM;
2610 				goto bad;
2611 			}
2612 			sg_init_table(sg, ic->journal_pages + 1);
2613 			for (i = 0; i < ic->journal_pages; i++) {
2614 				char *va = lowmem_page_address(ic->journal_xor[i].page);
2615 				clear_page(va);
2616 				sg_set_buf(&sg[i], va, PAGE_SIZE);
2617 			}
2618 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2619 			memset(iv, 0x00, ivsize);
2620 
2621 			skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, iv);
2622 			comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
2623 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2624 			if (do_crypt(true, req, &comp))
2625 				wait_for_completion(&comp.comp);
2626 			kvfree(sg);
2627 			r = dm_integrity_failed(ic);
2628 			if (r) {
2629 				*error = "Unable to encrypt journal";
2630 				goto bad;
2631 			}
2632 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2633 
2634 			crypto_free_skcipher(ic->journal_crypt);
2635 			ic->journal_crypt = NULL;
2636 		} else {
2637 			SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt);
2638 			unsigned char iv[ivsize];
2639 			unsigned crypt_len = roundup(ivsize, blocksize);
2640 
2641 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2642 			if (!crypt_data) {
2643 				*error = "Unable to allocate crypt data";
2644 				r = -ENOMEM;
2645 				goto bad;
2646 			}
2647 
2648 			skcipher_request_set_tfm(req, ic->journal_crypt);
2649 
2650 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2651 			if (!ic->journal_scatterlist) {
2652 				*error = "Unable to allocate sg list";
2653 				r = -ENOMEM;
2654 				goto bad;
2655 			}
2656 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2657 			if (!ic->journal_io_scatterlist) {
2658 				*error = "Unable to allocate sg list";
2659 				r = -ENOMEM;
2660 				goto bad;
2661 			}
2662 			ic->sk_requests = kvmalloc(ic->journal_sections * sizeof(struct skcipher_request *), GFP_KERNEL | __GFP_ZERO);
2663 			if (!ic->sk_requests) {
2664 				*error = "Unable to allocate sk requests";
2665 				r = -ENOMEM;
2666 				goto bad;
2667 			}
2668 			for (i = 0; i < ic->journal_sections; i++) {
2669 				struct scatterlist sg;
2670 				struct skcipher_request *section_req;
2671 				__u32 section_le = cpu_to_le32(i);
2672 
2673 				memset(iv, 0x00, ivsize);
2674 				memset(crypt_data, 0x00, crypt_len);
2675 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
2676 
2677 				sg_init_one(&sg, crypt_data, crypt_len);
2678 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, iv);
2679 				comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
2680 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2681 				if (do_crypt(true, req, &comp))
2682 					wait_for_completion(&comp.comp);
2683 
2684 				r = dm_integrity_failed(ic);
2685 				if (r) {
2686 					*error = "Unable to generate iv";
2687 					goto bad;
2688 				}
2689 
2690 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2691 				if (!section_req) {
2692 					*error = "Unable to allocate crypt request";
2693 					r = -ENOMEM;
2694 					goto bad;
2695 				}
2696 				section_req->iv = kmalloc(ivsize * 2, GFP_KERNEL);
2697 				if (!section_req->iv) {
2698 					skcipher_request_free(section_req);
2699 					*error = "Unable to allocate iv";
2700 					r = -ENOMEM;
2701 					goto bad;
2702 				}
2703 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
2704 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
2705 				ic->sk_requests[i] = section_req;
2706 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
2707 			}
2708 		}
2709 	}
2710 
2711 	for (i = 0; i < N_COMMIT_IDS; i++) {
2712 		unsigned j;
2713 retest_commit_id:
2714 		for (j = 0; j < i; j++) {
2715 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
2716 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
2717 				goto retest_commit_id;
2718 			}
2719 		}
2720 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
2721 	}
2722 
2723 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
2724 	if (journal_tree_size > ULONG_MAX) {
2725 		*error = "Journal doesn't fit into memory";
2726 		r = -ENOMEM;
2727 		goto bad;
2728 	}
2729 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
2730 	if (!ic->journal_tree) {
2731 		*error = "Could not allocate memory for journal tree";
2732 		r = -ENOMEM;
2733 	}
2734 bad:
2735 	kfree(crypt_data);
2736 	return r;
2737 }
2738 
2739 /*
2740  * Construct a integrity mapping
2741  *
2742  * Arguments:
2743  *	device
2744  *	offset from the start of the device
2745  *	tag size
2746  *	D - direct writes, J - journal writes, R - recovery mode
2747  *	number of optional arguments
2748  *	optional arguments:
2749  *		journal_sectors
2750  *		interleave_sectors
2751  *		buffer_sectors
2752  *		journal_watermark
2753  *		commit_time
2754  *		internal_hash
2755  *		journal_crypt
2756  *		journal_mac
2757  *		block_size
2758  */
2759 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
2760 {
2761 	struct dm_integrity_c *ic;
2762 	char dummy;
2763 	int r;
2764 	unsigned extra_args;
2765 	struct dm_arg_set as;
2766 	static struct dm_arg _args[] = {
2767 		{0, 9, "Invalid number of feature args"},
2768 	};
2769 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
2770 	bool should_write_sb;
2771 	__u64 threshold;
2772 	unsigned long long start;
2773 
2774 #define DIRECT_ARGUMENTS	4
2775 
2776 	if (argc <= DIRECT_ARGUMENTS) {
2777 		ti->error = "Invalid argument count";
2778 		return -EINVAL;
2779 	}
2780 
2781 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
2782 	if (!ic) {
2783 		ti->error = "Cannot allocate integrity context";
2784 		return -ENOMEM;
2785 	}
2786 	ti->private = ic;
2787 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
2788 
2789 	ic->in_progress = RB_ROOT;
2790 	init_waitqueue_head(&ic->endio_wait);
2791 	bio_list_init(&ic->flush_bio_list);
2792 	init_waitqueue_head(&ic->copy_to_journal_wait);
2793 	init_completion(&ic->crypto_backoff);
2794 
2795 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
2796 	if (r) {
2797 		ti->error = "Device lookup failed";
2798 		goto bad;
2799 	}
2800 
2801 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
2802 		ti->error = "Invalid starting offset";
2803 		r = -EINVAL;
2804 		goto bad;
2805 	}
2806 	ic->start = start;
2807 
2808 	if (strcmp(argv[2], "-")) {
2809 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
2810 			ti->error = "Invalid tag size";
2811 			r = -EINVAL;
2812 			goto bad;
2813 		}
2814 	}
2815 
2816 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
2817 		ic->mode = argv[3][0];
2818 	else {
2819 		ti->error = "Invalid mode (expecting J, D, R)";
2820 		r = -EINVAL;
2821 		goto bad;
2822 	}
2823 
2824 	ic->device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
2825 	journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
2826 			ic->device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
2827 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2828 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
2829 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
2830 	sync_msec = DEFAULT_SYNC_MSEC;
2831 	ic->sectors_per_block = 1;
2832 
2833 	as.argc = argc - DIRECT_ARGUMENTS;
2834 	as.argv = argv + DIRECT_ARGUMENTS;
2835 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
2836 	if (r)
2837 		goto bad;
2838 
2839 	while (extra_args--) {
2840 		const char *opt_string;
2841 		unsigned val;
2842 		opt_string = dm_shift_arg(&as);
2843 		if (!opt_string) {
2844 			r = -EINVAL;
2845 			ti->error = "Not enough feature arguments";
2846 			goto bad;
2847 		}
2848 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
2849 			journal_sectors = val;
2850 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
2851 			interleave_sectors = val;
2852 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
2853 			buffer_sectors = val;
2854 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
2855 			journal_watermark = val;
2856 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
2857 			sync_msec = val;
2858 		else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
2859 			if (val < 1 << SECTOR_SHIFT ||
2860 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
2861 			    (val & (val -1))) {
2862 				r = -EINVAL;
2863 				ti->error = "Invalid block_size argument";
2864 				goto bad;
2865 			}
2866 			ic->sectors_per_block = val >> SECTOR_SHIFT;
2867 		} else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
2868 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
2869 					    "Invalid internal_hash argument");
2870 			if (r)
2871 				goto bad;
2872 		} else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
2873 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
2874 					    "Invalid journal_crypt argument");
2875 			if (r)
2876 				goto bad;
2877 		} else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
2878 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
2879 					    "Invalid journal_mac argument");
2880 			if (r)
2881 				goto bad;
2882 		} else {
2883 			r = -EINVAL;
2884 			ti->error = "Invalid argument";
2885 			goto bad;
2886 		}
2887 	}
2888 
2889 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
2890 		    "Invalid internal hash", "Error setting internal hash key");
2891 	if (r)
2892 		goto bad;
2893 
2894 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
2895 		    "Invalid journal mac", "Error setting journal mac key");
2896 	if (r)
2897 		goto bad;
2898 
2899 	if (!ic->tag_size) {
2900 		if (!ic->internal_hash) {
2901 			ti->error = "Unknown tag size";
2902 			r = -EINVAL;
2903 			goto bad;
2904 		}
2905 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
2906 	}
2907 	if (ic->tag_size > MAX_TAG_SIZE) {
2908 		ti->error = "Too big tag size";
2909 		r = -EINVAL;
2910 		goto bad;
2911 	}
2912 	if (!(ic->tag_size & (ic->tag_size - 1)))
2913 		ic->log2_tag_size = __ffs(ic->tag_size);
2914 	else
2915 		ic->log2_tag_size = -1;
2916 
2917 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
2918 	ic->autocommit_msec = sync_msec;
2919 	setup_timer(&ic->autocommit_timer, autocommit_fn, (unsigned long)ic);
2920 
2921 	ic->io = dm_io_client_create();
2922 	if (IS_ERR(ic->io)) {
2923 		r = PTR_ERR(ic->io);
2924 		ic->io = NULL;
2925 		ti->error = "Cannot allocate dm io";
2926 		goto bad;
2927 	}
2928 
2929 	ic->journal_io_mempool = mempool_create_slab_pool(JOURNAL_IO_MEMPOOL, journal_io_cache);
2930 	if (!ic->journal_io_mempool) {
2931 		r = -ENOMEM;
2932 		ti->error = "Cannot allocate mempool";
2933 		goto bad;
2934 	}
2935 
2936 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
2937 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
2938 	if (!ic->metadata_wq) {
2939 		ti->error = "Cannot allocate workqueue";
2940 		r = -ENOMEM;
2941 		goto bad;
2942 	}
2943 
2944 	/*
2945 	 * If this workqueue were percpu, it would cause bio reordering
2946 	 * and reduced performance.
2947 	 */
2948 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
2949 	if (!ic->wait_wq) {
2950 		ti->error = "Cannot allocate workqueue";
2951 		r = -ENOMEM;
2952 		goto bad;
2953 	}
2954 
2955 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
2956 	if (!ic->commit_wq) {
2957 		ti->error = "Cannot allocate workqueue";
2958 		r = -ENOMEM;
2959 		goto bad;
2960 	}
2961 	INIT_WORK(&ic->commit_work, integrity_commit);
2962 
2963 	if (ic->mode == 'J') {
2964 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
2965 		if (!ic->writer_wq) {
2966 			ti->error = "Cannot allocate workqueue";
2967 			r = -ENOMEM;
2968 			goto bad;
2969 		}
2970 		INIT_WORK(&ic->writer_work, integrity_writer);
2971 	}
2972 
2973 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
2974 	if (!ic->sb) {
2975 		r = -ENOMEM;
2976 		ti->error = "Cannot allocate superblock area";
2977 		goto bad;
2978 	}
2979 
2980 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
2981 	if (r) {
2982 		ti->error = "Error reading superblock";
2983 		goto bad;
2984 	}
2985 	should_write_sb = false;
2986 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
2987 		if (ic->mode != 'R') {
2988 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
2989 				r = -EINVAL;
2990 				ti->error = "The device is not initialized";
2991 				goto bad;
2992 			}
2993 		}
2994 
2995 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
2996 		if (r) {
2997 			ti->error = "Could not initialize superblock";
2998 			goto bad;
2999 		}
3000 		if (ic->mode != 'R')
3001 			should_write_sb = true;
3002 	}
3003 
3004 	if (ic->sb->version != SB_VERSION) {
3005 		r = -EINVAL;
3006 		ti->error = "Unknown version";
3007 		goto bad;
3008 	}
3009 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3010 		r = -EINVAL;
3011 		ti->error = "Tag size doesn't match the information in superblock";
3012 		goto bad;
3013 	}
3014 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3015 		r = -EINVAL;
3016 		ti->error = "Block size doesn't match the information in superblock";
3017 		goto bad;
3018 	}
3019 	/* make sure that ti->max_io_len doesn't overflow */
3020 	if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3021 	    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3022 		r = -EINVAL;
3023 		ti->error = "Invalid interleave_sectors in the superblock";
3024 		goto bad;
3025 	}
3026 	ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3027 	if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3028 		/* test for overflow */
3029 		r = -EINVAL;
3030 		ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3031 		goto bad;
3032 	}
3033 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3034 		r = -EINVAL;
3035 		ti->error = "Journal mac mismatch";
3036 		goto bad;
3037 	}
3038 	r = calculate_device_limits(ic);
3039 	if (r) {
3040 		ti->error = "The device is too small";
3041 		goto bad;
3042 	}
3043 
3044 	if (!buffer_sectors)
3045 		buffer_sectors = 1;
3046 	ic->log2_buffer_sectors = min3((int)__fls(buffer_sectors), (int)__ffs(ic->metadata_run), 31 - SECTOR_SHIFT);
3047 
3048 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3049 	threshold += 50;
3050 	do_div(threshold, 100);
3051 	ic->free_sectors_threshold = threshold;
3052 
3053 	DEBUG_print("initialized:\n");
3054 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3055 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
3056 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3057 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
3058 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
3059 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3060 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
3061 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3062 	DEBUG_print("	device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors);
3063 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
3064 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
3065 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
3066 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3067 		    (unsigned long long)ic->provided_data_sectors);
3068 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3069 
3070 	ic->bufio = dm_bufio_client_create(ic->dev->bdev, 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors),
3071 					   1, 0, NULL, NULL);
3072 	if (IS_ERR(ic->bufio)) {
3073 		r = PTR_ERR(ic->bufio);
3074 		ti->error = "Cannot initialize dm-bufio";
3075 		ic->bufio = NULL;
3076 		goto bad;
3077 	}
3078 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3079 
3080 	if (ic->mode != 'R') {
3081 		r = create_journal(ic, &ti->error);
3082 		if (r)
3083 			goto bad;
3084 	}
3085 
3086 	if (should_write_sb) {
3087 		int r;
3088 
3089 		init_journal(ic, 0, ic->journal_sections, 0);
3090 		r = dm_integrity_failed(ic);
3091 		if (unlikely(r)) {
3092 			ti->error = "Error initializing journal";
3093 			goto bad;
3094 		}
3095 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3096 		if (r) {
3097 			ti->error = "Error initializing superblock";
3098 			goto bad;
3099 		}
3100 		ic->just_formatted = true;
3101 	}
3102 
3103 	r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3104 	if (r)
3105 		goto bad;
3106 
3107 	if (!ic->internal_hash)
3108 		dm_integrity_set(ti, ic);
3109 
3110 	ti->num_flush_bios = 1;
3111 	ti->flush_supported = true;
3112 
3113 	return 0;
3114 bad:
3115 	dm_integrity_dtr(ti);
3116 	return r;
3117 }
3118 
3119 static void dm_integrity_dtr(struct dm_target *ti)
3120 {
3121 	struct dm_integrity_c *ic = ti->private;
3122 
3123 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3124 
3125 	if (ic->metadata_wq)
3126 		destroy_workqueue(ic->metadata_wq);
3127 	if (ic->wait_wq)
3128 		destroy_workqueue(ic->wait_wq);
3129 	if (ic->commit_wq)
3130 		destroy_workqueue(ic->commit_wq);
3131 	if (ic->writer_wq)
3132 		destroy_workqueue(ic->writer_wq);
3133 	if (ic->bufio)
3134 		dm_bufio_client_destroy(ic->bufio);
3135 	mempool_destroy(ic->journal_io_mempool);
3136 	if (ic->io)
3137 		dm_io_client_destroy(ic->io);
3138 	if (ic->dev)
3139 		dm_put_device(ti, ic->dev);
3140 	dm_integrity_free_page_list(ic, ic->journal);
3141 	dm_integrity_free_page_list(ic, ic->journal_io);
3142 	dm_integrity_free_page_list(ic, ic->journal_xor);
3143 	if (ic->journal_scatterlist)
3144 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3145 	if (ic->journal_io_scatterlist)
3146 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3147 	if (ic->sk_requests) {
3148 		unsigned i;
3149 
3150 		for (i = 0; i < ic->journal_sections; i++) {
3151 			struct skcipher_request *req = ic->sk_requests[i];
3152 			if (req) {
3153 				kzfree(req->iv);
3154 				skcipher_request_free(req);
3155 			}
3156 		}
3157 		kvfree(ic->sk_requests);
3158 	}
3159 	kvfree(ic->journal_tree);
3160 	if (ic->sb)
3161 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3162 
3163 	if (ic->internal_hash)
3164 		crypto_free_shash(ic->internal_hash);
3165 	free_alg(&ic->internal_hash_alg);
3166 
3167 	if (ic->journal_crypt)
3168 		crypto_free_skcipher(ic->journal_crypt);
3169 	free_alg(&ic->journal_crypt_alg);
3170 
3171 	if (ic->journal_mac)
3172 		crypto_free_shash(ic->journal_mac);
3173 	free_alg(&ic->journal_mac_alg);
3174 
3175 	kfree(ic);
3176 }
3177 
3178 static struct target_type integrity_target = {
3179 	.name			= "integrity",
3180 	.version		= {1, 0, 0},
3181 	.module			= THIS_MODULE,
3182 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3183 	.ctr			= dm_integrity_ctr,
3184 	.dtr			= dm_integrity_dtr,
3185 	.map			= dm_integrity_map,
3186 	.postsuspend		= dm_integrity_postsuspend,
3187 	.resume			= dm_integrity_resume,
3188 	.status			= dm_integrity_status,
3189 	.iterate_devices	= dm_integrity_iterate_devices,
3190 	.io_hints		= dm_integrity_io_hints,
3191 };
3192 
3193 int __init dm_integrity_init(void)
3194 {
3195 	int r;
3196 
3197 	journal_io_cache = kmem_cache_create("integrity_journal_io",
3198 					     sizeof(struct journal_io), 0, 0, NULL);
3199 	if (!journal_io_cache) {
3200 		DMERR("can't allocate journal io cache");
3201 		return -ENOMEM;
3202 	}
3203 
3204 	r = dm_register_target(&integrity_target);
3205 
3206 	if (r < 0)
3207 		DMERR("register failed %d", r);
3208 
3209 	return r;
3210 }
3211 
3212 void dm_integrity_exit(void)
3213 {
3214 	dm_unregister_target(&integrity_target);
3215 	kmem_cache_destroy(journal_io_cache);
3216 }
3217 
3218 module_init(dm_integrity_init);
3219 module_exit(dm_integrity_exit);
3220 
3221 MODULE_AUTHOR("Milan Broz");
3222 MODULE_AUTHOR("Mikulas Patocka");
3223 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3224 MODULE_LICENSE("GPL");
3225