1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bio-record.h" 10 11 #include <linux/compiler.h> 12 #include <linux/module.h> 13 #include <linux/device-mapper.h> 14 #include <linux/dm-io.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sort.h> 17 #include <linux/rbtree.h> 18 #include <linux/delay.h> 19 #include <linux/random.h> 20 #include <linux/reboot.h> 21 #include <crypto/hash.h> 22 #include <crypto/skcipher.h> 23 #include <linux/async_tx.h> 24 #include <linux/dm-bufio.h> 25 26 #define DM_MSG_PREFIX "integrity" 27 28 #define DEFAULT_INTERLEAVE_SECTORS 32768 29 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 30 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 31 #define DEFAULT_BUFFER_SECTORS 128 32 #define DEFAULT_JOURNAL_WATERMARK 50 33 #define DEFAULT_SYNC_MSEC 10000 34 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 35 #define MIN_LOG2_INTERLEAVE_SECTORS 3 36 #define MAX_LOG2_INTERLEAVE_SECTORS 31 37 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 38 #define RECALC_SECTORS 32768 39 #define RECALC_WRITE_SUPER 16 40 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 41 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 42 #define DISCARD_FILLER 0xf6 43 #define SALT_SIZE 16 44 45 /* 46 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 47 * so it should not be enabled in the official kernel 48 */ 49 //#define DEBUG_PRINT 50 //#define INTERNAL_VERIFY 51 52 /* 53 * On disk structures 54 */ 55 56 #define SB_MAGIC "integrt" 57 #define SB_VERSION_1 1 58 #define SB_VERSION_2 2 59 #define SB_VERSION_3 3 60 #define SB_VERSION_4 4 61 #define SB_VERSION_5 5 62 #define SB_SECTORS 8 63 #define MAX_SECTORS_PER_BLOCK 8 64 65 struct superblock { 66 __u8 magic[8]; 67 __u8 version; 68 __u8 log2_interleave_sectors; 69 __le16 integrity_tag_size; 70 __le32 journal_sections; 71 __le64 provided_data_sectors; /* userspace uses this value */ 72 __le32 flags; 73 __u8 log2_sectors_per_block; 74 __u8 log2_blocks_per_bitmap_bit; 75 __u8 pad[2]; 76 __le64 recalc_sector; 77 __u8 pad2[8]; 78 __u8 salt[SALT_SIZE]; 79 }; 80 81 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 82 #define SB_FLAG_RECALCULATING 0x2 83 #define SB_FLAG_DIRTY_BITMAP 0x4 84 #define SB_FLAG_FIXED_PADDING 0x8 85 #define SB_FLAG_FIXED_HMAC 0x10 86 87 #define JOURNAL_ENTRY_ROUNDUP 8 88 89 typedef __le64 commit_id_t; 90 #define JOURNAL_MAC_PER_SECTOR 8 91 92 struct journal_entry { 93 union { 94 struct { 95 __le32 sector_lo; 96 __le32 sector_hi; 97 } s; 98 __le64 sector; 99 } u; 100 commit_id_t last_bytes[]; 101 /* __u8 tag[0]; */ 102 }; 103 104 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 105 106 #if BITS_PER_LONG == 64 107 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 108 #else 109 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 110 #endif 111 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 112 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 113 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 114 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 115 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 116 117 #define JOURNAL_BLOCK_SECTORS 8 118 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 119 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 120 121 struct journal_sector { 122 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 123 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 124 commit_id_t commit_id; 125 }; 126 127 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 128 129 #define METADATA_PADDING_SECTORS 8 130 131 #define N_COMMIT_IDS 4 132 133 static unsigned char prev_commit_seq(unsigned char seq) 134 { 135 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 136 } 137 138 static unsigned char next_commit_seq(unsigned char seq) 139 { 140 return (seq + 1) % N_COMMIT_IDS; 141 } 142 143 /* 144 * In-memory structures 145 */ 146 147 struct journal_node { 148 struct rb_node node; 149 sector_t sector; 150 }; 151 152 struct alg_spec { 153 char *alg_string; 154 char *key_string; 155 __u8 *key; 156 unsigned key_size; 157 }; 158 159 struct dm_integrity_c { 160 struct dm_dev *dev; 161 struct dm_dev *meta_dev; 162 unsigned tag_size; 163 __s8 log2_tag_size; 164 sector_t start; 165 mempool_t journal_io_mempool; 166 struct dm_io_client *io; 167 struct dm_bufio_client *bufio; 168 struct workqueue_struct *metadata_wq; 169 struct superblock *sb; 170 unsigned journal_pages; 171 unsigned n_bitmap_blocks; 172 173 struct page_list *journal; 174 struct page_list *journal_io; 175 struct page_list *journal_xor; 176 struct page_list *recalc_bitmap; 177 struct page_list *may_write_bitmap; 178 struct bitmap_block_status *bbs; 179 unsigned bitmap_flush_interval; 180 int synchronous_mode; 181 struct bio_list synchronous_bios; 182 struct delayed_work bitmap_flush_work; 183 184 struct crypto_skcipher *journal_crypt; 185 struct scatterlist **journal_scatterlist; 186 struct scatterlist **journal_io_scatterlist; 187 struct skcipher_request **sk_requests; 188 189 struct crypto_shash *journal_mac; 190 191 struct journal_node *journal_tree; 192 struct rb_root journal_tree_root; 193 194 sector_t provided_data_sectors; 195 196 unsigned short journal_entry_size; 197 unsigned char journal_entries_per_sector; 198 unsigned char journal_section_entries; 199 unsigned short journal_section_sectors; 200 unsigned journal_sections; 201 unsigned journal_entries; 202 sector_t data_device_sectors; 203 sector_t meta_device_sectors; 204 unsigned initial_sectors; 205 unsigned metadata_run; 206 __s8 log2_metadata_run; 207 __u8 log2_buffer_sectors; 208 __u8 sectors_per_block; 209 __u8 log2_blocks_per_bitmap_bit; 210 211 unsigned char mode; 212 213 int failed; 214 215 struct crypto_shash *internal_hash; 216 217 struct dm_target *ti; 218 219 /* these variables are locked with endio_wait.lock */ 220 struct rb_root in_progress; 221 struct list_head wait_list; 222 wait_queue_head_t endio_wait; 223 struct workqueue_struct *wait_wq; 224 struct workqueue_struct *offload_wq; 225 226 unsigned char commit_seq; 227 commit_id_t commit_ids[N_COMMIT_IDS]; 228 229 unsigned committed_section; 230 unsigned n_committed_sections; 231 232 unsigned uncommitted_section; 233 unsigned n_uncommitted_sections; 234 235 unsigned free_section; 236 unsigned char free_section_entry; 237 unsigned free_sectors; 238 239 unsigned free_sectors_threshold; 240 241 struct workqueue_struct *commit_wq; 242 struct work_struct commit_work; 243 244 struct workqueue_struct *writer_wq; 245 struct work_struct writer_work; 246 247 struct workqueue_struct *recalc_wq; 248 struct work_struct recalc_work; 249 u8 *recalc_buffer; 250 u8 *recalc_tags; 251 252 struct bio_list flush_bio_list; 253 254 unsigned long autocommit_jiffies; 255 struct timer_list autocommit_timer; 256 unsigned autocommit_msec; 257 258 wait_queue_head_t copy_to_journal_wait; 259 260 struct completion crypto_backoff; 261 262 bool journal_uptodate; 263 bool just_formatted; 264 bool recalculate_flag; 265 bool reset_recalculate_flag; 266 bool discard; 267 bool fix_padding; 268 bool fix_hmac; 269 bool legacy_recalculate; 270 271 struct alg_spec internal_hash_alg; 272 struct alg_spec journal_crypt_alg; 273 struct alg_spec journal_mac_alg; 274 275 atomic64_t number_of_mismatches; 276 277 struct notifier_block reboot_notifier; 278 }; 279 280 struct dm_integrity_range { 281 sector_t logical_sector; 282 sector_t n_sectors; 283 bool waiting; 284 union { 285 struct rb_node node; 286 struct { 287 struct task_struct *task; 288 struct list_head wait_entry; 289 }; 290 }; 291 }; 292 293 struct dm_integrity_io { 294 struct work_struct work; 295 296 struct dm_integrity_c *ic; 297 enum req_opf op; 298 bool fua; 299 300 struct dm_integrity_range range; 301 302 sector_t metadata_block; 303 unsigned metadata_offset; 304 305 atomic_t in_flight; 306 blk_status_t bi_status; 307 308 struct completion *completion; 309 310 struct dm_bio_details bio_details; 311 }; 312 313 struct journal_completion { 314 struct dm_integrity_c *ic; 315 atomic_t in_flight; 316 struct completion comp; 317 }; 318 319 struct journal_io { 320 struct dm_integrity_range range; 321 struct journal_completion *comp; 322 }; 323 324 struct bitmap_block_status { 325 struct work_struct work; 326 struct dm_integrity_c *ic; 327 unsigned idx; 328 unsigned long *bitmap; 329 struct bio_list bio_queue; 330 spinlock_t bio_queue_lock; 331 332 }; 333 334 static struct kmem_cache *journal_io_cache; 335 336 #define JOURNAL_IO_MEMPOOL 32 337 338 #ifdef DEBUG_PRINT 339 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 340 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 341 { 342 va_list args; 343 va_start(args, msg); 344 vprintk(msg, args); 345 va_end(args); 346 if (len) 347 pr_cont(":"); 348 while (len) { 349 pr_cont(" %02x", *bytes); 350 bytes++; 351 len--; 352 } 353 pr_cont("\n"); 354 } 355 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 356 #else 357 #define DEBUG_print(x, ...) do { } while (0) 358 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 359 #endif 360 361 static void dm_integrity_prepare(struct request *rq) 362 { 363 } 364 365 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 366 { 367 } 368 369 /* 370 * DM Integrity profile, protection is performed layer above (dm-crypt) 371 */ 372 static const struct blk_integrity_profile dm_integrity_profile = { 373 .name = "DM-DIF-EXT-TAG", 374 .generate_fn = NULL, 375 .verify_fn = NULL, 376 .prepare_fn = dm_integrity_prepare, 377 .complete_fn = dm_integrity_complete, 378 }; 379 380 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 381 static void integrity_bio_wait(struct work_struct *w); 382 static void dm_integrity_dtr(struct dm_target *ti); 383 384 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 385 { 386 if (err == -EILSEQ) 387 atomic64_inc(&ic->number_of_mismatches); 388 if (!cmpxchg(&ic->failed, 0, err)) 389 DMERR("Error on %s: %d", msg, err); 390 } 391 392 static int dm_integrity_failed(struct dm_integrity_c *ic) 393 { 394 return READ_ONCE(ic->failed); 395 } 396 397 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 398 { 399 if (ic->legacy_recalculate) 400 return false; 401 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 402 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 403 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 404 return true; 405 return false; 406 } 407 408 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 409 unsigned j, unsigned char seq) 410 { 411 /* 412 * Xor the number with section and sector, so that if a piece of 413 * journal is written at wrong place, it is detected. 414 */ 415 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 416 } 417 418 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 419 sector_t *area, sector_t *offset) 420 { 421 if (!ic->meta_dev) { 422 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 423 *area = data_sector >> log2_interleave_sectors; 424 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 425 } else { 426 *area = 0; 427 *offset = data_sector; 428 } 429 } 430 431 #define sector_to_block(ic, n) \ 432 do { \ 433 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 434 (n) >>= (ic)->sb->log2_sectors_per_block; \ 435 } while (0) 436 437 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 438 sector_t offset, unsigned *metadata_offset) 439 { 440 __u64 ms; 441 unsigned mo; 442 443 ms = area << ic->sb->log2_interleave_sectors; 444 if (likely(ic->log2_metadata_run >= 0)) 445 ms += area << ic->log2_metadata_run; 446 else 447 ms += area * ic->metadata_run; 448 ms >>= ic->log2_buffer_sectors; 449 450 sector_to_block(ic, offset); 451 452 if (likely(ic->log2_tag_size >= 0)) { 453 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 454 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 455 } else { 456 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 457 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 458 } 459 *metadata_offset = mo; 460 return ms; 461 } 462 463 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 464 { 465 sector_t result; 466 467 if (ic->meta_dev) 468 return offset; 469 470 result = area << ic->sb->log2_interleave_sectors; 471 if (likely(ic->log2_metadata_run >= 0)) 472 result += (area + 1) << ic->log2_metadata_run; 473 else 474 result += (area + 1) * ic->metadata_run; 475 476 result += (sector_t)ic->initial_sectors + offset; 477 result += ic->start; 478 479 return result; 480 } 481 482 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 483 { 484 if (unlikely(*sec_ptr >= ic->journal_sections)) 485 *sec_ptr -= ic->journal_sections; 486 } 487 488 static void sb_set_version(struct dm_integrity_c *ic) 489 { 490 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 491 ic->sb->version = SB_VERSION_5; 492 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 493 ic->sb->version = SB_VERSION_4; 494 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 495 ic->sb->version = SB_VERSION_3; 496 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 497 ic->sb->version = SB_VERSION_2; 498 else 499 ic->sb->version = SB_VERSION_1; 500 } 501 502 static int sb_mac(struct dm_integrity_c *ic, bool wr) 503 { 504 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 505 int r; 506 unsigned size = crypto_shash_digestsize(ic->journal_mac); 507 508 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) { 509 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 510 return -EINVAL; 511 } 512 513 desc->tfm = ic->journal_mac; 514 515 r = crypto_shash_init(desc); 516 if (unlikely(r < 0)) { 517 dm_integrity_io_error(ic, "crypto_shash_init", r); 518 return r; 519 } 520 521 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size); 522 if (unlikely(r < 0)) { 523 dm_integrity_io_error(ic, "crypto_shash_update", r); 524 return r; 525 } 526 527 if (likely(wr)) { 528 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size); 529 if (unlikely(r < 0)) { 530 dm_integrity_io_error(ic, "crypto_shash_final", r); 531 return r; 532 } 533 } else { 534 __u8 result[HASH_MAX_DIGESTSIZE]; 535 r = crypto_shash_final(desc, result); 536 if (unlikely(r < 0)) { 537 dm_integrity_io_error(ic, "crypto_shash_final", r); 538 return r; 539 } 540 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) { 541 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 542 return -EILSEQ; 543 } 544 } 545 546 return 0; 547 } 548 549 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 550 { 551 struct dm_io_request io_req; 552 struct dm_io_region io_loc; 553 int r; 554 555 io_req.bi_op = op; 556 io_req.bi_op_flags = op_flags; 557 io_req.mem.type = DM_IO_KMEM; 558 io_req.mem.ptr.addr = ic->sb; 559 io_req.notify.fn = NULL; 560 io_req.client = ic->io; 561 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 562 io_loc.sector = ic->start; 563 io_loc.count = SB_SECTORS; 564 565 if (op == REQ_OP_WRITE) { 566 sb_set_version(ic); 567 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 568 r = sb_mac(ic, true); 569 if (unlikely(r)) 570 return r; 571 } 572 } 573 574 r = dm_io(&io_req, 1, &io_loc, NULL); 575 if (unlikely(r)) 576 return r; 577 578 if (op == REQ_OP_READ) { 579 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 580 r = sb_mac(ic, false); 581 if (unlikely(r)) 582 return r; 583 } 584 } 585 586 return 0; 587 } 588 589 #define BITMAP_OP_TEST_ALL_SET 0 590 #define BITMAP_OP_TEST_ALL_CLEAR 1 591 #define BITMAP_OP_SET 2 592 #define BITMAP_OP_CLEAR 3 593 594 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 595 sector_t sector, sector_t n_sectors, int mode) 596 { 597 unsigned long bit, end_bit, this_end_bit, page, end_page; 598 unsigned long *data; 599 600 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 601 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 602 sector, 603 n_sectors, 604 ic->sb->log2_sectors_per_block, 605 ic->log2_blocks_per_bitmap_bit, 606 mode); 607 BUG(); 608 } 609 610 if (unlikely(!n_sectors)) 611 return true; 612 613 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 614 end_bit = (sector + n_sectors - 1) >> 615 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 616 617 page = bit / (PAGE_SIZE * 8); 618 bit %= PAGE_SIZE * 8; 619 620 end_page = end_bit / (PAGE_SIZE * 8); 621 end_bit %= PAGE_SIZE * 8; 622 623 repeat: 624 if (page < end_page) { 625 this_end_bit = PAGE_SIZE * 8 - 1; 626 } else { 627 this_end_bit = end_bit; 628 } 629 630 data = lowmem_page_address(bitmap[page].page); 631 632 if (mode == BITMAP_OP_TEST_ALL_SET) { 633 while (bit <= this_end_bit) { 634 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 635 do { 636 if (data[bit / BITS_PER_LONG] != -1) 637 return false; 638 bit += BITS_PER_LONG; 639 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 640 continue; 641 } 642 if (!test_bit(bit, data)) 643 return false; 644 bit++; 645 } 646 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 647 while (bit <= this_end_bit) { 648 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 649 do { 650 if (data[bit / BITS_PER_LONG] != 0) 651 return false; 652 bit += BITS_PER_LONG; 653 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 654 continue; 655 } 656 if (test_bit(bit, data)) 657 return false; 658 bit++; 659 } 660 } else if (mode == BITMAP_OP_SET) { 661 while (bit <= this_end_bit) { 662 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 663 do { 664 data[bit / BITS_PER_LONG] = -1; 665 bit += BITS_PER_LONG; 666 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 667 continue; 668 } 669 __set_bit(bit, data); 670 bit++; 671 } 672 } else if (mode == BITMAP_OP_CLEAR) { 673 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 674 clear_page(data); 675 else while (bit <= this_end_bit) { 676 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 677 do { 678 data[bit / BITS_PER_LONG] = 0; 679 bit += BITS_PER_LONG; 680 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 681 continue; 682 } 683 __clear_bit(bit, data); 684 bit++; 685 } 686 } else { 687 BUG(); 688 } 689 690 if (unlikely(page < end_page)) { 691 bit = 0; 692 page++; 693 goto repeat; 694 } 695 696 return true; 697 } 698 699 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 700 { 701 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 702 unsigned i; 703 704 for (i = 0; i < n_bitmap_pages; i++) { 705 unsigned long *dst_data = lowmem_page_address(dst[i].page); 706 unsigned long *src_data = lowmem_page_address(src[i].page); 707 copy_page(dst_data, src_data); 708 } 709 } 710 711 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 712 { 713 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 714 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 715 716 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 717 return &ic->bbs[bitmap_block]; 718 } 719 720 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 721 bool e, const char *function) 722 { 723 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 724 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 725 726 if (unlikely(section >= ic->journal_sections) || 727 unlikely(offset >= limit)) { 728 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 729 function, section, offset, ic->journal_sections, limit); 730 BUG(); 731 } 732 #endif 733 } 734 735 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 736 unsigned *pl_index, unsigned *pl_offset) 737 { 738 unsigned sector; 739 740 access_journal_check(ic, section, offset, false, "page_list_location"); 741 742 sector = section * ic->journal_section_sectors + offset; 743 744 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 745 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 746 } 747 748 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 749 unsigned section, unsigned offset, unsigned *n_sectors) 750 { 751 unsigned pl_index, pl_offset; 752 char *va; 753 754 page_list_location(ic, section, offset, &pl_index, &pl_offset); 755 756 if (n_sectors) 757 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 758 759 va = lowmem_page_address(pl[pl_index].page); 760 761 return (struct journal_sector *)(va + pl_offset); 762 } 763 764 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 765 { 766 return access_page_list(ic, ic->journal, section, offset, NULL); 767 } 768 769 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 770 { 771 unsigned rel_sector, offset; 772 struct journal_sector *js; 773 774 access_journal_check(ic, section, n, true, "access_journal_entry"); 775 776 rel_sector = n % JOURNAL_BLOCK_SECTORS; 777 offset = n / JOURNAL_BLOCK_SECTORS; 778 779 js = access_journal(ic, section, rel_sector); 780 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 781 } 782 783 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 784 { 785 n <<= ic->sb->log2_sectors_per_block; 786 787 n += JOURNAL_BLOCK_SECTORS; 788 789 access_journal_check(ic, section, n, false, "access_journal_data"); 790 791 return access_journal(ic, section, n); 792 } 793 794 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 795 { 796 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 797 int r; 798 unsigned j, size; 799 800 desc->tfm = ic->journal_mac; 801 802 r = crypto_shash_init(desc); 803 if (unlikely(r < 0)) { 804 dm_integrity_io_error(ic, "crypto_shash_init", r); 805 goto err; 806 } 807 808 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 809 __le64 section_le; 810 811 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 812 if (unlikely(r < 0)) { 813 dm_integrity_io_error(ic, "crypto_shash_update", r); 814 goto err; 815 } 816 817 section_le = cpu_to_le64(section); 818 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof section_le); 819 if (unlikely(r < 0)) { 820 dm_integrity_io_error(ic, "crypto_shash_update", r); 821 goto err; 822 } 823 } 824 825 for (j = 0; j < ic->journal_section_entries; j++) { 826 struct journal_entry *je = access_journal_entry(ic, section, j); 827 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 828 if (unlikely(r < 0)) { 829 dm_integrity_io_error(ic, "crypto_shash_update", r); 830 goto err; 831 } 832 } 833 834 size = crypto_shash_digestsize(ic->journal_mac); 835 836 if (likely(size <= JOURNAL_MAC_SIZE)) { 837 r = crypto_shash_final(desc, result); 838 if (unlikely(r < 0)) { 839 dm_integrity_io_error(ic, "crypto_shash_final", r); 840 goto err; 841 } 842 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 843 } else { 844 __u8 digest[HASH_MAX_DIGESTSIZE]; 845 846 if (WARN_ON(size > sizeof(digest))) { 847 dm_integrity_io_error(ic, "digest_size", -EINVAL); 848 goto err; 849 } 850 r = crypto_shash_final(desc, digest); 851 if (unlikely(r < 0)) { 852 dm_integrity_io_error(ic, "crypto_shash_final", r); 853 goto err; 854 } 855 memcpy(result, digest, JOURNAL_MAC_SIZE); 856 } 857 858 return; 859 err: 860 memset(result, 0, JOURNAL_MAC_SIZE); 861 } 862 863 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 864 { 865 __u8 result[JOURNAL_MAC_SIZE]; 866 unsigned j; 867 868 if (!ic->journal_mac) 869 return; 870 871 section_mac(ic, section, result); 872 873 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 874 struct journal_sector *js = access_journal(ic, section, j); 875 876 if (likely(wr)) 877 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 878 else { 879 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 880 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 881 } 882 } 883 } 884 885 static void complete_journal_op(void *context) 886 { 887 struct journal_completion *comp = context; 888 BUG_ON(!atomic_read(&comp->in_flight)); 889 if (likely(atomic_dec_and_test(&comp->in_flight))) 890 complete(&comp->comp); 891 } 892 893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 894 unsigned n_sections, struct journal_completion *comp) 895 { 896 struct async_submit_ctl submit; 897 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 898 unsigned pl_index, pl_offset, section_index; 899 struct page_list *source_pl, *target_pl; 900 901 if (likely(encrypt)) { 902 source_pl = ic->journal; 903 target_pl = ic->journal_io; 904 } else { 905 source_pl = ic->journal_io; 906 target_pl = ic->journal; 907 } 908 909 page_list_location(ic, section, 0, &pl_index, &pl_offset); 910 911 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 912 913 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 914 915 section_index = pl_index; 916 917 do { 918 size_t this_step; 919 struct page *src_pages[2]; 920 struct page *dst_page; 921 922 while (unlikely(pl_index == section_index)) { 923 unsigned dummy; 924 if (likely(encrypt)) 925 rw_section_mac(ic, section, true); 926 section++; 927 n_sections--; 928 if (!n_sections) 929 break; 930 page_list_location(ic, section, 0, §ion_index, &dummy); 931 } 932 933 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 934 dst_page = target_pl[pl_index].page; 935 src_pages[0] = source_pl[pl_index].page; 936 src_pages[1] = ic->journal_xor[pl_index].page; 937 938 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 939 940 pl_index++; 941 pl_offset = 0; 942 n_bytes -= this_step; 943 } while (n_bytes); 944 945 BUG_ON(n_sections); 946 947 async_tx_issue_pending_all(); 948 } 949 950 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 951 { 952 struct journal_completion *comp = req->data; 953 if (unlikely(err)) { 954 if (likely(err == -EINPROGRESS)) { 955 complete(&comp->ic->crypto_backoff); 956 return; 957 } 958 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 959 } 960 complete_journal_op(comp); 961 } 962 963 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 964 { 965 int r; 966 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 967 complete_journal_encrypt, comp); 968 if (likely(encrypt)) 969 r = crypto_skcipher_encrypt(req); 970 else 971 r = crypto_skcipher_decrypt(req); 972 if (likely(!r)) 973 return false; 974 if (likely(r == -EINPROGRESS)) 975 return true; 976 if (likely(r == -EBUSY)) { 977 wait_for_completion(&comp->ic->crypto_backoff); 978 reinit_completion(&comp->ic->crypto_backoff); 979 return true; 980 } 981 dm_integrity_io_error(comp->ic, "encrypt", r); 982 return false; 983 } 984 985 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 986 unsigned n_sections, struct journal_completion *comp) 987 { 988 struct scatterlist **source_sg; 989 struct scatterlist **target_sg; 990 991 atomic_add(2, &comp->in_flight); 992 993 if (likely(encrypt)) { 994 source_sg = ic->journal_scatterlist; 995 target_sg = ic->journal_io_scatterlist; 996 } else { 997 source_sg = ic->journal_io_scatterlist; 998 target_sg = ic->journal_scatterlist; 999 } 1000 1001 do { 1002 struct skcipher_request *req; 1003 unsigned ivsize; 1004 char *iv; 1005 1006 if (likely(encrypt)) 1007 rw_section_mac(ic, section, true); 1008 1009 req = ic->sk_requests[section]; 1010 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 1011 iv = req->iv; 1012 1013 memcpy(iv, iv + ivsize, ivsize); 1014 1015 req->src = source_sg[section]; 1016 req->dst = target_sg[section]; 1017 1018 if (unlikely(do_crypt(encrypt, req, comp))) 1019 atomic_inc(&comp->in_flight); 1020 1021 section++; 1022 n_sections--; 1023 } while (n_sections); 1024 1025 atomic_dec(&comp->in_flight); 1026 complete_journal_op(comp); 1027 } 1028 1029 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 1030 unsigned n_sections, struct journal_completion *comp) 1031 { 1032 if (ic->journal_xor) 1033 return xor_journal(ic, encrypt, section, n_sections, comp); 1034 else 1035 return crypt_journal(ic, encrypt, section, n_sections, comp); 1036 } 1037 1038 static void complete_journal_io(unsigned long error, void *context) 1039 { 1040 struct journal_completion *comp = context; 1041 if (unlikely(error != 0)) 1042 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1043 complete_journal_op(comp); 1044 } 1045 1046 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 1047 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 1048 { 1049 struct dm_io_request io_req; 1050 struct dm_io_region io_loc; 1051 unsigned pl_index, pl_offset; 1052 int r; 1053 1054 if (unlikely(dm_integrity_failed(ic))) { 1055 if (comp) 1056 complete_journal_io(-1UL, comp); 1057 return; 1058 } 1059 1060 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1061 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1062 1063 io_req.bi_op = op; 1064 io_req.bi_op_flags = op_flags; 1065 io_req.mem.type = DM_IO_PAGE_LIST; 1066 if (ic->journal_io) 1067 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1068 else 1069 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1070 io_req.mem.offset = pl_offset; 1071 if (likely(comp != NULL)) { 1072 io_req.notify.fn = complete_journal_io; 1073 io_req.notify.context = comp; 1074 } else { 1075 io_req.notify.fn = NULL; 1076 } 1077 io_req.client = ic->io; 1078 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1079 io_loc.sector = ic->start + SB_SECTORS + sector; 1080 io_loc.count = n_sectors; 1081 1082 r = dm_io(&io_req, 1, &io_loc, NULL); 1083 if (unlikely(r)) { 1084 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 1085 if (comp) { 1086 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1087 complete_journal_io(-1UL, comp); 1088 } 1089 } 1090 } 1091 1092 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 1093 unsigned n_sections, struct journal_completion *comp) 1094 { 1095 unsigned sector, n_sectors; 1096 1097 sector = section * ic->journal_section_sectors; 1098 n_sectors = n_sections * ic->journal_section_sectors; 1099 1100 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 1101 } 1102 1103 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 1104 { 1105 struct journal_completion io_comp; 1106 struct journal_completion crypt_comp_1; 1107 struct journal_completion crypt_comp_2; 1108 unsigned i; 1109 1110 io_comp.ic = ic; 1111 init_completion(&io_comp.comp); 1112 1113 if (commit_start + commit_sections <= ic->journal_sections) { 1114 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1115 if (ic->journal_io) { 1116 crypt_comp_1.ic = ic; 1117 init_completion(&crypt_comp_1.comp); 1118 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1119 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1120 wait_for_completion_io(&crypt_comp_1.comp); 1121 } else { 1122 for (i = 0; i < commit_sections; i++) 1123 rw_section_mac(ic, commit_start + i, true); 1124 } 1125 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1126 commit_sections, &io_comp); 1127 } else { 1128 unsigned to_end; 1129 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1130 to_end = ic->journal_sections - commit_start; 1131 if (ic->journal_io) { 1132 crypt_comp_1.ic = ic; 1133 init_completion(&crypt_comp_1.comp); 1134 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1135 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1136 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1137 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1138 reinit_completion(&crypt_comp_1.comp); 1139 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1140 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1141 wait_for_completion_io(&crypt_comp_1.comp); 1142 } else { 1143 crypt_comp_2.ic = ic; 1144 init_completion(&crypt_comp_2.comp); 1145 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1146 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1147 wait_for_completion_io(&crypt_comp_1.comp); 1148 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1149 wait_for_completion_io(&crypt_comp_2.comp); 1150 } 1151 } else { 1152 for (i = 0; i < to_end; i++) 1153 rw_section_mac(ic, commit_start + i, true); 1154 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1155 for (i = 0; i < commit_sections - to_end; i++) 1156 rw_section_mac(ic, i, true); 1157 } 1158 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1159 } 1160 1161 wait_for_completion_io(&io_comp.comp); 1162 } 1163 1164 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1165 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1166 { 1167 struct dm_io_request io_req; 1168 struct dm_io_region io_loc; 1169 int r; 1170 unsigned sector, pl_index, pl_offset; 1171 1172 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1173 1174 if (unlikely(dm_integrity_failed(ic))) { 1175 fn(-1UL, data); 1176 return; 1177 } 1178 1179 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1180 1181 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1182 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1183 1184 io_req.bi_op = REQ_OP_WRITE; 1185 io_req.bi_op_flags = 0; 1186 io_req.mem.type = DM_IO_PAGE_LIST; 1187 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1188 io_req.mem.offset = pl_offset; 1189 io_req.notify.fn = fn; 1190 io_req.notify.context = data; 1191 io_req.client = ic->io; 1192 io_loc.bdev = ic->dev->bdev; 1193 io_loc.sector = target; 1194 io_loc.count = n_sectors; 1195 1196 r = dm_io(&io_req, 1, &io_loc, NULL); 1197 if (unlikely(r)) { 1198 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1199 fn(-1UL, data); 1200 } 1201 } 1202 1203 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1204 { 1205 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1206 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1207 } 1208 1209 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1210 { 1211 struct rb_node **n = &ic->in_progress.rb_node; 1212 struct rb_node *parent; 1213 1214 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1215 1216 if (likely(check_waiting)) { 1217 struct dm_integrity_range *range; 1218 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1219 if (unlikely(ranges_overlap(range, new_range))) 1220 return false; 1221 } 1222 } 1223 1224 parent = NULL; 1225 1226 while (*n) { 1227 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1228 1229 parent = *n; 1230 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1231 n = &range->node.rb_left; 1232 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1233 n = &range->node.rb_right; 1234 } else { 1235 return false; 1236 } 1237 } 1238 1239 rb_link_node(&new_range->node, parent, n); 1240 rb_insert_color(&new_range->node, &ic->in_progress); 1241 1242 return true; 1243 } 1244 1245 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1246 { 1247 rb_erase(&range->node, &ic->in_progress); 1248 while (unlikely(!list_empty(&ic->wait_list))) { 1249 struct dm_integrity_range *last_range = 1250 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1251 struct task_struct *last_range_task; 1252 last_range_task = last_range->task; 1253 list_del(&last_range->wait_entry); 1254 if (!add_new_range(ic, last_range, false)) { 1255 last_range->task = last_range_task; 1256 list_add(&last_range->wait_entry, &ic->wait_list); 1257 break; 1258 } 1259 last_range->waiting = false; 1260 wake_up_process(last_range_task); 1261 } 1262 } 1263 1264 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1265 { 1266 unsigned long flags; 1267 1268 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1269 remove_range_unlocked(ic, range); 1270 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1271 } 1272 1273 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1274 { 1275 new_range->waiting = true; 1276 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1277 new_range->task = current; 1278 do { 1279 __set_current_state(TASK_UNINTERRUPTIBLE); 1280 spin_unlock_irq(&ic->endio_wait.lock); 1281 io_schedule(); 1282 spin_lock_irq(&ic->endio_wait.lock); 1283 } while (unlikely(new_range->waiting)); 1284 } 1285 1286 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1287 { 1288 if (unlikely(!add_new_range(ic, new_range, true))) 1289 wait_and_add_new_range(ic, new_range); 1290 } 1291 1292 static void init_journal_node(struct journal_node *node) 1293 { 1294 RB_CLEAR_NODE(&node->node); 1295 node->sector = (sector_t)-1; 1296 } 1297 1298 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1299 { 1300 struct rb_node **link; 1301 struct rb_node *parent; 1302 1303 node->sector = sector; 1304 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1305 1306 link = &ic->journal_tree_root.rb_node; 1307 parent = NULL; 1308 1309 while (*link) { 1310 struct journal_node *j; 1311 parent = *link; 1312 j = container_of(parent, struct journal_node, node); 1313 if (sector < j->sector) 1314 link = &j->node.rb_left; 1315 else 1316 link = &j->node.rb_right; 1317 } 1318 1319 rb_link_node(&node->node, parent, link); 1320 rb_insert_color(&node->node, &ic->journal_tree_root); 1321 } 1322 1323 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1324 { 1325 BUG_ON(RB_EMPTY_NODE(&node->node)); 1326 rb_erase(&node->node, &ic->journal_tree_root); 1327 init_journal_node(node); 1328 } 1329 1330 #define NOT_FOUND (-1U) 1331 1332 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1333 { 1334 struct rb_node *n = ic->journal_tree_root.rb_node; 1335 unsigned found = NOT_FOUND; 1336 *next_sector = (sector_t)-1; 1337 while (n) { 1338 struct journal_node *j = container_of(n, struct journal_node, node); 1339 if (sector == j->sector) { 1340 found = j - ic->journal_tree; 1341 } 1342 if (sector < j->sector) { 1343 *next_sector = j->sector; 1344 n = j->node.rb_left; 1345 } else { 1346 n = j->node.rb_right; 1347 } 1348 } 1349 1350 return found; 1351 } 1352 1353 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1354 { 1355 struct journal_node *node, *next_node; 1356 struct rb_node *next; 1357 1358 if (unlikely(pos >= ic->journal_entries)) 1359 return false; 1360 node = &ic->journal_tree[pos]; 1361 if (unlikely(RB_EMPTY_NODE(&node->node))) 1362 return false; 1363 if (unlikely(node->sector != sector)) 1364 return false; 1365 1366 next = rb_next(&node->node); 1367 if (unlikely(!next)) 1368 return true; 1369 1370 next_node = container_of(next, struct journal_node, node); 1371 return next_node->sector != sector; 1372 } 1373 1374 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1375 { 1376 struct rb_node *next; 1377 struct journal_node *next_node; 1378 unsigned next_section; 1379 1380 BUG_ON(RB_EMPTY_NODE(&node->node)); 1381 1382 next = rb_next(&node->node); 1383 if (unlikely(!next)) 1384 return false; 1385 1386 next_node = container_of(next, struct journal_node, node); 1387 1388 if (next_node->sector != node->sector) 1389 return false; 1390 1391 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1392 if (next_section >= ic->committed_section && 1393 next_section < ic->committed_section + ic->n_committed_sections) 1394 return true; 1395 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1396 return true; 1397 1398 return false; 1399 } 1400 1401 #define TAG_READ 0 1402 #define TAG_WRITE 1 1403 #define TAG_CMP 2 1404 1405 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1406 unsigned *metadata_offset, unsigned total_size, int op) 1407 { 1408 #define MAY_BE_FILLER 1 1409 #define MAY_BE_HASH 2 1410 unsigned hash_offset = 0; 1411 unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1412 1413 do { 1414 unsigned char *data, *dp; 1415 struct dm_buffer *b; 1416 unsigned to_copy; 1417 int r; 1418 1419 r = dm_integrity_failed(ic); 1420 if (unlikely(r)) 1421 return r; 1422 1423 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1424 if (IS_ERR(data)) 1425 return PTR_ERR(data); 1426 1427 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1428 dp = data + *metadata_offset; 1429 if (op == TAG_READ) { 1430 memcpy(tag, dp, to_copy); 1431 } else if (op == TAG_WRITE) { 1432 if (memcmp(dp, tag, to_copy)) { 1433 memcpy(dp, tag, to_copy); 1434 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1435 } 1436 } else { 1437 /* e.g.: op == TAG_CMP */ 1438 1439 if (likely(is_power_of_2(ic->tag_size))) { 1440 if (unlikely(memcmp(dp, tag, to_copy))) 1441 if (unlikely(!ic->discard) || 1442 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1443 goto thorough_test; 1444 } 1445 } else { 1446 unsigned i, ts; 1447 thorough_test: 1448 ts = total_size; 1449 1450 for (i = 0; i < to_copy; i++, ts--) { 1451 if (unlikely(dp[i] != tag[i])) 1452 may_be &= ~MAY_BE_HASH; 1453 if (likely(dp[i] != DISCARD_FILLER)) 1454 may_be &= ~MAY_BE_FILLER; 1455 hash_offset++; 1456 if (unlikely(hash_offset == ic->tag_size)) { 1457 if (unlikely(!may_be)) { 1458 dm_bufio_release(b); 1459 return ts; 1460 } 1461 hash_offset = 0; 1462 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1463 } 1464 } 1465 } 1466 } 1467 dm_bufio_release(b); 1468 1469 tag += to_copy; 1470 *metadata_offset += to_copy; 1471 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1472 (*metadata_block)++; 1473 *metadata_offset = 0; 1474 } 1475 1476 if (unlikely(!is_power_of_2(ic->tag_size))) { 1477 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1478 } 1479 1480 total_size -= to_copy; 1481 } while (unlikely(total_size)); 1482 1483 return 0; 1484 #undef MAY_BE_FILLER 1485 #undef MAY_BE_HASH 1486 } 1487 1488 struct flush_request { 1489 struct dm_io_request io_req; 1490 struct dm_io_region io_reg; 1491 struct dm_integrity_c *ic; 1492 struct completion comp; 1493 }; 1494 1495 static void flush_notify(unsigned long error, void *fr_) 1496 { 1497 struct flush_request *fr = fr_; 1498 if (unlikely(error != 0)) 1499 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1500 complete(&fr->comp); 1501 } 1502 1503 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1504 { 1505 int r; 1506 1507 struct flush_request fr; 1508 1509 if (!ic->meta_dev) 1510 flush_data = false; 1511 if (flush_data) { 1512 fr.io_req.bi_op = REQ_OP_WRITE, 1513 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1514 fr.io_req.mem.type = DM_IO_KMEM, 1515 fr.io_req.mem.ptr.addr = NULL, 1516 fr.io_req.notify.fn = flush_notify, 1517 fr.io_req.notify.context = &fr; 1518 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1519 fr.io_reg.bdev = ic->dev->bdev, 1520 fr.io_reg.sector = 0, 1521 fr.io_reg.count = 0, 1522 fr.ic = ic; 1523 init_completion(&fr.comp); 1524 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL); 1525 BUG_ON(r); 1526 } 1527 1528 r = dm_bufio_write_dirty_buffers(ic->bufio); 1529 if (unlikely(r)) 1530 dm_integrity_io_error(ic, "writing tags", r); 1531 1532 if (flush_data) 1533 wait_for_completion(&fr.comp); 1534 } 1535 1536 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1537 { 1538 DECLARE_WAITQUEUE(wait, current); 1539 __add_wait_queue(&ic->endio_wait, &wait); 1540 __set_current_state(TASK_UNINTERRUPTIBLE); 1541 spin_unlock_irq(&ic->endio_wait.lock); 1542 io_schedule(); 1543 spin_lock_irq(&ic->endio_wait.lock); 1544 __remove_wait_queue(&ic->endio_wait, &wait); 1545 } 1546 1547 static void autocommit_fn(struct timer_list *t) 1548 { 1549 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1550 1551 if (likely(!dm_integrity_failed(ic))) 1552 queue_work(ic->commit_wq, &ic->commit_work); 1553 } 1554 1555 static void schedule_autocommit(struct dm_integrity_c *ic) 1556 { 1557 if (!timer_pending(&ic->autocommit_timer)) 1558 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1559 } 1560 1561 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1562 { 1563 struct bio *bio; 1564 unsigned long flags; 1565 1566 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1567 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1568 bio_list_add(&ic->flush_bio_list, bio); 1569 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1570 1571 queue_work(ic->commit_wq, &ic->commit_work); 1572 } 1573 1574 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1575 { 1576 int r = dm_integrity_failed(ic); 1577 if (unlikely(r) && !bio->bi_status) 1578 bio->bi_status = errno_to_blk_status(r); 1579 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1580 unsigned long flags; 1581 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1582 bio_list_add(&ic->synchronous_bios, bio); 1583 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1584 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1585 return; 1586 } 1587 bio_endio(bio); 1588 } 1589 1590 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1591 { 1592 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1593 1594 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1595 submit_flush_bio(ic, dio); 1596 else 1597 do_endio(ic, bio); 1598 } 1599 1600 static void dec_in_flight(struct dm_integrity_io *dio) 1601 { 1602 if (atomic_dec_and_test(&dio->in_flight)) { 1603 struct dm_integrity_c *ic = dio->ic; 1604 struct bio *bio; 1605 1606 remove_range(ic, &dio->range); 1607 1608 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1609 schedule_autocommit(ic); 1610 1611 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1612 1613 if (unlikely(dio->bi_status) && !bio->bi_status) 1614 bio->bi_status = dio->bi_status; 1615 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1616 dio->range.logical_sector += dio->range.n_sectors; 1617 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1618 INIT_WORK(&dio->work, integrity_bio_wait); 1619 queue_work(ic->offload_wq, &dio->work); 1620 return; 1621 } 1622 do_endio_flush(ic, dio); 1623 } 1624 } 1625 1626 static void integrity_end_io(struct bio *bio) 1627 { 1628 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1629 1630 dm_bio_restore(&dio->bio_details, bio); 1631 if (bio->bi_integrity) 1632 bio->bi_opf |= REQ_INTEGRITY; 1633 1634 if (dio->completion) 1635 complete(dio->completion); 1636 1637 dec_in_flight(dio); 1638 } 1639 1640 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1641 const char *data, char *result) 1642 { 1643 __le64 sector_le = cpu_to_le64(sector); 1644 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1645 int r; 1646 unsigned digest_size; 1647 1648 req->tfm = ic->internal_hash; 1649 1650 r = crypto_shash_init(req); 1651 if (unlikely(r < 0)) { 1652 dm_integrity_io_error(ic, "crypto_shash_init", r); 1653 goto failed; 1654 } 1655 1656 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1657 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1658 if (unlikely(r < 0)) { 1659 dm_integrity_io_error(ic, "crypto_shash_update", r); 1660 goto failed; 1661 } 1662 } 1663 1664 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1665 if (unlikely(r < 0)) { 1666 dm_integrity_io_error(ic, "crypto_shash_update", r); 1667 goto failed; 1668 } 1669 1670 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1671 if (unlikely(r < 0)) { 1672 dm_integrity_io_error(ic, "crypto_shash_update", r); 1673 goto failed; 1674 } 1675 1676 r = crypto_shash_final(req, result); 1677 if (unlikely(r < 0)) { 1678 dm_integrity_io_error(ic, "crypto_shash_final", r); 1679 goto failed; 1680 } 1681 1682 digest_size = crypto_shash_digestsize(ic->internal_hash); 1683 if (unlikely(digest_size < ic->tag_size)) 1684 memset(result + digest_size, 0, ic->tag_size - digest_size); 1685 1686 return; 1687 1688 failed: 1689 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1690 get_random_bytes(result, ic->tag_size); 1691 } 1692 1693 static void integrity_metadata(struct work_struct *w) 1694 { 1695 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1696 struct dm_integrity_c *ic = dio->ic; 1697 1698 int r; 1699 1700 if (ic->internal_hash) { 1701 struct bvec_iter iter; 1702 struct bio_vec bv; 1703 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1704 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1705 char *checksums; 1706 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1707 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1708 sector_t sector; 1709 unsigned sectors_to_process; 1710 1711 if (unlikely(ic->mode == 'R')) 1712 goto skip_io; 1713 1714 if (likely(dio->op != REQ_OP_DISCARD)) 1715 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1716 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1717 else 1718 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1719 if (!checksums) { 1720 checksums = checksums_onstack; 1721 if (WARN_ON(extra_space && 1722 digest_size > sizeof(checksums_onstack))) { 1723 r = -EINVAL; 1724 goto error; 1725 } 1726 } 1727 1728 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1729 sector_t bi_sector = dio->bio_details.bi_iter.bi_sector; 1730 unsigned bi_size = dio->bio_details.bi_iter.bi_size; 1731 unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1732 unsigned max_blocks = max_size / ic->tag_size; 1733 memset(checksums, DISCARD_FILLER, max_size); 1734 1735 while (bi_size) { 1736 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1737 this_step_blocks = min(this_step_blocks, max_blocks); 1738 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1739 this_step_blocks * ic->tag_size, TAG_WRITE); 1740 if (unlikely(r)) { 1741 if (likely(checksums != checksums_onstack)) 1742 kfree(checksums); 1743 goto error; 1744 } 1745 1746 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) { 1747 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size); 1748 printk("BUGG: this_step_blocks: %u\n", this_step_blocks); 1749 BUG(); 1750 }*/ 1751 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1752 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block; 1753 } 1754 1755 if (likely(checksums != checksums_onstack)) 1756 kfree(checksums); 1757 goto skip_io; 1758 } 1759 1760 sector = dio->range.logical_sector; 1761 sectors_to_process = dio->range.n_sectors; 1762 1763 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1764 unsigned pos; 1765 char *mem, *checksums_ptr; 1766 1767 again: 1768 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1769 pos = 0; 1770 checksums_ptr = checksums; 1771 do { 1772 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1773 checksums_ptr += ic->tag_size; 1774 sectors_to_process -= ic->sectors_per_block; 1775 pos += ic->sectors_per_block << SECTOR_SHIFT; 1776 sector += ic->sectors_per_block; 1777 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1778 kunmap_atomic(mem); 1779 1780 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1781 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1782 if (unlikely(r)) { 1783 if (r > 0) { 1784 char b[BDEVNAME_SIZE]; 1785 DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b), 1786 (sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1787 r = -EILSEQ; 1788 atomic64_inc(&ic->number_of_mismatches); 1789 } 1790 if (likely(checksums != checksums_onstack)) 1791 kfree(checksums); 1792 goto error; 1793 } 1794 1795 if (!sectors_to_process) 1796 break; 1797 1798 if (unlikely(pos < bv.bv_len)) { 1799 bv.bv_offset += pos; 1800 bv.bv_len -= pos; 1801 goto again; 1802 } 1803 } 1804 1805 if (likely(checksums != checksums_onstack)) 1806 kfree(checksums); 1807 } else { 1808 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1809 1810 if (bip) { 1811 struct bio_vec biv; 1812 struct bvec_iter iter; 1813 unsigned data_to_process = dio->range.n_sectors; 1814 sector_to_block(ic, data_to_process); 1815 data_to_process *= ic->tag_size; 1816 1817 bip_for_each_vec(biv, bip, iter) { 1818 unsigned char *tag; 1819 unsigned this_len; 1820 1821 BUG_ON(PageHighMem(biv.bv_page)); 1822 tag = bvec_virt(&biv); 1823 this_len = min(biv.bv_len, data_to_process); 1824 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1825 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1826 if (unlikely(r)) 1827 goto error; 1828 data_to_process -= this_len; 1829 if (!data_to_process) 1830 break; 1831 } 1832 } 1833 } 1834 skip_io: 1835 dec_in_flight(dio); 1836 return; 1837 error: 1838 dio->bi_status = errno_to_blk_status(r); 1839 dec_in_flight(dio); 1840 } 1841 1842 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1843 { 1844 struct dm_integrity_c *ic = ti->private; 1845 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1846 struct bio_integrity_payload *bip; 1847 1848 sector_t area, offset; 1849 1850 dio->ic = ic; 1851 dio->bi_status = 0; 1852 dio->op = bio_op(bio); 1853 1854 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1855 if (ti->max_io_len) { 1856 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1857 unsigned log2_max_io_len = __fls(ti->max_io_len); 1858 sector_t start_boundary = sec >> log2_max_io_len; 1859 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1860 if (start_boundary < end_boundary) { 1861 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1862 dm_accept_partial_bio(bio, len); 1863 } 1864 } 1865 } 1866 1867 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1868 submit_flush_bio(ic, dio); 1869 return DM_MAPIO_SUBMITTED; 1870 } 1871 1872 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1873 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1874 if (unlikely(dio->fua)) { 1875 /* 1876 * Don't pass down the FUA flag because we have to flush 1877 * disk cache anyway. 1878 */ 1879 bio->bi_opf &= ~REQ_FUA; 1880 } 1881 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1882 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1883 dio->range.logical_sector, bio_sectors(bio), 1884 ic->provided_data_sectors); 1885 return DM_MAPIO_KILL; 1886 } 1887 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1888 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1889 ic->sectors_per_block, 1890 dio->range.logical_sector, bio_sectors(bio)); 1891 return DM_MAPIO_KILL; 1892 } 1893 1894 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1895 struct bvec_iter iter; 1896 struct bio_vec bv; 1897 bio_for_each_segment(bv, bio, iter) { 1898 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1899 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1900 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1901 return DM_MAPIO_KILL; 1902 } 1903 } 1904 } 1905 1906 bip = bio_integrity(bio); 1907 if (!ic->internal_hash) { 1908 if (bip) { 1909 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1910 if (ic->log2_tag_size >= 0) 1911 wanted_tag_size <<= ic->log2_tag_size; 1912 else 1913 wanted_tag_size *= ic->tag_size; 1914 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1915 DMERR("Invalid integrity data size %u, expected %u", 1916 bip->bip_iter.bi_size, wanted_tag_size); 1917 return DM_MAPIO_KILL; 1918 } 1919 } 1920 } else { 1921 if (unlikely(bip != NULL)) { 1922 DMERR("Unexpected integrity data when using internal hash"); 1923 return DM_MAPIO_KILL; 1924 } 1925 } 1926 1927 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 1928 return DM_MAPIO_KILL; 1929 1930 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1931 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1932 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1933 1934 dm_integrity_map_continue(dio, true); 1935 return DM_MAPIO_SUBMITTED; 1936 } 1937 1938 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1939 unsigned journal_section, unsigned journal_entry) 1940 { 1941 struct dm_integrity_c *ic = dio->ic; 1942 sector_t logical_sector; 1943 unsigned n_sectors; 1944 1945 logical_sector = dio->range.logical_sector; 1946 n_sectors = dio->range.n_sectors; 1947 do { 1948 struct bio_vec bv = bio_iovec(bio); 1949 char *mem; 1950 1951 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1952 bv.bv_len = n_sectors << SECTOR_SHIFT; 1953 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1954 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1955 retry_kmap: 1956 mem = kmap_atomic(bv.bv_page); 1957 if (likely(dio->op == REQ_OP_WRITE)) 1958 flush_dcache_page(bv.bv_page); 1959 1960 do { 1961 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1962 1963 if (unlikely(dio->op == REQ_OP_READ)) { 1964 struct journal_sector *js; 1965 char *mem_ptr; 1966 unsigned s; 1967 1968 if (unlikely(journal_entry_is_inprogress(je))) { 1969 flush_dcache_page(bv.bv_page); 1970 kunmap_atomic(mem); 1971 1972 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1973 goto retry_kmap; 1974 } 1975 smp_rmb(); 1976 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1977 js = access_journal_data(ic, journal_section, journal_entry); 1978 mem_ptr = mem + bv.bv_offset; 1979 s = 0; 1980 do { 1981 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1982 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1983 js++; 1984 mem_ptr += 1 << SECTOR_SHIFT; 1985 } while (++s < ic->sectors_per_block); 1986 #ifdef INTERNAL_VERIFY 1987 if (ic->internal_hash) { 1988 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1989 1990 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1991 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1992 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1993 logical_sector); 1994 } 1995 } 1996 #endif 1997 } 1998 1999 if (!ic->internal_hash) { 2000 struct bio_integrity_payload *bip = bio_integrity(bio); 2001 unsigned tag_todo = ic->tag_size; 2002 char *tag_ptr = journal_entry_tag(ic, je); 2003 2004 if (bip) do { 2005 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2006 unsigned tag_now = min(biv.bv_len, tag_todo); 2007 char *tag_addr; 2008 BUG_ON(PageHighMem(biv.bv_page)); 2009 tag_addr = bvec_virt(&biv); 2010 if (likely(dio->op == REQ_OP_WRITE)) 2011 memcpy(tag_ptr, tag_addr, tag_now); 2012 else 2013 memcpy(tag_addr, tag_ptr, tag_now); 2014 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2015 tag_ptr += tag_now; 2016 tag_todo -= tag_now; 2017 } while (unlikely(tag_todo)); else { 2018 if (likely(dio->op == REQ_OP_WRITE)) 2019 memset(tag_ptr, 0, tag_todo); 2020 } 2021 } 2022 2023 if (likely(dio->op == REQ_OP_WRITE)) { 2024 struct journal_sector *js; 2025 unsigned s; 2026 2027 js = access_journal_data(ic, journal_section, journal_entry); 2028 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2029 2030 s = 0; 2031 do { 2032 je->last_bytes[s] = js[s].commit_id; 2033 } while (++s < ic->sectors_per_block); 2034 2035 if (ic->internal_hash) { 2036 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 2037 if (unlikely(digest_size > ic->tag_size)) { 2038 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2039 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2040 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2041 } else 2042 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2043 } 2044 2045 journal_entry_set_sector(je, logical_sector); 2046 } 2047 logical_sector += ic->sectors_per_block; 2048 2049 journal_entry++; 2050 if (unlikely(journal_entry == ic->journal_section_entries)) { 2051 journal_entry = 0; 2052 journal_section++; 2053 wraparound_section(ic, &journal_section); 2054 } 2055 2056 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2057 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2058 2059 if (unlikely(dio->op == REQ_OP_READ)) 2060 flush_dcache_page(bv.bv_page); 2061 kunmap_atomic(mem); 2062 } while (n_sectors); 2063 2064 if (likely(dio->op == REQ_OP_WRITE)) { 2065 smp_mb(); 2066 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2067 wake_up(&ic->copy_to_journal_wait); 2068 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 2069 queue_work(ic->commit_wq, &ic->commit_work); 2070 } else { 2071 schedule_autocommit(ic); 2072 } 2073 } else { 2074 remove_range(ic, &dio->range); 2075 } 2076 2077 if (unlikely(bio->bi_iter.bi_size)) { 2078 sector_t area, offset; 2079 2080 dio->range.logical_sector = logical_sector; 2081 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2082 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2083 return true; 2084 } 2085 2086 return false; 2087 } 2088 2089 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2090 { 2091 struct dm_integrity_c *ic = dio->ic; 2092 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2093 unsigned journal_section, journal_entry; 2094 unsigned journal_read_pos; 2095 struct completion read_comp; 2096 bool discard_retried = false; 2097 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2098 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2099 need_sync_io = true; 2100 2101 if (need_sync_io && from_map) { 2102 INIT_WORK(&dio->work, integrity_bio_wait); 2103 queue_work(ic->offload_wq, &dio->work); 2104 return; 2105 } 2106 2107 lock_retry: 2108 spin_lock_irq(&ic->endio_wait.lock); 2109 retry: 2110 if (unlikely(dm_integrity_failed(ic))) { 2111 spin_unlock_irq(&ic->endio_wait.lock); 2112 do_endio(ic, bio); 2113 return; 2114 } 2115 dio->range.n_sectors = bio_sectors(bio); 2116 journal_read_pos = NOT_FOUND; 2117 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2118 if (dio->op == REQ_OP_WRITE) { 2119 unsigned next_entry, i, pos; 2120 unsigned ws, we, range_sectors; 2121 2122 dio->range.n_sectors = min(dio->range.n_sectors, 2123 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2124 if (unlikely(!dio->range.n_sectors)) { 2125 if (from_map) 2126 goto offload_to_thread; 2127 sleep_on_endio_wait(ic); 2128 goto retry; 2129 } 2130 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2131 ic->free_sectors -= range_sectors; 2132 journal_section = ic->free_section; 2133 journal_entry = ic->free_section_entry; 2134 2135 next_entry = ic->free_section_entry + range_sectors; 2136 ic->free_section_entry = next_entry % ic->journal_section_entries; 2137 ic->free_section += next_entry / ic->journal_section_entries; 2138 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2139 wraparound_section(ic, &ic->free_section); 2140 2141 pos = journal_section * ic->journal_section_entries + journal_entry; 2142 ws = journal_section; 2143 we = journal_entry; 2144 i = 0; 2145 do { 2146 struct journal_entry *je; 2147 2148 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2149 pos++; 2150 if (unlikely(pos >= ic->journal_entries)) 2151 pos = 0; 2152 2153 je = access_journal_entry(ic, ws, we); 2154 BUG_ON(!journal_entry_is_unused(je)); 2155 journal_entry_set_inprogress(je); 2156 we++; 2157 if (unlikely(we == ic->journal_section_entries)) { 2158 we = 0; 2159 ws++; 2160 wraparound_section(ic, &ws); 2161 } 2162 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2163 2164 spin_unlock_irq(&ic->endio_wait.lock); 2165 goto journal_read_write; 2166 } else { 2167 sector_t next_sector; 2168 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2169 if (likely(journal_read_pos == NOT_FOUND)) { 2170 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2171 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2172 } else { 2173 unsigned i; 2174 unsigned jp = journal_read_pos + 1; 2175 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2176 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2177 break; 2178 } 2179 dio->range.n_sectors = i; 2180 } 2181 } 2182 } 2183 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2184 /* 2185 * We must not sleep in the request routine because it could 2186 * stall bios on current->bio_list. 2187 * So, we offload the bio to a workqueue if we have to sleep. 2188 */ 2189 if (from_map) { 2190 offload_to_thread: 2191 spin_unlock_irq(&ic->endio_wait.lock); 2192 INIT_WORK(&dio->work, integrity_bio_wait); 2193 queue_work(ic->wait_wq, &dio->work); 2194 return; 2195 } 2196 if (journal_read_pos != NOT_FOUND) 2197 dio->range.n_sectors = ic->sectors_per_block; 2198 wait_and_add_new_range(ic, &dio->range); 2199 /* 2200 * wait_and_add_new_range drops the spinlock, so the journal 2201 * may have been changed arbitrarily. We need to recheck. 2202 * To simplify the code, we restrict I/O size to just one block. 2203 */ 2204 if (journal_read_pos != NOT_FOUND) { 2205 sector_t next_sector; 2206 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2207 if (unlikely(new_pos != journal_read_pos)) { 2208 remove_range_unlocked(ic, &dio->range); 2209 goto retry; 2210 } 2211 } 2212 } 2213 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2214 sector_t next_sector; 2215 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2216 if (unlikely(new_pos != NOT_FOUND) || 2217 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2218 remove_range_unlocked(ic, &dio->range); 2219 spin_unlock_irq(&ic->endio_wait.lock); 2220 queue_work(ic->commit_wq, &ic->commit_work); 2221 flush_workqueue(ic->commit_wq); 2222 queue_work(ic->writer_wq, &ic->writer_work); 2223 flush_workqueue(ic->writer_wq); 2224 discard_retried = true; 2225 goto lock_retry; 2226 } 2227 } 2228 spin_unlock_irq(&ic->endio_wait.lock); 2229 2230 if (unlikely(journal_read_pos != NOT_FOUND)) { 2231 journal_section = journal_read_pos / ic->journal_section_entries; 2232 journal_entry = journal_read_pos % ic->journal_section_entries; 2233 goto journal_read_write; 2234 } 2235 2236 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2237 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2238 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2239 struct bitmap_block_status *bbs; 2240 2241 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2242 spin_lock(&bbs->bio_queue_lock); 2243 bio_list_add(&bbs->bio_queue, bio); 2244 spin_unlock(&bbs->bio_queue_lock); 2245 queue_work(ic->writer_wq, &bbs->work); 2246 return; 2247 } 2248 } 2249 2250 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2251 2252 if (need_sync_io) { 2253 init_completion(&read_comp); 2254 dio->completion = &read_comp; 2255 } else 2256 dio->completion = NULL; 2257 2258 dm_bio_record(&dio->bio_details, bio); 2259 bio_set_dev(bio, ic->dev->bdev); 2260 bio->bi_integrity = NULL; 2261 bio->bi_opf &= ~REQ_INTEGRITY; 2262 bio->bi_end_io = integrity_end_io; 2263 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2264 2265 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2266 integrity_metadata(&dio->work); 2267 dm_integrity_flush_buffers(ic, false); 2268 2269 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2270 dio->completion = NULL; 2271 2272 submit_bio_noacct(bio); 2273 2274 return; 2275 } 2276 2277 submit_bio_noacct(bio); 2278 2279 if (need_sync_io) { 2280 wait_for_completion_io(&read_comp); 2281 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2282 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2283 goto skip_check; 2284 if (ic->mode == 'B') { 2285 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2286 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2287 goto skip_check; 2288 } 2289 2290 if (likely(!bio->bi_status)) 2291 integrity_metadata(&dio->work); 2292 else 2293 skip_check: 2294 dec_in_flight(dio); 2295 2296 } else { 2297 INIT_WORK(&dio->work, integrity_metadata); 2298 queue_work(ic->metadata_wq, &dio->work); 2299 } 2300 2301 return; 2302 2303 journal_read_write: 2304 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2305 goto lock_retry; 2306 2307 do_endio_flush(ic, dio); 2308 } 2309 2310 2311 static void integrity_bio_wait(struct work_struct *w) 2312 { 2313 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2314 2315 dm_integrity_map_continue(dio, false); 2316 } 2317 2318 static void pad_uncommitted(struct dm_integrity_c *ic) 2319 { 2320 if (ic->free_section_entry) { 2321 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2322 ic->free_section_entry = 0; 2323 ic->free_section++; 2324 wraparound_section(ic, &ic->free_section); 2325 ic->n_uncommitted_sections++; 2326 } 2327 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2328 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2329 ic->journal_section_entries + ic->free_sectors)) { 2330 DMCRIT("journal_sections %u, journal_section_entries %u, " 2331 "n_uncommitted_sections %u, n_committed_sections %u, " 2332 "journal_section_entries %u, free_sectors %u", 2333 ic->journal_sections, ic->journal_section_entries, 2334 ic->n_uncommitted_sections, ic->n_committed_sections, 2335 ic->journal_section_entries, ic->free_sectors); 2336 } 2337 } 2338 2339 static void integrity_commit(struct work_struct *w) 2340 { 2341 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2342 unsigned commit_start, commit_sections; 2343 unsigned i, j, n; 2344 struct bio *flushes; 2345 2346 del_timer(&ic->autocommit_timer); 2347 2348 spin_lock_irq(&ic->endio_wait.lock); 2349 flushes = bio_list_get(&ic->flush_bio_list); 2350 if (unlikely(ic->mode != 'J')) { 2351 spin_unlock_irq(&ic->endio_wait.lock); 2352 dm_integrity_flush_buffers(ic, true); 2353 goto release_flush_bios; 2354 } 2355 2356 pad_uncommitted(ic); 2357 commit_start = ic->uncommitted_section; 2358 commit_sections = ic->n_uncommitted_sections; 2359 spin_unlock_irq(&ic->endio_wait.lock); 2360 2361 if (!commit_sections) 2362 goto release_flush_bios; 2363 2364 i = commit_start; 2365 for (n = 0; n < commit_sections; n++) { 2366 for (j = 0; j < ic->journal_section_entries; j++) { 2367 struct journal_entry *je; 2368 je = access_journal_entry(ic, i, j); 2369 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2370 } 2371 for (j = 0; j < ic->journal_section_sectors; j++) { 2372 struct journal_sector *js; 2373 js = access_journal(ic, i, j); 2374 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2375 } 2376 i++; 2377 if (unlikely(i >= ic->journal_sections)) 2378 ic->commit_seq = next_commit_seq(ic->commit_seq); 2379 wraparound_section(ic, &i); 2380 } 2381 smp_rmb(); 2382 2383 write_journal(ic, commit_start, commit_sections); 2384 2385 spin_lock_irq(&ic->endio_wait.lock); 2386 ic->uncommitted_section += commit_sections; 2387 wraparound_section(ic, &ic->uncommitted_section); 2388 ic->n_uncommitted_sections -= commit_sections; 2389 ic->n_committed_sections += commit_sections; 2390 spin_unlock_irq(&ic->endio_wait.lock); 2391 2392 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2393 queue_work(ic->writer_wq, &ic->writer_work); 2394 2395 release_flush_bios: 2396 while (flushes) { 2397 struct bio *next = flushes->bi_next; 2398 flushes->bi_next = NULL; 2399 do_endio(ic, flushes); 2400 flushes = next; 2401 } 2402 } 2403 2404 static void complete_copy_from_journal(unsigned long error, void *context) 2405 { 2406 struct journal_io *io = context; 2407 struct journal_completion *comp = io->comp; 2408 struct dm_integrity_c *ic = comp->ic; 2409 remove_range(ic, &io->range); 2410 mempool_free(io, &ic->journal_io_mempool); 2411 if (unlikely(error != 0)) 2412 dm_integrity_io_error(ic, "copying from journal", -EIO); 2413 complete_journal_op(comp); 2414 } 2415 2416 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2417 struct journal_entry *je) 2418 { 2419 unsigned s = 0; 2420 do { 2421 js->commit_id = je->last_bytes[s]; 2422 js++; 2423 } while (++s < ic->sectors_per_block); 2424 } 2425 2426 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2427 unsigned write_sections, bool from_replay) 2428 { 2429 unsigned i, j, n; 2430 struct journal_completion comp; 2431 struct blk_plug plug; 2432 2433 blk_start_plug(&plug); 2434 2435 comp.ic = ic; 2436 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2437 init_completion(&comp.comp); 2438 2439 i = write_start; 2440 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2441 #ifndef INTERNAL_VERIFY 2442 if (unlikely(from_replay)) 2443 #endif 2444 rw_section_mac(ic, i, false); 2445 for (j = 0; j < ic->journal_section_entries; j++) { 2446 struct journal_entry *je = access_journal_entry(ic, i, j); 2447 sector_t sec, area, offset; 2448 unsigned k, l, next_loop; 2449 sector_t metadata_block; 2450 unsigned metadata_offset; 2451 struct journal_io *io; 2452 2453 if (journal_entry_is_unused(je)) 2454 continue; 2455 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2456 sec = journal_entry_get_sector(je); 2457 if (unlikely(from_replay)) { 2458 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2459 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2460 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2461 } 2462 } 2463 if (unlikely(sec >= ic->provided_data_sectors)) 2464 continue; 2465 get_area_and_offset(ic, sec, &area, &offset); 2466 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2467 for (k = j + 1; k < ic->journal_section_entries; k++) { 2468 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2469 sector_t sec2, area2, offset2; 2470 if (journal_entry_is_unused(je2)) 2471 break; 2472 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2473 sec2 = journal_entry_get_sector(je2); 2474 if (unlikely(sec2 >= ic->provided_data_sectors)) 2475 break; 2476 get_area_and_offset(ic, sec2, &area2, &offset2); 2477 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2478 break; 2479 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2480 } 2481 next_loop = k - 1; 2482 2483 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2484 io->comp = ∁ 2485 io->range.logical_sector = sec; 2486 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2487 2488 spin_lock_irq(&ic->endio_wait.lock); 2489 add_new_range_and_wait(ic, &io->range); 2490 2491 if (likely(!from_replay)) { 2492 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2493 2494 /* don't write if there is newer committed sector */ 2495 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2496 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2497 2498 journal_entry_set_unused(je2); 2499 remove_journal_node(ic, §ion_node[j]); 2500 j++; 2501 sec += ic->sectors_per_block; 2502 offset += ic->sectors_per_block; 2503 } 2504 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2505 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2506 2507 journal_entry_set_unused(je2); 2508 remove_journal_node(ic, §ion_node[k - 1]); 2509 k--; 2510 } 2511 if (j == k) { 2512 remove_range_unlocked(ic, &io->range); 2513 spin_unlock_irq(&ic->endio_wait.lock); 2514 mempool_free(io, &ic->journal_io_mempool); 2515 goto skip_io; 2516 } 2517 for (l = j; l < k; l++) { 2518 remove_journal_node(ic, §ion_node[l]); 2519 } 2520 } 2521 spin_unlock_irq(&ic->endio_wait.lock); 2522 2523 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2524 for (l = j; l < k; l++) { 2525 int r; 2526 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2527 2528 if ( 2529 #ifndef INTERNAL_VERIFY 2530 unlikely(from_replay) && 2531 #endif 2532 ic->internal_hash) { 2533 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2534 2535 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2536 (char *)access_journal_data(ic, i, l), test_tag); 2537 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2538 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2539 } 2540 2541 journal_entry_set_unused(je2); 2542 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2543 ic->tag_size, TAG_WRITE); 2544 if (unlikely(r)) { 2545 dm_integrity_io_error(ic, "reading tags", r); 2546 } 2547 } 2548 2549 atomic_inc(&comp.in_flight); 2550 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2551 (k - j) << ic->sb->log2_sectors_per_block, 2552 get_data_sector(ic, area, offset), 2553 complete_copy_from_journal, io); 2554 skip_io: 2555 j = next_loop; 2556 } 2557 } 2558 2559 dm_bufio_write_dirty_buffers_async(ic->bufio); 2560 2561 blk_finish_plug(&plug); 2562 2563 complete_journal_op(&comp); 2564 wait_for_completion_io(&comp.comp); 2565 2566 dm_integrity_flush_buffers(ic, true); 2567 } 2568 2569 static void integrity_writer(struct work_struct *w) 2570 { 2571 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2572 unsigned write_start, write_sections; 2573 2574 unsigned prev_free_sectors; 2575 2576 /* the following test is not needed, but it tests the replay code */ 2577 if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev) 2578 return; 2579 2580 spin_lock_irq(&ic->endio_wait.lock); 2581 write_start = ic->committed_section; 2582 write_sections = ic->n_committed_sections; 2583 spin_unlock_irq(&ic->endio_wait.lock); 2584 2585 if (!write_sections) 2586 return; 2587 2588 do_journal_write(ic, write_start, write_sections, false); 2589 2590 spin_lock_irq(&ic->endio_wait.lock); 2591 2592 ic->committed_section += write_sections; 2593 wraparound_section(ic, &ic->committed_section); 2594 ic->n_committed_sections -= write_sections; 2595 2596 prev_free_sectors = ic->free_sectors; 2597 ic->free_sectors += write_sections * ic->journal_section_entries; 2598 if (unlikely(!prev_free_sectors)) 2599 wake_up_locked(&ic->endio_wait); 2600 2601 spin_unlock_irq(&ic->endio_wait.lock); 2602 } 2603 2604 static void recalc_write_super(struct dm_integrity_c *ic) 2605 { 2606 int r; 2607 2608 dm_integrity_flush_buffers(ic, false); 2609 if (dm_integrity_failed(ic)) 2610 return; 2611 2612 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2613 if (unlikely(r)) 2614 dm_integrity_io_error(ic, "writing superblock", r); 2615 } 2616 2617 static void integrity_recalc(struct work_struct *w) 2618 { 2619 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2620 struct dm_integrity_range range; 2621 struct dm_io_request io_req; 2622 struct dm_io_region io_loc; 2623 sector_t area, offset; 2624 sector_t metadata_block; 2625 unsigned metadata_offset; 2626 sector_t logical_sector, n_sectors; 2627 __u8 *t; 2628 unsigned i; 2629 int r; 2630 unsigned super_counter = 0; 2631 2632 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2633 2634 spin_lock_irq(&ic->endio_wait.lock); 2635 2636 next_chunk: 2637 2638 if (unlikely(dm_post_suspending(ic->ti))) 2639 goto unlock_ret; 2640 2641 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2642 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2643 if (ic->mode == 'B') { 2644 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2645 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2646 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2647 } 2648 goto unlock_ret; 2649 } 2650 2651 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2652 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2653 if (!ic->meta_dev) 2654 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2655 2656 add_new_range_and_wait(ic, &range); 2657 spin_unlock_irq(&ic->endio_wait.lock); 2658 logical_sector = range.logical_sector; 2659 n_sectors = range.n_sectors; 2660 2661 if (ic->mode == 'B') { 2662 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2663 goto advance_and_next; 2664 } 2665 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2666 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2667 logical_sector += ic->sectors_per_block; 2668 n_sectors -= ic->sectors_per_block; 2669 cond_resched(); 2670 } 2671 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2672 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2673 n_sectors -= ic->sectors_per_block; 2674 cond_resched(); 2675 } 2676 get_area_and_offset(ic, logical_sector, &area, &offset); 2677 } 2678 2679 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2680 2681 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2682 recalc_write_super(ic); 2683 if (ic->mode == 'B') { 2684 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2685 } 2686 super_counter = 0; 2687 } 2688 2689 if (unlikely(dm_integrity_failed(ic))) 2690 goto err; 2691 2692 io_req.bi_op = REQ_OP_READ; 2693 io_req.bi_op_flags = 0; 2694 io_req.mem.type = DM_IO_VMA; 2695 io_req.mem.ptr.addr = ic->recalc_buffer; 2696 io_req.notify.fn = NULL; 2697 io_req.client = ic->io; 2698 io_loc.bdev = ic->dev->bdev; 2699 io_loc.sector = get_data_sector(ic, area, offset); 2700 io_loc.count = n_sectors; 2701 2702 r = dm_io(&io_req, 1, &io_loc, NULL); 2703 if (unlikely(r)) { 2704 dm_integrity_io_error(ic, "reading data", r); 2705 goto err; 2706 } 2707 2708 t = ic->recalc_tags; 2709 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2710 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2711 t += ic->tag_size; 2712 } 2713 2714 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2715 2716 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2717 if (unlikely(r)) { 2718 dm_integrity_io_error(ic, "writing tags", r); 2719 goto err; 2720 } 2721 2722 if (ic->mode == 'B') { 2723 sector_t start, end; 2724 start = (range.logical_sector >> 2725 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2726 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2727 end = ((range.logical_sector + range.n_sectors) >> 2728 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2729 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2730 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2731 } 2732 2733 advance_and_next: 2734 cond_resched(); 2735 2736 spin_lock_irq(&ic->endio_wait.lock); 2737 remove_range_unlocked(ic, &range); 2738 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2739 goto next_chunk; 2740 2741 err: 2742 remove_range(ic, &range); 2743 return; 2744 2745 unlock_ret: 2746 spin_unlock_irq(&ic->endio_wait.lock); 2747 2748 recalc_write_super(ic); 2749 } 2750 2751 static void bitmap_block_work(struct work_struct *w) 2752 { 2753 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2754 struct dm_integrity_c *ic = bbs->ic; 2755 struct bio *bio; 2756 struct bio_list bio_queue; 2757 struct bio_list waiting; 2758 2759 bio_list_init(&waiting); 2760 2761 spin_lock(&bbs->bio_queue_lock); 2762 bio_queue = bbs->bio_queue; 2763 bio_list_init(&bbs->bio_queue); 2764 spin_unlock(&bbs->bio_queue_lock); 2765 2766 while ((bio = bio_list_pop(&bio_queue))) { 2767 struct dm_integrity_io *dio; 2768 2769 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2770 2771 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2772 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2773 remove_range(ic, &dio->range); 2774 INIT_WORK(&dio->work, integrity_bio_wait); 2775 queue_work(ic->offload_wq, &dio->work); 2776 } else { 2777 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2778 dio->range.n_sectors, BITMAP_OP_SET); 2779 bio_list_add(&waiting, bio); 2780 } 2781 } 2782 2783 if (bio_list_empty(&waiting)) 2784 return; 2785 2786 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2787 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2788 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2789 2790 while ((bio = bio_list_pop(&waiting))) { 2791 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2792 2793 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2794 dio->range.n_sectors, BITMAP_OP_SET); 2795 2796 remove_range(ic, &dio->range); 2797 INIT_WORK(&dio->work, integrity_bio_wait); 2798 queue_work(ic->offload_wq, &dio->work); 2799 } 2800 2801 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2802 } 2803 2804 static void bitmap_flush_work(struct work_struct *work) 2805 { 2806 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2807 struct dm_integrity_range range; 2808 unsigned long limit; 2809 struct bio *bio; 2810 2811 dm_integrity_flush_buffers(ic, false); 2812 2813 range.logical_sector = 0; 2814 range.n_sectors = ic->provided_data_sectors; 2815 2816 spin_lock_irq(&ic->endio_wait.lock); 2817 add_new_range_and_wait(ic, &range); 2818 spin_unlock_irq(&ic->endio_wait.lock); 2819 2820 dm_integrity_flush_buffers(ic, true); 2821 2822 limit = ic->provided_data_sectors; 2823 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2824 limit = le64_to_cpu(ic->sb->recalc_sector) 2825 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2826 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2827 } 2828 /*DEBUG_print("zeroing journal\n");*/ 2829 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2830 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2831 2832 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2833 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2834 2835 spin_lock_irq(&ic->endio_wait.lock); 2836 remove_range_unlocked(ic, &range); 2837 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2838 bio_endio(bio); 2839 spin_unlock_irq(&ic->endio_wait.lock); 2840 spin_lock_irq(&ic->endio_wait.lock); 2841 } 2842 spin_unlock_irq(&ic->endio_wait.lock); 2843 } 2844 2845 2846 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2847 unsigned n_sections, unsigned char commit_seq) 2848 { 2849 unsigned i, j, n; 2850 2851 if (!n_sections) 2852 return; 2853 2854 for (n = 0; n < n_sections; n++) { 2855 i = start_section + n; 2856 wraparound_section(ic, &i); 2857 for (j = 0; j < ic->journal_section_sectors; j++) { 2858 struct journal_sector *js = access_journal(ic, i, j); 2859 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2860 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2861 } 2862 for (j = 0; j < ic->journal_section_entries; j++) { 2863 struct journal_entry *je = access_journal_entry(ic, i, j); 2864 journal_entry_set_unused(je); 2865 } 2866 } 2867 2868 write_journal(ic, start_section, n_sections); 2869 } 2870 2871 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2872 { 2873 unsigned char k; 2874 for (k = 0; k < N_COMMIT_IDS; k++) { 2875 if (dm_integrity_commit_id(ic, i, j, k) == id) 2876 return k; 2877 } 2878 dm_integrity_io_error(ic, "journal commit id", -EIO); 2879 return -EIO; 2880 } 2881 2882 static void replay_journal(struct dm_integrity_c *ic) 2883 { 2884 unsigned i, j; 2885 bool used_commit_ids[N_COMMIT_IDS]; 2886 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2887 unsigned write_start, write_sections; 2888 unsigned continue_section; 2889 bool journal_empty; 2890 unsigned char unused, last_used, want_commit_seq; 2891 2892 if (ic->mode == 'R') 2893 return; 2894 2895 if (ic->journal_uptodate) 2896 return; 2897 2898 last_used = 0; 2899 write_start = 0; 2900 2901 if (!ic->just_formatted) { 2902 DEBUG_print("reading journal\n"); 2903 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2904 if (ic->journal_io) 2905 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2906 if (ic->journal_io) { 2907 struct journal_completion crypt_comp; 2908 crypt_comp.ic = ic; 2909 init_completion(&crypt_comp.comp); 2910 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2911 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2912 wait_for_completion(&crypt_comp.comp); 2913 } 2914 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2915 } 2916 2917 if (dm_integrity_failed(ic)) 2918 goto clear_journal; 2919 2920 journal_empty = true; 2921 memset(used_commit_ids, 0, sizeof used_commit_ids); 2922 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2923 for (i = 0; i < ic->journal_sections; i++) { 2924 for (j = 0; j < ic->journal_section_sectors; j++) { 2925 int k; 2926 struct journal_sector *js = access_journal(ic, i, j); 2927 k = find_commit_seq(ic, i, j, js->commit_id); 2928 if (k < 0) 2929 goto clear_journal; 2930 used_commit_ids[k] = true; 2931 max_commit_id_sections[k] = i; 2932 } 2933 if (journal_empty) { 2934 for (j = 0; j < ic->journal_section_entries; j++) { 2935 struct journal_entry *je = access_journal_entry(ic, i, j); 2936 if (!journal_entry_is_unused(je)) { 2937 journal_empty = false; 2938 break; 2939 } 2940 } 2941 } 2942 } 2943 2944 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2945 unused = N_COMMIT_IDS - 1; 2946 while (unused && !used_commit_ids[unused - 1]) 2947 unused--; 2948 } else { 2949 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2950 if (!used_commit_ids[unused]) 2951 break; 2952 if (unused == N_COMMIT_IDS) { 2953 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2954 goto clear_journal; 2955 } 2956 } 2957 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2958 unused, used_commit_ids[0], used_commit_ids[1], 2959 used_commit_ids[2], used_commit_ids[3]); 2960 2961 last_used = prev_commit_seq(unused); 2962 want_commit_seq = prev_commit_seq(last_used); 2963 2964 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2965 journal_empty = true; 2966 2967 write_start = max_commit_id_sections[last_used] + 1; 2968 if (unlikely(write_start >= ic->journal_sections)) 2969 want_commit_seq = next_commit_seq(want_commit_seq); 2970 wraparound_section(ic, &write_start); 2971 2972 i = write_start; 2973 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2974 for (j = 0; j < ic->journal_section_sectors; j++) { 2975 struct journal_sector *js = access_journal(ic, i, j); 2976 2977 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2978 /* 2979 * This could be caused by crash during writing. 2980 * We won't replay the inconsistent part of the 2981 * journal. 2982 */ 2983 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2984 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2985 goto brk; 2986 } 2987 } 2988 i++; 2989 if (unlikely(i >= ic->journal_sections)) 2990 want_commit_seq = next_commit_seq(want_commit_seq); 2991 wraparound_section(ic, &i); 2992 } 2993 brk: 2994 2995 if (!journal_empty) { 2996 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2997 write_sections, write_start, want_commit_seq); 2998 do_journal_write(ic, write_start, write_sections, true); 2999 } 3000 3001 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3002 continue_section = write_start; 3003 ic->commit_seq = want_commit_seq; 3004 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3005 } else { 3006 unsigned s; 3007 unsigned char erase_seq; 3008 clear_journal: 3009 DEBUG_print("clearing journal\n"); 3010 3011 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3012 s = write_start; 3013 init_journal(ic, s, 1, erase_seq); 3014 s++; 3015 wraparound_section(ic, &s); 3016 if (ic->journal_sections >= 2) { 3017 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3018 s += ic->journal_sections - 2; 3019 wraparound_section(ic, &s); 3020 init_journal(ic, s, 1, erase_seq); 3021 } 3022 3023 continue_section = 0; 3024 ic->commit_seq = next_commit_seq(erase_seq); 3025 } 3026 3027 ic->committed_section = continue_section; 3028 ic->n_committed_sections = 0; 3029 3030 ic->uncommitted_section = continue_section; 3031 ic->n_uncommitted_sections = 0; 3032 3033 ic->free_section = continue_section; 3034 ic->free_section_entry = 0; 3035 ic->free_sectors = ic->journal_entries; 3036 3037 ic->journal_tree_root = RB_ROOT; 3038 for (i = 0; i < ic->journal_entries; i++) 3039 init_journal_node(&ic->journal_tree[i]); 3040 } 3041 3042 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3043 { 3044 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 3045 3046 if (ic->mode == 'B') { 3047 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3048 ic->synchronous_mode = 1; 3049 3050 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3051 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3052 flush_workqueue(ic->commit_wq); 3053 } 3054 } 3055 3056 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3057 { 3058 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3059 3060 DEBUG_print("dm_integrity_reboot\n"); 3061 3062 dm_integrity_enter_synchronous_mode(ic); 3063 3064 return NOTIFY_DONE; 3065 } 3066 3067 static void dm_integrity_postsuspend(struct dm_target *ti) 3068 { 3069 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3070 int r; 3071 3072 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3073 3074 del_timer_sync(&ic->autocommit_timer); 3075 3076 if (ic->recalc_wq) 3077 drain_workqueue(ic->recalc_wq); 3078 3079 if (ic->mode == 'B') 3080 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3081 3082 queue_work(ic->commit_wq, &ic->commit_work); 3083 drain_workqueue(ic->commit_wq); 3084 3085 if (ic->mode == 'J') { 3086 if (ic->meta_dev) 3087 queue_work(ic->writer_wq, &ic->writer_work); 3088 drain_workqueue(ic->writer_wq); 3089 dm_integrity_flush_buffers(ic, true); 3090 } 3091 3092 if (ic->mode == 'B') { 3093 dm_integrity_flush_buffers(ic, true); 3094 #if 1 3095 /* set to 0 to test bitmap replay code */ 3096 init_journal(ic, 0, ic->journal_sections, 0); 3097 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3098 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3099 if (unlikely(r)) 3100 dm_integrity_io_error(ic, "writing superblock", r); 3101 #endif 3102 } 3103 3104 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3105 3106 ic->journal_uptodate = true; 3107 } 3108 3109 static void dm_integrity_resume(struct dm_target *ti) 3110 { 3111 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3112 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3113 int r; 3114 3115 DEBUG_print("resume\n"); 3116 3117 if (ic->provided_data_sectors != old_provided_data_sectors) { 3118 if (ic->provided_data_sectors > old_provided_data_sectors && 3119 ic->mode == 'B' && 3120 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3121 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 3122 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3123 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3124 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3125 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3126 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3127 } 3128 3129 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3130 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3131 if (unlikely(r)) 3132 dm_integrity_io_error(ic, "writing superblock", r); 3133 } 3134 3135 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3136 DEBUG_print("resume dirty_bitmap\n"); 3137 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 3138 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3139 if (ic->mode == 'B') { 3140 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3141 !ic->reset_recalculate_flag) { 3142 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3143 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3144 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3145 BITMAP_OP_TEST_ALL_CLEAR)) { 3146 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3147 ic->sb->recalc_sector = cpu_to_le64(0); 3148 } 3149 } else { 3150 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3151 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3152 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3153 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3154 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3155 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3156 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3157 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3158 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3159 ic->sb->recalc_sector = cpu_to_le64(0); 3160 } 3161 } else { 3162 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3163 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3164 ic->reset_recalculate_flag) { 3165 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3166 ic->sb->recalc_sector = cpu_to_le64(0); 3167 } 3168 init_journal(ic, 0, ic->journal_sections, 0); 3169 replay_journal(ic); 3170 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3171 } 3172 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3173 if (unlikely(r)) 3174 dm_integrity_io_error(ic, "writing superblock", r); 3175 } else { 3176 replay_journal(ic); 3177 if (ic->reset_recalculate_flag) { 3178 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3179 ic->sb->recalc_sector = cpu_to_le64(0); 3180 } 3181 if (ic->mode == 'B') { 3182 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3183 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3184 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3185 if (unlikely(r)) 3186 dm_integrity_io_error(ic, "writing superblock", r); 3187 3188 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3189 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3190 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3191 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3192 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3193 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3194 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3195 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3196 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3197 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3198 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3199 } 3200 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3201 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3202 } 3203 } 3204 3205 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3206 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3207 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3208 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3209 if (recalc_pos < ic->provided_data_sectors) { 3210 queue_work(ic->recalc_wq, &ic->recalc_work); 3211 } else if (recalc_pos > ic->provided_data_sectors) { 3212 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3213 recalc_write_super(ic); 3214 } 3215 } 3216 3217 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3218 ic->reboot_notifier.next = NULL; 3219 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3220 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3221 3222 #if 0 3223 /* set to 1 to stress test synchronous mode */ 3224 dm_integrity_enter_synchronous_mode(ic); 3225 #endif 3226 } 3227 3228 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3229 unsigned status_flags, char *result, unsigned maxlen) 3230 { 3231 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3232 unsigned arg_count; 3233 size_t sz = 0; 3234 3235 switch (type) { 3236 case STATUSTYPE_INFO: 3237 DMEMIT("%llu %llu", 3238 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3239 ic->provided_data_sectors); 3240 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3241 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3242 else 3243 DMEMIT(" -"); 3244 break; 3245 3246 case STATUSTYPE_TABLE: { 3247 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3248 watermark_percentage += ic->journal_entries / 2; 3249 do_div(watermark_percentage, ic->journal_entries); 3250 arg_count = 3; 3251 arg_count += !!ic->meta_dev; 3252 arg_count += ic->sectors_per_block != 1; 3253 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3254 arg_count += ic->reset_recalculate_flag; 3255 arg_count += ic->discard; 3256 arg_count += ic->mode == 'J'; 3257 arg_count += ic->mode == 'J'; 3258 arg_count += ic->mode == 'B'; 3259 arg_count += ic->mode == 'B'; 3260 arg_count += !!ic->internal_hash_alg.alg_string; 3261 arg_count += !!ic->journal_crypt_alg.alg_string; 3262 arg_count += !!ic->journal_mac_alg.alg_string; 3263 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3264 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3265 arg_count += ic->legacy_recalculate; 3266 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3267 ic->tag_size, ic->mode, arg_count); 3268 if (ic->meta_dev) 3269 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3270 if (ic->sectors_per_block != 1) 3271 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3272 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3273 DMEMIT(" recalculate"); 3274 if (ic->reset_recalculate_flag) 3275 DMEMIT(" reset_recalculate"); 3276 if (ic->discard) 3277 DMEMIT(" allow_discards"); 3278 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3279 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3280 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3281 if (ic->mode == 'J') { 3282 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 3283 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3284 } 3285 if (ic->mode == 'B') { 3286 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3287 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3288 } 3289 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3290 DMEMIT(" fix_padding"); 3291 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3292 DMEMIT(" fix_hmac"); 3293 if (ic->legacy_recalculate) 3294 DMEMIT(" legacy_recalculate"); 3295 3296 #define EMIT_ALG(a, n) \ 3297 do { \ 3298 if (ic->a.alg_string) { \ 3299 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3300 if (ic->a.key_string) \ 3301 DMEMIT(":%s", ic->a.key_string);\ 3302 } \ 3303 } while (0) 3304 EMIT_ALG(internal_hash_alg, "internal_hash"); 3305 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3306 EMIT_ALG(journal_mac_alg, "journal_mac"); 3307 break; 3308 } 3309 case STATUSTYPE_IMA: 3310 DMEMIT_TARGET_NAME_VERSION(ti->type); 3311 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", 3312 ic->dev->name, ic->start, ic->tag_size, ic->mode); 3313 3314 if (ic->meta_dev) 3315 DMEMIT(",meta_device=%s", ic->meta_dev->name); 3316 if (ic->sectors_per_block != 1) 3317 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); 3318 3319 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 3320 'y' : 'n'); 3321 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); 3322 DMEMIT(",fix_padding=%c", 3323 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); 3324 DMEMIT(",fix_hmac=%c", 3325 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); 3326 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); 3327 3328 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); 3329 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); 3330 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); 3331 DMEMIT(";"); 3332 break; 3333 } 3334 } 3335 3336 static int dm_integrity_iterate_devices(struct dm_target *ti, 3337 iterate_devices_callout_fn fn, void *data) 3338 { 3339 struct dm_integrity_c *ic = ti->private; 3340 3341 if (!ic->meta_dev) 3342 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3343 else 3344 return fn(ti, ic->dev, 0, ti->len, data); 3345 } 3346 3347 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3348 { 3349 struct dm_integrity_c *ic = ti->private; 3350 3351 if (ic->sectors_per_block > 1) { 3352 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3353 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3354 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3355 } 3356 } 3357 3358 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3359 { 3360 unsigned sector_space = JOURNAL_SECTOR_DATA; 3361 3362 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3363 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3364 JOURNAL_ENTRY_ROUNDUP); 3365 3366 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3367 sector_space -= JOURNAL_MAC_PER_SECTOR; 3368 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3369 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3370 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3371 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3372 } 3373 3374 static int calculate_device_limits(struct dm_integrity_c *ic) 3375 { 3376 __u64 initial_sectors; 3377 3378 calculate_journal_section_size(ic); 3379 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3380 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3381 return -EINVAL; 3382 ic->initial_sectors = initial_sectors; 3383 3384 if (!ic->meta_dev) { 3385 sector_t last_sector, last_area, last_offset; 3386 3387 /* we have to maintain excessive padding for compatibility with existing volumes */ 3388 __u64 metadata_run_padding = 3389 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3390 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3391 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3392 3393 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3394 metadata_run_padding) >> SECTOR_SHIFT; 3395 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3396 ic->log2_metadata_run = __ffs(ic->metadata_run); 3397 else 3398 ic->log2_metadata_run = -1; 3399 3400 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3401 last_sector = get_data_sector(ic, last_area, last_offset); 3402 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3403 return -EINVAL; 3404 } else { 3405 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3406 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3407 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3408 meta_size <<= ic->log2_buffer_sectors; 3409 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3410 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3411 return -EINVAL; 3412 ic->metadata_run = 1; 3413 ic->log2_metadata_run = 0; 3414 } 3415 3416 return 0; 3417 } 3418 3419 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3420 { 3421 if (!ic->meta_dev) { 3422 int test_bit; 3423 ic->provided_data_sectors = 0; 3424 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3425 __u64 prev_data_sectors = ic->provided_data_sectors; 3426 3427 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3428 if (calculate_device_limits(ic)) 3429 ic->provided_data_sectors = prev_data_sectors; 3430 } 3431 } else { 3432 ic->provided_data_sectors = ic->data_device_sectors; 3433 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3434 } 3435 } 3436 3437 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3438 { 3439 unsigned journal_sections; 3440 int test_bit; 3441 3442 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3443 memcpy(ic->sb->magic, SB_MAGIC, 8); 3444 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3445 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3446 if (ic->journal_mac_alg.alg_string) 3447 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3448 3449 calculate_journal_section_size(ic); 3450 journal_sections = journal_sectors / ic->journal_section_sectors; 3451 if (!journal_sections) 3452 journal_sections = 1; 3453 3454 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 3455 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 3456 get_random_bytes(ic->sb->salt, SALT_SIZE); 3457 } 3458 3459 if (!ic->meta_dev) { 3460 if (ic->fix_padding) 3461 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3462 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3463 if (!interleave_sectors) 3464 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3465 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3466 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3467 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3468 3469 get_provided_data_sectors(ic); 3470 if (!ic->provided_data_sectors) 3471 return -EINVAL; 3472 } else { 3473 ic->sb->log2_interleave_sectors = 0; 3474 3475 get_provided_data_sectors(ic); 3476 if (!ic->provided_data_sectors) 3477 return -EINVAL; 3478 3479 try_smaller_buffer: 3480 ic->sb->journal_sections = cpu_to_le32(0); 3481 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3482 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3483 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3484 if (test_journal_sections > journal_sections) 3485 continue; 3486 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3487 if (calculate_device_limits(ic)) 3488 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3489 3490 } 3491 if (!le32_to_cpu(ic->sb->journal_sections)) { 3492 if (ic->log2_buffer_sectors > 3) { 3493 ic->log2_buffer_sectors--; 3494 goto try_smaller_buffer; 3495 } 3496 return -EINVAL; 3497 } 3498 } 3499 3500 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3501 3502 sb_set_version(ic); 3503 3504 return 0; 3505 } 3506 3507 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3508 { 3509 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3510 struct blk_integrity bi; 3511 3512 memset(&bi, 0, sizeof(bi)); 3513 bi.profile = &dm_integrity_profile; 3514 bi.tuple_size = ic->tag_size; 3515 bi.tag_size = bi.tuple_size; 3516 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3517 3518 blk_integrity_register(disk, &bi); 3519 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3520 } 3521 3522 static void dm_integrity_free_page_list(struct page_list *pl) 3523 { 3524 unsigned i; 3525 3526 if (!pl) 3527 return; 3528 for (i = 0; pl[i].page; i++) 3529 __free_page(pl[i].page); 3530 kvfree(pl); 3531 } 3532 3533 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3534 { 3535 struct page_list *pl; 3536 unsigned i; 3537 3538 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3539 if (!pl) 3540 return NULL; 3541 3542 for (i = 0; i < n_pages; i++) { 3543 pl[i].page = alloc_page(GFP_KERNEL); 3544 if (!pl[i].page) { 3545 dm_integrity_free_page_list(pl); 3546 return NULL; 3547 } 3548 if (i) 3549 pl[i - 1].next = &pl[i]; 3550 } 3551 pl[i].page = NULL; 3552 pl[i].next = NULL; 3553 3554 return pl; 3555 } 3556 3557 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3558 { 3559 unsigned i; 3560 for (i = 0; i < ic->journal_sections; i++) 3561 kvfree(sl[i]); 3562 kvfree(sl); 3563 } 3564 3565 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3566 struct page_list *pl) 3567 { 3568 struct scatterlist **sl; 3569 unsigned i; 3570 3571 sl = kvmalloc_array(ic->journal_sections, 3572 sizeof(struct scatterlist *), 3573 GFP_KERNEL | __GFP_ZERO); 3574 if (!sl) 3575 return NULL; 3576 3577 for (i = 0; i < ic->journal_sections; i++) { 3578 struct scatterlist *s; 3579 unsigned start_index, start_offset; 3580 unsigned end_index, end_offset; 3581 unsigned n_pages; 3582 unsigned idx; 3583 3584 page_list_location(ic, i, 0, &start_index, &start_offset); 3585 page_list_location(ic, i, ic->journal_section_sectors - 1, 3586 &end_index, &end_offset); 3587 3588 n_pages = (end_index - start_index + 1); 3589 3590 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3591 GFP_KERNEL); 3592 if (!s) { 3593 dm_integrity_free_journal_scatterlist(ic, sl); 3594 return NULL; 3595 } 3596 3597 sg_init_table(s, n_pages); 3598 for (idx = start_index; idx <= end_index; idx++) { 3599 char *va = lowmem_page_address(pl[idx].page); 3600 unsigned start = 0, end = PAGE_SIZE; 3601 if (idx == start_index) 3602 start = start_offset; 3603 if (idx == end_index) 3604 end = end_offset + (1 << SECTOR_SHIFT); 3605 sg_set_buf(&s[idx - start_index], va + start, end - start); 3606 } 3607 3608 sl[i] = s; 3609 } 3610 3611 return sl; 3612 } 3613 3614 static void free_alg(struct alg_spec *a) 3615 { 3616 kfree_sensitive(a->alg_string); 3617 kfree_sensitive(a->key); 3618 memset(a, 0, sizeof *a); 3619 } 3620 3621 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3622 { 3623 char *k; 3624 3625 free_alg(a); 3626 3627 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3628 if (!a->alg_string) 3629 goto nomem; 3630 3631 k = strchr(a->alg_string, ':'); 3632 if (k) { 3633 *k = 0; 3634 a->key_string = k + 1; 3635 if (strlen(a->key_string) & 1) 3636 goto inval; 3637 3638 a->key_size = strlen(a->key_string) / 2; 3639 a->key = kmalloc(a->key_size, GFP_KERNEL); 3640 if (!a->key) 3641 goto nomem; 3642 if (hex2bin(a->key, a->key_string, a->key_size)) 3643 goto inval; 3644 } 3645 3646 return 0; 3647 inval: 3648 *error = error_inval; 3649 return -EINVAL; 3650 nomem: 3651 *error = "Out of memory for an argument"; 3652 return -ENOMEM; 3653 } 3654 3655 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3656 char *error_alg, char *error_key) 3657 { 3658 int r; 3659 3660 if (a->alg_string) { 3661 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3662 if (IS_ERR(*hash)) { 3663 *error = error_alg; 3664 r = PTR_ERR(*hash); 3665 *hash = NULL; 3666 return r; 3667 } 3668 3669 if (a->key) { 3670 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3671 if (r) { 3672 *error = error_key; 3673 return r; 3674 } 3675 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3676 *error = error_key; 3677 return -ENOKEY; 3678 } 3679 } 3680 3681 return 0; 3682 } 3683 3684 static int create_journal(struct dm_integrity_c *ic, char **error) 3685 { 3686 int r = 0; 3687 unsigned i; 3688 __u64 journal_pages, journal_desc_size, journal_tree_size; 3689 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3690 struct skcipher_request *req = NULL; 3691 3692 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3693 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3694 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3695 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3696 3697 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3698 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3699 journal_desc_size = journal_pages * sizeof(struct page_list); 3700 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3701 *error = "Journal doesn't fit into memory"; 3702 r = -ENOMEM; 3703 goto bad; 3704 } 3705 ic->journal_pages = journal_pages; 3706 3707 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3708 if (!ic->journal) { 3709 *error = "Could not allocate memory for journal"; 3710 r = -ENOMEM; 3711 goto bad; 3712 } 3713 if (ic->journal_crypt_alg.alg_string) { 3714 unsigned ivsize, blocksize; 3715 struct journal_completion comp; 3716 3717 comp.ic = ic; 3718 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3719 if (IS_ERR(ic->journal_crypt)) { 3720 *error = "Invalid journal cipher"; 3721 r = PTR_ERR(ic->journal_crypt); 3722 ic->journal_crypt = NULL; 3723 goto bad; 3724 } 3725 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3726 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3727 3728 if (ic->journal_crypt_alg.key) { 3729 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3730 ic->journal_crypt_alg.key_size); 3731 if (r) { 3732 *error = "Error setting encryption key"; 3733 goto bad; 3734 } 3735 } 3736 DEBUG_print("cipher %s, block size %u iv size %u\n", 3737 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3738 3739 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3740 if (!ic->journal_io) { 3741 *error = "Could not allocate memory for journal io"; 3742 r = -ENOMEM; 3743 goto bad; 3744 } 3745 3746 if (blocksize == 1) { 3747 struct scatterlist *sg; 3748 3749 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3750 if (!req) { 3751 *error = "Could not allocate crypt request"; 3752 r = -ENOMEM; 3753 goto bad; 3754 } 3755 3756 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3757 if (!crypt_iv) { 3758 *error = "Could not allocate iv"; 3759 r = -ENOMEM; 3760 goto bad; 3761 } 3762 3763 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3764 if (!ic->journal_xor) { 3765 *error = "Could not allocate memory for journal xor"; 3766 r = -ENOMEM; 3767 goto bad; 3768 } 3769 3770 sg = kvmalloc_array(ic->journal_pages + 1, 3771 sizeof(struct scatterlist), 3772 GFP_KERNEL); 3773 if (!sg) { 3774 *error = "Unable to allocate sg list"; 3775 r = -ENOMEM; 3776 goto bad; 3777 } 3778 sg_init_table(sg, ic->journal_pages + 1); 3779 for (i = 0; i < ic->journal_pages; i++) { 3780 char *va = lowmem_page_address(ic->journal_xor[i].page); 3781 clear_page(va); 3782 sg_set_buf(&sg[i], va, PAGE_SIZE); 3783 } 3784 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3785 3786 skcipher_request_set_crypt(req, sg, sg, 3787 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3788 init_completion(&comp.comp); 3789 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3790 if (do_crypt(true, req, &comp)) 3791 wait_for_completion(&comp.comp); 3792 kvfree(sg); 3793 r = dm_integrity_failed(ic); 3794 if (r) { 3795 *error = "Unable to encrypt journal"; 3796 goto bad; 3797 } 3798 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3799 3800 crypto_free_skcipher(ic->journal_crypt); 3801 ic->journal_crypt = NULL; 3802 } else { 3803 unsigned crypt_len = roundup(ivsize, blocksize); 3804 3805 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3806 if (!req) { 3807 *error = "Could not allocate crypt request"; 3808 r = -ENOMEM; 3809 goto bad; 3810 } 3811 3812 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3813 if (!crypt_iv) { 3814 *error = "Could not allocate iv"; 3815 r = -ENOMEM; 3816 goto bad; 3817 } 3818 3819 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3820 if (!crypt_data) { 3821 *error = "Unable to allocate crypt data"; 3822 r = -ENOMEM; 3823 goto bad; 3824 } 3825 3826 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3827 if (!ic->journal_scatterlist) { 3828 *error = "Unable to allocate sg list"; 3829 r = -ENOMEM; 3830 goto bad; 3831 } 3832 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3833 if (!ic->journal_io_scatterlist) { 3834 *error = "Unable to allocate sg list"; 3835 r = -ENOMEM; 3836 goto bad; 3837 } 3838 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3839 sizeof(struct skcipher_request *), 3840 GFP_KERNEL | __GFP_ZERO); 3841 if (!ic->sk_requests) { 3842 *error = "Unable to allocate sk requests"; 3843 r = -ENOMEM; 3844 goto bad; 3845 } 3846 for (i = 0; i < ic->journal_sections; i++) { 3847 struct scatterlist sg; 3848 struct skcipher_request *section_req; 3849 __le32 section_le = cpu_to_le32(i); 3850 3851 memset(crypt_iv, 0x00, ivsize); 3852 memset(crypt_data, 0x00, crypt_len); 3853 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3854 3855 sg_init_one(&sg, crypt_data, crypt_len); 3856 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3857 init_completion(&comp.comp); 3858 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3859 if (do_crypt(true, req, &comp)) 3860 wait_for_completion(&comp.comp); 3861 3862 r = dm_integrity_failed(ic); 3863 if (r) { 3864 *error = "Unable to generate iv"; 3865 goto bad; 3866 } 3867 3868 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3869 if (!section_req) { 3870 *error = "Unable to allocate crypt request"; 3871 r = -ENOMEM; 3872 goto bad; 3873 } 3874 section_req->iv = kmalloc_array(ivsize, 2, 3875 GFP_KERNEL); 3876 if (!section_req->iv) { 3877 skcipher_request_free(section_req); 3878 *error = "Unable to allocate iv"; 3879 r = -ENOMEM; 3880 goto bad; 3881 } 3882 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3883 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3884 ic->sk_requests[i] = section_req; 3885 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3886 } 3887 } 3888 } 3889 3890 for (i = 0; i < N_COMMIT_IDS; i++) { 3891 unsigned j; 3892 retest_commit_id: 3893 for (j = 0; j < i; j++) { 3894 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3895 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3896 goto retest_commit_id; 3897 } 3898 } 3899 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3900 } 3901 3902 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3903 if (journal_tree_size > ULONG_MAX) { 3904 *error = "Journal doesn't fit into memory"; 3905 r = -ENOMEM; 3906 goto bad; 3907 } 3908 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3909 if (!ic->journal_tree) { 3910 *error = "Could not allocate memory for journal tree"; 3911 r = -ENOMEM; 3912 } 3913 bad: 3914 kfree(crypt_data); 3915 kfree(crypt_iv); 3916 skcipher_request_free(req); 3917 3918 return r; 3919 } 3920 3921 /* 3922 * Construct a integrity mapping 3923 * 3924 * Arguments: 3925 * device 3926 * offset from the start of the device 3927 * tag size 3928 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3929 * number of optional arguments 3930 * optional arguments: 3931 * journal_sectors 3932 * interleave_sectors 3933 * buffer_sectors 3934 * journal_watermark 3935 * commit_time 3936 * meta_device 3937 * block_size 3938 * sectors_per_bit 3939 * bitmap_flush_interval 3940 * internal_hash 3941 * journal_crypt 3942 * journal_mac 3943 * recalculate 3944 */ 3945 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3946 { 3947 struct dm_integrity_c *ic; 3948 char dummy; 3949 int r; 3950 unsigned extra_args; 3951 struct dm_arg_set as; 3952 static const struct dm_arg _args[] = { 3953 {0, 18, "Invalid number of feature args"}, 3954 }; 3955 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3956 bool should_write_sb; 3957 __u64 threshold; 3958 unsigned long long start; 3959 __s8 log2_sectors_per_bitmap_bit = -1; 3960 __s8 log2_blocks_per_bitmap_bit; 3961 __u64 bits_in_journal; 3962 __u64 n_bitmap_bits; 3963 3964 #define DIRECT_ARGUMENTS 4 3965 3966 if (argc <= DIRECT_ARGUMENTS) { 3967 ti->error = "Invalid argument count"; 3968 return -EINVAL; 3969 } 3970 3971 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3972 if (!ic) { 3973 ti->error = "Cannot allocate integrity context"; 3974 return -ENOMEM; 3975 } 3976 ti->private = ic; 3977 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3978 ic->ti = ti; 3979 3980 ic->in_progress = RB_ROOT; 3981 INIT_LIST_HEAD(&ic->wait_list); 3982 init_waitqueue_head(&ic->endio_wait); 3983 bio_list_init(&ic->flush_bio_list); 3984 init_waitqueue_head(&ic->copy_to_journal_wait); 3985 init_completion(&ic->crypto_backoff); 3986 atomic64_set(&ic->number_of_mismatches, 0); 3987 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 3988 3989 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3990 if (r) { 3991 ti->error = "Device lookup failed"; 3992 goto bad; 3993 } 3994 3995 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3996 ti->error = "Invalid starting offset"; 3997 r = -EINVAL; 3998 goto bad; 3999 } 4000 ic->start = start; 4001 4002 if (strcmp(argv[2], "-")) { 4003 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 4004 ti->error = "Invalid tag size"; 4005 r = -EINVAL; 4006 goto bad; 4007 } 4008 } 4009 4010 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 4011 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 4012 ic->mode = argv[3][0]; 4013 } else { 4014 ti->error = "Invalid mode (expecting J, B, D, R)"; 4015 r = -EINVAL; 4016 goto bad; 4017 } 4018 4019 journal_sectors = 0; 4020 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4021 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4022 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4023 sync_msec = DEFAULT_SYNC_MSEC; 4024 ic->sectors_per_block = 1; 4025 4026 as.argc = argc - DIRECT_ARGUMENTS; 4027 as.argv = argv + DIRECT_ARGUMENTS; 4028 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4029 if (r) 4030 goto bad; 4031 4032 while (extra_args--) { 4033 const char *opt_string; 4034 unsigned val; 4035 unsigned long long llval; 4036 opt_string = dm_shift_arg(&as); 4037 if (!opt_string) { 4038 r = -EINVAL; 4039 ti->error = "Not enough feature arguments"; 4040 goto bad; 4041 } 4042 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4043 journal_sectors = val ? val : 1; 4044 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4045 interleave_sectors = val; 4046 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4047 buffer_sectors = val; 4048 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4049 journal_watermark = val; 4050 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4051 sync_msec = val; 4052 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4053 if (ic->meta_dev) { 4054 dm_put_device(ti, ic->meta_dev); 4055 ic->meta_dev = NULL; 4056 } 4057 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4058 dm_table_get_mode(ti->table), &ic->meta_dev); 4059 if (r) { 4060 ti->error = "Device lookup failed"; 4061 goto bad; 4062 } 4063 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4064 if (val < 1 << SECTOR_SHIFT || 4065 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4066 (val & (val -1))) { 4067 r = -EINVAL; 4068 ti->error = "Invalid block_size argument"; 4069 goto bad; 4070 } 4071 ic->sectors_per_block = val >> SECTOR_SHIFT; 4072 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4073 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4074 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4075 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4076 r = -EINVAL; 4077 ti->error = "Invalid bitmap_flush_interval argument"; 4078 goto bad; 4079 } 4080 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4081 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4082 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4083 "Invalid internal_hash argument"); 4084 if (r) 4085 goto bad; 4086 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4087 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4088 "Invalid journal_crypt argument"); 4089 if (r) 4090 goto bad; 4091 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4092 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4093 "Invalid journal_mac argument"); 4094 if (r) 4095 goto bad; 4096 } else if (!strcmp(opt_string, "recalculate")) { 4097 ic->recalculate_flag = true; 4098 } else if (!strcmp(opt_string, "reset_recalculate")) { 4099 ic->recalculate_flag = true; 4100 ic->reset_recalculate_flag = true; 4101 } else if (!strcmp(opt_string, "allow_discards")) { 4102 ic->discard = true; 4103 } else if (!strcmp(opt_string, "fix_padding")) { 4104 ic->fix_padding = true; 4105 } else if (!strcmp(opt_string, "fix_hmac")) { 4106 ic->fix_hmac = true; 4107 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4108 ic->legacy_recalculate = true; 4109 } else { 4110 r = -EINVAL; 4111 ti->error = "Invalid argument"; 4112 goto bad; 4113 } 4114 } 4115 4116 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 4117 if (!ic->meta_dev) 4118 ic->meta_device_sectors = ic->data_device_sectors; 4119 else 4120 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 4121 4122 if (!journal_sectors) { 4123 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4124 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4125 } 4126 4127 if (!buffer_sectors) 4128 buffer_sectors = 1; 4129 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4130 4131 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4132 "Invalid internal hash", "Error setting internal hash key"); 4133 if (r) 4134 goto bad; 4135 4136 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4137 "Invalid journal mac", "Error setting journal mac key"); 4138 if (r) 4139 goto bad; 4140 4141 if (!ic->tag_size) { 4142 if (!ic->internal_hash) { 4143 ti->error = "Unknown tag size"; 4144 r = -EINVAL; 4145 goto bad; 4146 } 4147 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4148 } 4149 if (ic->tag_size > MAX_TAG_SIZE) { 4150 ti->error = "Too big tag size"; 4151 r = -EINVAL; 4152 goto bad; 4153 } 4154 if (!(ic->tag_size & (ic->tag_size - 1))) 4155 ic->log2_tag_size = __ffs(ic->tag_size); 4156 else 4157 ic->log2_tag_size = -1; 4158 4159 if (ic->mode == 'B' && !ic->internal_hash) { 4160 r = -EINVAL; 4161 ti->error = "Bitmap mode can be only used with internal hash"; 4162 goto bad; 4163 } 4164 4165 if (ic->discard && !ic->internal_hash) { 4166 r = -EINVAL; 4167 ti->error = "Discard can be only used with internal hash"; 4168 goto bad; 4169 } 4170 4171 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4172 ic->autocommit_msec = sync_msec; 4173 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4174 4175 ic->io = dm_io_client_create(); 4176 if (IS_ERR(ic->io)) { 4177 r = PTR_ERR(ic->io); 4178 ic->io = NULL; 4179 ti->error = "Cannot allocate dm io"; 4180 goto bad; 4181 } 4182 4183 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4184 if (r) { 4185 ti->error = "Cannot allocate mempool"; 4186 goto bad; 4187 } 4188 4189 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4190 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4191 if (!ic->metadata_wq) { 4192 ti->error = "Cannot allocate workqueue"; 4193 r = -ENOMEM; 4194 goto bad; 4195 } 4196 4197 /* 4198 * If this workqueue were percpu, it would cause bio reordering 4199 * and reduced performance. 4200 */ 4201 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4202 if (!ic->wait_wq) { 4203 ti->error = "Cannot allocate workqueue"; 4204 r = -ENOMEM; 4205 goto bad; 4206 } 4207 4208 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4209 METADATA_WORKQUEUE_MAX_ACTIVE); 4210 if (!ic->offload_wq) { 4211 ti->error = "Cannot allocate workqueue"; 4212 r = -ENOMEM; 4213 goto bad; 4214 } 4215 4216 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4217 if (!ic->commit_wq) { 4218 ti->error = "Cannot allocate workqueue"; 4219 r = -ENOMEM; 4220 goto bad; 4221 } 4222 INIT_WORK(&ic->commit_work, integrity_commit); 4223 4224 if (ic->mode == 'J' || ic->mode == 'B') { 4225 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4226 if (!ic->writer_wq) { 4227 ti->error = "Cannot allocate workqueue"; 4228 r = -ENOMEM; 4229 goto bad; 4230 } 4231 INIT_WORK(&ic->writer_work, integrity_writer); 4232 } 4233 4234 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4235 if (!ic->sb) { 4236 r = -ENOMEM; 4237 ti->error = "Cannot allocate superblock area"; 4238 goto bad; 4239 } 4240 4241 r = sync_rw_sb(ic, REQ_OP_READ, 0); 4242 if (r) { 4243 ti->error = "Error reading superblock"; 4244 goto bad; 4245 } 4246 should_write_sb = false; 4247 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4248 if (ic->mode != 'R') { 4249 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4250 r = -EINVAL; 4251 ti->error = "The device is not initialized"; 4252 goto bad; 4253 } 4254 } 4255 4256 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4257 if (r) { 4258 ti->error = "Could not initialize superblock"; 4259 goto bad; 4260 } 4261 if (ic->mode != 'R') 4262 should_write_sb = true; 4263 } 4264 4265 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) { 4266 r = -EINVAL; 4267 ti->error = "Unknown version"; 4268 goto bad; 4269 } 4270 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4271 r = -EINVAL; 4272 ti->error = "Tag size doesn't match the information in superblock"; 4273 goto bad; 4274 } 4275 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4276 r = -EINVAL; 4277 ti->error = "Block size doesn't match the information in superblock"; 4278 goto bad; 4279 } 4280 if (!le32_to_cpu(ic->sb->journal_sections)) { 4281 r = -EINVAL; 4282 ti->error = "Corrupted superblock, journal_sections is 0"; 4283 goto bad; 4284 } 4285 /* make sure that ti->max_io_len doesn't overflow */ 4286 if (!ic->meta_dev) { 4287 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4288 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4289 r = -EINVAL; 4290 ti->error = "Invalid interleave_sectors in the superblock"; 4291 goto bad; 4292 } 4293 } else { 4294 if (ic->sb->log2_interleave_sectors) { 4295 r = -EINVAL; 4296 ti->error = "Invalid interleave_sectors in the superblock"; 4297 goto bad; 4298 } 4299 } 4300 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4301 r = -EINVAL; 4302 ti->error = "Journal mac mismatch"; 4303 goto bad; 4304 } 4305 4306 get_provided_data_sectors(ic); 4307 if (!ic->provided_data_sectors) { 4308 r = -EINVAL; 4309 ti->error = "The device is too small"; 4310 goto bad; 4311 } 4312 4313 try_smaller_buffer: 4314 r = calculate_device_limits(ic); 4315 if (r) { 4316 if (ic->meta_dev) { 4317 if (ic->log2_buffer_sectors > 3) { 4318 ic->log2_buffer_sectors--; 4319 goto try_smaller_buffer; 4320 } 4321 } 4322 ti->error = "The device is too small"; 4323 goto bad; 4324 } 4325 4326 if (log2_sectors_per_bitmap_bit < 0) 4327 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4328 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4329 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4330 4331 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4332 if (bits_in_journal > UINT_MAX) 4333 bits_in_journal = UINT_MAX; 4334 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4335 log2_sectors_per_bitmap_bit++; 4336 4337 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4338 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4339 if (should_write_sb) { 4340 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4341 } 4342 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4343 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4344 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4345 4346 if (!ic->meta_dev) 4347 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4348 4349 if (ti->len > ic->provided_data_sectors) { 4350 r = -EINVAL; 4351 ti->error = "Not enough provided sectors for requested mapping size"; 4352 goto bad; 4353 } 4354 4355 4356 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4357 threshold += 50; 4358 do_div(threshold, 100); 4359 ic->free_sectors_threshold = threshold; 4360 4361 DEBUG_print("initialized:\n"); 4362 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4363 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4364 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4365 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4366 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4367 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 4368 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4369 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4370 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT); 4371 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4372 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4373 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4374 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4375 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4376 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4377 4378 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4379 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4380 ic->sb->recalc_sector = cpu_to_le64(0); 4381 } 4382 4383 if (ic->internal_hash) { 4384 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4385 if (!ic->recalc_wq ) { 4386 ti->error = "Cannot allocate workqueue"; 4387 r = -ENOMEM; 4388 goto bad; 4389 } 4390 INIT_WORK(&ic->recalc_work, integrity_recalc); 4391 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 4392 if (!ic->recalc_buffer) { 4393 ti->error = "Cannot allocate buffer for recalculating"; 4394 r = -ENOMEM; 4395 goto bad; 4396 } 4397 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 4398 ic->tag_size, GFP_KERNEL); 4399 if (!ic->recalc_tags) { 4400 ti->error = "Cannot allocate tags for recalculating"; 4401 r = -ENOMEM; 4402 goto bad; 4403 } 4404 } else { 4405 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 4406 ti->error = "Recalculate can only be specified with internal_hash"; 4407 r = -EINVAL; 4408 goto bad; 4409 } 4410 } 4411 4412 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 4413 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 4414 dm_integrity_disable_recalculate(ic)) { 4415 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 4416 r = -EOPNOTSUPP; 4417 goto bad; 4418 } 4419 4420 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4421 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 4422 if (IS_ERR(ic->bufio)) { 4423 r = PTR_ERR(ic->bufio); 4424 ti->error = "Cannot initialize dm-bufio"; 4425 ic->bufio = NULL; 4426 goto bad; 4427 } 4428 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4429 4430 if (ic->mode != 'R') { 4431 r = create_journal(ic, &ti->error); 4432 if (r) 4433 goto bad; 4434 4435 } 4436 4437 if (ic->mode == 'B') { 4438 unsigned i; 4439 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4440 4441 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4442 if (!ic->recalc_bitmap) { 4443 r = -ENOMEM; 4444 goto bad; 4445 } 4446 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4447 if (!ic->may_write_bitmap) { 4448 r = -ENOMEM; 4449 goto bad; 4450 } 4451 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4452 if (!ic->bbs) { 4453 r = -ENOMEM; 4454 goto bad; 4455 } 4456 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4457 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4458 struct bitmap_block_status *bbs = &ic->bbs[i]; 4459 unsigned sector, pl_index, pl_offset; 4460 4461 INIT_WORK(&bbs->work, bitmap_block_work); 4462 bbs->ic = ic; 4463 bbs->idx = i; 4464 bio_list_init(&bbs->bio_queue); 4465 spin_lock_init(&bbs->bio_queue_lock); 4466 4467 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4468 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4469 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4470 4471 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4472 } 4473 } 4474 4475 if (should_write_sb) { 4476 int r; 4477 4478 init_journal(ic, 0, ic->journal_sections, 0); 4479 r = dm_integrity_failed(ic); 4480 if (unlikely(r)) { 4481 ti->error = "Error initializing journal"; 4482 goto bad; 4483 } 4484 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4485 if (r) { 4486 ti->error = "Error initializing superblock"; 4487 goto bad; 4488 } 4489 ic->just_formatted = true; 4490 } 4491 4492 if (!ic->meta_dev) { 4493 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4494 if (r) 4495 goto bad; 4496 } 4497 if (ic->mode == 'B') { 4498 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4499 if (!max_io_len) 4500 max_io_len = 1U << 31; 4501 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4502 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4503 r = dm_set_target_max_io_len(ti, max_io_len); 4504 if (r) 4505 goto bad; 4506 } 4507 } 4508 4509 if (!ic->internal_hash) 4510 dm_integrity_set(ti, ic); 4511 4512 ti->num_flush_bios = 1; 4513 ti->flush_supported = true; 4514 if (ic->discard) 4515 ti->num_discard_bios = 1; 4516 4517 return 0; 4518 4519 bad: 4520 dm_integrity_dtr(ti); 4521 return r; 4522 } 4523 4524 static void dm_integrity_dtr(struct dm_target *ti) 4525 { 4526 struct dm_integrity_c *ic = ti->private; 4527 4528 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4529 BUG_ON(!list_empty(&ic->wait_list)); 4530 4531 if (ic->metadata_wq) 4532 destroy_workqueue(ic->metadata_wq); 4533 if (ic->wait_wq) 4534 destroy_workqueue(ic->wait_wq); 4535 if (ic->offload_wq) 4536 destroy_workqueue(ic->offload_wq); 4537 if (ic->commit_wq) 4538 destroy_workqueue(ic->commit_wq); 4539 if (ic->writer_wq) 4540 destroy_workqueue(ic->writer_wq); 4541 if (ic->recalc_wq) 4542 destroy_workqueue(ic->recalc_wq); 4543 vfree(ic->recalc_buffer); 4544 kvfree(ic->recalc_tags); 4545 kvfree(ic->bbs); 4546 if (ic->bufio) 4547 dm_bufio_client_destroy(ic->bufio); 4548 mempool_exit(&ic->journal_io_mempool); 4549 if (ic->io) 4550 dm_io_client_destroy(ic->io); 4551 if (ic->dev) 4552 dm_put_device(ti, ic->dev); 4553 if (ic->meta_dev) 4554 dm_put_device(ti, ic->meta_dev); 4555 dm_integrity_free_page_list(ic->journal); 4556 dm_integrity_free_page_list(ic->journal_io); 4557 dm_integrity_free_page_list(ic->journal_xor); 4558 dm_integrity_free_page_list(ic->recalc_bitmap); 4559 dm_integrity_free_page_list(ic->may_write_bitmap); 4560 if (ic->journal_scatterlist) 4561 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4562 if (ic->journal_io_scatterlist) 4563 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4564 if (ic->sk_requests) { 4565 unsigned i; 4566 4567 for (i = 0; i < ic->journal_sections; i++) { 4568 struct skcipher_request *req = ic->sk_requests[i]; 4569 if (req) { 4570 kfree_sensitive(req->iv); 4571 skcipher_request_free(req); 4572 } 4573 } 4574 kvfree(ic->sk_requests); 4575 } 4576 kvfree(ic->journal_tree); 4577 if (ic->sb) 4578 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4579 4580 if (ic->internal_hash) 4581 crypto_free_shash(ic->internal_hash); 4582 free_alg(&ic->internal_hash_alg); 4583 4584 if (ic->journal_crypt) 4585 crypto_free_skcipher(ic->journal_crypt); 4586 free_alg(&ic->journal_crypt_alg); 4587 4588 if (ic->journal_mac) 4589 crypto_free_shash(ic->journal_mac); 4590 free_alg(&ic->journal_mac_alg); 4591 4592 kfree(ic); 4593 } 4594 4595 static struct target_type integrity_target = { 4596 .name = "integrity", 4597 .version = {1, 10, 0}, 4598 .module = THIS_MODULE, 4599 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4600 .ctr = dm_integrity_ctr, 4601 .dtr = dm_integrity_dtr, 4602 .map = dm_integrity_map, 4603 .postsuspend = dm_integrity_postsuspend, 4604 .resume = dm_integrity_resume, 4605 .status = dm_integrity_status, 4606 .iterate_devices = dm_integrity_iterate_devices, 4607 .io_hints = dm_integrity_io_hints, 4608 }; 4609 4610 static int __init dm_integrity_init(void) 4611 { 4612 int r; 4613 4614 journal_io_cache = kmem_cache_create("integrity_journal_io", 4615 sizeof(struct journal_io), 0, 0, NULL); 4616 if (!journal_io_cache) { 4617 DMERR("can't allocate journal io cache"); 4618 return -ENOMEM; 4619 } 4620 4621 r = dm_register_target(&integrity_target); 4622 4623 if (r < 0) 4624 DMERR("register failed %d", r); 4625 4626 return r; 4627 } 4628 4629 static void __exit dm_integrity_exit(void) 4630 { 4631 dm_unregister_target(&integrity_target); 4632 kmem_cache_destroy(journal_io_cache); 4633 } 4634 4635 module_init(dm_integrity_init); 4636 module_exit(dm_integrity_exit); 4637 4638 MODULE_AUTHOR("Milan Broz"); 4639 MODULE_AUTHOR("Mikulas Patocka"); 4640 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4641 MODULE_LICENSE("GPL"); 4642