1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 4 * Copyright (C) 2016-2017 Milan Broz 5 * Copyright (C) 2016-2017 Mikulas Patocka 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include "dm-bio-record.h" 11 12 #include <linux/compiler.h> 13 #include <linux/module.h> 14 #include <linux/device-mapper.h> 15 #include <linux/dm-io.h> 16 #include <linux/vmalloc.h> 17 #include <linux/sort.h> 18 #include <linux/rbtree.h> 19 #include <linux/delay.h> 20 #include <linux/random.h> 21 #include <linux/reboot.h> 22 #include <crypto/hash.h> 23 #include <crypto/skcipher.h> 24 #include <linux/async_tx.h> 25 #include <linux/dm-bufio.h> 26 27 #include "dm-audit.h" 28 29 #define DM_MSG_PREFIX "integrity" 30 31 #define DEFAULT_INTERLEAVE_SECTORS 32768 32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 34 #define DEFAULT_BUFFER_SECTORS 128 35 #define DEFAULT_JOURNAL_WATERMARK 50 36 #define DEFAULT_SYNC_MSEC 10000 37 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192) 38 #define MIN_LOG2_INTERLEAVE_SECTORS 3 39 #define MAX_LOG2_INTERLEAVE_SECTORS 31 40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 41 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048) 42 #define RECALC_WRITE_SUPER 16 43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 44 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 45 #define DISCARD_FILLER 0xf6 46 #define SALT_SIZE 16 47 48 /* 49 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 50 * so it should not be enabled in the official kernel 51 */ 52 //#define DEBUG_PRINT 53 //#define INTERNAL_VERIFY 54 55 /* 56 * On disk structures 57 */ 58 59 #define SB_MAGIC "integrt" 60 #define SB_VERSION_1 1 61 #define SB_VERSION_2 2 62 #define SB_VERSION_3 3 63 #define SB_VERSION_4 4 64 #define SB_VERSION_5 5 65 #define SB_SECTORS 8 66 #define MAX_SECTORS_PER_BLOCK 8 67 68 struct superblock { 69 __u8 magic[8]; 70 __u8 version; 71 __u8 log2_interleave_sectors; 72 __le16 integrity_tag_size; 73 __le32 journal_sections; 74 __le64 provided_data_sectors; /* userspace uses this value */ 75 __le32 flags; 76 __u8 log2_sectors_per_block; 77 __u8 log2_blocks_per_bitmap_bit; 78 __u8 pad[2]; 79 __le64 recalc_sector; 80 __u8 pad2[8]; 81 __u8 salt[SALT_SIZE]; 82 }; 83 84 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 85 #define SB_FLAG_RECALCULATING 0x2 86 #define SB_FLAG_DIRTY_BITMAP 0x4 87 #define SB_FLAG_FIXED_PADDING 0x8 88 #define SB_FLAG_FIXED_HMAC 0x10 89 90 #define JOURNAL_ENTRY_ROUNDUP 8 91 92 typedef __le64 commit_id_t; 93 #define JOURNAL_MAC_PER_SECTOR 8 94 95 struct journal_entry { 96 union { 97 struct { 98 __le32 sector_lo; 99 __le32 sector_hi; 100 } s; 101 __le64 sector; 102 } u; 103 commit_id_t last_bytes[]; 104 /* __u8 tag[0]; */ 105 }; 106 107 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 108 109 #if BITS_PER_LONG == 64 110 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 111 #else 112 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 113 #endif 114 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 115 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 116 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1)) 117 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 118 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2)) 119 120 #define JOURNAL_BLOCK_SECTORS 8 121 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 122 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 123 124 struct journal_sector { 125 struct_group(sectors, 126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 127 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 128 ); 129 commit_id_t commit_id; 130 }; 131 132 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 133 134 #define METADATA_PADDING_SECTORS 8 135 136 #define N_COMMIT_IDS 4 137 138 static unsigned char prev_commit_seq(unsigned char seq) 139 { 140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 141 } 142 143 static unsigned char next_commit_seq(unsigned char seq) 144 { 145 return (seq + 1) % N_COMMIT_IDS; 146 } 147 148 /* 149 * In-memory structures 150 */ 151 152 struct journal_node { 153 struct rb_node node; 154 sector_t sector; 155 }; 156 157 struct alg_spec { 158 char *alg_string; 159 char *key_string; 160 __u8 *key; 161 unsigned int key_size; 162 }; 163 164 struct dm_integrity_c { 165 struct dm_dev *dev; 166 struct dm_dev *meta_dev; 167 unsigned int tag_size; 168 __s8 log2_tag_size; 169 sector_t start; 170 mempool_t journal_io_mempool; 171 struct dm_io_client *io; 172 struct dm_bufio_client *bufio; 173 struct workqueue_struct *metadata_wq; 174 struct superblock *sb; 175 unsigned int journal_pages; 176 unsigned int n_bitmap_blocks; 177 178 struct page_list *journal; 179 struct page_list *journal_io; 180 struct page_list *journal_xor; 181 struct page_list *recalc_bitmap; 182 struct page_list *may_write_bitmap; 183 struct bitmap_block_status *bbs; 184 unsigned int bitmap_flush_interval; 185 int synchronous_mode; 186 struct bio_list synchronous_bios; 187 struct delayed_work bitmap_flush_work; 188 189 struct crypto_skcipher *journal_crypt; 190 struct scatterlist **journal_scatterlist; 191 struct scatterlist **journal_io_scatterlist; 192 struct skcipher_request **sk_requests; 193 194 struct crypto_shash *journal_mac; 195 196 struct journal_node *journal_tree; 197 struct rb_root journal_tree_root; 198 199 sector_t provided_data_sectors; 200 201 unsigned short journal_entry_size; 202 unsigned char journal_entries_per_sector; 203 unsigned char journal_section_entries; 204 unsigned short journal_section_sectors; 205 unsigned int journal_sections; 206 unsigned int journal_entries; 207 sector_t data_device_sectors; 208 sector_t meta_device_sectors; 209 unsigned int initial_sectors; 210 unsigned int metadata_run; 211 __s8 log2_metadata_run; 212 __u8 log2_buffer_sectors; 213 __u8 sectors_per_block; 214 __u8 log2_blocks_per_bitmap_bit; 215 216 unsigned char mode; 217 218 int failed; 219 220 struct crypto_shash *internal_hash; 221 222 struct dm_target *ti; 223 224 /* these variables are locked with endio_wait.lock */ 225 struct rb_root in_progress; 226 struct list_head wait_list; 227 wait_queue_head_t endio_wait; 228 struct workqueue_struct *wait_wq; 229 struct workqueue_struct *offload_wq; 230 231 unsigned char commit_seq; 232 commit_id_t commit_ids[N_COMMIT_IDS]; 233 234 unsigned int committed_section; 235 unsigned int n_committed_sections; 236 237 unsigned int uncommitted_section; 238 unsigned int n_uncommitted_sections; 239 240 unsigned int free_section; 241 unsigned char free_section_entry; 242 unsigned int free_sectors; 243 244 unsigned int free_sectors_threshold; 245 246 struct workqueue_struct *commit_wq; 247 struct work_struct commit_work; 248 249 struct workqueue_struct *writer_wq; 250 struct work_struct writer_work; 251 252 struct workqueue_struct *recalc_wq; 253 struct work_struct recalc_work; 254 255 struct bio_list flush_bio_list; 256 257 unsigned long autocommit_jiffies; 258 struct timer_list autocommit_timer; 259 unsigned int autocommit_msec; 260 261 wait_queue_head_t copy_to_journal_wait; 262 263 struct completion crypto_backoff; 264 265 bool wrote_to_journal; 266 bool journal_uptodate; 267 bool just_formatted; 268 bool recalculate_flag; 269 bool reset_recalculate_flag; 270 bool discard; 271 bool fix_padding; 272 bool fix_hmac; 273 bool legacy_recalculate; 274 275 struct alg_spec internal_hash_alg; 276 struct alg_spec journal_crypt_alg; 277 struct alg_spec journal_mac_alg; 278 279 atomic64_t number_of_mismatches; 280 281 mempool_t recheck_pool; 282 283 struct notifier_block reboot_notifier; 284 }; 285 286 struct dm_integrity_range { 287 sector_t logical_sector; 288 sector_t n_sectors; 289 bool waiting; 290 union { 291 struct rb_node node; 292 struct { 293 struct task_struct *task; 294 struct list_head wait_entry; 295 }; 296 }; 297 }; 298 299 struct dm_integrity_io { 300 struct work_struct work; 301 302 struct dm_integrity_c *ic; 303 enum req_op op; 304 bool fua; 305 306 struct dm_integrity_range range; 307 308 sector_t metadata_block; 309 unsigned int metadata_offset; 310 311 atomic_t in_flight; 312 blk_status_t bi_status; 313 314 struct completion *completion; 315 316 struct dm_bio_details bio_details; 317 }; 318 319 struct journal_completion { 320 struct dm_integrity_c *ic; 321 atomic_t in_flight; 322 struct completion comp; 323 }; 324 325 struct journal_io { 326 struct dm_integrity_range range; 327 struct journal_completion *comp; 328 }; 329 330 struct bitmap_block_status { 331 struct work_struct work; 332 struct dm_integrity_c *ic; 333 unsigned int idx; 334 unsigned long *bitmap; 335 struct bio_list bio_queue; 336 spinlock_t bio_queue_lock; 337 338 }; 339 340 static struct kmem_cache *journal_io_cache; 341 342 #define JOURNAL_IO_MEMPOOL 32 343 344 #ifdef DEBUG_PRINT 345 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 346 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \ 347 len ? ": " : "", len, bytes) 348 #else 349 #define DEBUG_print(x, ...) do { } while (0) 350 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 351 #endif 352 353 static void dm_integrity_prepare(struct request *rq) 354 { 355 } 356 357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 358 { 359 } 360 361 /* 362 * DM Integrity profile, protection is performed layer above (dm-crypt) 363 */ 364 static const struct blk_integrity_profile dm_integrity_profile = { 365 .name = "DM-DIF-EXT-TAG", 366 .generate_fn = NULL, 367 .verify_fn = NULL, 368 .prepare_fn = dm_integrity_prepare, 369 .complete_fn = dm_integrity_complete, 370 }; 371 372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 373 static void integrity_bio_wait(struct work_struct *w); 374 static void dm_integrity_dtr(struct dm_target *ti); 375 376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 377 { 378 if (err == -EILSEQ) 379 atomic64_inc(&ic->number_of_mismatches); 380 if (!cmpxchg(&ic->failed, 0, err)) 381 DMERR("Error on %s: %d", msg, err); 382 } 383 384 static int dm_integrity_failed(struct dm_integrity_c *ic) 385 { 386 return READ_ONCE(ic->failed); 387 } 388 389 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 390 { 391 if (ic->legacy_recalculate) 392 return false; 393 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 394 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 395 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 396 return true; 397 return false; 398 } 399 400 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i, 401 unsigned int j, unsigned char seq) 402 { 403 /* 404 * Xor the number with section and sector, so that if a piece of 405 * journal is written at wrong place, it is detected. 406 */ 407 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 408 } 409 410 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 411 sector_t *area, sector_t *offset) 412 { 413 if (!ic->meta_dev) { 414 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 415 *area = data_sector >> log2_interleave_sectors; 416 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1); 417 } else { 418 *area = 0; 419 *offset = data_sector; 420 } 421 } 422 423 #define sector_to_block(ic, n) \ 424 do { \ 425 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \ 426 (n) >>= (ic)->sb->log2_sectors_per_block; \ 427 } while (0) 428 429 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 430 sector_t offset, unsigned int *metadata_offset) 431 { 432 __u64 ms; 433 unsigned int mo; 434 435 ms = area << ic->sb->log2_interleave_sectors; 436 if (likely(ic->log2_metadata_run >= 0)) 437 ms += area << ic->log2_metadata_run; 438 else 439 ms += area * ic->metadata_run; 440 ms >>= ic->log2_buffer_sectors; 441 442 sector_to_block(ic, offset); 443 444 if (likely(ic->log2_tag_size >= 0)) { 445 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 446 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 447 } else { 448 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 449 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 450 } 451 *metadata_offset = mo; 452 return ms; 453 } 454 455 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 456 { 457 sector_t result; 458 459 if (ic->meta_dev) 460 return offset; 461 462 result = area << ic->sb->log2_interleave_sectors; 463 if (likely(ic->log2_metadata_run >= 0)) 464 result += (area + 1) << ic->log2_metadata_run; 465 else 466 result += (area + 1) * ic->metadata_run; 467 468 result += (sector_t)ic->initial_sectors + offset; 469 result += ic->start; 470 471 return result; 472 } 473 474 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr) 475 { 476 if (unlikely(*sec_ptr >= ic->journal_sections)) 477 *sec_ptr -= ic->journal_sections; 478 } 479 480 static void sb_set_version(struct dm_integrity_c *ic) 481 { 482 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 483 ic->sb->version = SB_VERSION_5; 484 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 485 ic->sb->version = SB_VERSION_4; 486 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 487 ic->sb->version = SB_VERSION_3; 488 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 489 ic->sb->version = SB_VERSION_2; 490 else 491 ic->sb->version = SB_VERSION_1; 492 } 493 494 static int sb_mac(struct dm_integrity_c *ic, bool wr) 495 { 496 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 497 int r; 498 unsigned int size = crypto_shash_digestsize(ic->journal_mac); 499 500 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) { 501 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 502 return -EINVAL; 503 } 504 505 desc->tfm = ic->journal_mac; 506 507 r = crypto_shash_init(desc); 508 if (unlikely(r < 0)) { 509 dm_integrity_io_error(ic, "crypto_shash_init", r); 510 return r; 511 } 512 513 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size); 514 if (unlikely(r < 0)) { 515 dm_integrity_io_error(ic, "crypto_shash_update", r); 516 return r; 517 } 518 519 if (likely(wr)) { 520 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size); 521 if (unlikely(r < 0)) { 522 dm_integrity_io_error(ic, "crypto_shash_final", r); 523 return r; 524 } 525 } else { 526 __u8 result[HASH_MAX_DIGESTSIZE]; 527 528 r = crypto_shash_final(desc, result); 529 if (unlikely(r < 0)) { 530 dm_integrity_io_error(ic, "crypto_shash_final", r); 531 return r; 532 } 533 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) { 534 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 535 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0); 536 return -EILSEQ; 537 } 538 } 539 540 return 0; 541 } 542 543 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf) 544 { 545 struct dm_io_request io_req; 546 struct dm_io_region io_loc; 547 const enum req_op op = opf & REQ_OP_MASK; 548 int r; 549 550 io_req.bi_opf = opf; 551 io_req.mem.type = DM_IO_KMEM; 552 io_req.mem.ptr.addr = ic->sb; 553 io_req.notify.fn = NULL; 554 io_req.client = ic->io; 555 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 556 io_loc.sector = ic->start; 557 io_loc.count = SB_SECTORS; 558 559 if (op == REQ_OP_WRITE) { 560 sb_set_version(ic); 561 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 562 r = sb_mac(ic, true); 563 if (unlikely(r)) 564 return r; 565 } 566 } 567 568 r = dm_io(&io_req, 1, &io_loc, NULL); 569 if (unlikely(r)) 570 return r; 571 572 if (op == REQ_OP_READ) { 573 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 574 r = sb_mac(ic, false); 575 if (unlikely(r)) 576 return r; 577 } 578 } 579 580 return 0; 581 } 582 583 #define BITMAP_OP_TEST_ALL_SET 0 584 #define BITMAP_OP_TEST_ALL_CLEAR 1 585 #define BITMAP_OP_SET 2 586 #define BITMAP_OP_CLEAR 3 587 588 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 589 sector_t sector, sector_t n_sectors, int mode) 590 { 591 unsigned long bit, end_bit, this_end_bit, page, end_page; 592 unsigned long *data; 593 594 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 595 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 596 sector, 597 n_sectors, 598 ic->sb->log2_sectors_per_block, 599 ic->log2_blocks_per_bitmap_bit, 600 mode); 601 BUG(); 602 } 603 604 if (unlikely(!n_sectors)) 605 return true; 606 607 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 608 end_bit = (sector + n_sectors - 1) >> 609 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 610 611 page = bit / (PAGE_SIZE * 8); 612 bit %= PAGE_SIZE * 8; 613 614 end_page = end_bit / (PAGE_SIZE * 8); 615 end_bit %= PAGE_SIZE * 8; 616 617 repeat: 618 if (page < end_page) 619 this_end_bit = PAGE_SIZE * 8 - 1; 620 else 621 this_end_bit = end_bit; 622 623 data = lowmem_page_address(bitmap[page].page); 624 625 if (mode == BITMAP_OP_TEST_ALL_SET) { 626 while (bit <= this_end_bit) { 627 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 628 do { 629 if (data[bit / BITS_PER_LONG] != -1) 630 return false; 631 bit += BITS_PER_LONG; 632 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 633 continue; 634 } 635 if (!test_bit(bit, data)) 636 return false; 637 bit++; 638 } 639 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 640 while (bit <= this_end_bit) { 641 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 642 do { 643 if (data[bit / BITS_PER_LONG] != 0) 644 return false; 645 bit += BITS_PER_LONG; 646 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 647 continue; 648 } 649 if (test_bit(bit, data)) 650 return false; 651 bit++; 652 } 653 } else if (mode == BITMAP_OP_SET) { 654 while (bit <= this_end_bit) { 655 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 656 do { 657 data[bit / BITS_PER_LONG] = -1; 658 bit += BITS_PER_LONG; 659 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 660 continue; 661 } 662 __set_bit(bit, data); 663 bit++; 664 } 665 } else if (mode == BITMAP_OP_CLEAR) { 666 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 667 clear_page(data); 668 else { 669 while (bit <= this_end_bit) { 670 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 671 do { 672 data[bit / BITS_PER_LONG] = 0; 673 bit += BITS_PER_LONG; 674 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 675 continue; 676 } 677 __clear_bit(bit, data); 678 bit++; 679 } 680 } 681 } else { 682 BUG(); 683 } 684 685 if (unlikely(page < end_page)) { 686 bit = 0; 687 page++; 688 goto repeat; 689 } 690 691 return true; 692 } 693 694 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 695 { 696 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 697 unsigned int i; 698 699 for (i = 0; i < n_bitmap_pages; i++) { 700 unsigned long *dst_data = lowmem_page_address(dst[i].page); 701 unsigned long *src_data = lowmem_page_address(src[i].page); 702 703 copy_page(dst_data, src_data); 704 } 705 } 706 707 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 708 { 709 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 710 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 711 712 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 713 return &ic->bbs[bitmap_block]; 714 } 715 716 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 717 bool e, const char *function) 718 { 719 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 720 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 721 722 if (unlikely(section >= ic->journal_sections) || 723 unlikely(offset >= limit)) { 724 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 725 function, section, offset, ic->journal_sections, limit); 726 BUG(); 727 } 728 #endif 729 } 730 731 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 732 unsigned int *pl_index, unsigned int *pl_offset) 733 { 734 unsigned int sector; 735 736 access_journal_check(ic, section, offset, false, "page_list_location"); 737 738 sector = section * ic->journal_section_sectors + offset; 739 740 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 741 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 742 } 743 744 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 745 unsigned int section, unsigned int offset, unsigned int *n_sectors) 746 { 747 unsigned int pl_index, pl_offset; 748 char *va; 749 750 page_list_location(ic, section, offset, &pl_index, &pl_offset); 751 752 if (n_sectors) 753 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 754 755 va = lowmem_page_address(pl[pl_index].page); 756 757 return (struct journal_sector *)(va + pl_offset); 758 } 759 760 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset) 761 { 762 return access_page_list(ic, ic->journal, section, offset, NULL); 763 } 764 765 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 766 { 767 unsigned int rel_sector, offset; 768 struct journal_sector *js; 769 770 access_journal_check(ic, section, n, true, "access_journal_entry"); 771 772 rel_sector = n % JOURNAL_BLOCK_SECTORS; 773 offset = n / JOURNAL_BLOCK_SECTORS; 774 775 js = access_journal(ic, section, rel_sector); 776 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 777 } 778 779 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 780 { 781 n <<= ic->sb->log2_sectors_per_block; 782 783 n += JOURNAL_BLOCK_SECTORS; 784 785 access_journal_check(ic, section, n, false, "access_journal_data"); 786 787 return access_journal(ic, section, n); 788 } 789 790 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE]) 791 { 792 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 793 int r; 794 unsigned int j, size; 795 796 desc->tfm = ic->journal_mac; 797 798 r = crypto_shash_init(desc); 799 if (unlikely(r < 0)) { 800 dm_integrity_io_error(ic, "crypto_shash_init", r); 801 goto err; 802 } 803 804 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 805 __le64 section_le; 806 807 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 808 if (unlikely(r < 0)) { 809 dm_integrity_io_error(ic, "crypto_shash_update", r); 810 goto err; 811 } 812 813 section_le = cpu_to_le64(section); 814 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le)); 815 if (unlikely(r < 0)) { 816 dm_integrity_io_error(ic, "crypto_shash_update", r); 817 goto err; 818 } 819 } 820 821 for (j = 0; j < ic->journal_section_entries; j++) { 822 struct journal_entry *je = access_journal_entry(ic, section, j); 823 824 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector)); 825 if (unlikely(r < 0)) { 826 dm_integrity_io_error(ic, "crypto_shash_update", r); 827 goto err; 828 } 829 } 830 831 size = crypto_shash_digestsize(ic->journal_mac); 832 833 if (likely(size <= JOURNAL_MAC_SIZE)) { 834 r = crypto_shash_final(desc, result); 835 if (unlikely(r < 0)) { 836 dm_integrity_io_error(ic, "crypto_shash_final", r); 837 goto err; 838 } 839 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 840 } else { 841 __u8 digest[HASH_MAX_DIGESTSIZE]; 842 843 if (WARN_ON(size > sizeof(digest))) { 844 dm_integrity_io_error(ic, "digest_size", -EINVAL); 845 goto err; 846 } 847 r = crypto_shash_final(desc, digest); 848 if (unlikely(r < 0)) { 849 dm_integrity_io_error(ic, "crypto_shash_final", r); 850 goto err; 851 } 852 memcpy(result, digest, JOURNAL_MAC_SIZE); 853 } 854 855 return; 856 err: 857 memset(result, 0, JOURNAL_MAC_SIZE); 858 } 859 860 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr) 861 { 862 __u8 result[JOURNAL_MAC_SIZE]; 863 unsigned int j; 864 865 if (!ic->journal_mac) 866 return; 867 868 section_mac(ic, section, result); 869 870 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 871 struct journal_sector *js = access_journal(ic, section, j); 872 873 if (likely(wr)) 874 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 875 else { 876 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) { 877 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 878 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0); 879 } 880 } 881 } 882 } 883 884 static void complete_journal_op(void *context) 885 { 886 struct journal_completion *comp = context; 887 888 BUG_ON(!atomic_read(&comp->in_flight)); 889 if (likely(atomic_dec_and_test(&comp->in_flight))) 890 complete(&comp->comp); 891 } 892 893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 894 unsigned int n_sections, struct journal_completion *comp) 895 { 896 struct async_submit_ctl submit; 897 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 898 unsigned int pl_index, pl_offset, section_index; 899 struct page_list *source_pl, *target_pl; 900 901 if (likely(encrypt)) { 902 source_pl = ic->journal; 903 target_pl = ic->journal_io; 904 } else { 905 source_pl = ic->journal_io; 906 target_pl = ic->journal; 907 } 908 909 page_list_location(ic, section, 0, &pl_index, &pl_offset); 910 911 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 912 913 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 914 915 section_index = pl_index; 916 917 do { 918 size_t this_step; 919 struct page *src_pages[2]; 920 struct page *dst_page; 921 922 while (unlikely(pl_index == section_index)) { 923 unsigned int dummy; 924 925 if (likely(encrypt)) 926 rw_section_mac(ic, section, true); 927 section++; 928 n_sections--; 929 if (!n_sections) 930 break; 931 page_list_location(ic, section, 0, §ion_index, &dummy); 932 } 933 934 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 935 dst_page = target_pl[pl_index].page; 936 src_pages[0] = source_pl[pl_index].page; 937 src_pages[1] = ic->journal_xor[pl_index].page; 938 939 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 940 941 pl_index++; 942 pl_offset = 0; 943 n_bytes -= this_step; 944 } while (n_bytes); 945 946 BUG_ON(n_sections); 947 948 async_tx_issue_pending_all(); 949 } 950 951 static void complete_journal_encrypt(void *data, int err) 952 { 953 struct journal_completion *comp = data; 954 955 if (unlikely(err)) { 956 if (likely(err == -EINPROGRESS)) { 957 complete(&comp->ic->crypto_backoff); 958 return; 959 } 960 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 961 } 962 complete_journal_op(comp); 963 } 964 965 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 966 { 967 int r; 968 969 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 970 complete_journal_encrypt, comp); 971 if (likely(encrypt)) 972 r = crypto_skcipher_encrypt(req); 973 else 974 r = crypto_skcipher_decrypt(req); 975 if (likely(!r)) 976 return false; 977 if (likely(r == -EINPROGRESS)) 978 return true; 979 if (likely(r == -EBUSY)) { 980 wait_for_completion(&comp->ic->crypto_backoff); 981 reinit_completion(&comp->ic->crypto_backoff); 982 return true; 983 } 984 dm_integrity_io_error(comp->ic, "encrypt", r); 985 return false; 986 } 987 988 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 989 unsigned int n_sections, struct journal_completion *comp) 990 { 991 struct scatterlist **source_sg; 992 struct scatterlist **target_sg; 993 994 atomic_add(2, &comp->in_flight); 995 996 if (likely(encrypt)) { 997 source_sg = ic->journal_scatterlist; 998 target_sg = ic->journal_io_scatterlist; 999 } else { 1000 source_sg = ic->journal_io_scatterlist; 1001 target_sg = ic->journal_scatterlist; 1002 } 1003 1004 do { 1005 struct skcipher_request *req; 1006 unsigned int ivsize; 1007 char *iv; 1008 1009 if (likely(encrypt)) 1010 rw_section_mac(ic, section, true); 1011 1012 req = ic->sk_requests[section]; 1013 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 1014 iv = req->iv; 1015 1016 memcpy(iv, iv + ivsize, ivsize); 1017 1018 req->src = source_sg[section]; 1019 req->dst = target_sg[section]; 1020 1021 if (unlikely(do_crypt(encrypt, req, comp))) 1022 atomic_inc(&comp->in_flight); 1023 1024 section++; 1025 n_sections--; 1026 } while (n_sections); 1027 1028 atomic_dec(&comp->in_flight); 1029 complete_journal_op(comp); 1030 } 1031 1032 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 1033 unsigned int n_sections, struct journal_completion *comp) 1034 { 1035 if (ic->journal_xor) 1036 return xor_journal(ic, encrypt, section, n_sections, comp); 1037 else 1038 return crypt_journal(ic, encrypt, section, n_sections, comp); 1039 } 1040 1041 static void complete_journal_io(unsigned long error, void *context) 1042 { 1043 struct journal_completion *comp = context; 1044 1045 if (unlikely(error != 0)) 1046 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1047 complete_journal_op(comp); 1048 } 1049 1050 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf, 1051 unsigned int sector, unsigned int n_sectors, 1052 struct journal_completion *comp) 1053 { 1054 struct dm_io_request io_req; 1055 struct dm_io_region io_loc; 1056 unsigned int pl_index, pl_offset; 1057 int r; 1058 1059 if (unlikely(dm_integrity_failed(ic))) { 1060 if (comp) 1061 complete_journal_io(-1UL, comp); 1062 return; 1063 } 1064 1065 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1066 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1067 1068 io_req.bi_opf = opf; 1069 io_req.mem.type = DM_IO_PAGE_LIST; 1070 if (ic->journal_io) 1071 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1072 else 1073 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1074 io_req.mem.offset = pl_offset; 1075 if (likely(comp != NULL)) { 1076 io_req.notify.fn = complete_journal_io; 1077 io_req.notify.context = comp; 1078 } else { 1079 io_req.notify.fn = NULL; 1080 } 1081 io_req.client = ic->io; 1082 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1083 io_loc.sector = ic->start + SB_SECTORS + sector; 1084 io_loc.count = n_sectors; 1085 1086 r = dm_io(&io_req, 1, &io_loc, NULL); 1087 if (unlikely(r)) { 1088 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ? 1089 "reading journal" : "writing journal", r); 1090 if (comp) { 1091 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1092 complete_journal_io(-1UL, comp); 1093 } 1094 } 1095 } 1096 1097 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf, 1098 unsigned int section, unsigned int n_sections, 1099 struct journal_completion *comp) 1100 { 1101 unsigned int sector, n_sectors; 1102 1103 sector = section * ic->journal_section_sectors; 1104 n_sectors = n_sections * ic->journal_section_sectors; 1105 1106 rw_journal_sectors(ic, opf, sector, n_sectors, comp); 1107 } 1108 1109 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections) 1110 { 1111 struct journal_completion io_comp; 1112 struct journal_completion crypt_comp_1; 1113 struct journal_completion crypt_comp_2; 1114 unsigned int i; 1115 1116 io_comp.ic = ic; 1117 init_completion(&io_comp.comp); 1118 1119 if (commit_start + commit_sections <= ic->journal_sections) { 1120 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1121 if (ic->journal_io) { 1122 crypt_comp_1.ic = ic; 1123 init_completion(&crypt_comp_1.comp); 1124 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1125 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1126 wait_for_completion_io(&crypt_comp_1.comp); 1127 } else { 1128 for (i = 0; i < commit_sections; i++) 1129 rw_section_mac(ic, commit_start + i, true); 1130 } 1131 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start, 1132 commit_sections, &io_comp); 1133 } else { 1134 unsigned int to_end; 1135 1136 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1137 to_end = ic->journal_sections - commit_start; 1138 if (ic->journal_io) { 1139 crypt_comp_1.ic = ic; 1140 init_completion(&crypt_comp_1.comp); 1141 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1142 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1143 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1144 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 1145 commit_start, to_end, &io_comp); 1146 reinit_completion(&crypt_comp_1.comp); 1147 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1148 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1149 wait_for_completion_io(&crypt_comp_1.comp); 1150 } else { 1151 crypt_comp_2.ic = ic; 1152 init_completion(&crypt_comp_2.comp); 1153 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1154 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1155 wait_for_completion_io(&crypt_comp_1.comp); 1156 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1157 wait_for_completion_io(&crypt_comp_2.comp); 1158 } 1159 } else { 1160 for (i = 0; i < to_end; i++) 1161 rw_section_mac(ic, commit_start + i, true); 1162 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1163 for (i = 0; i < commit_sections - to_end; i++) 1164 rw_section_mac(ic, i, true); 1165 } 1166 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp); 1167 } 1168 1169 wait_for_completion_io(&io_comp.comp); 1170 } 1171 1172 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 1173 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data) 1174 { 1175 struct dm_io_request io_req; 1176 struct dm_io_region io_loc; 1177 int r; 1178 unsigned int sector, pl_index, pl_offset; 1179 1180 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1)); 1181 1182 if (unlikely(dm_integrity_failed(ic))) { 1183 fn(-1UL, data); 1184 return; 1185 } 1186 1187 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1188 1189 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1190 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1191 1192 io_req.bi_opf = REQ_OP_WRITE; 1193 io_req.mem.type = DM_IO_PAGE_LIST; 1194 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1195 io_req.mem.offset = pl_offset; 1196 io_req.notify.fn = fn; 1197 io_req.notify.context = data; 1198 io_req.client = ic->io; 1199 io_loc.bdev = ic->dev->bdev; 1200 io_loc.sector = target; 1201 io_loc.count = n_sectors; 1202 1203 r = dm_io(&io_req, 1, &io_loc, NULL); 1204 if (unlikely(r)) { 1205 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1206 fn(-1UL, data); 1207 } 1208 } 1209 1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1211 { 1212 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1213 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1214 } 1215 1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1217 { 1218 struct rb_node **n = &ic->in_progress.rb_node; 1219 struct rb_node *parent; 1220 1221 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1)); 1222 1223 if (likely(check_waiting)) { 1224 struct dm_integrity_range *range; 1225 1226 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1227 if (unlikely(ranges_overlap(range, new_range))) 1228 return false; 1229 } 1230 } 1231 1232 parent = NULL; 1233 1234 while (*n) { 1235 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1236 1237 parent = *n; 1238 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) 1239 n = &range->node.rb_left; 1240 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) 1241 n = &range->node.rb_right; 1242 else 1243 return false; 1244 } 1245 1246 rb_link_node(&new_range->node, parent, n); 1247 rb_insert_color(&new_range->node, &ic->in_progress); 1248 1249 return true; 1250 } 1251 1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1253 { 1254 rb_erase(&range->node, &ic->in_progress); 1255 while (unlikely(!list_empty(&ic->wait_list))) { 1256 struct dm_integrity_range *last_range = 1257 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1258 struct task_struct *last_range_task; 1259 1260 last_range_task = last_range->task; 1261 list_del(&last_range->wait_entry); 1262 if (!add_new_range(ic, last_range, false)) { 1263 last_range->task = last_range_task; 1264 list_add(&last_range->wait_entry, &ic->wait_list); 1265 break; 1266 } 1267 last_range->waiting = false; 1268 wake_up_process(last_range_task); 1269 } 1270 } 1271 1272 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1273 { 1274 unsigned long flags; 1275 1276 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1277 remove_range_unlocked(ic, range); 1278 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1279 } 1280 1281 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1282 { 1283 new_range->waiting = true; 1284 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1285 new_range->task = current; 1286 do { 1287 __set_current_state(TASK_UNINTERRUPTIBLE); 1288 spin_unlock_irq(&ic->endio_wait.lock); 1289 io_schedule(); 1290 spin_lock_irq(&ic->endio_wait.lock); 1291 } while (unlikely(new_range->waiting)); 1292 } 1293 1294 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1295 { 1296 if (unlikely(!add_new_range(ic, new_range, true))) 1297 wait_and_add_new_range(ic, new_range); 1298 } 1299 1300 static void init_journal_node(struct journal_node *node) 1301 { 1302 RB_CLEAR_NODE(&node->node); 1303 node->sector = (sector_t)-1; 1304 } 1305 1306 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1307 { 1308 struct rb_node **link; 1309 struct rb_node *parent; 1310 1311 node->sector = sector; 1312 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1313 1314 link = &ic->journal_tree_root.rb_node; 1315 parent = NULL; 1316 1317 while (*link) { 1318 struct journal_node *j; 1319 1320 parent = *link; 1321 j = container_of(parent, struct journal_node, node); 1322 if (sector < j->sector) 1323 link = &j->node.rb_left; 1324 else 1325 link = &j->node.rb_right; 1326 } 1327 1328 rb_link_node(&node->node, parent, link); 1329 rb_insert_color(&node->node, &ic->journal_tree_root); 1330 } 1331 1332 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1333 { 1334 BUG_ON(RB_EMPTY_NODE(&node->node)); 1335 rb_erase(&node->node, &ic->journal_tree_root); 1336 init_journal_node(node); 1337 } 1338 1339 #define NOT_FOUND (-1U) 1340 1341 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1342 { 1343 struct rb_node *n = ic->journal_tree_root.rb_node; 1344 unsigned int found = NOT_FOUND; 1345 1346 *next_sector = (sector_t)-1; 1347 while (n) { 1348 struct journal_node *j = container_of(n, struct journal_node, node); 1349 1350 if (sector == j->sector) 1351 found = j - ic->journal_tree; 1352 1353 if (sector < j->sector) { 1354 *next_sector = j->sector; 1355 n = j->node.rb_left; 1356 } else 1357 n = j->node.rb_right; 1358 } 1359 1360 return found; 1361 } 1362 1363 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector) 1364 { 1365 struct journal_node *node, *next_node; 1366 struct rb_node *next; 1367 1368 if (unlikely(pos >= ic->journal_entries)) 1369 return false; 1370 node = &ic->journal_tree[pos]; 1371 if (unlikely(RB_EMPTY_NODE(&node->node))) 1372 return false; 1373 if (unlikely(node->sector != sector)) 1374 return false; 1375 1376 next = rb_next(&node->node); 1377 if (unlikely(!next)) 1378 return true; 1379 1380 next_node = container_of(next, struct journal_node, node); 1381 return next_node->sector != sector; 1382 } 1383 1384 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1385 { 1386 struct rb_node *next; 1387 struct journal_node *next_node; 1388 unsigned int next_section; 1389 1390 BUG_ON(RB_EMPTY_NODE(&node->node)); 1391 1392 next = rb_next(&node->node); 1393 if (unlikely(!next)) 1394 return false; 1395 1396 next_node = container_of(next, struct journal_node, node); 1397 1398 if (next_node->sector != node->sector) 1399 return false; 1400 1401 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries; 1402 if (next_section >= ic->committed_section && 1403 next_section < ic->committed_section + ic->n_committed_sections) 1404 return true; 1405 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1406 return true; 1407 1408 return false; 1409 } 1410 1411 #define TAG_READ 0 1412 #define TAG_WRITE 1 1413 #define TAG_CMP 2 1414 1415 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1416 unsigned int *metadata_offset, unsigned int total_size, int op) 1417 { 1418 #define MAY_BE_FILLER 1 1419 #define MAY_BE_HASH 2 1420 unsigned int hash_offset = 0; 1421 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1422 1423 do { 1424 unsigned char *data, *dp; 1425 struct dm_buffer *b; 1426 unsigned int to_copy; 1427 int r; 1428 1429 r = dm_integrity_failed(ic); 1430 if (unlikely(r)) 1431 return r; 1432 1433 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1434 if (IS_ERR(data)) 1435 return PTR_ERR(data); 1436 1437 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1438 dp = data + *metadata_offset; 1439 if (op == TAG_READ) { 1440 memcpy(tag, dp, to_copy); 1441 } else if (op == TAG_WRITE) { 1442 if (memcmp(dp, tag, to_copy)) { 1443 memcpy(dp, tag, to_copy); 1444 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1445 } 1446 } else { 1447 /* e.g.: op == TAG_CMP */ 1448 1449 if (likely(is_power_of_2(ic->tag_size))) { 1450 if (unlikely(memcmp(dp, tag, to_copy))) 1451 if (unlikely(!ic->discard) || 1452 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1453 goto thorough_test; 1454 } 1455 } else { 1456 unsigned int i, ts; 1457 thorough_test: 1458 ts = total_size; 1459 1460 for (i = 0; i < to_copy; i++, ts--) { 1461 if (unlikely(dp[i] != tag[i])) 1462 may_be &= ~MAY_BE_HASH; 1463 if (likely(dp[i] != DISCARD_FILLER)) 1464 may_be &= ~MAY_BE_FILLER; 1465 hash_offset++; 1466 if (unlikely(hash_offset == ic->tag_size)) { 1467 if (unlikely(!may_be)) { 1468 dm_bufio_release(b); 1469 return ts; 1470 } 1471 hash_offset = 0; 1472 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1473 } 1474 } 1475 } 1476 } 1477 dm_bufio_release(b); 1478 1479 tag += to_copy; 1480 *metadata_offset += to_copy; 1481 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1482 (*metadata_block)++; 1483 *metadata_offset = 0; 1484 } 1485 1486 if (unlikely(!is_power_of_2(ic->tag_size))) 1487 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1488 1489 total_size -= to_copy; 1490 } while (unlikely(total_size)); 1491 1492 return 0; 1493 #undef MAY_BE_FILLER 1494 #undef MAY_BE_HASH 1495 } 1496 1497 struct flush_request { 1498 struct dm_io_request io_req; 1499 struct dm_io_region io_reg; 1500 struct dm_integrity_c *ic; 1501 struct completion comp; 1502 }; 1503 1504 static void flush_notify(unsigned long error, void *fr_) 1505 { 1506 struct flush_request *fr = fr_; 1507 1508 if (unlikely(error != 0)) 1509 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1510 complete(&fr->comp); 1511 } 1512 1513 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1514 { 1515 int r; 1516 struct flush_request fr; 1517 1518 if (!ic->meta_dev) 1519 flush_data = false; 1520 if (flush_data) { 1521 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 1522 fr.io_req.mem.type = DM_IO_KMEM, 1523 fr.io_req.mem.ptr.addr = NULL, 1524 fr.io_req.notify.fn = flush_notify, 1525 fr.io_req.notify.context = &fr; 1526 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1527 fr.io_reg.bdev = ic->dev->bdev, 1528 fr.io_reg.sector = 0, 1529 fr.io_reg.count = 0, 1530 fr.ic = ic; 1531 init_completion(&fr.comp); 1532 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL); 1533 BUG_ON(r); 1534 } 1535 1536 r = dm_bufio_write_dirty_buffers(ic->bufio); 1537 if (unlikely(r)) 1538 dm_integrity_io_error(ic, "writing tags", r); 1539 1540 if (flush_data) 1541 wait_for_completion(&fr.comp); 1542 } 1543 1544 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1545 { 1546 DECLARE_WAITQUEUE(wait, current); 1547 1548 __add_wait_queue(&ic->endio_wait, &wait); 1549 __set_current_state(TASK_UNINTERRUPTIBLE); 1550 spin_unlock_irq(&ic->endio_wait.lock); 1551 io_schedule(); 1552 spin_lock_irq(&ic->endio_wait.lock); 1553 __remove_wait_queue(&ic->endio_wait, &wait); 1554 } 1555 1556 static void autocommit_fn(struct timer_list *t) 1557 { 1558 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1559 1560 if (likely(!dm_integrity_failed(ic))) 1561 queue_work(ic->commit_wq, &ic->commit_work); 1562 } 1563 1564 static void schedule_autocommit(struct dm_integrity_c *ic) 1565 { 1566 if (!timer_pending(&ic->autocommit_timer)) 1567 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1568 } 1569 1570 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1571 { 1572 struct bio *bio; 1573 unsigned long flags; 1574 1575 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1576 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1577 bio_list_add(&ic->flush_bio_list, bio); 1578 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1579 1580 queue_work(ic->commit_wq, &ic->commit_work); 1581 } 1582 1583 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1584 { 1585 int r; 1586 1587 r = dm_integrity_failed(ic); 1588 if (unlikely(r) && !bio->bi_status) 1589 bio->bi_status = errno_to_blk_status(r); 1590 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1591 unsigned long flags; 1592 1593 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1594 bio_list_add(&ic->synchronous_bios, bio); 1595 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1596 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1597 return; 1598 } 1599 bio_endio(bio); 1600 } 1601 1602 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1603 { 1604 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1605 1606 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1607 submit_flush_bio(ic, dio); 1608 else 1609 do_endio(ic, bio); 1610 } 1611 1612 static void dec_in_flight(struct dm_integrity_io *dio) 1613 { 1614 if (atomic_dec_and_test(&dio->in_flight)) { 1615 struct dm_integrity_c *ic = dio->ic; 1616 struct bio *bio; 1617 1618 remove_range(ic, &dio->range); 1619 1620 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1621 schedule_autocommit(ic); 1622 1623 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1624 if (unlikely(dio->bi_status) && !bio->bi_status) 1625 bio->bi_status = dio->bi_status; 1626 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1627 dio->range.logical_sector += dio->range.n_sectors; 1628 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1629 INIT_WORK(&dio->work, integrity_bio_wait); 1630 queue_work(ic->offload_wq, &dio->work); 1631 return; 1632 } 1633 do_endio_flush(ic, dio); 1634 } 1635 } 1636 1637 static void integrity_end_io(struct bio *bio) 1638 { 1639 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1640 1641 dm_bio_restore(&dio->bio_details, bio); 1642 if (bio->bi_integrity) 1643 bio->bi_opf |= REQ_INTEGRITY; 1644 1645 if (dio->completion) 1646 complete(dio->completion); 1647 1648 dec_in_flight(dio); 1649 } 1650 1651 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1652 const char *data, char *result) 1653 { 1654 __le64 sector_le = cpu_to_le64(sector); 1655 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1656 int r; 1657 unsigned int digest_size; 1658 1659 req->tfm = ic->internal_hash; 1660 1661 r = crypto_shash_init(req); 1662 if (unlikely(r < 0)) { 1663 dm_integrity_io_error(ic, "crypto_shash_init", r); 1664 goto failed; 1665 } 1666 1667 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1668 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1669 if (unlikely(r < 0)) { 1670 dm_integrity_io_error(ic, "crypto_shash_update", r); 1671 goto failed; 1672 } 1673 } 1674 1675 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le)); 1676 if (unlikely(r < 0)) { 1677 dm_integrity_io_error(ic, "crypto_shash_update", r); 1678 goto failed; 1679 } 1680 1681 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1682 if (unlikely(r < 0)) { 1683 dm_integrity_io_error(ic, "crypto_shash_update", r); 1684 goto failed; 1685 } 1686 1687 r = crypto_shash_final(req, result); 1688 if (unlikely(r < 0)) { 1689 dm_integrity_io_error(ic, "crypto_shash_final", r); 1690 goto failed; 1691 } 1692 1693 digest_size = crypto_shash_digestsize(ic->internal_hash); 1694 if (unlikely(digest_size < ic->tag_size)) 1695 memset(result + digest_size, 0, ic->tag_size - digest_size); 1696 1697 return; 1698 1699 failed: 1700 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1701 get_random_bytes(result, ic->tag_size); 1702 } 1703 1704 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum) 1705 { 1706 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1707 struct dm_integrity_c *ic = dio->ic; 1708 struct bvec_iter iter; 1709 struct bio_vec bv; 1710 sector_t sector, logical_sector, area, offset; 1711 struct page *page; 1712 void *buffer; 1713 1714 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1715 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, 1716 &dio->metadata_offset); 1717 sector = get_data_sector(ic, area, offset); 1718 logical_sector = dio->range.logical_sector; 1719 1720 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO); 1721 buffer = page_to_virt(page); 1722 1723 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1724 unsigned pos = 0; 1725 1726 do { 1727 char *mem; 1728 int r; 1729 struct dm_io_request io_req; 1730 struct dm_io_region io_loc; 1731 io_req.bi_opf = REQ_OP_READ; 1732 io_req.mem.type = DM_IO_KMEM; 1733 io_req.mem.ptr.addr = buffer; 1734 io_req.notify.fn = NULL; 1735 io_req.client = ic->io; 1736 io_loc.bdev = ic->dev->bdev; 1737 io_loc.sector = sector; 1738 io_loc.count = ic->sectors_per_block; 1739 1740 r = dm_io(&io_req, 1, &io_loc, NULL); 1741 if (unlikely(r)) { 1742 dio->bi_status = errno_to_blk_status(r); 1743 goto free_ret; 1744 } 1745 1746 integrity_sector_checksum(ic, logical_sector, buffer, checksum); 1747 r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block, 1748 &dio->metadata_offset, ic->tag_size, TAG_CMP); 1749 if (r) { 1750 if (r > 0) { 1751 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx", 1752 bio->bi_bdev, logical_sector); 1753 atomic64_inc(&ic->number_of_mismatches); 1754 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 1755 bio, logical_sector, 0); 1756 r = -EILSEQ; 1757 } 1758 dio->bi_status = errno_to_blk_status(r); 1759 goto free_ret; 1760 } 1761 1762 mem = bvec_kmap_local(&bv); 1763 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT); 1764 kunmap_local(mem); 1765 1766 pos += ic->sectors_per_block << SECTOR_SHIFT; 1767 sector += ic->sectors_per_block; 1768 logical_sector += ic->sectors_per_block; 1769 } while (pos < bv.bv_len); 1770 } 1771 free_ret: 1772 mempool_free(page, &ic->recheck_pool); 1773 } 1774 1775 static void integrity_metadata(struct work_struct *w) 1776 { 1777 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1778 struct dm_integrity_c *ic = dio->ic; 1779 1780 int r; 1781 1782 if (ic->internal_hash) { 1783 struct bvec_iter iter; 1784 struct bio_vec bv; 1785 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 1786 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1787 char *checksums; 1788 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1789 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1790 sector_t sector; 1791 unsigned int sectors_to_process; 1792 1793 if (unlikely(ic->mode == 'R')) 1794 goto skip_io; 1795 1796 if (likely(dio->op != REQ_OP_DISCARD)) 1797 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1798 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1799 else 1800 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1801 if (!checksums) { 1802 checksums = checksums_onstack; 1803 if (WARN_ON(extra_space && 1804 digest_size > sizeof(checksums_onstack))) { 1805 r = -EINVAL; 1806 goto error; 1807 } 1808 } 1809 1810 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1811 unsigned int bi_size = dio->bio_details.bi_iter.bi_size; 1812 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1813 unsigned int max_blocks = max_size / ic->tag_size; 1814 1815 memset(checksums, DISCARD_FILLER, max_size); 1816 1817 while (bi_size) { 1818 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1819 1820 this_step_blocks = min(this_step_blocks, max_blocks); 1821 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1822 this_step_blocks * ic->tag_size, TAG_WRITE); 1823 if (unlikely(r)) { 1824 if (likely(checksums != checksums_onstack)) 1825 kfree(checksums); 1826 goto error; 1827 } 1828 1829 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1830 } 1831 1832 if (likely(checksums != checksums_onstack)) 1833 kfree(checksums); 1834 goto skip_io; 1835 } 1836 1837 sector = dio->range.logical_sector; 1838 sectors_to_process = dio->range.n_sectors; 1839 1840 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1841 struct bio_vec bv_copy = bv; 1842 unsigned int pos; 1843 char *mem, *checksums_ptr; 1844 1845 again: 1846 mem = bvec_kmap_local(&bv_copy); 1847 pos = 0; 1848 checksums_ptr = checksums; 1849 do { 1850 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1851 checksums_ptr += ic->tag_size; 1852 sectors_to_process -= ic->sectors_per_block; 1853 pos += ic->sectors_per_block << SECTOR_SHIFT; 1854 sector += ic->sectors_per_block; 1855 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack); 1856 kunmap_local(mem); 1857 1858 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1859 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1860 if (unlikely(r)) { 1861 if (r > 0) { 1862 integrity_recheck(dio, checksums); 1863 goto skip_io; 1864 } 1865 if (likely(checksums != checksums_onstack)) 1866 kfree(checksums); 1867 goto error; 1868 } 1869 1870 if (!sectors_to_process) 1871 break; 1872 1873 if (unlikely(pos < bv_copy.bv_len)) { 1874 bv_copy.bv_offset += pos; 1875 bv_copy.bv_len -= pos; 1876 goto again; 1877 } 1878 } 1879 1880 if (likely(checksums != checksums_onstack)) 1881 kfree(checksums); 1882 } else { 1883 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1884 1885 if (bip) { 1886 struct bio_vec biv; 1887 struct bvec_iter iter; 1888 unsigned int data_to_process = dio->range.n_sectors; 1889 1890 sector_to_block(ic, data_to_process); 1891 data_to_process *= ic->tag_size; 1892 1893 bip_for_each_vec(biv, bip, iter) { 1894 unsigned char *tag; 1895 unsigned int this_len; 1896 1897 BUG_ON(PageHighMem(biv.bv_page)); 1898 tag = bvec_virt(&biv); 1899 this_len = min(biv.bv_len, data_to_process); 1900 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1901 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1902 if (unlikely(r)) 1903 goto error; 1904 data_to_process -= this_len; 1905 if (!data_to_process) 1906 break; 1907 } 1908 } 1909 } 1910 skip_io: 1911 dec_in_flight(dio); 1912 return; 1913 error: 1914 dio->bi_status = errno_to_blk_status(r); 1915 dec_in_flight(dio); 1916 } 1917 1918 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1919 { 1920 struct dm_integrity_c *ic = ti->private; 1921 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1922 struct bio_integrity_payload *bip; 1923 1924 sector_t area, offset; 1925 1926 dio->ic = ic; 1927 dio->bi_status = 0; 1928 dio->op = bio_op(bio); 1929 1930 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1931 if (ti->max_io_len) { 1932 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1933 unsigned int log2_max_io_len = __fls(ti->max_io_len); 1934 sector_t start_boundary = sec >> log2_max_io_len; 1935 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1936 1937 if (start_boundary < end_boundary) { 1938 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1939 1940 dm_accept_partial_bio(bio, len); 1941 } 1942 } 1943 } 1944 1945 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1946 submit_flush_bio(ic, dio); 1947 return DM_MAPIO_SUBMITTED; 1948 } 1949 1950 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1951 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1952 if (unlikely(dio->fua)) { 1953 /* 1954 * Don't pass down the FUA flag because we have to flush 1955 * disk cache anyway. 1956 */ 1957 bio->bi_opf &= ~REQ_FUA; 1958 } 1959 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1960 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1961 dio->range.logical_sector, bio_sectors(bio), 1962 ic->provided_data_sectors); 1963 return DM_MAPIO_KILL; 1964 } 1965 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) { 1966 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1967 ic->sectors_per_block, 1968 dio->range.logical_sector, bio_sectors(bio)); 1969 return DM_MAPIO_KILL; 1970 } 1971 1972 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1973 struct bvec_iter iter; 1974 struct bio_vec bv; 1975 1976 bio_for_each_segment(bv, bio, iter) { 1977 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1978 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1979 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1980 return DM_MAPIO_KILL; 1981 } 1982 } 1983 } 1984 1985 bip = bio_integrity(bio); 1986 if (!ic->internal_hash) { 1987 if (bip) { 1988 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1989 1990 if (ic->log2_tag_size >= 0) 1991 wanted_tag_size <<= ic->log2_tag_size; 1992 else 1993 wanted_tag_size *= ic->tag_size; 1994 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1995 DMERR("Invalid integrity data size %u, expected %u", 1996 bip->bip_iter.bi_size, wanted_tag_size); 1997 return DM_MAPIO_KILL; 1998 } 1999 } 2000 } else { 2001 if (unlikely(bip != NULL)) { 2002 DMERR("Unexpected integrity data when using internal hash"); 2003 return DM_MAPIO_KILL; 2004 } 2005 } 2006 2007 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 2008 return DM_MAPIO_KILL; 2009 2010 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2011 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2012 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 2013 2014 dm_integrity_map_continue(dio, true); 2015 return DM_MAPIO_SUBMITTED; 2016 } 2017 2018 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 2019 unsigned int journal_section, unsigned int journal_entry) 2020 { 2021 struct dm_integrity_c *ic = dio->ic; 2022 sector_t logical_sector; 2023 unsigned int n_sectors; 2024 2025 logical_sector = dio->range.logical_sector; 2026 n_sectors = dio->range.n_sectors; 2027 do { 2028 struct bio_vec bv = bio_iovec(bio); 2029 char *mem; 2030 2031 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 2032 bv.bv_len = n_sectors << SECTOR_SHIFT; 2033 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 2034 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 2035 retry_kmap: 2036 mem = kmap_local_page(bv.bv_page); 2037 if (likely(dio->op == REQ_OP_WRITE)) 2038 flush_dcache_page(bv.bv_page); 2039 2040 do { 2041 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 2042 2043 if (unlikely(dio->op == REQ_OP_READ)) { 2044 struct journal_sector *js; 2045 char *mem_ptr; 2046 unsigned int s; 2047 2048 if (unlikely(journal_entry_is_inprogress(je))) { 2049 flush_dcache_page(bv.bv_page); 2050 kunmap_local(mem); 2051 2052 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2053 goto retry_kmap; 2054 } 2055 smp_rmb(); 2056 BUG_ON(journal_entry_get_sector(je) != logical_sector); 2057 js = access_journal_data(ic, journal_section, journal_entry); 2058 mem_ptr = mem + bv.bv_offset; 2059 s = 0; 2060 do { 2061 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 2062 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 2063 js++; 2064 mem_ptr += 1 << SECTOR_SHIFT; 2065 } while (++s < ic->sectors_per_block); 2066 #ifdef INTERNAL_VERIFY 2067 if (ic->internal_hash) { 2068 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2069 2070 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 2071 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 2072 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 2073 logical_sector); 2074 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum", 2075 bio, logical_sector, 0); 2076 } 2077 } 2078 #endif 2079 } 2080 2081 if (!ic->internal_hash) { 2082 struct bio_integrity_payload *bip = bio_integrity(bio); 2083 unsigned int tag_todo = ic->tag_size; 2084 char *tag_ptr = journal_entry_tag(ic, je); 2085 2086 if (bip) { 2087 do { 2088 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2089 unsigned int tag_now = min(biv.bv_len, tag_todo); 2090 char *tag_addr; 2091 2092 BUG_ON(PageHighMem(biv.bv_page)); 2093 tag_addr = bvec_virt(&biv); 2094 if (likely(dio->op == REQ_OP_WRITE)) 2095 memcpy(tag_ptr, tag_addr, tag_now); 2096 else 2097 memcpy(tag_addr, tag_ptr, tag_now); 2098 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2099 tag_ptr += tag_now; 2100 tag_todo -= tag_now; 2101 } while (unlikely(tag_todo)); 2102 } else if (likely(dio->op == REQ_OP_WRITE)) 2103 memset(tag_ptr, 0, tag_todo); 2104 } 2105 2106 if (likely(dio->op == REQ_OP_WRITE)) { 2107 struct journal_sector *js; 2108 unsigned int s; 2109 2110 js = access_journal_data(ic, journal_section, journal_entry); 2111 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2112 2113 s = 0; 2114 do { 2115 je->last_bytes[s] = js[s].commit_id; 2116 } while (++s < ic->sectors_per_block); 2117 2118 if (ic->internal_hash) { 2119 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 2120 2121 if (unlikely(digest_size > ic->tag_size)) { 2122 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2123 2124 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2125 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2126 } else 2127 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2128 } 2129 2130 journal_entry_set_sector(je, logical_sector); 2131 } 2132 logical_sector += ic->sectors_per_block; 2133 2134 journal_entry++; 2135 if (unlikely(journal_entry == ic->journal_section_entries)) { 2136 journal_entry = 0; 2137 journal_section++; 2138 wraparound_section(ic, &journal_section); 2139 } 2140 2141 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2142 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2143 2144 if (unlikely(dio->op == REQ_OP_READ)) 2145 flush_dcache_page(bv.bv_page); 2146 kunmap_local(mem); 2147 } while (n_sectors); 2148 2149 if (likely(dio->op == REQ_OP_WRITE)) { 2150 smp_mb(); 2151 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2152 wake_up(&ic->copy_to_journal_wait); 2153 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2154 queue_work(ic->commit_wq, &ic->commit_work); 2155 else 2156 schedule_autocommit(ic); 2157 } else 2158 remove_range(ic, &dio->range); 2159 2160 if (unlikely(bio->bi_iter.bi_size)) { 2161 sector_t area, offset; 2162 2163 dio->range.logical_sector = logical_sector; 2164 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2165 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2166 return true; 2167 } 2168 2169 return false; 2170 } 2171 2172 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2173 { 2174 struct dm_integrity_c *ic = dio->ic; 2175 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2176 unsigned int journal_section, journal_entry; 2177 unsigned int journal_read_pos; 2178 struct completion read_comp; 2179 bool discard_retried = false; 2180 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2181 2182 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2183 need_sync_io = true; 2184 2185 if (need_sync_io && from_map) { 2186 INIT_WORK(&dio->work, integrity_bio_wait); 2187 queue_work(ic->offload_wq, &dio->work); 2188 return; 2189 } 2190 2191 lock_retry: 2192 spin_lock_irq(&ic->endio_wait.lock); 2193 retry: 2194 if (unlikely(dm_integrity_failed(ic))) { 2195 spin_unlock_irq(&ic->endio_wait.lock); 2196 do_endio(ic, bio); 2197 return; 2198 } 2199 dio->range.n_sectors = bio_sectors(bio); 2200 journal_read_pos = NOT_FOUND; 2201 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2202 if (dio->op == REQ_OP_WRITE) { 2203 unsigned int next_entry, i, pos; 2204 unsigned int ws, we, range_sectors; 2205 2206 dio->range.n_sectors = min(dio->range.n_sectors, 2207 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2208 if (unlikely(!dio->range.n_sectors)) { 2209 if (from_map) 2210 goto offload_to_thread; 2211 sleep_on_endio_wait(ic); 2212 goto retry; 2213 } 2214 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2215 ic->free_sectors -= range_sectors; 2216 journal_section = ic->free_section; 2217 journal_entry = ic->free_section_entry; 2218 2219 next_entry = ic->free_section_entry + range_sectors; 2220 ic->free_section_entry = next_entry % ic->journal_section_entries; 2221 ic->free_section += next_entry / ic->journal_section_entries; 2222 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2223 wraparound_section(ic, &ic->free_section); 2224 2225 pos = journal_section * ic->journal_section_entries + journal_entry; 2226 ws = journal_section; 2227 we = journal_entry; 2228 i = 0; 2229 do { 2230 struct journal_entry *je; 2231 2232 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2233 pos++; 2234 if (unlikely(pos >= ic->journal_entries)) 2235 pos = 0; 2236 2237 je = access_journal_entry(ic, ws, we); 2238 BUG_ON(!journal_entry_is_unused(je)); 2239 journal_entry_set_inprogress(je); 2240 we++; 2241 if (unlikely(we == ic->journal_section_entries)) { 2242 we = 0; 2243 ws++; 2244 wraparound_section(ic, &ws); 2245 } 2246 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2247 2248 spin_unlock_irq(&ic->endio_wait.lock); 2249 goto journal_read_write; 2250 } else { 2251 sector_t next_sector; 2252 2253 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2254 if (likely(journal_read_pos == NOT_FOUND)) { 2255 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2256 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2257 } else { 2258 unsigned int i; 2259 unsigned int jp = journal_read_pos + 1; 2260 2261 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2262 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2263 break; 2264 } 2265 dio->range.n_sectors = i; 2266 } 2267 } 2268 } 2269 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2270 /* 2271 * We must not sleep in the request routine because it could 2272 * stall bios on current->bio_list. 2273 * So, we offload the bio to a workqueue if we have to sleep. 2274 */ 2275 if (from_map) { 2276 offload_to_thread: 2277 spin_unlock_irq(&ic->endio_wait.lock); 2278 INIT_WORK(&dio->work, integrity_bio_wait); 2279 queue_work(ic->wait_wq, &dio->work); 2280 return; 2281 } 2282 if (journal_read_pos != NOT_FOUND) 2283 dio->range.n_sectors = ic->sectors_per_block; 2284 wait_and_add_new_range(ic, &dio->range); 2285 /* 2286 * wait_and_add_new_range drops the spinlock, so the journal 2287 * may have been changed arbitrarily. We need to recheck. 2288 * To simplify the code, we restrict I/O size to just one block. 2289 */ 2290 if (journal_read_pos != NOT_FOUND) { 2291 sector_t next_sector; 2292 unsigned int new_pos; 2293 2294 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2295 if (unlikely(new_pos != journal_read_pos)) { 2296 remove_range_unlocked(ic, &dio->range); 2297 goto retry; 2298 } 2299 } 2300 } 2301 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2302 sector_t next_sector; 2303 unsigned int new_pos; 2304 2305 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2306 if (unlikely(new_pos != NOT_FOUND) || 2307 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2308 remove_range_unlocked(ic, &dio->range); 2309 spin_unlock_irq(&ic->endio_wait.lock); 2310 queue_work(ic->commit_wq, &ic->commit_work); 2311 flush_workqueue(ic->commit_wq); 2312 queue_work(ic->writer_wq, &ic->writer_work); 2313 flush_workqueue(ic->writer_wq); 2314 discard_retried = true; 2315 goto lock_retry; 2316 } 2317 } 2318 spin_unlock_irq(&ic->endio_wait.lock); 2319 2320 if (unlikely(journal_read_pos != NOT_FOUND)) { 2321 journal_section = journal_read_pos / ic->journal_section_entries; 2322 journal_entry = journal_read_pos % ic->journal_section_entries; 2323 goto journal_read_write; 2324 } 2325 2326 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2327 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2328 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2329 struct bitmap_block_status *bbs; 2330 2331 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2332 spin_lock(&bbs->bio_queue_lock); 2333 bio_list_add(&bbs->bio_queue, bio); 2334 spin_unlock(&bbs->bio_queue_lock); 2335 queue_work(ic->writer_wq, &bbs->work); 2336 return; 2337 } 2338 } 2339 2340 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2341 2342 if (need_sync_io) { 2343 init_completion(&read_comp); 2344 dio->completion = &read_comp; 2345 } else 2346 dio->completion = NULL; 2347 2348 dm_bio_record(&dio->bio_details, bio); 2349 bio_set_dev(bio, ic->dev->bdev); 2350 bio->bi_integrity = NULL; 2351 bio->bi_opf &= ~REQ_INTEGRITY; 2352 bio->bi_end_io = integrity_end_io; 2353 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2354 2355 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2356 integrity_metadata(&dio->work); 2357 dm_integrity_flush_buffers(ic, false); 2358 2359 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2360 dio->completion = NULL; 2361 2362 submit_bio_noacct(bio); 2363 2364 return; 2365 } 2366 2367 submit_bio_noacct(bio); 2368 2369 if (need_sync_io) { 2370 wait_for_completion_io(&read_comp); 2371 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2372 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2373 goto skip_check; 2374 if (ic->mode == 'B') { 2375 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2376 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2377 goto skip_check; 2378 } 2379 2380 if (likely(!bio->bi_status)) 2381 integrity_metadata(&dio->work); 2382 else 2383 skip_check: 2384 dec_in_flight(dio); 2385 } else { 2386 INIT_WORK(&dio->work, integrity_metadata); 2387 queue_work(ic->metadata_wq, &dio->work); 2388 } 2389 2390 return; 2391 2392 journal_read_write: 2393 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2394 goto lock_retry; 2395 2396 do_endio_flush(ic, dio); 2397 } 2398 2399 2400 static void integrity_bio_wait(struct work_struct *w) 2401 { 2402 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2403 2404 dm_integrity_map_continue(dio, false); 2405 } 2406 2407 static void pad_uncommitted(struct dm_integrity_c *ic) 2408 { 2409 if (ic->free_section_entry) { 2410 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2411 ic->free_section_entry = 0; 2412 ic->free_section++; 2413 wraparound_section(ic, &ic->free_section); 2414 ic->n_uncommitted_sections++; 2415 } 2416 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2417 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2418 ic->journal_section_entries + ic->free_sectors)) { 2419 DMCRIT("journal_sections %u, journal_section_entries %u, " 2420 "n_uncommitted_sections %u, n_committed_sections %u, " 2421 "journal_section_entries %u, free_sectors %u", 2422 ic->journal_sections, ic->journal_section_entries, 2423 ic->n_uncommitted_sections, ic->n_committed_sections, 2424 ic->journal_section_entries, ic->free_sectors); 2425 } 2426 } 2427 2428 static void integrity_commit(struct work_struct *w) 2429 { 2430 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2431 unsigned int commit_start, commit_sections; 2432 unsigned int i, j, n; 2433 struct bio *flushes; 2434 2435 del_timer(&ic->autocommit_timer); 2436 2437 spin_lock_irq(&ic->endio_wait.lock); 2438 flushes = bio_list_get(&ic->flush_bio_list); 2439 if (unlikely(ic->mode != 'J')) { 2440 spin_unlock_irq(&ic->endio_wait.lock); 2441 dm_integrity_flush_buffers(ic, true); 2442 goto release_flush_bios; 2443 } 2444 2445 pad_uncommitted(ic); 2446 commit_start = ic->uncommitted_section; 2447 commit_sections = ic->n_uncommitted_sections; 2448 spin_unlock_irq(&ic->endio_wait.lock); 2449 2450 if (!commit_sections) 2451 goto release_flush_bios; 2452 2453 ic->wrote_to_journal = true; 2454 2455 i = commit_start; 2456 for (n = 0; n < commit_sections; n++) { 2457 for (j = 0; j < ic->journal_section_entries; j++) { 2458 struct journal_entry *je; 2459 2460 je = access_journal_entry(ic, i, j); 2461 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2462 } 2463 for (j = 0; j < ic->journal_section_sectors; j++) { 2464 struct journal_sector *js; 2465 2466 js = access_journal(ic, i, j); 2467 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2468 } 2469 i++; 2470 if (unlikely(i >= ic->journal_sections)) 2471 ic->commit_seq = next_commit_seq(ic->commit_seq); 2472 wraparound_section(ic, &i); 2473 } 2474 smp_rmb(); 2475 2476 write_journal(ic, commit_start, commit_sections); 2477 2478 spin_lock_irq(&ic->endio_wait.lock); 2479 ic->uncommitted_section += commit_sections; 2480 wraparound_section(ic, &ic->uncommitted_section); 2481 ic->n_uncommitted_sections -= commit_sections; 2482 ic->n_committed_sections += commit_sections; 2483 spin_unlock_irq(&ic->endio_wait.lock); 2484 2485 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2486 queue_work(ic->writer_wq, &ic->writer_work); 2487 2488 release_flush_bios: 2489 while (flushes) { 2490 struct bio *next = flushes->bi_next; 2491 2492 flushes->bi_next = NULL; 2493 do_endio(ic, flushes); 2494 flushes = next; 2495 } 2496 } 2497 2498 static void complete_copy_from_journal(unsigned long error, void *context) 2499 { 2500 struct journal_io *io = context; 2501 struct journal_completion *comp = io->comp; 2502 struct dm_integrity_c *ic = comp->ic; 2503 2504 remove_range(ic, &io->range); 2505 mempool_free(io, &ic->journal_io_mempool); 2506 if (unlikely(error != 0)) 2507 dm_integrity_io_error(ic, "copying from journal", -EIO); 2508 complete_journal_op(comp); 2509 } 2510 2511 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2512 struct journal_entry *je) 2513 { 2514 unsigned int s = 0; 2515 2516 do { 2517 js->commit_id = je->last_bytes[s]; 2518 js++; 2519 } while (++s < ic->sectors_per_block); 2520 } 2521 2522 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start, 2523 unsigned int write_sections, bool from_replay) 2524 { 2525 unsigned int i, j, n; 2526 struct journal_completion comp; 2527 struct blk_plug plug; 2528 2529 blk_start_plug(&plug); 2530 2531 comp.ic = ic; 2532 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2533 init_completion(&comp.comp); 2534 2535 i = write_start; 2536 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2537 #ifndef INTERNAL_VERIFY 2538 if (unlikely(from_replay)) 2539 #endif 2540 rw_section_mac(ic, i, false); 2541 for (j = 0; j < ic->journal_section_entries; j++) { 2542 struct journal_entry *je = access_journal_entry(ic, i, j); 2543 sector_t sec, area, offset; 2544 unsigned int k, l, next_loop; 2545 sector_t metadata_block; 2546 unsigned int metadata_offset; 2547 struct journal_io *io; 2548 2549 if (journal_entry_is_unused(je)) 2550 continue; 2551 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2552 sec = journal_entry_get_sector(je); 2553 if (unlikely(from_replay)) { 2554 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) { 2555 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2556 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2557 } 2558 if (unlikely(sec >= ic->provided_data_sectors)) { 2559 journal_entry_set_unused(je); 2560 continue; 2561 } 2562 } 2563 get_area_and_offset(ic, sec, &area, &offset); 2564 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2565 for (k = j + 1; k < ic->journal_section_entries; k++) { 2566 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2567 sector_t sec2, area2, offset2; 2568 2569 if (journal_entry_is_unused(je2)) 2570 break; 2571 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2572 sec2 = journal_entry_get_sector(je2); 2573 if (unlikely(sec2 >= ic->provided_data_sectors)) 2574 break; 2575 get_area_and_offset(ic, sec2, &area2, &offset2); 2576 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2577 break; 2578 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2579 } 2580 next_loop = k - 1; 2581 2582 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2583 io->comp = ∁ 2584 io->range.logical_sector = sec; 2585 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2586 2587 spin_lock_irq(&ic->endio_wait.lock); 2588 add_new_range_and_wait(ic, &io->range); 2589 2590 if (likely(!from_replay)) { 2591 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2592 2593 /* don't write if there is newer committed sector */ 2594 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2595 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2596 2597 journal_entry_set_unused(je2); 2598 remove_journal_node(ic, §ion_node[j]); 2599 j++; 2600 sec += ic->sectors_per_block; 2601 offset += ic->sectors_per_block; 2602 } 2603 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2604 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2605 2606 journal_entry_set_unused(je2); 2607 remove_journal_node(ic, §ion_node[k - 1]); 2608 k--; 2609 } 2610 if (j == k) { 2611 remove_range_unlocked(ic, &io->range); 2612 spin_unlock_irq(&ic->endio_wait.lock); 2613 mempool_free(io, &ic->journal_io_mempool); 2614 goto skip_io; 2615 } 2616 for (l = j; l < k; l++) 2617 remove_journal_node(ic, §ion_node[l]); 2618 } 2619 spin_unlock_irq(&ic->endio_wait.lock); 2620 2621 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2622 for (l = j; l < k; l++) { 2623 int r; 2624 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2625 2626 if ( 2627 #ifndef INTERNAL_VERIFY 2628 unlikely(from_replay) && 2629 #endif 2630 ic->internal_hash) { 2631 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2632 2633 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2634 (char *)access_journal_data(ic, i, l), test_tag); 2635 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) { 2636 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2637 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0); 2638 } 2639 } 2640 2641 journal_entry_set_unused(je2); 2642 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2643 ic->tag_size, TAG_WRITE); 2644 if (unlikely(r)) 2645 dm_integrity_io_error(ic, "reading tags", r); 2646 } 2647 2648 atomic_inc(&comp.in_flight); 2649 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2650 (k - j) << ic->sb->log2_sectors_per_block, 2651 get_data_sector(ic, area, offset), 2652 complete_copy_from_journal, io); 2653 skip_io: 2654 j = next_loop; 2655 } 2656 } 2657 2658 dm_bufio_write_dirty_buffers_async(ic->bufio); 2659 2660 blk_finish_plug(&plug); 2661 2662 complete_journal_op(&comp); 2663 wait_for_completion_io(&comp.comp); 2664 2665 dm_integrity_flush_buffers(ic, true); 2666 } 2667 2668 static void integrity_writer(struct work_struct *w) 2669 { 2670 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2671 unsigned int write_start, write_sections; 2672 unsigned int prev_free_sectors; 2673 2674 spin_lock_irq(&ic->endio_wait.lock); 2675 write_start = ic->committed_section; 2676 write_sections = ic->n_committed_sections; 2677 spin_unlock_irq(&ic->endio_wait.lock); 2678 2679 if (!write_sections) 2680 return; 2681 2682 do_journal_write(ic, write_start, write_sections, false); 2683 2684 spin_lock_irq(&ic->endio_wait.lock); 2685 2686 ic->committed_section += write_sections; 2687 wraparound_section(ic, &ic->committed_section); 2688 ic->n_committed_sections -= write_sections; 2689 2690 prev_free_sectors = ic->free_sectors; 2691 ic->free_sectors += write_sections * ic->journal_section_entries; 2692 if (unlikely(!prev_free_sectors)) 2693 wake_up_locked(&ic->endio_wait); 2694 2695 spin_unlock_irq(&ic->endio_wait.lock); 2696 } 2697 2698 static void recalc_write_super(struct dm_integrity_c *ic) 2699 { 2700 int r; 2701 2702 dm_integrity_flush_buffers(ic, false); 2703 if (dm_integrity_failed(ic)) 2704 return; 2705 2706 r = sync_rw_sb(ic, REQ_OP_WRITE); 2707 if (unlikely(r)) 2708 dm_integrity_io_error(ic, "writing superblock", r); 2709 } 2710 2711 static void integrity_recalc(struct work_struct *w) 2712 { 2713 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2714 size_t recalc_tags_size; 2715 u8 *recalc_buffer = NULL; 2716 u8 *recalc_tags = NULL; 2717 struct dm_integrity_range range; 2718 struct dm_io_request io_req; 2719 struct dm_io_region io_loc; 2720 sector_t area, offset; 2721 sector_t metadata_block; 2722 unsigned int metadata_offset; 2723 sector_t logical_sector, n_sectors; 2724 __u8 *t; 2725 unsigned int i; 2726 int r; 2727 unsigned int super_counter = 0; 2728 unsigned recalc_sectors = RECALC_SECTORS; 2729 2730 retry: 2731 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO); 2732 if (!recalc_buffer) { 2733 oom: 2734 recalc_sectors >>= 1; 2735 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block) 2736 goto retry; 2737 DMCRIT("out of memory for recalculate buffer - recalculation disabled"); 2738 goto free_ret; 2739 } 2740 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 2741 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size) 2742 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size; 2743 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO); 2744 if (!recalc_tags) { 2745 vfree(recalc_buffer); 2746 recalc_buffer = NULL; 2747 goto oom; 2748 } 2749 2750 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2751 2752 spin_lock_irq(&ic->endio_wait.lock); 2753 2754 next_chunk: 2755 2756 if (unlikely(dm_post_suspending(ic->ti))) 2757 goto unlock_ret; 2758 2759 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2760 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2761 if (ic->mode == 'B') { 2762 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2763 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2764 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2765 } 2766 goto unlock_ret; 2767 } 2768 2769 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2770 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector); 2771 if (!ic->meta_dev) 2772 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset); 2773 2774 add_new_range_and_wait(ic, &range); 2775 spin_unlock_irq(&ic->endio_wait.lock); 2776 logical_sector = range.logical_sector; 2777 n_sectors = range.n_sectors; 2778 2779 if (ic->mode == 'B') { 2780 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2781 goto advance_and_next; 2782 2783 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2784 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2785 logical_sector += ic->sectors_per_block; 2786 n_sectors -= ic->sectors_per_block; 2787 cond_resched(); 2788 } 2789 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2790 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2791 n_sectors -= ic->sectors_per_block; 2792 cond_resched(); 2793 } 2794 get_area_and_offset(ic, logical_sector, &area, &offset); 2795 } 2796 2797 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2798 2799 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2800 recalc_write_super(ic); 2801 if (ic->mode == 'B') 2802 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2803 2804 super_counter = 0; 2805 } 2806 2807 if (unlikely(dm_integrity_failed(ic))) 2808 goto err; 2809 2810 io_req.bi_opf = REQ_OP_READ; 2811 io_req.mem.type = DM_IO_VMA; 2812 io_req.mem.ptr.addr = recalc_buffer; 2813 io_req.notify.fn = NULL; 2814 io_req.client = ic->io; 2815 io_loc.bdev = ic->dev->bdev; 2816 io_loc.sector = get_data_sector(ic, area, offset); 2817 io_loc.count = n_sectors; 2818 2819 r = dm_io(&io_req, 1, &io_loc, NULL); 2820 if (unlikely(r)) { 2821 dm_integrity_io_error(ic, "reading data", r); 2822 goto err; 2823 } 2824 2825 t = recalc_tags; 2826 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2827 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t); 2828 t += ic->tag_size; 2829 } 2830 2831 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2832 2833 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE); 2834 if (unlikely(r)) { 2835 dm_integrity_io_error(ic, "writing tags", r); 2836 goto err; 2837 } 2838 2839 if (ic->mode == 'B') { 2840 sector_t start, end; 2841 2842 start = (range.logical_sector >> 2843 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2844 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2845 end = ((range.logical_sector + range.n_sectors) >> 2846 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2847 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2848 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2849 } 2850 2851 advance_and_next: 2852 cond_resched(); 2853 2854 spin_lock_irq(&ic->endio_wait.lock); 2855 remove_range_unlocked(ic, &range); 2856 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2857 goto next_chunk; 2858 2859 err: 2860 remove_range(ic, &range); 2861 goto free_ret; 2862 2863 unlock_ret: 2864 spin_unlock_irq(&ic->endio_wait.lock); 2865 2866 recalc_write_super(ic); 2867 2868 free_ret: 2869 vfree(recalc_buffer); 2870 kvfree(recalc_tags); 2871 } 2872 2873 static void bitmap_block_work(struct work_struct *w) 2874 { 2875 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2876 struct dm_integrity_c *ic = bbs->ic; 2877 struct bio *bio; 2878 struct bio_list bio_queue; 2879 struct bio_list waiting; 2880 2881 bio_list_init(&waiting); 2882 2883 spin_lock(&bbs->bio_queue_lock); 2884 bio_queue = bbs->bio_queue; 2885 bio_list_init(&bbs->bio_queue); 2886 spin_unlock(&bbs->bio_queue_lock); 2887 2888 while ((bio = bio_list_pop(&bio_queue))) { 2889 struct dm_integrity_io *dio; 2890 2891 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2892 2893 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2894 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2895 remove_range(ic, &dio->range); 2896 INIT_WORK(&dio->work, integrity_bio_wait); 2897 queue_work(ic->offload_wq, &dio->work); 2898 } else { 2899 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2900 dio->range.n_sectors, BITMAP_OP_SET); 2901 bio_list_add(&waiting, bio); 2902 } 2903 } 2904 2905 if (bio_list_empty(&waiting)) 2906 return; 2907 2908 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 2909 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2910 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2911 2912 while ((bio = bio_list_pop(&waiting))) { 2913 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2914 2915 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2916 dio->range.n_sectors, BITMAP_OP_SET); 2917 2918 remove_range(ic, &dio->range); 2919 INIT_WORK(&dio->work, integrity_bio_wait); 2920 queue_work(ic->offload_wq, &dio->work); 2921 } 2922 2923 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2924 } 2925 2926 static void bitmap_flush_work(struct work_struct *work) 2927 { 2928 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2929 struct dm_integrity_range range; 2930 unsigned long limit; 2931 struct bio *bio; 2932 2933 dm_integrity_flush_buffers(ic, false); 2934 2935 range.logical_sector = 0; 2936 range.n_sectors = ic->provided_data_sectors; 2937 2938 spin_lock_irq(&ic->endio_wait.lock); 2939 add_new_range_and_wait(ic, &range); 2940 spin_unlock_irq(&ic->endio_wait.lock); 2941 2942 dm_integrity_flush_buffers(ic, true); 2943 2944 limit = ic->provided_data_sectors; 2945 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2946 limit = le64_to_cpu(ic->sb->recalc_sector) 2947 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2948 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2949 } 2950 /*DEBUG_print("zeroing journal\n");*/ 2951 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2952 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2953 2954 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 2955 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2956 2957 spin_lock_irq(&ic->endio_wait.lock); 2958 remove_range_unlocked(ic, &range); 2959 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2960 bio_endio(bio); 2961 spin_unlock_irq(&ic->endio_wait.lock); 2962 spin_lock_irq(&ic->endio_wait.lock); 2963 } 2964 spin_unlock_irq(&ic->endio_wait.lock); 2965 } 2966 2967 2968 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section, 2969 unsigned int n_sections, unsigned char commit_seq) 2970 { 2971 unsigned int i, j, n; 2972 2973 if (!n_sections) 2974 return; 2975 2976 for (n = 0; n < n_sections; n++) { 2977 i = start_section + n; 2978 wraparound_section(ic, &i); 2979 for (j = 0; j < ic->journal_section_sectors; j++) { 2980 struct journal_sector *js = access_journal(ic, i, j); 2981 2982 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA); 2983 memset(&js->sectors, 0, sizeof(js->sectors)); 2984 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2985 } 2986 for (j = 0; j < ic->journal_section_entries; j++) { 2987 struct journal_entry *je = access_journal_entry(ic, i, j); 2988 2989 journal_entry_set_unused(je); 2990 } 2991 } 2992 2993 write_journal(ic, start_section, n_sections); 2994 } 2995 2996 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id) 2997 { 2998 unsigned char k; 2999 3000 for (k = 0; k < N_COMMIT_IDS; k++) { 3001 if (dm_integrity_commit_id(ic, i, j, k) == id) 3002 return k; 3003 } 3004 dm_integrity_io_error(ic, "journal commit id", -EIO); 3005 return -EIO; 3006 } 3007 3008 static void replay_journal(struct dm_integrity_c *ic) 3009 { 3010 unsigned int i, j; 3011 bool used_commit_ids[N_COMMIT_IDS]; 3012 unsigned int max_commit_id_sections[N_COMMIT_IDS]; 3013 unsigned int write_start, write_sections; 3014 unsigned int continue_section; 3015 bool journal_empty; 3016 unsigned char unused, last_used, want_commit_seq; 3017 3018 if (ic->mode == 'R') 3019 return; 3020 3021 if (ic->journal_uptodate) 3022 return; 3023 3024 last_used = 0; 3025 write_start = 0; 3026 3027 if (!ic->just_formatted) { 3028 DEBUG_print("reading journal\n"); 3029 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL); 3030 if (ic->journal_io) 3031 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 3032 if (ic->journal_io) { 3033 struct journal_completion crypt_comp; 3034 3035 crypt_comp.ic = ic; 3036 init_completion(&crypt_comp.comp); 3037 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 3038 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 3039 wait_for_completion(&crypt_comp.comp); 3040 } 3041 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 3042 } 3043 3044 if (dm_integrity_failed(ic)) 3045 goto clear_journal; 3046 3047 journal_empty = true; 3048 memset(used_commit_ids, 0, sizeof(used_commit_ids)); 3049 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections)); 3050 for (i = 0; i < ic->journal_sections; i++) { 3051 for (j = 0; j < ic->journal_section_sectors; j++) { 3052 int k; 3053 struct journal_sector *js = access_journal(ic, i, j); 3054 3055 k = find_commit_seq(ic, i, j, js->commit_id); 3056 if (k < 0) 3057 goto clear_journal; 3058 used_commit_ids[k] = true; 3059 max_commit_id_sections[k] = i; 3060 } 3061 if (journal_empty) { 3062 for (j = 0; j < ic->journal_section_entries; j++) { 3063 struct journal_entry *je = access_journal_entry(ic, i, j); 3064 3065 if (!journal_entry_is_unused(je)) { 3066 journal_empty = false; 3067 break; 3068 } 3069 } 3070 } 3071 } 3072 3073 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 3074 unused = N_COMMIT_IDS - 1; 3075 while (unused && !used_commit_ids[unused - 1]) 3076 unused--; 3077 } else { 3078 for (unused = 0; unused < N_COMMIT_IDS; unused++) 3079 if (!used_commit_ids[unused]) 3080 break; 3081 if (unused == N_COMMIT_IDS) { 3082 dm_integrity_io_error(ic, "journal commit ids", -EIO); 3083 goto clear_journal; 3084 } 3085 } 3086 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 3087 unused, used_commit_ids[0], used_commit_ids[1], 3088 used_commit_ids[2], used_commit_ids[3]); 3089 3090 last_used = prev_commit_seq(unused); 3091 want_commit_seq = prev_commit_seq(last_used); 3092 3093 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 3094 journal_empty = true; 3095 3096 write_start = max_commit_id_sections[last_used] + 1; 3097 if (unlikely(write_start >= ic->journal_sections)) 3098 want_commit_seq = next_commit_seq(want_commit_seq); 3099 wraparound_section(ic, &write_start); 3100 3101 i = write_start; 3102 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 3103 for (j = 0; j < ic->journal_section_sectors; j++) { 3104 struct journal_sector *js = access_journal(ic, i, j); 3105 3106 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 3107 /* 3108 * This could be caused by crash during writing. 3109 * We won't replay the inconsistent part of the 3110 * journal. 3111 */ 3112 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 3113 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 3114 goto brk; 3115 } 3116 } 3117 i++; 3118 if (unlikely(i >= ic->journal_sections)) 3119 want_commit_seq = next_commit_seq(want_commit_seq); 3120 wraparound_section(ic, &i); 3121 } 3122 brk: 3123 3124 if (!journal_empty) { 3125 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 3126 write_sections, write_start, want_commit_seq); 3127 do_journal_write(ic, write_start, write_sections, true); 3128 } 3129 3130 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3131 continue_section = write_start; 3132 ic->commit_seq = want_commit_seq; 3133 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3134 } else { 3135 unsigned int s; 3136 unsigned char erase_seq; 3137 3138 clear_journal: 3139 DEBUG_print("clearing journal\n"); 3140 3141 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3142 s = write_start; 3143 init_journal(ic, s, 1, erase_seq); 3144 s++; 3145 wraparound_section(ic, &s); 3146 if (ic->journal_sections >= 2) { 3147 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3148 s += ic->journal_sections - 2; 3149 wraparound_section(ic, &s); 3150 init_journal(ic, s, 1, erase_seq); 3151 } 3152 3153 continue_section = 0; 3154 ic->commit_seq = next_commit_seq(erase_seq); 3155 } 3156 3157 ic->committed_section = continue_section; 3158 ic->n_committed_sections = 0; 3159 3160 ic->uncommitted_section = continue_section; 3161 ic->n_uncommitted_sections = 0; 3162 3163 ic->free_section = continue_section; 3164 ic->free_section_entry = 0; 3165 ic->free_sectors = ic->journal_entries; 3166 3167 ic->journal_tree_root = RB_ROOT; 3168 for (i = 0; i < ic->journal_entries; i++) 3169 init_journal_node(&ic->journal_tree[i]); 3170 } 3171 3172 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3173 { 3174 DEBUG_print("%s\n", __func__); 3175 3176 if (ic->mode == 'B') { 3177 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3178 ic->synchronous_mode = 1; 3179 3180 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3181 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3182 flush_workqueue(ic->commit_wq); 3183 } 3184 } 3185 3186 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3187 { 3188 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3189 3190 DEBUG_print("%s\n", __func__); 3191 3192 dm_integrity_enter_synchronous_mode(ic); 3193 3194 return NOTIFY_DONE; 3195 } 3196 3197 static void dm_integrity_postsuspend(struct dm_target *ti) 3198 { 3199 struct dm_integrity_c *ic = ti->private; 3200 int r; 3201 3202 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3203 3204 del_timer_sync(&ic->autocommit_timer); 3205 3206 if (ic->recalc_wq) 3207 drain_workqueue(ic->recalc_wq); 3208 3209 if (ic->mode == 'B') 3210 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3211 3212 queue_work(ic->commit_wq, &ic->commit_work); 3213 drain_workqueue(ic->commit_wq); 3214 3215 if (ic->mode == 'J') { 3216 queue_work(ic->writer_wq, &ic->writer_work); 3217 drain_workqueue(ic->writer_wq); 3218 dm_integrity_flush_buffers(ic, true); 3219 if (ic->wrote_to_journal) { 3220 init_journal(ic, ic->free_section, 3221 ic->journal_sections - ic->free_section, ic->commit_seq); 3222 if (ic->free_section) { 3223 init_journal(ic, 0, ic->free_section, 3224 next_commit_seq(ic->commit_seq)); 3225 } 3226 } 3227 } 3228 3229 if (ic->mode == 'B') { 3230 dm_integrity_flush_buffers(ic, true); 3231 #if 1 3232 /* set to 0 to test bitmap replay code */ 3233 init_journal(ic, 0, ic->journal_sections, 0); 3234 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3235 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3236 if (unlikely(r)) 3237 dm_integrity_io_error(ic, "writing superblock", r); 3238 #endif 3239 } 3240 3241 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3242 3243 ic->journal_uptodate = true; 3244 } 3245 3246 static void dm_integrity_resume(struct dm_target *ti) 3247 { 3248 struct dm_integrity_c *ic = ti->private; 3249 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3250 int r; 3251 3252 DEBUG_print("resume\n"); 3253 3254 ic->wrote_to_journal = false; 3255 3256 if (ic->provided_data_sectors != old_provided_data_sectors) { 3257 if (ic->provided_data_sectors > old_provided_data_sectors && 3258 ic->mode == 'B' && 3259 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3260 rw_journal_sectors(ic, REQ_OP_READ, 0, 3261 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3262 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3263 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3264 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3265 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3266 } 3267 3268 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3269 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3270 if (unlikely(r)) 3271 dm_integrity_io_error(ic, "writing superblock", r); 3272 } 3273 3274 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3275 DEBUG_print("resume dirty_bitmap\n"); 3276 rw_journal_sectors(ic, REQ_OP_READ, 0, 3277 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3278 if (ic->mode == 'B') { 3279 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3280 !ic->reset_recalculate_flag) { 3281 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3282 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3283 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3284 BITMAP_OP_TEST_ALL_CLEAR)) { 3285 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3286 ic->sb->recalc_sector = cpu_to_le64(0); 3287 } 3288 } else { 3289 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3290 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3291 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3292 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3293 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3294 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3295 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3296 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3297 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3298 ic->sb->recalc_sector = cpu_to_le64(0); 3299 } 3300 } else { 3301 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3302 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3303 ic->reset_recalculate_flag) { 3304 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3305 ic->sb->recalc_sector = cpu_to_le64(0); 3306 } 3307 init_journal(ic, 0, ic->journal_sections, 0); 3308 replay_journal(ic); 3309 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3310 } 3311 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3312 if (unlikely(r)) 3313 dm_integrity_io_error(ic, "writing superblock", r); 3314 } else { 3315 replay_journal(ic); 3316 if (ic->reset_recalculate_flag) { 3317 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3318 ic->sb->recalc_sector = cpu_to_le64(0); 3319 } 3320 if (ic->mode == 'B') { 3321 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3322 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3323 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3324 if (unlikely(r)) 3325 dm_integrity_io_error(ic, "writing superblock", r); 3326 3327 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3328 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3329 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3330 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3331 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3332 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3333 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3334 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3335 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3336 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3337 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3338 } 3339 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3340 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3341 } 3342 } 3343 3344 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3345 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3346 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3347 3348 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3349 if (recalc_pos < ic->provided_data_sectors) { 3350 queue_work(ic->recalc_wq, &ic->recalc_work); 3351 } else if (recalc_pos > ic->provided_data_sectors) { 3352 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3353 recalc_write_super(ic); 3354 } 3355 } 3356 3357 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3358 ic->reboot_notifier.next = NULL; 3359 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3360 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3361 3362 #if 0 3363 /* set to 1 to stress test synchronous mode */ 3364 dm_integrity_enter_synchronous_mode(ic); 3365 #endif 3366 } 3367 3368 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3369 unsigned int status_flags, char *result, unsigned int maxlen) 3370 { 3371 struct dm_integrity_c *ic = ti->private; 3372 unsigned int arg_count; 3373 size_t sz = 0; 3374 3375 switch (type) { 3376 case STATUSTYPE_INFO: 3377 DMEMIT("%llu %llu", 3378 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3379 ic->provided_data_sectors); 3380 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3381 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3382 else 3383 DMEMIT(" -"); 3384 break; 3385 3386 case STATUSTYPE_TABLE: { 3387 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3388 3389 watermark_percentage += ic->journal_entries / 2; 3390 do_div(watermark_percentage, ic->journal_entries); 3391 arg_count = 3; 3392 arg_count += !!ic->meta_dev; 3393 arg_count += ic->sectors_per_block != 1; 3394 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3395 arg_count += ic->reset_recalculate_flag; 3396 arg_count += ic->discard; 3397 arg_count += ic->mode == 'J'; 3398 arg_count += ic->mode == 'J'; 3399 arg_count += ic->mode == 'B'; 3400 arg_count += ic->mode == 'B'; 3401 arg_count += !!ic->internal_hash_alg.alg_string; 3402 arg_count += !!ic->journal_crypt_alg.alg_string; 3403 arg_count += !!ic->journal_mac_alg.alg_string; 3404 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3405 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3406 arg_count += ic->legacy_recalculate; 3407 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3408 ic->tag_size, ic->mode, arg_count); 3409 if (ic->meta_dev) 3410 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3411 if (ic->sectors_per_block != 1) 3412 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3413 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3414 DMEMIT(" recalculate"); 3415 if (ic->reset_recalculate_flag) 3416 DMEMIT(" reset_recalculate"); 3417 if (ic->discard) 3418 DMEMIT(" allow_discards"); 3419 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3420 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3421 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3422 if (ic->mode == 'J') { 3423 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage); 3424 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3425 } 3426 if (ic->mode == 'B') { 3427 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3428 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3429 } 3430 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3431 DMEMIT(" fix_padding"); 3432 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3433 DMEMIT(" fix_hmac"); 3434 if (ic->legacy_recalculate) 3435 DMEMIT(" legacy_recalculate"); 3436 3437 #define EMIT_ALG(a, n) \ 3438 do { \ 3439 if (ic->a.alg_string) { \ 3440 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3441 if (ic->a.key_string) \ 3442 DMEMIT(":%s", ic->a.key_string);\ 3443 } \ 3444 } while (0) 3445 EMIT_ALG(internal_hash_alg, "internal_hash"); 3446 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3447 EMIT_ALG(journal_mac_alg, "journal_mac"); 3448 break; 3449 } 3450 case STATUSTYPE_IMA: 3451 DMEMIT_TARGET_NAME_VERSION(ti->type); 3452 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", 3453 ic->dev->name, ic->start, ic->tag_size, ic->mode); 3454 3455 if (ic->meta_dev) 3456 DMEMIT(",meta_device=%s", ic->meta_dev->name); 3457 if (ic->sectors_per_block != 1) 3458 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); 3459 3460 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 3461 'y' : 'n'); 3462 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); 3463 DMEMIT(",fix_padding=%c", 3464 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); 3465 DMEMIT(",fix_hmac=%c", 3466 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); 3467 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); 3468 3469 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); 3470 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); 3471 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); 3472 DMEMIT(";"); 3473 break; 3474 } 3475 } 3476 3477 static int dm_integrity_iterate_devices(struct dm_target *ti, 3478 iterate_devices_callout_fn fn, void *data) 3479 { 3480 struct dm_integrity_c *ic = ti->private; 3481 3482 if (!ic->meta_dev) 3483 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3484 else 3485 return fn(ti, ic->dev, 0, ti->len, data); 3486 } 3487 3488 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3489 { 3490 struct dm_integrity_c *ic = ti->private; 3491 3492 if (ic->sectors_per_block > 1) { 3493 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3494 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3495 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3496 limits->dma_alignment = limits->logical_block_size - 1; 3497 } 3498 } 3499 3500 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3501 { 3502 unsigned int sector_space = JOURNAL_SECTOR_DATA; 3503 3504 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3505 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3506 JOURNAL_ENTRY_ROUNDUP); 3507 3508 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3509 sector_space -= JOURNAL_MAC_PER_SECTOR; 3510 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3511 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3512 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3513 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3514 } 3515 3516 static int calculate_device_limits(struct dm_integrity_c *ic) 3517 { 3518 __u64 initial_sectors; 3519 3520 calculate_journal_section_size(ic); 3521 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3522 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3523 return -EINVAL; 3524 ic->initial_sectors = initial_sectors; 3525 3526 if (!ic->meta_dev) { 3527 sector_t last_sector, last_area, last_offset; 3528 3529 /* we have to maintain excessive padding for compatibility with existing volumes */ 3530 __u64 metadata_run_padding = 3531 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3532 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3533 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3534 3535 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3536 metadata_run_padding) >> SECTOR_SHIFT; 3537 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3538 ic->log2_metadata_run = __ffs(ic->metadata_run); 3539 else 3540 ic->log2_metadata_run = -1; 3541 3542 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3543 last_sector = get_data_sector(ic, last_area, last_offset); 3544 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3545 return -EINVAL; 3546 } else { 3547 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3548 3549 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3550 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3551 meta_size <<= ic->log2_buffer_sectors; 3552 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3553 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3554 return -EINVAL; 3555 ic->metadata_run = 1; 3556 ic->log2_metadata_run = 0; 3557 } 3558 3559 return 0; 3560 } 3561 3562 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3563 { 3564 if (!ic->meta_dev) { 3565 int test_bit; 3566 3567 ic->provided_data_sectors = 0; 3568 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3569 __u64 prev_data_sectors = ic->provided_data_sectors; 3570 3571 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3572 if (calculate_device_limits(ic)) 3573 ic->provided_data_sectors = prev_data_sectors; 3574 } 3575 } else { 3576 ic->provided_data_sectors = ic->data_device_sectors; 3577 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3578 } 3579 } 3580 3581 static int initialize_superblock(struct dm_integrity_c *ic, 3582 unsigned int journal_sectors, unsigned int interleave_sectors) 3583 { 3584 unsigned int journal_sections; 3585 int test_bit; 3586 3587 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3588 memcpy(ic->sb->magic, SB_MAGIC, 8); 3589 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3590 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3591 if (ic->journal_mac_alg.alg_string) 3592 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3593 3594 calculate_journal_section_size(ic); 3595 journal_sections = journal_sectors / ic->journal_section_sectors; 3596 if (!journal_sections) 3597 journal_sections = 1; 3598 3599 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 3600 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 3601 get_random_bytes(ic->sb->salt, SALT_SIZE); 3602 } 3603 3604 if (!ic->meta_dev) { 3605 if (ic->fix_padding) 3606 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3607 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3608 if (!interleave_sectors) 3609 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3610 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3611 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3612 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3613 3614 get_provided_data_sectors(ic); 3615 if (!ic->provided_data_sectors) 3616 return -EINVAL; 3617 } else { 3618 ic->sb->log2_interleave_sectors = 0; 3619 3620 get_provided_data_sectors(ic); 3621 if (!ic->provided_data_sectors) 3622 return -EINVAL; 3623 3624 try_smaller_buffer: 3625 ic->sb->journal_sections = cpu_to_le32(0); 3626 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3627 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3628 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3629 3630 if (test_journal_sections > journal_sections) 3631 continue; 3632 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3633 if (calculate_device_limits(ic)) 3634 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3635 3636 } 3637 if (!le32_to_cpu(ic->sb->journal_sections)) { 3638 if (ic->log2_buffer_sectors > 3) { 3639 ic->log2_buffer_sectors--; 3640 goto try_smaller_buffer; 3641 } 3642 return -EINVAL; 3643 } 3644 } 3645 3646 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3647 3648 sb_set_version(ic); 3649 3650 return 0; 3651 } 3652 3653 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3654 { 3655 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3656 struct blk_integrity bi; 3657 3658 memset(&bi, 0, sizeof(bi)); 3659 bi.profile = &dm_integrity_profile; 3660 bi.tuple_size = ic->tag_size; 3661 bi.tag_size = bi.tuple_size; 3662 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3663 3664 blk_integrity_register(disk, &bi); 3665 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3666 } 3667 3668 static void dm_integrity_free_page_list(struct page_list *pl) 3669 { 3670 unsigned int i; 3671 3672 if (!pl) 3673 return; 3674 for (i = 0; pl[i].page; i++) 3675 __free_page(pl[i].page); 3676 kvfree(pl); 3677 } 3678 3679 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages) 3680 { 3681 struct page_list *pl; 3682 unsigned int i; 3683 3684 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3685 if (!pl) 3686 return NULL; 3687 3688 for (i = 0; i < n_pages; i++) { 3689 pl[i].page = alloc_page(GFP_KERNEL); 3690 if (!pl[i].page) { 3691 dm_integrity_free_page_list(pl); 3692 return NULL; 3693 } 3694 if (i) 3695 pl[i - 1].next = &pl[i]; 3696 } 3697 pl[i].page = NULL; 3698 pl[i].next = NULL; 3699 3700 return pl; 3701 } 3702 3703 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3704 { 3705 unsigned int i; 3706 3707 for (i = 0; i < ic->journal_sections; i++) 3708 kvfree(sl[i]); 3709 kvfree(sl); 3710 } 3711 3712 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3713 struct page_list *pl) 3714 { 3715 struct scatterlist **sl; 3716 unsigned int i; 3717 3718 sl = kvmalloc_array(ic->journal_sections, 3719 sizeof(struct scatterlist *), 3720 GFP_KERNEL | __GFP_ZERO); 3721 if (!sl) 3722 return NULL; 3723 3724 for (i = 0; i < ic->journal_sections; i++) { 3725 struct scatterlist *s; 3726 unsigned int start_index, start_offset; 3727 unsigned int end_index, end_offset; 3728 unsigned int n_pages; 3729 unsigned int idx; 3730 3731 page_list_location(ic, i, 0, &start_index, &start_offset); 3732 page_list_location(ic, i, ic->journal_section_sectors - 1, 3733 &end_index, &end_offset); 3734 3735 n_pages = (end_index - start_index + 1); 3736 3737 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3738 GFP_KERNEL); 3739 if (!s) { 3740 dm_integrity_free_journal_scatterlist(ic, sl); 3741 return NULL; 3742 } 3743 3744 sg_init_table(s, n_pages); 3745 for (idx = start_index; idx <= end_index; idx++) { 3746 char *va = lowmem_page_address(pl[idx].page); 3747 unsigned int start = 0, end = PAGE_SIZE; 3748 3749 if (idx == start_index) 3750 start = start_offset; 3751 if (idx == end_index) 3752 end = end_offset + (1 << SECTOR_SHIFT); 3753 sg_set_buf(&s[idx - start_index], va + start, end - start); 3754 } 3755 3756 sl[i] = s; 3757 } 3758 3759 return sl; 3760 } 3761 3762 static void free_alg(struct alg_spec *a) 3763 { 3764 kfree_sensitive(a->alg_string); 3765 kfree_sensitive(a->key); 3766 memset(a, 0, sizeof(*a)); 3767 } 3768 3769 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3770 { 3771 char *k; 3772 3773 free_alg(a); 3774 3775 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3776 if (!a->alg_string) 3777 goto nomem; 3778 3779 k = strchr(a->alg_string, ':'); 3780 if (k) { 3781 *k = 0; 3782 a->key_string = k + 1; 3783 if (strlen(a->key_string) & 1) 3784 goto inval; 3785 3786 a->key_size = strlen(a->key_string) / 2; 3787 a->key = kmalloc(a->key_size, GFP_KERNEL); 3788 if (!a->key) 3789 goto nomem; 3790 if (hex2bin(a->key, a->key_string, a->key_size)) 3791 goto inval; 3792 } 3793 3794 return 0; 3795 inval: 3796 *error = error_inval; 3797 return -EINVAL; 3798 nomem: 3799 *error = "Out of memory for an argument"; 3800 return -ENOMEM; 3801 } 3802 3803 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3804 char *error_alg, char *error_key) 3805 { 3806 int r; 3807 3808 if (a->alg_string) { 3809 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3810 if (IS_ERR(*hash)) { 3811 *error = error_alg; 3812 r = PTR_ERR(*hash); 3813 *hash = NULL; 3814 return r; 3815 } 3816 3817 if (a->key) { 3818 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3819 if (r) { 3820 *error = error_key; 3821 return r; 3822 } 3823 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3824 *error = error_key; 3825 return -ENOKEY; 3826 } 3827 } 3828 3829 return 0; 3830 } 3831 3832 static int create_journal(struct dm_integrity_c *ic, char **error) 3833 { 3834 int r = 0; 3835 unsigned int i; 3836 __u64 journal_pages, journal_desc_size, journal_tree_size; 3837 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3838 struct skcipher_request *req = NULL; 3839 3840 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3841 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3842 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3843 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3844 3845 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3846 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3847 journal_desc_size = journal_pages * sizeof(struct page_list); 3848 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3849 *error = "Journal doesn't fit into memory"; 3850 r = -ENOMEM; 3851 goto bad; 3852 } 3853 ic->journal_pages = journal_pages; 3854 3855 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3856 if (!ic->journal) { 3857 *error = "Could not allocate memory for journal"; 3858 r = -ENOMEM; 3859 goto bad; 3860 } 3861 if (ic->journal_crypt_alg.alg_string) { 3862 unsigned int ivsize, blocksize; 3863 struct journal_completion comp; 3864 3865 comp.ic = ic; 3866 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3867 if (IS_ERR(ic->journal_crypt)) { 3868 *error = "Invalid journal cipher"; 3869 r = PTR_ERR(ic->journal_crypt); 3870 ic->journal_crypt = NULL; 3871 goto bad; 3872 } 3873 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3874 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3875 3876 if (ic->journal_crypt_alg.key) { 3877 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3878 ic->journal_crypt_alg.key_size); 3879 if (r) { 3880 *error = "Error setting encryption key"; 3881 goto bad; 3882 } 3883 } 3884 DEBUG_print("cipher %s, block size %u iv size %u\n", 3885 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3886 3887 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3888 if (!ic->journal_io) { 3889 *error = "Could not allocate memory for journal io"; 3890 r = -ENOMEM; 3891 goto bad; 3892 } 3893 3894 if (blocksize == 1) { 3895 struct scatterlist *sg; 3896 3897 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3898 if (!req) { 3899 *error = "Could not allocate crypt request"; 3900 r = -ENOMEM; 3901 goto bad; 3902 } 3903 3904 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3905 if (!crypt_iv) { 3906 *error = "Could not allocate iv"; 3907 r = -ENOMEM; 3908 goto bad; 3909 } 3910 3911 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3912 if (!ic->journal_xor) { 3913 *error = "Could not allocate memory for journal xor"; 3914 r = -ENOMEM; 3915 goto bad; 3916 } 3917 3918 sg = kvmalloc_array(ic->journal_pages + 1, 3919 sizeof(struct scatterlist), 3920 GFP_KERNEL); 3921 if (!sg) { 3922 *error = "Unable to allocate sg list"; 3923 r = -ENOMEM; 3924 goto bad; 3925 } 3926 sg_init_table(sg, ic->journal_pages + 1); 3927 for (i = 0; i < ic->journal_pages; i++) { 3928 char *va = lowmem_page_address(ic->journal_xor[i].page); 3929 3930 clear_page(va); 3931 sg_set_buf(&sg[i], va, PAGE_SIZE); 3932 } 3933 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids)); 3934 3935 skcipher_request_set_crypt(req, sg, sg, 3936 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv); 3937 init_completion(&comp.comp); 3938 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3939 if (do_crypt(true, req, &comp)) 3940 wait_for_completion(&comp.comp); 3941 kvfree(sg); 3942 r = dm_integrity_failed(ic); 3943 if (r) { 3944 *error = "Unable to encrypt journal"; 3945 goto bad; 3946 } 3947 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3948 3949 crypto_free_skcipher(ic->journal_crypt); 3950 ic->journal_crypt = NULL; 3951 } else { 3952 unsigned int crypt_len = roundup(ivsize, blocksize); 3953 3954 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3955 if (!req) { 3956 *error = "Could not allocate crypt request"; 3957 r = -ENOMEM; 3958 goto bad; 3959 } 3960 3961 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3962 if (!crypt_iv) { 3963 *error = "Could not allocate iv"; 3964 r = -ENOMEM; 3965 goto bad; 3966 } 3967 3968 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3969 if (!crypt_data) { 3970 *error = "Unable to allocate crypt data"; 3971 r = -ENOMEM; 3972 goto bad; 3973 } 3974 3975 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3976 if (!ic->journal_scatterlist) { 3977 *error = "Unable to allocate sg list"; 3978 r = -ENOMEM; 3979 goto bad; 3980 } 3981 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3982 if (!ic->journal_io_scatterlist) { 3983 *error = "Unable to allocate sg list"; 3984 r = -ENOMEM; 3985 goto bad; 3986 } 3987 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3988 sizeof(struct skcipher_request *), 3989 GFP_KERNEL | __GFP_ZERO); 3990 if (!ic->sk_requests) { 3991 *error = "Unable to allocate sk requests"; 3992 r = -ENOMEM; 3993 goto bad; 3994 } 3995 for (i = 0; i < ic->journal_sections; i++) { 3996 struct scatterlist sg; 3997 struct skcipher_request *section_req; 3998 __le32 section_le = cpu_to_le32(i); 3999 4000 memset(crypt_iv, 0x00, ivsize); 4001 memset(crypt_data, 0x00, crypt_len); 4002 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le))); 4003 4004 sg_init_one(&sg, crypt_data, crypt_len); 4005 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 4006 init_completion(&comp.comp); 4007 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 4008 if (do_crypt(true, req, &comp)) 4009 wait_for_completion(&comp.comp); 4010 4011 r = dm_integrity_failed(ic); 4012 if (r) { 4013 *error = "Unable to generate iv"; 4014 goto bad; 4015 } 4016 4017 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 4018 if (!section_req) { 4019 *error = "Unable to allocate crypt request"; 4020 r = -ENOMEM; 4021 goto bad; 4022 } 4023 section_req->iv = kmalloc_array(ivsize, 2, 4024 GFP_KERNEL); 4025 if (!section_req->iv) { 4026 skcipher_request_free(section_req); 4027 *error = "Unable to allocate iv"; 4028 r = -ENOMEM; 4029 goto bad; 4030 } 4031 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 4032 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 4033 ic->sk_requests[i] = section_req; 4034 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 4035 } 4036 } 4037 } 4038 4039 for (i = 0; i < N_COMMIT_IDS; i++) { 4040 unsigned int j; 4041 4042 retest_commit_id: 4043 for (j = 0; j < i; j++) { 4044 if (ic->commit_ids[j] == ic->commit_ids[i]) { 4045 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 4046 goto retest_commit_id; 4047 } 4048 } 4049 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 4050 } 4051 4052 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 4053 if (journal_tree_size > ULONG_MAX) { 4054 *error = "Journal doesn't fit into memory"; 4055 r = -ENOMEM; 4056 goto bad; 4057 } 4058 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 4059 if (!ic->journal_tree) { 4060 *error = "Could not allocate memory for journal tree"; 4061 r = -ENOMEM; 4062 } 4063 bad: 4064 kfree(crypt_data); 4065 kfree(crypt_iv); 4066 skcipher_request_free(req); 4067 4068 return r; 4069 } 4070 4071 /* 4072 * Construct a integrity mapping 4073 * 4074 * Arguments: 4075 * device 4076 * offset from the start of the device 4077 * tag size 4078 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 4079 * number of optional arguments 4080 * optional arguments: 4081 * journal_sectors 4082 * interleave_sectors 4083 * buffer_sectors 4084 * journal_watermark 4085 * commit_time 4086 * meta_device 4087 * block_size 4088 * sectors_per_bit 4089 * bitmap_flush_interval 4090 * internal_hash 4091 * journal_crypt 4092 * journal_mac 4093 * recalculate 4094 */ 4095 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4096 { 4097 struct dm_integrity_c *ic; 4098 char dummy; 4099 int r; 4100 unsigned int extra_args; 4101 struct dm_arg_set as; 4102 static const struct dm_arg _args[] = { 4103 {0, 18, "Invalid number of feature args"}, 4104 }; 4105 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 4106 bool should_write_sb; 4107 __u64 threshold; 4108 unsigned long long start; 4109 __s8 log2_sectors_per_bitmap_bit = -1; 4110 __s8 log2_blocks_per_bitmap_bit; 4111 __u64 bits_in_journal; 4112 __u64 n_bitmap_bits; 4113 4114 #define DIRECT_ARGUMENTS 4 4115 4116 if (argc <= DIRECT_ARGUMENTS) { 4117 ti->error = "Invalid argument count"; 4118 return -EINVAL; 4119 } 4120 4121 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 4122 if (!ic) { 4123 ti->error = "Cannot allocate integrity context"; 4124 return -ENOMEM; 4125 } 4126 ti->private = ic; 4127 ti->per_io_data_size = sizeof(struct dm_integrity_io); 4128 ic->ti = ti; 4129 4130 ic->in_progress = RB_ROOT; 4131 INIT_LIST_HEAD(&ic->wait_list); 4132 init_waitqueue_head(&ic->endio_wait); 4133 bio_list_init(&ic->flush_bio_list); 4134 init_waitqueue_head(&ic->copy_to_journal_wait); 4135 init_completion(&ic->crypto_backoff); 4136 atomic64_set(&ic->number_of_mismatches, 0); 4137 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 4138 4139 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 4140 if (r) { 4141 ti->error = "Device lookup failed"; 4142 goto bad; 4143 } 4144 4145 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 4146 ti->error = "Invalid starting offset"; 4147 r = -EINVAL; 4148 goto bad; 4149 } 4150 ic->start = start; 4151 4152 if (strcmp(argv[2], "-")) { 4153 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 4154 ti->error = "Invalid tag size"; 4155 r = -EINVAL; 4156 goto bad; 4157 } 4158 } 4159 4160 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 4161 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 4162 ic->mode = argv[3][0]; 4163 } else { 4164 ti->error = "Invalid mode (expecting J, B, D, R)"; 4165 r = -EINVAL; 4166 goto bad; 4167 } 4168 4169 journal_sectors = 0; 4170 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4171 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4172 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4173 sync_msec = DEFAULT_SYNC_MSEC; 4174 ic->sectors_per_block = 1; 4175 4176 as.argc = argc - DIRECT_ARGUMENTS; 4177 as.argv = argv + DIRECT_ARGUMENTS; 4178 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4179 if (r) 4180 goto bad; 4181 4182 while (extra_args--) { 4183 const char *opt_string; 4184 unsigned int val; 4185 unsigned long long llval; 4186 4187 opt_string = dm_shift_arg(&as); 4188 if (!opt_string) { 4189 r = -EINVAL; 4190 ti->error = "Not enough feature arguments"; 4191 goto bad; 4192 } 4193 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4194 journal_sectors = val ? val : 1; 4195 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4196 interleave_sectors = val; 4197 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4198 buffer_sectors = val; 4199 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4200 journal_watermark = val; 4201 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4202 sync_msec = val; 4203 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4204 if (ic->meta_dev) { 4205 dm_put_device(ti, ic->meta_dev); 4206 ic->meta_dev = NULL; 4207 } 4208 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4209 dm_table_get_mode(ti->table), &ic->meta_dev); 4210 if (r) { 4211 ti->error = "Device lookup failed"; 4212 goto bad; 4213 } 4214 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4215 if (val < 1 << SECTOR_SHIFT || 4216 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4217 (val & (val - 1))) { 4218 r = -EINVAL; 4219 ti->error = "Invalid block_size argument"; 4220 goto bad; 4221 } 4222 ic->sectors_per_block = val >> SECTOR_SHIFT; 4223 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4224 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4225 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4226 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4227 r = -EINVAL; 4228 ti->error = "Invalid bitmap_flush_interval argument"; 4229 goto bad; 4230 } 4231 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4232 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4233 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4234 "Invalid internal_hash argument"); 4235 if (r) 4236 goto bad; 4237 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4238 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4239 "Invalid journal_crypt argument"); 4240 if (r) 4241 goto bad; 4242 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4243 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4244 "Invalid journal_mac argument"); 4245 if (r) 4246 goto bad; 4247 } else if (!strcmp(opt_string, "recalculate")) { 4248 ic->recalculate_flag = true; 4249 } else if (!strcmp(opt_string, "reset_recalculate")) { 4250 ic->recalculate_flag = true; 4251 ic->reset_recalculate_flag = true; 4252 } else if (!strcmp(opt_string, "allow_discards")) { 4253 ic->discard = true; 4254 } else if (!strcmp(opt_string, "fix_padding")) { 4255 ic->fix_padding = true; 4256 } else if (!strcmp(opt_string, "fix_hmac")) { 4257 ic->fix_hmac = true; 4258 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4259 ic->legacy_recalculate = true; 4260 } else { 4261 r = -EINVAL; 4262 ti->error = "Invalid argument"; 4263 goto bad; 4264 } 4265 } 4266 4267 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev); 4268 if (!ic->meta_dev) 4269 ic->meta_device_sectors = ic->data_device_sectors; 4270 else 4271 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev); 4272 4273 if (!journal_sectors) { 4274 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4275 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4276 } 4277 4278 if (!buffer_sectors) 4279 buffer_sectors = 1; 4280 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4281 4282 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4283 "Invalid internal hash", "Error setting internal hash key"); 4284 if (r) 4285 goto bad; 4286 4287 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4288 "Invalid journal mac", "Error setting journal mac key"); 4289 if (r) 4290 goto bad; 4291 4292 if (!ic->tag_size) { 4293 if (!ic->internal_hash) { 4294 ti->error = "Unknown tag size"; 4295 r = -EINVAL; 4296 goto bad; 4297 } 4298 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4299 } 4300 if (ic->tag_size > MAX_TAG_SIZE) { 4301 ti->error = "Too big tag size"; 4302 r = -EINVAL; 4303 goto bad; 4304 } 4305 if (!(ic->tag_size & (ic->tag_size - 1))) 4306 ic->log2_tag_size = __ffs(ic->tag_size); 4307 else 4308 ic->log2_tag_size = -1; 4309 4310 if (ic->mode == 'B' && !ic->internal_hash) { 4311 r = -EINVAL; 4312 ti->error = "Bitmap mode can be only used with internal hash"; 4313 goto bad; 4314 } 4315 4316 if (ic->discard && !ic->internal_hash) { 4317 r = -EINVAL; 4318 ti->error = "Discard can be only used with internal hash"; 4319 goto bad; 4320 } 4321 4322 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4323 ic->autocommit_msec = sync_msec; 4324 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4325 4326 ic->io = dm_io_client_create(); 4327 if (IS_ERR(ic->io)) { 4328 r = PTR_ERR(ic->io); 4329 ic->io = NULL; 4330 ti->error = "Cannot allocate dm io"; 4331 goto bad; 4332 } 4333 4334 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4335 if (r) { 4336 ti->error = "Cannot allocate mempool"; 4337 goto bad; 4338 } 4339 4340 r = mempool_init_page_pool(&ic->recheck_pool, 1, 0); 4341 if (r) { 4342 ti->error = "Cannot allocate mempool"; 4343 goto bad; 4344 } 4345 4346 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4347 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4348 if (!ic->metadata_wq) { 4349 ti->error = "Cannot allocate workqueue"; 4350 r = -ENOMEM; 4351 goto bad; 4352 } 4353 4354 /* 4355 * If this workqueue weren't ordered, it would cause bio reordering 4356 * and reduced performance. 4357 */ 4358 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM); 4359 if (!ic->wait_wq) { 4360 ti->error = "Cannot allocate workqueue"; 4361 r = -ENOMEM; 4362 goto bad; 4363 } 4364 4365 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4366 METADATA_WORKQUEUE_MAX_ACTIVE); 4367 if (!ic->offload_wq) { 4368 ti->error = "Cannot allocate workqueue"; 4369 r = -ENOMEM; 4370 goto bad; 4371 } 4372 4373 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4374 if (!ic->commit_wq) { 4375 ti->error = "Cannot allocate workqueue"; 4376 r = -ENOMEM; 4377 goto bad; 4378 } 4379 INIT_WORK(&ic->commit_work, integrity_commit); 4380 4381 if (ic->mode == 'J' || ic->mode == 'B') { 4382 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4383 if (!ic->writer_wq) { 4384 ti->error = "Cannot allocate workqueue"; 4385 r = -ENOMEM; 4386 goto bad; 4387 } 4388 INIT_WORK(&ic->writer_work, integrity_writer); 4389 } 4390 4391 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4392 if (!ic->sb) { 4393 r = -ENOMEM; 4394 ti->error = "Cannot allocate superblock area"; 4395 goto bad; 4396 } 4397 4398 r = sync_rw_sb(ic, REQ_OP_READ); 4399 if (r) { 4400 ti->error = "Error reading superblock"; 4401 goto bad; 4402 } 4403 should_write_sb = false; 4404 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4405 if (ic->mode != 'R') { 4406 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4407 r = -EINVAL; 4408 ti->error = "The device is not initialized"; 4409 goto bad; 4410 } 4411 } 4412 4413 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4414 if (r) { 4415 ti->error = "Could not initialize superblock"; 4416 goto bad; 4417 } 4418 if (ic->mode != 'R') 4419 should_write_sb = true; 4420 } 4421 4422 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) { 4423 r = -EINVAL; 4424 ti->error = "Unknown version"; 4425 goto bad; 4426 } 4427 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4428 r = -EINVAL; 4429 ti->error = "Tag size doesn't match the information in superblock"; 4430 goto bad; 4431 } 4432 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4433 r = -EINVAL; 4434 ti->error = "Block size doesn't match the information in superblock"; 4435 goto bad; 4436 } 4437 if (!le32_to_cpu(ic->sb->journal_sections)) { 4438 r = -EINVAL; 4439 ti->error = "Corrupted superblock, journal_sections is 0"; 4440 goto bad; 4441 } 4442 /* make sure that ti->max_io_len doesn't overflow */ 4443 if (!ic->meta_dev) { 4444 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4445 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4446 r = -EINVAL; 4447 ti->error = "Invalid interleave_sectors in the superblock"; 4448 goto bad; 4449 } 4450 } else { 4451 if (ic->sb->log2_interleave_sectors) { 4452 r = -EINVAL; 4453 ti->error = "Invalid interleave_sectors in the superblock"; 4454 goto bad; 4455 } 4456 } 4457 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4458 r = -EINVAL; 4459 ti->error = "Journal mac mismatch"; 4460 goto bad; 4461 } 4462 4463 get_provided_data_sectors(ic); 4464 if (!ic->provided_data_sectors) { 4465 r = -EINVAL; 4466 ti->error = "The device is too small"; 4467 goto bad; 4468 } 4469 4470 try_smaller_buffer: 4471 r = calculate_device_limits(ic); 4472 if (r) { 4473 if (ic->meta_dev) { 4474 if (ic->log2_buffer_sectors > 3) { 4475 ic->log2_buffer_sectors--; 4476 goto try_smaller_buffer; 4477 } 4478 } 4479 ti->error = "The device is too small"; 4480 goto bad; 4481 } 4482 4483 if (log2_sectors_per_bitmap_bit < 0) 4484 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4485 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4486 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4487 4488 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4489 if (bits_in_journal > UINT_MAX) 4490 bits_in_journal = UINT_MAX; 4491 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4492 log2_sectors_per_bitmap_bit++; 4493 4494 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4495 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4496 if (should_write_sb) 4497 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4498 4499 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4500 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4501 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4502 4503 if (!ic->meta_dev) 4504 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4505 4506 if (ti->len > ic->provided_data_sectors) { 4507 r = -EINVAL; 4508 ti->error = "Not enough provided sectors for requested mapping size"; 4509 goto bad; 4510 } 4511 4512 4513 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4514 threshold += 50; 4515 do_div(threshold, 100); 4516 ic->free_sectors_threshold = threshold; 4517 4518 DEBUG_print("initialized:\n"); 4519 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4520 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4521 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4522 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4523 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4524 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections)); 4525 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4526 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4527 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev)); 4528 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4529 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4530 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4531 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4532 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4533 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4534 4535 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4536 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4537 ic->sb->recalc_sector = cpu_to_le64(0); 4538 } 4539 4540 if (ic->internal_hash) { 4541 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4542 if (!ic->recalc_wq) { 4543 ti->error = "Cannot allocate workqueue"; 4544 r = -ENOMEM; 4545 goto bad; 4546 } 4547 INIT_WORK(&ic->recalc_work, integrity_recalc); 4548 } else { 4549 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 4550 ti->error = "Recalculate can only be specified with internal_hash"; 4551 r = -EINVAL; 4552 goto bad; 4553 } 4554 } 4555 4556 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 4557 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 4558 dm_integrity_disable_recalculate(ic)) { 4559 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 4560 r = -EOPNOTSUPP; 4561 goto bad; 4562 } 4563 4564 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4565 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0); 4566 if (IS_ERR(ic->bufio)) { 4567 r = PTR_ERR(ic->bufio); 4568 ti->error = "Cannot initialize dm-bufio"; 4569 ic->bufio = NULL; 4570 goto bad; 4571 } 4572 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4573 4574 if (ic->mode != 'R') { 4575 r = create_journal(ic, &ti->error); 4576 if (r) 4577 goto bad; 4578 4579 } 4580 4581 if (ic->mode == 'B') { 4582 unsigned int i; 4583 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4584 4585 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4586 if (!ic->recalc_bitmap) { 4587 r = -ENOMEM; 4588 goto bad; 4589 } 4590 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4591 if (!ic->may_write_bitmap) { 4592 r = -ENOMEM; 4593 goto bad; 4594 } 4595 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4596 if (!ic->bbs) { 4597 r = -ENOMEM; 4598 goto bad; 4599 } 4600 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4601 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4602 struct bitmap_block_status *bbs = &ic->bbs[i]; 4603 unsigned int sector, pl_index, pl_offset; 4604 4605 INIT_WORK(&bbs->work, bitmap_block_work); 4606 bbs->ic = ic; 4607 bbs->idx = i; 4608 bio_list_init(&bbs->bio_queue); 4609 spin_lock_init(&bbs->bio_queue_lock); 4610 4611 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4612 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4613 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4614 4615 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4616 } 4617 } 4618 4619 if (should_write_sb) { 4620 init_journal(ic, 0, ic->journal_sections, 0); 4621 r = dm_integrity_failed(ic); 4622 if (unlikely(r)) { 4623 ti->error = "Error initializing journal"; 4624 goto bad; 4625 } 4626 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 4627 if (r) { 4628 ti->error = "Error initializing superblock"; 4629 goto bad; 4630 } 4631 ic->just_formatted = true; 4632 } 4633 4634 if (!ic->meta_dev) { 4635 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4636 if (r) 4637 goto bad; 4638 } 4639 if (ic->mode == 'B') { 4640 unsigned int max_io_len; 4641 4642 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4643 if (!max_io_len) 4644 max_io_len = 1U << 31; 4645 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4646 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4647 r = dm_set_target_max_io_len(ti, max_io_len); 4648 if (r) 4649 goto bad; 4650 } 4651 } 4652 4653 if (!ic->internal_hash) 4654 dm_integrity_set(ti, ic); 4655 4656 ti->num_flush_bios = 1; 4657 ti->flush_supported = true; 4658 if (ic->discard) 4659 ti->num_discard_bios = 1; 4660 4661 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 4662 return 0; 4663 4664 bad: 4665 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 4666 dm_integrity_dtr(ti); 4667 return r; 4668 } 4669 4670 static void dm_integrity_dtr(struct dm_target *ti) 4671 { 4672 struct dm_integrity_c *ic = ti->private; 4673 4674 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4675 BUG_ON(!list_empty(&ic->wait_list)); 4676 4677 if (ic->mode == 'B') 4678 cancel_delayed_work_sync(&ic->bitmap_flush_work); 4679 if (ic->metadata_wq) 4680 destroy_workqueue(ic->metadata_wq); 4681 if (ic->wait_wq) 4682 destroy_workqueue(ic->wait_wq); 4683 if (ic->offload_wq) 4684 destroy_workqueue(ic->offload_wq); 4685 if (ic->commit_wq) 4686 destroy_workqueue(ic->commit_wq); 4687 if (ic->writer_wq) 4688 destroy_workqueue(ic->writer_wq); 4689 if (ic->recalc_wq) 4690 destroy_workqueue(ic->recalc_wq); 4691 kvfree(ic->bbs); 4692 if (ic->bufio) 4693 dm_bufio_client_destroy(ic->bufio); 4694 mempool_exit(&ic->recheck_pool); 4695 mempool_exit(&ic->journal_io_mempool); 4696 if (ic->io) 4697 dm_io_client_destroy(ic->io); 4698 if (ic->dev) 4699 dm_put_device(ti, ic->dev); 4700 if (ic->meta_dev) 4701 dm_put_device(ti, ic->meta_dev); 4702 dm_integrity_free_page_list(ic->journal); 4703 dm_integrity_free_page_list(ic->journal_io); 4704 dm_integrity_free_page_list(ic->journal_xor); 4705 dm_integrity_free_page_list(ic->recalc_bitmap); 4706 dm_integrity_free_page_list(ic->may_write_bitmap); 4707 if (ic->journal_scatterlist) 4708 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4709 if (ic->journal_io_scatterlist) 4710 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4711 if (ic->sk_requests) { 4712 unsigned int i; 4713 4714 for (i = 0; i < ic->journal_sections; i++) { 4715 struct skcipher_request *req; 4716 4717 req = ic->sk_requests[i]; 4718 if (req) { 4719 kfree_sensitive(req->iv); 4720 skcipher_request_free(req); 4721 } 4722 } 4723 kvfree(ic->sk_requests); 4724 } 4725 kvfree(ic->journal_tree); 4726 if (ic->sb) 4727 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4728 4729 if (ic->internal_hash) 4730 crypto_free_shash(ic->internal_hash); 4731 free_alg(&ic->internal_hash_alg); 4732 4733 if (ic->journal_crypt) 4734 crypto_free_skcipher(ic->journal_crypt); 4735 free_alg(&ic->journal_crypt_alg); 4736 4737 if (ic->journal_mac) 4738 crypto_free_shash(ic->journal_mac); 4739 free_alg(&ic->journal_mac_alg); 4740 4741 kfree(ic); 4742 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 4743 } 4744 4745 static struct target_type integrity_target = { 4746 .name = "integrity", 4747 .version = {1, 10, 0}, 4748 .module = THIS_MODULE, 4749 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4750 .ctr = dm_integrity_ctr, 4751 .dtr = dm_integrity_dtr, 4752 .map = dm_integrity_map, 4753 .postsuspend = dm_integrity_postsuspend, 4754 .resume = dm_integrity_resume, 4755 .status = dm_integrity_status, 4756 .iterate_devices = dm_integrity_iterate_devices, 4757 .io_hints = dm_integrity_io_hints, 4758 }; 4759 4760 static int __init dm_integrity_init(void) 4761 { 4762 int r; 4763 4764 journal_io_cache = kmem_cache_create("integrity_journal_io", 4765 sizeof(struct journal_io), 0, 0, NULL); 4766 if (!journal_io_cache) { 4767 DMERR("can't allocate journal io cache"); 4768 return -ENOMEM; 4769 } 4770 4771 r = dm_register_target(&integrity_target); 4772 if (r < 0) { 4773 kmem_cache_destroy(journal_io_cache); 4774 return r; 4775 } 4776 4777 return 0; 4778 } 4779 4780 static void __exit dm_integrity_exit(void) 4781 { 4782 dm_unregister_target(&integrity_target); 4783 kmem_cache_destroy(journal_io_cache); 4784 } 4785 4786 module_init(dm_integrity_init); 4787 module_exit(dm_integrity_exit); 4788 4789 MODULE_AUTHOR("Milan Broz"); 4790 MODULE_AUTHOR("Mikulas Patocka"); 4791 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4792 MODULE_LICENSE("GPL"); 4793