xref: /openbmc/linux/drivers/md/dm-integrity.c (revision 25ebbc57ca56df3cf9149e9da6b1d3169c8487db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26 
27 #include "dm-audit.h"
28 
29 #define DM_MSG_PREFIX "integrity"
30 
31 #define DEFAULT_INTERLEAVE_SECTORS	32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34 #define DEFAULT_BUFFER_SECTORS		128
35 #define DEFAULT_JOURNAL_WATERMARK	50
36 #define DEFAULT_SYNC_MSEC		10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
38 #define MIN_LOG2_INTERLEAVE_SECTORS	3
39 #define MAX_LOG2_INTERLEAVE_SECTORS	31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
41 #define RECALC_SECTORS			32768
42 #define RECALC_WRITE_SUPER		16
43 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45 #define DISCARD_FILLER			0xf6
46 #define SALT_SIZE			16
47 
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54 
55 /*
56  * On disk structures
57  */
58 
59 #define SB_MAGIC			"integrt"
60 #define SB_VERSION_1			1
61 #define SB_VERSION_2			2
62 #define SB_VERSION_3			3
63 #define SB_VERSION_4			4
64 #define SB_VERSION_5			5
65 #define SB_SECTORS			8
66 #define MAX_SECTORS_PER_BLOCK		8
67 
68 struct superblock {
69 	__u8 magic[8];
70 	__u8 version;
71 	__u8 log2_interleave_sectors;
72 	__le16 integrity_tag_size;
73 	__le32 journal_sections;
74 	__le64 provided_data_sectors;	/* userspace uses this value */
75 	__le32 flags;
76 	__u8 log2_sectors_per_block;
77 	__u8 log2_blocks_per_bitmap_bit;
78 	__u8 pad[2];
79 	__le64 recalc_sector;
80 	__u8 pad2[8];
81 	__u8 salt[SALT_SIZE];
82 };
83 
84 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
85 #define SB_FLAG_RECALCULATING		0x2
86 #define SB_FLAG_DIRTY_BITMAP		0x4
87 #define SB_FLAG_FIXED_PADDING		0x8
88 #define SB_FLAG_FIXED_HMAC		0x10
89 
90 #define	JOURNAL_ENTRY_ROUNDUP		8
91 
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR		8
94 
95 struct journal_entry {
96 	union {
97 		struct {
98 			__le32 sector_lo;
99 			__le32 sector_hi;
100 		} s;
101 		__le64 sector;
102 	} u;
103 	commit_id_t last_bytes[];
104 	/* __u8 tag[0]; */
105 };
106 
107 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108 
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
119 
120 #define JOURNAL_BLOCK_SECTORS		8
121 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123 
124 struct journal_sector {
125 	struct_group(sectors,
126 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
128 	);
129 	commit_id_t commit_id;
130 };
131 
132 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133 
134 #define METADATA_PADDING_SECTORS	8
135 
136 #define N_COMMIT_IDS			4
137 
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142 
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145 	return (seq + 1) % N_COMMIT_IDS;
146 }
147 
148 /*
149  * In-memory structures
150  */
151 
152 struct journal_node {
153 	struct rb_node node;
154 	sector_t sector;
155 };
156 
157 struct alg_spec {
158 	char *alg_string;
159 	char *key_string;
160 	__u8 *key;
161 	unsigned int key_size;
162 };
163 
164 struct dm_integrity_c {
165 	struct dm_dev *dev;
166 	struct dm_dev *meta_dev;
167 	unsigned int tag_size;
168 	__s8 log2_tag_size;
169 	sector_t start;
170 	mempool_t journal_io_mempool;
171 	struct dm_io_client *io;
172 	struct dm_bufio_client *bufio;
173 	struct workqueue_struct *metadata_wq;
174 	struct superblock *sb;
175 	unsigned int journal_pages;
176 	unsigned int n_bitmap_blocks;
177 
178 	struct page_list *journal;
179 	struct page_list *journal_io;
180 	struct page_list *journal_xor;
181 	struct page_list *recalc_bitmap;
182 	struct page_list *may_write_bitmap;
183 	struct bitmap_block_status *bbs;
184 	unsigned int bitmap_flush_interval;
185 	int synchronous_mode;
186 	struct bio_list synchronous_bios;
187 	struct delayed_work bitmap_flush_work;
188 
189 	struct crypto_skcipher *journal_crypt;
190 	struct scatterlist **journal_scatterlist;
191 	struct scatterlist **journal_io_scatterlist;
192 	struct skcipher_request **sk_requests;
193 
194 	struct crypto_shash *journal_mac;
195 
196 	struct journal_node *journal_tree;
197 	struct rb_root journal_tree_root;
198 
199 	sector_t provided_data_sectors;
200 
201 	unsigned short journal_entry_size;
202 	unsigned char journal_entries_per_sector;
203 	unsigned char journal_section_entries;
204 	unsigned short journal_section_sectors;
205 	unsigned int journal_sections;
206 	unsigned int journal_entries;
207 	sector_t data_device_sectors;
208 	sector_t meta_device_sectors;
209 	unsigned int initial_sectors;
210 	unsigned int metadata_run;
211 	__s8 log2_metadata_run;
212 	__u8 log2_buffer_sectors;
213 	__u8 sectors_per_block;
214 	__u8 log2_blocks_per_bitmap_bit;
215 
216 	unsigned char mode;
217 
218 	int failed;
219 
220 	struct crypto_shash *internal_hash;
221 
222 	struct dm_target *ti;
223 
224 	/* these variables are locked with endio_wait.lock */
225 	struct rb_root in_progress;
226 	struct list_head wait_list;
227 	wait_queue_head_t endio_wait;
228 	struct workqueue_struct *wait_wq;
229 	struct workqueue_struct *offload_wq;
230 
231 	unsigned char commit_seq;
232 	commit_id_t commit_ids[N_COMMIT_IDS];
233 
234 	unsigned int committed_section;
235 	unsigned int n_committed_sections;
236 
237 	unsigned int uncommitted_section;
238 	unsigned int n_uncommitted_sections;
239 
240 	unsigned int free_section;
241 	unsigned char free_section_entry;
242 	unsigned int free_sectors;
243 
244 	unsigned int free_sectors_threshold;
245 
246 	struct workqueue_struct *commit_wq;
247 	struct work_struct commit_work;
248 
249 	struct workqueue_struct *writer_wq;
250 	struct work_struct writer_work;
251 
252 	struct workqueue_struct *recalc_wq;
253 	struct work_struct recalc_work;
254 	u8 *recalc_buffer;
255 	u8 *recalc_tags;
256 
257 	struct bio_list flush_bio_list;
258 
259 	unsigned long autocommit_jiffies;
260 	struct timer_list autocommit_timer;
261 	unsigned int autocommit_msec;
262 
263 	wait_queue_head_t copy_to_journal_wait;
264 
265 	struct completion crypto_backoff;
266 
267 	bool wrote_to_journal;
268 	bool journal_uptodate;
269 	bool just_formatted;
270 	bool recalculate_flag;
271 	bool reset_recalculate_flag;
272 	bool discard;
273 	bool fix_padding;
274 	bool fix_hmac;
275 	bool legacy_recalculate;
276 
277 	struct alg_spec internal_hash_alg;
278 	struct alg_spec journal_crypt_alg;
279 	struct alg_spec journal_mac_alg;
280 
281 	atomic64_t number_of_mismatches;
282 
283 	struct notifier_block reboot_notifier;
284 };
285 
286 struct dm_integrity_range {
287 	sector_t logical_sector;
288 	sector_t n_sectors;
289 	bool waiting;
290 	union {
291 		struct rb_node node;
292 		struct {
293 			struct task_struct *task;
294 			struct list_head wait_entry;
295 		};
296 	};
297 };
298 
299 struct dm_integrity_io {
300 	struct work_struct work;
301 
302 	struct dm_integrity_c *ic;
303 	enum req_op op;
304 	bool fua;
305 
306 	struct dm_integrity_range range;
307 
308 	sector_t metadata_block;
309 	unsigned int metadata_offset;
310 
311 	atomic_t in_flight;
312 	blk_status_t bi_status;
313 
314 	struct completion *completion;
315 
316 	struct dm_bio_details bio_details;
317 };
318 
319 struct journal_completion {
320 	struct dm_integrity_c *ic;
321 	atomic_t in_flight;
322 	struct completion comp;
323 };
324 
325 struct journal_io {
326 	struct dm_integrity_range range;
327 	struct journal_completion *comp;
328 };
329 
330 struct bitmap_block_status {
331 	struct work_struct work;
332 	struct dm_integrity_c *ic;
333 	unsigned int idx;
334 	unsigned long *bitmap;
335 	struct bio_list bio_queue;
336 	spinlock_t bio_queue_lock;
337 
338 };
339 
340 static struct kmem_cache *journal_io_cache;
341 
342 #define JOURNAL_IO_MEMPOOL	32
343 
344 #ifdef DEBUG_PRINT
345 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
346 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
347 {
348 	va_list args;
349 
350 	va_start(args, msg);
351 	vprintk(msg, args);
352 	va_end(args);
353 	if (len)
354 		pr_cont(":");
355 	while (len) {
356 		pr_cont(" %02x", *bytes);
357 		bytes++;
358 		len--;
359 	}
360 	pr_cont("\n");
361 }
362 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
363 #else
364 #define DEBUG_print(x, ...)			do { } while (0)
365 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
366 #endif
367 
368 static void dm_integrity_prepare(struct request *rq)
369 {
370 }
371 
372 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
373 {
374 }
375 
376 /*
377  * DM Integrity profile, protection is performed layer above (dm-crypt)
378  */
379 static const struct blk_integrity_profile dm_integrity_profile = {
380 	.name			= "DM-DIF-EXT-TAG",
381 	.generate_fn		= NULL,
382 	.verify_fn		= NULL,
383 	.prepare_fn		= dm_integrity_prepare,
384 	.complete_fn		= dm_integrity_complete,
385 };
386 
387 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
388 static void integrity_bio_wait(struct work_struct *w);
389 static void dm_integrity_dtr(struct dm_target *ti);
390 
391 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
392 {
393 	if (err == -EILSEQ)
394 		atomic64_inc(&ic->number_of_mismatches);
395 	if (!cmpxchg(&ic->failed, 0, err))
396 		DMERR("Error on %s: %d", msg, err);
397 }
398 
399 static int dm_integrity_failed(struct dm_integrity_c *ic)
400 {
401 	return READ_ONCE(ic->failed);
402 }
403 
404 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
405 {
406 	if (ic->legacy_recalculate)
407 		return false;
408 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
409 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
410 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
411 		return true;
412 	return false;
413 }
414 
415 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
416 					  unsigned int j, unsigned char seq)
417 {
418 	/*
419 	 * Xor the number with section and sector, so that if a piece of
420 	 * journal is written at wrong place, it is detected.
421 	 */
422 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
423 }
424 
425 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
426 				sector_t *area, sector_t *offset)
427 {
428 	if (!ic->meta_dev) {
429 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
430 		*area = data_sector >> log2_interleave_sectors;
431 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
432 	} else {
433 		*area = 0;
434 		*offset = data_sector;
435 	}
436 }
437 
438 #define sector_to_block(ic, n)						\
439 do {									\
440 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
441 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
442 } while (0)
443 
444 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
445 					    sector_t offset, unsigned int *metadata_offset)
446 {
447 	__u64 ms;
448 	unsigned int mo;
449 
450 	ms = area << ic->sb->log2_interleave_sectors;
451 	if (likely(ic->log2_metadata_run >= 0))
452 		ms += area << ic->log2_metadata_run;
453 	else
454 		ms += area * ic->metadata_run;
455 	ms >>= ic->log2_buffer_sectors;
456 
457 	sector_to_block(ic, offset);
458 
459 	if (likely(ic->log2_tag_size >= 0)) {
460 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
461 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
462 	} else {
463 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
464 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
465 	}
466 	*metadata_offset = mo;
467 	return ms;
468 }
469 
470 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
471 {
472 	sector_t result;
473 
474 	if (ic->meta_dev)
475 		return offset;
476 
477 	result = area << ic->sb->log2_interleave_sectors;
478 	if (likely(ic->log2_metadata_run >= 0))
479 		result += (area + 1) << ic->log2_metadata_run;
480 	else
481 		result += (area + 1) * ic->metadata_run;
482 
483 	result += (sector_t)ic->initial_sectors + offset;
484 	result += ic->start;
485 
486 	return result;
487 }
488 
489 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
490 {
491 	if (unlikely(*sec_ptr >= ic->journal_sections))
492 		*sec_ptr -= ic->journal_sections;
493 }
494 
495 static void sb_set_version(struct dm_integrity_c *ic)
496 {
497 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
498 		ic->sb->version = SB_VERSION_5;
499 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
500 		ic->sb->version = SB_VERSION_4;
501 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
502 		ic->sb->version = SB_VERSION_3;
503 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
504 		ic->sb->version = SB_VERSION_2;
505 	else
506 		ic->sb->version = SB_VERSION_1;
507 }
508 
509 static int sb_mac(struct dm_integrity_c *ic, bool wr)
510 {
511 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
512 	int r;
513 	unsigned int size = crypto_shash_digestsize(ic->journal_mac);
514 
515 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
516 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
517 		return -EINVAL;
518 	}
519 
520 	desc->tfm = ic->journal_mac;
521 
522 	r = crypto_shash_init(desc);
523 	if (unlikely(r < 0)) {
524 		dm_integrity_io_error(ic, "crypto_shash_init", r);
525 		return r;
526 	}
527 
528 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
529 	if (unlikely(r < 0)) {
530 		dm_integrity_io_error(ic, "crypto_shash_update", r);
531 		return r;
532 	}
533 
534 	if (likely(wr)) {
535 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
536 		if (unlikely(r < 0)) {
537 			dm_integrity_io_error(ic, "crypto_shash_final", r);
538 			return r;
539 		}
540 	} else {
541 		__u8 result[HASH_MAX_DIGESTSIZE];
542 
543 		r = crypto_shash_final(desc, result);
544 		if (unlikely(r < 0)) {
545 			dm_integrity_io_error(ic, "crypto_shash_final", r);
546 			return r;
547 		}
548 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
549 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
550 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
551 			return -EILSEQ;
552 		}
553 	}
554 
555 	return 0;
556 }
557 
558 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
559 {
560 	struct dm_io_request io_req;
561 	struct dm_io_region io_loc;
562 	const enum req_op op = opf & REQ_OP_MASK;
563 	int r;
564 
565 	io_req.bi_opf = opf;
566 	io_req.mem.type = DM_IO_KMEM;
567 	io_req.mem.ptr.addr = ic->sb;
568 	io_req.notify.fn = NULL;
569 	io_req.client = ic->io;
570 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
571 	io_loc.sector = ic->start;
572 	io_loc.count = SB_SECTORS;
573 
574 	if (op == REQ_OP_WRITE) {
575 		sb_set_version(ic);
576 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
577 			r = sb_mac(ic, true);
578 			if (unlikely(r))
579 				return r;
580 		}
581 	}
582 
583 	r = dm_io(&io_req, 1, &io_loc, NULL);
584 	if (unlikely(r))
585 		return r;
586 
587 	if (op == REQ_OP_READ) {
588 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
589 			r = sb_mac(ic, false);
590 			if (unlikely(r))
591 				return r;
592 		}
593 	}
594 
595 	return 0;
596 }
597 
598 #define BITMAP_OP_TEST_ALL_SET		0
599 #define BITMAP_OP_TEST_ALL_CLEAR	1
600 #define BITMAP_OP_SET			2
601 #define BITMAP_OP_CLEAR			3
602 
603 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
604 			    sector_t sector, sector_t n_sectors, int mode)
605 {
606 	unsigned long bit, end_bit, this_end_bit, page, end_page;
607 	unsigned long *data;
608 
609 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
610 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
611 			sector,
612 			n_sectors,
613 			ic->sb->log2_sectors_per_block,
614 			ic->log2_blocks_per_bitmap_bit,
615 			mode);
616 		BUG();
617 	}
618 
619 	if (unlikely(!n_sectors))
620 		return true;
621 
622 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
623 	end_bit = (sector + n_sectors - 1) >>
624 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
625 
626 	page = bit / (PAGE_SIZE * 8);
627 	bit %= PAGE_SIZE * 8;
628 
629 	end_page = end_bit / (PAGE_SIZE * 8);
630 	end_bit %= PAGE_SIZE * 8;
631 
632 repeat:
633 	if (page < end_page)
634 		this_end_bit = PAGE_SIZE * 8 - 1;
635 	else
636 		this_end_bit = end_bit;
637 
638 	data = lowmem_page_address(bitmap[page].page);
639 
640 	if (mode == BITMAP_OP_TEST_ALL_SET) {
641 		while (bit <= this_end_bit) {
642 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
643 				do {
644 					if (data[bit / BITS_PER_LONG] != -1)
645 						return false;
646 					bit += BITS_PER_LONG;
647 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
648 				continue;
649 			}
650 			if (!test_bit(bit, data))
651 				return false;
652 			bit++;
653 		}
654 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
655 		while (bit <= this_end_bit) {
656 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
657 				do {
658 					if (data[bit / BITS_PER_LONG] != 0)
659 						return false;
660 					bit += BITS_PER_LONG;
661 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
662 				continue;
663 			}
664 			if (test_bit(bit, data))
665 				return false;
666 			bit++;
667 		}
668 	} else if (mode == BITMAP_OP_SET) {
669 		while (bit <= this_end_bit) {
670 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
671 				do {
672 					data[bit / BITS_PER_LONG] = -1;
673 					bit += BITS_PER_LONG;
674 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
675 				continue;
676 			}
677 			__set_bit(bit, data);
678 			bit++;
679 		}
680 	} else if (mode == BITMAP_OP_CLEAR) {
681 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
682 			clear_page(data);
683 		else {
684 			while (bit <= this_end_bit) {
685 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
686 					do {
687 						data[bit / BITS_PER_LONG] = 0;
688 						bit += BITS_PER_LONG;
689 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
690 					continue;
691 				}
692 				__clear_bit(bit, data);
693 				bit++;
694 			}
695 		}
696 	} else {
697 		BUG();
698 	}
699 
700 	if (unlikely(page < end_page)) {
701 		bit = 0;
702 		page++;
703 		goto repeat;
704 	}
705 
706 	return true;
707 }
708 
709 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
710 {
711 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
712 	unsigned int i;
713 
714 	for (i = 0; i < n_bitmap_pages; i++) {
715 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
716 		unsigned long *src_data = lowmem_page_address(src[i].page);
717 
718 		copy_page(dst_data, src_data);
719 	}
720 }
721 
722 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
723 {
724 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
725 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
726 
727 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
728 	return &ic->bbs[bitmap_block];
729 }
730 
731 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
732 				 bool e, const char *function)
733 {
734 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
735 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
736 
737 	if (unlikely(section >= ic->journal_sections) ||
738 	    unlikely(offset >= limit)) {
739 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
740 		       function, section, offset, ic->journal_sections, limit);
741 		BUG();
742 	}
743 #endif
744 }
745 
746 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
747 			       unsigned int *pl_index, unsigned int *pl_offset)
748 {
749 	unsigned int sector;
750 
751 	access_journal_check(ic, section, offset, false, "page_list_location");
752 
753 	sector = section * ic->journal_section_sectors + offset;
754 
755 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
756 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
757 }
758 
759 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
760 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
761 {
762 	unsigned int pl_index, pl_offset;
763 	char *va;
764 
765 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
766 
767 	if (n_sectors)
768 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
769 
770 	va = lowmem_page_address(pl[pl_index].page);
771 
772 	return (struct journal_sector *)(va + pl_offset);
773 }
774 
775 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
776 {
777 	return access_page_list(ic, ic->journal, section, offset, NULL);
778 }
779 
780 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
781 {
782 	unsigned int rel_sector, offset;
783 	struct journal_sector *js;
784 
785 	access_journal_check(ic, section, n, true, "access_journal_entry");
786 
787 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
788 	offset = n / JOURNAL_BLOCK_SECTORS;
789 
790 	js = access_journal(ic, section, rel_sector);
791 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
792 }
793 
794 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
795 {
796 	n <<= ic->sb->log2_sectors_per_block;
797 
798 	n += JOURNAL_BLOCK_SECTORS;
799 
800 	access_journal_check(ic, section, n, false, "access_journal_data");
801 
802 	return access_journal(ic, section, n);
803 }
804 
805 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
806 {
807 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
808 	int r;
809 	unsigned int j, size;
810 
811 	desc->tfm = ic->journal_mac;
812 
813 	r = crypto_shash_init(desc);
814 	if (unlikely(r < 0)) {
815 		dm_integrity_io_error(ic, "crypto_shash_init", r);
816 		goto err;
817 	}
818 
819 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
820 		__le64 section_le;
821 
822 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
823 		if (unlikely(r < 0)) {
824 			dm_integrity_io_error(ic, "crypto_shash_update", r);
825 			goto err;
826 		}
827 
828 		section_le = cpu_to_le64(section);
829 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
830 		if (unlikely(r < 0)) {
831 			dm_integrity_io_error(ic, "crypto_shash_update", r);
832 			goto err;
833 		}
834 	}
835 
836 	for (j = 0; j < ic->journal_section_entries; j++) {
837 		struct journal_entry *je = access_journal_entry(ic, section, j);
838 
839 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
840 		if (unlikely(r < 0)) {
841 			dm_integrity_io_error(ic, "crypto_shash_update", r);
842 			goto err;
843 		}
844 	}
845 
846 	size = crypto_shash_digestsize(ic->journal_mac);
847 
848 	if (likely(size <= JOURNAL_MAC_SIZE)) {
849 		r = crypto_shash_final(desc, result);
850 		if (unlikely(r < 0)) {
851 			dm_integrity_io_error(ic, "crypto_shash_final", r);
852 			goto err;
853 		}
854 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
855 	} else {
856 		__u8 digest[HASH_MAX_DIGESTSIZE];
857 
858 		if (WARN_ON(size > sizeof(digest))) {
859 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
860 			goto err;
861 		}
862 		r = crypto_shash_final(desc, digest);
863 		if (unlikely(r < 0)) {
864 			dm_integrity_io_error(ic, "crypto_shash_final", r);
865 			goto err;
866 		}
867 		memcpy(result, digest, JOURNAL_MAC_SIZE);
868 	}
869 
870 	return;
871 err:
872 	memset(result, 0, JOURNAL_MAC_SIZE);
873 }
874 
875 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
876 {
877 	__u8 result[JOURNAL_MAC_SIZE];
878 	unsigned int j;
879 
880 	if (!ic->journal_mac)
881 		return;
882 
883 	section_mac(ic, section, result);
884 
885 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
886 		struct journal_sector *js = access_journal(ic, section, j);
887 
888 		if (likely(wr))
889 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
890 		else {
891 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
892 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
893 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
894 			}
895 		}
896 	}
897 }
898 
899 static void complete_journal_op(void *context)
900 {
901 	struct journal_completion *comp = context;
902 
903 	BUG_ON(!atomic_read(&comp->in_flight));
904 	if (likely(atomic_dec_and_test(&comp->in_flight)))
905 		complete(&comp->comp);
906 }
907 
908 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
909 			unsigned int n_sections, struct journal_completion *comp)
910 {
911 	struct async_submit_ctl submit;
912 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
913 	unsigned int pl_index, pl_offset, section_index;
914 	struct page_list *source_pl, *target_pl;
915 
916 	if (likely(encrypt)) {
917 		source_pl = ic->journal;
918 		target_pl = ic->journal_io;
919 	} else {
920 		source_pl = ic->journal_io;
921 		target_pl = ic->journal;
922 	}
923 
924 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
925 
926 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
927 
928 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
929 
930 	section_index = pl_index;
931 
932 	do {
933 		size_t this_step;
934 		struct page *src_pages[2];
935 		struct page *dst_page;
936 
937 		while (unlikely(pl_index == section_index)) {
938 			unsigned int dummy;
939 
940 			if (likely(encrypt))
941 				rw_section_mac(ic, section, true);
942 			section++;
943 			n_sections--;
944 			if (!n_sections)
945 				break;
946 			page_list_location(ic, section, 0, &section_index, &dummy);
947 		}
948 
949 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
950 		dst_page = target_pl[pl_index].page;
951 		src_pages[0] = source_pl[pl_index].page;
952 		src_pages[1] = ic->journal_xor[pl_index].page;
953 
954 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
955 
956 		pl_index++;
957 		pl_offset = 0;
958 		n_bytes -= this_step;
959 	} while (n_bytes);
960 
961 	BUG_ON(n_sections);
962 
963 	async_tx_issue_pending_all();
964 }
965 
966 static void complete_journal_encrypt(void *data, int err)
967 {
968 	struct journal_completion *comp = data;
969 
970 	if (unlikely(err)) {
971 		if (likely(err == -EINPROGRESS)) {
972 			complete(&comp->ic->crypto_backoff);
973 			return;
974 		}
975 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
976 	}
977 	complete_journal_op(comp);
978 }
979 
980 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
981 {
982 	int r;
983 
984 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
985 				      complete_journal_encrypt, comp);
986 	if (likely(encrypt))
987 		r = crypto_skcipher_encrypt(req);
988 	else
989 		r = crypto_skcipher_decrypt(req);
990 	if (likely(!r))
991 		return false;
992 	if (likely(r == -EINPROGRESS))
993 		return true;
994 	if (likely(r == -EBUSY)) {
995 		wait_for_completion(&comp->ic->crypto_backoff);
996 		reinit_completion(&comp->ic->crypto_backoff);
997 		return true;
998 	}
999 	dm_integrity_io_error(comp->ic, "encrypt", r);
1000 	return false;
1001 }
1002 
1003 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1004 			  unsigned int n_sections, struct journal_completion *comp)
1005 {
1006 	struct scatterlist **source_sg;
1007 	struct scatterlist **target_sg;
1008 
1009 	atomic_add(2, &comp->in_flight);
1010 
1011 	if (likely(encrypt)) {
1012 		source_sg = ic->journal_scatterlist;
1013 		target_sg = ic->journal_io_scatterlist;
1014 	} else {
1015 		source_sg = ic->journal_io_scatterlist;
1016 		target_sg = ic->journal_scatterlist;
1017 	}
1018 
1019 	do {
1020 		struct skcipher_request *req;
1021 		unsigned int ivsize;
1022 		char *iv;
1023 
1024 		if (likely(encrypt))
1025 			rw_section_mac(ic, section, true);
1026 
1027 		req = ic->sk_requests[section];
1028 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1029 		iv = req->iv;
1030 
1031 		memcpy(iv, iv + ivsize, ivsize);
1032 
1033 		req->src = source_sg[section];
1034 		req->dst = target_sg[section];
1035 
1036 		if (unlikely(do_crypt(encrypt, req, comp)))
1037 			atomic_inc(&comp->in_flight);
1038 
1039 		section++;
1040 		n_sections--;
1041 	} while (n_sections);
1042 
1043 	atomic_dec(&comp->in_flight);
1044 	complete_journal_op(comp);
1045 }
1046 
1047 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1048 			    unsigned int n_sections, struct journal_completion *comp)
1049 {
1050 	if (ic->journal_xor)
1051 		return xor_journal(ic, encrypt, section, n_sections, comp);
1052 	else
1053 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1054 }
1055 
1056 static void complete_journal_io(unsigned long error, void *context)
1057 {
1058 	struct journal_completion *comp = context;
1059 
1060 	if (unlikely(error != 0))
1061 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1062 	complete_journal_op(comp);
1063 }
1064 
1065 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1066 			       unsigned int sector, unsigned int n_sectors,
1067 			       struct journal_completion *comp)
1068 {
1069 	struct dm_io_request io_req;
1070 	struct dm_io_region io_loc;
1071 	unsigned int pl_index, pl_offset;
1072 	int r;
1073 
1074 	if (unlikely(dm_integrity_failed(ic))) {
1075 		if (comp)
1076 			complete_journal_io(-1UL, comp);
1077 		return;
1078 	}
1079 
1080 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1081 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1082 
1083 	io_req.bi_opf = opf;
1084 	io_req.mem.type = DM_IO_PAGE_LIST;
1085 	if (ic->journal_io)
1086 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1087 	else
1088 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1089 	io_req.mem.offset = pl_offset;
1090 	if (likely(comp != NULL)) {
1091 		io_req.notify.fn = complete_journal_io;
1092 		io_req.notify.context = comp;
1093 	} else {
1094 		io_req.notify.fn = NULL;
1095 	}
1096 	io_req.client = ic->io;
1097 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1098 	io_loc.sector = ic->start + SB_SECTORS + sector;
1099 	io_loc.count = n_sectors;
1100 
1101 	r = dm_io(&io_req, 1, &io_loc, NULL);
1102 	if (unlikely(r)) {
1103 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1104 				      "reading journal" : "writing journal", r);
1105 		if (comp) {
1106 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1107 			complete_journal_io(-1UL, comp);
1108 		}
1109 	}
1110 }
1111 
1112 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1113 		       unsigned int section, unsigned int n_sections,
1114 		       struct journal_completion *comp)
1115 {
1116 	unsigned int sector, n_sectors;
1117 
1118 	sector = section * ic->journal_section_sectors;
1119 	n_sectors = n_sections * ic->journal_section_sectors;
1120 
1121 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1122 }
1123 
1124 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1125 {
1126 	struct journal_completion io_comp;
1127 	struct journal_completion crypt_comp_1;
1128 	struct journal_completion crypt_comp_2;
1129 	unsigned int i;
1130 
1131 	io_comp.ic = ic;
1132 	init_completion(&io_comp.comp);
1133 
1134 	if (commit_start + commit_sections <= ic->journal_sections) {
1135 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1136 		if (ic->journal_io) {
1137 			crypt_comp_1.ic = ic;
1138 			init_completion(&crypt_comp_1.comp);
1139 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1141 			wait_for_completion_io(&crypt_comp_1.comp);
1142 		} else {
1143 			for (i = 0; i < commit_sections; i++)
1144 				rw_section_mac(ic, commit_start + i, true);
1145 		}
1146 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1147 			   commit_sections, &io_comp);
1148 	} else {
1149 		unsigned int to_end;
1150 
1151 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1152 		to_end = ic->journal_sections - commit_start;
1153 		if (ic->journal_io) {
1154 			crypt_comp_1.ic = ic;
1155 			init_completion(&crypt_comp_1.comp);
1156 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1157 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1158 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1159 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1160 					   commit_start, to_end, &io_comp);
1161 				reinit_completion(&crypt_comp_1.comp);
1162 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1163 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1164 				wait_for_completion_io(&crypt_comp_1.comp);
1165 			} else {
1166 				crypt_comp_2.ic = ic;
1167 				init_completion(&crypt_comp_2.comp);
1168 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1169 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1170 				wait_for_completion_io(&crypt_comp_1.comp);
1171 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1172 				wait_for_completion_io(&crypt_comp_2.comp);
1173 			}
1174 		} else {
1175 			for (i = 0; i < to_end; i++)
1176 				rw_section_mac(ic, commit_start + i, true);
1177 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1178 			for (i = 0; i < commit_sections - to_end; i++)
1179 				rw_section_mac(ic, i, true);
1180 		}
1181 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1182 	}
1183 
1184 	wait_for_completion_io(&io_comp.comp);
1185 }
1186 
1187 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1188 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1189 {
1190 	struct dm_io_request io_req;
1191 	struct dm_io_region io_loc;
1192 	int r;
1193 	unsigned int sector, pl_index, pl_offset;
1194 
1195 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1196 
1197 	if (unlikely(dm_integrity_failed(ic))) {
1198 		fn(-1UL, data);
1199 		return;
1200 	}
1201 
1202 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1203 
1204 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1205 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1206 
1207 	io_req.bi_opf = REQ_OP_WRITE;
1208 	io_req.mem.type = DM_IO_PAGE_LIST;
1209 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1210 	io_req.mem.offset = pl_offset;
1211 	io_req.notify.fn = fn;
1212 	io_req.notify.context = data;
1213 	io_req.client = ic->io;
1214 	io_loc.bdev = ic->dev->bdev;
1215 	io_loc.sector = target;
1216 	io_loc.count = n_sectors;
1217 
1218 	r = dm_io(&io_req, 1, &io_loc, NULL);
1219 	if (unlikely(r)) {
1220 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1221 		fn(-1UL, data);
1222 	}
1223 }
1224 
1225 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1226 {
1227 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1228 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1229 }
1230 
1231 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1232 {
1233 	struct rb_node **n = &ic->in_progress.rb_node;
1234 	struct rb_node *parent;
1235 
1236 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1237 
1238 	if (likely(check_waiting)) {
1239 		struct dm_integrity_range *range;
1240 
1241 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1242 			if (unlikely(ranges_overlap(range, new_range)))
1243 				return false;
1244 		}
1245 	}
1246 
1247 	parent = NULL;
1248 
1249 	while (*n) {
1250 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1251 
1252 		parent = *n;
1253 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1254 			n = &range->node.rb_left;
1255 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1256 			n = &range->node.rb_right;
1257 		else
1258 			return false;
1259 	}
1260 
1261 	rb_link_node(&new_range->node, parent, n);
1262 	rb_insert_color(&new_range->node, &ic->in_progress);
1263 
1264 	return true;
1265 }
1266 
1267 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1268 {
1269 	rb_erase(&range->node, &ic->in_progress);
1270 	while (unlikely(!list_empty(&ic->wait_list))) {
1271 		struct dm_integrity_range *last_range =
1272 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1273 		struct task_struct *last_range_task;
1274 
1275 		last_range_task = last_range->task;
1276 		list_del(&last_range->wait_entry);
1277 		if (!add_new_range(ic, last_range, false)) {
1278 			last_range->task = last_range_task;
1279 			list_add(&last_range->wait_entry, &ic->wait_list);
1280 			break;
1281 		}
1282 		last_range->waiting = false;
1283 		wake_up_process(last_range_task);
1284 	}
1285 }
1286 
1287 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1288 {
1289 	unsigned long flags;
1290 
1291 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1292 	remove_range_unlocked(ic, range);
1293 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1294 }
1295 
1296 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1297 {
1298 	new_range->waiting = true;
1299 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1300 	new_range->task = current;
1301 	do {
1302 		__set_current_state(TASK_UNINTERRUPTIBLE);
1303 		spin_unlock_irq(&ic->endio_wait.lock);
1304 		io_schedule();
1305 		spin_lock_irq(&ic->endio_wait.lock);
1306 	} while (unlikely(new_range->waiting));
1307 }
1308 
1309 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1310 {
1311 	if (unlikely(!add_new_range(ic, new_range, true)))
1312 		wait_and_add_new_range(ic, new_range);
1313 }
1314 
1315 static void init_journal_node(struct journal_node *node)
1316 {
1317 	RB_CLEAR_NODE(&node->node);
1318 	node->sector = (sector_t)-1;
1319 }
1320 
1321 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1322 {
1323 	struct rb_node **link;
1324 	struct rb_node *parent;
1325 
1326 	node->sector = sector;
1327 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1328 
1329 	link = &ic->journal_tree_root.rb_node;
1330 	parent = NULL;
1331 
1332 	while (*link) {
1333 		struct journal_node *j;
1334 
1335 		parent = *link;
1336 		j = container_of(parent, struct journal_node, node);
1337 		if (sector < j->sector)
1338 			link = &j->node.rb_left;
1339 		else
1340 			link = &j->node.rb_right;
1341 	}
1342 
1343 	rb_link_node(&node->node, parent, link);
1344 	rb_insert_color(&node->node, &ic->journal_tree_root);
1345 }
1346 
1347 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1348 {
1349 	BUG_ON(RB_EMPTY_NODE(&node->node));
1350 	rb_erase(&node->node, &ic->journal_tree_root);
1351 	init_journal_node(node);
1352 }
1353 
1354 #define NOT_FOUND	(-1U)
1355 
1356 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1357 {
1358 	struct rb_node *n = ic->journal_tree_root.rb_node;
1359 	unsigned int found = NOT_FOUND;
1360 
1361 	*next_sector = (sector_t)-1;
1362 	while (n) {
1363 		struct journal_node *j = container_of(n, struct journal_node, node);
1364 
1365 		if (sector == j->sector)
1366 			found = j - ic->journal_tree;
1367 
1368 		if (sector < j->sector) {
1369 			*next_sector = j->sector;
1370 			n = j->node.rb_left;
1371 		} else
1372 			n = j->node.rb_right;
1373 	}
1374 
1375 	return found;
1376 }
1377 
1378 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1379 {
1380 	struct journal_node *node, *next_node;
1381 	struct rb_node *next;
1382 
1383 	if (unlikely(pos >= ic->journal_entries))
1384 		return false;
1385 	node = &ic->journal_tree[pos];
1386 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1387 		return false;
1388 	if (unlikely(node->sector != sector))
1389 		return false;
1390 
1391 	next = rb_next(&node->node);
1392 	if (unlikely(!next))
1393 		return true;
1394 
1395 	next_node = container_of(next, struct journal_node, node);
1396 	return next_node->sector != sector;
1397 }
1398 
1399 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1400 {
1401 	struct rb_node *next;
1402 	struct journal_node *next_node;
1403 	unsigned int next_section;
1404 
1405 	BUG_ON(RB_EMPTY_NODE(&node->node));
1406 
1407 	next = rb_next(&node->node);
1408 	if (unlikely(!next))
1409 		return false;
1410 
1411 	next_node = container_of(next, struct journal_node, node);
1412 
1413 	if (next_node->sector != node->sector)
1414 		return false;
1415 
1416 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1417 	if (next_section >= ic->committed_section &&
1418 	    next_section < ic->committed_section + ic->n_committed_sections)
1419 		return true;
1420 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1421 		return true;
1422 
1423 	return false;
1424 }
1425 
1426 #define TAG_READ	0
1427 #define TAG_WRITE	1
1428 #define TAG_CMP		2
1429 
1430 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1431 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1432 {
1433 #define MAY_BE_FILLER		1
1434 #define MAY_BE_HASH		2
1435 	unsigned int hash_offset = 0;
1436 	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1437 
1438 	do {
1439 		unsigned char *data, *dp;
1440 		struct dm_buffer *b;
1441 		unsigned int to_copy;
1442 		int r;
1443 
1444 		r = dm_integrity_failed(ic);
1445 		if (unlikely(r))
1446 			return r;
1447 
1448 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1449 		if (IS_ERR(data))
1450 			return PTR_ERR(data);
1451 
1452 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1453 		dp = data + *metadata_offset;
1454 		if (op == TAG_READ) {
1455 			memcpy(tag, dp, to_copy);
1456 		} else if (op == TAG_WRITE) {
1457 			if (memcmp(dp, tag, to_copy)) {
1458 				memcpy(dp, tag, to_copy);
1459 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1460 			}
1461 		} else {
1462 			/* e.g.: op == TAG_CMP */
1463 
1464 			if (likely(is_power_of_2(ic->tag_size))) {
1465 				if (unlikely(memcmp(dp, tag, to_copy)))
1466 					if (unlikely(!ic->discard) ||
1467 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1468 						goto thorough_test;
1469 				}
1470 			} else {
1471 				unsigned int i, ts;
1472 thorough_test:
1473 				ts = total_size;
1474 
1475 				for (i = 0; i < to_copy; i++, ts--) {
1476 					if (unlikely(dp[i] != tag[i]))
1477 						may_be &= ~MAY_BE_HASH;
1478 					if (likely(dp[i] != DISCARD_FILLER))
1479 						may_be &= ~MAY_BE_FILLER;
1480 					hash_offset++;
1481 					if (unlikely(hash_offset == ic->tag_size)) {
1482 						if (unlikely(!may_be)) {
1483 							dm_bufio_release(b);
1484 							return ts;
1485 						}
1486 						hash_offset = 0;
1487 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1488 					}
1489 				}
1490 			}
1491 		}
1492 		dm_bufio_release(b);
1493 
1494 		tag += to_copy;
1495 		*metadata_offset += to_copy;
1496 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1497 			(*metadata_block)++;
1498 			*metadata_offset = 0;
1499 		}
1500 
1501 		if (unlikely(!is_power_of_2(ic->tag_size)))
1502 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1503 
1504 		total_size -= to_copy;
1505 	} while (unlikely(total_size));
1506 
1507 	return 0;
1508 #undef MAY_BE_FILLER
1509 #undef MAY_BE_HASH
1510 }
1511 
1512 struct flush_request {
1513 	struct dm_io_request io_req;
1514 	struct dm_io_region io_reg;
1515 	struct dm_integrity_c *ic;
1516 	struct completion comp;
1517 };
1518 
1519 static void flush_notify(unsigned long error, void *fr_)
1520 {
1521 	struct flush_request *fr = fr_;
1522 
1523 	if (unlikely(error != 0))
1524 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1525 	complete(&fr->comp);
1526 }
1527 
1528 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1529 {
1530 	int r;
1531 	struct flush_request fr;
1532 
1533 	if (!ic->meta_dev)
1534 		flush_data = false;
1535 	if (flush_data) {
1536 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1537 		fr.io_req.mem.type = DM_IO_KMEM,
1538 		fr.io_req.mem.ptr.addr = NULL,
1539 		fr.io_req.notify.fn = flush_notify,
1540 		fr.io_req.notify.context = &fr;
1541 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1542 		fr.io_reg.bdev = ic->dev->bdev,
1543 		fr.io_reg.sector = 0,
1544 		fr.io_reg.count = 0,
1545 		fr.ic = ic;
1546 		init_completion(&fr.comp);
1547 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1548 		BUG_ON(r);
1549 	}
1550 
1551 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1552 	if (unlikely(r))
1553 		dm_integrity_io_error(ic, "writing tags", r);
1554 
1555 	if (flush_data)
1556 		wait_for_completion(&fr.comp);
1557 }
1558 
1559 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1560 {
1561 	DECLARE_WAITQUEUE(wait, current);
1562 
1563 	__add_wait_queue(&ic->endio_wait, &wait);
1564 	__set_current_state(TASK_UNINTERRUPTIBLE);
1565 	spin_unlock_irq(&ic->endio_wait.lock);
1566 	io_schedule();
1567 	spin_lock_irq(&ic->endio_wait.lock);
1568 	__remove_wait_queue(&ic->endio_wait, &wait);
1569 }
1570 
1571 static void autocommit_fn(struct timer_list *t)
1572 {
1573 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1574 
1575 	if (likely(!dm_integrity_failed(ic)))
1576 		queue_work(ic->commit_wq, &ic->commit_work);
1577 }
1578 
1579 static void schedule_autocommit(struct dm_integrity_c *ic)
1580 {
1581 	if (!timer_pending(&ic->autocommit_timer))
1582 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1583 }
1584 
1585 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1586 {
1587 	struct bio *bio;
1588 	unsigned long flags;
1589 
1590 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1591 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1592 	bio_list_add(&ic->flush_bio_list, bio);
1593 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1594 
1595 	queue_work(ic->commit_wq, &ic->commit_work);
1596 }
1597 
1598 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1599 {
1600 	int r;
1601 
1602 	r = dm_integrity_failed(ic);
1603 	if (unlikely(r) && !bio->bi_status)
1604 		bio->bi_status = errno_to_blk_status(r);
1605 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1606 		unsigned long flags;
1607 
1608 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1609 		bio_list_add(&ic->synchronous_bios, bio);
1610 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1611 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1612 		return;
1613 	}
1614 	bio_endio(bio);
1615 }
1616 
1617 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1618 {
1619 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1620 
1621 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1622 		submit_flush_bio(ic, dio);
1623 	else
1624 		do_endio(ic, bio);
1625 }
1626 
1627 static void dec_in_flight(struct dm_integrity_io *dio)
1628 {
1629 	if (atomic_dec_and_test(&dio->in_flight)) {
1630 		struct dm_integrity_c *ic = dio->ic;
1631 		struct bio *bio;
1632 
1633 		remove_range(ic, &dio->range);
1634 
1635 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1636 			schedule_autocommit(ic);
1637 
1638 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1639 		if (unlikely(dio->bi_status) && !bio->bi_status)
1640 			bio->bi_status = dio->bi_status;
1641 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1642 			dio->range.logical_sector += dio->range.n_sectors;
1643 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1644 			INIT_WORK(&dio->work, integrity_bio_wait);
1645 			queue_work(ic->offload_wq, &dio->work);
1646 			return;
1647 		}
1648 		do_endio_flush(ic, dio);
1649 	}
1650 }
1651 
1652 static void integrity_end_io(struct bio *bio)
1653 {
1654 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1655 
1656 	dm_bio_restore(&dio->bio_details, bio);
1657 	if (bio->bi_integrity)
1658 		bio->bi_opf |= REQ_INTEGRITY;
1659 
1660 	if (dio->completion)
1661 		complete(dio->completion);
1662 
1663 	dec_in_flight(dio);
1664 }
1665 
1666 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1667 				      const char *data, char *result)
1668 {
1669 	__le64 sector_le = cpu_to_le64(sector);
1670 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1671 	int r;
1672 	unsigned int digest_size;
1673 
1674 	req->tfm = ic->internal_hash;
1675 
1676 	r = crypto_shash_init(req);
1677 	if (unlikely(r < 0)) {
1678 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1679 		goto failed;
1680 	}
1681 
1682 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1683 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1684 		if (unlikely(r < 0)) {
1685 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1686 			goto failed;
1687 		}
1688 	}
1689 
1690 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1691 	if (unlikely(r < 0)) {
1692 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1693 		goto failed;
1694 	}
1695 
1696 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1697 	if (unlikely(r < 0)) {
1698 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1699 		goto failed;
1700 	}
1701 
1702 	r = crypto_shash_final(req, result);
1703 	if (unlikely(r < 0)) {
1704 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1705 		goto failed;
1706 	}
1707 
1708 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1709 	if (unlikely(digest_size < ic->tag_size))
1710 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1711 
1712 	return;
1713 
1714 failed:
1715 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1716 	get_random_bytes(result, ic->tag_size);
1717 }
1718 
1719 static void integrity_metadata(struct work_struct *w)
1720 {
1721 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1722 	struct dm_integrity_c *ic = dio->ic;
1723 
1724 	int r;
1725 
1726 	if (ic->internal_hash) {
1727 		struct bvec_iter iter;
1728 		struct bio_vec bv;
1729 		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1730 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1731 		char *checksums;
1732 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1733 		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1734 		sector_t sector;
1735 		unsigned int sectors_to_process;
1736 
1737 		if (unlikely(ic->mode == 'R'))
1738 			goto skip_io;
1739 
1740 		if (likely(dio->op != REQ_OP_DISCARD))
1741 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1742 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1743 		else
1744 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1745 		if (!checksums) {
1746 			checksums = checksums_onstack;
1747 			if (WARN_ON(extra_space &&
1748 				    digest_size > sizeof(checksums_onstack))) {
1749 				r = -EINVAL;
1750 				goto error;
1751 			}
1752 		}
1753 
1754 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1755 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1756 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1757 			unsigned int max_blocks = max_size / ic->tag_size;
1758 
1759 			memset(checksums, DISCARD_FILLER, max_size);
1760 
1761 			while (bi_size) {
1762 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1763 
1764 				this_step_blocks = min(this_step_blocks, max_blocks);
1765 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1766 							this_step_blocks * ic->tag_size, TAG_WRITE);
1767 				if (unlikely(r)) {
1768 					if (likely(checksums != checksums_onstack))
1769 						kfree(checksums);
1770 					goto error;
1771 				}
1772 
1773 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1774 			}
1775 
1776 			if (likely(checksums != checksums_onstack))
1777 				kfree(checksums);
1778 			goto skip_io;
1779 		}
1780 
1781 		sector = dio->range.logical_sector;
1782 		sectors_to_process = dio->range.n_sectors;
1783 
1784 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1785 			unsigned int pos;
1786 			char *mem, *checksums_ptr;
1787 
1788 again:
1789 			mem = bvec_kmap_local(&bv);
1790 			pos = 0;
1791 			checksums_ptr = checksums;
1792 			do {
1793 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1794 				checksums_ptr += ic->tag_size;
1795 				sectors_to_process -= ic->sectors_per_block;
1796 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1797 				sector += ic->sectors_per_block;
1798 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1799 			kunmap_local(mem);
1800 
1801 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1802 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1803 			if (unlikely(r)) {
1804 				if (r > 0) {
1805 					sector_t s;
1806 
1807 					s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1808 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1809 						    bio->bi_bdev, s);
1810 					r = -EILSEQ;
1811 					atomic64_inc(&ic->number_of_mismatches);
1812 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1813 							 bio, s, 0);
1814 				}
1815 				if (likely(checksums != checksums_onstack))
1816 					kfree(checksums);
1817 				goto error;
1818 			}
1819 
1820 			if (!sectors_to_process)
1821 				break;
1822 
1823 			if (unlikely(pos < bv.bv_len)) {
1824 				bv.bv_offset += pos;
1825 				bv.bv_len -= pos;
1826 				goto again;
1827 			}
1828 		}
1829 
1830 		if (likely(checksums != checksums_onstack))
1831 			kfree(checksums);
1832 	} else {
1833 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1834 
1835 		if (bip) {
1836 			struct bio_vec biv;
1837 			struct bvec_iter iter;
1838 			unsigned int data_to_process = dio->range.n_sectors;
1839 
1840 			sector_to_block(ic, data_to_process);
1841 			data_to_process *= ic->tag_size;
1842 
1843 			bip_for_each_vec(biv, bip, iter) {
1844 				unsigned char *tag;
1845 				unsigned int this_len;
1846 
1847 				BUG_ON(PageHighMem(biv.bv_page));
1848 				tag = bvec_virt(&biv);
1849 				this_len = min(biv.bv_len, data_to_process);
1850 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1851 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1852 				if (unlikely(r))
1853 					goto error;
1854 				data_to_process -= this_len;
1855 				if (!data_to_process)
1856 					break;
1857 			}
1858 		}
1859 	}
1860 skip_io:
1861 	dec_in_flight(dio);
1862 	return;
1863 error:
1864 	dio->bi_status = errno_to_blk_status(r);
1865 	dec_in_flight(dio);
1866 }
1867 
1868 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1869 {
1870 	struct dm_integrity_c *ic = ti->private;
1871 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1872 	struct bio_integrity_payload *bip;
1873 
1874 	sector_t area, offset;
1875 
1876 	dio->ic = ic;
1877 	dio->bi_status = 0;
1878 	dio->op = bio_op(bio);
1879 
1880 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1881 		if (ti->max_io_len) {
1882 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1883 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1884 			sector_t start_boundary = sec >> log2_max_io_len;
1885 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1886 
1887 			if (start_boundary < end_boundary) {
1888 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1889 
1890 				dm_accept_partial_bio(bio, len);
1891 			}
1892 		}
1893 	}
1894 
1895 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1896 		submit_flush_bio(ic, dio);
1897 		return DM_MAPIO_SUBMITTED;
1898 	}
1899 
1900 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1901 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1902 	if (unlikely(dio->fua)) {
1903 		/*
1904 		 * Don't pass down the FUA flag because we have to flush
1905 		 * disk cache anyway.
1906 		 */
1907 		bio->bi_opf &= ~REQ_FUA;
1908 	}
1909 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1910 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1911 		      dio->range.logical_sector, bio_sectors(bio),
1912 		      ic->provided_data_sectors);
1913 		return DM_MAPIO_KILL;
1914 	}
1915 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1916 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1917 		      ic->sectors_per_block,
1918 		      dio->range.logical_sector, bio_sectors(bio));
1919 		return DM_MAPIO_KILL;
1920 	}
1921 
1922 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1923 		struct bvec_iter iter;
1924 		struct bio_vec bv;
1925 
1926 		bio_for_each_segment(bv, bio, iter) {
1927 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1928 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1929 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1930 				return DM_MAPIO_KILL;
1931 			}
1932 		}
1933 	}
1934 
1935 	bip = bio_integrity(bio);
1936 	if (!ic->internal_hash) {
1937 		if (bip) {
1938 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1939 
1940 			if (ic->log2_tag_size >= 0)
1941 				wanted_tag_size <<= ic->log2_tag_size;
1942 			else
1943 				wanted_tag_size *= ic->tag_size;
1944 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1945 				DMERR("Invalid integrity data size %u, expected %u",
1946 				      bip->bip_iter.bi_size, wanted_tag_size);
1947 				return DM_MAPIO_KILL;
1948 			}
1949 		}
1950 	} else {
1951 		if (unlikely(bip != NULL)) {
1952 			DMERR("Unexpected integrity data when using internal hash");
1953 			return DM_MAPIO_KILL;
1954 		}
1955 	}
1956 
1957 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1958 		return DM_MAPIO_KILL;
1959 
1960 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1961 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1962 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1963 
1964 	dm_integrity_map_continue(dio, true);
1965 	return DM_MAPIO_SUBMITTED;
1966 }
1967 
1968 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1969 				 unsigned int journal_section, unsigned int journal_entry)
1970 {
1971 	struct dm_integrity_c *ic = dio->ic;
1972 	sector_t logical_sector;
1973 	unsigned int n_sectors;
1974 
1975 	logical_sector = dio->range.logical_sector;
1976 	n_sectors = dio->range.n_sectors;
1977 	do {
1978 		struct bio_vec bv = bio_iovec(bio);
1979 		char *mem;
1980 
1981 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1982 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1983 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1984 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1985 retry_kmap:
1986 		mem = kmap_local_page(bv.bv_page);
1987 		if (likely(dio->op == REQ_OP_WRITE))
1988 			flush_dcache_page(bv.bv_page);
1989 
1990 		do {
1991 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1992 
1993 			if (unlikely(dio->op == REQ_OP_READ)) {
1994 				struct journal_sector *js;
1995 				char *mem_ptr;
1996 				unsigned int s;
1997 
1998 				if (unlikely(journal_entry_is_inprogress(je))) {
1999 					flush_dcache_page(bv.bv_page);
2000 					kunmap_local(mem);
2001 
2002 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2003 					goto retry_kmap;
2004 				}
2005 				smp_rmb();
2006 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2007 				js = access_journal_data(ic, journal_section, journal_entry);
2008 				mem_ptr = mem + bv.bv_offset;
2009 				s = 0;
2010 				do {
2011 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2012 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2013 					js++;
2014 					mem_ptr += 1 << SECTOR_SHIFT;
2015 				} while (++s < ic->sectors_per_block);
2016 #ifdef INTERNAL_VERIFY
2017 				if (ic->internal_hash) {
2018 					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2019 
2020 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2021 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2022 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2023 							    logical_sector);
2024 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2025 								 bio, logical_sector, 0);
2026 					}
2027 				}
2028 #endif
2029 			}
2030 
2031 			if (!ic->internal_hash) {
2032 				struct bio_integrity_payload *bip = bio_integrity(bio);
2033 				unsigned int tag_todo = ic->tag_size;
2034 				char *tag_ptr = journal_entry_tag(ic, je);
2035 
2036 				if (bip) {
2037 					do {
2038 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2039 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2040 						char *tag_addr;
2041 
2042 						BUG_ON(PageHighMem(biv.bv_page));
2043 						tag_addr = bvec_virt(&biv);
2044 						if (likely(dio->op == REQ_OP_WRITE))
2045 							memcpy(tag_ptr, tag_addr, tag_now);
2046 						else
2047 							memcpy(tag_addr, tag_ptr, tag_now);
2048 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2049 						tag_ptr += tag_now;
2050 						tag_todo -= tag_now;
2051 					} while (unlikely(tag_todo));
2052 				} else if (likely(dio->op == REQ_OP_WRITE))
2053 					memset(tag_ptr, 0, tag_todo);
2054 			}
2055 
2056 			if (likely(dio->op == REQ_OP_WRITE)) {
2057 				struct journal_sector *js;
2058 				unsigned int s;
2059 
2060 				js = access_journal_data(ic, journal_section, journal_entry);
2061 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2062 
2063 				s = 0;
2064 				do {
2065 					je->last_bytes[s] = js[s].commit_id;
2066 				} while (++s < ic->sectors_per_block);
2067 
2068 				if (ic->internal_hash) {
2069 					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2070 
2071 					if (unlikely(digest_size > ic->tag_size)) {
2072 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2073 
2074 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2075 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2076 					} else
2077 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2078 				}
2079 
2080 				journal_entry_set_sector(je, logical_sector);
2081 			}
2082 			logical_sector += ic->sectors_per_block;
2083 
2084 			journal_entry++;
2085 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2086 				journal_entry = 0;
2087 				journal_section++;
2088 				wraparound_section(ic, &journal_section);
2089 			}
2090 
2091 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2092 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2093 
2094 		if (unlikely(dio->op == REQ_OP_READ))
2095 			flush_dcache_page(bv.bv_page);
2096 		kunmap_local(mem);
2097 	} while (n_sectors);
2098 
2099 	if (likely(dio->op == REQ_OP_WRITE)) {
2100 		smp_mb();
2101 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2102 			wake_up(&ic->copy_to_journal_wait);
2103 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2104 			queue_work(ic->commit_wq, &ic->commit_work);
2105 		else
2106 			schedule_autocommit(ic);
2107 	} else
2108 		remove_range(ic, &dio->range);
2109 
2110 	if (unlikely(bio->bi_iter.bi_size)) {
2111 		sector_t area, offset;
2112 
2113 		dio->range.logical_sector = logical_sector;
2114 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2115 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2116 		return true;
2117 	}
2118 
2119 	return false;
2120 }
2121 
2122 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2123 {
2124 	struct dm_integrity_c *ic = dio->ic;
2125 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2126 	unsigned int journal_section, journal_entry;
2127 	unsigned int journal_read_pos;
2128 	struct completion read_comp;
2129 	bool discard_retried = false;
2130 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2131 
2132 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2133 		need_sync_io = true;
2134 
2135 	if (need_sync_io && from_map) {
2136 		INIT_WORK(&dio->work, integrity_bio_wait);
2137 		queue_work(ic->offload_wq, &dio->work);
2138 		return;
2139 	}
2140 
2141 lock_retry:
2142 	spin_lock_irq(&ic->endio_wait.lock);
2143 retry:
2144 	if (unlikely(dm_integrity_failed(ic))) {
2145 		spin_unlock_irq(&ic->endio_wait.lock);
2146 		do_endio(ic, bio);
2147 		return;
2148 	}
2149 	dio->range.n_sectors = bio_sectors(bio);
2150 	journal_read_pos = NOT_FOUND;
2151 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2152 		if (dio->op == REQ_OP_WRITE) {
2153 			unsigned int next_entry, i, pos;
2154 			unsigned int ws, we, range_sectors;
2155 
2156 			dio->range.n_sectors = min(dio->range.n_sectors,
2157 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2158 			if (unlikely(!dio->range.n_sectors)) {
2159 				if (from_map)
2160 					goto offload_to_thread;
2161 				sleep_on_endio_wait(ic);
2162 				goto retry;
2163 			}
2164 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2165 			ic->free_sectors -= range_sectors;
2166 			journal_section = ic->free_section;
2167 			journal_entry = ic->free_section_entry;
2168 
2169 			next_entry = ic->free_section_entry + range_sectors;
2170 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2171 			ic->free_section += next_entry / ic->journal_section_entries;
2172 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2173 			wraparound_section(ic, &ic->free_section);
2174 
2175 			pos = journal_section * ic->journal_section_entries + journal_entry;
2176 			ws = journal_section;
2177 			we = journal_entry;
2178 			i = 0;
2179 			do {
2180 				struct journal_entry *je;
2181 
2182 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2183 				pos++;
2184 				if (unlikely(pos >= ic->journal_entries))
2185 					pos = 0;
2186 
2187 				je = access_journal_entry(ic, ws, we);
2188 				BUG_ON(!journal_entry_is_unused(je));
2189 				journal_entry_set_inprogress(je);
2190 				we++;
2191 				if (unlikely(we == ic->journal_section_entries)) {
2192 					we = 0;
2193 					ws++;
2194 					wraparound_section(ic, &ws);
2195 				}
2196 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2197 
2198 			spin_unlock_irq(&ic->endio_wait.lock);
2199 			goto journal_read_write;
2200 		} else {
2201 			sector_t next_sector;
2202 
2203 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2204 			if (likely(journal_read_pos == NOT_FOUND)) {
2205 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2206 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2207 			} else {
2208 				unsigned int i;
2209 				unsigned int jp = journal_read_pos + 1;
2210 
2211 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2212 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2213 						break;
2214 				}
2215 				dio->range.n_sectors = i;
2216 			}
2217 		}
2218 	}
2219 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2220 		/*
2221 		 * We must not sleep in the request routine because it could
2222 		 * stall bios on current->bio_list.
2223 		 * So, we offload the bio to a workqueue if we have to sleep.
2224 		 */
2225 		if (from_map) {
2226 offload_to_thread:
2227 			spin_unlock_irq(&ic->endio_wait.lock);
2228 			INIT_WORK(&dio->work, integrity_bio_wait);
2229 			queue_work(ic->wait_wq, &dio->work);
2230 			return;
2231 		}
2232 		if (journal_read_pos != NOT_FOUND)
2233 			dio->range.n_sectors = ic->sectors_per_block;
2234 		wait_and_add_new_range(ic, &dio->range);
2235 		/*
2236 		 * wait_and_add_new_range drops the spinlock, so the journal
2237 		 * may have been changed arbitrarily. We need to recheck.
2238 		 * To simplify the code, we restrict I/O size to just one block.
2239 		 */
2240 		if (journal_read_pos != NOT_FOUND) {
2241 			sector_t next_sector;
2242 			unsigned int new_pos;
2243 
2244 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2245 			if (unlikely(new_pos != journal_read_pos)) {
2246 				remove_range_unlocked(ic, &dio->range);
2247 				goto retry;
2248 			}
2249 		}
2250 	}
2251 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2252 		sector_t next_sector;
2253 		unsigned int new_pos;
2254 
2255 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2256 		if (unlikely(new_pos != NOT_FOUND) ||
2257 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2258 			remove_range_unlocked(ic, &dio->range);
2259 			spin_unlock_irq(&ic->endio_wait.lock);
2260 			queue_work(ic->commit_wq, &ic->commit_work);
2261 			flush_workqueue(ic->commit_wq);
2262 			queue_work(ic->writer_wq, &ic->writer_work);
2263 			flush_workqueue(ic->writer_wq);
2264 			discard_retried = true;
2265 			goto lock_retry;
2266 		}
2267 	}
2268 	spin_unlock_irq(&ic->endio_wait.lock);
2269 
2270 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2271 		journal_section = journal_read_pos / ic->journal_section_entries;
2272 		journal_entry = journal_read_pos % ic->journal_section_entries;
2273 		goto journal_read_write;
2274 	}
2275 
2276 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2277 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2278 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2279 			struct bitmap_block_status *bbs;
2280 
2281 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2282 			spin_lock(&bbs->bio_queue_lock);
2283 			bio_list_add(&bbs->bio_queue, bio);
2284 			spin_unlock(&bbs->bio_queue_lock);
2285 			queue_work(ic->writer_wq, &bbs->work);
2286 			return;
2287 		}
2288 	}
2289 
2290 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2291 
2292 	if (need_sync_io) {
2293 		init_completion(&read_comp);
2294 		dio->completion = &read_comp;
2295 	} else
2296 		dio->completion = NULL;
2297 
2298 	dm_bio_record(&dio->bio_details, bio);
2299 	bio_set_dev(bio, ic->dev->bdev);
2300 	bio->bi_integrity = NULL;
2301 	bio->bi_opf &= ~REQ_INTEGRITY;
2302 	bio->bi_end_io = integrity_end_io;
2303 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2304 
2305 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2306 		integrity_metadata(&dio->work);
2307 		dm_integrity_flush_buffers(ic, false);
2308 
2309 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2310 		dio->completion = NULL;
2311 
2312 		submit_bio_noacct(bio);
2313 
2314 		return;
2315 	}
2316 
2317 	submit_bio_noacct(bio);
2318 
2319 	if (need_sync_io) {
2320 		wait_for_completion_io(&read_comp);
2321 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2322 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2323 			goto skip_check;
2324 		if (ic->mode == 'B') {
2325 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2326 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2327 				goto skip_check;
2328 		}
2329 
2330 		if (likely(!bio->bi_status))
2331 			integrity_metadata(&dio->work);
2332 		else
2333 skip_check:
2334 			dec_in_flight(dio);
2335 	} else {
2336 		INIT_WORK(&dio->work, integrity_metadata);
2337 		queue_work(ic->metadata_wq, &dio->work);
2338 	}
2339 
2340 	return;
2341 
2342 journal_read_write:
2343 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2344 		goto lock_retry;
2345 
2346 	do_endio_flush(ic, dio);
2347 }
2348 
2349 
2350 static void integrity_bio_wait(struct work_struct *w)
2351 {
2352 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2353 
2354 	dm_integrity_map_continue(dio, false);
2355 }
2356 
2357 static void pad_uncommitted(struct dm_integrity_c *ic)
2358 {
2359 	if (ic->free_section_entry) {
2360 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2361 		ic->free_section_entry = 0;
2362 		ic->free_section++;
2363 		wraparound_section(ic, &ic->free_section);
2364 		ic->n_uncommitted_sections++;
2365 	}
2366 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2367 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2368 		    ic->journal_section_entries + ic->free_sectors)) {
2369 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2370 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2371 		       "journal_section_entries %u, free_sectors %u",
2372 		       ic->journal_sections, ic->journal_section_entries,
2373 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2374 		       ic->journal_section_entries, ic->free_sectors);
2375 	}
2376 }
2377 
2378 static void integrity_commit(struct work_struct *w)
2379 {
2380 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2381 	unsigned int commit_start, commit_sections;
2382 	unsigned int i, j, n;
2383 	struct bio *flushes;
2384 
2385 	del_timer(&ic->autocommit_timer);
2386 
2387 	spin_lock_irq(&ic->endio_wait.lock);
2388 	flushes = bio_list_get(&ic->flush_bio_list);
2389 	if (unlikely(ic->mode != 'J')) {
2390 		spin_unlock_irq(&ic->endio_wait.lock);
2391 		dm_integrity_flush_buffers(ic, true);
2392 		goto release_flush_bios;
2393 	}
2394 
2395 	pad_uncommitted(ic);
2396 	commit_start = ic->uncommitted_section;
2397 	commit_sections = ic->n_uncommitted_sections;
2398 	spin_unlock_irq(&ic->endio_wait.lock);
2399 
2400 	if (!commit_sections)
2401 		goto release_flush_bios;
2402 
2403 	ic->wrote_to_journal = true;
2404 
2405 	i = commit_start;
2406 	for (n = 0; n < commit_sections; n++) {
2407 		for (j = 0; j < ic->journal_section_entries; j++) {
2408 			struct journal_entry *je;
2409 
2410 			je = access_journal_entry(ic, i, j);
2411 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2412 		}
2413 		for (j = 0; j < ic->journal_section_sectors; j++) {
2414 			struct journal_sector *js;
2415 
2416 			js = access_journal(ic, i, j);
2417 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2418 		}
2419 		i++;
2420 		if (unlikely(i >= ic->journal_sections))
2421 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2422 		wraparound_section(ic, &i);
2423 	}
2424 	smp_rmb();
2425 
2426 	write_journal(ic, commit_start, commit_sections);
2427 
2428 	spin_lock_irq(&ic->endio_wait.lock);
2429 	ic->uncommitted_section += commit_sections;
2430 	wraparound_section(ic, &ic->uncommitted_section);
2431 	ic->n_uncommitted_sections -= commit_sections;
2432 	ic->n_committed_sections += commit_sections;
2433 	spin_unlock_irq(&ic->endio_wait.lock);
2434 
2435 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2436 		queue_work(ic->writer_wq, &ic->writer_work);
2437 
2438 release_flush_bios:
2439 	while (flushes) {
2440 		struct bio *next = flushes->bi_next;
2441 
2442 		flushes->bi_next = NULL;
2443 		do_endio(ic, flushes);
2444 		flushes = next;
2445 	}
2446 }
2447 
2448 static void complete_copy_from_journal(unsigned long error, void *context)
2449 {
2450 	struct journal_io *io = context;
2451 	struct journal_completion *comp = io->comp;
2452 	struct dm_integrity_c *ic = comp->ic;
2453 
2454 	remove_range(ic, &io->range);
2455 	mempool_free(io, &ic->journal_io_mempool);
2456 	if (unlikely(error != 0))
2457 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2458 	complete_journal_op(comp);
2459 }
2460 
2461 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2462 			       struct journal_entry *je)
2463 {
2464 	unsigned int s = 0;
2465 
2466 	do {
2467 		js->commit_id = je->last_bytes[s];
2468 		js++;
2469 	} while (++s < ic->sectors_per_block);
2470 }
2471 
2472 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2473 			     unsigned int write_sections, bool from_replay)
2474 {
2475 	unsigned int i, j, n;
2476 	struct journal_completion comp;
2477 	struct blk_plug plug;
2478 
2479 	blk_start_plug(&plug);
2480 
2481 	comp.ic = ic;
2482 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2483 	init_completion(&comp.comp);
2484 
2485 	i = write_start;
2486 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2487 #ifndef INTERNAL_VERIFY
2488 		if (unlikely(from_replay))
2489 #endif
2490 			rw_section_mac(ic, i, false);
2491 		for (j = 0; j < ic->journal_section_entries; j++) {
2492 			struct journal_entry *je = access_journal_entry(ic, i, j);
2493 			sector_t sec, area, offset;
2494 			unsigned int k, l, next_loop;
2495 			sector_t metadata_block;
2496 			unsigned int metadata_offset;
2497 			struct journal_io *io;
2498 
2499 			if (journal_entry_is_unused(je))
2500 				continue;
2501 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2502 			sec = journal_entry_get_sector(je);
2503 			if (unlikely(from_replay)) {
2504 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2505 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2506 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2507 				}
2508 				if (unlikely(sec >= ic->provided_data_sectors)) {
2509 					journal_entry_set_unused(je);
2510 					continue;
2511 				}
2512 			}
2513 			get_area_and_offset(ic, sec, &area, &offset);
2514 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2515 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2516 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2517 				sector_t sec2, area2, offset2;
2518 
2519 				if (journal_entry_is_unused(je2))
2520 					break;
2521 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2522 				sec2 = journal_entry_get_sector(je2);
2523 				if (unlikely(sec2 >= ic->provided_data_sectors))
2524 					break;
2525 				get_area_and_offset(ic, sec2, &area2, &offset2);
2526 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2527 					break;
2528 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2529 			}
2530 			next_loop = k - 1;
2531 
2532 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2533 			io->comp = &comp;
2534 			io->range.logical_sector = sec;
2535 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2536 
2537 			spin_lock_irq(&ic->endio_wait.lock);
2538 			add_new_range_and_wait(ic, &io->range);
2539 
2540 			if (likely(!from_replay)) {
2541 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2542 
2543 				/* don't write if there is newer committed sector */
2544 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2545 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2546 
2547 					journal_entry_set_unused(je2);
2548 					remove_journal_node(ic, &section_node[j]);
2549 					j++;
2550 					sec += ic->sectors_per_block;
2551 					offset += ic->sectors_per_block;
2552 				}
2553 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2554 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2555 
2556 					journal_entry_set_unused(je2);
2557 					remove_journal_node(ic, &section_node[k - 1]);
2558 					k--;
2559 				}
2560 				if (j == k) {
2561 					remove_range_unlocked(ic, &io->range);
2562 					spin_unlock_irq(&ic->endio_wait.lock);
2563 					mempool_free(io, &ic->journal_io_mempool);
2564 					goto skip_io;
2565 				}
2566 				for (l = j; l < k; l++)
2567 					remove_journal_node(ic, &section_node[l]);
2568 			}
2569 			spin_unlock_irq(&ic->endio_wait.lock);
2570 
2571 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2572 			for (l = j; l < k; l++) {
2573 				int r;
2574 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2575 
2576 				if (
2577 #ifndef INTERNAL_VERIFY
2578 				    unlikely(from_replay) &&
2579 #endif
2580 				    ic->internal_hash) {
2581 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2582 
2583 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2584 								  (char *)access_journal_data(ic, i, l), test_tag);
2585 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2586 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2587 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2588 					}
2589 				}
2590 
2591 				journal_entry_set_unused(je2);
2592 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2593 							ic->tag_size, TAG_WRITE);
2594 				if (unlikely(r))
2595 					dm_integrity_io_error(ic, "reading tags", r);
2596 			}
2597 
2598 			atomic_inc(&comp.in_flight);
2599 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2600 					  (k - j) << ic->sb->log2_sectors_per_block,
2601 					  get_data_sector(ic, area, offset),
2602 					  complete_copy_from_journal, io);
2603 skip_io:
2604 			j = next_loop;
2605 		}
2606 	}
2607 
2608 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2609 
2610 	blk_finish_plug(&plug);
2611 
2612 	complete_journal_op(&comp);
2613 	wait_for_completion_io(&comp.comp);
2614 
2615 	dm_integrity_flush_buffers(ic, true);
2616 }
2617 
2618 static void integrity_writer(struct work_struct *w)
2619 {
2620 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2621 	unsigned int write_start, write_sections;
2622 	unsigned int prev_free_sectors;
2623 
2624 	spin_lock_irq(&ic->endio_wait.lock);
2625 	write_start = ic->committed_section;
2626 	write_sections = ic->n_committed_sections;
2627 	spin_unlock_irq(&ic->endio_wait.lock);
2628 
2629 	if (!write_sections)
2630 		return;
2631 
2632 	do_journal_write(ic, write_start, write_sections, false);
2633 
2634 	spin_lock_irq(&ic->endio_wait.lock);
2635 
2636 	ic->committed_section += write_sections;
2637 	wraparound_section(ic, &ic->committed_section);
2638 	ic->n_committed_sections -= write_sections;
2639 
2640 	prev_free_sectors = ic->free_sectors;
2641 	ic->free_sectors += write_sections * ic->journal_section_entries;
2642 	if (unlikely(!prev_free_sectors))
2643 		wake_up_locked(&ic->endio_wait);
2644 
2645 	spin_unlock_irq(&ic->endio_wait.lock);
2646 }
2647 
2648 static void recalc_write_super(struct dm_integrity_c *ic)
2649 {
2650 	int r;
2651 
2652 	dm_integrity_flush_buffers(ic, false);
2653 	if (dm_integrity_failed(ic))
2654 		return;
2655 
2656 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2657 	if (unlikely(r))
2658 		dm_integrity_io_error(ic, "writing superblock", r);
2659 }
2660 
2661 static void integrity_recalc(struct work_struct *w)
2662 {
2663 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2664 	struct dm_integrity_range range;
2665 	struct dm_io_request io_req;
2666 	struct dm_io_region io_loc;
2667 	sector_t area, offset;
2668 	sector_t metadata_block;
2669 	unsigned int metadata_offset;
2670 	sector_t logical_sector, n_sectors;
2671 	__u8 *t;
2672 	unsigned int i;
2673 	int r;
2674 	unsigned int super_counter = 0;
2675 
2676 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2677 
2678 	spin_lock_irq(&ic->endio_wait.lock);
2679 
2680 next_chunk:
2681 
2682 	if (unlikely(dm_post_suspending(ic->ti)))
2683 		goto unlock_ret;
2684 
2685 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2686 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2687 		if (ic->mode == 'B') {
2688 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2689 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2690 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2691 		}
2692 		goto unlock_ret;
2693 	}
2694 
2695 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2696 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2697 	if (!ic->meta_dev)
2698 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2699 
2700 	add_new_range_and_wait(ic, &range);
2701 	spin_unlock_irq(&ic->endio_wait.lock);
2702 	logical_sector = range.logical_sector;
2703 	n_sectors = range.n_sectors;
2704 
2705 	if (ic->mode == 'B') {
2706 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2707 			goto advance_and_next;
2708 
2709 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2710 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2711 			logical_sector += ic->sectors_per_block;
2712 			n_sectors -= ic->sectors_per_block;
2713 			cond_resched();
2714 		}
2715 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2716 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2717 			n_sectors -= ic->sectors_per_block;
2718 			cond_resched();
2719 		}
2720 		get_area_and_offset(ic, logical_sector, &area, &offset);
2721 	}
2722 
2723 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2724 
2725 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2726 		recalc_write_super(ic);
2727 		if (ic->mode == 'B')
2728 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2729 
2730 		super_counter = 0;
2731 	}
2732 
2733 	if (unlikely(dm_integrity_failed(ic)))
2734 		goto err;
2735 
2736 	io_req.bi_opf = REQ_OP_READ;
2737 	io_req.mem.type = DM_IO_VMA;
2738 	io_req.mem.ptr.addr = ic->recalc_buffer;
2739 	io_req.notify.fn = NULL;
2740 	io_req.client = ic->io;
2741 	io_loc.bdev = ic->dev->bdev;
2742 	io_loc.sector = get_data_sector(ic, area, offset);
2743 	io_loc.count = n_sectors;
2744 
2745 	r = dm_io(&io_req, 1, &io_loc, NULL);
2746 	if (unlikely(r)) {
2747 		dm_integrity_io_error(ic, "reading data", r);
2748 		goto err;
2749 	}
2750 
2751 	t = ic->recalc_tags;
2752 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2753 		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2754 		t += ic->tag_size;
2755 	}
2756 
2757 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2758 
2759 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2760 	if (unlikely(r)) {
2761 		dm_integrity_io_error(ic, "writing tags", r);
2762 		goto err;
2763 	}
2764 
2765 	if (ic->mode == 'B') {
2766 		sector_t start, end;
2767 
2768 		start = (range.logical_sector >>
2769 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2770 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2771 		end = ((range.logical_sector + range.n_sectors) >>
2772 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2773 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2774 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2775 	}
2776 
2777 advance_and_next:
2778 	cond_resched();
2779 
2780 	spin_lock_irq(&ic->endio_wait.lock);
2781 	remove_range_unlocked(ic, &range);
2782 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2783 	goto next_chunk;
2784 
2785 err:
2786 	remove_range(ic, &range);
2787 	return;
2788 
2789 unlock_ret:
2790 	spin_unlock_irq(&ic->endio_wait.lock);
2791 
2792 	recalc_write_super(ic);
2793 }
2794 
2795 static void bitmap_block_work(struct work_struct *w)
2796 {
2797 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2798 	struct dm_integrity_c *ic = bbs->ic;
2799 	struct bio *bio;
2800 	struct bio_list bio_queue;
2801 	struct bio_list waiting;
2802 
2803 	bio_list_init(&waiting);
2804 
2805 	spin_lock(&bbs->bio_queue_lock);
2806 	bio_queue = bbs->bio_queue;
2807 	bio_list_init(&bbs->bio_queue);
2808 	spin_unlock(&bbs->bio_queue_lock);
2809 
2810 	while ((bio = bio_list_pop(&bio_queue))) {
2811 		struct dm_integrity_io *dio;
2812 
2813 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2814 
2815 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2816 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2817 			remove_range(ic, &dio->range);
2818 			INIT_WORK(&dio->work, integrity_bio_wait);
2819 			queue_work(ic->offload_wq, &dio->work);
2820 		} else {
2821 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2822 					dio->range.n_sectors, BITMAP_OP_SET);
2823 			bio_list_add(&waiting, bio);
2824 		}
2825 	}
2826 
2827 	if (bio_list_empty(&waiting))
2828 		return;
2829 
2830 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2831 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2832 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2833 
2834 	while ((bio = bio_list_pop(&waiting))) {
2835 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2836 
2837 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2838 				dio->range.n_sectors, BITMAP_OP_SET);
2839 
2840 		remove_range(ic, &dio->range);
2841 		INIT_WORK(&dio->work, integrity_bio_wait);
2842 		queue_work(ic->offload_wq, &dio->work);
2843 	}
2844 
2845 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2846 }
2847 
2848 static void bitmap_flush_work(struct work_struct *work)
2849 {
2850 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2851 	struct dm_integrity_range range;
2852 	unsigned long limit;
2853 	struct bio *bio;
2854 
2855 	dm_integrity_flush_buffers(ic, false);
2856 
2857 	range.logical_sector = 0;
2858 	range.n_sectors = ic->provided_data_sectors;
2859 
2860 	spin_lock_irq(&ic->endio_wait.lock);
2861 	add_new_range_and_wait(ic, &range);
2862 	spin_unlock_irq(&ic->endio_wait.lock);
2863 
2864 	dm_integrity_flush_buffers(ic, true);
2865 
2866 	limit = ic->provided_data_sectors;
2867 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2868 		limit = le64_to_cpu(ic->sb->recalc_sector)
2869 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2870 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2871 	}
2872 	/*DEBUG_print("zeroing journal\n");*/
2873 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2874 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2875 
2876 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2877 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2878 
2879 	spin_lock_irq(&ic->endio_wait.lock);
2880 	remove_range_unlocked(ic, &range);
2881 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2882 		bio_endio(bio);
2883 		spin_unlock_irq(&ic->endio_wait.lock);
2884 		spin_lock_irq(&ic->endio_wait.lock);
2885 	}
2886 	spin_unlock_irq(&ic->endio_wait.lock);
2887 }
2888 
2889 
2890 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2891 			 unsigned int n_sections, unsigned char commit_seq)
2892 {
2893 	unsigned int i, j, n;
2894 
2895 	if (!n_sections)
2896 		return;
2897 
2898 	for (n = 0; n < n_sections; n++) {
2899 		i = start_section + n;
2900 		wraparound_section(ic, &i);
2901 		for (j = 0; j < ic->journal_section_sectors; j++) {
2902 			struct journal_sector *js = access_journal(ic, i, j);
2903 
2904 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2905 			memset(&js->sectors, 0, sizeof(js->sectors));
2906 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2907 		}
2908 		for (j = 0; j < ic->journal_section_entries; j++) {
2909 			struct journal_entry *je = access_journal_entry(ic, i, j);
2910 
2911 			journal_entry_set_unused(je);
2912 		}
2913 	}
2914 
2915 	write_journal(ic, start_section, n_sections);
2916 }
2917 
2918 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2919 {
2920 	unsigned char k;
2921 
2922 	for (k = 0; k < N_COMMIT_IDS; k++) {
2923 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2924 			return k;
2925 	}
2926 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2927 	return -EIO;
2928 }
2929 
2930 static void replay_journal(struct dm_integrity_c *ic)
2931 {
2932 	unsigned int i, j;
2933 	bool used_commit_ids[N_COMMIT_IDS];
2934 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
2935 	unsigned int write_start, write_sections;
2936 	unsigned int continue_section;
2937 	bool journal_empty;
2938 	unsigned char unused, last_used, want_commit_seq;
2939 
2940 	if (ic->mode == 'R')
2941 		return;
2942 
2943 	if (ic->journal_uptodate)
2944 		return;
2945 
2946 	last_used = 0;
2947 	write_start = 0;
2948 
2949 	if (!ic->just_formatted) {
2950 		DEBUG_print("reading journal\n");
2951 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2952 		if (ic->journal_io)
2953 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2954 		if (ic->journal_io) {
2955 			struct journal_completion crypt_comp;
2956 
2957 			crypt_comp.ic = ic;
2958 			init_completion(&crypt_comp.comp);
2959 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2960 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2961 			wait_for_completion(&crypt_comp.comp);
2962 		}
2963 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2964 	}
2965 
2966 	if (dm_integrity_failed(ic))
2967 		goto clear_journal;
2968 
2969 	journal_empty = true;
2970 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
2971 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2972 	for (i = 0; i < ic->journal_sections; i++) {
2973 		for (j = 0; j < ic->journal_section_sectors; j++) {
2974 			int k;
2975 			struct journal_sector *js = access_journal(ic, i, j);
2976 
2977 			k = find_commit_seq(ic, i, j, js->commit_id);
2978 			if (k < 0)
2979 				goto clear_journal;
2980 			used_commit_ids[k] = true;
2981 			max_commit_id_sections[k] = i;
2982 		}
2983 		if (journal_empty) {
2984 			for (j = 0; j < ic->journal_section_entries; j++) {
2985 				struct journal_entry *je = access_journal_entry(ic, i, j);
2986 
2987 				if (!journal_entry_is_unused(je)) {
2988 					journal_empty = false;
2989 					break;
2990 				}
2991 			}
2992 		}
2993 	}
2994 
2995 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2996 		unused = N_COMMIT_IDS - 1;
2997 		while (unused && !used_commit_ids[unused - 1])
2998 			unused--;
2999 	} else {
3000 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3001 			if (!used_commit_ids[unused])
3002 				break;
3003 		if (unused == N_COMMIT_IDS) {
3004 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3005 			goto clear_journal;
3006 		}
3007 	}
3008 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3009 		    unused, used_commit_ids[0], used_commit_ids[1],
3010 		    used_commit_ids[2], used_commit_ids[3]);
3011 
3012 	last_used = prev_commit_seq(unused);
3013 	want_commit_seq = prev_commit_seq(last_used);
3014 
3015 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3016 		journal_empty = true;
3017 
3018 	write_start = max_commit_id_sections[last_used] + 1;
3019 	if (unlikely(write_start >= ic->journal_sections))
3020 		want_commit_seq = next_commit_seq(want_commit_seq);
3021 	wraparound_section(ic, &write_start);
3022 
3023 	i = write_start;
3024 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3025 		for (j = 0; j < ic->journal_section_sectors; j++) {
3026 			struct journal_sector *js = access_journal(ic, i, j);
3027 
3028 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3029 				/*
3030 				 * This could be caused by crash during writing.
3031 				 * We won't replay the inconsistent part of the
3032 				 * journal.
3033 				 */
3034 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3035 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3036 				goto brk;
3037 			}
3038 		}
3039 		i++;
3040 		if (unlikely(i >= ic->journal_sections))
3041 			want_commit_seq = next_commit_seq(want_commit_seq);
3042 		wraparound_section(ic, &i);
3043 	}
3044 brk:
3045 
3046 	if (!journal_empty) {
3047 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3048 			    write_sections, write_start, want_commit_seq);
3049 		do_journal_write(ic, write_start, write_sections, true);
3050 	}
3051 
3052 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3053 		continue_section = write_start;
3054 		ic->commit_seq = want_commit_seq;
3055 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3056 	} else {
3057 		unsigned int s;
3058 		unsigned char erase_seq;
3059 
3060 clear_journal:
3061 		DEBUG_print("clearing journal\n");
3062 
3063 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3064 		s = write_start;
3065 		init_journal(ic, s, 1, erase_seq);
3066 		s++;
3067 		wraparound_section(ic, &s);
3068 		if (ic->journal_sections >= 2) {
3069 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3070 			s += ic->journal_sections - 2;
3071 			wraparound_section(ic, &s);
3072 			init_journal(ic, s, 1, erase_seq);
3073 		}
3074 
3075 		continue_section = 0;
3076 		ic->commit_seq = next_commit_seq(erase_seq);
3077 	}
3078 
3079 	ic->committed_section = continue_section;
3080 	ic->n_committed_sections = 0;
3081 
3082 	ic->uncommitted_section = continue_section;
3083 	ic->n_uncommitted_sections = 0;
3084 
3085 	ic->free_section = continue_section;
3086 	ic->free_section_entry = 0;
3087 	ic->free_sectors = ic->journal_entries;
3088 
3089 	ic->journal_tree_root = RB_ROOT;
3090 	for (i = 0; i < ic->journal_entries; i++)
3091 		init_journal_node(&ic->journal_tree[i]);
3092 }
3093 
3094 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3095 {
3096 	DEBUG_print("%s\n", __func__);
3097 
3098 	if (ic->mode == 'B') {
3099 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3100 		ic->synchronous_mode = 1;
3101 
3102 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3103 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3104 		flush_workqueue(ic->commit_wq);
3105 	}
3106 }
3107 
3108 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3109 {
3110 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3111 
3112 	DEBUG_print("%s\n", __func__);
3113 
3114 	dm_integrity_enter_synchronous_mode(ic);
3115 
3116 	return NOTIFY_DONE;
3117 }
3118 
3119 static void dm_integrity_postsuspend(struct dm_target *ti)
3120 {
3121 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3122 	int r;
3123 
3124 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3125 
3126 	del_timer_sync(&ic->autocommit_timer);
3127 
3128 	if (ic->recalc_wq)
3129 		drain_workqueue(ic->recalc_wq);
3130 
3131 	if (ic->mode == 'B')
3132 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3133 
3134 	queue_work(ic->commit_wq, &ic->commit_work);
3135 	drain_workqueue(ic->commit_wq);
3136 
3137 	if (ic->mode == 'J') {
3138 		queue_work(ic->writer_wq, &ic->writer_work);
3139 		drain_workqueue(ic->writer_wq);
3140 		dm_integrity_flush_buffers(ic, true);
3141 		if (ic->wrote_to_journal) {
3142 			init_journal(ic, ic->free_section,
3143 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3144 			if (ic->free_section) {
3145 				init_journal(ic, 0, ic->free_section,
3146 					     next_commit_seq(ic->commit_seq));
3147 			}
3148 		}
3149 	}
3150 
3151 	if (ic->mode == 'B') {
3152 		dm_integrity_flush_buffers(ic, true);
3153 #if 1
3154 		/* set to 0 to test bitmap replay code */
3155 		init_journal(ic, 0, ic->journal_sections, 0);
3156 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3157 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3158 		if (unlikely(r))
3159 			dm_integrity_io_error(ic, "writing superblock", r);
3160 #endif
3161 	}
3162 
3163 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3164 
3165 	ic->journal_uptodate = true;
3166 }
3167 
3168 static void dm_integrity_resume(struct dm_target *ti)
3169 {
3170 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3171 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3172 	int r;
3173 
3174 	DEBUG_print("resume\n");
3175 
3176 	ic->wrote_to_journal = false;
3177 
3178 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3179 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3180 		    ic->mode == 'B' &&
3181 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3182 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3183 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3184 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3185 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3186 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3187 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3188 		}
3189 
3190 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3191 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3192 		if (unlikely(r))
3193 			dm_integrity_io_error(ic, "writing superblock", r);
3194 	}
3195 
3196 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3197 		DEBUG_print("resume dirty_bitmap\n");
3198 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3199 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3200 		if (ic->mode == 'B') {
3201 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3202 			    !ic->reset_recalculate_flag) {
3203 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3204 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3205 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3206 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3207 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3208 					ic->sb->recalc_sector = cpu_to_le64(0);
3209 				}
3210 			} else {
3211 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3212 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3213 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3214 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3215 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3216 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3217 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3218 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3219 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3220 				ic->sb->recalc_sector = cpu_to_le64(0);
3221 			}
3222 		} else {
3223 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3224 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3225 			    ic->reset_recalculate_flag) {
3226 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3227 				ic->sb->recalc_sector = cpu_to_le64(0);
3228 			}
3229 			init_journal(ic, 0, ic->journal_sections, 0);
3230 			replay_journal(ic);
3231 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3232 		}
3233 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3234 		if (unlikely(r))
3235 			dm_integrity_io_error(ic, "writing superblock", r);
3236 	} else {
3237 		replay_journal(ic);
3238 		if (ic->reset_recalculate_flag) {
3239 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3240 			ic->sb->recalc_sector = cpu_to_le64(0);
3241 		}
3242 		if (ic->mode == 'B') {
3243 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3244 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3245 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3246 			if (unlikely(r))
3247 				dm_integrity_io_error(ic, "writing superblock", r);
3248 
3249 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3250 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3251 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3252 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3253 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3254 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3255 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3256 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3257 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3258 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3259 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3260 			}
3261 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3262 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3263 		}
3264 	}
3265 
3266 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3267 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3268 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3269 
3270 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3271 		if (recalc_pos < ic->provided_data_sectors) {
3272 			queue_work(ic->recalc_wq, &ic->recalc_work);
3273 		} else if (recalc_pos > ic->provided_data_sectors) {
3274 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3275 			recalc_write_super(ic);
3276 		}
3277 	}
3278 
3279 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3280 	ic->reboot_notifier.next = NULL;
3281 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3282 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3283 
3284 #if 0
3285 	/* set to 1 to stress test synchronous mode */
3286 	dm_integrity_enter_synchronous_mode(ic);
3287 #endif
3288 }
3289 
3290 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3291 				unsigned int status_flags, char *result, unsigned int maxlen)
3292 {
3293 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3294 	unsigned int arg_count;
3295 	size_t sz = 0;
3296 
3297 	switch (type) {
3298 	case STATUSTYPE_INFO:
3299 		DMEMIT("%llu %llu",
3300 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3301 			ic->provided_data_sectors);
3302 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3303 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3304 		else
3305 			DMEMIT(" -");
3306 		break;
3307 
3308 	case STATUSTYPE_TABLE: {
3309 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3310 
3311 		watermark_percentage += ic->journal_entries / 2;
3312 		do_div(watermark_percentage, ic->journal_entries);
3313 		arg_count = 3;
3314 		arg_count += !!ic->meta_dev;
3315 		arg_count += ic->sectors_per_block != 1;
3316 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3317 		arg_count += ic->reset_recalculate_flag;
3318 		arg_count += ic->discard;
3319 		arg_count += ic->mode == 'J';
3320 		arg_count += ic->mode == 'J';
3321 		arg_count += ic->mode == 'B';
3322 		arg_count += ic->mode == 'B';
3323 		arg_count += !!ic->internal_hash_alg.alg_string;
3324 		arg_count += !!ic->journal_crypt_alg.alg_string;
3325 		arg_count += !!ic->journal_mac_alg.alg_string;
3326 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3327 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3328 		arg_count += ic->legacy_recalculate;
3329 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3330 		       ic->tag_size, ic->mode, arg_count);
3331 		if (ic->meta_dev)
3332 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3333 		if (ic->sectors_per_block != 1)
3334 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3335 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3336 			DMEMIT(" recalculate");
3337 		if (ic->reset_recalculate_flag)
3338 			DMEMIT(" reset_recalculate");
3339 		if (ic->discard)
3340 			DMEMIT(" allow_discards");
3341 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3342 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3343 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3344 		if (ic->mode == 'J') {
3345 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3346 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3347 		}
3348 		if (ic->mode == 'B') {
3349 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3350 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3351 		}
3352 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3353 			DMEMIT(" fix_padding");
3354 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3355 			DMEMIT(" fix_hmac");
3356 		if (ic->legacy_recalculate)
3357 			DMEMIT(" legacy_recalculate");
3358 
3359 #define EMIT_ALG(a, n)							\
3360 		do {							\
3361 			if (ic->a.alg_string) {				\
3362 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3363 				if (ic->a.key_string)			\
3364 					DMEMIT(":%s", ic->a.key_string);\
3365 			}						\
3366 		} while (0)
3367 		EMIT_ALG(internal_hash_alg, "internal_hash");
3368 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3369 		EMIT_ALG(journal_mac_alg, "journal_mac");
3370 		break;
3371 	}
3372 	case STATUSTYPE_IMA:
3373 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3374 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3375 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3376 
3377 		if (ic->meta_dev)
3378 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3379 		if (ic->sectors_per_block != 1)
3380 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3381 
3382 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3383 		       'y' : 'n');
3384 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3385 		DMEMIT(",fix_padding=%c",
3386 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3387 		DMEMIT(",fix_hmac=%c",
3388 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3389 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3390 
3391 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3392 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3393 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3394 		DMEMIT(";");
3395 		break;
3396 	}
3397 }
3398 
3399 static int dm_integrity_iterate_devices(struct dm_target *ti,
3400 					iterate_devices_callout_fn fn, void *data)
3401 {
3402 	struct dm_integrity_c *ic = ti->private;
3403 
3404 	if (!ic->meta_dev)
3405 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3406 	else
3407 		return fn(ti, ic->dev, 0, ti->len, data);
3408 }
3409 
3410 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3411 {
3412 	struct dm_integrity_c *ic = ti->private;
3413 
3414 	if (ic->sectors_per_block > 1) {
3415 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3416 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3417 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3418 		limits->dma_alignment = limits->logical_block_size - 1;
3419 	}
3420 }
3421 
3422 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3423 {
3424 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3425 
3426 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3427 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3428 					 JOURNAL_ENTRY_ROUNDUP);
3429 
3430 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3431 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3432 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3433 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3434 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3435 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3436 }
3437 
3438 static int calculate_device_limits(struct dm_integrity_c *ic)
3439 {
3440 	__u64 initial_sectors;
3441 
3442 	calculate_journal_section_size(ic);
3443 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3444 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3445 		return -EINVAL;
3446 	ic->initial_sectors = initial_sectors;
3447 
3448 	if (!ic->meta_dev) {
3449 		sector_t last_sector, last_area, last_offset;
3450 
3451 		/* we have to maintain excessive padding for compatibility with existing volumes */
3452 		__u64 metadata_run_padding =
3453 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3454 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3455 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3456 
3457 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3458 					    metadata_run_padding) >> SECTOR_SHIFT;
3459 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3460 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3461 		else
3462 			ic->log2_metadata_run = -1;
3463 
3464 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3465 		last_sector = get_data_sector(ic, last_area, last_offset);
3466 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3467 			return -EINVAL;
3468 	} else {
3469 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3470 
3471 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3472 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3473 		meta_size <<= ic->log2_buffer_sectors;
3474 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3475 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3476 			return -EINVAL;
3477 		ic->metadata_run = 1;
3478 		ic->log2_metadata_run = 0;
3479 	}
3480 
3481 	return 0;
3482 }
3483 
3484 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3485 {
3486 	if (!ic->meta_dev) {
3487 		int test_bit;
3488 
3489 		ic->provided_data_sectors = 0;
3490 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3491 			__u64 prev_data_sectors = ic->provided_data_sectors;
3492 
3493 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3494 			if (calculate_device_limits(ic))
3495 				ic->provided_data_sectors = prev_data_sectors;
3496 		}
3497 	} else {
3498 		ic->provided_data_sectors = ic->data_device_sectors;
3499 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3500 	}
3501 }
3502 
3503 static int initialize_superblock(struct dm_integrity_c *ic,
3504 				 unsigned int journal_sectors, unsigned int interleave_sectors)
3505 {
3506 	unsigned int journal_sections;
3507 	int test_bit;
3508 
3509 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3510 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3511 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3512 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3513 	if (ic->journal_mac_alg.alg_string)
3514 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3515 
3516 	calculate_journal_section_size(ic);
3517 	journal_sections = journal_sectors / ic->journal_section_sectors;
3518 	if (!journal_sections)
3519 		journal_sections = 1;
3520 
3521 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3522 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3523 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3524 	}
3525 
3526 	if (!ic->meta_dev) {
3527 		if (ic->fix_padding)
3528 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3529 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3530 		if (!interleave_sectors)
3531 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3532 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3533 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3534 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3535 
3536 		get_provided_data_sectors(ic);
3537 		if (!ic->provided_data_sectors)
3538 			return -EINVAL;
3539 	} else {
3540 		ic->sb->log2_interleave_sectors = 0;
3541 
3542 		get_provided_data_sectors(ic);
3543 		if (!ic->provided_data_sectors)
3544 			return -EINVAL;
3545 
3546 try_smaller_buffer:
3547 		ic->sb->journal_sections = cpu_to_le32(0);
3548 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3549 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3550 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3551 
3552 			if (test_journal_sections > journal_sections)
3553 				continue;
3554 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3555 			if (calculate_device_limits(ic))
3556 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3557 
3558 		}
3559 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3560 			if (ic->log2_buffer_sectors > 3) {
3561 				ic->log2_buffer_sectors--;
3562 				goto try_smaller_buffer;
3563 			}
3564 			return -EINVAL;
3565 		}
3566 	}
3567 
3568 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3569 
3570 	sb_set_version(ic);
3571 
3572 	return 0;
3573 }
3574 
3575 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3576 {
3577 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3578 	struct blk_integrity bi;
3579 
3580 	memset(&bi, 0, sizeof(bi));
3581 	bi.profile = &dm_integrity_profile;
3582 	bi.tuple_size = ic->tag_size;
3583 	bi.tag_size = bi.tuple_size;
3584 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3585 
3586 	blk_integrity_register(disk, &bi);
3587 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3588 }
3589 
3590 static void dm_integrity_free_page_list(struct page_list *pl)
3591 {
3592 	unsigned int i;
3593 
3594 	if (!pl)
3595 		return;
3596 	for (i = 0; pl[i].page; i++)
3597 		__free_page(pl[i].page);
3598 	kvfree(pl);
3599 }
3600 
3601 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3602 {
3603 	struct page_list *pl;
3604 	unsigned int i;
3605 
3606 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3607 	if (!pl)
3608 		return NULL;
3609 
3610 	for (i = 0; i < n_pages; i++) {
3611 		pl[i].page = alloc_page(GFP_KERNEL);
3612 		if (!pl[i].page) {
3613 			dm_integrity_free_page_list(pl);
3614 			return NULL;
3615 		}
3616 		if (i)
3617 			pl[i - 1].next = &pl[i];
3618 	}
3619 	pl[i].page = NULL;
3620 	pl[i].next = NULL;
3621 
3622 	return pl;
3623 }
3624 
3625 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3626 {
3627 	unsigned int i;
3628 
3629 	for (i = 0; i < ic->journal_sections; i++)
3630 		kvfree(sl[i]);
3631 	kvfree(sl);
3632 }
3633 
3634 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3635 								   struct page_list *pl)
3636 {
3637 	struct scatterlist **sl;
3638 	unsigned int i;
3639 
3640 	sl = kvmalloc_array(ic->journal_sections,
3641 			    sizeof(struct scatterlist *),
3642 			    GFP_KERNEL | __GFP_ZERO);
3643 	if (!sl)
3644 		return NULL;
3645 
3646 	for (i = 0; i < ic->journal_sections; i++) {
3647 		struct scatterlist *s;
3648 		unsigned int start_index, start_offset;
3649 		unsigned int end_index, end_offset;
3650 		unsigned int n_pages;
3651 		unsigned int idx;
3652 
3653 		page_list_location(ic, i, 0, &start_index, &start_offset);
3654 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3655 				   &end_index, &end_offset);
3656 
3657 		n_pages = (end_index - start_index + 1);
3658 
3659 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3660 				   GFP_KERNEL);
3661 		if (!s) {
3662 			dm_integrity_free_journal_scatterlist(ic, sl);
3663 			return NULL;
3664 		}
3665 
3666 		sg_init_table(s, n_pages);
3667 		for (idx = start_index; idx <= end_index; idx++) {
3668 			char *va = lowmem_page_address(pl[idx].page);
3669 			unsigned int start = 0, end = PAGE_SIZE;
3670 
3671 			if (idx == start_index)
3672 				start = start_offset;
3673 			if (idx == end_index)
3674 				end = end_offset + (1 << SECTOR_SHIFT);
3675 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3676 		}
3677 
3678 		sl[i] = s;
3679 	}
3680 
3681 	return sl;
3682 }
3683 
3684 static void free_alg(struct alg_spec *a)
3685 {
3686 	kfree_sensitive(a->alg_string);
3687 	kfree_sensitive(a->key);
3688 	memset(a, 0, sizeof(*a));
3689 }
3690 
3691 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3692 {
3693 	char *k;
3694 
3695 	free_alg(a);
3696 
3697 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3698 	if (!a->alg_string)
3699 		goto nomem;
3700 
3701 	k = strchr(a->alg_string, ':');
3702 	if (k) {
3703 		*k = 0;
3704 		a->key_string = k + 1;
3705 		if (strlen(a->key_string) & 1)
3706 			goto inval;
3707 
3708 		a->key_size = strlen(a->key_string) / 2;
3709 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3710 		if (!a->key)
3711 			goto nomem;
3712 		if (hex2bin(a->key, a->key_string, a->key_size))
3713 			goto inval;
3714 	}
3715 
3716 	return 0;
3717 inval:
3718 	*error = error_inval;
3719 	return -EINVAL;
3720 nomem:
3721 	*error = "Out of memory for an argument";
3722 	return -ENOMEM;
3723 }
3724 
3725 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3726 		   char *error_alg, char *error_key)
3727 {
3728 	int r;
3729 
3730 	if (a->alg_string) {
3731 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3732 		if (IS_ERR(*hash)) {
3733 			*error = error_alg;
3734 			r = PTR_ERR(*hash);
3735 			*hash = NULL;
3736 			return r;
3737 		}
3738 
3739 		if (a->key) {
3740 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3741 			if (r) {
3742 				*error = error_key;
3743 				return r;
3744 			}
3745 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3746 			*error = error_key;
3747 			return -ENOKEY;
3748 		}
3749 	}
3750 
3751 	return 0;
3752 }
3753 
3754 static int create_journal(struct dm_integrity_c *ic, char **error)
3755 {
3756 	int r = 0;
3757 	unsigned int i;
3758 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3759 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3760 	struct skcipher_request *req = NULL;
3761 
3762 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3763 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3764 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3765 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3766 
3767 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3768 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3769 	journal_desc_size = journal_pages * sizeof(struct page_list);
3770 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3771 		*error = "Journal doesn't fit into memory";
3772 		r = -ENOMEM;
3773 		goto bad;
3774 	}
3775 	ic->journal_pages = journal_pages;
3776 
3777 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3778 	if (!ic->journal) {
3779 		*error = "Could not allocate memory for journal";
3780 		r = -ENOMEM;
3781 		goto bad;
3782 	}
3783 	if (ic->journal_crypt_alg.alg_string) {
3784 		unsigned int ivsize, blocksize;
3785 		struct journal_completion comp;
3786 
3787 		comp.ic = ic;
3788 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3789 		if (IS_ERR(ic->journal_crypt)) {
3790 			*error = "Invalid journal cipher";
3791 			r = PTR_ERR(ic->journal_crypt);
3792 			ic->journal_crypt = NULL;
3793 			goto bad;
3794 		}
3795 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3796 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3797 
3798 		if (ic->journal_crypt_alg.key) {
3799 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3800 						   ic->journal_crypt_alg.key_size);
3801 			if (r) {
3802 				*error = "Error setting encryption key";
3803 				goto bad;
3804 			}
3805 		}
3806 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3807 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3808 
3809 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3810 		if (!ic->journal_io) {
3811 			*error = "Could not allocate memory for journal io";
3812 			r = -ENOMEM;
3813 			goto bad;
3814 		}
3815 
3816 		if (blocksize == 1) {
3817 			struct scatterlist *sg;
3818 
3819 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3820 			if (!req) {
3821 				*error = "Could not allocate crypt request";
3822 				r = -ENOMEM;
3823 				goto bad;
3824 			}
3825 
3826 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3827 			if (!crypt_iv) {
3828 				*error = "Could not allocate iv";
3829 				r = -ENOMEM;
3830 				goto bad;
3831 			}
3832 
3833 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3834 			if (!ic->journal_xor) {
3835 				*error = "Could not allocate memory for journal xor";
3836 				r = -ENOMEM;
3837 				goto bad;
3838 			}
3839 
3840 			sg = kvmalloc_array(ic->journal_pages + 1,
3841 					    sizeof(struct scatterlist),
3842 					    GFP_KERNEL);
3843 			if (!sg) {
3844 				*error = "Unable to allocate sg list";
3845 				r = -ENOMEM;
3846 				goto bad;
3847 			}
3848 			sg_init_table(sg, ic->journal_pages + 1);
3849 			for (i = 0; i < ic->journal_pages; i++) {
3850 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3851 
3852 				clear_page(va);
3853 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3854 			}
3855 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3856 
3857 			skcipher_request_set_crypt(req, sg, sg,
3858 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3859 			init_completion(&comp.comp);
3860 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3861 			if (do_crypt(true, req, &comp))
3862 				wait_for_completion(&comp.comp);
3863 			kvfree(sg);
3864 			r = dm_integrity_failed(ic);
3865 			if (r) {
3866 				*error = "Unable to encrypt journal";
3867 				goto bad;
3868 			}
3869 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3870 
3871 			crypto_free_skcipher(ic->journal_crypt);
3872 			ic->journal_crypt = NULL;
3873 		} else {
3874 			unsigned int crypt_len = roundup(ivsize, blocksize);
3875 
3876 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3877 			if (!req) {
3878 				*error = "Could not allocate crypt request";
3879 				r = -ENOMEM;
3880 				goto bad;
3881 			}
3882 
3883 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3884 			if (!crypt_iv) {
3885 				*error = "Could not allocate iv";
3886 				r = -ENOMEM;
3887 				goto bad;
3888 			}
3889 
3890 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3891 			if (!crypt_data) {
3892 				*error = "Unable to allocate crypt data";
3893 				r = -ENOMEM;
3894 				goto bad;
3895 			}
3896 
3897 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3898 			if (!ic->journal_scatterlist) {
3899 				*error = "Unable to allocate sg list";
3900 				r = -ENOMEM;
3901 				goto bad;
3902 			}
3903 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3904 			if (!ic->journal_io_scatterlist) {
3905 				*error = "Unable to allocate sg list";
3906 				r = -ENOMEM;
3907 				goto bad;
3908 			}
3909 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3910 							 sizeof(struct skcipher_request *),
3911 							 GFP_KERNEL | __GFP_ZERO);
3912 			if (!ic->sk_requests) {
3913 				*error = "Unable to allocate sk requests";
3914 				r = -ENOMEM;
3915 				goto bad;
3916 			}
3917 			for (i = 0; i < ic->journal_sections; i++) {
3918 				struct scatterlist sg;
3919 				struct skcipher_request *section_req;
3920 				__le32 section_le = cpu_to_le32(i);
3921 
3922 				memset(crypt_iv, 0x00, ivsize);
3923 				memset(crypt_data, 0x00, crypt_len);
3924 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3925 
3926 				sg_init_one(&sg, crypt_data, crypt_len);
3927 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3928 				init_completion(&comp.comp);
3929 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3930 				if (do_crypt(true, req, &comp))
3931 					wait_for_completion(&comp.comp);
3932 
3933 				r = dm_integrity_failed(ic);
3934 				if (r) {
3935 					*error = "Unable to generate iv";
3936 					goto bad;
3937 				}
3938 
3939 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3940 				if (!section_req) {
3941 					*error = "Unable to allocate crypt request";
3942 					r = -ENOMEM;
3943 					goto bad;
3944 				}
3945 				section_req->iv = kmalloc_array(ivsize, 2,
3946 								GFP_KERNEL);
3947 				if (!section_req->iv) {
3948 					skcipher_request_free(section_req);
3949 					*error = "Unable to allocate iv";
3950 					r = -ENOMEM;
3951 					goto bad;
3952 				}
3953 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3954 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3955 				ic->sk_requests[i] = section_req;
3956 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3957 			}
3958 		}
3959 	}
3960 
3961 	for (i = 0; i < N_COMMIT_IDS; i++) {
3962 		unsigned int j;
3963 
3964 retest_commit_id:
3965 		for (j = 0; j < i; j++) {
3966 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3967 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3968 				goto retest_commit_id;
3969 			}
3970 		}
3971 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3972 	}
3973 
3974 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3975 	if (journal_tree_size > ULONG_MAX) {
3976 		*error = "Journal doesn't fit into memory";
3977 		r = -ENOMEM;
3978 		goto bad;
3979 	}
3980 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3981 	if (!ic->journal_tree) {
3982 		*error = "Could not allocate memory for journal tree";
3983 		r = -ENOMEM;
3984 	}
3985 bad:
3986 	kfree(crypt_data);
3987 	kfree(crypt_iv);
3988 	skcipher_request_free(req);
3989 
3990 	return r;
3991 }
3992 
3993 /*
3994  * Construct a integrity mapping
3995  *
3996  * Arguments:
3997  *	device
3998  *	offset from the start of the device
3999  *	tag size
4000  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4001  *	number of optional arguments
4002  *	optional arguments:
4003  *		journal_sectors
4004  *		interleave_sectors
4005  *		buffer_sectors
4006  *		journal_watermark
4007  *		commit_time
4008  *		meta_device
4009  *		block_size
4010  *		sectors_per_bit
4011  *		bitmap_flush_interval
4012  *		internal_hash
4013  *		journal_crypt
4014  *		journal_mac
4015  *		recalculate
4016  */
4017 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4018 {
4019 	struct dm_integrity_c *ic;
4020 	char dummy;
4021 	int r;
4022 	unsigned int extra_args;
4023 	struct dm_arg_set as;
4024 	static const struct dm_arg _args[] = {
4025 		{0, 18, "Invalid number of feature args"},
4026 	};
4027 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4028 	bool should_write_sb;
4029 	__u64 threshold;
4030 	unsigned long long start;
4031 	__s8 log2_sectors_per_bitmap_bit = -1;
4032 	__s8 log2_blocks_per_bitmap_bit;
4033 	__u64 bits_in_journal;
4034 	__u64 n_bitmap_bits;
4035 
4036 #define DIRECT_ARGUMENTS	4
4037 
4038 	if (argc <= DIRECT_ARGUMENTS) {
4039 		ti->error = "Invalid argument count";
4040 		return -EINVAL;
4041 	}
4042 
4043 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4044 	if (!ic) {
4045 		ti->error = "Cannot allocate integrity context";
4046 		return -ENOMEM;
4047 	}
4048 	ti->private = ic;
4049 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4050 	ic->ti = ti;
4051 
4052 	ic->in_progress = RB_ROOT;
4053 	INIT_LIST_HEAD(&ic->wait_list);
4054 	init_waitqueue_head(&ic->endio_wait);
4055 	bio_list_init(&ic->flush_bio_list);
4056 	init_waitqueue_head(&ic->copy_to_journal_wait);
4057 	init_completion(&ic->crypto_backoff);
4058 	atomic64_set(&ic->number_of_mismatches, 0);
4059 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4060 
4061 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4062 	if (r) {
4063 		ti->error = "Device lookup failed";
4064 		goto bad;
4065 	}
4066 
4067 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4068 		ti->error = "Invalid starting offset";
4069 		r = -EINVAL;
4070 		goto bad;
4071 	}
4072 	ic->start = start;
4073 
4074 	if (strcmp(argv[2], "-")) {
4075 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4076 			ti->error = "Invalid tag size";
4077 			r = -EINVAL;
4078 			goto bad;
4079 		}
4080 	}
4081 
4082 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4083 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4084 		ic->mode = argv[3][0];
4085 	} else {
4086 		ti->error = "Invalid mode (expecting J, B, D, R)";
4087 		r = -EINVAL;
4088 		goto bad;
4089 	}
4090 
4091 	journal_sectors = 0;
4092 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4093 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4094 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4095 	sync_msec = DEFAULT_SYNC_MSEC;
4096 	ic->sectors_per_block = 1;
4097 
4098 	as.argc = argc - DIRECT_ARGUMENTS;
4099 	as.argv = argv + DIRECT_ARGUMENTS;
4100 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4101 	if (r)
4102 		goto bad;
4103 
4104 	while (extra_args--) {
4105 		const char *opt_string;
4106 		unsigned int val;
4107 		unsigned long long llval;
4108 
4109 		opt_string = dm_shift_arg(&as);
4110 		if (!opt_string) {
4111 			r = -EINVAL;
4112 			ti->error = "Not enough feature arguments";
4113 			goto bad;
4114 		}
4115 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4116 			journal_sectors = val ? val : 1;
4117 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4118 			interleave_sectors = val;
4119 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4120 			buffer_sectors = val;
4121 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4122 			journal_watermark = val;
4123 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4124 			sync_msec = val;
4125 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4126 			if (ic->meta_dev) {
4127 				dm_put_device(ti, ic->meta_dev);
4128 				ic->meta_dev = NULL;
4129 			}
4130 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4131 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4132 			if (r) {
4133 				ti->error = "Device lookup failed";
4134 				goto bad;
4135 			}
4136 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4137 			if (val < 1 << SECTOR_SHIFT ||
4138 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4139 			    (val & (val - 1))) {
4140 				r = -EINVAL;
4141 				ti->error = "Invalid block_size argument";
4142 				goto bad;
4143 			}
4144 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4145 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4146 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4147 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4148 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4149 				r = -EINVAL;
4150 				ti->error = "Invalid bitmap_flush_interval argument";
4151 				goto bad;
4152 			}
4153 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4154 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4155 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4156 					    "Invalid internal_hash argument");
4157 			if (r)
4158 				goto bad;
4159 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4160 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4161 					    "Invalid journal_crypt argument");
4162 			if (r)
4163 				goto bad;
4164 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4165 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4166 					    "Invalid journal_mac argument");
4167 			if (r)
4168 				goto bad;
4169 		} else if (!strcmp(opt_string, "recalculate")) {
4170 			ic->recalculate_flag = true;
4171 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4172 			ic->recalculate_flag = true;
4173 			ic->reset_recalculate_flag = true;
4174 		} else if (!strcmp(opt_string, "allow_discards")) {
4175 			ic->discard = true;
4176 		} else if (!strcmp(opt_string, "fix_padding")) {
4177 			ic->fix_padding = true;
4178 		} else if (!strcmp(opt_string, "fix_hmac")) {
4179 			ic->fix_hmac = true;
4180 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4181 			ic->legacy_recalculate = true;
4182 		} else {
4183 			r = -EINVAL;
4184 			ti->error = "Invalid argument";
4185 			goto bad;
4186 		}
4187 	}
4188 
4189 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4190 	if (!ic->meta_dev)
4191 		ic->meta_device_sectors = ic->data_device_sectors;
4192 	else
4193 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4194 
4195 	if (!journal_sectors) {
4196 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4197 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4198 	}
4199 
4200 	if (!buffer_sectors)
4201 		buffer_sectors = 1;
4202 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4203 
4204 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4205 		    "Invalid internal hash", "Error setting internal hash key");
4206 	if (r)
4207 		goto bad;
4208 
4209 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4210 		    "Invalid journal mac", "Error setting journal mac key");
4211 	if (r)
4212 		goto bad;
4213 
4214 	if (!ic->tag_size) {
4215 		if (!ic->internal_hash) {
4216 			ti->error = "Unknown tag size";
4217 			r = -EINVAL;
4218 			goto bad;
4219 		}
4220 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4221 	}
4222 	if (ic->tag_size > MAX_TAG_SIZE) {
4223 		ti->error = "Too big tag size";
4224 		r = -EINVAL;
4225 		goto bad;
4226 	}
4227 	if (!(ic->tag_size & (ic->tag_size - 1)))
4228 		ic->log2_tag_size = __ffs(ic->tag_size);
4229 	else
4230 		ic->log2_tag_size = -1;
4231 
4232 	if (ic->mode == 'B' && !ic->internal_hash) {
4233 		r = -EINVAL;
4234 		ti->error = "Bitmap mode can be only used with internal hash";
4235 		goto bad;
4236 	}
4237 
4238 	if (ic->discard && !ic->internal_hash) {
4239 		r = -EINVAL;
4240 		ti->error = "Discard can be only used with internal hash";
4241 		goto bad;
4242 	}
4243 
4244 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4245 	ic->autocommit_msec = sync_msec;
4246 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4247 
4248 	ic->io = dm_io_client_create();
4249 	if (IS_ERR(ic->io)) {
4250 		r = PTR_ERR(ic->io);
4251 		ic->io = NULL;
4252 		ti->error = "Cannot allocate dm io";
4253 		goto bad;
4254 	}
4255 
4256 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4257 	if (r) {
4258 		ti->error = "Cannot allocate mempool";
4259 		goto bad;
4260 	}
4261 
4262 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4263 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4264 	if (!ic->metadata_wq) {
4265 		ti->error = "Cannot allocate workqueue";
4266 		r = -ENOMEM;
4267 		goto bad;
4268 	}
4269 
4270 	/*
4271 	 * If this workqueue were percpu, it would cause bio reordering
4272 	 * and reduced performance.
4273 	 */
4274 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4275 	if (!ic->wait_wq) {
4276 		ti->error = "Cannot allocate workqueue";
4277 		r = -ENOMEM;
4278 		goto bad;
4279 	}
4280 
4281 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4282 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4283 	if (!ic->offload_wq) {
4284 		ti->error = "Cannot allocate workqueue";
4285 		r = -ENOMEM;
4286 		goto bad;
4287 	}
4288 
4289 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4290 	if (!ic->commit_wq) {
4291 		ti->error = "Cannot allocate workqueue";
4292 		r = -ENOMEM;
4293 		goto bad;
4294 	}
4295 	INIT_WORK(&ic->commit_work, integrity_commit);
4296 
4297 	if (ic->mode == 'J' || ic->mode == 'B') {
4298 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4299 		if (!ic->writer_wq) {
4300 			ti->error = "Cannot allocate workqueue";
4301 			r = -ENOMEM;
4302 			goto bad;
4303 		}
4304 		INIT_WORK(&ic->writer_work, integrity_writer);
4305 	}
4306 
4307 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4308 	if (!ic->sb) {
4309 		r = -ENOMEM;
4310 		ti->error = "Cannot allocate superblock area";
4311 		goto bad;
4312 	}
4313 
4314 	r = sync_rw_sb(ic, REQ_OP_READ);
4315 	if (r) {
4316 		ti->error = "Error reading superblock";
4317 		goto bad;
4318 	}
4319 	should_write_sb = false;
4320 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4321 		if (ic->mode != 'R') {
4322 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4323 				r = -EINVAL;
4324 				ti->error = "The device is not initialized";
4325 				goto bad;
4326 			}
4327 		}
4328 
4329 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4330 		if (r) {
4331 			ti->error = "Could not initialize superblock";
4332 			goto bad;
4333 		}
4334 		if (ic->mode != 'R')
4335 			should_write_sb = true;
4336 	}
4337 
4338 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4339 		r = -EINVAL;
4340 		ti->error = "Unknown version";
4341 		goto bad;
4342 	}
4343 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4344 		r = -EINVAL;
4345 		ti->error = "Tag size doesn't match the information in superblock";
4346 		goto bad;
4347 	}
4348 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4349 		r = -EINVAL;
4350 		ti->error = "Block size doesn't match the information in superblock";
4351 		goto bad;
4352 	}
4353 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4354 		r = -EINVAL;
4355 		ti->error = "Corrupted superblock, journal_sections is 0";
4356 		goto bad;
4357 	}
4358 	/* make sure that ti->max_io_len doesn't overflow */
4359 	if (!ic->meta_dev) {
4360 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4361 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4362 			r = -EINVAL;
4363 			ti->error = "Invalid interleave_sectors in the superblock";
4364 			goto bad;
4365 		}
4366 	} else {
4367 		if (ic->sb->log2_interleave_sectors) {
4368 			r = -EINVAL;
4369 			ti->error = "Invalid interleave_sectors in the superblock";
4370 			goto bad;
4371 		}
4372 	}
4373 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4374 		r = -EINVAL;
4375 		ti->error = "Journal mac mismatch";
4376 		goto bad;
4377 	}
4378 
4379 	get_provided_data_sectors(ic);
4380 	if (!ic->provided_data_sectors) {
4381 		r = -EINVAL;
4382 		ti->error = "The device is too small";
4383 		goto bad;
4384 	}
4385 
4386 try_smaller_buffer:
4387 	r = calculate_device_limits(ic);
4388 	if (r) {
4389 		if (ic->meta_dev) {
4390 			if (ic->log2_buffer_sectors > 3) {
4391 				ic->log2_buffer_sectors--;
4392 				goto try_smaller_buffer;
4393 			}
4394 		}
4395 		ti->error = "The device is too small";
4396 		goto bad;
4397 	}
4398 
4399 	if (log2_sectors_per_bitmap_bit < 0)
4400 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4401 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4402 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4403 
4404 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4405 	if (bits_in_journal > UINT_MAX)
4406 		bits_in_journal = UINT_MAX;
4407 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4408 		log2_sectors_per_bitmap_bit++;
4409 
4410 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4411 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4412 	if (should_write_sb)
4413 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4414 
4415 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4416 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4417 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4418 
4419 	if (!ic->meta_dev)
4420 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4421 
4422 	if (ti->len > ic->provided_data_sectors) {
4423 		r = -EINVAL;
4424 		ti->error = "Not enough provided sectors for requested mapping size";
4425 		goto bad;
4426 	}
4427 
4428 
4429 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4430 	threshold += 50;
4431 	do_div(threshold, 100);
4432 	ic->free_sectors_threshold = threshold;
4433 
4434 	DEBUG_print("initialized:\n");
4435 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4436 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4437 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4438 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4439 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4440 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4441 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4442 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4443 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4444 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4445 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4446 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4447 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4448 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4449 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4450 
4451 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4452 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4453 		ic->sb->recalc_sector = cpu_to_le64(0);
4454 	}
4455 
4456 	if (ic->internal_hash) {
4457 		size_t recalc_tags_size;
4458 
4459 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4460 		if (!ic->recalc_wq) {
4461 			ti->error = "Cannot allocate workqueue";
4462 			r = -ENOMEM;
4463 			goto bad;
4464 		}
4465 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4466 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4467 		if (!ic->recalc_buffer) {
4468 			ti->error = "Cannot allocate buffer for recalculating";
4469 			r = -ENOMEM;
4470 			goto bad;
4471 		}
4472 		recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4473 		if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4474 			recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4475 		ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4476 		if (!ic->recalc_tags) {
4477 			ti->error = "Cannot allocate tags for recalculating";
4478 			r = -ENOMEM;
4479 			goto bad;
4480 		}
4481 	} else {
4482 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4483 			ti->error = "Recalculate can only be specified with internal_hash";
4484 			r = -EINVAL;
4485 			goto bad;
4486 		}
4487 	}
4488 
4489 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4490 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4491 	    dm_integrity_disable_recalculate(ic)) {
4492 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4493 		r = -EOPNOTSUPP;
4494 		goto bad;
4495 	}
4496 
4497 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4498 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4499 	if (IS_ERR(ic->bufio)) {
4500 		r = PTR_ERR(ic->bufio);
4501 		ti->error = "Cannot initialize dm-bufio";
4502 		ic->bufio = NULL;
4503 		goto bad;
4504 	}
4505 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4506 
4507 	if (ic->mode != 'R') {
4508 		r = create_journal(ic, &ti->error);
4509 		if (r)
4510 			goto bad;
4511 
4512 	}
4513 
4514 	if (ic->mode == 'B') {
4515 		unsigned int i;
4516 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4517 
4518 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4519 		if (!ic->recalc_bitmap) {
4520 			r = -ENOMEM;
4521 			goto bad;
4522 		}
4523 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4524 		if (!ic->may_write_bitmap) {
4525 			r = -ENOMEM;
4526 			goto bad;
4527 		}
4528 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4529 		if (!ic->bbs) {
4530 			r = -ENOMEM;
4531 			goto bad;
4532 		}
4533 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4534 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4535 			struct bitmap_block_status *bbs = &ic->bbs[i];
4536 			unsigned int sector, pl_index, pl_offset;
4537 
4538 			INIT_WORK(&bbs->work, bitmap_block_work);
4539 			bbs->ic = ic;
4540 			bbs->idx = i;
4541 			bio_list_init(&bbs->bio_queue);
4542 			spin_lock_init(&bbs->bio_queue_lock);
4543 
4544 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4545 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4546 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4547 
4548 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4549 		}
4550 	}
4551 
4552 	if (should_write_sb) {
4553 		init_journal(ic, 0, ic->journal_sections, 0);
4554 		r = dm_integrity_failed(ic);
4555 		if (unlikely(r)) {
4556 			ti->error = "Error initializing journal";
4557 			goto bad;
4558 		}
4559 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4560 		if (r) {
4561 			ti->error = "Error initializing superblock";
4562 			goto bad;
4563 		}
4564 		ic->just_formatted = true;
4565 	}
4566 
4567 	if (!ic->meta_dev) {
4568 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4569 		if (r)
4570 			goto bad;
4571 	}
4572 	if (ic->mode == 'B') {
4573 		unsigned int max_io_len;
4574 
4575 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4576 		if (!max_io_len)
4577 			max_io_len = 1U << 31;
4578 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4579 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4580 			r = dm_set_target_max_io_len(ti, max_io_len);
4581 			if (r)
4582 				goto bad;
4583 		}
4584 	}
4585 
4586 	if (!ic->internal_hash)
4587 		dm_integrity_set(ti, ic);
4588 
4589 	ti->num_flush_bios = 1;
4590 	ti->flush_supported = true;
4591 	if (ic->discard)
4592 		ti->num_discard_bios = 1;
4593 
4594 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4595 	return 0;
4596 
4597 bad:
4598 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4599 	dm_integrity_dtr(ti);
4600 	return r;
4601 }
4602 
4603 static void dm_integrity_dtr(struct dm_target *ti)
4604 {
4605 	struct dm_integrity_c *ic = ti->private;
4606 
4607 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4608 	BUG_ON(!list_empty(&ic->wait_list));
4609 
4610 	if (ic->mode == 'B')
4611 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4612 	if (ic->metadata_wq)
4613 		destroy_workqueue(ic->metadata_wq);
4614 	if (ic->wait_wq)
4615 		destroy_workqueue(ic->wait_wq);
4616 	if (ic->offload_wq)
4617 		destroy_workqueue(ic->offload_wq);
4618 	if (ic->commit_wq)
4619 		destroy_workqueue(ic->commit_wq);
4620 	if (ic->writer_wq)
4621 		destroy_workqueue(ic->writer_wq);
4622 	if (ic->recalc_wq)
4623 		destroy_workqueue(ic->recalc_wq);
4624 	vfree(ic->recalc_buffer);
4625 	kvfree(ic->recalc_tags);
4626 	kvfree(ic->bbs);
4627 	if (ic->bufio)
4628 		dm_bufio_client_destroy(ic->bufio);
4629 	mempool_exit(&ic->journal_io_mempool);
4630 	if (ic->io)
4631 		dm_io_client_destroy(ic->io);
4632 	if (ic->dev)
4633 		dm_put_device(ti, ic->dev);
4634 	if (ic->meta_dev)
4635 		dm_put_device(ti, ic->meta_dev);
4636 	dm_integrity_free_page_list(ic->journal);
4637 	dm_integrity_free_page_list(ic->journal_io);
4638 	dm_integrity_free_page_list(ic->journal_xor);
4639 	dm_integrity_free_page_list(ic->recalc_bitmap);
4640 	dm_integrity_free_page_list(ic->may_write_bitmap);
4641 	if (ic->journal_scatterlist)
4642 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4643 	if (ic->journal_io_scatterlist)
4644 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4645 	if (ic->sk_requests) {
4646 		unsigned int i;
4647 
4648 		for (i = 0; i < ic->journal_sections; i++) {
4649 			struct skcipher_request *req;
4650 
4651 			req = ic->sk_requests[i];
4652 			if (req) {
4653 				kfree_sensitive(req->iv);
4654 				skcipher_request_free(req);
4655 			}
4656 		}
4657 		kvfree(ic->sk_requests);
4658 	}
4659 	kvfree(ic->journal_tree);
4660 	if (ic->sb)
4661 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4662 
4663 	if (ic->internal_hash)
4664 		crypto_free_shash(ic->internal_hash);
4665 	free_alg(&ic->internal_hash_alg);
4666 
4667 	if (ic->journal_crypt)
4668 		crypto_free_skcipher(ic->journal_crypt);
4669 	free_alg(&ic->journal_crypt_alg);
4670 
4671 	if (ic->journal_mac)
4672 		crypto_free_shash(ic->journal_mac);
4673 	free_alg(&ic->journal_mac_alg);
4674 
4675 	kfree(ic);
4676 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4677 }
4678 
4679 static struct target_type integrity_target = {
4680 	.name			= "integrity",
4681 	.version		= {1, 10, 0},
4682 	.module			= THIS_MODULE,
4683 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4684 	.ctr			= dm_integrity_ctr,
4685 	.dtr			= dm_integrity_dtr,
4686 	.map			= dm_integrity_map,
4687 	.postsuspend		= dm_integrity_postsuspend,
4688 	.resume			= dm_integrity_resume,
4689 	.status			= dm_integrity_status,
4690 	.iterate_devices	= dm_integrity_iterate_devices,
4691 	.io_hints		= dm_integrity_io_hints,
4692 };
4693 
4694 static int __init dm_integrity_init(void)
4695 {
4696 	int r;
4697 
4698 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4699 					     sizeof(struct journal_io), 0, 0, NULL);
4700 	if (!journal_io_cache) {
4701 		DMERR("can't allocate journal io cache");
4702 		return -ENOMEM;
4703 	}
4704 
4705 	r = dm_register_target(&integrity_target);
4706 
4707 	if (r < 0)
4708 		DMERR("register failed %d", r);
4709 
4710 	return r;
4711 }
4712 
4713 static void __exit dm_integrity_exit(void)
4714 {
4715 	dm_unregister_target(&integrity_target);
4716 	kmem_cache_destroy(journal_io_cache);
4717 }
4718 
4719 module_init(dm_integrity_init);
4720 module_exit(dm_integrity_exit);
4721 
4722 MODULE_AUTHOR("Milan Broz");
4723 MODULE_AUTHOR("Mikulas Patocka");
4724 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4725 MODULE_LICENSE("GPL");
4726