1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/compiler.h> 10 #include <linux/module.h> 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/vmalloc.h> 14 #include <linux/sort.h> 15 #include <linux/rbtree.h> 16 #include <linux/delay.h> 17 #include <linux/random.h> 18 #include <linux/reboot.h> 19 #include <crypto/hash.h> 20 #include <crypto/skcipher.h> 21 #include <linux/async_tx.h> 22 #include <linux/dm-bufio.h> 23 24 #define DM_MSG_PREFIX "integrity" 25 26 #define DEFAULT_INTERLEAVE_SECTORS 32768 27 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 28 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 29 #define DEFAULT_BUFFER_SECTORS 128 30 #define DEFAULT_JOURNAL_WATERMARK 50 31 #define DEFAULT_SYNC_MSEC 10000 32 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 33 #define MIN_LOG2_INTERLEAVE_SECTORS 3 34 #define MAX_LOG2_INTERLEAVE_SECTORS 31 35 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 36 #define RECALC_SECTORS 8192 37 #define RECALC_WRITE_SUPER 16 38 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 39 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 40 41 /* 42 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 43 * so it should not be enabled in the official kernel 44 */ 45 //#define DEBUG_PRINT 46 //#define INTERNAL_VERIFY 47 48 /* 49 * On disk structures 50 */ 51 52 #define SB_MAGIC "integrt" 53 #define SB_VERSION_1 1 54 #define SB_VERSION_2 2 55 #define SB_VERSION_3 3 56 #define SB_SECTORS 8 57 #define MAX_SECTORS_PER_BLOCK 8 58 59 struct superblock { 60 __u8 magic[8]; 61 __u8 version; 62 __u8 log2_interleave_sectors; 63 __u16 integrity_tag_size; 64 __u32 journal_sections; 65 __u64 provided_data_sectors; /* userspace uses this value */ 66 __u32 flags; 67 __u8 log2_sectors_per_block; 68 __u8 log2_blocks_per_bitmap_bit; 69 __u8 pad[2]; 70 __u64 recalc_sector; 71 }; 72 73 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 74 #define SB_FLAG_RECALCULATING 0x2 75 #define SB_FLAG_DIRTY_BITMAP 0x4 76 77 #define JOURNAL_ENTRY_ROUNDUP 8 78 79 typedef __u64 commit_id_t; 80 #define JOURNAL_MAC_PER_SECTOR 8 81 82 struct journal_entry { 83 union { 84 struct { 85 __u32 sector_lo; 86 __u32 sector_hi; 87 } s; 88 __u64 sector; 89 } u; 90 commit_id_t last_bytes[0]; 91 /* __u8 tag[0]; */ 92 }; 93 94 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 95 96 #if BITS_PER_LONG == 64 97 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 98 #else 99 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 100 #endif 101 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 102 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 103 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 104 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 105 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 106 107 #define JOURNAL_BLOCK_SECTORS 8 108 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 109 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 110 111 struct journal_sector { 112 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 113 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 114 commit_id_t commit_id; 115 }; 116 117 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 118 119 #define METADATA_PADDING_SECTORS 8 120 121 #define N_COMMIT_IDS 4 122 123 static unsigned char prev_commit_seq(unsigned char seq) 124 { 125 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 126 } 127 128 static unsigned char next_commit_seq(unsigned char seq) 129 { 130 return (seq + 1) % N_COMMIT_IDS; 131 } 132 133 /* 134 * In-memory structures 135 */ 136 137 struct journal_node { 138 struct rb_node node; 139 sector_t sector; 140 }; 141 142 struct alg_spec { 143 char *alg_string; 144 char *key_string; 145 __u8 *key; 146 unsigned key_size; 147 }; 148 149 struct dm_integrity_c { 150 struct dm_dev *dev; 151 struct dm_dev *meta_dev; 152 unsigned tag_size; 153 __s8 log2_tag_size; 154 sector_t start; 155 mempool_t journal_io_mempool; 156 struct dm_io_client *io; 157 struct dm_bufio_client *bufio; 158 struct workqueue_struct *metadata_wq; 159 struct superblock *sb; 160 unsigned journal_pages; 161 unsigned n_bitmap_blocks; 162 163 struct page_list *journal; 164 struct page_list *journal_io; 165 struct page_list *journal_xor; 166 struct page_list *recalc_bitmap; 167 struct page_list *may_write_bitmap; 168 struct bitmap_block_status *bbs; 169 unsigned bitmap_flush_interval; 170 int synchronous_mode; 171 struct bio_list synchronous_bios; 172 struct delayed_work bitmap_flush_work; 173 174 struct crypto_skcipher *journal_crypt; 175 struct scatterlist **journal_scatterlist; 176 struct scatterlist **journal_io_scatterlist; 177 struct skcipher_request **sk_requests; 178 179 struct crypto_shash *journal_mac; 180 181 struct journal_node *journal_tree; 182 struct rb_root journal_tree_root; 183 184 sector_t provided_data_sectors; 185 186 unsigned short journal_entry_size; 187 unsigned char journal_entries_per_sector; 188 unsigned char journal_section_entries; 189 unsigned short journal_section_sectors; 190 unsigned journal_sections; 191 unsigned journal_entries; 192 sector_t data_device_sectors; 193 sector_t meta_device_sectors; 194 unsigned initial_sectors; 195 unsigned metadata_run; 196 __s8 log2_metadata_run; 197 __u8 log2_buffer_sectors; 198 __u8 sectors_per_block; 199 __u8 log2_blocks_per_bitmap_bit; 200 201 unsigned char mode; 202 int suspending; 203 204 int failed; 205 206 struct crypto_shash *internal_hash; 207 208 /* these variables are locked with endio_wait.lock */ 209 struct rb_root in_progress; 210 struct list_head wait_list; 211 wait_queue_head_t endio_wait; 212 struct workqueue_struct *wait_wq; 213 214 unsigned char commit_seq; 215 commit_id_t commit_ids[N_COMMIT_IDS]; 216 217 unsigned committed_section; 218 unsigned n_committed_sections; 219 220 unsigned uncommitted_section; 221 unsigned n_uncommitted_sections; 222 223 unsigned free_section; 224 unsigned char free_section_entry; 225 unsigned free_sectors; 226 227 unsigned free_sectors_threshold; 228 229 struct workqueue_struct *commit_wq; 230 struct work_struct commit_work; 231 232 struct workqueue_struct *writer_wq; 233 struct work_struct writer_work; 234 235 struct workqueue_struct *recalc_wq; 236 struct work_struct recalc_work; 237 u8 *recalc_buffer; 238 u8 *recalc_tags; 239 240 struct bio_list flush_bio_list; 241 242 unsigned long autocommit_jiffies; 243 struct timer_list autocommit_timer; 244 unsigned autocommit_msec; 245 246 wait_queue_head_t copy_to_journal_wait; 247 248 struct completion crypto_backoff; 249 250 bool journal_uptodate; 251 bool just_formatted; 252 bool recalculate_flag; 253 254 struct alg_spec internal_hash_alg; 255 struct alg_spec journal_crypt_alg; 256 struct alg_spec journal_mac_alg; 257 258 atomic64_t number_of_mismatches; 259 260 struct notifier_block reboot_notifier; 261 }; 262 263 struct dm_integrity_range { 264 sector_t logical_sector; 265 sector_t n_sectors; 266 bool waiting; 267 union { 268 struct rb_node node; 269 struct { 270 struct task_struct *task; 271 struct list_head wait_entry; 272 }; 273 }; 274 }; 275 276 struct dm_integrity_io { 277 struct work_struct work; 278 279 struct dm_integrity_c *ic; 280 bool write; 281 bool fua; 282 283 struct dm_integrity_range range; 284 285 sector_t metadata_block; 286 unsigned metadata_offset; 287 288 atomic_t in_flight; 289 blk_status_t bi_status; 290 291 struct completion *completion; 292 293 struct gendisk *orig_bi_disk; 294 u8 orig_bi_partno; 295 bio_end_io_t *orig_bi_end_io; 296 struct bio_integrity_payload *orig_bi_integrity; 297 struct bvec_iter orig_bi_iter; 298 }; 299 300 struct journal_completion { 301 struct dm_integrity_c *ic; 302 atomic_t in_flight; 303 struct completion comp; 304 }; 305 306 struct journal_io { 307 struct dm_integrity_range range; 308 struct journal_completion *comp; 309 }; 310 311 struct bitmap_block_status { 312 struct work_struct work; 313 struct dm_integrity_c *ic; 314 unsigned idx; 315 unsigned long *bitmap; 316 struct bio_list bio_queue; 317 spinlock_t bio_queue_lock; 318 319 }; 320 321 static struct kmem_cache *journal_io_cache; 322 323 #define JOURNAL_IO_MEMPOOL 32 324 325 #ifdef DEBUG_PRINT 326 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 327 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 328 { 329 va_list args; 330 va_start(args, msg); 331 vprintk(msg, args); 332 va_end(args); 333 if (len) 334 pr_cont(":"); 335 while (len) { 336 pr_cont(" %02x", *bytes); 337 bytes++; 338 len--; 339 } 340 pr_cont("\n"); 341 } 342 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 343 #else 344 #define DEBUG_print(x, ...) do { } while (0) 345 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 346 #endif 347 348 /* 349 * DM Integrity profile, protection is performed layer above (dm-crypt) 350 */ 351 static const struct blk_integrity_profile dm_integrity_profile = { 352 .name = "DM-DIF-EXT-TAG", 353 .generate_fn = NULL, 354 .verify_fn = NULL, 355 }; 356 357 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 358 static void integrity_bio_wait(struct work_struct *w); 359 static void dm_integrity_dtr(struct dm_target *ti); 360 361 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 362 { 363 if (err == -EILSEQ) 364 atomic64_inc(&ic->number_of_mismatches); 365 if (!cmpxchg(&ic->failed, 0, err)) 366 DMERR("Error on %s: %d", msg, err); 367 } 368 369 static int dm_integrity_failed(struct dm_integrity_c *ic) 370 { 371 return READ_ONCE(ic->failed); 372 } 373 374 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 375 unsigned j, unsigned char seq) 376 { 377 /* 378 * Xor the number with section and sector, so that if a piece of 379 * journal is written at wrong place, it is detected. 380 */ 381 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 382 } 383 384 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 385 sector_t *area, sector_t *offset) 386 { 387 if (!ic->meta_dev) { 388 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 389 *area = data_sector >> log2_interleave_sectors; 390 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 391 } else { 392 *area = 0; 393 *offset = data_sector; 394 } 395 } 396 397 #define sector_to_block(ic, n) \ 398 do { \ 399 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 400 (n) >>= (ic)->sb->log2_sectors_per_block; \ 401 } while (0) 402 403 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 404 sector_t offset, unsigned *metadata_offset) 405 { 406 __u64 ms; 407 unsigned mo; 408 409 ms = area << ic->sb->log2_interleave_sectors; 410 if (likely(ic->log2_metadata_run >= 0)) 411 ms += area << ic->log2_metadata_run; 412 else 413 ms += area * ic->metadata_run; 414 ms >>= ic->log2_buffer_sectors; 415 416 sector_to_block(ic, offset); 417 418 if (likely(ic->log2_tag_size >= 0)) { 419 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 420 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 421 } else { 422 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 423 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 424 } 425 *metadata_offset = mo; 426 return ms; 427 } 428 429 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 430 { 431 sector_t result; 432 433 if (ic->meta_dev) 434 return offset; 435 436 result = area << ic->sb->log2_interleave_sectors; 437 if (likely(ic->log2_metadata_run >= 0)) 438 result += (area + 1) << ic->log2_metadata_run; 439 else 440 result += (area + 1) * ic->metadata_run; 441 442 result += (sector_t)ic->initial_sectors + offset; 443 result += ic->start; 444 445 return result; 446 } 447 448 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 449 { 450 if (unlikely(*sec_ptr >= ic->journal_sections)) 451 *sec_ptr -= ic->journal_sections; 452 } 453 454 static void sb_set_version(struct dm_integrity_c *ic) 455 { 456 if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 457 ic->sb->version = SB_VERSION_3; 458 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 459 ic->sb->version = SB_VERSION_2; 460 else 461 ic->sb->version = SB_VERSION_1; 462 } 463 464 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 465 { 466 struct dm_io_request io_req; 467 struct dm_io_region io_loc; 468 469 io_req.bi_op = op; 470 io_req.bi_op_flags = op_flags; 471 io_req.mem.type = DM_IO_KMEM; 472 io_req.mem.ptr.addr = ic->sb; 473 io_req.notify.fn = NULL; 474 io_req.client = ic->io; 475 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 476 io_loc.sector = ic->start; 477 io_loc.count = SB_SECTORS; 478 479 if (op == REQ_OP_WRITE) 480 sb_set_version(ic); 481 482 return dm_io(&io_req, 1, &io_loc, NULL); 483 } 484 485 #define BITMAP_OP_TEST_ALL_SET 0 486 #define BITMAP_OP_TEST_ALL_CLEAR 1 487 #define BITMAP_OP_SET 2 488 #define BITMAP_OP_CLEAR 3 489 490 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 491 sector_t sector, sector_t n_sectors, int mode) 492 { 493 unsigned long bit, end_bit, this_end_bit, page, end_page; 494 unsigned long *data; 495 496 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 497 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 498 (unsigned long long)sector, 499 (unsigned long long)n_sectors, 500 ic->sb->log2_sectors_per_block, 501 ic->log2_blocks_per_bitmap_bit, 502 mode); 503 BUG(); 504 } 505 506 if (unlikely(!n_sectors)) 507 return true; 508 509 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 510 end_bit = (sector + n_sectors - 1) >> 511 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 512 513 page = bit / (PAGE_SIZE * 8); 514 bit %= PAGE_SIZE * 8; 515 516 end_page = end_bit / (PAGE_SIZE * 8); 517 end_bit %= PAGE_SIZE * 8; 518 519 repeat: 520 if (page < end_page) { 521 this_end_bit = PAGE_SIZE * 8 - 1; 522 } else { 523 this_end_bit = end_bit; 524 } 525 526 data = lowmem_page_address(bitmap[page].page); 527 528 if (mode == BITMAP_OP_TEST_ALL_SET) { 529 while (bit <= this_end_bit) { 530 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 531 do { 532 if (data[bit / BITS_PER_LONG] != -1) 533 return false; 534 bit += BITS_PER_LONG; 535 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 536 continue; 537 } 538 if (!test_bit(bit, data)) 539 return false; 540 bit++; 541 } 542 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 543 while (bit <= this_end_bit) { 544 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 545 do { 546 if (data[bit / BITS_PER_LONG] != 0) 547 return false; 548 bit += BITS_PER_LONG; 549 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 550 continue; 551 } 552 if (test_bit(bit, data)) 553 return false; 554 bit++; 555 } 556 } else if (mode == BITMAP_OP_SET) { 557 while (bit <= this_end_bit) { 558 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 559 do { 560 data[bit / BITS_PER_LONG] = -1; 561 bit += BITS_PER_LONG; 562 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 563 continue; 564 } 565 __set_bit(bit, data); 566 bit++; 567 } 568 } else if (mode == BITMAP_OP_CLEAR) { 569 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 570 clear_page(data); 571 else while (bit <= this_end_bit) { 572 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 573 do { 574 data[bit / BITS_PER_LONG] = 0; 575 bit += BITS_PER_LONG; 576 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 577 continue; 578 } 579 __clear_bit(bit, data); 580 bit++; 581 } 582 } else { 583 BUG(); 584 } 585 586 if (unlikely(page < end_page)) { 587 bit = 0; 588 page++; 589 goto repeat; 590 } 591 592 return true; 593 } 594 595 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 596 { 597 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 598 unsigned i; 599 600 for (i = 0; i < n_bitmap_pages; i++) { 601 unsigned long *dst_data = lowmem_page_address(dst[i].page); 602 unsigned long *src_data = lowmem_page_address(src[i].page); 603 copy_page(dst_data, src_data); 604 } 605 } 606 607 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 608 { 609 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 610 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 611 612 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 613 return &ic->bbs[bitmap_block]; 614 } 615 616 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 617 bool e, const char *function) 618 { 619 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 620 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 621 622 if (unlikely(section >= ic->journal_sections) || 623 unlikely(offset >= limit)) { 624 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 625 function, section, offset, ic->journal_sections, limit); 626 BUG(); 627 } 628 #endif 629 } 630 631 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 632 unsigned *pl_index, unsigned *pl_offset) 633 { 634 unsigned sector; 635 636 access_journal_check(ic, section, offset, false, "page_list_location"); 637 638 sector = section * ic->journal_section_sectors + offset; 639 640 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 641 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 642 } 643 644 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 645 unsigned section, unsigned offset, unsigned *n_sectors) 646 { 647 unsigned pl_index, pl_offset; 648 char *va; 649 650 page_list_location(ic, section, offset, &pl_index, &pl_offset); 651 652 if (n_sectors) 653 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 654 655 va = lowmem_page_address(pl[pl_index].page); 656 657 return (struct journal_sector *)(va + pl_offset); 658 } 659 660 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 661 { 662 return access_page_list(ic, ic->journal, section, offset, NULL); 663 } 664 665 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 666 { 667 unsigned rel_sector, offset; 668 struct journal_sector *js; 669 670 access_journal_check(ic, section, n, true, "access_journal_entry"); 671 672 rel_sector = n % JOURNAL_BLOCK_SECTORS; 673 offset = n / JOURNAL_BLOCK_SECTORS; 674 675 js = access_journal(ic, section, rel_sector); 676 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 677 } 678 679 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 680 { 681 n <<= ic->sb->log2_sectors_per_block; 682 683 n += JOURNAL_BLOCK_SECTORS; 684 685 access_journal_check(ic, section, n, false, "access_journal_data"); 686 687 return access_journal(ic, section, n); 688 } 689 690 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 691 { 692 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 693 int r; 694 unsigned j, size; 695 696 desc->tfm = ic->journal_mac; 697 698 r = crypto_shash_init(desc); 699 if (unlikely(r)) { 700 dm_integrity_io_error(ic, "crypto_shash_init", r); 701 goto err; 702 } 703 704 for (j = 0; j < ic->journal_section_entries; j++) { 705 struct journal_entry *je = access_journal_entry(ic, section, j); 706 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 707 if (unlikely(r)) { 708 dm_integrity_io_error(ic, "crypto_shash_update", r); 709 goto err; 710 } 711 } 712 713 size = crypto_shash_digestsize(ic->journal_mac); 714 715 if (likely(size <= JOURNAL_MAC_SIZE)) { 716 r = crypto_shash_final(desc, result); 717 if (unlikely(r)) { 718 dm_integrity_io_error(ic, "crypto_shash_final", r); 719 goto err; 720 } 721 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 722 } else { 723 __u8 digest[HASH_MAX_DIGESTSIZE]; 724 725 if (WARN_ON(size > sizeof(digest))) { 726 dm_integrity_io_error(ic, "digest_size", -EINVAL); 727 goto err; 728 } 729 r = crypto_shash_final(desc, digest); 730 if (unlikely(r)) { 731 dm_integrity_io_error(ic, "crypto_shash_final", r); 732 goto err; 733 } 734 memcpy(result, digest, JOURNAL_MAC_SIZE); 735 } 736 737 return; 738 err: 739 memset(result, 0, JOURNAL_MAC_SIZE); 740 } 741 742 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 743 { 744 __u8 result[JOURNAL_MAC_SIZE]; 745 unsigned j; 746 747 if (!ic->journal_mac) 748 return; 749 750 section_mac(ic, section, result); 751 752 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 753 struct journal_sector *js = access_journal(ic, section, j); 754 755 if (likely(wr)) 756 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 757 else { 758 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 759 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 760 } 761 } 762 } 763 764 static void complete_journal_op(void *context) 765 { 766 struct journal_completion *comp = context; 767 BUG_ON(!atomic_read(&comp->in_flight)); 768 if (likely(atomic_dec_and_test(&comp->in_flight))) 769 complete(&comp->comp); 770 } 771 772 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 773 unsigned n_sections, struct journal_completion *comp) 774 { 775 struct async_submit_ctl submit; 776 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 777 unsigned pl_index, pl_offset, section_index; 778 struct page_list *source_pl, *target_pl; 779 780 if (likely(encrypt)) { 781 source_pl = ic->journal; 782 target_pl = ic->journal_io; 783 } else { 784 source_pl = ic->journal_io; 785 target_pl = ic->journal; 786 } 787 788 page_list_location(ic, section, 0, &pl_index, &pl_offset); 789 790 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 791 792 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 793 794 section_index = pl_index; 795 796 do { 797 size_t this_step; 798 struct page *src_pages[2]; 799 struct page *dst_page; 800 801 while (unlikely(pl_index == section_index)) { 802 unsigned dummy; 803 if (likely(encrypt)) 804 rw_section_mac(ic, section, true); 805 section++; 806 n_sections--; 807 if (!n_sections) 808 break; 809 page_list_location(ic, section, 0, §ion_index, &dummy); 810 } 811 812 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 813 dst_page = target_pl[pl_index].page; 814 src_pages[0] = source_pl[pl_index].page; 815 src_pages[1] = ic->journal_xor[pl_index].page; 816 817 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 818 819 pl_index++; 820 pl_offset = 0; 821 n_bytes -= this_step; 822 } while (n_bytes); 823 824 BUG_ON(n_sections); 825 826 async_tx_issue_pending_all(); 827 } 828 829 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 830 { 831 struct journal_completion *comp = req->data; 832 if (unlikely(err)) { 833 if (likely(err == -EINPROGRESS)) { 834 complete(&comp->ic->crypto_backoff); 835 return; 836 } 837 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 838 } 839 complete_journal_op(comp); 840 } 841 842 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 843 { 844 int r; 845 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 846 complete_journal_encrypt, comp); 847 if (likely(encrypt)) 848 r = crypto_skcipher_encrypt(req); 849 else 850 r = crypto_skcipher_decrypt(req); 851 if (likely(!r)) 852 return false; 853 if (likely(r == -EINPROGRESS)) 854 return true; 855 if (likely(r == -EBUSY)) { 856 wait_for_completion(&comp->ic->crypto_backoff); 857 reinit_completion(&comp->ic->crypto_backoff); 858 return true; 859 } 860 dm_integrity_io_error(comp->ic, "encrypt", r); 861 return false; 862 } 863 864 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 865 unsigned n_sections, struct journal_completion *comp) 866 { 867 struct scatterlist **source_sg; 868 struct scatterlist **target_sg; 869 870 atomic_add(2, &comp->in_flight); 871 872 if (likely(encrypt)) { 873 source_sg = ic->journal_scatterlist; 874 target_sg = ic->journal_io_scatterlist; 875 } else { 876 source_sg = ic->journal_io_scatterlist; 877 target_sg = ic->journal_scatterlist; 878 } 879 880 do { 881 struct skcipher_request *req; 882 unsigned ivsize; 883 char *iv; 884 885 if (likely(encrypt)) 886 rw_section_mac(ic, section, true); 887 888 req = ic->sk_requests[section]; 889 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 890 iv = req->iv; 891 892 memcpy(iv, iv + ivsize, ivsize); 893 894 req->src = source_sg[section]; 895 req->dst = target_sg[section]; 896 897 if (unlikely(do_crypt(encrypt, req, comp))) 898 atomic_inc(&comp->in_flight); 899 900 section++; 901 n_sections--; 902 } while (n_sections); 903 904 atomic_dec(&comp->in_flight); 905 complete_journal_op(comp); 906 } 907 908 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 909 unsigned n_sections, struct journal_completion *comp) 910 { 911 if (ic->journal_xor) 912 return xor_journal(ic, encrypt, section, n_sections, comp); 913 else 914 return crypt_journal(ic, encrypt, section, n_sections, comp); 915 } 916 917 static void complete_journal_io(unsigned long error, void *context) 918 { 919 struct journal_completion *comp = context; 920 if (unlikely(error != 0)) 921 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 922 complete_journal_op(comp); 923 } 924 925 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 926 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 927 { 928 struct dm_io_request io_req; 929 struct dm_io_region io_loc; 930 unsigned pl_index, pl_offset; 931 int r; 932 933 if (unlikely(dm_integrity_failed(ic))) { 934 if (comp) 935 complete_journal_io(-1UL, comp); 936 return; 937 } 938 939 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 940 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 941 942 io_req.bi_op = op; 943 io_req.bi_op_flags = op_flags; 944 io_req.mem.type = DM_IO_PAGE_LIST; 945 if (ic->journal_io) 946 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 947 else 948 io_req.mem.ptr.pl = &ic->journal[pl_index]; 949 io_req.mem.offset = pl_offset; 950 if (likely(comp != NULL)) { 951 io_req.notify.fn = complete_journal_io; 952 io_req.notify.context = comp; 953 } else { 954 io_req.notify.fn = NULL; 955 } 956 io_req.client = ic->io; 957 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 958 io_loc.sector = ic->start + SB_SECTORS + sector; 959 io_loc.count = n_sectors; 960 961 r = dm_io(&io_req, 1, &io_loc, NULL); 962 if (unlikely(r)) { 963 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 964 if (comp) { 965 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 966 complete_journal_io(-1UL, comp); 967 } 968 } 969 } 970 971 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 972 unsigned n_sections, struct journal_completion *comp) 973 { 974 unsigned sector, n_sectors; 975 976 sector = section * ic->journal_section_sectors; 977 n_sectors = n_sections * ic->journal_section_sectors; 978 979 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 980 } 981 982 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 983 { 984 struct journal_completion io_comp; 985 struct journal_completion crypt_comp_1; 986 struct journal_completion crypt_comp_2; 987 unsigned i; 988 989 io_comp.ic = ic; 990 init_completion(&io_comp.comp); 991 992 if (commit_start + commit_sections <= ic->journal_sections) { 993 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 994 if (ic->journal_io) { 995 crypt_comp_1.ic = ic; 996 init_completion(&crypt_comp_1.comp); 997 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 998 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 999 wait_for_completion_io(&crypt_comp_1.comp); 1000 } else { 1001 for (i = 0; i < commit_sections; i++) 1002 rw_section_mac(ic, commit_start + i, true); 1003 } 1004 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1005 commit_sections, &io_comp); 1006 } else { 1007 unsigned to_end; 1008 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1009 to_end = ic->journal_sections - commit_start; 1010 if (ic->journal_io) { 1011 crypt_comp_1.ic = ic; 1012 init_completion(&crypt_comp_1.comp); 1013 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1014 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1015 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1016 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1017 reinit_completion(&crypt_comp_1.comp); 1018 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1019 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1020 wait_for_completion_io(&crypt_comp_1.comp); 1021 } else { 1022 crypt_comp_2.ic = ic; 1023 init_completion(&crypt_comp_2.comp); 1024 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1025 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1026 wait_for_completion_io(&crypt_comp_1.comp); 1027 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1028 wait_for_completion_io(&crypt_comp_2.comp); 1029 } 1030 } else { 1031 for (i = 0; i < to_end; i++) 1032 rw_section_mac(ic, commit_start + i, true); 1033 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1034 for (i = 0; i < commit_sections - to_end; i++) 1035 rw_section_mac(ic, i, true); 1036 } 1037 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1038 } 1039 1040 wait_for_completion_io(&io_comp.comp); 1041 } 1042 1043 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1044 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1045 { 1046 struct dm_io_request io_req; 1047 struct dm_io_region io_loc; 1048 int r; 1049 unsigned sector, pl_index, pl_offset; 1050 1051 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1052 1053 if (unlikely(dm_integrity_failed(ic))) { 1054 fn(-1UL, data); 1055 return; 1056 } 1057 1058 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1059 1060 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1061 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1062 1063 io_req.bi_op = REQ_OP_WRITE; 1064 io_req.bi_op_flags = 0; 1065 io_req.mem.type = DM_IO_PAGE_LIST; 1066 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1067 io_req.mem.offset = pl_offset; 1068 io_req.notify.fn = fn; 1069 io_req.notify.context = data; 1070 io_req.client = ic->io; 1071 io_loc.bdev = ic->dev->bdev; 1072 io_loc.sector = target; 1073 io_loc.count = n_sectors; 1074 1075 r = dm_io(&io_req, 1, &io_loc, NULL); 1076 if (unlikely(r)) { 1077 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1078 fn(-1UL, data); 1079 } 1080 } 1081 1082 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1083 { 1084 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1085 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1086 } 1087 1088 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1089 { 1090 struct rb_node **n = &ic->in_progress.rb_node; 1091 struct rb_node *parent; 1092 1093 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1094 1095 if (likely(check_waiting)) { 1096 struct dm_integrity_range *range; 1097 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1098 if (unlikely(ranges_overlap(range, new_range))) 1099 return false; 1100 } 1101 } 1102 1103 parent = NULL; 1104 1105 while (*n) { 1106 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1107 1108 parent = *n; 1109 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1110 n = &range->node.rb_left; 1111 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1112 n = &range->node.rb_right; 1113 } else { 1114 return false; 1115 } 1116 } 1117 1118 rb_link_node(&new_range->node, parent, n); 1119 rb_insert_color(&new_range->node, &ic->in_progress); 1120 1121 return true; 1122 } 1123 1124 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1125 { 1126 rb_erase(&range->node, &ic->in_progress); 1127 while (unlikely(!list_empty(&ic->wait_list))) { 1128 struct dm_integrity_range *last_range = 1129 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1130 struct task_struct *last_range_task; 1131 last_range_task = last_range->task; 1132 list_del(&last_range->wait_entry); 1133 if (!add_new_range(ic, last_range, false)) { 1134 last_range->task = last_range_task; 1135 list_add(&last_range->wait_entry, &ic->wait_list); 1136 break; 1137 } 1138 last_range->waiting = false; 1139 wake_up_process(last_range_task); 1140 } 1141 } 1142 1143 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1144 { 1145 unsigned long flags; 1146 1147 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1148 remove_range_unlocked(ic, range); 1149 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1150 } 1151 1152 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1153 { 1154 new_range->waiting = true; 1155 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1156 new_range->task = current; 1157 do { 1158 __set_current_state(TASK_UNINTERRUPTIBLE); 1159 spin_unlock_irq(&ic->endio_wait.lock); 1160 io_schedule(); 1161 spin_lock_irq(&ic->endio_wait.lock); 1162 } while (unlikely(new_range->waiting)); 1163 } 1164 1165 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1166 { 1167 if (unlikely(!add_new_range(ic, new_range, true))) 1168 wait_and_add_new_range(ic, new_range); 1169 } 1170 1171 static void init_journal_node(struct journal_node *node) 1172 { 1173 RB_CLEAR_NODE(&node->node); 1174 node->sector = (sector_t)-1; 1175 } 1176 1177 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1178 { 1179 struct rb_node **link; 1180 struct rb_node *parent; 1181 1182 node->sector = sector; 1183 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1184 1185 link = &ic->journal_tree_root.rb_node; 1186 parent = NULL; 1187 1188 while (*link) { 1189 struct journal_node *j; 1190 parent = *link; 1191 j = container_of(parent, struct journal_node, node); 1192 if (sector < j->sector) 1193 link = &j->node.rb_left; 1194 else 1195 link = &j->node.rb_right; 1196 } 1197 1198 rb_link_node(&node->node, parent, link); 1199 rb_insert_color(&node->node, &ic->journal_tree_root); 1200 } 1201 1202 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1203 { 1204 BUG_ON(RB_EMPTY_NODE(&node->node)); 1205 rb_erase(&node->node, &ic->journal_tree_root); 1206 init_journal_node(node); 1207 } 1208 1209 #define NOT_FOUND (-1U) 1210 1211 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1212 { 1213 struct rb_node *n = ic->journal_tree_root.rb_node; 1214 unsigned found = NOT_FOUND; 1215 *next_sector = (sector_t)-1; 1216 while (n) { 1217 struct journal_node *j = container_of(n, struct journal_node, node); 1218 if (sector == j->sector) { 1219 found = j - ic->journal_tree; 1220 } 1221 if (sector < j->sector) { 1222 *next_sector = j->sector; 1223 n = j->node.rb_left; 1224 } else { 1225 n = j->node.rb_right; 1226 } 1227 } 1228 1229 return found; 1230 } 1231 1232 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1233 { 1234 struct journal_node *node, *next_node; 1235 struct rb_node *next; 1236 1237 if (unlikely(pos >= ic->journal_entries)) 1238 return false; 1239 node = &ic->journal_tree[pos]; 1240 if (unlikely(RB_EMPTY_NODE(&node->node))) 1241 return false; 1242 if (unlikely(node->sector != sector)) 1243 return false; 1244 1245 next = rb_next(&node->node); 1246 if (unlikely(!next)) 1247 return true; 1248 1249 next_node = container_of(next, struct journal_node, node); 1250 return next_node->sector != sector; 1251 } 1252 1253 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1254 { 1255 struct rb_node *next; 1256 struct journal_node *next_node; 1257 unsigned next_section; 1258 1259 BUG_ON(RB_EMPTY_NODE(&node->node)); 1260 1261 next = rb_next(&node->node); 1262 if (unlikely(!next)) 1263 return false; 1264 1265 next_node = container_of(next, struct journal_node, node); 1266 1267 if (next_node->sector != node->sector) 1268 return false; 1269 1270 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1271 if (next_section >= ic->committed_section && 1272 next_section < ic->committed_section + ic->n_committed_sections) 1273 return true; 1274 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1275 return true; 1276 1277 return false; 1278 } 1279 1280 #define TAG_READ 0 1281 #define TAG_WRITE 1 1282 #define TAG_CMP 2 1283 1284 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1285 unsigned *metadata_offset, unsigned total_size, int op) 1286 { 1287 do { 1288 unsigned char *data, *dp; 1289 struct dm_buffer *b; 1290 unsigned to_copy; 1291 int r; 1292 1293 r = dm_integrity_failed(ic); 1294 if (unlikely(r)) 1295 return r; 1296 1297 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1298 if (IS_ERR(data)) 1299 return PTR_ERR(data); 1300 1301 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1302 dp = data + *metadata_offset; 1303 if (op == TAG_READ) { 1304 memcpy(tag, dp, to_copy); 1305 } else if (op == TAG_WRITE) { 1306 memcpy(dp, tag, to_copy); 1307 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1308 } else { 1309 /* e.g.: op == TAG_CMP */ 1310 if (unlikely(memcmp(dp, tag, to_copy))) { 1311 unsigned i; 1312 1313 for (i = 0; i < to_copy; i++) { 1314 if (dp[i] != tag[i]) 1315 break; 1316 total_size--; 1317 } 1318 dm_bufio_release(b); 1319 return total_size; 1320 } 1321 } 1322 dm_bufio_release(b); 1323 1324 tag += to_copy; 1325 *metadata_offset += to_copy; 1326 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1327 (*metadata_block)++; 1328 *metadata_offset = 0; 1329 } 1330 total_size -= to_copy; 1331 } while (unlikely(total_size)); 1332 1333 return 0; 1334 } 1335 1336 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic) 1337 { 1338 int r; 1339 r = dm_bufio_write_dirty_buffers(ic->bufio); 1340 if (unlikely(r)) 1341 dm_integrity_io_error(ic, "writing tags", r); 1342 } 1343 1344 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1345 { 1346 DECLARE_WAITQUEUE(wait, current); 1347 __add_wait_queue(&ic->endio_wait, &wait); 1348 __set_current_state(TASK_UNINTERRUPTIBLE); 1349 spin_unlock_irq(&ic->endio_wait.lock); 1350 io_schedule(); 1351 spin_lock_irq(&ic->endio_wait.lock); 1352 __remove_wait_queue(&ic->endio_wait, &wait); 1353 } 1354 1355 static void autocommit_fn(struct timer_list *t) 1356 { 1357 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1358 1359 if (likely(!dm_integrity_failed(ic))) 1360 queue_work(ic->commit_wq, &ic->commit_work); 1361 } 1362 1363 static void schedule_autocommit(struct dm_integrity_c *ic) 1364 { 1365 if (!timer_pending(&ic->autocommit_timer)) 1366 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1367 } 1368 1369 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1370 { 1371 struct bio *bio; 1372 unsigned long flags; 1373 1374 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1375 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1376 bio_list_add(&ic->flush_bio_list, bio); 1377 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1378 1379 queue_work(ic->commit_wq, &ic->commit_work); 1380 } 1381 1382 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1383 { 1384 int r = dm_integrity_failed(ic); 1385 if (unlikely(r) && !bio->bi_status) 1386 bio->bi_status = errno_to_blk_status(r); 1387 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1388 unsigned long flags; 1389 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1390 bio_list_add(&ic->synchronous_bios, bio); 1391 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1392 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1393 return; 1394 } 1395 bio_endio(bio); 1396 } 1397 1398 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1399 { 1400 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1401 1402 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1403 submit_flush_bio(ic, dio); 1404 else 1405 do_endio(ic, bio); 1406 } 1407 1408 static void dec_in_flight(struct dm_integrity_io *dio) 1409 { 1410 if (atomic_dec_and_test(&dio->in_flight)) { 1411 struct dm_integrity_c *ic = dio->ic; 1412 struct bio *bio; 1413 1414 remove_range(ic, &dio->range); 1415 1416 if (unlikely(dio->write)) 1417 schedule_autocommit(ic); 1418 1419 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1420 1421 if (unlikely(dio->bi_status) && !bio->bi_status) 1422 bio->bi_status = dio->bi_status; 1423 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1424 dio->range.logical_sector += dio->range.n_sectors; 1425 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1426 INIT_WORK(&dio->work, integrity_bio_wait); 1427 queue_work(ic->wait_wq, &dio->work); 1428 return; 1429 } 1430 do_endio_flush(ic, dio); 1431 } 1432 } 1433 1434 static void integrity_end_io(struct bio *bio) 1435 { 1436 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1437 1438 bio->bi_iter = dio->orig_bi_iter; 1439 bio->bi_disk = dio->orig_bi_disk; 1440 bio->bi_partno = dio->orig_bi_partno; 1441 if (dio->orig_bi_integrity) { 1442 bio->bi_integrity = dio->orig_bi_integrity; 1443 bio->bi_opf |= REQ_INTEGRITY; 1444 } 1445 bio->bi_end_io = dio->orig_bi_end_io; 1446 1447 if (dio->completion) 1448 complete(dio->completion); 1449 1450 dec_in_flight(dio); 1451 } 1452 1453 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1454 const char *data, char *result) 1455 { 1456 __u64 sector_le = cpu_to_le64(sector); 1457 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1458 int r; 1459 unsigned digest_size; 1460 1461 req->tfm = ic->internal_hash; 1462 1463 r = crypto_shash_init(req); 1464 if (unlikely(r < 0)) { 1465 dm_integrity_io_error(ic, "crypto_shash_init", r); 1466 goto failed; 1467 } 1468 1469 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1470 if (unlikely(r < 0)) { 1471 dm_integrity_io_error(ic, "crypto_shash_update", r); 1472 goto failed; 1473 } 1474 1475 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1476 if (unlikely(r < 0)) { 1477 dm_integrity_io_error(ic, "crypto_shash_update", r); 1478 goto failed; 1479 } 1480 1481 r = crypto_shash_final(req, result); 1482 if (unlikely(r < 0)) { 1483 dm_integrity_io_error(ic, "crypto_shash_final", r); 1484 goto failed; 1485 } 1486 1487 digest_size = crypto_shash_digestsize(ic->internal_hash); 1488 if (unlikely(digest_size < ic->tag_size)) 1489 memset(result + digest_size, 0, ic->tag_size - digest_size); 1490 1491 return; 1492 1493 failed: 1494 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1495 get_random_bytes(result, ic->tag_size); 1496 } 1497 1498 static void integrity_metadata(struct work_struct *w) 1499 { 1500 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1501 struct dm_integrity_c *ic = dio->ic; 1502 1503 int r; 1504 1505 if (ic->internal_hash) { 1506 struct bvec_iter iter; 1507 struct bio_vec bv; 1508 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1509 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1510 char *checksums; 1511 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1512 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1513 unsigned sectors_to_process = dio->range.n_sectors; 1514 sector_t sector = dio->range.logical_sector; 1515 1516 if (unlikely(ic->mode == 'R')) 1517 goto skip_io; 1518 1519 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1520 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1521 if (!checksums) { 1522 checksums = checksums_onstack; 1523 if (WARN_ON(extra_space && 1524 digest_size > sizeof(checksums_onstack))) { 1525 r = -EINVAL; 1526 goto error; 1527 } 1528 } 1529 1530 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) { 1531 unsigned pos; 1532 char *mem, *checksums_ptr; 1533 1534 again: 1535 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1536 pos = 0; 1537 checksums_ptr = checksums; 1538 do { 1539 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1540 checksums_ptr += ic->tag_size; 1541 sectors_to_process -= ic->sectors_per_block; 1542 pos += ic->sectors_per_block << SECTOR_SHIFT; 1543 sector += ic->sectors_per_block; 1544 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1545 kunmap_atomic(mem); 1546 1547 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1548 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE); 1549 if (unlikely(r)) { 1550 if (r > 0) { 1551 DMERR_LIMIT("Checksum failed at sector 0x%llx", 1552 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1553 r = -EILSEQ; 1554 atomic64_inc(&ic->number_of_mismatches); 1555 } 1556 if (likely(checksums != checksums_onstack)) 1557 kfree(checksums); 1558 goto error; 1559 } 1560 1561 if (!sectors_to_process) 1562 break; 1563 1564 if (unlikely(pos < bv.bv_len)) { 1565 bv.bv_offset += pos; 1566 bv.bv_len -= pos; 1567 goto again; 1568 } 1569 } 1570 1571 if (likely(checksums != checksums_onstack)) 1572 kfree(checksums); 1573 } else { 1574 struct bio_integrity_payload *bip = dio->orig_bi_integrity; 1575 1576 if (bip) { 1577 struct bio_vec biv; 1578 struct bvec_iter iter; 1579 unsigned data_to_process = dio->range.n_sectors; 1580 sector_to_block(ic, data_to_process); 1581 data_to_process *= ic->tag_size; 1582 1583 bip_for_each_vec(biv, bip, iter) { 1584 unsigned char *tag; 1585 unsigned this_len; 1586 1587 BUG_ON(PageHighMem(biv.bv_page)); 1588 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1589 this_len = min(biv.bv_len, data_to_process); 1590 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1591 this_len, !dio->write ? TAG_READ : TAG_WRITE); 1592 if (unlikely(r)) 1593 goto error; 1594 data_to_process -= this_len; 1595 if (!data_to_process) 1596 break; 1597 } 1598 } 1599 } 1600 skip_io: 1601 dec_in_flight(dio); 1602 return; 1603 error: 1604 dio->bi_status = errno_to_blk_status(r); 1605 dec_in_flight(dio); 1606 } 1607 1608 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1609 { 1610 struct dm_integrity_c *ic = ti->private; 1611 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1612 struct bio_integrity_payload *bip; 1613 1614 sector_t area, offset; 1615 1616 dio->ic = ic; 1617 dio->bi_status = 0; 1618 1619 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1620 submit_flush_bio(ic, dio); 1621 return DM_MAPIO_SUBMITTED; 1622 } 1623 1624 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1625 dio->write = bio_op(bio) == REQ_OP_WRITE; 1626 dio->fua = dio->write && bio->bi_opf & REQ_FUA; 1627 if (unlikely(dio->fua)) { 1628 /* 1629 * Don't pass down the FUA flag because we have to flush 1630 * disk cache anyway. 1631 */ 1632 bio->bi_opf &= ~REQ_FUA; 1633 } 1634 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1635 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1636 (unsigned long long)dio->range.logical_sector, bio_sectors(bio), 1637 (unsigned long long)ic->provided_data_sectors); 1638 return DM_MAPIO_KILL; 1639 } 1640 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1641 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1642 ic->sectors_per_block, 1643 (unsigned long long)dio->range.logical_sector, bio_sectors(bio)); 1644 return DM_MAPIO_KILL; 1645 } 1646 1647 if (ic->sectors_per_block > 1) { 1648 struct bvec_iter iter; 1649 struct bio_vec bv; 1650 bio_for_each_segment(bv, bio, iter) { 1651 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1652 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1653 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1654 return DM_MAPIO_KILL; 1655 } 1656 } 1657 } 1658 1659 bip = bio_integrity(bio); 1660 if (!ic->internal_hash) { 1661 if (bip) { 1662 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1663 if (ic->log2_tag_size >= 0) 1664 wanted_tag_size <<= ic->log2_tag_size; 1665 else 1666 wanted_tag_size *= ic->tag_size; 1667 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1668 DMERR("Invalid integrity data size %u, expected %u", 1669 bip->bip_iter.bi_size, wanted_tag_size); 1670 return DM_MAPIO_KILL; 1671 } 1672 } 1673 } else { 1674 if (unlikely(bip != NULL)) { 1675 DMERR("Unexpected integrity data when using internal hash"); 1676 return DM_MAPIO_KILL; 1677 } 1678 } 1679 1680 if (unlikely(ic->mode == 'R') && unlikely(dio->write)) 1681 return DM_MAPIO_KILL; 1682 1683 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1684 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1685 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1686 1687 dm_integrity_map_continue(dio, true); 1688 return DM_MAPIO_SUBMITTED; 1689 } 1690 1691 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1692 unsigned journal_section, unsigned journal_entry) 1693 { 1694 struct dm_integrity_c *ic = dio->ic; 1695 sector_t logical_sector; 1696 unsigned n_sectors; 1697 1698 logical_sector = dio->range.logical_sector; 1699 n_sectors = dio->range.n_sectors; 1700 do { 1701 struct bio_vec bv = bio_iovec(bio); 1702 char *mem; 1703 1704 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1705 bv.bv_len = n_sectors << SECTOR_SHIFT; 1706 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1707 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1708 retry_kmap: 1709 mem = kmap_atomic(bv.bv_page); 1710 if (likely(dio->write)) 1711 flush_dcache_page(bv.bv_page); 1712 1713 do { 1714 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1715 1716 if (unlikely(!dio->write)) { 1717 struct journal_sector *js; 1718 char *mem_ptr; 1719 unsigned s; 1720 1721 if (unlikely(journal_entry_is_inprogress(je))) { 1722 flush_dcache_page(bv.bv_page); 1723 kunmap_atomic(mem); 1724 1725 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1726 goto retry_kmap; 1727 } 1728 smp_rmb(); 1729 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1730 js = access_journal_data(ic, journal_section, journal_entry); 1731 mem_ptr = mem + bv.bv_offset; 1732 s = 0; 1733 do { 1734 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1735 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1736 js++; 1737 mem_ptr += 1 << SECTOR_SHIFT; 1738 } while (++s < ic->sectors_per_block); 1739 #ifdef INTERNAL_VERIFY 1740 if (ic->internal_hash) { 1741 char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1742 1743 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1744 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1745 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1746 (unsigned long long)logical_sector); 1747 } 1748 } 1749 #endif 1750 } 1751 1752 if (!ic->internal_hash) { 1753 struct bio_integrity_payload *bip = bio_integrity(bio); 1754 unsigned tag_todo = ic->tag_size; 1755 char *tag_ptr = journal_entry_tag(ic, je); 1756 1757 if (bip) do { 1758 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1759 unsigned tag_now = min(biv.bv_len, tag_todo); 1760 char *tag_addr; 1761 BUG_ON(PageHighMem(biv.bv_page)); 1762 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1763 if (likely(dio->write)) 1764 memcpy(tag_ptr, tag_addr, tag_now); 1765 else 1766 memcpy(tag_addr, tag_ptr, tag_now); 1767 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1768 tag_ptr += tag_now; 1769 tag_todo -= tag_now; 1770 } while (unlikely(tag_todo)); else { 1771 if (likely(dio->write)) 1772 memset(tag_ptr, 0, tag_todo); 1773 } 1774 } 1775 1776 if (likely(dio->write)) { 1777 struct journal_sector *js; 1778 unsigned s; 1779 1780 js = access_journal_data(ic, journal_section, journal_entry); 1781 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1782 1783 s = 0; 1784 do { 1785 je->last_bytes[s] = js[s].commit_id; 1786 } while (++s < ic->sectors_per_block); 1787 1788 if (ic->internal_hash) { 1789 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1790 if (unlikely(digest_size > ic->tag_size)) { 1791 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1792 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1793 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1794 } else 1795 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1796 } 1797 1798 journal_entry_set_sector(je, logical_sector); 1799 } 1800 logical_sector += ic->sectors_per_block; 1801 1802 journal_entry++; 1803 if (unlikely(journal_entry == ic->journal_section_entries)) { 1804 journal_entry = 0; 1805 journal_section++; 1806 wraparound_section(ic, &journal_section); 1807 } 1808 1809 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1810 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1811 1812 if (unlikely(!dio->write)) 1813 flush_dcache_page(bv.bv_page); 1814 kunmap_atomic(mem); 1815 } while (n_sectors); 1816 1817 if (likely(dio->write)) { 1818 smp_mb(); 1819 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1820 wake_up(&ic->copy_to_journal_wait); 1821 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1822 queue_work(ic->commit_wq, &ic->commit_work); 1823 } else { 1824 schedule_autocommit(ic); 1825 } 1826 } else { 1827 remove_range(ic, &dio->range); 1828 } 1829 1830 if (unlikely(bio->bi_iter.bi_size)) { 1831 sector_t area, offset; 1832 1833 dio->range.logical_sector = logical_sector; 1834 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1835 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1836 return true; 1837 } 1838 1839 return false; 1840 } 1841 1842 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1843 { 1844 struct dm_integrity_c *ic = dio->ic; 1845 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1846 unsigned journal_section, journal_entry; 1847 unsigned journal_read_pos; 1848 struct completion read_comp; 1849 bool need_sync_io = ic->internal_hash && !dio->write; 1850 1851 if (need_sync_io && from_map) { 1852 INIT_WORK(&dio->work, integrity_bio_wait); 1853 queue_work(ic->metadata_wq, &dio->work); 1854 return; 1855 } 1856 1857 lock_retry: 1858 spin_lock_irq(&ic->endio_wait.lock); 1859 retry: 1860 if (unlikely(dm_integrity_failed(ic))) { 1861 spin_unlock_irq(&ic->endio_wait.lock); 1862 do_endio(ic, bio); 1863 return; 1864 } 1865 dio->range.n_sectors = bio_sectors(bio); 1866 journal_read_pos = NOT_FOUND; 1867 if (likely(ic->mode == 'J')) { 1868 if (dio->write) { 1869 unsigned next_entry, i, pos; 1870 unsigned ws, we, range_sectors; 1871 1872 dio->range.n_sectors = min(dio->range.n_sectors, 1873 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 1874 if (unlikely(!dio->range.n_sectors)) { 1875 if (from_map) 1876 goto offload_to_thread; 1877 sleep_on_endio_wait(ic); 1878 goto retry; 1879 } 1880 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 1881 ic->free_sectors -= range_sectors; 1882 journal_section = ic->free_section; 1883 journal_entry = ic->free_section_entry; 1884 1885 next_entry = ic->free_section_entry + range_sectors; 1886 ic->free_section_entry = next_entry % ic->journal_section_entries; 1887 ic->free_section += next_entry / ic->journal_section_entries; 1888 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 1889 wraparound_section(ic, &ic->free_section); 1890 1891 pos = journal_section * ic->journal_section_entries + journal_entry; 1892 ws = journal_section; 1893 we = journal_entry; 1894 i = 0; 1895 do { 1896 struct journal_entry *je; 1897 1898 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 1899 pos++; 1900 if (unlikely(pos >= ic->journal_entries)) 1901 pos = 0; 1902 1903 je = access_journal_entry(ic, ws, we); 1904 BUG_ON(!journal_entry_is_unused(je)); 1905 journal_entry_set_inprogress(je); 1906 we++; 1907 if (unlikely(we == ic->journal_section_entries)) { 1908 we = 0; 1909 ws++; 1910 wraparound_section(ic, &ws); 1911 } 1912 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 1913 1914 spin_unlock_irq(&ic->endio_wait.lock); 1915 goto journal_read_write; 1916 } else { 1917 sector_t next_sector; 1918 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1919 if (likely(journal_read_pos == NOT_FOUND)) { 1920 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 1921 dio->range.n_sectors = next_sector - dio->range.logical_sector; 1922 } else { 1923 unsigned i; 1924 unsigned jp = journal_read_pos + 1; 1925 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 1926 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 1927 break; 1928 } 1929 dio->range.n_sectors = i; 1930 } 1931 } 1932 } 1933 if (unlikely(!add_new_range(ic, &dio->range, true))) { 1934 /* 1935 * We must not sleep in the request routine because it could 1936 * stall bios on current->bio_list. 1937 * So, we offload the bio to a workqueue if we have to sleep. 1938 */ 1939 if (from_map) { 1940 offload_to_thread: 1941 spin_unlock_irq(&ic->endio_wait.lock); 1942 INIT_WORK(&dio->work, integrity_bio_wait); 1943 queue_work(ic->wait_wq, &dio->work); 1944 return; 1945 } 1946 wait_and_add_new_range(ic, &dio->range); 1947 } 1948 spin_unlock_irq(&ic->endio_wait.lock); 1949 1950 if (unlikely(journal_read_pos != NOT_FOUND)) { 1951 journal_section = journal_read_pos / ic->journal_section_entries; 1952 journal_entry = journal_read_pos % ic->journal_section_entries; 1953 goto journal_read_write; 1954 } 1955 1956 if (ic->mode == 'B' && dio->write) { 1957 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 1958 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 1959 struct bitmap_block_status *bbs; 1960 1961 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 1962 spin_lock(&bbs->bio_queue_lock); 1963 bio_list_add(&bbs->bio_queue, bio); 1964 spin_unlock(&bbs->bio_queue_lock); 1965 queue_work(ic->writer_wq, &bbs->work); 1966 return; 1967 } 1968 } 1969 1970 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 1971 1972 if (need_sync_io) { 1973 init_completion(&read_comp); 1974 dio->completion = &read_comp; 1975 } else 1976 dio->completion = NULL; 1977 1978 dio->orig_bi_iter = bio->bi_iter; 1979 1980 dio->orig_bi_disk = bio->bi_disk; 1981 dio->orig_bi_partno = bio->bi_partno; 1982 bio_set_dev(bio, ic->dev->bdev); 1983 1984 dio->orig_bi_integrity = bio_integrity(bio); 1985 bio->bi_integrity = NULL; 1986 bio->bi_opf &= ~REQ_INTEGRITY; 1987 1988 dio->orig_bi_end_io = bio->bi_end_io; 1989 bio->bi_end_io = integrity_end_io; 1990 1991 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 1992 generic_make_request(bio); 1993 1994 if (need_sync_io) { 1995 wait_for_completion_io(&read_comp); 1996 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 1997 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 1998 goto skip_check; 1999 if (ic->mode == 'B') { 2000 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2001 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2002 goto skip_check; 2003 } 2004 2005 if (likely(!bio->bi_status)) 2006 integrity_metadata(&dio->work); 2007 else 2008 skip_check: 2009 dec_in_flight(dio); 2010 2011 } else { 2012 INIT_WORK(&dio->work, integrity_metadata); 2013 queue_work(ic->metadata_wq, &dio->work); 2014 } 2015 2016 return; 2017 2018 journal_read_write: 2019 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2020 goto lock_retry; 2021 2022 do_endio_flush(ic, dio); 2023 } 2024 2025 2026 static void integrity_bio_wait(struct work_struct *w) 2027 { 2028 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2029 2030 dm_integrity_map_continue(dio, false); 2031 } 2032 2033 static void pad_uncommitted(struct dm_integrity_c *ic) 2034 { 2035 if (ic->free_section_entry) { 2036 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2037 ic->free_section_entry = 0; 2038 ic->free_section++; 2039 wraparound_section(ic, &ic->free_section); 2040 ic->n_uncommitted_sections++; 2041 } 2042 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2043 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2044 ic->journal_section_entries + ic->free_sectors)) { 2045 DMCRIT("journal_sections %u, journal_section_entries %u, " 2046 "n_uncommitted_sections %u, n_committed_sections %u, " 2047 "journal_section_entries %u, free_sectors %u", 2048 ic->journal_sections, ic->journal_section_entries, 2049 ic->n_uncommitted_sections, ic->n_committed_sections, 2050 ic->journal_section_entries, ic->free_sectors); 2051 } 2052 } 2053 2054 static void integrity_commit(struct work_struct *w) 2055 { 2056 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2057 unsigned commit_start, commit_sections; 2058 unsigned i, j, n; 2059 struct bio *flushes; 2060 2061 del_timer(&ic->autocommit_timer); 2062 2063 spin_lock_irq(&ic->endio_wait.lock); 2064 flushes = bio_list_get(&ic->flush_bio_list); 2065 if (unlikely(ic->mode != 'J')) { 2066 spin_unlock_irq(&ic->endio_wait.lock); 2067 dm_integrity_flush_buffers(ic); 2068 goto release_flush_bios; 2069 } 2070 2071 pad_uncommitted(ic); 2072 commit_start = ic->uncommitted_section; 2073 commit_sections = ic->n_uncommitted_sections; 2074 spin_unlock_irq(&ic->endio_wait.lock); 2075 2076 if (!commit_sections) 2077 goto release_flush_bios; 2078 2079 i = commit_start; 2080 for (n = 0; n < commit_sections; n++) { 2081 for (j = 0; j < ic->journal_section_entries; j++) { 2082 struct journal_entry *je; 2083 je = access_journal_entry(ic, i, j); 2084 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2085 } 2086 for (j = 0; j < ic->journal_section_sectors; j++) { 2087 struct journal_sector *js; 2088 js = access_journal(ic, i, j); 2089 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2090 } 2091 i++; 2092 if (unlikely(i >= ic->journal_sections)) 2093 ic->commit_seq = next_commit_seq(ic->commit_seq); 2094 wraparound_section(ic, &i); 2095 } 2096 smp_rmb(); 2097 2098 write_journal(ic, commit_start, commit_sections); 2099 2100 spin_lock_irq(&ic->endio_wait.lock); 2101 ic->uncommitted_section += commit_sections; 2102 wraparound_section(ic, &ic->uncommitted_section); 2103 ic->n_uncommitted_sections -= commit_sections; 2104 ic->n_committed_sections += commit_sections; 2105 spin_unlock_irq(&ic->endio_wait.lock); 2106 2107 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2108 queue_work(ic->writer_wq, &ic->writer_work); 2109 2110 release_flush_bios: 2111 while (flushes) { 2112 struct bio *next = flushes->bi_next; 2113 flushes->bi_next = NULL; 2114 do_endio(ic, flushes); 2115 flushes = next; 2116 } 2117 } 2118 2119 static void complete_copy_from_journal(unsigned long error, void *context) 2120 { 2121 struct journal_io *io = context; 2122 struct journal_completion *comp = io->comp; 2123 struct dm_integrity_c *ic = comp->ic; 2124 remove_range(ic, &io->range); 2125 mempool_free(io, &ic->journal_io_mempool); 2126 if (unlikely(error != 0)) 2127 dm_integrity_io_error(ic, "copying from journal", -EIO); 2128 complete_journal_op(comp); 2129 } 2130 2131 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2132 struct journal_entry *je) 2133 { 2134 unsigned s = 0; 2135 do { 2136 js->commit_id = je->last_bytes[s]; 2137 js++; 2138 } while (++s < ic->sectors_per_block); 2139 } 2140 2141 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2142 unsigned write_sections, bool from_replay) 2143 { 2144 unsigned i, j, n; 2145 struct journal_completion comp; 2146 struct blk_plug plug; 2147 2148 blk_start_plug(&plug); 2149 2150 comp.ic = ic; 2151 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2152 init_completion(&comp.comp); 2153 2154 i = write_start; 2155 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2156 #ifndef INTERNAL_VERIFY 2157 if (unlikely(from_replay)) 2158 #endif 2159 rw_section_mac(ic, i, false); 2160 for (j = 0; j < ic->journal_section_entries; j++) { 2161 struct journal_entry *je = access_journal_entry(ic, i, j); 2162 sector_t sec, area, offset; 2163 unsigned k, l, next_loop; 2164 sector_t metadata_block; 2165 unsigned metadata_offset; 2166 struct journal_io *io; 2167 2168 if (journal_entry_is_unused(je)) 2169 continue; 2170 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2171 sec = journal_entry_get_sector(je); 2172 if (unlikely(from_replay)) { 2173 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2174 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2175 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2176 } 2177 } 2178 get_area_and_offset(ic, sec, &area, &offset); 2179 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2180 for (k = j + 1; k < ic->journal_section_entries; k++) { 2181 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2182 sector_t sec2, area2, offset2; 2183 if (journal_entry_is_unused(je2)) 2184 break; 2185 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2186 sec2 = journal_entry_get_sector(je2); 2187 get_area_and_offset(ic, sec2, &area2, &offset2); 2188 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2189 break; 2190 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2191 } 2192 next_loop = k - 1; 2193 2194 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2195 io->comp = ∁ 2196 io->range.logical_sector = sec; 2197 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2198 2199 spin_lock_irq(&ic->endio_wait.lock); 2200 add_new_range_and_wait(ic, &io->range); 2201 2202 if (likely(!from_replay)) { 2203 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2204 2205 /* don't write if there is newer committed sector */ 2206 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2207 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2208 2209 journal_entry_set_unused(je2); 2210 remove_journal_node(ic, §ion_node[j]); 2211 j++; 2212 sec += ic->sectors_per_block; 2213 offset += ic->sectors_per_block; 2214 } 2215 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2216 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2217 2218 journal_entry_set_unused(je2); 2219 remove_journal_node(ic, §ion_node[k - 1]); 2220 k--; 2221 } 2222 if (j == k) { 2223 remove_range_unlocked(ic, &io->range); 2224 spin_unlock_irq(&ic->endio_wait.lock); 2225 mempool_free(io, &ic->journal_io_mempool); 2226 goto skip_io; 2227 } 2228 for (l = j; l < k; l++) { 2229 remove_journal_node(ic, §ion_node[l]); 2230 } 2231 } 2232 spin_unlock_irq(&ic->endio_wait.lock); 2233 2234 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2235 for (l = j; l < k; l++) { 2236 int r; 2237 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2238 2239 if ( 2240 #ifndef INTERNAL_VERIFY 2241 unlikely(from_replay) && 2242 #endif 2243 ic->internal_hash) { 2244 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2245 2246 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2247 (char *)access_journal_data(ic, i, l), test_tag); 2248 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2249 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2250 } 2251 2252 journal_entry_set_unused(je2); 2253 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2254 ic->tag_size, TAG_WRITE); 2255 if (unlikely(r)) { 2256 dm_integrity_io_error(ic, "reading tags", r); 2257 } 2258 } 2259 2260 atomic_inc(&comp.in_flight); 2261 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2262 (k - j) << ic->sb->log2_sectors_per_block, 2263 get_data_sector(ic, area, offset), 2264 complete_copy_from_journal, io); 2265 skip_io: 2266 j = next_loop; 2267 } 2268 } 2269 2270 dm_bufio_write_dirty_buffers_async(ic->bufio); 2271 2272 blk_finish_plug(&plug); 2273 2274 complete_journal_op(&comp); 2275 wait_for_completion_io(&comp.comp); 2276 2277 dm_integrity_flush_buffers(ic); 2278 } 2279 2280 static void integrity_writer(struct work_struct *w) 2281 { 2282 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2283 unsigned write_start, write_sections; 2284 2285 unsigned prev_free_sectors; 2286 2287 /* the following test is not needed, but it tests the replay code */ 2288 if (READ_ONCE(ic->suspending) && !ic->meta_dev) 2289 return; 2290 2291 spin_lock_irq(&ic->endio_wait.lock); 2292 write_start = ic->committed_section; 2293 write_sections = ic->n_committed_sections; 2294 spin_unlock_irq(&ic->endio_wait.lock); 2295 2296 if (!write_sections) 2297 return; 2298 2299 do_journal_write(ic, write_start, write_sections, false); 2300 2301 spin_lock_irq(&ic->endio_wait.lock); 2302 2303 ic->committed_section += write_sections; 2304 wraparound_section(ic, &ic->committed_section); 2305 ic->n_committed_sections -= write_sections; 2306 2307 prev_free_sectors = ic->free_sectors; 2308 ic->free_sectors += write_sections * ic->journal_section_entries; 2309 if (unlikely(!prev_free_sectors)) 2310 wake_up_locked(&ic->endio_wait); 2311 2312 spin_unlock_irq(&ic->endio_wait.lock); 2313 } 2314 2315 static void recalc_write_super(struct dm_integrity_c *ic) 2316 { 2317 int r; 2318 2319 dm_integrity_flush_buffers(ic); 2320 if (dm_integrity_failed(ic)) 2321 return; 2322 2323 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2324 if (unlikely(r)) 2325 dm_integrity_io_error(ic, "writing superblock", r); 2326 } 2327 2328 static void integrity_recalc(struct work_struct *w) 2329 { 2330 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2331 struct dm_integrity_range range; 2332 struct dm_io_request io_req; 2333 struct dm_io_region io_loc; 2334 sector_t area, offset; 2335 sector_t metadata_block; 2336 unsigned metadata_offset; 2337 sector_t logical_sector, n_sectors; 2338 __u8 *t; 2339 unsigned i; 2340 int r; 2341 unsigned super_counter = 0; 2342 2343 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2344 2345 spin_lock_irq(&ic->endio_wait.lock); 2346 2347 next_chunk: 2348 2349 if (unlikely(READ_ONCE(ic->suspending))) 2350 goto unlock_ret; 2351 2352 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2353 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2354 if (ic->mode == 'B') { 2355 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2356 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2357 } 2358 goto unlock_ret; 2359 } 2360 2361 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2362 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2363 if (!ic->meta_dev) 2364 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2365 2366 add_new_range_and_wait(ic, &range); 2367 spin_unlock_irq(&ic->endio_wait.lock); 2368 logical_sector = range.logical_sector; 2369 n_sectors = range.n_sectors; 2370 2371 if (ic->mode == 'B') { 2372 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2373 goto advance_and_next; 2374 } 2375 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2376 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2377 logical_sector += ic->sectors_per_block; 2378 n_sectors -= ic->sectors_per_block; 2379 cond_resched(); 2380 } 2381 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2382 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2383 n_sectors -= ic->sectors_per_block; 2384 cond_resched(); 2385 } 2386 get_area_and_offset(ic, logical_sector, &area, &offset); 2387 } 2388 2389 DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors); 2390 2391 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2392 recalc_write_super(ic); 2393 if (ic->mode == 'B') { 2394 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2395 } 2396 super_counter = 0; 2397 } 2398 2399 if (unlikely(dm_integrity_failed(ic))) 2400 goto err; 2401 2402 io_req.bi_op = REQ_OP_READ; 2403 io_req.bi_op_flags = 0; 2404 io_req.mem.type = DM_IO_VMA; 2405 io_req.mem.ptr.addr = ic->recalc_buffer; 2406 io_req.notify.fn = NULL; 2407 io_req.client = ic->io; 2408 io_loc.bdev = ic->dev->bdev; 2409 io_loc.sector = get_data_sector(ic, area, offset); 2410 io_loc.count = n_sectors; 2411 2412 r = dm_io(&io_req, 1, &io_loc, NULL); 2413 if (unlikely(r)) { 2414 dm_integrity_io_error(ic, "reading data", r); 2415 goto err; 2416 } 2417 2418 t = ic->recalc_tags; 2419 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2420 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2421 t += ic->tag_size; 2422 } 2423 2424 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2425 2426 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2427 if (unlikely(r)) { 2428 dm_integrity_io_error(ic, "writing tags", r); 2429 goto err; 2430 } 2431 2432 advance_and_next: 2433 cond_resched(); 2434 2435 spin_lock_irq(&ic->endio_wait.lock); 2436 remove_range_unlocked(ic, &range); 2437 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2438 goto next_chunk; 2439 2440 err: 2441 remove_range(ic, &range); 2442 return; 2443 2444 unlock_ret: 2445 spin_unlock_irq(&ic->endio_wait.lock); 2446 2447 recalc_write_super(ic); 2448 } 2449 2450 static void bitmap_block_work(struct work_struct *w) 2451 { 2452 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2453 struct dm_integrity_c *ic = bbs->ic; 2454 struct bio *bio; 2455 struct bio_list bio_queue; 2456 struct bio_list waiting; 2457 2458 bio_list_init(&waiting); 2459 2460 spin_lock(&bbs->bio_queue_lock); 2461 bio_queue = bbs->bio_queue; 2462 bio_list_init(&bbs->bio_queue); 2463 spin_unlock(&bbs->bio_queue_lock); 2464 2465 while ((bio = bio_list_pop(&bio_queue))) { 2466 struct dm_integrity_io *dio; 2467 2468 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2469 2470 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2471 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2472 remove_range(ic, &dio->range); 2473 INIT_WORK(&dio->work, integrity_bio_wait); 2474 queue_work(ic->wait_wq, &dio->work); 2475 } else { 2476 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2477 dio->range.n_sectors, BITMAP_OP_SET); 2478 bio_list_add(&waiting, bio); 2479 } 2480 } 2481 2482 if (bio_list_empty(&waiting)) 2483 return; 2484 2485 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2486 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2487 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2488 2489 while ((bio = bio_list_pop(&waiting))) { 2490 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2491 2492 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2493 dio->range.n_sectors, BITMAP_OP_SET); 2494 2495 remove_range(ic, &dio->range); 2496 INIT_WORK(&dio->work, integrity_bio_wait); 2497 queue_work(ic->wait_wq, &dio->work); 2498 } 2499 2500 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2501 } 2502 2503 static void bitmap_flush_work(struct work_struct *work) 2504 { 2505 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2506 struct dm_integrity_range range; 2507 unsigned long limit; 2508 struct bio *bio; 2509 2510 dm_integrity_flush_buffers(ic); 2511 2512 range.logical_sector = 0; 2513 range.n_sectors = ic->provided_data_sectors; 2514 2515 spin_lock_irq(&ic->endio_wait.lock); 2516 add_new_range_and_wait(ic, &range); 2517 spin_unlock_irq(&ic->endio_wait.lock); 2518 2519 dm_integrity_flush_buffers(ic); 2520 if (ic->meta_dev) 2521 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL); 2522 2523 limit = ic->provided_data_sectors; 2524 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2525 limit = le64_to_cpu(ic->sb->recalc_sector) 2526 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2527 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2528 } 2529 /*DEBUG_print("zeroing journal\n");*/ 2530 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2531 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2532 2533 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2534 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2535 2536 spin_lock_irq(&ic->endio_wait.lock); 2537 remove_range_unlocked(ic, &range); 2538 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2539 bio_endio(bio); 2540 spin_unlock_irq(&ic->endio_wait.lock); 2541 spin_lock_irq(&ic->endio_wait.lock); 2542 } 2543 spin_unlock_irq(&ic->endio_wait.lock); 2544 } 2545 2546 2547 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2548 unsigned n_sections, unsigned char commit_seq) 2549 { 2550 unsigned i, j, n; 2551 2552 if (!n_sections) 2553 return; 2554 2555 for (n = 0; n < n_sections; n++) { 2556 i = start_section + n; 2557 wraparound_section(ic, &i); 2558 for (j = 0; j < ic->journal_section_sectors; j++) { 2559 struct journal_sector *js = access_journal(ic, i, j); 2560 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2561 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2562 } 2563 for (j = 0; j < ic->journal_section_entries; j++) { 2564 struct journal_entry *je = access_journal_entry(ic, i, j); 2565 journal_entry_set_unused(je); 2566 } 2567 } 2568 2569 write_journal(ic, start_section, n_sections); 2570 } 2571 2572 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2573 { 2574 unsigned char k; 2575 for (k = 0; k < N_COMMIT_IDS; k++) { 2576 if (dm_integrity_commit_id(ic, i, j, k) == id) 2577 return k; 2578 } 2579 dm_integrity_io_error(ic, "journal commit id", -EIO); 2580 return -EIO; 2581 } 2582 2583 static void replay_journal(struct dm_integrity_c *ic) 2584 { 2585 unsigned i, j; 2586 bool used_commit_ids[N_COMMIT_IDS]; 2587 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2588 unsigned write_start, write_sections; 2589 unsigned continue_section; 2590 bool journal_empty; 2591 unsigned char unused, last_used, want_commit_seq; 2592 2593 if (ic->mode == 'R') 2594 return; 2595 2596 if (ic->journal_uptodate) 2597 return; 2598 2599 last_used = 0; 2600 write_start = 0; 2601 2602 if (!ic->just_formatted) { 2603 DEBUG_print("reading journal\n"); 2604 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2605 if (ic->journal_io) 2606 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2607 if (ic->journal_io) { 2608 struct journal_completion crypt_comp; 2609 crypt_comp.ic = ic; 2610 init_completion(&crypt_comp.comp); 2611 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2612 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2613 wait_for_completion(&crypt_comp.comp); 2614 } 2615 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2616 } 2617 2618 if (dm_integrity_failed(ic)) 2619 goto clear_journal; 2620 2621 journal_empty = true; 2622 memset(used_commit_ids, 0, sizeof used_commit_ids); 2623 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2624 for (i = 0; i < ic->journal_sections; i++) { 2625 for (j = 0; j < ic->journal_section_sectors; j++) { 2626 int k; 2627 struct journal_sector *js = access_journal(ic, i, j); 2628 k = find_commit_seq(ic, i, j, js->commit_id); 2629 if (k < 0) 2630 goto clear_journal; 2631 used_commit_ids[k] = true; 2632 max_commit_id_sections[k] = i; 2633 } 2634 if (journal_empty) { 2635 for (j = 0; j < ic->journal_section_entries; j++) { 2636 struct journal_entry *je = access_journal_entry(ic, i, j); 2637 if (!journal_entry_is_unused(je)) { 2638 journal_empty = false; 2639 break; 2640 } 2641 } 2642 } 2643 } 2644 2645 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2646 unused = N_COMMIT_IDS - 1; 2647 while (unused && !used_commit_ids[unused - 1]) 2648 unused--; 2649 } else { 2650 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2651 if (!used_commit_ids[unused]) 2652 break; 2653 if (unused == N_COMMIT_IDS) { 2654 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2655 goto clear_journal; 2656 } 2657 } 2658 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2659 unused, used_commit_ids[0], used_commit_ids[1], 2660 used_commit_ids[2], used_commit_ids[3]); 2661 2662 last_used = prev_commit_seq(unused); 2663 want_commit_seq = prev_commit_seq(last_used); 2664 2665 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2666 journal_empty = true; 2667 2668 write_start = max_commit_id_sections[last_used] + 1; 2669 if (unlikely(write_start >= ic->journal_sections)) 2670 want_commit_seq = next_commit_seq(want_commit_seq); 2671 wraparound_section(ic, &write_start); 2672 2673 i = write_start; 2674 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2675 for (j = 0; j < ic->journal_section_sectors; j++) { 2676 struct journal_sector *js = access_journal(ic, i, j); 2677 2678 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2679 /* 2680 * This could be caused by crash during writing. 2681 * We won't replay the inconsistent part of the 2682 * journal. 2683 */ 2684 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2685 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2686 goto brk; 2687 } 2688 } 2689 i++; 2690 if (unlikely(i >= ic->journal_sections)) 2691 want_commit_seq = next_commit_seq(want_commit_seq); 2692 wraparound_section(ic, &i); 2693 } 2694 brk: 2695 2696 if (!journal_empty) { 2697 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2698 write_sections, write_start, want_commit_seq); 2699 do_journal_write(ic, write_start, write_sections, true); 2700 } 2701 2702 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2703 continue_section = write_start; 2704 ic->commit_seq = want_commit_seq; 2705 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2706 } else { 2707 unsigned s; 2708 unsigned char erase_seq; 2709 clear_journal: 2710 DEBUG_print("clearing journal\n"); 2711 2712 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2713 s = write_start; 2714 init_journal(ic, s, 1, erase_seq); 2715 s++; 2716 wraparound_section(ic, &s); 2717 if (ic->journal_sections >= 2) { 2718 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2719 s += ic->journal_sections - 2; 2720 wraparound_section(ic, &s); 2721 init_journal(ic, s, 1, erase_seq); 2722 } 2723 2724 continue_section = 0; 2725 ic->commit_seq = next_commit_seq(erase_seq); 2726 } 2727 2728 ic->committed_section = continue_section; 2729 ic->n_committed_sections = 0; 2730 2731 ic->uncommitted_section = continue_section; 2732 ic->n_uncommitted_sections = 0; 2733 2734 ic->free_section = continue_section; 2735 ic->free_section_entry = 0; 2736 ic->free_sectors = ic->journal_entries; 2737 2738 ic->journal_tree_root = RB_ROOT; 2739 for (i = 0; i < ic->journal_entries; i++) 2740 init_journal_node(&ic->journal_tree[i]); 2741 } 2742 2743 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 2744 { 2745 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 2746 2747 if (ic->mode == 'B') { 2748 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 2749 ic->synchronous_mode = 1; 2750 2751 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2752 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2753 flush_workqueue(ic->commit_wq); 2754 } 2755 } 2756 2757 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 2758 { 2759 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 2760 2761 DEBUG_print("dm_integrity_reboot\n"); 2762 2763 dm_integrity_enter_synchronous_mode(ic); 2764 2765 return NOTIFY_DONE; 2766 } 2767 2768 static void dm_integrity_postsuspend(struct dm_target *ti) 2769 { 2770 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2771 int r; 2772 2773 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 2774 2775 del_timer_sync(&ic->autocommit_timer); 2776 2777 WRITE_ONCE(ic->suspending, 1); 2778 2779 if (ic->recalc_wq) 2780 drain_workqueue(ic->recalc_wq); 2781 2782 if (ic->mode == 'B') 2783 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2784 2785 queue_work(ic->commit_wq, &ic->commit_work); 2786 drain_workqueue(ic->commit_wq); 2787 2788 if (ic->mode == 'J') { 2789 if (ic->meta_dev) 2790 queue_work(ic->writer_wq, &ic->writer_work); 2791 drain_workqueue(ic->writer_wq); 2792 dm_integrity_flush_buffers(ic); 2793 } 2794 2795 if (ic->mode == 'B') { 2796 dm_integrity_flush_buffers(ic); 2797 #if 1 2798 /* set to 0 to test bitmap replay code */ 2799 init_journal(ic, 0, ic->journal_sections, 0); 2800 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2801 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2802 if (unlikely(r)) 2803 dm_integrity_io_error(ic, "writing superblock", r); 2804 #endif 2805 } 2806 2807 WRITE_ONCE(ic->suspending, 0); 2808 2809 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2810 2811 ic->journal_uptodate = true; 2812 } 2813 2814 static void dm_integrity_resume(struct dm_target *ti) 2815 { 2816 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2817 int r; 2818 DEBUG_print("resume\n"); 2819 2820 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 2821 DEBUG_print("resume dirty_bitmap\n"); 2822 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 2823 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2824 if (ic->mode == 'B') { 2825 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 2826 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 2827 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 2828 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 2829 BITMAP_OP_TEST_ALL_CLEAR)) { 2830 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2831 ic->sb->recalc_sector = cpu_to_le64(0); 2832 } 2833 } else { 2834 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 2835 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 2836 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 2837 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2838 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2839 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2840 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2841 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2842 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2843 ic->sb->recalc_sector = cpu_to_le64(0); 2844 } 2845 } else { 2846 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 2847 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) { 2848 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2849 ic->sb->recalc_sector = cpu_to_le64(0); 2850 } 2851 init_journal(ic, 0, ic->journal_sections, 0); 2852 replay_journal(ic); 2853 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2854 } 2855 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2856 if (unlikely(r)) 2857 dm_integrity_io_error(ic, "writing superblock", r); 2858 } else { 2859 replay_journal(ic); 2860 if (ic->mode == 'B') { 2861 int mode; 2862 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2863 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 2864 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2865 if (unlikely(r)) 2866 dm_integrity_io_error(ic, "writing superblock", r); 2867 2868 mode = ic->recalculate_flag ? BITMAP_OP_SET : BITMAP_OP_CLEAR; 2869 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, mode); 2870 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, mode); 2871 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, mode); 2872 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2873 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2874 } 2875 } 2876 2877 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 2878 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2879 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 2880 DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors); 2881 if (recalc_pos < ic->provided_data_sectors) { 2882 queue_work(ic->recalc_wq, &ic->recalc_work); 2883 } else if (recalc_pos > ic->provided_data_sectors) { 2884 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 2885 recalc_write_super(ic); 2886 } 2887 } 2888 2889 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 2890 ic->reboot_notifier.next = NULL; 2891 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 2892 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 2893 2894 #if 0 2895 /* set to 1 to stress test synchronous mode */ 2896 dm_integrity_enter_synchronous_mode(ic); 2897 #endif 2898 } 2899 2900 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 2901 unsigned status_flags, char *result, unsigned maxlen) 2902 { 2903 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2904 unsigned arg_count; 2905 size_t sz = 0; 2906 2907 switch (type) { 2908 case STATUSTYPE_INFO: 2909 DMEMIT("%llu %llu", 2910 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 2911 (unsigned long long)ic->provided_data_sectors); 2912 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 2913 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector)); 2914 else 2915 DMEMIT(" -"); 2916 break; 2917 2918 case STATUSTYPE_TABLE: { 2919 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 2920 watermark_percentage += ic->journal_entries / 2; 2921 do_div(watermark_percentage, ic->journal_entries); 2922 arg_count = 3; 2923 arg_count += !!ic->meta_dev; 2924 arg_count += ic->sectors_per_block != 1; 2925 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 2926 arg_count += ic->mode == 'J'; 2927 arg_count += ic->mode == 'J'; 2928 arg_count += ic->mode == 'B'; 2929 arg_count += ic->mode == 'B'; 2930 arg_count += !!ic->internal_hash_alg.alg_string; 2931 arg_count += !!ic->journal_crypt_alg.alg_string; 2932 arg_count += !!ic->journal_mac_alg.alg_string; 2933 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start, 2934 ic->tag_size, ic->mode, arg_count); 2935 if (ic->meta_dev) 2936 DMEMIT(" meta_device:%s", ic->meta_dev->name); 2937 if (ic->sectors_per_block != 1) 2938 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 2939 if (ic->recalculate_flag) 2940 DMEMIT(" recalculate"); 2941 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 2942 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 2943 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 2944 if (ic->mode == 'J') { 2945 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 2946 DMEMIT(" commit_time:%u", ic->autocommit_msec); 2947 } 2948 if (ic->mode == 'B') { 2949 DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 2950 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 2951 } 2952 2953 #define EMIT_ALG(a, n) \ 2954 do { \ 2955 if (ic->a.alg_string) { \ 2956 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 2957 if (ic->a.key_string) \ 2958 DMEMIT(":%s", ic->a.key_string);\ 2959 } \ 2960 } while (0) 2961 EMIT_ALG(internal_hash_alg, "internal_hash"); 2962 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 2963 EMIT_ALG(journal_mac_alg, "journal_mac"); 2964 break; 2965 } 2966 } 2967 } 2968 2969 static int dm_integrity_iterate_devices(struct dm_target *ti, 2970 iterate_devices_callout_fn fn, void *data) 2971 { 2972 struct dm_integrity_c *ic = ti->private; 2973 2974 if (!ic->meta_dev) 2975 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 2976 else 2977 return fn(ti, ic->dev, 0, ti->len, data); 2978 } 2979 2980 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 2981 { 2982 struct dm_integrity_c *ic = ti->private; 2983 2984 if (ic->sectors_per_block > 1) { 2985 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2986 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2987 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 2988 } 2989 } 2990 2991 static void calculate_journal_section_size(struct dm_integrity_c *ic) 2992 { 2993 unsigned sector_space = JOURNAL_SECTOR_DATA; 2994 2995 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 2996 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 2997 JOURNAL_ENTRY_ROUNDUP); 2998 2999 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3000 sector_space -= JOURNAL_MAC_PER_SECTOR; 3001 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3002 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3003 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3004 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3005 } 3006 3007 static int calculate_device_limits(struct dm_integrity_c *ic) 3008 { 3009 __u64 initial_sectors; 3010 3011 calculate_journal_section_size(ic); 3012 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3013 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3014 return -EINVAL; 3015 ic->initial_sectors = initial_sectors; 3016 3017 if (!ic->meta_dev) { 3018 sector_t last_sector, last_area, last_offset; 3019 3020 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3021 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT; 3022 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3023 ic->log2_metadata_run = __ffs(ic->metadata_run); 3024 else 3025 ic->log2_metadata_run = -1; 3026 3027 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3028 last_sector = get_data_sector(ic, last_area, last_offset); 3029 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3030 return -EINVAL; 3031 } else { 3032 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3033 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3034 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3035 meta_size <<= ic->log2_buffer_sectors; 3036 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3037 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3038 return -EINVAL; 3039 ic->metadata_run = 1; 3040 ic->log2_metadata_run = 0; 3041 } 3042 3043 return 0; 3044 } 3045 3046 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3047 { 3048 unsigned journal_sections; 3049 int test_bit; 3050 3051 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3052 memcpy(ic->sb->magic, SB_MAGIC, 8); 3053 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3054 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3055 if (ic->journal_mac_alg.alg_string) 3056 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3057 3058 calculate_journal_section_size(ic); 3059 journal_sections = journal_sectors / ic->journal_section_sectors; 3060 if (!journal_sections) 3061 journal_sections = 1; 3062 3063 if (!ic->meta_dev) { 3064 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3065 if (!interleave_sectors) 3066 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3067 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3068 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3069 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3070 3071 ic->provided_data_sectors = 0; 3072 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3073 __u64 prev_data_sectors = ic->provided_data_sectors; 3074 3075 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3076 if (calculate_device_limits(ic)) 3077 ic->provided_data_sectors = prev_data_sectors; 3078 } 3079 if (!ic->provided_data_sectors) 3080 return -EINVAL; 3081 } else { 3082 ic->sb->log2_interleave_sectors = 0; 3083 ic->provided_data_sectors = ic->data_device_sectors; 3084 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3085 3086 try_smaller_buffer: 3087 ic->sb->journal_sections = cpu_to_le32(0); 3088 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3089 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3090 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3091 if (test_journal_sections > journal_sections) 3092 continue; 3093 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3094 if (calculate_device_limits(ic)) 3095 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3096 3097 } 3098 if (!le32_to_cpu(ic->sb->journal_sections)) { 3099 if (ic->log2_buffer_sectors > 3) { 3100 ic->log2_buffer_sectors--; 3101 goto try_smaller_buffer; 3102 } 3103 return -EINVAL; 3104 } 3105 } 3106 3107 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3108 3109 sb_set_version(ic); 3110 3111 return 0; 3112 } 3113 3114 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3115 { 3116 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3117 struct blk_integrity bi; 3118 3119 memset(&bi, 0, sizeof(bi)); 3120 bi.profile = &dm_integrity_profile; 3121 bi.tuple_size = ic->tag_size; 3122 bi.tag_size = bi.tuple_size; 3123 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3124 3125 blk_integrity_register(disk, &bi); 3126 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3127 } 3128 3129 static void dm_integrity_free_page_list(struct page_list *pl) 3130 { 3131 unsigned i; 3132 3133 if (!pl) 3134 return; 3135 for (i = 0; pl[i].page; i++) 3136 __free_page(pl[i].page); 3137 kvfree(pl); 3138 } 3139 3140 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3141 { 3142 struct page_list *pl; 3143 unsigned i; 3144 3145 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3146 if (!pl) 3147 return NULL; 3148 3149 for (i = 0; i < n_pages; i++) { 3150 pl[i].page = alloc_page(GFP_KERNEL); 3151 if (!pl[i].page) { 3152 dm_integrity_free_page_list(pl); 3153 return NULL; 3154 } 3155 if (i) 3156 pl[i - 1].next = &pl[i]; 3157 } 3158 pl[i].page = NULL; 3159 pl[i].next = NULL; 3160 3161 return pl; 3162 } 3163 3164 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3165 { 3166 unsigned i; 3167 for (i = 0; i < ic->journal_sections; i++) 3168 kvfree(sl[i]); 3169 kvfree(sl); 3170 } 3171 3172 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3173 struct page_list *pl) 3174 { 3175 struct scatterlist **sl; 3176 unsigned i; 3177 3178 sl = kvmalloc_array(ic->journal_sections, 3179 sizeof(struct scatterlist *), 3180 GFP_KERNEL | __GFP_ZERO); 3181 if (!sl) 3182 return NULL; 3183 3184 for (i = 0; i < ic->journal_sections; i++) { 3185 struct scatterlist *s; 3186 unsigned start_index, start_offset; 3187 unsigned end_index, end_offset; 3188 unsigned n_pages; 3189 unsigned idx; 3190 3191 page_list_location(ic, i, 0, &start_index, &start_offset); 3192 page_list_location(ic, i, ic->journal_section_sectors - 1, 3193 &end_index, &end_offset); 3194 3195 n_pages = (end_index - start_index + 1); 3196 3197 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3198 GFP_KERNEL); 3199 if (!s) { 3200 dm_integrity_free_journal_scatterlist(ic, sl); 3201 return NULL; 3202 } 3203 3204 sg_init_table(s, n_pages); 3205 for (idx = start_index; idx <= end_index; idx++) { 3206 char *va = lowmem_page_address(pl[idx].page); 3207 unsigned start = 0, end = PAGE_SIZE; 3208 if (idx == start_index) 3209 start = start_offset; 3210 if (idx == end_index) 3211 end = end_offset + (1 << SECTOR_SHIFT); 3212 sg_set_buf(&s[idx - start_index], va + start, end - start); 3213 } 3214 3215 sl[i] = s; 3216 } 3217 3218 return sl; 3219 } 3220 3221 static void free_alg(struct alg_spec *a) 3222 { 3223 kzfree(a->alg_string); 3224 kzfree(a->key); 3225 memset(a, 0, sizeof *a); 3226 } 3227 3228 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3229 { 3230 char *k; 3231 3232 free_alg(a); 3233 3234 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3235 if (!a->alg_string) 3236 goto nomem; 3237 3238 k = strchr(a->alg_string, ':'); 3239 if (k) { 3240 *k = 0; 3241 a->key_string = k + 1; 3242 if (strlen(a->key_string) & 1) 3243 goto inval; 3244 3245 a->key_size = strlen(a->key_string) / 2; 3246 a->key = kmalloc(a->key_size, GFP_KERNEL); 3247 if (!a->key) 3248 goto nomem; 3249 if (hex2bin(a->key, a->key_string, a->key_size)) 3250 goto inval; 3251 } 3252 3253 return 0; 3254 inval: 3255 *error = error_inval; 3256 return -EINVAL; 3257 nomem: 3258 *error = "Out of memory for an argument"; 3259 return -ENOMEM; 3260 } 3261 3262 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3263 char *error_alg, char *error_key) 3264 { 3265 int r; 3266 3267 if (a->alg_string) { 3268 *hash = crypto_alloc_shash(a->alg_string, 0, 0); 3269 if (IS_ERR(*hash)) { 3270 *error = error_alg; 3271 r = PTR_ERR(*hash); 3272 *hash = NULL; 3273 return r; 3274 } 3275 3276 if (a->key) { 3277 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3278 if (r) { 3279 *error = error_key; 3280 return r; 3281 } 3282 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3283 *error = error_key; 3284 return -ENOKEY; 3285 } 3286 } 3287 3288 return 0; 3289 } 3290 3291 static int create_journal(struct dm_integrity_c *ic, char **error) 3292 { 3293 int r = 0; 3294 unsigned i; 3295 __u64 journal_pages, journal_desc_size, journal_tree_size; 3296 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3297 struct skcipher_request *req = NULL; 3298 3299 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3300 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3301 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3302 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3303 3304 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3305 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3306 journal_desc_size = journal_pages * sizeof(struct page_list); 3307 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3308 *error = "Journal doesn't fit into memory"; 3309 r = -ENOMEM; 3310 goto bad; 3311 } 3312 ic->journal_pages = journal_pages; 3313 3314 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3315 if (!ic->journal) { 3316 *error = "Could not allocate memory for journal"; 3317 r = -ENOMEM; 3318 goto bad; 3319 } 3320 if (ic->journal_crypt_alg.alg_string) { 3321 unsigned ivsize, blocksize; 3322 struct journal_completion comp; 3323 3324 comp.ic = ic; 3325 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0); 3326 if (IS_ERR(ic->journal_crypt)) { 3327 *error = "Invalid journal cipher"; 3328 r = PTR_ERR(ic->journal_crypt); 3329 ic->journal_crypt = NULL; 3330 goto bad; 3331 } 3332 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3333 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3334 3335 if (ic->journal_crypt_alg.key) { 3336 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3337 ic->journal_crypt_alg.key_size); 3338 if (r) { 3339 *error = "Error setting encryption key"; 3340 goto bad; 3341 } 3342 } 3343 DEBUG_print("cipher %s, block size %u iv size %u\n", 3344 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3345 3346 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3347 if (!ic->journal_io) { 3348 *error = "Could not allocate memory for journal io"; 3349 r = -ENOMEM; 3350 goto bad; 3351 } 3352 3353 if (blocksize == 1) { 3354 struct scatterlist *sg; 3355 3356 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3357 if (!req) { 3358 *error = "Could not allocate crypt request"; 3359 r = -ENOMEM; 3360 goto bad; 3361 } 3362 3363 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3364 if (!crypt_iv) { 3365 *error = "Could not allocate iv"; 3366 r = -ENOMEM; 3367 goto bad; 3368 } 3369 3370 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3371 if (!ic->journal_xor) { 3372 *error = "Could not allocate memory for journal xor"; 3373 r = -ENOMEM; 3374 goto bad; 3375 } 3376 3377 sg = kvmalloc_array(ic->journal_pages + 1, 3378 sizeof(struct scatterlist), 3379 GFP_KERNEL); 3380 if (!sg) { 3381 *error = "Unable to allocate sg list"; 3382 r = -ENOMEM; 3383 goto bad; 3384 } 3385 sg_init_table(sg, ic->journal_pages + 1); 3386 for (i = 0; i < ic->journal_pages; i++) { 3387 char *va = lowmem_page_address(ic->journal_xor[i].page); 3388 clear_page(va); 3389 sg_set_buf(&sg[i], va, PAGE_SIZE); 3390 } 3391 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3392 3393 skcipher_request_set_crypt(req, sg, sg, 3394 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3395 init_completion(&comp.comp); 3396 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3397 if (do_crypt(true, req, &comp)) 3398 wait_for_completion(&comp.comp); 3399 kvfree(sg); 3400 r = dm_integrity_failed(ic); 3401 if (r) { 3402 *error = "Unable to encrypt journal"; 3403 goto bad; 3404 } 3405 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3406 3407 crypto_free_skcipher(ic->journal_crypt); 3408 ic->journal_crypt = NULL; 3409 } else { 3410 unsigned crypt_len = roundup(ivsize, blocksize); 3411 3412 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3413 if (!req) { 3414 *error = "Could not allocate crypt request"; 3415 r = -ENOMEM; 3416 goto bad; 3417 } 3418 3419 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3420 if (!crypt_iv) { 3421 *error = "Could not allocate iv"; 3422 r = -ENOMEM; 3423 goto bad; 3424 } 3425 3426 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3427 if (!crypt_data) { 3428 *error = "Unable to allocate crypt data"; 3429 r = -ENOMEM; 3430 goto bad; 3431 } 3432 3433 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3434 if (!ic->journal_scatterlist) { 3435 *error = "Unable to allocate sg list"; 3436 r = -ENOMEM; 3437 goto bad; 3438 } 3439 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3440 if (!ic->journal_io_scatterlist) { 3441 *error = "Unable to allocate sg list"; 3442 r = -ENOMEM; 3443 goto bad; 3444 } 3445 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3446 sizeof(struct skcipher_request *), 3447 GFP_KERNEL | __GFP_ZERO); 3448 if (!ic->sk_requests) { 3449 *error = "Unable to allocate sk requests"; 3450 r = -ENOMEM; 3451 goto bad; 3452 } 3453 for (i = 0; i < ic->journal_sections; i++) { 3454 struct scatterlist sg; 3455 struct skcipher_request *section_req; 3456 __u32 section_le = cpu_to_le32(i); 3457 3458 memset(crypt_iv, 0x00, ivsize); 3459 memset(crypt_data, 0x00, crypt_len); 3460 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3461 3462 sg_init_one(&sg, crypt_data, crypt_len); 3463 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3464 init_completion(&comp.comp); 3465 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3466 if (do_crypt(true, req, &comp)) 3467 wait_for_completion(&comp.comp); 3468 3469 r = dm_integrity_failed(ic); 3470 if (r) { 3471 *error = "Unable to generate iv"; 3472 goto bad; 3473 } 3474 3475 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3476 if (!section_req) { 3477 *error = "Unable to allocate crypt request"; 3478 r = -ENOMEM; 3479 goto bad; 3480 } 3481 section_req->iv = kmalloc_array(ivsize, 2, 3482 GFP_KERNEL); 3483 if (!section_req->iv) { 3484 skcipher_request_free(section_req); 3485 *error = "Unable to allocate iv"; 3486 r = -ENOMEM; 3487 goto bad; 3488 } 3489 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3490 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3491 ic->sk_requests[i] = section_req; 3492 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3493 } 3494 } 3495 } 3496 3497 for (i = 0; i < N_COMMIT_IDS; i++) { 3498 unsigned j; 3499 retest_commit_id: 3500 for (j = 0; j < i; j++) { 3501 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3502 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3503 goto retest_commit_id; 3504 } 3505 } 3506 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3507 } 3508 3509 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3510 if (journal_tree_size > ULONG_MAX) { 3511 *error = "Journal doesn't fit into memory"; 3512 r = -ENOMEM; 3513 goto bad; 3514 } 3515 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3516 if (!ic->journal_tree) { 3517 *error = "Could not allocate memory for journal tree"; 3518 r = -ENOMEM; 3519 } 3520 bad: 3521 kfree(crypt_data); 3522 kfree(crypt_iv); 3523 skcipher_request_free(req); 3524 3525 return r; 3526 } 3527 3528 /* 3529 * Construct a integrity mapping 3530 * 3531 * Arguments: 3532 * device 3533 * offset from the start of the device 3534 * tag size 3535 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3536 * number of optional arguments 3537 * optional arguments: 3538 * journal_sectors 3539 * interleave_sectors 3540 * buffer_sectors 3541 * journal_watermark 3542 * commit_time 3543 * meta_device 3544 * block_size 3545 * sectors_per_bit 3546 * bitmap_flush_interval 3547 * internal_hash 3548 * journal_crypt 3549 * journal_mac 3550 * recalculate 3551 */ 3552 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3553 { 3554 struct dm_integrity_c *ic; 3555 char dummy; 3556 int r; 3557 unsigned extra_args; 3558 struct dm_arg_set as; 3559 static const struct dm_arg _args[] = { 3560 {0, 9, "Invalid number of feature args"}, 3561 }; 3562 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3563 bool should_write_sb; 3564 __u64 threshold; 3565 unsigned long long start; 3566 __s8 log2_sectors_per_bitmap_bit = -1; 3567 __s8 log2_blocks_per_bitmap_bit; 3568 __u64 bits_in_journal; 3569 __u64 n_bitmap_bits; 3570 3571 #define DIRECT_ARGUMENTS 4 3572 3573 if (argc <= DIRECT_ARGUMENTS) { 3574 ti->error = "Invalid argument count"; 3575 return -EINVAL; 3576 } 3577 3578 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3579 if (!ic) { 3580 ti->error = "Cannot allocate integrity context"; 3581 return -ENOMEM; 3582 } 3583 ti->private = ic; 3584 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3585 3586 ic->in_progress = RB_ROOT; 3587 INIT_LIST_HEAD(&ic->wait_list); 3588 init_waitqueue_head(&ic->endio_wait); 3589 bio_list_init(&ic->flush_bio_list); 3590 init_waitqueue_head(&ic->copy_to_journal_wait); 3591 init_completion(&ic->crypto_backoff); 3592 atomic64_set(&ic->number_of_mismatches, 0); 3593 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 3594 3595 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3596 if (r) { 3597 ti->error = "Device lookup failed"; 3598 goto bad; 3599 } 3600 3601 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3602 ti->error = "Invalid starting offset"; 3603 r = -EINVAL; 3604 goto bad; 3605 } 3606 ic->start = start; 3607 3608 if (strcmp(argv[2], "-")) { 3609 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3610 ti->error = "Invalid tag size"; 3611 r = -EINVAL; 3612 goto bad; 3613 } 3614 } 3615 3616 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 3617 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 3618 ic->mode = argv[3][0]; 3619 } else { 3620 ti->error = "Invalid mode (expecting J, B, D, R)"; 3621 r = -EINVAL; 3622 goto bad; 3623 } 3624 3625 journal_sectors = 0; 3626 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3627 buffer_sectors = DEFAULT_BUFFER_SECTORS; 3628 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 3629 sync_msec = DEFAULT_SYNC_MSEC; 3630 ic->sectors_per_block = 1; 3631 3632 as.argc = argc - DIRECT_ARGUMENTS; 3633 as.argv = argv + DIRECT_ARGUMENTS; 3634 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 3635 if (r) 3636 goto bad; 3637 3638 while (extra_args--) { 3639 const char *opt_string; 3640 unsigned val; 3641 unsigned long long llval; 3642 opt_string = dm_shift_arg(&as); 3643 if (!opt_string) { 3644 r = -EINVAL; 3645 ti->error = "Not enough feature arguments"; 3646 goto bad; 3647 } 3648 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 3649 journal_sectors = val ? val : 1; 3650 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 3651 interleave_sectors = val; 3652 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 3653 buffer_sectors = val; 3654 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 3655 journal_watermark = val; 3656 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 3657 sync_msec = val; 3658 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 3659 if (ic->meta_dev) { 3660 dm_put_device(ti, ic->meta_dev); 3661 ic->meta_dev = NULL; 3662 } 3663 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 3664 dm_table_get_mode(ti->table), &ic->meta_dev); 3665 if (r) { 3666 ti->error = "Device lookup failed"; 3667 goto bad; 3668 } 3669 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 3670 if (val < 1 << SECTOR_SHIFT || 3671 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 3672 (val & (val -1))) { 3673 r = -EINVAL; 3674 ti->error = "Invalid block_size argument"; 3675 goto bad; 3676 } 3677 ic->sectors_per_block = val >> SECTOR_SHIFT; 3678 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 3679 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 3680 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 3681 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 3682 r = -EINVAL; 3683 ti->error = "Invalid bitmap_flush_interval argument"; 3684 } 3685 ic->bitmap_flush_interval = msecs_to_jiffies(val); 3686 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 3687 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 3688 "Invalid internal_hash argument"); 3689 if (r) 3690 goto bad; 3691 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 3692 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 3693 "Invalid journal_crypt argument"); 3694 if (r) 3695 goto bad; 3696 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 3697 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 3698 "Invalid journal_mac argument"); 3699 if (r) 3700 goto bad; 3701 } else if (!strcmp(opt_string, "recalculate")) { 3702 ic->recalculate_flag = true; 3703 } else { 3704 r = -EINVAL; 3705 ti->error = "Invalid argument"; 3706 goto bad; 3707 } 3708 } 3709 3710 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 3711 if (!ic->meta_dev) 3712 ic->meta_device_sectors = ic->data_device_sectors; 3713 else 3714 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 3715 3716 if (!journal_sectors) { 3717 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 3718 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 3719 } 3720 3721 if (!buffer_sectors) 3722 buffer_sectors = 1; 3723 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 3724 3725 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 3726 "Invalid internal hash", "Error setting internal hash key"); 3727 if (r) 3728 goto bad; 3729 3730 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 3731 "Invalid journal mac", "Error setting journal mac key"); 3732 if (r) 3733 goto bad; 3734 3735 if (!ic->tag_size) { 3736 if (!ic->internal_hash) { 3737 ti->error = "Unknown tag size"; 3738 r = -EINVAL; 3739 goto bad; 3740 } 3741 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 3742 } 3743 if (ic->tag_size > MAX_TAG_SIZE) { 3744 ti->error = "Too big tag size"; 3745 r = -EINVAL; 3746 goto bad; 3747 } 3748 if (!(ic->tag_size & (ic->tag_size - 1))) 3749 ic->log2_tag_size = __ffs(ic->tag_size); 3750 else 3751 ic->log2_tag_size = -1; 3752 3753 if (ic->mode == 'B' && !ic->internal_hash) { 3754 r = -EINVAL; 3755 ti->error = "Bitmap mode can be only used with internal hash"; 3756 goto bad; 3757 } 3758 3759 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 3760 ic->autocommit_msec = sync_msec; 3761 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 3762 3763 ic->io = dm_io_client_create(); 3764 if (IS_ERR(ic->io)) { 3765 r = PTR_ERR(ic->io); 3766 ic->io = NULL; 3767 ti->error = "Cannot allocate dm io"; 3768 goto bad; 3769 } 3770 3771 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 3772 if (r) { 3773 ti->error = "Cannot allocate mempool"; 3774 goto bad; 3775 } 3776 3777 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 3778 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 3779 if (!ic->metadata_wq) { 3780 ti->error = "Cannot allocate workqueue"; 3781 r = -ENOMEM; 3782 goto bad; 3783 } 3784 3785 /* 3786 * If this workqueue were percpu, it would cause bio reordering 3787 * and reduced performance. 3788 */ 3789 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3790 if (!ic->wait_wq) { 3791 ti->error = "Cannot allocate workqueue"; 3792 r = -ENOMEM; 3793 goto bad; 3794 } 3795 3796 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 3797 if (!ic->commit_wq) { 3798 ti->error = "Cannot allocate workqueue"; 3799 r = -ENOMEM; 3800 goto bad; 3801 } 3802 INIT_WORK(&ic->commit_work, integrity_commit); 3803 3804 if (ic->mode == 'J' || ic->mode == 'B') { 3805 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 3806 if (!ic->writer_wq) { 3807 ti->error = "Cannot allocate workqueue"; 3808 r = -ENOMEM; 3809 goto bad; 3810 } 3811 INIT_WORK(&ic->writer_work, integrity_writer); 3812 } 3813 3814 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 3815 if (!ic->sb) { 3816 r = -ENOMEM; 3817 ti->error = "Cannot allocate superblock area"; 3818 goto bad; 3819 } 3820 3821 r = sync_rw_sb(ic, REQ_OP_READ, 0); 3822 if (r) { 3823 ti->error = "Error reading superblock"; 3824 goto bad; 3825 } 3826 should_write_sb = false; 3827 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 3828 if (ic->mode != 'R') { 3829 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 3830 r = -EINVAL; 3831 ti->error = "The device is not initialized"; 3832 goto bad; 3833 } 3834 } 3835 3836 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 3837 if (r) { 3838 ti->error = "Could not initialize superblock"; 3839 goto bad; 3840 } 3841 if (ic->mode != 'R') 3842 should_write_sb = true; 3843 } 3844 3845 if (!ic->sb->version || ic->sb->version > SB_VERSION_3) { 3846 r = -EINVAL; 3847 ti->error = "Unknown version"; 3848 goto bad; 3849 } 3850 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 3851 r = -EINVAL; 3852 ti->error = "Tag size doesn't match the information in superblock"; 3853 goto bad; 3854 } 3855 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 3856 r = -EINVAL; 3857 ti->error = "Block size doesn't match the information in superblock"; 3858 goto bad; 3859 } 3860 if (!le32_to_cpu(ic->sb->journal_sections)) { 3861 r = -EINVAL; 3862 ti->error = "Corrupted superblock, journal_sections is 0"; 3863 goto bad; 3864 } 3865 /* make sure that ti->max_io_len doesn't overflow */ 3866 if (!ic->meta_dev) { 3867 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 3868 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 3869 r = -EINVAL; 3870 ti->error = "Invalid interleave_sectors in the superblock"; 3871 goto bad; 3872 } 3873 } else { 3874 if (ic->sb->log2_interleave_sectors) { 3875 r = -EINVAL; 3876 ti->error = "Invalid interleave_sectors in the superblock"; 3877 goto bad; 3878 } 3879 } 3880 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3881 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) { 3882 /* test for overflow */ 3883 r = -EINVAL; 3884 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors"; 3885 goto bad; 3886 } 3887 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 3888 r = -EINVAL; 3889 ti->error = "Journal mac mismatch"; 3890 goto bad; 3891 } 3892 3893 try_smaller_buffer: 3894 r = calculate_device_limits(ic); 3895 if (r) { 3896 if (ic->meta_dev) { 3897 if (ic->log2_buffer_sectors > 3) { 3898 ic->log2_buffer_sectors--; 3899 goto try_smaller_buffer; 3900 } 3901 } 3902 ti->error = "The device is too small"; 3903 goto bad; 3904 } 3905 3906 if (log2_sectors_per_bitmap_bit < 0) 3907 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 3908 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 3909 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 3910 3911 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 3912 if (bits_in_journal > UINT_MAX) 3913 bits_in_journal = UINT_MAX; 3914 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 3915 log2_sectors_per_bitmap_bit++; 3916 3917 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 3918 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 3919 if (should_write_sb) { 3920 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 3921 } 3922 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 3923 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 3924 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 3925 3926 if (!ic->meta_dev) 3927 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 3928 3929 if (ti->len > ic->provided_data_sectors) { 3930 r = -EINVAL; 3931 ti->error = "Not enough provided sectors for requested mapping size"; 3932 goto bad; 3933 } 3934 3935 3936 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 3937 threshold += 50; 3938 do_div(threshold, 100); 3939 ic->free_sectors_threshold = threshold; 3940 3941 DEBUG_print("initialized:\n"); 3942 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 3943 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 3944 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 3945 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 3946 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 3947 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 3948 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 3949 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 3950 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT); 3951 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 3952 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 3953 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 3954 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors, 3955 (unsigned long long)ic->provided_data_sectors); 3956 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 3957 DEBUG_print(" bits_in_journal %llu\n", (unsigned long long)bits_in_journal); 3958 3959 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 3960 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3961 ic->sb->recalc_sector = cpu_to_le64(0); 3962 } 3963 3964 if (ic->internal_hash) { 3965 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 3966 if (!ic->recalc_wq ) { 3967 ti->error = "Cannot allocate workqueue"; 3968 r = -ENOMEM; 3969 goto bad; 3970 } 3971 INIT_WORK(&ic->recalc_work, integrity_recalc); 3972 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 3973 if (!ic->recalc_buffer) { 3974 ti->error = "Cannot allocate buffer for recalculating"; 3975 r = -ENOMEM; 3976 goto bad; 3977 } 3978 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 3979 ic->tag_size, GFP_KERNEL); 3980 if (!ic->recalc_tags) { 3981 ti->error = "Cannot allocate tags for recalculating"; 3982 r = -ENOMEM; 3983 goto bad; 3984 } 3985 } 3986 3987 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 3988 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 3989 if (IS_ERR(ic->bufio)) { 3990 r = PTR_ERR(ic->bufio); 3991 ti->error = "Cannot initialize dm-bufio"; 3992 ic->bufio = NULL; 3993 goto bad; 3994 } 3995 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 3996 3997 if (ic->mode != 'R') { 3998 r = create_journal(ic, &ti->error); 3999 if (r) 4000 goto bad; 4001 4002 } 4003 4004 if (ic->mode == 'B') { 4005 unsigned i; 4006 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4007 4008 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4009 if (!ic->recalc_bitmap) { 4010 r = -ENOMEM; 4011 goto bad; 4012 } 4013 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4014 if (!ic->may_write_bitmap) { 4015 r = -ENOMEM; 4016 goto bad; 4017 } 4018 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4019 if (!ic->bbs) { 4020 r = -ENOMEM; 4021 goto bad; 4022 } 4023 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4024 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4025 struct bitmap_block_status *bbs = &ic->bbs[i]; 4026 unsigned sector, pl_index, pl_offset; 4027 4028 INIT_WORK(&bbs->work, bitmap_block_work); 4029 bbs->ic = ic; 4030 bbs->idx = i; 4031 bio_list_init(&bbs->bio_queue); 4032 spin_lock_init(&bbs->bio_queue_lock); 4033 4034 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4035 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4036 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4037 4038 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4039 } 4040 } 4041 4042 if (should_write_sb) { 4043 int r; 4044 4045 init_journal(ic, 0, ic->journal_sections, 0); 4046 r = dm_integrity_failed(ic); 4047 if (unlikely(r)) { 4048 ti->error = "Error initializing journal"; 4049 goto bad; 4050 } 4051 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4052 if (r) { 4053 ti->error = "Error initializing superblock"; 4054 goto bad; 4055 } 4056 ic->just_formatted = true; 4057 } 4058 4059 if (!ic->meta_dev) { 4060 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4061 if (r) 4062 goto bad; 4063 } 4064 if (ic->mode == 'B') { 4065 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4066 if (!max_io_len) 4067 max_io_len = 1U << 31; 4068 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4069 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4070 r = dm_set_target_max_io_len(ti, max_io_len); 4071 if (r) 4072 goto bad; 4073 } 4074 } 4075 4076 if (!ic->internal_hash) 4077 dm_integrity_set(ti, ic); 4078 4079 ti->num_flush_bios = 1; 4080 ti->flush_supported = true; 4081 4082 return 0; 4083 4084 bad: 4085 dm_integrity_dtr(ti); 4086 return r; 4087 } 4088 4089 static void dm_integrity_dtr(struct dm_target *ti) 4090 { 4091 struct dm_integrity_c *ic = ti->private; 4092 4093 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4094 BUG_ON(!list_empty(&ic->wait_list)); 4095 4096 if (ic->metadata_wq) 4097 destroy_workqueue(ic->metadata_wq); 4098 if (ic->wait_wq) 4099 destroy_workqueue(ic->wait_wq); 4100 if (ic->commit_wq) 4101 destroy_workqueue(ic->commit_wq); 4102 if (ic->writer_wq) 4103 destroy_workqueue(ic->writer_wq); 4104 if (ic->recalc_wq) 4105 destroy_workqueue(ic->recalc_wq); 4106 vfree(ic->recalc_buffer); 4107 kvfree(ic->recalc_tags); 4108 kvfree(ic->bbs); 4109 if (ic->bufio) 4110 dm_bufio_client_destroy(ic->bufio); 4111 mempool_exit(&ic->journal_io_mempool); 4112 if (ic->io) 4113 dm_io_client_destroy(ic->io); 4114 if (ic->dev) 4115 dm_put_device(ti, ic->dev); 4116 if (ic->meta_dev) 4117 dm_put_device(ti, ic->meta_dev); 4118 dm_integrity_free_page_list(ic->journal); 4119 dm_integrity_free_page_list(ic->journal_io); 4120 dm_integrity_free_page_list(ic->journal_xor); 4121 dm_integrity_free_page_list(ic->recalc_bitmap); 4122 dm_integrity_free_page_list(ic->may_write_bitmap); 4123 if (ic->journal_scatterlist) 4124 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4125 if (ic->journal_io_scatterlist) 4126 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4127 if (ic->sk_requests) { 4128 unsigned i; 4129 4130 for (i = 0; i < ic->journal_sections; i++) { 4131 struct skcipher_request *req = ic->sk_requests[i]; 4132 if (req) { 4133 kzfree(req->iv); 4134 skcipher_request_free(req); 4135 } 4136 } 4137 kvfree(ic->sk_requests); 4138 } 4139 kvfree(ic->journal_tree); 4140 if (ic->sb) 4141 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4142 4143 if (ic->internal_hash) 4144 crypto_free_shash(ic->internal_hash); 4145 free_alg(&ic->internal_hash_alg); 4146 4147 if (ic->journal_crypt) 4148 crypto_free_skcipher(ic->journal_crypt); 4149 free_alg(&ic->journal_crypt_alg); 4150 4151 if (ic->journal_mac) 4152 crypto_free_shash(ic->journal_mac); 4153 free_alg(&ic->journal_mac_alg); 4154 4155 kfree(ic); 4156 } 4157 4158 static struct target_type integrity_target = { 4159 .name = "integrity", 4160 .version = {1, 3, 0}, 4161 .module = THIS_MODULE, 4162 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4163 .ctr = dm_integrity_ctr, 4164 .dtr = dm_integrity_dtr, 4165 .map = dm_integrity_map, 4166 .postsuspend = dm_integrity_postsuspend, 4167 .resume = dm_integrity_resume, 4168 .status = dm_integrity_status, 4169 .iterate_devices = dm_integrity_iterate_devices, 4170 .io_hints = dm_integrity_io_hints, 4171 }; 4172 4173 static int __init dm_integrity_init(void) 4174 { 4175 int r; 4176 4177 journal_io_cache = kmem_cache_create("integrity_journal_io", 4178 sizeof(struct journal_io), 0, 0, NULL); 4179 if (!journal_io_cache) { 4180 DMERR("can't allocate journal io cache"); 4181 return -ENOMEM; 4182 } 4183 4184 r = dm_register_target(&integrity_target); 4185 4186 if (r < 0) 4187 DMERR("register failed %d", r); 4188 4189 return r; 4190 } 4191 4192 static void __exit dm_integrity_exit(void) 4193 { 4194 dm_unregister_target(&integrity_target); 4195 kmem_cache_destroy(journal_io_cache); 4196 } 4197 4198 module_init(dm_integrity_init); 4199 module_exit(dm_integrity_exit); 4200 4201 MODULE_AUTHOR("Milan Broz"); 4202 MODULE_AUTHOR("Mikulas Patocka"); 4203 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4204 MODULE_LICENSE("GPL"); 4205