1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bio-record.h" 10 11 #include <linux/compiler.h> 12 #include <linux/module.h> 13 #include <linux/device-mapper.h> 14 #include <linux/dm-io.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sort.h> 17 #include <linux/rbtree.h> 18 #include <linux/delay.h> 19 #include <linux/random.h> 20 #include <linux/reboot.h> 21 #include <crypto/hash.h> 22 #include <crypto/skcipher.h> 23 #include <linux/async_tx.h> 24 #include <linux/dm-bufio.h> 25 26 #include "dm-audit.h" 27 28 #define DM_MSG_PREFIX "integrity" 29 30 #define DEFAULT_INTERLEAVE_SECTORS 32768 31 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 32 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 33 #define DEFAULT_BUFFER_SECTORS 128 34 #define DEFAULT_JOURNAL_WATERMARK 50 35 #define DEFAULT_SYNC_MSEC 10000 36 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 37 #define MIN_LOG2_INTERLEAVE_SECTORS 3 38 #define MAX_LOG2_INTERLEAVE_SECTORS 31 39 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 40 #define RECALC_SECTORS 32768 41 #define RECALC_WRITE_SUPER 16 42 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 43 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 44 #define DISCARD_FILLER 0xf6 45 #define SALT_SIZE 16 46 47 /* 48 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 49 * so it should not be enabled in the official kernel 50 */ 51 //#define DEBUG_PRINT 52 //#define INTERNAL_VERIFY 53 54 /* 55 * On disk structures 56 */ 57 58 #define SB_MAGIC "integrt" 59 #define SB_VERSION_1 1 60 #define SB_VERSION_2 2 61 #define SB_VERSION_3 3 62 #define SB_VERSION_4 4 63 #define SB_VERSION_5 5 64 #define SB_SECTORS 8 65 #define MAX_SECTORS_PER_BLOCK 8 66 67 struct superblock { 68 __u8 magic[8]; 69 __u8 version; 70 __u8 log2_interleave_sectors; 71 __le16 integrity_tag_size; 72 __le32 journal_sections; 73 __le64 provided_data_sectors; /* userspace uses this value */ 74 __le32 flags; 75 __u8 log2_sectors_per_block; 76 __u8 log2_blocks_per_bitmap_bit; 77 __u8 pad[2]; 78 __le64 recalc_sector; 79 __u8 pad2[8]; 80 __u8 salt[SALT_SIZE]; 81 }; 82 83 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 84 #define SB_FLAG_RECALCULATING 0x2 85 #define SB_FLAG_DIRTY_BITMAP 0x4 86 #define SB_FLAG_FIXED_PADDING 0x8 87 #define SB_FLAG_FIXED_HMAC 0x10 88 89 #define JOURNAL_ENTRY_ROUNDUP 8 90 91 typedef __le64 commit_id_t; 92 #define JOURNAL_MAC_PER_SECTOR 8 93 94 struct journal_entry { 95 union { 96 struct { 97 __le32 sector_lo; 98 __le32 sector_hi; 99 } s; 100 __le64 sector; 101 } u; 102 commit_id_t last_bytes[]; 103 /* __u8 tag[0]; */ 104 }; 105 106 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 107 108 #if BITS_PER_LONG == 64 109 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 110 #else 111 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 112 #endif 113 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 114 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 115 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 116 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 117 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 118 119 #define JOURNAL_BLOCK_SECTORS 8 120 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 121 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 122 123 struct journal_sector { 124 struct_group(sectors, 125 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 126 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 127 ); 128 commit_id_t commit_id; 129 }; 130 131 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 132 133 #define METADATA_PADDING_SECTORS 8 134 135 #define N_COMMIT_IDS 4 136 137 static unsigned char prev_commit_seq(unsigned char seq) 138 { 139 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 140 } 141 142 static unsigned char next_commit_seq(unsigned char seq) 143 { 144 return (seq + 1) % N_COMMIT_IDS; 145 } 146 147 /* 148 * In-memory structures 149 */ 150 151 struct journal_node { 152 struct rb_node node; 153 sector_t sector; 154 }; 155 156 struct alg_spec { 157 char *alg_string; 158 char *key_string; 159 __u8 *key; 160 unsigned key_size; 161 }; 162 163 struct dm_integrity_c { 164 struct dm_dev *dev; 165 struct dm_dev *meta_dev; 166 unsigned tag_size; 167 __s8 log2_tag_size; 168 sector_t start; 169 mempool_t journal_io_mempool; 170 struct dm_io_client *io; 171 struct dm_bufio_client *bufio; 172 struct workqueue_struct *metadata_wq; 173 struct superblock *sb; 174 unsigned journal_pages; 175 unsigned n_bitmap_blocks; 176 177 struct page_list *journal; 178 struct page_list *journal_io; 179 struct page_list *journal_xor; 180 struct page_list *recalc_bitmap; 181 struct page_list *may_write_bitmap; 182 struct bitmap_block_status *bbs; 183 unsigned bitmap_flush_interval; 184 int synchronous_mode; 185 struct bio_list synchronous_bios; 186 struct delayed_work bitmap_flush_work; 187 188 struct crypto_skcipher *journal_crypt; 189 struct scatterlist **journal_scatterlist; 190 struct scatterlist **journal_io_scatterlist; 191 struct skcipher_request **sk_requests; 192 193 struct crypto_shash *journal_mac; 194 195 struct journal_node *journal_tree; 196 struct rb_root journal_tree_root; 197 198 sector_t provided_data_sectors; 199 200 unsigned short journal_entry_size; 201 unsigned char journal_entries_per_sector; 202 unsigned char journal_section_entries; 203 unsigned short journal_section_sectors; 204 unsigned journal_sections; 205 unsigned journal_entries; 206 sector_t data_device_sectors; 207 sector_t meta_device_sectors; 208 unsigned initial_sectors; 209 unsigned metadata_run; 210 __s8 log2_metadata_run; 211 __u8 log2_buffer_sectors; 212 __u8 sectors_per_block; 213 __u8 log2_blocks_per_bitmap_bit; 214 215 unsigned char mode; 216 217 int failed; 218 219 struct crypto_shash *internal_hash; 220 221 struct dm_target *ti; 222 223 /* these variables are locked with endio_wait.lock */ 224 struct rb_root in_progress; 225 struct list_head wait_list; 226 wait_queue_head_t endio_wait; 227 struct workqueue_struct *wait_wq; 228 struct workqueue_struct *offload_wq; 229 230 unsigned char commit_seq; 231 commit_id_t commit_ids[N_COMMIT_IDS]; 232 233 unsigned committed_section; 234 unsigned n_committed_sections; 235 236 unsigned uncommitted_section; 237 unsigned n_uncommitted_sections; 238 239 unsigned free_section; 240 unsigned char free_section_entry; 241 unsigned free_sectors; 242 243 unsigned free_sectors_threshold; 244 245 struct workqueue_struct *commit_wq; 246 struct work_struct commit_work; 247 248 struct workqueue_struct *writer_wq; 249 struct work_struct writer_work; 250 251 struct workqueue_struct *recalc_wq; 252 struct work_struct recalc_work; 253 u8 *recalc_buffer; 254 u8 *recalc_tags; 255 256 struct bio_list flush_bio_list; 257 258 unsigned long autocommit_jiffies; 259 struct timer_list autocommit_timer; 260 unsigned autocommit_msec; 261 262 wait_queue_head_t copy_to_journal_wait; 263 264 struct completion crypto_backoff; 265 266 bool journal_uptodate; 267 bool just_formatted; 268 bool recalculate_flag; 269 bool reset_recalculate_flag; 270 bool discard; 271 bool fix_padding; 272 bool fix_hmac; 273 bool legacy_recalculate; 274 275 struct alg_spec internal_hash_alg; 276 struct alg_spec journal_crypt_alg; 277 struct alg_spec journal_mac_alg; 278 279 atomic64_t number_of_mismatches; 280 281 struct notifier_block reboot_notifier; 282 }; 283 284 struct dm_integrity_range { 285 sector_t logical_sector; 286 sector_t n_sectors; 287 bool waiting; 288 union { 289 struct rb_node node; 290 struct { 291 struct task_struct *task; 292 struct list_head wait_entry; 293 }; 294 }; 295 }; 296 297 struct dm_integrity_io { 298 struct work_struct work; 299 300 struct dm_integrity_c *ic; 301 enum req_opf op; 302 bool fua; 303 304 struct dm_integrity_range range; 305 306 sector_t metadata_block; 307 unsigned metadata_offset; 308 309 atomic_t in_flight; 310 blk_status_t bi_status; 311 312 struct completion *completion; 313 314 struct dm_bio_details bio_details; 315 }; 316 317 struct journal_completion { 318 struct dm_integrity_c *ic; 319 atomic_t in_flight; 320 struct completion comp; 321 }; 322 323 struct journal_io { 324 struct dm_integrity_range range; 325 struct journal_completion *comp; 326 }; 327 328 struct bitmap_block_status { 329 struct work_struct work; 330 struct dm_integrity_c *ic; 331 unsigned idx; 332 unsigned long *bitmap; 333 struct bio_list bio_queue; 334 spinlock_t bio_queue_lock; 335 336 }; 337 338 static struct kmem_cache *journal_io_cache; 339 340 #define JOURNAL_IO_MEMPOOL 32 341 342 #ifdef DEBUG_PRINT 343 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 344 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 345 { 346 va_list args; 347 va_start(args, msg); 348 vprintk(msg, args); 349 va_end(args); 350 if (len) 351 pr_cont(":"); 352 while (len) { 353 pr_cont(" %02x", *bytes); 354 bytes++; 355 len--; 356 } 357 pr_cont("\n"); 358 } 359 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 360 #else 361 #define DEBUG_print(x, ...) do { } while (0) 362 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 363 #endif 364 365 static void dm_integrity_prepare(struct request *rq) 366 { 367 } 368 369 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 370 { 371 } 372 373 /* 374 * DM Integrity profile, protection is performed layer above (dm-crypt) 375 */ 376 static const struct blk_integrity_profile dm_integrity_profile = { 377 .name = "DM-DIF-EXT-TAG", 378 .generate_fn = NULL, 379 .verify_fn = NULL, 380 .prepare_fn = dm_integrity_prepare, 381 .complete_fn = dm_integrity_complete, 382 }; 383 384 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 385 static void integrity_bio_wait(struct work_struct *w); 386 static void dm_integrity_dtr(struct dm_target *ti); 387 388 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 389 { 390 if (err == -EILSEQ) 391 atomic64_inc(&ic->number_of_mismatches); 392 if (!cmpxchg(&ic->failed, 0, err)) 393 DMERR("Error on %s: %d", msg, err); 394 } 395 396 static int dm_integrity_failed(struct dm_integrity_c *ic) 397 { 398 return READ_ONCE(ic->failed); 399 } 400 401 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 402 { 403 if (ic->legacy_recalculate) 404 return false; 405 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 406 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 407 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 408 return true; 409 return false; 410 } 411 412 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 413 unsigned j, unsigned char seq) 414 { 415 /* 416 * Xor the number with section and sector, so that if a piece of 417 * journal is written at wrong place, it is detected. 418 */ 419 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 420 } 421 422 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 423 sector_t *area, sector_t *offset) 424 { 425 if (!ic->meta_dev) { 426 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 427 *area = data_sector >> log2_interleave_sectors; 428 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 429 } else { 430 *area = 0; 431 *offset = data_sector; 432 } 433 } 434 435 #define sector_to_block(ic, n) \ 436 do { \ 437 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 438 (n) >>= (ic)->sb->log2_sectors_per_block; \ 439 } while (0) 440 441 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 442 sector_t offset, unsigned *metadata_offset) 443 { 444 __u64 ms; 445 unsigned mo; 446 447 ms = area << ic->sb->log2_interleave_sectors; 448 if (likely(ic->log2_metadata_run >= 0)) 449 ms += area << ic->log2_metadata_run; 450 else 451 ms += area * ic->metadata_run; 452 ms >>= ic->log2_buffer_sectors; 453 454 sector_to_block(ic, offset); 455 456 if (likely(ic->log2_tag_size >= 0)) { 457 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 458 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 459 } else { 460 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 461 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 462 } 463 *metadata_offset = mo; 464 return ms; 465 } 466 467 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 468 { 469 sector_t result; 470 471 if (ic->meta_dev) 472 return offset; 473 474 result = area << ic->sb->log2_interleave_sectors; 475 if (likely(ic->log2_metadata_run >= 0)) 476 result += (area + 1) << ic->log2_metadata_run; 477 else 478 result += (area + 1) * ic->metadata_run; 479 480 result += (sector_t)ic->initial_sectors + offset; 481 result += ic->start; 482 483 return result; 484 } 485 486 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 487 { 488 if (unlikely(*sec_ptr >= ic->journal_sections)) 489 *sec_ptr -= ic->journal_sections; 490 } 491 492 static void sb_set_version(struct dm_integrity_c *ic) 493 { 494 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 495 ic->sb->version = SB_VERSION_5; 496 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 497 ic->sb->version = SB_VERSION_4; 498 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 499 ic->sb->version = SB_VERSION_3; 500 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 501 ic->sb->version = SB_VERSION_2; 502 else 503 ic->sb->version = SB_VERSION_1; 504 } 505 506 static int sb_mac(struct dm_integrity_c *ic, bool wr) 507 { 508 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 509 int r; 510 unsigned size = crypto_shash_digestsize(ic->journal_mac); 511 512 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) { 513 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 514 return -EINVAL; 515 } 516 517 desc->tfm = ic->journal_mac; 518 519 r = crypto_shash_init(desc); 520 if (unlikely(r < 0)) { 521 dm_integrity_io_error(ic, "crypto_shash_init", r); 522 return r; 523 } 524 525 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size); 526 if (unlikely(r < 0)) { 527 dm_integrity_io_error(ic, "crypto_shash_update", r); 528 return r; 529 } 530 531 if (likely(wr)) { 532 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size); 533 if (unlikely(r < 0)) { 534 dm_integrity_io_error(ic, "crypto_shash_final", r); 535 return r; 536 } 537 } else { 538 __u8 result[HASH_MAX_DIGESTSIZE]; 539 r = crypto_shash_final(desc, result); 540 if (unlikely(r < 0)) { 541 dm_integrity_io_error(ic, "crypto_shash_final", r); 542 return r; 543 } 544 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) { 545 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 546 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0); 547 return -EILSEQ; 548 } 549 } 550 551 return 0; 552 } 553 554 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 555 { 556 struct dm_io_request io_req; 557 struct dm_io_region io_loc; 558 int r; 559 560 io_req.bi_op = op; 561 io_req.bi_op_flags = op_flags; 562 io_req.mem.type = DM_IO_KMEM; 563 io_req.mem.ptr.addr = ic->sb; 564 io_req.notify.fn = NULL; 565 io_req.client = ic->io; 566 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 567 io_loc.sector = ic->start; 568 io_loc.count = SB_SECTORS; 569 570 if (op == REQ_OP_WRITE) { 571 sb_set_version(ic); 572 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 573 r = sb_mac(ic, true); 574 if (unlikely(r)) 575 return r; 576 } 577 } 578 579 r = dm_io(&io_req, 1, &io_loc, NULL); 580 if (unlikely(r)) 581 return r; 582 583 if (op == REQ_OP_READ) { 584 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 585 r = sb_mac(ic, false); 586 if (unlikely(r)) 587 return r; 588 } 589 } 590 591 return 0; 592 } 593 594 #define BITMAP_OP_TEST_ALL_SET 0 595 #define BITMAP_OP_TEST_ALL_CLEAR 1 596 #define BITMAP_OP_SET 2 597 #define BITMAP_OP_CLEAR 3 598 599 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 600 sector_t sector, sector_t n_sectors, int mode) 601 { 602 unsigned long bit, end_bit, this_end_bit, page, end_page; 603 unsigned long *data; 604 605 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 606 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 607 sector, 608 n_sectors, 609 ic->sb->log2_sectors_per_block, 610 ic->log2_blocks_per_bitmap_bit, 611 mode); 612 BUG(); 613 } 614 615 if (unlikely(!n_sectors)) 616 return true; 617 618 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 619 end_bit = (sector + n_sectors - 1) >> 620 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 621 622 page = bit / (PAGE_SIZE * 8); 623 bit %= PAGE_SIZE * 8; 624 625 end_page = end_bit / (PAGE_SIZE * 8); 626 end_bit %= PAGE_SIZE * 8; 627 628 repeat: 629 if (page < end_page) { 630 this_end_bit = PAGE_SIZE * 8 - 1; 631 } else { 632 this_end_bit = end_bit; 633 } 634 635 data = lowmem_page_address(bitmap[page].page); 636 637 if (mode == BITMAP_OP_TEST_ALL_SET) { 638 while (bit <= this_end_bit) { 639 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 640 do { 641 if (data[bit / BITS_PER_LONG] != -1) 642 return false; 643 bit += BITS_PER_LONG; 644 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 645 continue; 646 } 647 if (!test_bit(bit, data)) 648 return false; 649 bit++; 650 } 651 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 652 while (bit <= this_end_bit) { 653 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 654 do { 655 if (data[bit / BITS_PER_LONG] != 0) 656 return false; 657 bit += BITS_PER_LONG; 658 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 659 continue; 660 } 661 if (test_bit(bit, data)) 662 return false; 663 bit++; 664 } 665 } else if (mode == BITMAP_OP_SET) { 666 while (bit <= this_end_bit) { 667 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 668 do { 669 data[bit / BITS_PER_LONG] = -1; 670 bit += BITS_PER_LONG; 671 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 672 continue; 673 } 674 __set_bit(bit, data); 675 bit++; 676 } 677 } else if (mode == BITMAP_OP_CLEAR) { 678 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 679 clear_page(data); 680 else while (bit <= this_end_bit) { 681 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 682 do { 683 data[bit / BITS_PER_LONG] = 0; 684 bit += BITS_PER_LONG; 685 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 686 continue; 687 } 688 __clear_bit(bit, data); 689 bit++; 690 } 691 } else { 692 BUG(); 693 } 694 695 if (unlikely(page < end_page)) { 696 bit = 0; 697 page++; 698 goto repeat; 699 } 700 701 return true; 702 } 703 704 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 705 { 706 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 707 unsigned i; 708 709 for (i = 0; i < n_bitmap_pages; i++) { 710 unsigned long *dst_data = lowmem_page_address(dst[i].page); 711 unsigned long *src_data = lowmem_page_address(src[i].page); 712 copy_page(dst_data, src_data); 713 } 714 } 715 716 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 717 { 718 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 719 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 720 721 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 722 return &ic->bbs[bitmap_block]; 723 } 724 725 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 726 bool e, const char *function) 727 { 728 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 729 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 730 731 if (unlikely(section >= ic->journal_sections) || 732 unlikely(offset >= limit)) { 733 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 734 function, section, offset, ic->journal_sections, limit); 735 BUG(); 736 } 737 #endif 738 } 739 740 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 741 unsigned *pl_index, unsigned *pl_offset) 742 { 743 unsigned sector; 744 745 access_journal_check(ic, section, offset, false, "page_list_location"); 746 747 sector = section * ic->journal_section_sectors + offset; 748 749 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 750 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 751 } 752 753 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 754 unsigned section, unsigned offset, unsigned *n_sectors) 755 { 756 unsigned pl_index, pl_offset; 757 char *va; 758 759 page_list_location(ic, section, offset, &pl_index, &pl_offset); 760 761 if (n_sectors) 762 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 763 764 va = lowmem_page_address(pl[pl_index].page); 765 766 return (struct journal_sector *)(va + pl_offset); 767 } 768 769 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 770 { 771 return access_page_list(ic, ic->journal, section, offset, NULL); 772 } 773 774 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 775 { 776 unsigned rel_sector, offset; 777 struct journal_sector *js; 778 779 access_journal_check(ic, section, n, true, "access_journal_entry"); 780 781 rel_sector = n % JOURNAL_BLOCK_SECTORS; 782 offset = n / JOURNAL_BLOCK_SECTORS; 783 784 js = access_journal(ic, section, rel_sector); 785 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 786 } 787 788 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 789 { 790 n <<= ic->sb->log2_sectors_per_block; 791 792 n += JOURNAL_BLOCK_SECTORS; 793 794 access_journal_check(ic, section, n, false, "access_journal_data"); 795 796 return access_journal(ic, section, n); 797 } 798 799 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 800 { 801 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 802 int r; 803 unsigned j, size; 804 805 desc->tfm = ic->journal_mac; 806 807 r = crypto_shash_init(desc); 808 if (unlikely(r < 0)) { 809 dm_integrity_io_error(ic, "crypto_shash_init", r); 810 goto err; 811 } 812 813 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 814 __le64 section_le; 815 816 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 817 if (unlikely(r < 0)) { 818 dm_integrity_io_error(ic, "crypto_shash_update", r); 819 goto err; 820 } 821 822 section_le = cpu_to_le64(section); 823 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof section_le); 824 if (unlikely(r < 0)) { 825 dm_integrity_io_error(ic, "crypto_shash_update", r); 826 goto err; 827 } 828 } 829 830 for (j = 0; j < ic->journal_section_entries; j++) { 831 struct journal_entry *je = access_journal_entry(ic, section, j); 832 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 833 if (unlikely(r < 0)) { 834 dm_integrity_io_error(ic, "crypto_shash_update", r); 835 goto err; 836 } 837 } 838 839 size = crypto_shash_digestsize(ic->journal_mac); 840 841 if (likely(size <= JOURNAL_MAC_SIZE)) { 842 r = crypto_shash_final(desc, result); 843 if (unlikely(r < 0)) { 844 dm_integrity_io_error(ic, "crypto_shash_final", r); 845 goto err; 846 } 847 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 848 } else { 849 __u8 digest[HASH_MAX_DIGESTSIZE]; 850 851 if (WARN_ON(size > sizeof(digest))) { 852 dm_integrity_io_error(ic, "digest_size", -EINVAL); 853 goto err; 854 } 855 r = crypto_shash_final(desc, digest); 856 if (unlikely(r < 0)) { 857 dm_integrity_io_error(ic, "crypto_shash_final", r); 858 goto err; 859 } 860 memcpy(result, digest, JOURNAL_MAC_SIZE); 861 } 862 863 return; 864 err: 865 memset(result, 0, JOURNAL_MAC_SIZE); 866 } 867 868 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 869 { 870 __u8 result[JOURNAL_MAC_SIZE]; 871 unsigned j; 872 873 if (!ic->journal_mac) 874 return; 875 876 section_mac(ic, section, result); 877 878 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 879 struct journal_sector *js = access_journal(ic, section, j); 880 881 if (likely(wr)) 882 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 883 else { 884 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) { 885 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 886 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0); 887 } 888 } 889 } 890 } 891 892 static void complete_journal_op(void *context) 893 { 894 struct journal_completion *comp = context; 895 BUG_ON(!atomic_read(&comp->in_flight)); 896 if (likely(atomic_dec_and_test(&comp->in_flight))) 897 complete(&comp->comp); 898 } 899 900 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 901 unsigned n_sections, struct journal_completion *comp) 902 { 903 struct async_submit_ctl submit; 904 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 905 unsigned pl_index, pl_offset, section_index; 906 struct page_list *source_pl, *target_pl; 907 908 if (likely(encrypt)) { 909 source_pl = ic->journal; 910 target_pl = ic->journal_io; 911 } else { 912 source_pl = ic->journal_io; 913 target_pl = ic->journal; 914 } 915 916 page_list_location(ic, section, 0, &pl_index, &pl_offset); 917 918 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 919 920 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 921 922 section_index = pl_index; 923 924 do { 925 size_t this_step; 926 struct page *src_pages[2]; 927 struct page *dst_page; 928 929 while (unlikely(pl_index == section_index)) { 930 unsigned dummy; 931 if (likely(encrypt)) 932 rw_section_mac(ic, section, true); 933 section++; 934 n_sections--; 935 if (!n_sections) 936 break; 937 page_list_location(ic, section, 0, §ion_index, &dummy); 938 } 939 940 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 941 dst_page = target_pl[pl_index].page; 942 src_pages[0] = source_pl[pl_index].page; 943 src_pages[1] = ic->journal_xor[pl_index].page; 944 945 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 946 947 pl_index++; 948 pl_offset = 0; 949 n_bytes -= this_step; 950 } while (n_bytes); 951 952 BUG_ON(n_sections); 953 954 async_tx_issue_pending_all(); 955 } 956 957 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 958 { 959 struct journal_completion *comp = req->data; 960 if (unlikely(err)) { 961 if (likely(err == -EINPROGRESS)) { 962 complete(&comp->ic->crypto_backoff); 963 return; 964 } 965 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 966 } 967 complete_journal_op(comp); 968 } 969 970 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 971 { 972 int r; 973 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 974 complete_journal_encrypt, comp); 975 if (likely(encrypt)) 976 r = crypto_skcipher_encrypt(req); 977 else 978 r = crypto_skcipher_decrypt(req); 979 if (likely(!r)) 980 return false; 981 if (likely(r == -EINPROGRESS)) 982 return true; 983 if (likely(r == -EBUSY)) { 984 wait_for_completion(&comp->ic->crypto_backoff); 985 reinit_completion(&comp->ic->crypto_backoff); 986 return true; 987 } 988 dm_integrity_io_error(comp->ic, "encrypt", r); 989 return false; 990 } 991 992 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 993 unsigned n_sections, struct journal_completion *comp) 994 { 995 struct scatterlist **source_sg; 996 struct scatterlist **target_sg; 997 998 atomic_add(2, &comp->in_flight); 999 1000 if (likely(encrypt)) { 1001 source_sg = ic->journal_scatterlist; 1002 target_sg = ic->journal_io_scatterlist; 1003 } else { 1004 source_sg = ic->journal_io_scatterlist; 1005 target_sg = ic->journal_scatterlist; 1006 } 1007 1008 do { 1009 struct skcipher_request *req; 1010 unsigned ivsize; 1011 char *iv; 1012 1013 if (likely(encrypt)) 1014 rw_section_mac(ic, section, true); 1015 1016 req = ic->sk_requests[section]; 1017 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 1018 iv = req->iv; 1019 1020 memcpy(iv, iv + ivsize, ivsize); 1021 1022 req->src = source_sg[section]; 1023 req->dst = target_sg[section]; 1024 1025 if (unlikely(do_crypt(encrypt, req, comp))) 1026 atomic_inc(&comp->in_flight); 1027 1028 section++; 1029 n_sections--; 1030 } while (n_sections); 1031 1032 atomic_dec(&comp->in_flight); 1033 complete_journal_op(comp); 1034 } 1035 1036 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 1037 unsigned n_sections, struct journal_completion *comp) 1038 { 1039 if (ic->journal_xor) 1040 return xor_journal(ic, encrypt, section, n_sections, comp); 1041 else 1042 return crypt_journal(ic, encrypt, section, n_sections, comp); 1043 } 1044 1045 static void complete_journal_io(unsigned long error, void *context) 1046 { 1047 struct journal_completion *comp = context; 1048 if (unlikely(error != 0)) 1049 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1050 complete_journal_op(comp); 1051 } 1052 1053 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 1054 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 1055 { 1056 struct dm_io_request io_req; 1057 struct dm_io_region io_loc; 1058 unsigned pl_index, pl_offset; 1059 int r; 1060 1061 if (unlikely(dm_integrity_failed(ic))) { 1062 if (comp) 1063 complete_journal_io(-1UL, comp); 1064 return; 1065 } 1066 1067 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1068 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1069 1070 io_req.bi_op = op; 1071 io_req.bi_op_flags = op_flags; 1072 io_req.mem.type = DM_IO_PAGE_LIST; 1073 if (ic->journal_io) 1074 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1075 else 1076 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1077 io_req.mem.offset = pl_offset; 1078 if (likely(comp != NULL)) { 1079 io_req.notify.fn = complete_journal_io; 1080 io_req.notify.context = comp; 1081 } else { 1082 io_req.notify.fn = NULL; 1083 } 1084 io_req.client = ic->io; 1085 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1086 io_loc.sector = ic->start + SB_SECTORS + sector; 1087 io_loc.count = n_sectors; 1088 1089 r = dm_io(&io_req, 1, &io_loc, NULL); 1090 if (unlikely(r)) { 1091 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 1092 if (comp) { 1093 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1094 complete_journal_io(-1UL, comp); 1095 } 1096 } 1097 } 1098 1099 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 1100 unsigned n_sections, struct journal_completion *comp) 1101 { 1102 unsigned sector, n_sectors; 1103 1104 sector = section * ic->journal_section_sectors; 1105 n_sectors = n_sections * ic->journal_section_sectors; 1106 1107 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 1108 } 1109 1110 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 1111 { 1112 struct journal_completion io_comp; 1113 struct journal_completion crypt_comp_1; 1114 struct journal_completion crypt_comp_2; 1115 unsigned i; 1116 1117 io_comp.ic = ic; 1118 init_completion(&io_comp.comp); 1119 1120 if (commit_start + commit_sections <= ic->journal_sections) { 1121 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1122 if (ic->journal_io) { 1123 crypt_comp_1.ic = ic; 1124 init_completion(&crypt_comp_1.comp); 1125 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1126 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1127 wait_for_completion_io(&crypt_comp_1.comp); 1128 } else { 1129 for (i = 0; i < commit_sections; i++) 1130 rw_section_mac(ic, commit_start + i, true); 1131 } 1132 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1133 commit_sections, &io_comp); 1134 } else { 1135 unsigned to_end; 1136 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1137 to_end = ic->journal_sections - commit_start; 1138 if (ic->journal_io) { 1139 crypt_comp_1.ic = ic; 1140 init_completion(&crypt_comp_1.comp); 1141 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1142 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1143 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1144 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1145 reinit_completion(&crypt_comp_1.comp); 1146 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1147 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1148 wait_for_completion_io(&crypt_comp_1.comp); 1149 } else { 1150 crypt_comp_2.ic = ic; 1151 init_completion(&crypt_comp_2.comp); 1152 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1153 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1154 wait_for_completion_io(&crypt_comp_1.comp); 1155 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1156 wait_for_completion_io(&crypt_comp_2.comp); 1157 } 1158 } else { 1159 for (i = 0; i < to_end; i++) 1160 rw_section_mac(ic, commit_start + i, true); 1161 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1162 for (i = 0; i < commit_sections - to_end; i++) 1163 rw_section_mac(ic, i, true); 1164 } 1165 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1166 } 1167 1168 wait_for_completion_io(&io_comp.comp); 1169 } 1170 1171 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1172 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1173 { 1174 struct dm_io_request io_req; 1175 struct dm_io_region io_loc; 1176 int r; 1177 unsigned sector, pl_index, pl_offset; 1178 1179 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1180 1181 if (unlikely(dm_integrity_failed(ic))) { 1182 fn(-1UL, data); 1183 return; 1184 } 1185 1186 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1187 1188 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1189 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1190 1191 io_req.bi_op = REQ_OP_WRITE; 1192 io_req.bi_op_flags = 0; 1193 io_req.mem.type = DM_IO_PAGE_LIST; 1194 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1195 io_req.mem.offset = pl_offset; 1196 io_req.notify.fn = fn; 1197 io_req.notify.context = data; 1198 io_req.client = ic->io; 1199 io_loc.bdev = ic->dev->bdev; 1200 io_loc.sector = target; 1201 io_loc.count = n_sectors; 1202 1203 r = dm_io(&io_req, 1, &io_loc, NULL); 1204 if (unlikely(r)) { 1205 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1206 fn(-1UL, data); 1207 } 1208 } 1209 1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1211 { 1212 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1213 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1214 } 1215 1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1217 { 1218 struct rb_node **n = &ic->in_progress.rb_node; 1219 struct rb_node *parent; 1220 1221 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1222 1223 if (likely(check_waiting)) { 1224 struct dm_integrity_range *range; 1225 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1226 if (unlikely(ranges_overlap(range, new_range))) 1227 return false; 1228 } 1229 } 1230 1231 parent = NULL; 1232 1233 while (*n) { 1234 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1235 1236 parent = *n; 1237 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1238 n = &range->node.rb_left; 1239 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1240 n = &range->node.rb_right; 1241 } else { 1242 return false; 1243 } 1244 } 1245 1246 rb_link_node(&new_range->node, parent, n); 1247 rb_insert_color(&new_range->node, &ic->in_progress); 1248 1249 return true; 1250 } 1251 1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1253 { 1254 rb_erase(&range->node, &ic->in_progress); 1255 while (unlikely(!list_empty(&ic->wait_list))) { 1256 struct dm_integrity_range *last_range = 1257 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1258 struct task_struct *last_range_task; 1259 last_range_task = last_range->task; 1260 list_del(&last_range->wait_entry); 1261 if (!add_new_range(ic, last_range, false)) { 1262 last_range->task = last_range_task; 1263 list_add(&last_range->wait_entry, &ic->wait_list); 1264 break; 1265 } 1266 last_range->waiting = false; 1267 wake_up_process(last_range_task); 1268 } 1269 } 1270 1271 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1272 { 1273 unsigned long flags; 1274 1275 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1276 remove_range_unlocked(ic, range); 1277 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1278 } 1279 1280 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1281 { 1282 new_range->waiting = true; 1283 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1284 new_range->task = current; 1285 do { 1286 __set_current_state(TASK_UNINTERRUPTIBLE); 1287 spin_unlock_irq(&ic->endio_wait.lock); 1288 io_schedule(); 1289 spin_lock_irq(&ic->endio_wait.lock); 1290 } while (unlikely(new_range->waiting)); 1291 } 1292 1293 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1294 { 1295 if (unlikely(!add_new_range(ic, new_range, true))) 1296 wait_and_add_new_range(ic, new_range); 1297 } 1298 1299 static void init_journal_node(struct journal_node *node) 1300 { 1301 RB_CLEAR_NODE(&node->node); 1302 node->sector = (sector_t)-1; 1303 } 1304 1305 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1306 { 1307 struct rb_node **link; 1308 struct rb_node *parent; 1309 1310 node->sector = sector; 1311 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1312 1313 link = &ic->journal_tree_root.rb_node; 1314 parent = NULL; 1315 1316 while (*link) { 1317 struct journal_node *j; 1318 parent = *link; 1319 j = container_of(parent, struct journal_node, node); 1320 if (sector < j->sector) 1321 link = &j->node.rb_left; 1322 else 1323 link = &j->node.rb_right; 1324 } 1325 1326 rb_link_node(&node->node, parent, link); 1327 rb_insert_color(&node->node, &ic->journal_tree_root); 1328 } 1329 1330 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1331 { 1332 BUG_ON(RB_EMPTY_NODE(&node->node)); 1333 rb_erase(&node->node, &ic->journal_tree_root); 1334 init_journal_node(node); 1335 } 1336 1337 #define NOT_FOUND (-1U) 1338 1339 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1340 { 1341 struct rb_node *n = ic->journal_tree_root.rb_node; 1342 unsigned found = NOT_FOUND; 1343 *next_sector = (sector_t)-1; 1344 while (n) { 1345 struct journal_node *j = container_of(n, struct journal_node, node); 1346 if (sector == j->sector) { 1347 found = j - ic->journal_tree; 1348 } 1349 if (sector < j->sector) { 1350 *next_sector = j->sector; 1351 n = j->node.rb_left; 1352 } else { 1353 n = j->node.rb_right; 1354 } 1355 } 1356 1357 return found; 1358 } 1359 1360 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1361 { 1362 struct journal_node *node, *next_node; 1363 struct rb_node *next; 1364 1365 if (unlikely(pos >= ic->journal_entries)) 1366 return false; 1367 node = &ic->journal_tree[pos]; 1368 if (unlikely(RB_EMPTY_NODE(&node->node))) 1369 return false; 1370 if (unlikely(node->sector != sector)) 1371 return false; 1372 1373 next = rb_next(&node->node); 1374 if (unlikely(!next)) 1375 return true; 1376 1377 next_node = container_of(next, struct journal_node, node); 1378 return next_node->sector != sector; 1379 } 1380 1381 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1382 { 1383 struct rb_node *next; 1384 struct journal_node *next_node; 1385 unsigned next_section; 1386 1387 BUG_ON(RB_EMPTY_NODE(&node->node)); 1388 1389 next = rb_next(&node->node); 1390 if (unlikely(!next)) 1391 return false; 1392 1393 next_node = container_of(next, struct journal_node, node); 1394 1395 if (next_node->sector != node->sector) 1396 return false; 1397 1398 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1399 if (next_section >= ic->committed_section && 1400 next_section < ic->committed_section + ic->n_committed_sections) 1401 return true; 1402 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1403 return true; 1404 1405 return false; 1406 } 1407 1408 #define TAG_READ 0 1409 #define TAG_WRITE 1 1410 #define TAG_CMP 2 1411 1412 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1413 unsigned *metadata_offset, unsigned total_size, int op) 1414 { 1415 #define MAY_BE_FILLER 1 1416 #define MAY_BE_HASH 2 1417 unsigned hash_offset = 0; 1418 unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1419 1420 do { 1421 unsigned char *data, *dp; 1422 struct dm_buffer *b; 1423 unsigned to_copy; 1424 int r; 1425 1426 r = dm_integrity_failed(ic); 1427 if (unlikely(r)) 1428 return r; 1429 1430 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1431 if (IS_ERR(data)) 1432 return PTR_ERR(data); 1433 1434 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1435 dp = data + *metadata_offset; 1436 if (op == TAG_READ) { 1437 memcpy(tag, dp, to_copy); 1438 } else if (op == TAG_WRITE) { 1439 if (memcmp(dp, tag, to_copy)) { 1440 memcpy(dp, tag, to_copy); 1441 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1442 } 1443 } else { 1444 /* e.g.: op == TAG_CMP */ 1445 1446 if (likely(is_power_of_2(ic->tag_size))) { 1447 if (unlikely(memcmp(dp, tag, to_copy))) 1448 if (unlikely(!ic->discard) || 1449 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1450 goto thorough_test; 1451 } 1452 } else { 1453 unsigned i, ts; 1454 thorough_test: 1455 ts = total_size; 1456 1457 for (i = 0; i < to_copy; i++, ts--) { 1458 if (unlikely(dp[i] != tag[i])) 1459 may_be &= ~MAY_BE_HASH; 1460 if (likely(dp[i] != DISCARD_FILLER)) 1461 may_be &= ~MAY_BE_FILLER; 1462 hash_offset++; 1463 if (unlikely(hash_offset == ic->tag_size)) { 1464 if (unlikely(!may_be)) { 1465 dm_bufio_release(b); 1466 return ts; 1467 } 1468 hash_offset = 0; 1469 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1470 } 1471 } 1472 } 1473 } 1474 dm_bufio_release(b); 1475 1476 tag += to_copy; 1477 *metadata_offset += to_copy; 1478 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1479 (*metadata_block)++; 1480 *metadata_offset = 0; 1481 } 1482 1483 if (unlikely(!is_power_of_2(ic->tag_size))) { 1484 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1485 } 1486 1487 total_size -= to_copy; 1488 } while (unlikely(total_size)); 1489 1490 return 0; 1491 #undef MAY_BE_FILLER 1492 #undef MAY_BE_HASH 1493 } 1494 1495 struct flush_request { 1496 struct dm_io_request io_req; 1497 struct dm_io_region io_reg; 1498 struct dm_integrity_c *ic; 1499 struct completion comp; 1500 }; 1501 1502 static void flush_notify(unsigned long error, void *fr_) 1503 { 1504 struct flush_request *fr = fr_; 1505 if (unlikely(error != 0)) 1506 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1507 complete(&fr->comp); 1508 } 1509 1510 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1511 { 1512 int r; 1513 1514 struct flush_request fr; 1515 1516 if (!ic->meta_dev) 1517 flush_data = false; 1518 if (flush_data) { 1519 fr.io_req.bi_op = REQ_OP_WRITE, 1520 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1521 fr.io_req.mem.type = DM_IO_KMEM, 1522 fr.io_req.mem.ptr.addr = NULL, 1523 fr.io_req.notify.fn = flush_notify, 1524 fr.io_req.notify.context = &fr; 1525 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1526 fr.io_reg.bdev = ic->dev->bdev, 1527 fr.io_reg.sector = 0, 1528 fr.io_reg.count = 0, 1529 fr.ic = ic; 1530 init_completion(&fr.comp); 1531 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL); 1532 BUG_ON(r); 1533 } 1534 1535 r = dm_bufio_write_dirty_buffers(ic->bufio); 1536 if (unlikely(r)) 1537 dm_integrity_io_error(ic, "writing tags", r); 1538 1539 if (flush_data) 1540 wait_for_completion(&fr.comp); 1541 } 1542 1543 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1544 { 1545 DECLARE_WAITQUEUE(wait, current); 1546 __add_wait_queue(&ic->endio_wait, &wait); 1547 __set_current_state(TASK_UNINTERRUPTIBLE); 1548 spin_unlock_irq(&ic->endio_wait.lock); 1549 io_schedule(); 1550 spin_lock_irq(&ic->endio_wait.lock); 1551 __remove_wait_queue(&ic->endio_wait, &wait); 1552 } 1553 1554 static void autocommit_fn(struct timer_list *t) 1555 { 1556 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1557 1558 if (likely(!dm_integrity_failed(ic))) 1559 queue_work(ic->commit_wq, &ic->commit_work); 1560 } 1561 1562 static void schedule_autocommit(struct dm_integrity_c *ic) 1563 { 1564 if (!timer_pending(&ic->autocommit_timer)) 1565 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1566 } 1567 1568 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1569 { 1570 struct bio *bio; 1571 unsigned long flags; 1572 1573 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1574 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1575 bio_list_add(&ic->flush_bio_list, bio); 1576 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1577 1578 queue_work(ic->commit_wq, &ic->commit_work); 1579 } 1580 1581 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1582 { 1583 int r = dm_integrity_failed(ic); 1584 if (unlikely(r) && !bio->bi_status) 1585 bio->bi_status = errno_to_blk_status(r); 1586 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1587 unsigned long flags; 1588 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1589 bio_list_add(&ic->synchronous_bios, bio); 1590 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1591 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1592 return; 1593 } 1594 bio_endio(bio); 1595 } 1596 1597 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1598 { 1599 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1600 1601 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1602 submit_flush_bio(ic, dio); 1603 else 1604 do_endio(ic, bio); 1605 } 1606 1607 static void dec_in_flight(struct dm_integrity_io *dio) 1608 { 1609 if (atomic_dec_and_test(&dio->in_flight)) { 1610 struct dm_integrity_c *ic = dio->ic; 1611 struct bio *bio; 1612 1613 remove_range(ic, &dio->range); 1614 1615 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1616 schedule_autocommit(ic); 1617 1618 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1619 1620 if (unlikely(dio->bi_status) && !bio->bi_status) 1621 bio->bi_status = dio->bi_status; 1622 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1623 dio->range.logical_sector += dio->range.n_sectors; 1624 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1625 INIT_WORK(&dio->work, integrity_bio_wait); 1626 queue_work(ic->offload_wq, &dio->work); 1627 return; 1628 } 1629 do_endio_flush(ic, dio); 1630 } 1631 } 1632 1633 static void integrity_end_io(struct bio *bio) 1634 { 1635 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1636 1637 dm_bio_restore(&dio->bio_details, bio); 1638 if (bio->bi_integrity) 1639 bio->bi_opf |= REQ_INTEGRITY; 1640 1641 if (dio->completion) 1642 complete(dio->completion); 1643 1644 dec_in_flight(dio); 1645 } 1646 1647 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1648 const char *data, char *result) 1649 { 1650 __le64 sector_le = cpu_to_le64(sector); 1651 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1652 int r; 1653 unsigned digest_size; 1654 1655 req->tfm = ic->internal_hash; 1656 1657 r = crypto_shash_init(req); 1658 if (unlikely(r < 0)) { 1659 dm_integrity_io_error(ic, "crypto_shash_init", r); 1660 goto failed; 1661 } 1662 1663 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1664 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1665 if (unlikely(r < 0)) { 1666 dm_integrity_io_error(ic, "crypto_shash_update", r); 1667 goto failed; 1668 } 1669 } 1670 1671 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1672 if (unlikely(r < 0)) { 1673 dm_integrity_io_error(ic, "crypto_shash_update", r); 1674 goto failed; 1675 } 1676 1677 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1678 if (unlikely(r < 0)) { 1679 dm_integrity_io_error(ic, "crypto_shash_update", r); 1680 goto failed; 1681 } 1682 1683 r = crypto_shash_final(req, result); 1684 if (unlikely(r < 0)) { 1685 dm_integrity_io_error(ic, "crypto_shash_final", r); 1686 goto failed; 1687 } 1688 1689 digest_size = crypto_shash_digestsize(ic->internal_hash); 1690 if (unlikely(digest_size < ic->tag_size)) 1691 memset(result + digest_size, 0, ic->tag_size - digest_size); 1692 1693 return; 1694 1695 failed: 1696 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1697 get_random_bytes(result, ic->tag_size); 1698 } 1699 1700 static void integrity_metadata(struct work_struct *w) 1701 { 1702 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1703 struct dm_integrity_c *ic = dio->ic; 1704 1705 int r; 1706 1707 if (ic->internal_hash) { 1708 struct bvec_iter iter; 1709 struct bio_vec bv; 1710 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1711 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1712 char *checksums; 1713 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1714 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1715 sector_t sector; 1716 unsigned sectors_to_process; 1717 1718 if (unlikely(ic->mode == 'R')) 1719 goto skip_io; 1720 1721 if (likely(dio->op != REQ_OP_DISCARD)) 1722 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1723 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1724 else 1725 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1726 if (!checksums) { 1727 checksums = checksums_onstack; 1728 if (WARN_ON(extra_space && 1729 digest_size > sizeof(checksums_onstack))) { 1730 r = -EINVAL; 1731 goto error; 1732 } 1733 } 1734 1735 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1736 sector_t bi_sector = dio->bio_details.bi_iter.bi_sector; 1737 unsigned bi_size = dio->bio_details.bi_iter.bi_size; 1738 unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1739 unsigned max_blocks = max_size / ic->tag_size; 1740 memset(checksums, DISCARD_FILLER, max_size); 1741 1742 while (bi_size) { 1743 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1744 this_step_blocks = min(this_step_blocks, max_blocks); 1745 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1746 this_step_blocks * ic->tag_size, TAG_WRITE); 1747 if (unlikely(r)) { 1748 if (likely(checksums != checksums_onstack)) 1749 kfree(checksums); 1750 goto error; 1751 } 1752 1753 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) { 1754 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size); 1755 printk("BUGG: this_step_blocks: %u\n", this_step_blocks); 1756 BUG(); 1757 }*/ 1758 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1759 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block; 1760 } 1761 1762 if (likely(checksums != checksums_onstack)) 1763 kfree(checksums); 1764 goto skip_io; 1765 } 1766 1767 sector = dio->range.logical_sector; 1768 sectors_to_process = dio->range.n_sectors; 1769 1770 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1771 unsigned pos; 1772 char *mem, *checksums_ptr; 1773 1774 again: 1775 mem = bvec_kmap_local(&bv); 1776 pos = 0; 1777 checksums_ptr = checksums; 1778 do { 1779 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1780 checksums_ptr += ic->tag_size; 1781 sectors_to_process -= ic->sectors_per_block; 1782 pos += ic->sectors_per_block << SECTOR_SHIFT; 1783 sector += ic->sectors_per_block; 1784 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1785 kunmap_local(mem); 1786 1787 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1788 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1789 if (unlikely(r)) { 1790 if (r > 0) { 1791 char b[BDEVNAME_SIZE]; 1792 sector_t s; 1793 1794 s = sector - ((r + ic->tag_size - 1) / ic->tag_size); 1795 DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", 1796 bio_devname(bio, b), s); 1797 r = -EILSEQ; 1798 atomic64_inc(&ic->number_of_mismatches); 1799 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 1800 bio, s, 0); 1801 } 1802 if (likely(checksums != checksums_onstack)) 1803 kfree(checksums); 1804 goto error; 1805 } 1806 1807 if (!sectors_to_process) 1808 break; 1809 1810 if (unlikely(pos < bv.bv_len)) { 1811 bv.bv_offset += pos; 1812 bv.bv_len -= pos; 1813 goto again; 1814 } 1815 } 1816 1817 if (likely(checksums != checksums_onstack)) 1818 kfree(checksums); 1819 } else { 1820 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1821 1822 if (bip) { 1823 struct bio_vec biv; 1824 struct bvec_iter iter; 1825 unsigned data_to_process = dio->range.n_sectors; 1826 sector_to_block(ic, data_to_process); 1827 data_to_process *= ic->tag_size; 1828 1829 bip_for_each_vec(biv, bip, iter) { 1830 unsigned char *tag; 1831 unsigned this_len; 1832 1833 BUG_ON(PageHighMem(biv.bv_page)); 1834 tag = bvec_virt(&biv); 1835 this_len = min(biv.bv_len, data_to_process); 1836 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1837 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1838 if (unlikely(r)) 1839 goto error; 1840 data_to_process -= this_len; 1841 if (!data_to_process) 1842 break; 1843 } 1844 } 1845 } 1846 skip_io: 1847 dec_in_flight(dio); 1848 return; 1849 error: 1850 dio->bi_status = errno_to_blk_status(r); 1851 dec_in_flight(dio); 1852 } 1853 1854 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1855 { 1856 struct dm_integrity_c *ic = ti->private; 1857 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1858 struct bio_integrity_payload *bip; 1859 1860 sector_t area, offset; 1861 1862 dio->ic = ic; 1863 dio->bi_status = 0; 1864 dio->op = bio_op(bio); 1865 1866 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1867 if (ti->max_io_len) { 1868 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1869 unsigned log2_max_io_len = __fls(ti->max_io_len); 1870 sector_t start_boundary = sec >> log2_max_io_len; 1871 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1872 if (start_boundary < end_boundary) { 1873 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1874 dm_accept_partial_bio(bio, len); 1875 } 1876 } 1877 } 1878 1879 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1880 submit_flush_bio(ic, dio); 1881 return DM_MAPIO_SUBMITTED; 1882 } 1883 1884 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1885 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1886 if (unlikely(dio->fua)) { 1887 /* 1888 * Don't pass down the FUA flag because we have to flush 1889 * disk cache anyway. 1890 */ 1891 bio->bi_opf &= ~REQ_FUA; 1892 } 1893 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1894 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1895 dio->range.logical_sector, bio_sectors(bio), 1896 ic->provided_data_sectors); 1897 return DM_MAPIO_KILL; 1898 } 1899 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1900 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1901 ic->sectors_per_block, 1902 dio->range.logical_sector, bio_sectors(bio)); 1903 return DM_MAPIO_KILL; 1904 } 1905 1906 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1907 struct bvec_iter iter; 1908 struct bio_vec bv; 1909 bio_for_each_segment(bv, bio, iter) { 1910 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1911 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1912 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1913 return DM_MAPIO_KILL; 1914 } 1915 } 1916 } 1917 1918 bip = bio_integrity(bio); 1919 if (!ic->internal_hash) { 1920 if (bip) { 1921 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1922 if (ic->log2_tag_size >= 0) 1923 wanted_tag_size <<= ic->log2_tag_size; 1924 else 1925 wanted_tag_size *= ic->tag_size; 1926 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1927 DMERR("Invalid integrity data size %u, expected %u", 1928 bip->bip_iter.bi_size, wanted_tag_size); 1929 return DM_MAPIO_KILL; 1930 } 1931 } 1932 } else { 1933 if (unlikely(bip != NULL)) { 1934 DMERR("Unexpected integrity data when using internal hash"); 1935 return DM_MAPIO_KILL; 1936 } 1937 } 1938 1939 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 1940 return DM_MAPIO_KILL; 1941 1942 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1943 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1944 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1945 1946 dm_integrity_map_continue(dio, true); 1947 return DM_MAPIO_SUBMITTED; 1948 } 1949 1950 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1951 unsigned journal_section, unsigned journal_entry) 1952 { 1953 struct dm_integrity_c *ic = dio->ic; 1954 sector_t logical_sector; 1955 unsigned n_sectors; 1956 1957 logical_sector = dio->range.logical_sector; 1958 n_sectors = dio->range.n_sectors; 1959 do { 1960 struct bio_vec bv = bio_iovec(bio); 1961 char *mem; 1962 1963 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1964 bv.bv_len = n_sectors << SECTOR_SHIFT; 1965 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1966 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1967 retry_kmap: 1968 mem = kmap_local_page(bv.bv_page); 1969 if (likely(dio->op == REQ_OP_WRITE)) 1970 flush_dcache_page(bv.bv_page); 1971 1972 do { 1973 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1974 1975 if (unlikely(dio->op == REQ_OP_READ)) { 1976 struct journal_sector *js; 1977 char *mem_ptr; 1978 unsigned s; 1979 1980 if (unlikely(journal_entry_is_inprogress(je))) { 1981 flush_dcache_page(bv.bv_page); 1982 kunmap_local(mem); 1983 1984 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1985 goto retry_kmap; 1986 } 1987 smp_rmb(); 1988 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1989 js = access_journal_data(ic, journal_section, journal_entry); 1990 mem_ptr = mem + bv.bv_offset; 1991 s = 0; 1992 do { 1993 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1994 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1995 js++; 1996 mem_ptr += 1 << SECTOR_SHIFT; 1997 } while (++s < ic->sectors_per_block); 1998 #ifdef INTERNAL_VERIFY 1999 if (ic->internal_hash) { 2000 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2001 2002 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 2003 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 2004 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 2005 logical_sector); 2006 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum", 2007 bio, logical_sector, 0); 2008 } 2009 } 2010 #endif 2011 } 2012 2013 if (!ic->internal_hash) { 2014 struct bio_integrity_payload *bip = bio_integrity(bio); 2015 unsigned tag_todo = ic->tag_size; 2016 char *tag_ptr = journal_entry_tag(ic, je); 2017 2018 if (bip) do { 2019 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2020 unsigned tag_now = min(biv.bv_len, tag_todo); 2021 char *tag_addr; 2022 BUG_ON(PageHighMem(biv.bv_page)); 2023 tag_addr = bvec_virt(&biv); 2024 if (likely(dio->op == REQ_OP_WRITE)) 2025 memcpy(tag_ptr, tag_addr, tag_now); 2026 else 2027 memcpy(tag_addr, tag_ptr, tag_now); 2028 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2029 tag_ptr += tag_now; 2030 tag_todo -= tag_now; 2031 } while (unlikely(tag_todo)); else { 2032 if (likely(dio->op == REQ_OP_WRITE)) 2033 memset(tag_ptr, 0, tag_todo); 2034 } 2035 } 2036 2037 if (likely(dio->op == REQ_OP_WRITE)) { 2038 struct journal_sector *js; 2039 unsigned s; 2040 2041 js = access_journal_data(ic, journal_section, journal_entry); 2042 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2043 2044 s = 0; 2045 do { 2046 je->last_bytes[s] = js[s].commit_id; 2047 } while (++s < ic->sectors_per_block); 2048 2049 if (ic->internal_hash) { 2050 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 2051 if (unlikely(digest_size > ic->tag_size)) { 2052 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2053 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2054 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2055 } else 2056 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2057 } 2058 2059 journal_entry_set_sector(je, logical_sector); 2060 } 2061 logical_sector += ic->sectors_per_block; 2062 2063 journal_entry++; 2064 if (unlikely(journal_entry == ic->journal_section_entries)) { 2065 journal_entry = 0; 2066 journal_section++; 2067 wraparound_section(ic, &journal_section); 2068 } 2069 2070 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2071 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2072 2073 if (unlikely(dio->op == REQ_OP_READ)) 2074 flush_dcache_page(bv.bv_page); 2075 kunmap_local(mem); 2076 } while (n_sectors); 2077 2078 if (likely(dio->op == REQ_OP_WRITE)) { 2079 smp_mb(); 2080 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2081 wake_up(&ic->copy_to_journal_wait); 2082 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 2083 queue_work(ic->commit_wq, &ic->commit_work); 2084 } else { 2085 schedule_autocommit(ic); 2086 } 2087 } else { 2088 remove_range(ic, &dio->range); 2089 } 2090 2091 if (unlikely(bio->bi_iter.bi_size)) { 2092 sector_t area, offset; 2093 2094 dio->range.logical_sector = logical_sector; 2095 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2096 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2097 return true; 2098 } 2099 2100 return false; 2101 } 2102 2103 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2104 { 2105 struct dm_integrity_c *ic = dio->ic; 2106 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2107 unsigned journal_section, journal_entry; 2108 unsigned journal_read_pos; 2109 struct completion read_comp; 2110 bool discard_retried = false; 2111 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2112 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2113 need_sync_io = true; 2114 2115 if (need_sync_io && from_map) { 2116 INIT_WORK(&dio->work, integrity_bio_wait); 2117 queue_work(ic->offload_wq, &dio->work); 2118 return; 2119 } 2120 2121 lock_retry: 2122 spin_lock_irq(&ic->endio_wait.lock); 2123 retry: 2124 if (unlikely(dm_integrity_failed(ic))) { 2125 spin_unlock_irq(&ic->endio_wait.lock); 2126 do_endio(ic, bio); 2127 return; 2128 } 2129 dio->range.n_sectors = bio_sectors(bio); 2130 journal_read_pos = NOT_FOUND; 2131 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2132 if (dio->op == REQ_OP_WRITE) { 2133 unsigned next_entry, i, pos; 2134 unsigned ws, we, range_sectors; 2135 2136 dio->range.n_sectors = min(dio->range.n_sectors, 2137 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2138 if (unlikely(!dio->range.n_sectors)) { 2139 if (from_map) 2140 goto offload_to_thread; 2141 sleep_on_endio_wait(ic); 2142 goto retry; 2143 } 2144 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2145 ic->free_sectors -= range_sectors; 2146 journal_section = ic->free_section; 2147 journal_entry = ic->free_section_entry; 2148 2149 next_entry = ic->free_section_entry + range_sectors; 2150 ic->free_section_entry = next_entry % ic->journal_section_entries; 2151 ic->free_section += next_entry / ic->journal_section_entries; 2152 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2153 wraparound_section(ic, &ic->free_section); 2154 2155 pos = journal_section * ic->journal_section_entries + journal_entry; 2156 ws = journal_section; 2157 we = journal_entry; 2158 i = 0; 2159 do { 2160 struct journal_entry *je; 2161 2162 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2163 pos++; 2164 if (unlikely(pos >= ic->journal_entries)) 2165 pos = 0; 2166 2167 je = access_journal_entry(ic, ws, we); 2168 BUG_ON(!journal_entry_is_unused(je)); 2169 journal_entry_set_inprogress(je); 2170 we++; 2171 if (unlikely(we == ic->journal_section_entries)) { 2172 we = 0; 2173 ws++; 2174 wraparound_section(ic, &ws); 2175 } 2176 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2177 2178 spin_unlock_irq(&ic->endio_wait.lock); 2179 goto journal_read_write; 2180 } else { 2181 sector_t next_sector; 2182 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2183 if (likely(journal_read_pos == NOT_FOUND)) { 2184 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2185 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2186 } else { 2187 unsigned i; 2188 unsigned jp = journal_read_pos + 1; 2189 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2190 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2191 break; 2192 } 2193 dio->range.n_sectors = i; 2194 } 2195 } 2196 } 2197 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2198 /* 2199 * We must not sleep in the request routine because it could 2200 * stall bios on current->bio_list. 2201 * So, we offload the bio to a workqueue if we have to sleep. 2202 */ 2203 if (from_map) { 2204 offload_to_thread: 2205 spin_unlock_irq(&ic->endio_wait.lock); 2206 INIT_WORK(&dio->work, integrity_bio_wait); 2207 queue_work(ic->wait_wq, &dio->work); 2208 return; 2209 } 2210 if (journal_read_pos != NOT_FOUND) 2211 dio->range.n_sectors = ic->sectors_per_block; 2212 wait_and_add_new_range(ic, &dio->range); 2213 /* 2214 * wait_and_add_new_range drops the spinlock, so the journal 2215 * may have been changed arbitrarily. We need to recheck. 2216 * To simplify the code, we restrict I/O size to just one block. 2217 */ 2218 if (journal_read_pos != NOT_FOUND) { 2219 sector_t next_sector; 2220 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2221 if (unlikely(new_pos != journal_read_pos)) { 2222 remove_range_unlocked(ic, &dio->range); 2223 goto retry; 2224 } 2225 } 2226 } 2227 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2228 sector_t next_sector; 2229 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2230 if (unlikely(new_pos != NOT_FOUND) || 2231 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2232 remove_range_unlocked(ic, &dio->range); 2233 spin_unlock_irq(&ic->endio_wait.lock); 2234 queue_work(ic->commit_wq, &ic->commit_work); 2235 flush_workqueue(ic->commit_wq); 2236 queue_work(ic->writer_wq, &ic->writer_work); 2237 flush_workqueue(ic->writer_wq); 2238 discard_retried = true; 2239 goto lock_retry; 2240 } 2241 } 2242 spin_unlock_irq(&ic->endio_wait.lock); 2243 2244 if (unlikely(journal_read_pos != NOT_FOUND)) { 2245 journal_section = journal_read_pos / ic->journal_section_entries; 2246 journal_entry = journal_read_pos % ic->journal_section_entries; 2247 goto journal_read_write; 2248 } 2249 2250 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2251 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2252 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2253 struct bitmap_block_status *bbs; 2254 2255 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2256 spin_lock(&bbs->bio_queue_lock); 2257 bio_list_add(&bbs->bio_queue, bio); 2258 spin_unlock(&bbs->bio_queue_lock); 2259 queue_work(ic->writer_wq, &bbs->work); 2260 return; 2261 } 2262 } 2263 2264 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2265 2266 if (need_sync_io) { 2267 init_completion(&read_comp); 2268 dio->completion = &read_comp; 2269 } else 2270 dio->completion = NULL; 2271 2272 dm_bio_record(&dio->bio_details, bio); 2273 bio_set_dev(bio, ic->dev->bdev); 2274 bio->bi_integrity = NULL; 2275 bio->bi_opf &= ~REQ_INTEGRITY; 2276 bio->bi_end_io = integrity_end_io; 2277 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2278 2279 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2280 integrity_metadata(&dio->work); 2281 dm_integrity_flush_buffers(ic, false); 2282 2283 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2284 dio->completion = NULL; 2285 2286 submit_bio_noacct(bio); 2287 2288 return; 2289 } 2290 2291 submit_bio_noacct(bio); 2292 2293 if (need_sync_io) { 2294 wait_for_completion_io(&read_comp); 2295 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2296 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2297 goto skip_check; 2298 if (ic->mode == 'B') { 2299 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2300 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2301 goto skip_check; 2302 } 2303 2304 if (likely(!bio->bi_status)) 2305 integrity_metadata(&dio->work); 2306 else 2307 skip_check: 2308 dec_in_flight(dio); 2309 2310 } else { 2311 INIT_WORK(&dio->work, integrity_metadata); 2312 queue_work(ic->metadata_wq, &dio->work); 2313 } 2314 2315 return; 2316 2317 journal_read_write: 2318 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2319 goto lock_retry; 2320 2321 do_endio_flush(ic, dio); 2322 } 2323 2324 2325 static void integrity_bio_wait(struct work_struct *w) 2326 { 2327 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2328 2329 dm_integrity_map_continue(dio, false); 2330 } 2331 2332 static void pad_uncommitted(struct dm_integrity_c *ic) 2333 { 2334 if (ic->free_section_entry) { 2335 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2336 ic->free_section_entry = 0; 2337 ic->free_section++; 2338 wraparound_section(ic, &ic->free_section); 2339 ic->n_uncommitted_sections++; 2340 } 2341 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2342 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2343 ic->journal_section_entries + ic->free_sectors)) { 2344 DMCRIT("journal_sections %u, journal_section_entries %u, " 2345 "n_uncommitted_sections %u, n_committed_sections %u, " 2346 "journal_section_entries %u, free_sectors %u", 2347 ic->journal_sections, ic->journal_section_entries, 2348 ic->n_uncommitted_sections, ic->n_committed_sections, 2349 ic->journal_section_entries, ic->free_sectors); 2350 } 2351 } 2352 2353 static void integrity_commit(struct work_struct *w) 2354 { 2355 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2356 unsigned commit_start, commit_sections; 2357 unsigned i, j, n; 2358 struct bio *flushes; 2359 2360 del_timer(&ic->autocommit_timer); 2361 2362 spin_lock_irq(&ic->endio_wait.lock); 2363 flushes = bio_list_get(&ic->flush_bio_list); 2364 if (unlikely(ic->mode != 'J')) { 2365 spin_unlock_irq(&ic->endio_wait.lock); 2366 dm_integrity_flush_buffers(ic, true); 2367 goto release_flush_bios; 2368 } 2369 2370 pad_uncommitted(ic); 2371 commit_start = ic->uncommitted_section; 2372 commit_sections = ic->n_uncommitted_sections; 2373 spin_unlock_irq(&ic->endio_wait.lock); 2374 2375 if (!commit_sections) 2376 goto release_flush_bios; 2377 2378 i = commit_start; 2379 for (n = 0; n < commit_sections; n++) { 2380 for (j = 0; j < ic->journal_section_entries; j++) { 2381 struct journal_entry *je; 2382 je = access_journal_entry(ic, i, j); 2383 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2384 } 2385 for (j = 0; j < ic->journal_section_sectors; j++) { 2386 struct journal_sector *js; 2387 js = access_journal(ic, i, j); 2388 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2389 } 2390 i++; 2391 if (unlikely(i >= ic->journal_sections)) 2392 ic->commit_seq = next_commit_seq(ic->commit_seq); 2393 wraparound_section(ic, &i); 2394 } 2395 smp_rmb(); 2396 2397 write_journal(ic, commit_start, commit_sections); 2398 2399 spin_lock_irq(&ic->endio_wait.lock); 2400 ic->uncommitted_section += commit_sections; 2401 wraparound_section(ic, &ic->uncommitted_section); 2402 ic->n_uncommitted_sections -= commit_sections; 2403 ic->n_committed_sections += commit_sections; 2404 spin_unlock_irq(&ic->endio_wait.lock); 2405 2406 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2407 queue_work(ic->writer_wq, &ic->writer_work); 2408 2409 release_flush_bios: 2410 while (flushes) { 2411 struct bio *next = flushes->bi_next; 2412 flushes->bi_next = NULL; 2413 do_endio(ic, flushes); 2414 flushes = next; 2415 } 2416 } 2417 2418 static void complete_copy_from_journal(unsigned long error, void *context) 2419 { 2420 struct journal_io *io = context; 2421 struct journal_completion *comp = io->comp; 2422 struct dm_integrity_c *ic = comp->ic; 2423 remove_range(ic, &io->range); 2424 mempool_free(io, &ic->journal_io_mempool); 2425 if (unlikely(error != 0)) 2426 dm_integrity_io_error(ic, "copying from journal", -EIO); 2427 complete_journal_op(comp); 2428 } 2429 2430 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2431 struct journal_entry *je) 2432 { 2433 unsigned s = 0; 2434 do { 2435 js->commit_id = je->last_bytes[s]; 2436 js++; 2437 } while (++s < ic->sectors_per_block); 2438 } 2439 2440 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2441 unsigned write_sections, bool from_replay) 2442 { 2443 unsigned i, j, n; 2444 struct journal_completion comp; 2445 struct blk_plug plug; 2446 2447 blk_start_plug(&plug); 2448 2449 comp.ic = ic; 2450 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2451 init_completion(&comp.comp); 2452 2453 i = write_start; 2454 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2455 #ifndef INTERNAL_VERIFY 2456 if (unlikely(from_replay)) 2457 #endif 2458 rw_section_mac(ic, i, false); 2459 for (j = 0; j < ic->journal_section_entries; j++) { 2460 struct journal_entry *je = access_journal_entry(ic, i, j); 2461 sector_t sec, area, offset; 2462 unsigned k, l, next_loop; 2463 sector_t metadata_block; 2464 unsigned metadata_offset; 2465 struct journal_io *io; 2466 2467 if (journal_entry_is_unused(je)) 2468 continue; 2469 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2470 sec = journal_entry_get_sector(je); 2471 if (unlikely(from_replay)) { 2472 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2473 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2474 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2475 } 2476 } 2477 if (unlikely(sec >= ic->provided_data_sectors)) 2478 continue; 2479 get_area_and_offset(ic, sec, &area, &offset); 2480 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2481 for (k = j + 1; k < ic->journal_section_entries; k++) { 2482 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2483 sector_t sec2, area2, offset2; 2484 if (journal_entry_is_unused(je2)) 2485 break; 2486 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2487 sec2 = journal_entry_get_sector(je2); 2488 if (unlikely(sec2 >= ic->provided_data_sectors)) 2489 break; 2490 get_area_and_offset(ic, sec2, &area2, &offset2); 2491 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2492 break; 2493 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2494 } 2495 next_loop = k - 1; 2496 2497 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2498 io->comp = ∁ 2499 io->range.logical_sector = sec; 2500 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2501 2502 spin_lock_irq(&ic->endio_wait.lock); 2503 add_new_range_and_wait(ic, &io->range); 2504 2505 if (likely(!from_replay)) { 2506 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2507 2508 /* don't write if there is newer committed sector */ 2509 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2510 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2511 2512 journal_entry_set_unused(je2); 2513 remove_journal_node(ic, §ion_node[j]); 2514 j++; 2515 sec += ic->sectors_per_block; 2516 offset += ic->sectors_per_block; 2517 } 2518 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2519 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2520 2521 journal_entry_set_unused(je2); 2522 remove_journal_node(ic, §ion_node[k - 1]); 2523 k--; 2524 } 2525 if (j == k) { 2526 remove_range_unlocked(ic, &io->range); 2527 spin_unlock_irq(&ic->endio_wait.lock); 2528 mempool_free(io, &ic->journal_io_mempool); 2529 goto skip_io; 2530 } 2531 for (l = j; l < k; l++) { 2532 remove_journal_node(ic, §ion_node[l]); 2533 } 2534 } 2535 spin_unlock_irq(&ic->endio_wait.lock); 2536 2537 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2538 for (l = j; l < k; l++) { 2539 int r; 2540 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2541 2542 if ( 2543 #ifndef INTERNAL_VERIFY 2544 unlikely(from_replay) && 2545 #endif 2546 ic->internal_hash) { 2547 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2548 2549 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2550 (char *)access_journal_data(ic, i, l), test_tag); 2551 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) { 2552 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2553 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0); 2554 } 2555 } 2556 2557 journal_entry_set_unused(je2); 2558 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2559 ic->tag_size, TAG_WRITE); 2560 if (unlikely(r)) { 2561 dm_integrity_io_error(ic, "reading tags", r); 2562 } 2563 } 2564 2565 atomic_inc(&comp.in_flight); 2566 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2567 (k - j) << ic->sb->log2_sectors_per_block, 2568 get_data_sector(ic, area, offset), 2569 complete_copy_from_journal, io); 2570 skip_io: 2571 j = next_loop; 2572 } 2573 } 2574 2575 dm_bufio_write_dirty_buffers_async(ic->bufio); 2576 2577 blk_finish_plug(&plug); 2578 2579 complete_journal_op(&comp); 2580 wait_for_completion_io(&comp.comp); 2581 2582 dm_integrity_flush_buffers(ic, true); 2583 } 2584 2585 static void integrity_writer(struct work_struct *w) 2586 { 2587 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2588 unsigned write_start, write_sections; 2589 2590 unsigned prev_free_sectors; 2591 2592 /* the following test is not needed, but it tests the replay code */ 2593 if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev) 2594 return; 2595 2596 spin_lock_irq(&ic->endio_wait.lock); 2597 write_start = ic->committed_section; 2598 write_sections = ic->n_committed_sections; 2599 spin_unlock_irq(&ic->endio_wait.lock); 2600 2601 if (!write_sections) 2602 return; 2603 2604 do_journal_write(ic, write_start, write_sections, false); 2605 2606 spin_lock_irq(&ic->endio_wait.lock); 2607 2608 ic->committed_section += write_sections; 2609 wraparound_section(ic, &ic->committed_section); 2610 ic->n_committed_sections -= write_sections; 2611 2612 prev_free_sectors = ic->free_sectors; 2613 ic->free_sectors += write_sections * ic->journal_section_entries; 2614 if (unlikely(!prev_free_sectors)) 2615 wake_up_locked(&ic->endio_wait); 2616 2617 spin_unlock_irq(&ic->endio_wait.lock); 2618 } 2619 2620 static void recalc_write_super(struct dm_integrity_c *ic) 2621 { 2622 int r; 2623 2624 dm_integrity_flush_buffers(ic, false); 2625 if (dm_integrity_failed(ic)) 2626 return; 2627 2628 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2629 if (unlikely(r)) 2630 dm_integrity_io_error(ic, "writing superblock", r); 2631 } 2632 2633 static void integrity_recalc(struct work_struct *w) 2634 { 2635 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2636 struct dm_integrity_range range; 2637 struct dm_io_request io_req; 2638 struct dm_io_region io_loc; 2639 sector_t area, offset; 2640 sector_t metadata_block; 2641 unsigned metadata_offset; 2642 sector_t logical_sector, n_sectors; 2643 __u8 *t; 2644 unsigned i; 2645 int r; 2646 unsigned super_counter = 0; 2647 2648 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2649 2650 spin_lock_irq(&ic->endio_wait.lock); 2651 2652 next_chunk: 2653 2654 if (unlikely(dm_post_suspending(ic->ti))) 2655 goto unlock_ret; 2656 2657 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2658 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2659 if (ic->mode == 'B') { 2660 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2661 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2662 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2663 } 2664 goto unlock_ret; 2665 } 2666 2667 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2668 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2669 if (!ic->meta_dev) 2670 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2671 2672 add_new_range_and_wait(ic, &range); 2673 spin_unlock_irq(&ic->endio_wait.lock); 2674 logical_sector = range.logical_sector; 2675 n_sectors = range.n_sectors; 2676 2677 if (ic->mode == 'B') { 2678 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2679 goto advance_and_next; 2680 } 2681 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2682 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2683 logical_sector += ic->sectors_per_block; 2684 n_sectors -= ic->sectors_per_block; 2685 cond_resched(); 2686 } 2687 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2688 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2689 n_sectors -= ic->sectors_per_block; 2690 cond_resched(); 2691 } 2692 get_area_and_offset(ic, logical_sector, &area, &offset); 2693 } 2694 2695 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2696 2697 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2698 recalc_write_super(ic); 2699 if (ic->mode == 'B') { 2700 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2701 } 2702 super_counter = 0; 2703 } 2704 2705 if (unlikely(dm_integrity_failed(ic))) 2706 goto err; 2707 2708 io_req.bi_op = REQ_OP_READ; 2709 io_req.bi_op_flags = 0; 2710 io_req.mem.type = DM_IO_VMA; 2711 io_req.mem.ptr.addr = ic->recalc_buffer; 2712 io_req.notify.fn = NULL; 2713 io_req.client = ic->io; 2714 io_loc.bdev = ic->dev->bdev; 2715 io_loc.sector = get_data_sector(ic, area, offset); 2716 io_loc.count = n_sectors; 2717 2718 r = dm_io(&io_req, 1, &io_loc, NULL); 2719 if (unlikely(r)) { 2720 dm_integrity_io_error(ic, "reading data", r); 2721 goto err; 2722 } 2723 2724 t = ic->recalc_tags; 2725 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2726 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2727 t += ic->tag_size; 2728 } 2729 2730 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2731 2732 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2733 if (unlikely(r)) { 2734 dm_integrity_io_error(ic, "writing tags", r); 2735 goto err; 2736 } 2737 2738 if (ic->mode == 'B') { 2739 sector_t start, end; 2740 start = (range.logical_sector >> 2741 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2742 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2743 end = ((range.logical_sector + range.n_sectors) >> 2744 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2745 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2746 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2747 } 2748 2749 advance_and_next: 2750 cond_resched(); 2751 2752 spin_lock_irq(&ic->endio_wait.lock); 2753 remove_range_unlocked(ic, &range); 2754 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2755 goto next_chunk; 2756 2757 err: 2758 remove_range(ic, &range); 2759 return; 2760 2761 unlock_ret: 2762 spin_unlock_irq(&ic->endio_wait.lock); 2763 2764 recalc_write_super(ic); 2765 } 2766 2767 static void bitmap_block_work(struct work_struct *w) 2768 { 2769 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2770 struct dm_integrity_c *ic = bbs->ic; 2771 struct bio *bio; 2772 struct bio_list bio_queue; 2773 struct bio_list waiting; 2774 2775 bio_list_init(&waiting); 2776 2777 spin_lock(&bbs->bio_queue_lock); 2778 bio_queue = bbs->bio_queue; 2779 bio_list_init(&bbs->bio_queue); 2780 spin_unlock(&bbs->bio_queue_lock); 2781 2782 while ((bio = bio_list_pop(&bio_queue))) { 2783 struct dm_integrity_io *dio; 2784 2785 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2786 2787 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2788 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2789 remove_range(ic, &dio->range); 2790 INIT_WORK(&dio->work, integrity_bio_wait); 2791 queue_work(ic->offload_wq, &dio->work); 2792 } else { 2793 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2794 dio->range.n_sectors, BITMAP_OP_SET); 2795 bio_list_add(&waiting, bio); 2796 } 2797 } 2798 2799 if (bio_list_empty(&waiting)) 2800 return; 2801 2802 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2803 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2804 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2805 2806 while ((bio = bio_list_pop(&waiting))) { 2807 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2808 2809 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2810 dio->range.n_sectors, BITMAP_OP_SET); 2811 2812 remove_range(ic, &dio->range); 2813 INIT_WORK(&dio->work, integrity_bio_wait); 2814 queue_work(ic->offload_wq, &dio->work); 2815 } 2816 2817 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2818 } 2819 2820 static void bitmap_flush_work(struct work_struct *work) 2821 { 2822 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2823 struct dm_integrity_range range; 2824 unsigned long limit; 2825 struct bio *bio; 2826 2827 dm_integrity_flush_buffers(ic, false); 2828 2829 range.logical_sector = 0; 2830 range.n_sectors = ic->provided_data_sectors; 2831 2832 spin_lock_irq(&ic->endio_wait.lock); 2833 add_new_range_and_wait(ic, &range); 2834 spin_unlock_irq(&ic->endio_wait.lock); 2835 2836 dm_integrity_flush_buffers(ic, true); 2837 2838 limit = ic->provided_data_sectors; 2839 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2840 limit = le64_to_cpu(ic->sb->recalc_sector) 2841 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2842 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2843 } 2844 /*DEBUG_print("zeroing journal\n");*/ 2845 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2846 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2847 2848 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2849 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2850 2851 spin_lock_irq(&ic->endio_wait.lock); 2852 remove_range_unlocked(ic, &range); 2853 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2854 bio_endio(bio); 2855 spin_unlock_irq(&ic->endio_wait.lock); 2856 spin_lock_irq(&ic->endio_wait.lock); 2857 } 2858 spin_unlock_irq(&ic->endio_wait.lock); 2859 } 2860 2861 2862 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2863 unsigned n_sections, unsigned char commit_seq) 2864 { 2865 unsigned i, j, n; 2866 2867 if (!n_sections) 2868 return; 2869 2870 for (n = 0; n < n_sections; n++) { 2871 i = start_section + n; 2872 wraparound_section(ic, &i); 2873 for (j = 0; j < ic->journal_section_sectors; j++) { 2874 struct journal_sector *js = access_journal(ic, i, j); 2875 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA); 2876 memset(&js->sectors, 0, sizeof(js->sectors)); 2877 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2878 } 2879 for (j = 0; j < ic->journal_section_entries; j++) { 2880 struct journal_entry *je = access_journal_entry(ic, i, j); 2881 journal_entry_set_unused(je); 2882 } 2883 } 2884 2885 write_journal(ic, start_section, n_sections); 2886 } 2887 2888 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2889 { 2890 unsigned char k; 2891 for (k = 0; k < N_COMMIT_IDS; k++) { 2892 if (dm_integrity_commit_id(ic, i, j, k) == id) 2893 return k; 2894 } 2895 dm_integrity_io_error(ic, "journal commit id", -EIO); 2896 return -EIO; 2897 } 2898 2899 static void replay_journal(struct dm_integrity_c *ic) 2900 { 2901 unsigned i, j; 2902 bool used_commit_ids[N_COMMIT_IDS]; 2903 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2904 unsigned write_start, write_sections; 2905 unsigned continue_section; 2906 bool journal_empty; 2907 unsigned char unused, last_used, want_commit_seq; 2908 2909 if (ic->mode == 'R') 2910 return; 2911 2912 if (ic->journal_uptodate) 2913 return; 2914 2915 last_used = 0; 2916 write_start = 0; 2917 2918 if (!ic->just_formatted) { 2919 DEBUG_print("reading journal\n"); 2920 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2921 if (ic->journal_io) 2922 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2923 if (ic->journal_io) { 2924 struct journal_completion crypt_comp; 2925 crypt_comp.ic = ic; 2926 init_completion(&crypt_comp.comp); 2927 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2928 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2929 wait_for_completion(&crypt_comp.comp); 2930 } 2931 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2932 } 2933 2934 if (dm_integrity_failed(ic)) 2935 goto clear_journal; 2936 2937 journal_empty = true; 2938 memset(used_commit_ids, 0, sizeof used_commit_ids); 2939 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2940 for (i = 0; i < ic->journal_sections; i++) { 2941 for (j = 0; j < ic->journal_section_sectors; j++) { 2942 int k; 2943 struct journal_sector *js = access_journal(ic, i, j); 2944 k = find_commit_seq(ic, i, j, js->commit_id); 2945 if (k < 0) 2946 goto clear_journal; 2947 used_commit_ids[k] = true; 2948 max_commit_id_sections[k] = i; 2949 } 2950 if (journal_empty) { 2951 for (j = 0; j < ic->journal_section_entries; j++) { 2952 struct journal_entry *je = access_journal_entry(ic, i, j); 2953 if (!journal_entry_is_unused(je)) { 2954 journal_empty = false; 2955 break; 2956 } 2957 } 2958 } 2959 } 2960 2961 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2962 unused = N_COMMIT_IDS - 1; 2963 while (unused && !used_commit_ids[unused - 1]) 2964 unused--; 2965 } else { 2966 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2967 if (!used_commit_ids[unused]) 2968 break; 2969 if (unused == N_COMMIT_IDS) { 2970 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2971 goto clear_journal; 2972 } 2973 } 2974 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2975 unused, used_commit_ids[0], used_commit_ids[1], 2976 used_commit_ids[2], used_commit_ids[3]); 2977 2978 last_used = prev_commit_seq(unused); 2979 want_commit_seq = prev_commit_seq(last_used); 2980 2981 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2982 journal_empty = true; 2983 2984 write_start = max_commit_id_sections[last_used] + 1; 2985 if (unlikely(write_start >= ic->journal_sections)) 2986 want_commit_seq = next_commit_seq(want_commit_seq); 2987 wraparound_section(ic, &write_start); 2988 2989 i = write_start; 2990 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2991 for (j = 0; j < ic->journal_section_sectors; j++) { 2992 struct journal_sector *js = access_journal(ic, i, j); 2993 2994 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2995 /* 2996 * This could be caused by crash during writing. 2997 * We won't replay the inconsistent part of the 2998 * journal. 2999 */ 3000 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 3001 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 3002 goto brk; 3003 } 3004 } 3005 i++; 3006 if (unlikely(i >= ic->journal_sections)) 3007 want_commit_seq = next_commit_seq(want_commit_seq); 3008 wraparound_section(ic, &i); 3009 } 3010 brk: 3011 3012 if (!journal_empty) { 3013 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 3014 write_sections, write_start, want_commit_seq); 3015 do_journal_write(ic, write_start, write_sections, true); 3016 } 3017 3018 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3019 continue_section = write_start; 3020 ic->commit_seq = want_commit_seq; 3021 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3022 } else { 3023 unsigned s; 3024 unsigned char erase_seq; 3025 clear_journal: 3026 DEBUG_print("clearing journal\n"); 3027 3028 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3029 s = write_start; 3030 init_journal(ic, s, 1, erase_seq); 3031 s++; 3032 wraparound_section(ic, &s); 3033 if (ic->journal_sections >= 2) { 3034 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3035 s += ic->journal_sections - 2; 3036 wraparound_section(ic, &s); 3037 init_journal(ic, s, 1, erase_seq); 3038 } 3039 3040 continue_section = 0; 3041 ic->commit_seq = next_commit_seq(erase_seq); 3042 } 3043 3044 ic->committed_section = continue_section; 3045 ic->n_committed_sections = 0; 3046 3047 ic->uncommitted_section = continue_section; 3048 ic->n_uncommitted_sections = 0; 3049 3050 ic->free_section = continue_section; 3051 ic->free_section_entry = 0; 3052 ic->free_sectors = ic->journal_entries; 3053 3054 ic->journal_tree_root = RB_ROOT; 3055 for (i = 0; i < ic->journal_entries; i++) 3056 init_journal_node(&ic->journal_tree[i]); 3057 } 3058 3059 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3060 { 3061 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 3062 3063 if (ic->mode == 'B') { 3064 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3065 ic->synchronous_mode = 1; 3066 3067 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3068 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3069 flush_workqueue(ic->commit_wq); 3070 } 3071 } 3072 3073 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3074 { 3075 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3076 3077 DEBUG_print("dm_integrity_reboot\n"); 3078 3079 dm_integrity_enter_synchronous_mode(ic); 3080 3081 return NOTIFY_DONE; 3082 } 3083 3084 static void dm_integrity_postsuspend(struct dm_target *ti) 3085 { 3086 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3087 int r; 3088 3089 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3090 3091 del_timer_sync(&ic->autocommit_timer); 3092 3093 if (ic->recalc_wq) 3094 drain_workqueue(ic->recalc_wq); 3095 3096 if (ic->mode == 'B') 3097 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3098 3099 queue_work(ic->commit_wq, &ic->commit_work); 3100 drain_workqueue(ic->commit_wq); 3101 3102 if (ic->mode == 'J') { 3103 if (ic->meta_dev) 3104 queue_work(ic->writer_wq, &ic->writer_work); 3105 drain_workqueue(ic->writer_wq); 3106 dm_integrity_flush_buffers(ic, true); 3107 } 3108 3109 if (ic->mode == 'B') { 3110 dm_integrity_flush_buffers(ic, true); 3111 #if 1 3112 /* set to 0 to test bitmap replay code */ 3113 init_journal(ic, 0, ic->journal_sections, 0); 3114 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3115 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3116 if (unlikely(r)) 3117 dm_integrity_io_error(ic, "writing superblock", r); 3118 #endif 3119 } 3120 3121 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3122 3123 ic->journal_uptodate = true; 3124 } 3125 3126 static void dm_integrity_resume(struct dm_target *ti) 3127 { 3128 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3129 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3130 int r; 3131 3132 DEBUG_print("resume\n"); 3133 3134 if (ic->provided_data_sectors != old_provided_data_sectors) { 3135 if (ic->provided_data_sectors > old_provided_data_sectors && 3136 ic->mode == 'B' && 3137 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3138 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 3139 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3140 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3141 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3142 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3143 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3144 } 3145 3146 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3147 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3148 if (unlikely(r)) 3149 dm_integrity_io_error(ic, "writing superblock", r); 3150 } 3151 3152 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3153 DEBUG_print("resume dirty_bitmap\n"); 3154 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 3155 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3156 if (ic->mode == 'B') { 3157 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3158 !ic->reset_recalculate_flag) { 3159 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3160 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3161 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3162 BITMAP_OP_TEST_ALL_CLEAR)) { 3163 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3164 ic->sb->recalc_sector = cpu_to_le64(0); 3165 } 3166 } else { 3167 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3168 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3169 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3170 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3171 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3172 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3173 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3174 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3175 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3176 ic->sb->recalc_sector = cpu_to_le64(0); 3177 } 3178 } else { 3179 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3180 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3181 ic->reset_recalculate_flag) { 3182 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3183 ic->sb->recalc_sector = cpu_to_le64(0); 3184 } 3185 init_journal(ic, 0, ic->journal_sections, 0); 3186 replay_journal(ic); 3187 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3188 } 3189 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3190 if (unlikely(r)) 3191 dm_integrity_io_error(ic, "writing superblock", r); 3192 } else { 3193 replay_journal(ic); 3194 if (ic->reset_recalculate_flag) { 3195 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3196 ic->sb->recalc_sector = cpu_to_le64(0); 3197 } 3198 if (ic->mode == 'B') { 3199 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3200 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3201 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3202 if (unlikely(r)) 3203 dm_integrity_io_error(ic, "writing superblock", r); 3204 3205 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3206 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3207 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3208 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3209 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3210 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3211 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3212 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3213 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3214 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3215 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3216 } 3217 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3218 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3219 } 3220 } 3221 3222 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3223 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3224 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3225 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3226 if (recalc_pos < ic->provided_data_sectors) { 3227 queue_work(ic->recalc_wq, &ic->recalc_work); 3228 } else if (recalc_pos > ic->provided_data_sectors) { 3229 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3230 recalc_write_super(ic); 3231 } 3232 } 3233 3234 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3235 ic->reboot_notifier.next = NULL; 3236 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3237 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3238 3239 #if 0 3240 /* set to 1 to stress test synchronous mode */ 3241 dm_integrity_enter_synchronous_mode(ic); 3242 #endif 3243 } 3244 3245 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3246 unsigned status_flags, char *result, unsigned maxlen) 3247 { 3248 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3249 unsigned arg_count; 3250 size_t sz = 0; 3251 3252 switch (type) { 3253 case STATUSTYPE_INFO: 3254 DMEMIT("%llu %llu", 3255 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3256 ic->provided_data_sectors); 3257 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3258 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3259 else 3260 DMEMIT(" -"); 3261 break; 3262 3263 case STATUSTYPE_TABLE: { 3264 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3265 watermark_percentage += ic->journal_entries / 2; 3266 do_div(watermark_percentage, ic->journal_entries); 3267 arg_count = 3; 3268 arg_count += !!ic->meta_dev; 3269 arg_count += ic->sectors_per_block != 1; 3270 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3271 arg_count += ic->reset_recalculate_flag; 3272 arg_count += ic->discard; 3273 arg_count += ic->mode == 'J'; 3274 arg_count += ic->mode == 'J'; 3275 arg_count += ic->mode == 'B'; 3276 arg_count += ic->mode == 'B'; 3277 arg_count += !!ic->internal_hash_alg.alg_string; 3278 arg_count += !!ic->journal_crypt_alg.alg_string; 3279 arg_count += !!ic->journal_mac_alg.alg_string; 3280 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3281 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3282 arg_count += ic->legacy_recalculate; 3283 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3284 ic->tag_size, ic->mode, arg_count); 3285 if (ic->meta_dev) 3286 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3287 if (ic->sectors_per_block != 1) 3288 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3289 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3290 DMEMIT(" recalculate"); 3291 if (ic->reset_recalculate_flag) 3292 DMEMIT(" reset_recalculate"); 3293 if (ic->discard) 3294 DMEMIT(" allow_discards"); 3295 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3296 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3297 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3298 if (ic->mode == 'J') { 3299 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 3300 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3301 } 3302 if (ic->mode == 'B') { 3303 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3304 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3305 } 3306 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3307 DMEMIT(" fix_padding"); 3308 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3309 DMEMIT(" fix_hmac"); 3310 if (ic->legacy_recalculate) 3311 DMEMIT(" legacy_recalculate"); 3312 3313 #define EMIT_ALG(a, n) \ 3314 do { \ 3315 if (ic->a.alg_string) { \ 3316 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3317 if (ic->a.key_string) \ 3318 DMEMIT(":%s", ic->a.key_string);\ 3319 } \ 3320 } while (0) 3321 EMIT_ALG(internal_hash_alg, "internal_hash"); 3322 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3323 EMIT_ALG(journal_mac_alg, "journal_mac"); 3324 break; 3325 } 3326 case STATUSTYPE_IMA: 3327 DMEMIT_TARGET_NAME_VERSION(ti->type); 3328 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", 3329 ic->dev->name, ic->start, ic->tag_size, ic->mode); 3330 3331 if (ic->meta_dev) 3332 DMEMIT(",meta_device=%s", ic->meta_dev->name); 3333 if (ic->sectors_per_block != 1) 3334 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); 3335 3336 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 3337 'y' : 'n'); 3338 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); 3339 DMEMIT(",fix_padding=%c", 3340 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); 3341 DMEMIT(",fix_hmac=%c", 3342 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); 3343 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); 3344 3345 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); 3346 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); 3347 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); 3348 DMEMIT(";"); 3349 break; 3350 } 3351 } 3352 3353 static int dm_integrity_iterate_devices(struct dm_target *ti, 3354 iterate_devices_callout_fn fn, void *data) 3355 { 3356 struct dm_integrity_c *ic = ti->private; 3357 3358 if (!ic->meta_dev) 3359 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3360 else 3361 return fn(ti, ic->dev, 0, ti->len, data); 3362 } 3363 3364 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3365 { 3366 struct dm_integrity_c *ic = ti->private; 3367 3368 if (ic->sectors_per_block > 1) { 3369 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3370 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3371 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3372 } 3373 } 3374 3375 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3376 { 3377 unsigned sector_space = JOURNAL_SECTOR_DATA; 3378 3379 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3380 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3381 JOURNAL_ENTRY_ROUNDUP); 3382 3383 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3384 sector_space -= JOURNAL_MAC_PER_SECTOR; 3385 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3386 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3387 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3388 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3389 } 3390 3391 static int calculate_device_limits(struct dm_integrity_c *ic) 3392 { 3393 __u64 initial_sectors; 3394 3395 calculate_journal_section_size(ic); 3396 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3397 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3398 return -EINVAL; 3399 ic->initial_sectors = initial_sectors; 3400 3401 if (!ic->meta_dev) { 3402 sector_t last_sector, last_area, last_offset; 3403 3404 /* we have to maintain excessive padding for compatibility with existing volumes */ 3405 __u64 metadata_run_padding = 3406 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3407 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3408 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3409 3410 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3411 metadata_run_padding) >> SECTOR_SHIFT; 3412 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3413 ic->log2_metadata_run = __ffs(ic->metadata_run); 3414 else 3415 ic->log2_metadata_run = -1; 3416 3417 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3418 last_sector = get_data_sector(ic, last_area, last_offset); 3419 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3420 return -EINVAL; 3421 } else { 3422 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3423 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3424 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3425 meta_size <<= ic->log2_buffer_sectors; 3426 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3427 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3428 return -EINVAL; 3429 ic->metadata_run = 1; 3430 ic->log2_metadata_run = 0; 3431 } 3432 3433 return 0; 3434 } 3435 3436 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3437 { 3438 if (!ic->meta_dev) { 3439 int test_bit; 3440 ic->provided_data_sectors = 0; 3441 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3442 __u64 prev_data_sectors = ic->provided_data_sectors; 3443 3444 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3445 if (calculate_device_limits(ic)) 3446 ic->provided_data_sectors = prev_data_sectors; 3447 } 3448 } else { 3449 ic->provided_data_sectors = ic->data_device_sectors; 3450 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3451 } 3452 } 3453 3454 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3455 { 3456 unsigned journal_sections; 3457 int test_bit; 3458 3459 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3460 memcpy(ic->sb->magic, SB_MAGIC, 8); 3461 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3462 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3463 if (ic->journal_mac_alg.alg_string) 3464 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3465 3466 calculate_journal_section_size(ic); 3467 journal_sections = journal_sectors / ic->journal_section_sectors; 3468 if (!journal_sections) 3469 journal_sections = 1; 3470 3471 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 3472 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 3473 get_random_bytes(ic->sb->salt, SALT_SIZE); 3474 } 3475 3476 if (!ic->meta_dev) { 3477 if (ic->fix_padding) 3478 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3479 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3480 if (!interleave_sectors) 3481 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3482 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3483 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3484 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3485 3486 get_provided_data_sectors(ic); 3487 if (!ic->provided_data_sectors) 3488 return -EINVAL; 3489 } else { 3490 ic->sb->log2_interleave_sectors = 0; 3491 3492 get_provided_data_sectors(ic); 3493 if (!ic->provided_data_sectors) 3494 return -EINVAL; 3495 3496 try_smaller_buffer: 3497 ic->sb->journal_sections = cpu_to_le32(0); 3498 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3499 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3500 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3501 if (test_journal_sections > journal_sections) 3502 continue; 3503 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3504 if (calculate_device_limits(ic)) 3505 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3506 3507 } 3508 if (!le32_to_cpu(ic->sb->journal_sections)) { 3509 if (ic->log2_buffer_sectors > 3) { 3510 ic->log2_buffer_sectors--; 3511 goto try_smaller_buffer; 3512 } 3513 return -EINVAL; 3514 } 3515 } 3516 3517 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3518 3519 sb_set_version(ic); 3520 3521 return 0; 3522 } 3523 3524 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3525 { 3526 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3527 struct blk_integrity bi; 3528 3529 memset(&bi, 0, sizeof(bi)); 3530 bi.profile = &dm_integrity_profile; 3531 bi.tuple_size = ic->tag_size; 3532 bi.tag_size = bi.tuple_size; 3533 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3534 3535 blk_integrity_register(disk, &bi); 3536 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3537 } 3538 3539 static void dm_integrity_free_page_list(struct page_list *pl) 3540 { 3541 unsigned i; 3542 3543 if (!pl) 3544 return; 3545 for (i = 0; pl[i].page; i++) 3546 __free_page(pl[i].page); 3547 kvfree(pl); 3548 } 3549 3550 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3551 { 3552 struct page_list *pl; 3553 unsigned i; 3554 3555 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3556 if (!pl) 3557 return NULL; 3558 3559 for (i = 0; i < n_pages; i++) { 3560 pl[i].page = alloc_page(GFP_KERNEL); 3561 if (!pl[i].page) { 3562 dm_integrity_free_page_list(pl); 3563 return NULL; 3564 } 3565 if (i) 3566 pl[i - 1].next = &pl[i]; 3567 } 3568 pl[i].page = NULL; 3569 pl[i].next = NULL; 3570 3571 return pl; 3572 } 3573 3574 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3575 { 3576 unsigned i; 3577 for (i = 0; i < ic->journal_sections; i++) 3578 kvfree(sl[i]); 3579 kvfree(sl); 3580 } 3581 3582 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3583 struct page_list *pl) 3584 { 3585 struct scatterlist **sl; 3586 unsigned i; 3587 3588 sl = kvmalloc_array(ic->journal_sections, 3589 sizeof(struct scatterlist *), 3590 GFP_KERNEL | __GFP_ZERO); 3591 if (!sl) 3592 return NULL; 3593 3594 for (i = 0; i < ic->journal_sections; i++) { 3595 struct scatterlist *s; 3596 unsigned start_index, start_offset; 3597 unsigned end_index, end_offset; 3598 unsigned n_pages; 3599 unsigned idx; 3600 3601 page_list_location(ic, i, 0, &start_index, &start_offset); 3602 page_list_location(ic, i, ic->journal_section_sectors - 1, 3603 &end_index, &end_offset); 3604 3605 n_pages = (end_index - start_index + 1); 3606 3607 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3608 GFP_KERNEL); 3609 if (!s) { 3610 dm_integrity_free_journal_scatterlist(ic, sl); 3611 return NULL; 3612 } 3613 3614 sg_init_table(s, n_pages); 3615 for (idx = start_index; idx <= end_index; idx++) { 3616 char *va = lowmem_page_address(pl[idx].page); 3617 unsigned start = 0, end = PAGE_SIZE; 3618 if (idx == start_index) 3619 start = start_offset; 3620 if (idx == end_index) 3621 end = end_offset + (1 << SECTOR_SHIFT); 3622 sg_set_buf(&s[idx - start_index], va + start, end - start); 3623 } 3624 3625 sl[i] = s; 3626 } 3627 3628 return sl; 3629 } 3630 3631 static void free_alg(struct alg_spec *a) 3632 { 3633 kfree_sensitive(a->alg_string); 3634 kfree_sensitive(a->key); 3635 memset(a, 0, sizeof *a); 3636 } 3637 3638 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3639 { 3640 char *k; 3641 3642 free_alg(a); 3643 3644 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3645 if (!a->alg_string) 3646 goto nomem; 3647 3648 k = strchr(a->alg_string, ':'); 3649 if (k) { 3650 *k = 0; 3651 a->key_string = k + 1; 3652 if (strlen(a->key_string) & 1) 3653 goto inval; 3654 3655 a->key_size = strlen(a->key_string) / 2; 3656 a->key = kmalloc(a->key_size, GFP_KERNEL); 3657 if (!a->key) 3658 goto nomem; 3659 if (hex2bin(a->key, a->key_string, a->key_size)) 3660 goto inval; 3661 } 3662 3663 return 0; 3664 inval: 3665 *error = error_inval; 3666 return -EINVAL; 3667 nomem: 3668 *error = "Out of memory for an argument"; 3669 return -ENOMEM; 3670 } 3671 3672 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3673 char *error_alg, char *error_key) 3674 { 3675 int r; 3676 3677 if (a->alg_string) { 3678 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3679 if (IS_ERR(*hash)) { 3680 *error = error_alg; 3681 r = PTR_ERR(*hash); 3682 *hash = NULL; 3683 return r; 3684 } 3685 3686 if (a->key) { 3687 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3688 if (r) { 3689 *error = error_key; 3690 return r; 3691 } 3692 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3693 *error = error_key; 3694 return -ENOKEY; 3695 } 3696 } 3697 3698 return 0; 3699 } 3700 3701 static int create_journal(struct dm_integrity_c *ic, char **error) 3702 { 3703 int r = 0; 3704 unsigned i; 3705 __u64 journal_pages, journal_desc_size, journal_tree_size; 3706 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3707 struct skcipher_request *req = NULL; 3708 3709 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3710 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3711 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3712 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3713 3714 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3715 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3716 journal_desc_size = journal_pages * sizeof(struct page_list); 3717 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3718 *error = "Journal doesn't fit into memory"; 3719 r = -ENOMEM; 3720 goto bad; 3721 } 3722 ic->journal_pages = journal_pages; 3723 3724 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3725 if (!ic->journal) { 3726 *error = "Could not allocate memory for journal"; 3727 r = -ENOMEM; 3728 goto bad; 3729 } 3730 if (ic->journal_crypt_alg.alg_string) { 3731 unsigned ivsize, blocksize; 3732 struct journal_completion comp; 3733 3734 comp.ic = ic; 3735 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3736 if (IS_ERR(ic->journal_crypt)) { 3737 *error = "Invalid journal cipher"; 3738 r = PTR_ERR(ic->journal_crypt); 3739 ic->journal_crypt = NULL; 3740 goto bad; 3741 } 3742 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3743 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3744 3745 if (ic->journal_crypt_alg.key) { 3746 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3747 ic->journal_crypt_alg.key_size); 3748 if (r) { 3749 *error = "Error setting encryption key"; 3750 goto bad; 3751 } 3752 } 3753 DEBUG_print("cipher %s, block size %u iv size %u\n", 3754 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3755 3756 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3757 if (!ic->journal_io) { 3758 *error = "Could not allocate memory for journal io"; 3759 r = -ENOMEM; 3760 goto bad; 3761 } 3762 3763 if (blocksize == 1) { 3764 struct scatterlist *sg; 3765 3766 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3767 if (!req) { 3768 *error = "Could not allocate crypt request"; 3769 r = -ENOMEM; 3770 goto bad; 3771 } 3772 3773 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3774 if (!crypt_iv) { 3775 *error = "Could not allocate iv"; 3776 r = -ENOMEM; 3777 goto bad; 3778 } 3779 3780 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3781 if (!ic->journal_xor) { 3782 *error = "Could not allocate memory for journal xor"; 3783 r = -ENOMEM; 3784 goto bad; 3785 } 3786 3787 sg = kvmalloc_array(ic->journal_pages + 1, 3788 sizeof(struct scatterlist), 3789 GFP_KERNEL); 3790 if (!sg) { 3791 *error = "Unable to allocate sg list"; 3792 r = -ENOMEM; 3793 goto bad; 3794 } 3795 sg_init_table(sg, ic->journal_pages + 1); 3796 for (i = 0; i < ic->journal_pages; i++) { 3797 char *va = lowmem_page_address(ic->journal_xor[i].page); 3798 clear_page(va); 3799 sg_set_buf(&sg[i], va, PAGE_SIZE); 3800 } 3801 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3802 3803 skcipher_request_set_crypt(req, sg, sg, 3804 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3805 init_completion(&comp.comp); 3806 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3807 if (do_crypt(true, req, &comp)) 3808 wait_for_completion(&comp.comp); 3809 kvfree(sg); 3810 r = dm_integrity_failed(ic); 3811 if (r) { 3812 *error = "Unable to encrypt journal"; 3813 goto bad; 3814 } 3815 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3816 3817 crypto_free_skcipher(ic->journal_crypt); 3818 ic->journal_crypt = NULL; 3819 } else { 3820 unsigned crypt_len = roundup(ivsize, blocksize); 3821 3822 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3823 if (!req) { 3824 *error = "Could not allocate crypt request"; 3825 r = -ENOMEM; 3826 goto bad; 3827 } 3828 3829 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3830 if (!crypt_iv) { 3831 *error = "Could not allocate iv"; 3832 r = -ENOMEM; 3833 goto bad; 3834 } 3835 3836 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3837 if (!crypt_data) { 3838 *error = "Unable to allocate crypt data"; 3839 r = -ENOMEM; 3840 goto bad; 3841 } 3842 3843 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3844 if (!ic->journal_scatterlist) { 3845 *error = "Unable to allocate sg list"; 3846 r = -ENOMEM; 3847 goto bad; 3848 } 3849 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3850 if (!ic->journal_io_scatterlist) { 3851 *error = "Unable to allocate sg list"; 3852 r = -ENOMEM; 3853 goto bad; 3854 } 3855 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3856 sizeof(struct skcipher_request *), 3857 GFP_KERNEL | __GFP_ZERO); 3858 if (!ic->sk_requests) { 3859 *error = "Unable to allocate sk requests"; 3860 r = -ENOMEM; 3861 goto bad; 3862 } 3863 for (i = 0; i < ic->journal_sections; i++) { 3864 struct scatterlist sg; 3865 struct skcipher_request *section_req; 3866 __le32 section_le = cpu_to_le32(i); 3867 3868 memset(crypt_iv, 0x00, ivsize); 3869 memset(crypt_data, 0x00, crypt_len); 3870 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3871 3872 sg_init_one(&sg, crypt_data, crypt_len); 3873 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3874 init_completion(&comp.comp); 3875 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3876 if (do_crypt(true, req, &comp)) 3877 wait_for_completion(&comp.comp); 3878 3879 r = dm_integrity_failed(ic); 3880 if (r) { 3881 *error = "Unable to generate iv"; 3882 goto bad; 3883 } 3884 3885 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3886 if (!section_req) { 3887 *error = "Unable to allocate crypt request"; 3888 r = -ENOMEM; 3889 goto bad; 3890 } 3891 section_req->iv = kmalloc_array(ivsize, 2, 3892 GFP_KERNEL); 3893 if (!section_req->iv) { 3894 skcipher_request_free(section_req); 3895 *error = "Unable to allocate iv"; 3896 r = -ENOMEM; 3897 goto bad; 3898 } 3899 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3900 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3901 ic->sk_requests[i] = section_req; 3902 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3903 } 3904 } 3905 } 3906 3907 for (i = 0; i < N_COMMIT_IDS; i++) { 3908 unsigned j; 3909 retest_commit_id: 3910 for (j = 0; j < i; j++) { 3911 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3912 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3913 goto retest_commit_id; 3914 } 3915 } 3916 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3917 } 3918 3919 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3920 if (journal_tree_size > ULONG_MAX) { 3921 *error = "Journal doesn't fit into memory"; 3922 r = -ENOMEM; 3923 goto bad; 3924 } 3925 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3926 if (!ic->journal_tree) { 3927 *error = "Could not allocate memory for journal tree"; 3928 r = -ENOMEM; 3929 } 3930 bad: 3931 kfree(crypt_data); 3932 kfree(crypt_iv); 3933 skcipher_request_free(req); 3934 3935 return r; 3936 } 3937 3938 /* 3939 * Construct a integrity mapping 3940 * 3941 * Arguments: 3942 * device 3943 * offset from the start of the device 3944 * tag size 3945 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3946 * number of optional arguments 3947 * optional arguments: 3948 * journal_sectors 3949 * interleave_sectors 3950 * buffer_sectors 3951 * journal_watermark 3952 * commit_time 3953 * meta_device 3954 * block_size 3955 * sectors_per_bit 3956 * bitmap_flush_interval 3957 * internal_hash 3958 * journal_crypt 3959 * journal_mac 3960 * recalculate 3961 */ 3962 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3963 { 3964 struct dm_integrity_c *ic; 3965 char dummy; 3966 int r; 3967 unsigned extra_args; 3968 struct dm_arg_set as; 3969 static const struct dm_arg _args[] = { 3970 {0, 18, "Invalid number of feature args"}, 3971 }; 3972 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3973 bool should_write_sb; 3974 __u64 threshold; 3975 unsigned long long start; 3976 __s8 log2_sectors_per_bitmap_bit = -1; 3977 __s8 log2_blocks_per_bitmap_bit; 3978 __u64 bits_in_journal; 3979 __u64 n_bitmap_bits; 3980 3981 #define DIRECT_ARGUMENTS 4 3982 3983 if (argc <= DIRECT_ARGUMENTS) { 3984 ti->error = "Invalid argument count"; 3985 return -EINVAL; 3986 } 3987 3988 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3989 if (!ic) { 3990 ti->error = "Cannot allocate integrity context"; 3991 return -ENOMEM; 3992 } 3993 ti->private = ic; 3994 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3995 ic->ti = ti; 3996 3997 ic->in_progress = RB_ROOT; 3998 INIT_LIST_HEAD(&ic->wait_list); 3999 init_waitqueue_head(&ic->endio_wait); 4000 bio_list_init(&ic->flush_bio_list); 4001 init_waitqueue_head(&ic->copy_to_journal_wait); 4002 init_completion(&ic->crypto_backoff); 4003 atomic64_set(&ic->number_of_mismatches, 0); 4004 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 4005 4006 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 4007 if (r) { 4008 ti->error = "Device lookup failed"; 4009 goto bad; 4010 } 4011 4012 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 4013 ti->error = "Invalid starting offset"; 4014 r = -EINVAL; 4015 goto bad; 4016 } 4017 ic->start = start; 4018 4019 if (strcmp(argv[2], "-")) { 4020 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 4021 ti->error = "Invalid tag size"; 4022 r = -EINVAL; 4023 goto bad; 4024 } 4025 } 4026 4027 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 4028 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 4029 ic->mode = argv[3][0]; 4030 } else { 4031 ti->error = "Invalid mode (expecting J, B, D, R)"; 4032 r = -EINVAL; 4033 goto bad; 4034 } 4035 4036 journal_sectors = 0; 4037 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4038 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4039 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4040 sync_msec = DEFAULT_SYNC_MSEC; 4041 ic->sectors_per_block = 1; 4042 4043 as.argc = argc - DIRECT_ARGUMENTS; 4044 as.argv = argv + DIRECT_ARGUMENTS; 4045 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4046 if (r) 4047 goto bad; 4048 4049 while (extra_args--) { 4050 const char *opt_string; 4051 unsigned val; 4052 unsigned long long llval; 4053 opt_string = dm_shift_arg(&as); 4054 if (!opt_string) { 4055 r = -EINVAL; 4056 ti->error = "Not enough feature arguments"; 4057 goto bad; 4058 } 4059 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4060 journal_sectors = val ? val : 1; 4061 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4062 interleave_sectors = val; 4063 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4064 buffer_sectors = val; 4065 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4066 journal_watermark = val; 4067 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4068 sync_msec = val; 4069 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4070 if (ic->meta_dev) { 4071 dm_put_device(ti, ic->meta_dev); 4072 ic->meta_dev = NULL; 4073 } 4074 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4075 dm_table_get_mode(ti->table), &ic->meta_dev); 4076 if (r) { 4077 ti->error = "Device lookup failed"; 4078 goto bad; 4079 } 4080 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4081 if (val < 1 << SECTOR_SHIFT || 4082 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4083 (val & (val -1))) { 4084 r = -EINVAL; 4085 ti->error = "Invalid block_size argument"; 4086 goto bad; 4087 } 4088 ic->sectors_per_block = val >> SECTOR_SHIFT; 4089 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4090 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4091 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4092 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4093 r = -EINVAL; 4094 ti->error = "Invalid bitmap_flush_interval argument"; 4095 goto bad; 4096 } 4097 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4098 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4099 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4100 "Invalid internal_hash argument"); 4101 if (r) 4102 goto bad; 4103 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4104 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4105 "Invalid journal_crypt argument"); 4106 if (r) 4107 goto bad; 4108 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4109 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4110 "Invalid journal_mac argument"); 4111 if (r) 4112 goto bad; 4113 } else if (!strcmp(opt_string, "recalculate")) { 4114 ic->recalculate_flag = true; 4115 } else if (!strcmp(opt_string, "reset_recalculate")) { 4116 ic->recalculate_flag = true; 4117 ic->reset_recalculate_flag = true; 4118 } else if (!strcmp(opt_string, "allow_discards")) { 4119 ic->discard = true; 4120 } else if (!strcmp(opt_string, "fix_padding")) { 4121 ic->fix_padding = true; 4122 } else if (!strcmp(opt_string, "fix_hmac")) { 4123 ic->fix_hmac = true; 4124 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4125 ic->legacy_recalculate = true; 4126 } else { 4127 r = -EINVAL; 4128 ti->error = "Invalid argument"; 4129 goto bad; 4130 } 4131 } 4132 4133 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev); 4134 if (!ic->meta_dev) 4135 ic->meta_device_sectors = ic->data_device_sectors; 4136 else 4137 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev); 4138 4139 if (!journal_sectors) { 4140 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4141 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4142 } 4143 4144 if (!buffer_sectors) 4145 buffer_sectors = 1; 4146 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4147 4148 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4149 "Invalid internal hash", "Error setting internal hash key"); 4150 if (r) 4151 goto bad; 4152 4153 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4154 "Invalid journal mac", "Error setting journal mac key"); 4155 if (r) 4156 goto bad; 4157 4158 if (!ic->tag_size) { 4159 if (!ic->internal_hash) { 4160 ti->error = "Unknown tag size"; 4161 r = -EINVAL; 4162 goto bad; 4163 } 4164 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4165 } 4166 if (ic->tag_size > MAX_TAG_SIZE) { 4167 ti->error = "Too big tag size"; 4168 r = -EINVAL; 4169 goto bad; 4170 } 4171 if (!(ic->tag_size & (ic->tag_size - 1))) 4172 ic->log2_tag_size = __ffs(ic->tag_size); 4173 else 4174 ic->log2_tag_size = -1; 4175 4176 if (ic->mode == 'B' && !ic->internal_hash) { 4177 r = -EINVAL; 4178 ti->error = "Bitmap mode can be only used with internal hash"; 4179 goto bad; 4180 } 4181 4182 if (ic->discard && !ic->internal_hash) { 4183 r = -EINVAL; 4184 ti->error = "Discard can be only used with internal hash"; 4185 goto bad; 4186 } 4187 4188 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4189 ic->autocommit_msec = sync_msec; 4190 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4191 4192 ic->io = dm_io_client_create(); 4193 if (IS_ERR(ic->io)) { 4194 r = PTR_ERR(ic->io); 4195 ic->io = NULL; 4196 ti->error = "Cannot allocate dm io"; 4197 goto bad; 4198 } 4199 4200 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4201 if (r) { 4202 ti->error = "Cannot allocate mempool"; 4203 goto bad; 4204 } 4205 4206 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4207 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4208 if (!ic->metadata_wq) { 4209 ti->error = "Cannot allocate workqueue"; 4210 r = -ENOMEM; 4211 goto bad; 4212 } 4213 4214 /* 4215 * If this workqueue were percpu, it would cause bio reordering 4216 * and reduced performance. 4217 */ 4218 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4219 if (!ic->wait_wq) { 4220 ti->error = "Cannot allocate workqueue"; 4221 r = -ENOMEM; 4222 goto bad; 4223 } 4224 4225 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4226 METADATA_WORKQUEUE_MAX_ACTIVE); 4227 if (!ic->offload_wq) { 4228 ti->error = "Cannot allocate workqueue"; 4229 r = -ENOMEM; 4230 goto bad; 4231 } 4232 4233 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4234 if (!ic->commit_wq) { 4235 ti->error = "Cannot allocate workqueue"; 4236 r = -ENOMEM; 4237 goto bad; 4238 } 4239 INIT_WORK(&ic->commit_work, integrity_commit); 4240 4241 if (ic->mode == 'J' || ic->mode == 'B') { 4242 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4243 if (!ic->writer_wq) { 4244 ti->error = "Cannot allocate workqueue"; 4245 r = -ENOMEM; 4246 goto bad; 4247 } 4248 INIT_WORK(&ic->writer_work, integrity_writer); 4249 } 4250 4251 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4252 if (!ic->sb) { 4253 r = -ENOMEM; 4254 ti->error = "Cannot allocate superblock area"; 4255 goto bad; 4256 } 4257 4258 r = sync_rw_sb(ic, REQ_OP_READ, 0); 4259 if (r) { 4260 ti->error = "Error reading superblock"; 4261 goto bad; 4262 } 4263 should_write_sb = false; 4264 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4265 if (ic->mode != 'R') { 4266 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4267 r = -EINVAL; 4268 ti->error = "The device is not initialized"; 4269 goto bad; 4270 } 4271 } 4272 4273 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4274 if (r) { 4275 ti->error = "Could not initialize superblock"; 4276 goto bad; 4277 } 4278 if (ic->mode != 'R') 4279 should_write_sb = true; 4280 } 4281 4282 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) { 4283 r = -EINVAL; 4284 ti->error = "Unknown version"; 4285 goto bad; 4286 } 4287 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4288 r = -EINVAL; 4289 ti->error = "Tag size doesn't match the information in superblock"; 4290 goto bad; 4291 } 4292 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4293 r = -EINVAL; 4294 ti->error = "Block size doesn't match the information in superblock"; 4295 goto bad; 4296 } 4297 if (!le32_to_cpu(ic->sb->journal_sections)) { 4298 r = -EINVAL; 4299 ti->error = "Corrupted superblock, journal_sections is 0"; 4300 goto bad; 4301 } 4302 /* make sure that ti->max_io_len doesn't overflow */ 4303 if (!ic->meta_dev) { 4304 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4305 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4306 r = -EINVAL; 4307 ti->error = "Invalid interleave_sectors in the superblock"; 4308 goto bad; 4309 } 4310 } else { 4311 if (ic->sb->log2_interleave_sectors) { 4312 r = -EINVAL; 4313 ti->error = "Invalid interleave_sectors in the superblock"; 4314 goto bad; 4315 } 4316 } 4317 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4318 r = -EINVAL; 4319 ti->error = "Journal mac mismatch"; 4320 goto bad; 4321 } 4322 4323 get_provided_data_sectors(ic); 4324 if (!ic->provided_data_sectors) { 4325 r = -EINVAL; 4326 ti->error = "The device is too small"; 4327 goto bad; 4328 } 4329 4330 try_smaller_buffer: 4331 r = calculate_device_limits(ic); 4332 if (r) { 4333 if (ic->meta_dev) { 4334 if (ic->log2_buffer_sectors > 3) { 4335 ic->log2_buffer_sectors--; 4336 goto try_smaller_buffer; 4337 } 4338 } 4339 ti->error = "The device is too small"; 4340 goto bad; 4341 } 4342 4343 if (log2_sectors_per_bitmap_bit < 0) 4344 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4345 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4346 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4347 4348 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4349 if (bits_in_journal > UINT_MAX) 4350 bits_in_journal = UINT_MAX; 4351 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4352 log2_sectors_per_bitmap_bit++; 4353 4354 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4355 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4356 if (should_write_sb) { 4357 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4358 } 4359 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4360 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4361 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4362 4363 if (!ic->meta_dev) 4364 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4365 4366 if (ti->len > ic->provided_data_sectors) { 4367 r = -EINVAL; 4368 ti->error = "Not enough provided sectors for requested mapping size"; 4369 goto bad; 4370 } 4371 4372 4373 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4374 threshold += 50; 4375 do_div(threshold, 100); 4376 ic->free_sectors_threshold = threshold; 4377 4378 DEBUG_print("initialized:\n"); 4379 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4380 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4381 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4382 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4383 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4384 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 4385 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4386 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4387 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev)); 4388 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4389 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4390 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4391 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4392 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4393 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4394 4395 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4396 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4397 ic->sb->recalc_sector = cpu_to_le64(0); 4398 } 4399 4400 if (ic->internal_hash) { 4401 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4402 if (!ic->recalc_wq ) { 4403 ti->error = "Cannot allocate workqueue"; 4404 r = -ENOMEM; 4405 goto bad; 4406 } 4407 INIT_WORK(&ic->recalc_work, integrity_recalc); 4408 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 4409 if (!ic->recalc_buffer) { 4410 ti->error = "Cannot allocate buffer for recalculating"; 4411 r = -ENOMEM; 4412 goto bad; 4413 } 4414 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 4415 ic->tag_size, GFP_KERNEL); 4416 if (!ic->recalc_tags) { 4417 ti->error = "Cannot allocate tags for recalculating"; 4418 r = -ENOMEM; 4419 goto bad; 4420 } 4421 } else { 4422 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 4423 ti->error = "Recalculate can only be specified with internal_hash"; 4424 r = -EINVAL; 4425 goto bad; 4426 } 4427 } 4428 4429 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 4430 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 4431 dm_integrity_disable_recalculate(ic)) { 4432 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 4433 r = -EOPNOTSUPP; 4434 goto bad; 4435 } 4436 4437 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4438 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 4439 if (IS_ERR(ic->bufio)) { 4440 r = PTR_ERR(ic->bufio); 4441 ti->error = "Cannot initialize dm-bufio"; 4442 ic->bufio = NULL; 4443 goto bad; 4444 } 4445 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4446 4447 if (ic->mode != 'R') { 4448 r = create_journal(ic, &ti->error); 4449 if (r) 4450 goto bad; 4451 4452 } 4453 4454 if (ic->mode == 'B') { 4455 unsigned i; 4456 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4457 4458 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4459 if (!ic->recalc_bitmap) { 4460 r = -ENOMEM; 4461 goto bad; 4462 } 4463 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4464 if (!ic->may_write_bitmap) { 4465 r = -ENOMEM; 4466 goto bad; 4467 } 4468 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4469 if (!ic->bbs) { 4470 r = -ENOMEM; 4471 goto bad; 4472 } 4473 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4474 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4475 struct bitmap_block_status *bbs = &ic->bbs[i]; 4476 unsigned sector, pl_index, pl_offset; 4477 4478 INIT_WORK(&bbs->work, bitmap_block_work); 4479 bbs->ic = ic; 4480 bbs->idx = i; 4481 bio_list_init(&bbs->bio_queue); 4482 spin_lock_init(&bbs->bio_queue_lock); 4483 4484 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4485 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4486 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4487 4488 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4489 } 4490 } 4491 4492 if (should_write_sb) { 4493 int r; 4494 4495 init_journal(ic, 0, ic->journal_sections, 0); 4496 r = dm_integrity_failed(ic); 4497 if (unlikely(r)) { 4498 ti->error = "Error initializing journal"; 4499 goto bad; 4500 } 4501 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4502 if (r) { 4503 ti->error = "Error initializing superblock"; 4504 goto bad; 4505 } 4506 ic->just_formatted = true; 4507 } 4508 4509 if (!ic->meta_dev) { 4510 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4511 if (r) 4512 goto bad; 4513 } 4514 if (ic->mode == 'B') { 4515 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4516 if (!max_io_len) 4517 max_io_len = 1U << 31; 4518 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4519 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4520 r = dm_set_target_max_io_len(ti, max_io_len); 4521 if (r) 4522 goto bad; 4523 } 4524 } 4525 4526 if (!ic->internal_hash) 4527 dm_integrity_set(ti, ic); 4528 4529 ti->num_flush_bios = 1; 4530 ti->flush_supported = true; 4531 if (ic->discard) 4532 ti->num_discard_bios = 1; 4533 4534 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 4535 return 0; 4536 4537 bad: 4538 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 4539 dm_integrity_dtr(ti); 4540 return r; 4541 } 4542 4543 static void dm_integrity_dtr(struct dm_target *ti) 4544 { 4545 struct dm_integrity_c *ic = ti->private; 4546 4547 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4548 BUG_ON(!list_empty(&ic->wait_list)); 4549 4550 if (ic->metadata_wq) 4551 destroy_workqueue(ic->metadata_wq); 4552 if (ic->wait_wq) 4553 destroy_workqueue(ic->wait_wq); 4554 if (ic->offload_wq) 4555 destroy_workqueue(ic->offload_wq); 4556 if (ic->commit_wq) 4557 destroy_workqueue(ic->commit_wq); 4558 if (ic->writer_wq) 4559 destroy_workqueue(ic->writer_wq); 4560 if (ic->recalc_wq) 4561 destroy_workqueue(ic->recalc_wq); 4562 vfree(ic->recalc_buffer); 4563 kvfree(ic->recalc_tags); 4564 kvfree(ic->bbs); 4565 if (ic->bufio) 4566 dm_bufio_client_destroy(ic->bufio); 4567 mempool_exit(&ic->journal_io_mempool); 4568 if (ic->io) 4569 dm_io_client_destroy(ic->io); 4570 if (ic->dev) 4571 dm_put_device(ti, ic->dev); 4572 if (ic->meta_dev) 4573 dm_put_device(ti, ic->meta_dev); 4574 dm_integrity_free_page_list(ic->journal); 4575 dm_integrity_free_page_list(ic->journal_io); 4576 dm_integrity_free_page_list(ic->journal_xor); 4577 dm_integrity_free_page_list(ic->recalc_bitmap); 4578 dm_integrity_free_page_list(ic->may_write_bitmap); 4579 if (ic->journal_scatterlist) 4580 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4581 if (ic->journal_io_scatterlist) 4582 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4583 if (ic->sk_requests) { 4584 unsigned i; 4585 4586 for (i = 0; i < ic->journal_sections; i++) { 4587 struct skcipher_request *req = ic->sk_requests[i]; 4588 if (req) { 4589 kfree_sensitive(req->iv); 4590 skcipher_request_free(req); 4591 } 4592 } 4593 kvfree(ic->sk_requests); 4594 } 4595 kvfree(ic->journal_tree); 4596 if (ic->sb) 4597 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4598 4599 if (ic->internal_hash) 4600 crypto_free_shash(ic->internal_hash); 4601 free_alg(&ic->internal_hash_alg); 4602 4603 if (ic->journal_crypt) 4604 crypto_free_skcipher(ic->journal_crypt); 4605 free_alg(&ic->journal_crypt_alg); 4606 4607 if (ic->journal_mac) 4608 crypto_free_shash(ic->journal_mac); 4609 free_alg(&ic->journal_mac_alg); 4610 4611 kfree(ic); 4612 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 4613 } 4614 4615 static struct target_type integrity_target = { 4616 .name = "integrity", 4617 .version = {1, 10, 0}, 4618 .module = THIS_MODULE, 4619 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4620 .ctr = dm_integrity_ctr, 4621 .dtr = dm_integrity_dtr, 4622 .map = dm_integrity_map, 4623 .postsuspend = dm_integrity_postsuspend, 4624 .resume = dm_integrity_resume, 4625 .status = dm_integrity_status, 4626 .iterate_devices = dm_integrity_iterate_devices, 4627 .io_hints = dm_integrity_io_hints, 4628 }; 4629 4630 static int __init dm_integrity_init(void) 4631 { 4632 int r; 4633 4634 journal_io_cache = kmem_cache_create("integrity_journal_io", 4635 sizeof(struct journal_io), 0, 0, NULL); 4636 if (!journal_io_cache) { 4637 DMERR("can't allocate journal io cache"); 4638 return -ENOMEM; 4639 } 4640 4641 r = dm_register_target(&integrity_target); 4642 4643 if (r < 0) 4644 DMERR("register failed %d", r); 4645 4646 return r; 4647 } 4648 4649 static void __exit dm_integrity_exit(void) 4650 { 4651 dm_unregister_target(&integrity_target); 4652 kmem_cache_destroy(journal_io_cache); 4653 } 4654 4655 module_init(dm_integrity_init); 4656 module_exit(dm_integrity_exit); 4657 4658 MODULE_AUTHOR("Milan Broz"); 4659 MODULE_AUTHOR("Mikulas Patocka"); 4660 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4661 MODULE_LICENSE("GPL"); 4662