1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/compiler.h> 10 #include <linux/module.h> 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/vmalloc.h> 14 #include <linux/sort.h> 15 #include <linux/rbtree.h> 16 #include <linux/delay.h> 17 #include <linux/random.h> 18 #include <crypto/hash.h> 19 #include <crypto/skcipher.h> 20 #include <linux/async_tx.h> 21 #include <linux/dm-bufio.h> 22 23 #define DM_MSG_PREFIX "integrity" 24 25 #define DEFAULT_INTERLEAVE_SECTORS 32768 26 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 27 #define DEFAULT_BUFFER_SECTORS 128 28 #define DEFAULT_JOURNAL_WATERMARK 50 29 #define DEFAULT_SYNC_MSEC 10000 30 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 31 #define MIN_LOG2_INTERLEAVE_SECTORS 3 32 #define MAX_LOG2_INTERLEAVE_SECTORS 31 33 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 34 #define RECALC_SECTORS 8192 35 #define RECALC_WRITE_SUPER 16 36 37 /* 38 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 39 * so it should not be enabled in the official kernel 40 */ 41 //#define DEBUG_PRINT 42 //#define INTERNAL_VERIFY 43 44 /* 45 * On disk structures 46 */ 47 48 #define SB_MAGIC "integrt" 49 #define SB_VERSION_1 1 50 #define SB_VERSION_2 2 51 #define SB_SECTORS 8 52 #define MAX_SECTORS_PER_BLOCK 8 53 54 struct superblock { 55 __u8 magic[8]; 56 __u8 version; 57 __u8 log2_interleave_sectors; 58 __u16 integrity_tag_size; 59 __u32 journal_sections; 60 __u64 provided_data_sectors; /* userspace uses this value */ 61 __u32 flags; 62 __u8 log2_sectors_per_block; 63 __u8 pad[3]; 64 __u64 recalc_sector; 65 }; 66 67 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 68 #define SB_FLAG_RECALCULATING 0x2 69 70 #define JOURNAL_ENTRY_ROUNDUP 8 71 72 typedef __u64 commit_id_t; 73 #define JOURNAL_MAC_PER_SECTOR 8 74 75 struct journal_entry { 76 union { 77 struct { 78 __u32 sector_lo; 79 __u32 sector_hi; 80 } s; 81 __u64 sector; 82 } u; 83 commit_id_t last_bytes[0]; 84 /* __u8 tag[0]; */ 85 }; 86 87 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 88 89 #if BITS_PER_LONG == 64 90 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 91 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 92 #elif defined(CONFIG_LBDAF) 93 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 94 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 95 #else 96 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0) 97 #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo) 98 #endif 99 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 100 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 101 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 102 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 103 104 #define JOURNAL_BLOCK_SECTORS 8 105 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 106 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 107 108 struct journal_sector { 109 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 110 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 111 commit_id_t commit_id; 112 }; 113 114 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 115 116 #define METADATA_PADDING_SECTORS 8 117 118 #define N_COMMIT_IDS 4 119 120 static unsigned char prev_commit_seq(unsigned char seq) 121 { 122 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 123 } 124 125 static unsigned char next_commit_seq(unsigned char seq) 126 { 127 return (seq + 1) % N_COMMIT_IDS; 128 } 129 130 /* 131 * In-memory structures 132 */ 133 134 struct journal_node { 135 struct rb_node node; 136 sector_t sector; 137 }; 138 139 struct alg_spec { 140 char *alg_string; 141 char *key_string; 142 __u8 *key; 143 unsigned key_size; 144 }; 145 146 struct dm_integrity_c { 147 struct dm_dev *dev; 148 struct dm_dev *meta_dev; 149 unsigned tag_size; 150 __s8 log2_tag_size; 151 sector_t start; 152 mempool_t journal_io_mempool; 153 struct dm_io_client *io; 154 struct dm_bufio_client *bufio; 155 struct workqueue_struct *metadata_wq; 156 struct superblock *sb; 157 unsigned journal_pages; 158 struct page_list *journal; 159 struct page_list *journal_io; 160 struct page_list *journal_xor; 161 162 struct crypto_skcipher *journal_crypt; 163 struct scatterlist **journal_scatterlist; 164 struct scatterlist **journal_io_scatterlist; 165 struct skcipher_request **sk_requests; 166 167 struct crypto_shash *journal_mac; 168 169 struct journal_node *journal_tree; 170 struct rb_root journal_tree_root; 171 172 sector_t provided_data_sectors; 173 174 unsigned short journal_entry_size; 175 unsigned char journal_entries_per_sector; 176 unsigned char journal_section_entries; 177 unsigned short journal_section_sectors; 178 unsigned journal_sections; 179 unsigned journal_entries; 180 sector_t data_device_sectors; 181 sector_t meta_device_sectors; 182 unsigned initial_sectors; 183 unsigned metadata_run; 184 __s8 log2_metadata_run; 185 __u8 log2_buffer_sectors; 186 __u8 sectors_per_block; 187 188 unsigned char mode; 189 int suspending; 190 191 int failed; 192 193 struct crypto_shash *internal_hash; 194 195 /* these variables are locked with endio_wait.lock */ 196 struct rb_root in_progress; 197 struct list_head wait_list; 198 wait_queue_head_t endio_wait; 199 struct workqueue_struct *wait_wq; 200 201 unsigned char commit_seq; 202 commit_id_t commit_ids[N_COMMIT_IDS]; 203 204 unsigned committed_section; 205 unsigned n_committed_sections; 206 207 unsigned uncommitted_section; 208 unsigned n_uncommitted_sections; 209 210 unsigned free_section; 211 unsigned char free_section_entry; 212 unsigned free_sectors; 213 214 unsigned free_sectors_threshold; 215 216 struct workqueue_struct *commit_wq; 217 struct work_struct commit_work; 218 219 struct workqueue_struct *writer_wq; 220 struct work_struct writer_work; 221 222 struct workqueue_struct *recalc_wq; 223 struct work_struct recalc_work; 224 u8 *recalc_buffer; 225 u8 *recalc_tags; 226 227 struct bio_list flush_bio_list; 228 229 unsigned long autocommit_jiffies; 230 struct timer_list autocommit_timer; 231 unsigned autocommit_msec; 232 233 wait_queue_head_t copy_to_journal_wait; 234 235 struct completion crypto_backoff; 236 237 bool journal_uptodate; 238 bool just_formatted; 239 240 struct alg_spec internal_hash_alg; 241 struct alg_spec journal_crypt_alg; 242 struct alg_spec journal_mac_alg; 243 244 atomic64_t number_of_mismatches; 245 }; 246 247 struct dm_integrity_range { 248 sector_t logical_sector; 249 unsigned n_sectors; 250 bool waiting; 251 union { 252 struct rb_node node; 253 struct { 254 struct task_struct *task; 255 struct list_head wait_entry; 256 }; 257 }; 258 }; 259 260 struct dm_integrity_io { 261 struct work_struct work; 262 263 struct dm_integrity_c *ic; 264 bool write; 265 bool fua; 266 267 struct dm_integrity_range range; 268 269 sector_t metadata_block; 270 unsigned metadata_offset; 271 272 atomic_t in_flight; 273 blk_status_t bi_status; 274 275 struct completion *completion; 276 277 struct gendisk *orig_bi_disk; 278 u8 orig_bi_partno; 279 bio_end_io_t *orig_bi_end_io; 280 struct bio_integrity_payload *orig_bi_integrity; 281 struct bvec_iter orig_bi_iter; 282 }; 283 284 struct journal_completion { 285 struct dm_integrity_c *ic; 286 atomic_t in_flight; 287 struct completion comp; 288 }; 289 290 struct journal_io { 291 struct dm_integrity_range range; 292 struct journal_completion *comp; 293 }; 294 295 static struct kmem_cache *journal_io_cache; 296 297 #define JOURNAL_IO_MEMPOOL 32 298 299 #ifdef DEBUG_PRINT 300 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 301 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 302 { 303 va_list args; 304 va_start(args, msg); 305 vprintk(msg, args); 306 va_end(args); 307 if (len) 308 pr_cont(":"); 309 while (len) { 310 pr_cont(" %02x", *bytes); 311 bytes++; 312 len--; 313 } 314 pr_cont("\n"); 315 } 316 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 317 #else 318 #define DEBUG_print(x, ...) do { } while (0) 319 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 320 #endif 321 322 /* 323 * DM Integrity profile, protection is performed layer above (dm-crypt) 324 */ 325 static const struct blk_integrity_profile dm_integrity_profile = { 326 .name = "DM-DIF-EXT-TAG", 327 .generate_fn = NULL, 328 .verify_fn = NULL, 329 }; 330 331 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 332 static void integrity_bio_wait(struct work_struct *w); 333 static void dm_integrity_dtr(struct dm_target *ti); 334 335 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 336 { 337 if (err == -EILSEQ) 338 atomic64_inc(&ic->number_of_mismatches); 339 if (!cmpxchg(&ic->failed, 0, err)) 340 DMERR("Error on %s: %d", msg, err); 341 } 342 343 static int dm_integrity_failed(struct dm_integrity_c *ic) 344 { 345 return READ_ONCE(ic->failed); 346 } 347 348 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 349 unsigned j, unsigned char seq) 350 { 351 /* 352 * Xor the number with section and sector, so that if a piece of 353 * journal is written at wrong place, it is detected. 354 */ 355 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 356 } 357 358 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 359 sector_t *area, sector_t *offset) 360 { 361 if (!ic->meta_dev) { 362 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 363 *area = data_sector >> log2_interleave_sectors; 364 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 365 } else { 366 *area = 0; 367 *offset = data_sector; 368 } 369 } 370 371 #define sector_to_block(ic, n) \ 372 do { \ 373 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 374 (n) >>= (ic)->sb->log2_sectors_per_block; \ 375 } while (0) 376 377 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 378 sector_t offset, unsigned *metadata_offset) 379 { 380 __u64 ms; 381 unsigned mo; 382 383 ms = area << ic->sb->log2_interleave_sectors; 384 if (likely(ic->log2_metadata_run >= 0)) 385 ms += area << ic->log2_metadata_run; 386 else 387 ms += area * ic->metadata_run; 388 ms >>= ic->log2_buffer_sectors; 389 390 sector_to_block(ic, offset); 391 392 if (likely(ic->log2_tag_size >= 0)) { 393 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 394 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 395 } else { 396 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 397 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 398 } 399 *metadata_offset = mo; 400 return ms; 401 } 402 403 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 404 { 405 sector_t result; 406 407 if (ic->meta_dev) 408 return offset; 409 410 result = area << ic->sb->log2_interleave_sectors; 411 if (likely(ic->log2_metadata_run >= 0)) 412 result += (area + 1) << ic->log2_metadata_run; 413 else 414 result += (area + 1) * ic->metadata_run; 415 416 result += (sector_t)ic->initial_sectors + offset; 417 result += ic->start; 418 419 return result; 420 } 421 422 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 423 { 424 if (unlikely(*sec_ptr >= ic->journal_sections)) 425 *sec_ptr -= ic->journal_sections; 426 } 427 428 static void sb_set_version(struct dm_integrity_c *ic) 429 { 430 if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 431 ic->sb->version = SB_VERSION_2; 432 else 433 ic->sb->version = SB_VERSION_1; 434 } 435 436 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 437 { 438 struct dm_io_request io_req; 439 struct dm_io_region io_loc; 440 441 io_req.bi_op = op; 442 io_req.bi_op_flags = op_flags; 443 io_req.mem.type = DM_IO_KMEM; 444 io_req.mem.ptr.addr = ic->sb; 445 io_req.notify.fn = NULL; 446 io_req.client = ic->io; 447 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 448 io_loc.sector = ic->start; 449 io_loc.count = SB_SECTORS; 450 451 return dm_io(&io_req, 1, &io_loc, NULL); 452 } 453 454 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 455 bool e, const char *function) 456 { 457 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 458 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 459 460 if (unlikely(section >= ic->journal_sections) || 461 unlikely(offset >= limit)) { 462 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n", 463 function, section, offset, ic->journal_sections, limit); 464 BUG(); 465 } 466 #endif 467 } 468 469 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 470 unsigned *pl_index, unsigned *pl_offset) 471 { 472 unsigned sector; 473 474 access_journal_check(ic, section, offset, false, "page_list_location"); 475 476 sector = section * ic->journal_section_sectors + offset; 477 478 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 479 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 480 } 481 482 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 483 unsigned section, unsigned offset, unsigned *n_sectors) 484 { 485 unsigned pl_index, pl_offset; 486 char *va; 487 488 page_list_location(ic, section, offset, &pl_index, &pl_offset); 489 490 if (n_sectors) 491 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 492 493 va = lowmem_page_address(pl[pl_index].page); 494 495 return (struct journal_sector *)(va + pl_offset); 496 } 497 498 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 499 { 500 return access_page_list(ic, ic->journal, section, offset, NULL); 501 } 502 503 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 504 { 505 unsigned rel_sector, offset; 506 struct journal_sector *js; 507 508 access_journal_check(ic, section, n, true, "access_journal_entry"); 509 510 rel_sector = n % JOURNAL_BLOCK_SECTORS; 511 offset = n / JOURNAL_BLOCK_SECTORS; 512 513 js = access_journal(ic, section, rel_sector); 514 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 515 } 516 517 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 518 { 519 n <<= ic->sb->log2_sectors_per_block; 520 521 n += JOURNAL_BLOCK_SECTORS; 522 523 access_journal_check(ic, section, n, false, "access_journal_data"); 524 525 return access_journal(ic, section, n); 526 } 527 528 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 529 { 530 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 531 int r; 532 unsigned j, size; 533 534 desc->tfm = ic->journal_mac; 535 desc->flags = 0; 536 537 r = crypto_shash_init(desc); 538 if (unlikely(r)) { 539 dm_integrity_io_error(ic, "crypto_shash_init", r); 540 goto err; 541 } 542 543 for (j = 0; j < ic->journal_section_entries; j++) { 544 struct journal_entry *je = access_journal_entry(ic, section, j); 545 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 546 if (unlikely(r)) { 547 dm_integrity_io_error(ic, "crypto_shash_update", r); 548 goto err; 549 } 550 } 551 552 size = crypto_shash_digestsize(ic->journal_mac); 553 554 if (likely(size <= JOURNAL_MAC_SIZE)) { 555 r = crypto_shash_final(desc, result); 556 if (unlikely(r)) { 557 dm_integrity_io_error(ic, "crypto_shash_final", r); 558 goto err; 559 } 560 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 561 } else { 562 __u8 digest[HASH_MAX_DIGESTSIZE]; 563 564 if (WARN_ON(size > sizeof(digest))) { 565 dm_integrity_io_error(ic, "digest_size", -EINVAL); 566 goto err; 567 } 568 r = crypto_shash_final(desc, digest); 569 if (unlikely(r)) { 570 dm_integrity_io_error(ic, "crypto_shash_final", r); 571 goto err; 572 } 573 memcpy(result, digest, JOURNAL_MAC_SIZE); 574 } 575 576 return; 577 err: 578 memset(result, 0, JOURNAL_MAC_SIZE); 579 } 580 581 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 582 { 583 __u8 result[JOURNAL_MAC_SIZE]; 584 unsigned j; 585 586 if (!ic->journal_mac) 587 return; 588 589 section_mac(ic, section, result); 590 591 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 592 struct journal_sector *js = access_journal(ic, section, j); 593 594 if (likely(wr)) 595 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 596 else { 597 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 598 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 599 } 600 } 601 } 602 603 static void complete_journal_op(void *context) 604 { 605 struct journal_completion *comp = context; 606 BUG_ON(!atomic_read(&comp->in_flight)); 607 if (likely(atomic_dec_and_test(&comp->in_flight))) 608 complete(&comp->comp); 609 } 610 611 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 612 unsigned n_sections, struct journal_completion *comp) 613 { 614 struct async_submit_ctl submit; 615 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 616 unsigned pl_index, pl_offset, section_index; 617 struct page_list *source_pl, *target_pl; 618 619 if (likely(encrypt)) { 620 source_pl = ic->journal; 621 target_pl = ic->journal_io; 622 } else { 623 source_pl = ic->journal_io; 624 target_pl = ic->journal; 625 } 626 627 page_list_location(ic, section, 0, &pl_index, &pl_offset); 628 629 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 630 631 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 632 633 section_index = pl_index; 634 635 do { 636 size_t this_step; 637 struct page *src_pages[2]; 638 struct page *dst_page; 639 640 while (unlikely(pl_index == section_index)) { 641 unsigned dummy; 642 if (likely(encrypt)) 643 rw_section_mac(ic, section, true); 644 section++; 645 n_sections--; 646 if (!n_sections) 647 break; 648 page_list_location(ic, section, 0, §ion_index, &dummy); 649 } 650 651 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 652 dst_page = target_pl[pl_index].page; 653 src_pages[0] = source_pl[pl_index].page; 654 src_pages[1] = ic->journal_xor[pl_index].page; 655 656 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 657 658 pl_index++; 659 pl_offset = 0; 660 n_bytes -= this_step; 661 } while (n_bytes); 662 663 BUG_ON(n_sections); 664 665 async_tx_issue_pending_all(); 666 } 667 668 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 669 { 670 struct journal_completion *comp = req->data; 671 if (unlikely(err)) { 672 if (likely(err == -EINPROGRESS)) { 673 complete(&comp->ic->crypto_backoff); 674 return; 675 } 676 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 677 } 678 complete_journal_op(comp); 679 } 680 681 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 682 { 683 int r; 684 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 685 complete_journal_encrypt, comp); 686 if (likely(encrypt)) 687 r = crypto_skcipher_encrypt(req); 688 else 689 r = crypto_skcipher_decrypt(req); 690 if (likely(!r)) 691 return false; 692 if (likely(r == -EINPROGRESS)) 693 return true; 694 if (likely(r == -EBUSY)) { 695 wait_for_completion(&comp->ic->crypto_backoff); 696 reinit_completion(&comp->ic->crypto_backoff); 697 return true; 698 } 699 dm_integrity_io_error(comp->ic, "encrypt", r); 700 return false; 701 } 702 703 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 704 unsigned n_sections, struct journal_completion *comp) 705 { 706 struct scatterlist **source_sg; 707 struct scatterlist **target_sg; 708 709 atomic_add(2, &comp->in_flight); 710 711 if (likely(encrypt)) { 712 source_sg = ic->journal_scatterlist; 713 target_sg = ic->journal_io_scatterlist; 714 } else { 715 source_sg = ic->journal_io_scatterlist; 716 target_sg = ic->journal_scatterlist; 717 } 718 719 do { 720 struct skcipher_request *req; 721 unsigned ivsize; 722 char *iv; 723 724 if (likely(encrypt)) 725 rw_section_mac(ic, section, true); 726 727 req = ic->sk_requests[section]; 728 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 729 iv = req->iv; 730 731 memcpy(iv, iv + ivsize, ivsize); 732 733 req->src = source_sg[section]; 734 req->dst = target_sg[section]; 735 736 if (unlikely(do_crypt(encrypt, req, comp))) 737 atomic_inc(&comp->in_flight); 738 739 section++; 740 n_sections--; 741 } while (n_sections); 742 743 atomic_dec(&comp->in_flight); 744 complete_journal_op(comp); 745 } 746 747 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 748 unsigned n_sections, struct journal_completion *comp) 749 { 750 if (ic->journal_xor) 751 return xor_journal(ic, encrypt, section, n_sections, comp); 752 else 753 return crypt_journal(ic, encrypt, section, n_sections, comp); 754 } 755 756 static void complete_journal_io(unsigned long error, void *context) 757 { 758 struct journal_completion *comp = context; 759 if (unlikely(error != 0)) 760 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 761 complete_journal_op(comp); 762 } 763 764 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 765 unsigned n_sections, struct journal_completion *comp) 766 { 767 struct dm_io_request io_req; 768 struct dm_io_region io_loc; 769 unsigned sector, n_sectors, pl_index, pl_offset; 770 int r; 771 772 if (unlikely(dm_integrity_failed(ic))) { 773 if (comp) 774 complete_journal_io(-1UL, comp); 775 return; 776 } 777 778 sector = section * ic->journal_section_sectors; 779 n_sectors = n_sections * ic->journal_section_sectors; 780 781 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 782 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 783 784 io_req.bi_op = op; 785 io_req.bi_op_flags = op_flags; 786 io_req.mem.type = DM_IO_PAGE_LIST; 787 if (ic->journal_io) 788 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 789 else 790 io_req.mem.ptr.pl = &ic->journal[pl_index]; 791 io_req.mem.offset = pl_offset; 792 if (likely(comp != NULL)) { 793 io_req.notify.fn = complete_journal_io; 794 io_req.notify.context = comp; 795 } else { 796 io_req.notify.fn = NULL; 797 } 798 io_req.client = ic->io; 799 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 800 io_loc.sector = ic->start + SB_SECTORS + sector; 801 io_loc.count = n_sectors; 802 803 r = dm_io(&io_req, 1, &io_loc, NULL); 804 if (unlikely(r)) { 805 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 806 if (comp) { 807 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 808 complete_journal_io(-1UL, comp); 809 } 810 } 811 } 812 813 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 814 { 815 struct journal_completion io_comp; 816 struct journal_completion crypt_comp_1; 817 struct journal_completion crypt_comp_2; 818 unsigned i; 819 820 io_comp.ic = ic; 821 init_completion(&io_comp.comp); 822 823 if (commit_start + commit_sections <= ic->journal_sections) { 824 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 825 if (ic->journal_io) { 826 crypt_comp_1.ic = ic; 827 init_completion(&crypt_comp_1.comp); 828 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 829 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 830 wait_for_completion_io(&crypt_comp_1.comp); 831 } else { 832 for (i = 0; i < commit_sections; i++) 833 rw_section_mac(ic, commit_start + i, true); 834 } 835 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 836 commit_sections, &io_comp); 837 } else { 838 unsigned to_end; 839 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 840 to_end = ic->journal_sections - commit_start; 841 if (ic->journal_io) { 842 crypt_comp_1.ic = ic; 843 init_completion(&crypt_comp_1.comp); 844 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 845 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 846 if (try_wait_for_completion(&crypt_comp_1.comp)) { 847 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 848 reinit_completion(&crypt_comp_1.comp); 849 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 850 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 851 wait_for_completion_io(&crypt_comp_1.comp); 852 } else { 853 crypt_comp_2.ic = ic; 854 init_completion(&crypt_comp_2.comp); 855 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 856 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 857 wait_for_completion_io(&crypt_comp_1.comp); 858 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 859 wait_for_completion_io(&crypt_comp_2.comp); 860 } 861 } else { 862 for (i = 0; i < to_end; i++) 863 rw_section_mac(ic, commit_start + i, true); 864 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 865 for (i = 0; i < commit_sections - to_end; i++) 866 rw_section_mac(ic, i, true); 867 } 868 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 869 } 870 871 wait_for_completion_io(&io_comp.comp); 872 } 873 874 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 875 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 876 { 877 struct dm_io_request io_req; 878 struct dm_io_region io_loc; 879 int r; 880 unsigned sector, pl_index, pl_offset; 881 882 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 883 884 if (unlikely(dm_integrity_failed(ic))) { 885 fn(-1UL, data); 886 return; 887 } 888 889 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 890 891 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 892 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 893 894 io_req.bi_op = REQ_OP_WRITE; 895 io_req.bi_op_flags = 0; 896 io_req.mem.type = DM_IO_PAGE_LIST; 897 io_req.mem.ptr.pl = &ic->journal[pl_index]; 898 io_req.mem.offset = pl_offset; 899 io_req.notify.fn = fn; 900 io_req.notify.context = data; 901 io_req.client = ic->io; 902 io_loc.bdev = ic->dev->bdev; 903 io_loc.sector = target; 904 io_loc.count = n_sectors; 905 906 r = dm_io(&io_req, 1, &io_loc, NULL); 907 if (unlikely(r)) { 908 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 909 fn(-1UL, data); 910 } 911 } 912 913 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 914 { 915 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 916 range2->logical_sector + range2->n_sectors > range2->logical_sector; 917 } 918 919 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 920 { 921 struct rb_node **n = &ic->in_progress.rb_node; 922 struct rb_node *parent; 923 924 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 925 926 if (likely(check_waiting)) { 927 struct dm_integrity_range *range; 928 list_for_each_entry(range, &ic->wait_list, wait_entry) { 929 if (unlikely(ranges_overlap(range, new_range))) 930 return false; 931 } 932 } 933 934 parent = NULL; 935 936 while (*n) { 937 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 938 939 parent = *n; 940 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 941 n = &range->node.rb_left; 942 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 943 n = &range->node.rb_right; 944 } else { 945 return false; 946 } 947 } 948 949 rb_link_node(&new_range->node, parent, n); 950 rb_insert_color(&new_range->node, &ic->in_progress); 951 952 return true; 953 } 954 955 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 956 { 957 rb_erase(&range->node, &ic->in_progress); 958 while (unlikely(!list_empty(&ic->wait_list))) { 959 struct dm_integrity_range *last_range = 960 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 961 struct task_struct *last_range_task; 962 if (!ranges_overlap(range, last_range)) 963 break; 964 last_range_task = last_range->task; 965 list_del(&last_range->wait_entry); 966 if (!add_new_range(ic, last_range, false)) { 967 last_range->task = last_range_task; 968 list_add(&last_range->wait_entry, &ic->wait_list); 969 break; 970 } 971 last_range->waiting = false; 972 wake_up_process(last_range_task); 973 } 974 } 975 976 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 977 { 978 unsigned long flags; 979 980 spin_lock_irqsave(&ic->endio_wait.lock, flags); 981 remove_range_unlocked(ic, range); 982 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 983 } 984 985 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 986 { 987 new_range->waiting = true; 988 list_add_tail(&new_range->wait_entry, &ic->wait_list); 989 new_range->task = current; 990 do { 991 __set_current_state(TASK_UNINTERRUPTIBLE); 992 spin_unlock_irq(&ic->endio_wait.lock); 993 io_schedule(); 994 spin_lock_irq(&ic->endio_wait.lock); 995 } while (unlikely(new_range->waiting)); 996 } 997 998 static void init_journal_node(struct journal_node *node) 999 { 1000 RB_CLEAR_NODE(&node->node); 1001 node->sector = (sector_t)-1; 1002 } 1003 1004 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1005 { 1006 struct rb_node **link; 1007 struct rb_node *parent; 1008 1009 node->sector = sector; 1010 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1011 1012 link = &ic->journal_tree_root.rb_node; 1013 parent = NULL; 1014 1015 while (*link) { 1016 struct journal_node *j; 1017 parent = *link; 1018 j = container_of(parent, struct journal_node, node); 1019 if (sector < j->sector) 1020 link = &j->node.rb_left; 1021 else 1022 link = &j->node.rb_right; 1023 } 1024 1025 rb_link_node(&node->node, parent, link); 1026 rb_insert_color(&node->node, &ic->journal_tree_root); 1027 } 1028 1029 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1030 { 1031 BUG_ON(RB_EMPTY_NODE(&node->node)); 1032 rb_erase(&node->node, &ic->journal_tree_root); 1033 init_journal_node(node); 1034 } 1035 1036 #define NOT_FOUND (-1U) 1037 1038 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1039 { 1040 struct rb_node *n = ic->journal_tree_root.rb_node; 1041 unsigned found = NOT_FOUND; 1042 *next_sector = (sector_t)-1; 1043 while (n) { 1044 struct journal_node *j = container_of(n, struct journal_node, node); 1045 if (sector == j->sector) { 1046 found = j - ic->journal_tree; 1047 } 1048 if (sector < j->sector) { 1049 *next_sector = j->sector; 1050 n = j->node.rb_left; 1051 } else { 1052 n = j->node.rb_right; 1053 } 1054 } 1055 1056 return found; 1057 } 1058 1059 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1060 { 1061 struct journal_node *node, *next_node; 1062 struct rb_node *next; 1063 1064 if (unlikely(pos >= ic->journal_entries)) 1065 return false; 1066 node = &ic->journal_tree[pos]; 1067 if (unlikely(RB_EMPTY_NODE(&node->node))) 1068 return false; 1069 if (unlikely(node->sector != sector)) 1070 return false; 1071 1072 next = rb_next(&node->node); 1073 if (unlikely(!next)) 1074 return true; 1075 1076 next_node = container_of(next, struct journal_node, node); 1077 return next_node->sector != sector; 1078 } 1079 1080 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1081 { 1082 struct rb_node *next; 1083 struct journal_node *next_node; 1084 unsigned next_section; 1085 1086 BUG_ON(RB_EMPTY_NODE(&node->node)); 1087 1088 next = rb_next(&node->node); 1089 if (unlikely(!next)) 1090 return false; 1091 1092 next_node = container_of(next, struct journal_node, node); 1093 1094 if (next_node->sector != node->sector) 1095 return false; 1096 1097 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1098 if (next_section >= ic->committed_section && 1099 next_section < ic->committed_section + ic->n_committed_sections) 1100 return true; 1101 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1102 return true; 1103 1104 return false; 1105 } 1106 1107 #define TAG_READ 0 1108 #define TAG_WRITE 1 1109 #define TAG_CMP 2 1110 1111 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1112 unsigned *metadata_offset, unsigned total_size, int op) 1113 { 1114 do { 1115 unsigned char *data, *dp; 1116 struct dm_buffer *b; 1117 unsigned to_copy; 1118 int r; 1119 1120 r = dm_integrity_failed(ic); 1121 if (unlikely(r)) 1122 return r; 1123 1124 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1125 if (unlikely(IS_ERR(data))) 1126 return PTR_ERR(data); 1127 1128 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1129 dp = data + *metadata_offset; 1130 if (op == TAG_READ) { 1131 memcpy(tag, dp, to_copy); 1132 } else if (op == TAG_WRITE) { 1133 memcpy(dp, tag, to_copy); 1134 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1135 } else { 1136 /* e.g.: op == TAG_CMP */ 1137 if (unlikely(memcmp(dp, tag, to_copy))) { 1138 unsigned i; 1139 1140 for (i = 0; i < to_copy; i++) { 1141 if (dp[i] != tag[i]) 1142 break; 1143 total_size--; 1144 } 1145 dm_bufio_release(b); 1146 return total_size; 1147 } 1148 } 1149 dm_bufio_release(b); 1150 1151 tag += to_copy; 1152 *metadata_offset += to_copy; 1153 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1154 (*metadata_block)++; 1155 *metadata_offset = 0; 1156 } 1157 total_size -= to_copy; 1158 } while (unlikely(total_size)); 1159 1160 return 0; 1161 } 1162 1163 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic) 1164 { 1165 int r; 1166 r = dm_bufio_write_dirty_buffers(ic->bufio); 1167 if (unlikely(r)) 1168 dm_integrity_io_error(ic, "writing tags", r); 1169 } 1170 1171 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1172 { 1173 DECLARE_WAITQUEUE(wait, current); 1174 __add_wait_queue(&ic->endio_wait, &wait); 1175 __set_current_state(TASK_UNINTERRUPTIBLE); 1176 spin_unlock_irq(&ic->endio_wait.lock); 1177 io_schedule(); 1178 spin_lock_irq(&ic->endio_wait.lock); 1179 __remove_wait_queue(&ic->endio_wait, &wait); 1180 } 1181 1182 static void autocommit_fn(struct timer_list *t) 1183 { 1184 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1185 1186 if (likely(!dm_integrity_failed(ic))) 1187 queue_work(ic->commit_wq, &ic->commit_work); 1188 } 1189 1190 static void schedule_autocommit(struct dm_integrity_c *ic) 1191 { 1192 if (!timer_pending(&ic->autocommit_timer)) 1193 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1194 } 1195 1196 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1197 { 1198 struct bio *bio; 1199 unsigned long flags; 1200 1201 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1202 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1203 bio_list_add(&ic->flush_bio_list, bio); 1204 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1205 1206 queue_work(ic->commit_wq, &ic->commit_work); 1207 } 1208 1209 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1210 { 1211 int r = dm_integrity_failed(ic); 1212 if (unlikely(r) && !bio->bi_status) 1213 bio->bi_status = errno_to_blk_status(r); 1214 bio_endio(bio); 1215 } 1216 1217 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1218 { 1219 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1220 1221 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1222 submit_flush_bio(ic, dio); 1223 else 1224 do_endio(ic, bio); 1225 } 1226 1227 static void dec_in_flight(struct dm_integrity_io *dio) 1228 { 1229 if (atomic_dec_and_test(&dio->in_flight)) { 1230 struct dm_integrity_c *ic = dio->ic; 1231 struct bio *bio; 1232 1233 remove_range(ic, &dio->range); 1234 1235 if (unlikely(dio->write)) 1236 schedule_autocommit(ic); 1237 1238 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1239 1240 if (unlikely(dio->bi_status) && !bio->bi_status) 1241 bio->bi_status = dio->bi_status; 1242 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1243 dio->range.logical_sector += dio->range.n_sectors; 1244 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1245 INIT_WORK(&dio->work, integrity_bio_wait); 1246 queue_work(ic->wait_wq, &dio->work); 1247 return; 1248 } 1249 do_endio_flush(ic, dio); 1250 } 1251 } 1252 1253 static void integrity_end_io(struct bio *bio) 1254 { 1255 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1256 1257 bio->bi_iter = dio->orig_bi_iter; 1258 bio->bi_disk = dio->orig_bi_disk; 1259 bio->bi_partno = dio->orig_bi_partno; 1260 if (dio->orig_bi_integrity) { 1261 bio->bi_integrity = dio->orig_bi_integrity; 1262 bio->bi_opf |= REQ_INTEGRITY; 1263 } 1264 bio->bi_end_io = dio->orig_bi_end_io; 1265 1266 if (dio->completion) 1267 complete(dio->completion); 1268 1269 dec_in_flight(dio); 1270 } 1271 1272 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1273 const char *data, char *result) 1274 { 1275 __u64 sector_le = cpu_to_le64(sector); 1276 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1277 int r; 1278 unsigned digest_size; 1279 1280 req->tfm = ic->internal_hash; 1281 req->flags = 0; 1282 1283 r = crypto_shash_init(req); 1284 if (unlikely(r < 0)) { 1285 dm_integrity_io_error(ic, "crypto_shash_init", r); 1286 goto failed; 1287 } 1288 1289 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1290 if (unlikely(r < 0)) { 1291 dm_integrity_io_error(ic, "crypto_shash_update", r); 1292 goto failed; 1293 } 1294 1295 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1296 if (unlikely(r < 0)) { 1297 dm_integrity_io_error(ic, "crypto_shash_update", r); 1298 goto failed; 1299 } 1300 1301 r = crypto_shash_final(req, result); 1302 if (unlikely(r < 0)) { 1303 dm_integrity_io_error(ic, "crypto_shash_final", r); 1304 goto failed; 1305 } 1306 1307 digest_size = crypto_shash_digestsize(ic->internal_hash); 1308 if (unlikely(digest_size < ic->tag_size)) 1309 memset(result + digest_size, 0, ic->tag_size - digest_size); 1310 1311 return; 1312 1313 failed: 1314 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1315 get_random_bytes(result, ic->tag_size); 1316 } 1317 1318 static void integrity_metadata(struct work_struct *w) 1319 { 1320 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1321 struct dm_integrity_c *ic = dio->ic; 1322 1323 int r; 1324 1325 if (ic->internal_hash) { 1326 struct bvec_iter iter; 1327 struct bio_vec bv; 1328 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1329 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1330 char *checksums; 1331 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1332 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1333 unsigned sectors_to_process = dio->range.n_sectors; 1334 sector_t sector = dio->range.logical_sector; 1335 1336 if (unlikely(ic->mode == 'R')) 1337 goto skip_io; 1338 1339 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1340 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1341 if (!checksums) { 1342 checksums = checksums_onstack; 1343 if (WARN_ON(extra_space && 1344 digest_size > sizeof(checksums_onstack))) { 1345 r = -EINVAL; 1346 goto error; 1347 } 1348 } 1349 1350 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) { 1351 unsigned pos; 1352 char *mem, *checksums_ptr; 1353 1354 again: 1355 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1356 pos = 0; 1357 checksums_ptr = checksums; 1358 do { 1359 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1360 checksums_ptr += ic->tag_size; 1361 sectors_to_process -= ic->sectors_per_block; 1362 pos += ic->sectors_per_block << SECTOR_SHIFT; 1363 sector += ic->sectors_per_block; 1364 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1365 kunmap_atomic(mem); 1366 1367 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1368 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE); 1369 if (unlikely(r)) { 1370 if (r > 0) { 1371 DMERR("Checksum failed at sector 0x%llx", 1372 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1373 r = -EILSEQ; 1374 atomic64_inc(&ic->number_of_mismatches); 1375 } 1376 if (likely(checksums != checksums_onstack)) 1377 kfree(checksums); 1378 goto error; 1379 } 1380 1381 if (!sectors_to_process) 1382 break; 1383 1384 if (unlikely(pos < bv.bv_len)) { 1385 bv.bv_offset += pos; 1386 bv.bv_len -= pos; 1387 goto again; 1388 } 1389 } 1390 1391 if (likely(checksums != checksums_onstack)) 1392 kfree(checksums); 1393 } else { 1394 struct bio_integrity_payload *bip = dio->orig_bi_integrity; 1395 1396 if (bip) { 1397 struct bio_vec biv; 1398 struct bvec_iter iter; 1399 unsigned data_to_process = dio->range.n_sectors; 1400 sector_to_block(ic, data_to_process); 1401 data_to_process *= ic->tag_size; 1402 1403 bip_for_each_vec(biv, bip, iter) { 1404 unsigned char *tag; 1405 unsigned this_len; 1406 1407 BUG_ON(PageHighMem(biv.bv_page)); 1408 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1409 this_len = min(biv.bv_len, data_to_process); 1410 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1411 this_len, !dio->write ? TAG_READ : TAG_WRITE); 1412 if (unlikely(r)) 1413 goto error; 1414 data_to_process -= this_len; 1415 if (!data_to_process) 1416 break; 1417 } 1418 } 1419 } 1420 skip_io: 1421 dec_in_flight(dio); 1422 return; 1423 error: 1424 dio->bi_status = errno_to_blk_status(r); 1425 dec_in_flight(dio); 1426 } 1427 1428 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1429 { 1430 struct dm_integrity_c *ic = ti->private; 1431 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1432 struct bio_integrity_payload *bip; 1433 1434 sector_t area, offset; 1435 1436 dio->ic = ic; 1437 dio->bi_status = 0; 1438 1439 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1440 submit_flush_bio(ic, dio); 1441 return DM_MAPIO_SUBMITTED; 1442 } 1443 1444 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1445 dio->write = bio_op(bio) == REQ_OP_WRITE; 1446 dio->fua = dio->write && bio->bi_opf & REQ_FUA; 1447 if (unlikely(dio->fua)) { 1448 /* 1449 * Don't pass down the FUA flag because we have to flush 1450 * disk cache anyway. 1451 */ 1452 bio->bi_opf &= ~REQ_FUA; 1453 } 1454 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1455 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1456 (unsigned long long)dio->range.logical_sector, bio_sectors(bio), 1457 (unsigned long long)ic->provided_data_sectors); 1458 return DM_MAPIO_KILL; 1459 } 1460 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1461 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1462 ic->sectors_per_block, 1463 (unsigned long long)dio->range.logical_sector, bio_sectors(bio)); 1464 return DM_MAPIO_KILL; 1465 } 1466 1467 if (ic->sectors_per_block > 1) { 1468 struct bvec_iter iter; 1469 struct bio_vec bv; 1470 bio_for_each_segment(bv, bio, iter) { 1471 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1472 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1473 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1474 return DM_MAPIO_KILL; 1475 } 1476 } 1477 } 1478 1479 bip = bio_integrity(bio); 1480 if (!ic->internal_hash) { 1481 if (bip) { 1482 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1483 if (ic->log2_tag_size >= 0) 1484 wanted_tag_size <<= ic->log2_tag_size; 1485 else 1486 wanted_tag_size *= ic->tag_size; 1487 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1488 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size); 1489 return DM_MAPIO_KILL; 1490 } 1491 } 1492 } else { 1493 if (unlikely(bip != NULL)) { 1494 DMERR("Unexpected integrity data when using internal hash"); 1495 return DM_MAPIO_KILL; 1496 } 1497 } 1498 1499 if (unlikely(ic->mode == 'R') && unlikely(dio->write)) 1500 return DM_MAPIO_KILL; 1501 1502 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1503 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1504 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1505 1506 dm_integrity_map_continue(dio, true); 1507 return DM_MAPIO_SUBMITTED; 1508 } 1509 1510 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1511 unsigned journal_section, unsigned journal_entry) 1512 { 1513 struct dm_integrity_c *ic = dio->ic; 1514 sector_t logical_sector; 1515 unsigned n_sectors; 1516 1517 logical_sector = dio->range.logical_sector; 1518 n_sectors = dio->range.n_sectors; 1519 do { 1520 struct bio_vec bv = bio_iovec(bio); 1521 char *mem; 1522 1523 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1524 bv.bv_len = n_sectors << SECTOR_SHIFT; 1525 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1526 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1527 retry_kmap: 1528 mem = kmap_atomic(bv.bv_page); 1529 if (likely(dio->write)) 1530 flush_dcache_page(bv.bv_page); 1531 1532 do { 1533 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1534 1535 if (unlikely(!dio->write)) { 1536 struct journal_sector *js; 1537 char *mem_ptr; 1538 unsigned s; 1539 1540 if (unlikely(journal_entry_is_inprogress(je))) { 1541 flush_dcache_page(bv.bv_page); 1542 kunmap_atomic(mem); 1543 1544 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1545 goto retry_kmap; 1546 } 1547 smp_rmb(); 1548 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1549 js = access_journal_data(ic, journal_section, journal_entry); 1550 mem_ptr = mem + bv.bv_offset; 1551 s = 0; 1552 do { 1553 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1554 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1555 js++; 1556 mem_ptr += 1 << SECTOR_SHIFT; 1557 } while (++s < ic->sectors_per_block); 1558 #ifdef INTERNAL_VERIFY 1559 if (ic->internal_hash) { 1560 char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1561 1562 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1563 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1564 DMERR("Checksum failed when reading from journal, at sector 0x%llx", 1565 (unsigned long long)logical_sector); 1566 } 1567 } 1568 #endif 1569 } 1570 1571 if (!ic->internal_hash) { 1572 struct bio_integrity_payload *bip = bio_integrity(bio); 1573 unsigned tag_todo = ic->tag_size; 1574 char *tag_ptr = journal_entry_tag(ic, je); 1575 1576 if (bip) do { 1577 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1578 unsigned tag_now = min(biv.bv_len, tag_todo); 1579 char *tag_addr; 1580 BUG_ON(PageHighMem(biv.bv_page)); 1581 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1582 if (likely(dio->write)) 1583 memcpy(tag_ptr, tag_addr, tag_now); 1584 else 1585 memcpy(tag_addr, tag_ptr, tag_now); 1586 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1587 tag_ptr += tag_now; 1588 tag_todo -= tag_now; 1589 } while (unlikely(tag_todo)); else { 1590 if (likely(dio->write)) 1591 memset(tag_ptr, 0, tag_todo); 1592 } 1593 } 1594 1595 if (likely(dio->write)) { 1596 struct journal_sector *js; 1597 unsigned s; 1598 1599 js = access_journal_data(ic, journal_section, journal_entry); 1600 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1601 1602 s = 0; 1603 do { 1604 je->last_bytes[s] = js[s].commit_id; 1605 } while (++s < ic->sectors_per_block); 1606 1607 if (ic->internal_hash) { 1608 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1609 if (unlikely(digest_size > ic->tag_size)) { 1610 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1611 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1612 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1613 } else 1614 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1615 } 1616 1617 journal_entry_set_sector(je, logical_sector); 1618 } 1619 logical_sector += ic->sectors_per_block; 1620 1621 journal_entry++; 1622 if (unlikely(journal_entry == ic->journal_section_entries)) { 1623 journal_entry = 0; 1624 journal_section++; 1625 wraparound_section(ic, &journal_section); 1626 } 1627 1628 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1629 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1630 1631 if (unlikely(!dio->write)) 1632 flush_dcache_page(bv.bv_page); 1633 kunmap_atomic(mem); 1634 } while (n_sectors); 1635 1636 if (likely(dio->write)) { 1637 smp_mb(); 1638 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1639 wake_up(&ic->copy_to_journal_wait); 1640 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1641 queue_work(ic->commit_wq, &ic->commit_work); 1642 } else { 1643 schedule_autocommit(ic); 1644 } 1645 } else { 1646 remove_range(ic, &dio->range); 1647 } 1648 1649 if (unlikely(bio->bi_iter.bi_size)) { 1650 sector_t area, offset; 1651 1652 dio->range.logical_sector = logical_sector; 1653 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1654 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1655 return true; 1656 } 1657 1658 return false; 1659 } 1660 1661 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1662 { 1663 struct dm_integrity_c *ic = dio->ic; 1664 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1665 unsigned journal_section, journal_entry; 1666 unsigned journal_read_pos; 1667 struct completion read_comp; 1668 bool need_sync_io = ic->internal_hash && !dio->write; 1669 1670 if (need_sync_io && from_map) { 1671 INIT_WORK(&dio->work, integrity_bio_wait); 1672 queue_work(ic->metadata_wq, &dio->work); 1673 return; 1674 } 1675 1676 lock_retry: 1677 spin_lock_irq(&ic->endio_wait.lock); 1678 retry: 1679 if (unlikely(dm_integrity_failed(ic))) { 1680 spin_unlock_irq(&ic->endio_wait.lock); 1681 do_endio(ic, bio); 1682 return; 1683 } 1684 dio->range.n_sectors = bio_sectors(bio); 1685 journal_read_pos = NOT_FOUND; 1686 if (likely(ic->mode == 'J')) { 1687 if (dio->write) { 1688 unsigned next_entry, i, pos; 1689 unsigned ws, we, range_sectors; 1690 1691 dio->range.n_sectors = min(dio->range.n_sectors, 1692 ic->free_sectors << ic->sb->log2_sectors_per_block); 1693 if (unlikely(!dio->range.n_sectors)) { 1694 if (from_map) 1695 goto offload_to_thread; 1696 sleep_on_endio_wait(ic); 1697 goto retry; 1698 } 1699 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 1700 ic->free_sectors -= range_sectors; 1701 journal_section = ic->free_section; 1702 journal_entry = ic->free_section_entry; 1703 1704 next_entry = ic->free_section_entry + range_sectors; 1705 ic->free_section_entry = next_entry % ic->journal_section_entries; 1706 ic->free_section += next_entry / ic->journal_section_entries; 1707 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 1708 wraparound_section(ic, &ic->free_section); 1709 1710 pos = journal_section * ic->journal_section_entries + journal_entry; 1711 ws = journal_section; 1712 we = journal_entry; 1713 i = 0; 1714 do { 1715 struct journal_entry *je; 1716 1717 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 1718 pos++; 1719 if (unlikely(pos >= ic->journal_entries)) 1720 pos = 0; 1721 1722 je = access_journal_entry(ic, ws, we); 1723 BUG_ON(!journal_entry_is_unused(je)); 1724 journal_entry_set_inprogress(je); 1725 we++; 1726 if (unlikely(we == ic->journal_section_entries)) { 1727 we = 0; 1728 ws++; 1729 wraparound_section(ic, &ws); 1730 } 1731 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 1732 1733 spin_unlock_irq(&ic->endio_wait.lock); 1734 goto journal_read_write; 1735 } else { 1736 sector_t next_sector; 1737 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 1738 if (likely(journal_read_pos == NOT_FOUND)) { 1739 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 1740 dio->range.n_sectors = next_sector - dio->range.logical_sector; 1741 } else { 1742 unsigned i; 1743 unsigned jp = journal_read_pos + 1; 1744 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 1745 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 1746 break; 1747 } 1748 dio->range.n_sectors = i; 1749 } 1750 } 1751 } 1752 if (unlikely(!add_new_range(ic, &dio->range, true))) { 1753 /* 1754 * We must not sleep in the request routine because it could 1755 * stall bios on current->bio_list. 1756 * So, we offload the bio to a workqueue if we have to sleep. 1757 */ 1758 if (from_map) { 1759 offload_to_thread: 1760 spin_unlock_irq(&ic->endio_wait.lock); 1761 INIT_WORK(&dio->work, integrity_bio_wait); 1762 queue_work(ic->wait_wq, &dio->work); 1763 return; 1764 } 1765 wait_and_add_new_range(ic, &dio->range); 1766 } 1767 spin_unlock_irq(&ic->endio_wait.lock); 1768 1769 if (unlikely(journal_read_pos != NOT_FOUND)) { 1770 journal_section = journal_read_pos / ic->journal_section_entries; 1771 journal_entry = journal_read_pos % ic->journal_section_entries; 1772 goto journal_read_write; 1773 } 1774 1775 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 1776 1777 if (need_sync_io) { 1778 init_completion(&read_comp); 1779 dio->completion = &read_comp; 1780 } else 1781 dio->completion = NULL; 1782 1783 dio->orig_bi_iter = bio->bi_iter; 1784 1785 dio->orig_bi_disk = bio->bi_disk; 1786 dio->orig_bi_partno = bio->bi_partno; 1787 bio_set_dev(bio, ic->dev->bdev); 1788 1789 dio->orig_bi_integrity = bio_integrity(bio); 1790 bio->bi_integrity = NULL; 1791 bio->bi_opf &= ~REQ_INTEGRITY; 1792 1793 dio->orig_bi_end_io = bio->bi_end_io; 1794 bio->bi_end_io = integrity_end_io; 1795 1796 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 1797 generic_make_request(bio); 1798 1799 if (need_sync_io) { 1800 wait_for_completion_io(&read_comp); 1801 if (unlikely(ic->recalc_wq != NULL) && 1802 ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 1803 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 1804 goto skip_check; 1805 if (likely(!bio->bi_status)) 1806 integrity_metadata(&dio->work); 1807 else 1808 skip_check: 1809 dec_in_flight(dio); 1810 1811 } else { 1812 INIT_WORK(&dio->work, integrity_metadata); 1813 queue_work(ic->metadata_wq, &dio->work); 1814 } 1815 1816 return; 1817 1818 journal_read_write: 1819 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 1820 goto lock_retry; 1821 1822 do_endio_flush(ic, dio); 1823 } 1824 1825 1826 static void integrity_bio_wait(struct work_struct *w) 1827 { 1828 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1829 1830 dm_integrity_map_continue(dio, false); 1831 } 1832 1833 static void pad_uncommitted(struct dm_integrity_c *ic) 1834 { 1835 if (ic->free_section_entry) { 1836 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 1837 ic->free_section_entry = 0; 1838 ic->free_section++; 1839 wraparound_section(ic, &ic->free_section); 1840 ic->n_uncommitted_sections++; 1841 } 1842 WARN_ON(ic->journal_sections * ic->journal_section_entries != 1843 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors); 1844 } 1845 1846 static void integrity_commit(struct work_struct *w) 1847 { 1848 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 1849 unsigned commit_start, commit_sections; 1850 unsigned i, j, n; 1851 struct bio *flushes; 1852 1853 del_timer(&ic->autocommit_timer); 1854 1855 spin_lock_irq(&ic->endio_wait.lock); 1856 flushes = bio_list_get(&ic->flush_bio_list); 1857 if (unlikely(ic->mode != 'J')) { 1858 spin_unlock_irq(&ic->endio_wait.lock); 1859 dm_integrity_flush_buffers(ic); 1860 goto release_flush_bios; 1861 } 1862 1863 pad_uncommitted(ic); 1864 commit_start = ic->uncommitted_section; 1865 commit_sections = ic->n_uncommitted_sections; 1866 spin_unlock_irq(&ic->endio_wait.lock); 1867 1868 if (!commit_sections) 1869 goto release_flush_bios; 1870 1871 i = commit_start; 1872 for (n = 0; n < commit_sections; n++) { 1873 for (j = 0; j < ic->journal_section_entries; j++) { 1874 struct journal_entry *je; 1875 je = access_journal_entry(ic, i, j); 1876 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1877 } 1878 for (j = 0; j < ic->journal_section_sectors; j++) { 1879 struct journal_sector *js; 1880 js = access_journal(ic, i, j); 1881 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 1882 } 1883 i++; 1884 if (unlikely(i >= ic->journal_sections)) 1885 ic->commit_seq = next_commit_seq(ic->commit_seq); 1886 wraparound_section(ic, &i); 1887 } 1888 smp_rmb(); 1889 1890 write_journal(ic, commit_start, commit_sections); 1891 1892 spin_lock_irq(&ic->endio_wait.lock); 1893 ic->uncommitted_section += commit_sections; 1894 wraparound_section(ic, &ic->uncommitted_section); 1895 ic->n_uncommitted_sections -= commit_sections; 1896 ic->n_committed_sections += commit_sections; 1897 spin_unlock_irq(&ic->endio_wait.lock); 1898 1899 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 1900 queue_work(ic->writer_wq, &ic->writer_work); 1901 1902 release_flush_bios: 1903 while (flushes) { 1904 struct bio *next = flushes->bi_next; 1905 flushes->bi_next = NULL; 1906 do_endio(ic, flushes); 1907 flushes = next; 1908 } 1909 } 1910 1911 static void complete_copy_from_journal(unsigned long error, void *context) 1912 { 1913 struct journal_io *io = context; 1914 struct journal_completion *comp = io->comp; 1915 struct dm_integrity_c *ic = comp->ic; 1916 remove_range(ic, &io->range); 1917 mempool_free(io, &ic->journal_io_mempool); 1918 if (unlikely(error != 0)) 1919 dm_integrity_io_error(ic, "copying from journal", -EIO); 1920 complete_journal_op(comp); 1921 } 1922 1923 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 1924 struct journal_entry *je) 1925 { 1926 unsigned s = 0; 1927 do { 1928 js->commit_id = je->last_bytes[s]; 1929 js++; 1930 } while (++s < ic->sectors_per_block); 1931 } 1932 1933 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 1934 unsigned write_sections, bool from_replay) 1935 { 1936 unsigned i, j, n; 1937 struct journal_completion comp; 1938 struct blk_plug plug; 1939 1940 blk_start_plug(&plug); 1941 1942 comp.ic = ic; 1943 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1944 init_completion(&comp.comp); 1945 1946 i = write_start; 1947 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 1948 #ifndef INTERNAL_VERIFY 1949 if (unlikely(from_replay)) 1950 #endif 1951 rw_section_mac(ic, i, false); 1952 for (j = 0; j < ic->journal_section_entries; j++) { 1953 struct journal_entry *je = access_journal_entry(ic, i, j); 1954 sector_t sec, area, offset; 1955 unsigned k, l, next_loop; 1956 sector_t metadata_block; 1957 unsigned metadata_offset; 1958 struct journal_io *io; 1959 1960 if (journal_entry_is_unused(je)) 1961 continue; 1962 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 1963 sec = journal_entry_get_sector(je); 1964 if (unlikely(from_replay)) { 1965 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 1966 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 1967 sec &= ~(sector_t)(ic->sectors_per_block - 1); 1968 } 1969 } 1970 get_area_and_offset(ic, sec, &area, &offset); 1971 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 1972 for (k = j + 1; k < ic->journal_section_entries; k++) { 1973 struct journal_entry *je2 = access_journal_entry(ic, i, k); 1974 sector_t sec2, area2, offset2; 1975 if (journal_entry_is_unused(je2)) 1976 break; 1977 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 1978 sec2 = journal_entry_get_sector(je2); 1979 get_area_and_offset(ic, sec2, &area2, &offset2); 1980 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 1981 break; 1982 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 1983 } 1984 next_loop = k - 1; 1985 1986 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 1987 io->comp = ∁ 1988 io->range.logical_sector = sec; 1989 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 1990 1991 spin_lock_irq(&ic->endio_wait.lock); 1992 if (unlikely(!add_new_range(ic, &io->range, true))) 1993 wait_and_add_new_range(ic, &io->range); 1994 1995 if (likely(!from_replay)) { 1996 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 1997 1998 /* don't write if there is newer committed sector */ 1999 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2000 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2001 2002 journal_entry_set_unused(je2); 2003 remove_journal_node(ic, §ion_node[j]); 2004 j++; 2005 sec += ic->sectors_per_block; 2006 offset += ic->sectors_per_block; 2007 } 2008 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2009 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2010 2011 journal_entry_set_unused(je2); 2012 remove_journal_node(ic, §ion_node[k - 1]); 2013 k--; 2014 } 2015 if (j == k) { 2016 remove_range_unlocked(ic, &io->range); 2017 spin_unlock_irq(&ic->endio_wait.lock); 2018 mempool_free(io, &ic->journal_io_mempool); 2019 goto skip_io; 2020 } 2021 for (l = j; l < k; l++) { 2022 remove_journal_node(ic, §ion_node[l]); 2023 } 2024 } 2025 spin_unlock_irq(&ic->endio_wait.lock); 2026 2027 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2028 for (l = j; l < k; l++) { 2029 int r; 2030 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2031 2032 if ( 2033 #ifndef INTERNAL_VERIFY 2034 unlikely(from_replay) && 2035 #endif 2036 ic->internal_hash) { 2037 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2038 2039 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2040 (char *)access_journal_data(ic, i, l), test_tag); 2041 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2042 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2043 } 2044 2045 journal_entry_set_unused(je2); 2046 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2047 ic->tag_size, TAG_WRITE); 2048 if (unlikely(r)) { 2049 dm_integrity_io_error(ic, "reading tags", r); 2050 } 2051 } 2052 2053 atomic_inc(&comp.in_flight); 2054 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2055 (k - j) << ic->sb->log2_sectors_per_block, 2056 get_data_sector(ic, area, offset), 2057 complete_copy_from_journal, io); 2058 skip_io: 2059 j = next_loop; 2060 } 2061 } 2062 2063 dm_bufio_write_dirty_buffers_async(ic->bufio); 2064 2065 blk_finish_plug(&plug); 2066 2067 complete_journal_op(&comp); 2068 wait_for_completion_io(&comp.comp); 2069 2070 dm_integrity_flush_buffers(ic); 2071 } 2072 2073 static void integrity_writer(struct work_struct *w) 2074 { 2075 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2076 unsigned write_start, write_sections; 2077 2078 unsigned prev_free_sectors; 2079 2080 /* the following test is not needed, but it tests the replay code */ 2081 if (READ_ONCE(ic->suspending) && !ic->meta_dev) 2082 return; 2083 2084 spin_lock_irq(&ic->endio_wait.lock); 2085 write_start = ic->committed_section; 2086 write_sections = ic->n_committed_sections; 2087 spin_unlock_irq(&ic->endio_wait.lock); 2088 2089 if (!write_sections) 2090 return; 2091 2092 do_journal_write(ic, write_start, write_sections, false); 2093 2094 spin_lock_irq(&ic->endio_wait.lock); 2095 2096 ic->committed_section += write_sections; 2097 wraparound_section(ic, &ic->committed_section); 2098 ic->n_committed_sections -= write_sections; 2099 2100 prev_free_sectors = ic->free_sectors; 2101 ic->free_sectors += write_sections * ic->journal_section_entries; 2102 if (unlikely(!prev_free_sectors)) 2103 wake_up_locked(&ic->endio_wait); 2104 2105 spin_unlock_irq(&ic->endio_wait.lock); 2106 } 2107 2108 static void recalc_write_super(struct dm_integrity_c *ic) 2109 { 2110 int r; 2111 2112 dm_integrity_flush_buffers(ic); 2113 if (dm_integrity_failed(ic)) 2114 return; 2115 2116 sb_set_version(ic); 2117 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2118 if (unlikely(r)) 2119 dm_integrity_io_error(ic, "writing superblock", r); 2120 } 2121 2122 static void integrity_recalc(struct work_struct *w) 2123 { 2124 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2125 struct dm_integrity_range range; 2126 struct dm_io_request io_req; 2127 struct dm_io_region io_loc; 2128 sector_t area, offset; 2129 sector_t metadata_block; 2130 unsigned metadata_offset; 2131 __u8 *t; 2132 unsigned i; 2133 int r; 2134 unsigned super_counter = 0; 2135 2136 spin_lock_irq(&ic->endio_wait.lock); 2137 2138 next_chunk: 2139 2140 if (unlikely(READ_ONCE(ic->suspending))) 2141 goto unlock_ret; 2142 2143 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2144 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) 2145 goto unlock_ret; 2146 2147 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2148 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2149 if (!ic->meta_dev) 2150 range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2151 2152 if (unlikely(!add_new_range(ic, &range, true))) 2153 wait_and_add_new_range(ic, &range); 2154 2155 spin_unlock_irq(&ic->endio_wait.lock); 2156 2157 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2158 recalc_write_super(ic); 2159 super_counter = 0; 2160 } 2161 2162 if (unlikely(dm_integrity_failed(ic))) 2163 goto err; 2164 2165 io_req.bi_op = REQ_OP_READ; 2166 io_req.bi_op_flags = 0; 2167 io_req.mem.type = DM_IO_VMA; 2168 io_req.mem.ptr.addr = ic->recalc_buffer; 2169 io_req.notify.fn = NULL; 2170 io_req.client = ic->io; 2171 io_loc.bdev = ic->dev->bdev; 2172 io_loc.sector = get_data_sector(ic, area, offset); 2173 io_loc.count = range.n_sectors; 2174 2175 r = dm_io(&io_req, 1, &io_loc, NULL); 2176 if (unlikely(r)) { 2177 dm_integrity_io_error(ic, "reading data", r); 2178 goto err; 2179 } 2180 2181 t = ic->recalc_tags; 2182 for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) { 2183 integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2184 t += ic->tag_size; 2185 } 2186 2187 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2188 2189 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2190 if (unlikely(r)) { 2191 dm_integrity_io_error(ic, "writing tags", r); 2192 goto err; 2193 } 2194 2195 spin_lock_irq(&ic->endio_wait.lock); 2196 remove_range_unlocked(ic, &range); 2197 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2198 goto next_chunk; 2199 2200 err: 2201 remove_range(ic, &range); 2202 return; 2203 2204 unlock_ret: 2205 spin_unlock_irq(&ic->endio_wait.lock); 2206 2207 recalc_write_super(ic); 2208 } 2209 2210 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2211 unsigned n_sections, unsigned char commit_seq) 2212 { 2213 unsigned i, j, n; 2214 2215 if (!n_sections) 2216 return; 2217 2218 for (n = 0; n < n_sections; n++) { 2219 i = start_section + n; 2220 wraparound_section(ic, &i); 2221 for (j = 0; j < ic->journal_section_sectors; j++) { 2222 struct journal_sector *js = access_journal(ic, i, j); 2223 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2224 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2225 } 2226 for (j = 0; j < ic->journal_section_entries; j++) { 2227 struct journal_entry *je = access_journal_entry(ic, i, j); 2228 journal_entry_set_unused(je); 2229 } 2230 } 2231 2232 write_journal(ic, start_section, n_sections); 2233 } 2234 2235 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2236 { 2237 unsigned char k; 2238 for (k = 0; k < N_COMMIT_IDS; k++) { 2239 if (dm_integrity_commit_id(ic, i, j, k) == id) 2240 return k; 2241 } 2242 dm_integrity_io_error(ic, "journal commit id", -EIO); 2243 return -EIO; 2244 } 2245 2246 static void replay_journal(struct dm_integrity_c *ic) 2247 { 2248 unsigned i, j; 2249 bool used_commit_ids[N_COMMIT_IDS]; 2250 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2251 unsigned write_start, write_sections; 2252 unsigned continue_section; 2253 bool journal_empty; 2254 unsigned char unused, last_used, want_commit_seq; 2255 2256 if (ic->mode == 'R') 2257 return; 2258 2259 if (ic->journal_uptodate) 2260 return; 2261 2262 last_used = 0; 2263 write_start = 0; 2264 2265 if (!ic->just_formatted) { 2266 DEBUG_print("reading journal\n"); 2267 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2268 if (ic->journal_io) 2269 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2270 if (ic->journal_io) { 2271 struct journal_completion crypt_comp; 2272 crypt_comp.ic = ic; 2273 init_completion(&crypt_comp.comp); 2274 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2275 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2276 wait_for_completion(&crypt_comp.comp); 2277 } 2278 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2279 } 2280 2281 if (dm_integrity_failed(ic)) 2282 goto clear_journal; 2283 2284 journal_empty = true; 2285 memset(used_commit_ids, 0, sizeof used_commit_ids); 2286 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2287 for (i = 0; i < ic->journal_sections; i++) { 2288 for (j = 0; j < ic->journal_section_sectors; j++) { 2289 int k; 2290 struct journal_sector *js = access_journal(ic, i, j); 2291 k = find_commit_seq(ic, i, j, js->commit_id); 2292 if (k < 0) 2293 goto clear_journal; 2294 used_commit_ids[k] = true; 2295 max_commit_id_sections[k] = i; 2296 } 2297 if (journal_empty) { 2298 for (j = 0; j < ic->journal_section_entries; j++) { 2299 struct journal_entry *je = access_journal_entry(ic, i, j); 2300 if (!journal_entry_is_unused(je)) { 2301 journal_empty = false; 2302 break; 2303 } 2304 } 2305 } 2306 } 2307 2308 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2309 unused = N_COMMIT_IDS - 1; 2310 while (unused && !used_commit_ids[unused - 1]) 2311 unused--; 2312 } else { 2313 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2314 if (!used_commit_ids[unused]) 2315 break; 2316 if (unused == N_COMMIT_IDS) { 2317 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2318 goto clear_journal; 2319 } 2320 } 2321 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2322 unused, used_commit_ids[0], used_commit_ids[1], 2323 used_commit_ids[2], used_commit_ids[3]); 2324 2325 last_used = prev_commit_seq(unused); 2326 want_commit_seq = prev_commit_seq(last_used); 2327 2328 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2329 journal_empty = true; 2330 2331 write_start = max_commit_id_sections[last_used] + 1; 2332 if (unlikely(write_start >= ic->journal_sections)) 2333 want_commit_seq = next_commit_seq(want_commit_seq); 2334 wraparound_section(ic, &write_start); 2335 2336 i = write_start; 2337 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2338 for (j = 0; j < ic->journal_section_sectors; j++) { 2339 struct journal_sector *js = access_journal(ic, i, j); 2340 2341 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2342 /* 2343 * This could be caused by crash during writing. 2344 * We won't replay the inconsistent part of the 2345 * journal. 2346 */ 2347 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2348 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2349 goto brk; 2350 } 2351 } 2352 i++; 2353 if (unlikely(i >= ic->journal_sections)) 2354 want_commit_seq = next_commit_seq(want_commit_seq); 2355 wraparound_section(ic, &i); 2356 } 2357 brk: 2358 2359 if (!journal_empty) { 2360 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2361 write_sections, write_start, want_commit_seq); 2362 do_journal_write(ic, write_start, write_sections, true); 2363 } 2364 2365 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2366 continue_section = write_start; 2367 ic->commit_seq = want_commit_seq; 2368 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2369 } else { 2370 unsigned s; 2371 unsigned char erase_seq; 2372 clear_journal: 2373 DEBUG_print("clearing journal\n"); 2374 2375 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2376 s = write_start; 2377 init_journal(ic, s, 1, erase_seq); 2378 s++; 2379 wraparound_section(ic, &s); 2380 if (ic->journal_sections >= 2) { 2381 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2382 s += ic->journal_sections - 2; 2383 wraparound_section(ic, &s); 2384 init_journal(ic, s, 1, erase_seq); 2385 } 2386 2387 continue_section = 0; 2388 ic->commit_seq = next_commit_seq(erase_seq); 2389 } 2390 2391 ic->committed_section = continue_section; 2392 ic->n_committed_sections = 0; 2393 2394 ic->uncommitted_section = continue_section; 2395 ic->n_uncommitted_sections = 0; 2396 2397 ic->free_section = continue_section; 2398 ic->free_section_entry = 0; 2399 ic->free_sectors = ic->journal_entries; 2400 2401 ic->journal_tree_root = RB_ROOT; 2402 for (i = 0; i < ic->journal_entries; i++) 2403 init_journal_node(&ic->journal_tree[i]); 2404 } 2405 2406 static void dm_integrity_postsuspend(struct dm_target *ti) 2407 { 2408 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2409 2410 del_timer_sync(&ic->autocommit_timer); 2411 2412 WRITE_ONCE(ic->suspending, 1); 2413 2414 if (ic->recalc_wq) 2415 drain_workqueue(ic->recalc_wq); 2416 2417 queue_work(ic->commit_wq, &ic->commit_work); 2418 drain_workqueue(ic->commit_wq); 2419 2420 if (ic->mode == 'J') { 2421 if (ic->meta_dev) 2422 queue_work(ic->writer_wq, &ic->writer_work); 2423 drain_workqueue(ic->writer_wq); 2424 dm_integrity_flush_buffers(ic); 2425 } 2426 2427 WRITE_ONCE(ic->suspending, 0); 2428 2429 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2430 2431 ic->journal_uptodate = true; 2432 } 2433 2434 static void dm_integrity_resume(struct dm_target *ti) 2435 { 2436 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2437 2438 replay_journal(ic); 2439 2440 if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2441 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 2442 if (recalc_pos < ic->provided_data_sectors) { 2443 queue_work(ic->recalc_wq, &ic->recalc_work); 2444 } else if (recalc_pos > ic->provided_data_sectors) { 2445 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 2446 recalc_write_super(ic); 2447 } 2448 } 2449 } 2450 2451 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 2452 unsigned status_flags, char *result, unsigned maxlen) 2453 { 2454 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2455 unsigned arg_count; 2456 size_t sz = 0; 2457 2458 switch (type) { 2459 case STATUSTYPE_INFO: 2460 DMEMIT("%llu %llu", 2461 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 2462 (unsigned long long)ic->provided_data_sectors); 2463 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 2464 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector)); 2465 else 2466 DMEMIT(" -"); 2467 break; 2468 2469 case STATUSTYPE_TABLE: { 2470 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 2471 watermark_percentage += ic->journal_entries / 2; 2472 do_div(watermark_percentage, ic->journal_entries); 2473 arg_count = 5; 2474 arg_count += !!ic->meta_dev; 2475 arg_count += ic->sectors_per_block != 1; 2476 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 2477 arg_count += !!ic->internal_hash_alg.alg_string; 2478 arg_count += !!ic->journal_crypt_alg.alg_string; 2479 arg_count += !!ic->journal_mac_alg.alg_string; 2480 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start, 2481 ic->tag_size, ic->mode, arg_count); 2482 if (ic->meta_dev) 2483 DMEMIT(" meta_device:%s", ic->meta_dev->name); 2484 if (ic->sectors_per_block != 1) 2485 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 2486 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 2487 DMEMIT(" recalculate"); 2488 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 2489 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 2490 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 2491 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 2492 DMEMIT(" commit_time:%u", ic->autocommit_msec); 2493 2494 #define EMIT_ALG(a, n) \ 2495 do { \ 2496 if (ic->a.alg_string) { \ 2497 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 2498 if (ic->a.key_string) \ 2499 DMEMIT(":%s", ic->a.key_string);\ 2500 } \ 2501 } while (0) 2502 EMIT_ALG(internal_hash_alg, "internal_hash"); 2503 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 2504 EMIT_ALG(journal_mac_alg, "journal_mac"); 2505 break; 2506 } 2507 } 2508 } 2509 2510 static int dm_integrity_iterate_devices(struct dm_target *ti, 2511 iterate_devices_callout_fn fn, void *data) 2512 { 2513 struct dm_integrity_c *ic = ti->private; 2514 2515 if (!ic->meta_dev) 2516 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 2517 else 2518 return fn(ti, ic->dev, 0, ti->len, data); 2519 } 2520 2521 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 2522 { 2523 struct dm_integrity_c *ic = ti->private; 2524 2525 if (ic->sectors_per_block > 1) { 2526 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2527 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 2528 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 2529 } 2530 } 2531 2532 static void calculate_journal_section_size(struct dm_integrity_c *ic) 2533 { 2534 unsigned sector_space = JOURNAL_SECTOR_DATA; 2535 2536 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 2537 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 2538 JOURNAL_ENTRY_ROUNDUP); 2539 2540 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 2541 sector_space -= JOURNAL_MAC_PER_SECTOR; 2542 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 2543 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 2544 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 2545 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 2546 } 2547 2548 static int calculate_device_limits(struct dm_integrity_c *ic) 2549 { 2550 __u64 initial_sectors; 2551 2552 calculate_journal_section_size(ic); 2553 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 2554 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 2555 return -EINVAL; 2556 ic->initial_sectors = initial_sectors; 2557 2558 if (!ic->meta_dev) { 2559 sector_t last_sector, last_area, last_offset; 2560 2561 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 2562 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT; 2563 if (!(ic->metadata_run & (ic->metadata_run - 1))) 2564 ic->log2_metadata_run = __ffs(ic->metadata_run); 2565 else 2566 ic->log2_metadata_run = -1; 2567 2568 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 2569 last_sector = get_data_sector(ic, last_area, last_offset); 2570 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 2571 return -EINVAL; 2572 } else { 2573 __u64 meta_size = ic->provided_data_sectors * ic->tag_size; 2574 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 2575 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 2576 meta_size <<= ic->log2_buffer_sectors; 2577 if (ic->initial_sectors + meta_size < ic->initial_sectors || 2578 ic->initial_sectors + meta_size > ic->meta_device_sectors) 2579 return -EINVAL; 2580 ic->metadata_run = 1; 2581 ic->log2_metadata_run = 0; 2582 } 2583 2584 return 0; 2585 } 2586 2587 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 2588 { 2589 unsigned journal_sections; 2590 int test_bit; 2591 2592 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 2593 memcpy(ic->sb->magic, SB_MAGIC, 8); 2594 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 2595 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 2596 if (ic->journal_mac_alg.alg_string) 2597 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 2598 2599 calculate_journal_section_size(ic); 2600 journal_sections = journal_sectors / ic->journal_section_sectors; 2601 if (!journal_sections) 2602 journal_sections = 1; 2603 2604 if (!ic->meta_dev) { 2605 ic->sb->journal_sections = cpu_to_le32(journal_sections); 2606 if (!interleave_sectors) 2607 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 2608 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 2609 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 2610 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 2611 2612 ic->provided_data_sectors = 0; 2613 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 2614 __u64 prev_data_sectors = ic->provided_data_sectors; 2615 2616 ic->provided_data_sectors |= (sector_t)1 << test_bit; 2617 if (calculate_device_limits(ic)) 2618 ic->provided_data_sectors = prev_data_sectors; 2619 } 2620 if (!ic->provided_data_sectors) 2621 return -EINVAL; 2622 } else { 2623 ic->sb->log2_interleave_sectors = 0; 2624 ic->provided_data_sectors = ic->data_device_sectors; 2625 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 2626 2627 try_smaller_buffer: 2628 ic->sb->journal_sections = cpu_to_le32(0); 2629 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 2630 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 2631 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 2632 if (test_journal_sections > journal_sections) 2633 continue; 2634 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 2635 if (calculate_device_limits(ic)) 2636 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 2637 2638 } 2639 if (!le32_to_cpu(ic->sb->journal_sections)) { 2640 if (ic->log2_buffer_sectors > 3) { 2641 ic->log2_buffer_sectors--; 2642 goto try_smaller_buffer; 2643 } 2644 return -EINVAL; 2645 } 2646 } 2647 2648 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 2649 2650 sb_set_version(ic); 2651 2652 return 0; 2653 } 2654 2655 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 2656 { 2657 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 2658 struct blk_integrity bi; 2659 2660 memset(&bi, 0, sizeof(bi)); 2661 bi.profile = &dm_integrity_profile; 2662 bi.tuple_size = ic->tag_size; 2663 bi.tag_size = bi.tuple_size; 2664 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 2665 2666 blk_integrity_register(disk, &bi); 2667 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 2668 } 2669 2670 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl) 2671 { 2672 unsigned i; 2673 2674 if (!pl) 2675 return; 2676 for (i = 0; i < ic->journal_pages; i++) 2677 if (pl[i].page) 2678 __free_page(pl[i].page); 2679 kvfree(pl); 2680 } 2681 2682 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic) 2683 { 2684 size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list); 2685 struct page_list *pl; 2686 unsigned i; 2687 2688 pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO); 2689 if (!pl) 2690 return NULL; 2691 2692 for (i = 0; i < ic->journal_pages; i++) { 2693 pl[i].page = alloc_page(GFP_KERNEL); 2694 if (!pl[i].page) { 2695 dm_integrity_free_page_list(ic, pl); 2696 return NULL; 2697 } 2698 if (i) 2699 pl[i - 1].next = &pl[i]; 2700 } 2701 2702 return pl; 2703 } 2704 2705 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 2706 { 2707 unsigned i; 2708 for (i = 0; i < ic->journal_sections; i++) 2709 kvfree(sl[i]); 2710 kvfree(sl); 2711 } 2712 2713 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl) 2714 { 2715 struct scatterlist **sl; 2716 unsigned i; 2717 2718 sl = kvmalloc_array(ic->journal_sections, 2719 sizeof(struct scatterlist *), 2720 GFP_KERNEL | __GFP_ZERO); 2721 if (!sl) 2722 return NULL; 2723 2724 for (i = 0; i < ic->journal_sections; i++) { 2725 struct scatterlist *s; 2726 unsigned start_index, start_offset; 2727 unsigned end_index, end_offset; 2728 unsigned n_pages; 2729 unsigned idx; 2730 2731 page_list_location(ic, i, 0, &start_index, &start_offset); 2732 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset); 2733 2734 n_pages = (end_index - start_index + 1); 2735 2736 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 2737 GFP_KERNEL); 2738 if (!s) { 2739 dm_integrity_free_journal_scatterlist(ic, sl); 2740 return NULL; 2741 } 2742 2743 sg_init_table(s, n_pages); 2744 for (idx = start_index; idx <= end_index; idx++) { 2745 char *va = lowmem_page_address(pl[idx].page); 2746 unsigned start = 0, end = PAGE_SIZE; 2747 if (idx == start_index) 2748 start = start_offset; 2749 if (idx == end_index) 2750 end = end_offset + (1 << SECTOR_SHIFT); 2751 sg_set_buf(&s[idx - start_index], va + start, end - start); 2752 } 2753 2754 sl[i] = s; 2755 } 2756 2757 return sl; 2758 } 2759 2760 static void free_alg(struct alg_spec *a) 2761 { 2762 kzfree(a->alg_string); 2763 kzfree(a->key); 2764 memset(a, 0, sizeof *a); 2765 } 2766 2767 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 2768 { 2769 char *k; 2770 2771 free_alg(a); 2772 2773 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 2774 if (!a->alg_string) 2775 goto nomem; 2776 2777 k = strchr(a->alg_string, ':'); 2778 if (k) { 2779 *k = 0; 2780 a->key_string = k + 1; 2781 if (strlen(a->key_string) & 1) 2782 goto inval; 2783 2784 a->key_size = strlen(a->key_string) / 2; 2785 a->key = kmalloc(a->key_size, GFP_KERNEL); 2786 if (!a->key) 2787 goto nomem; 2788 if (hex2bin(a->key, a->key_string, a->key_size)) 2789 goto inval; 2790 } 2791 2792 return 0; 2793 inval: 2794 *error = error_inval; 2795 return -EINVAL; 2796 nomem: 2797 *error = "Out of memory for an argument"; 2798 return -ENOMEM; 2799 } 2800 2801 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 2802 char *error_alg, char *error_key) 2803 { 2804 int r; 2805 2806 if (a->alg_string) { 2807 *hash = crypto_alloc_shash(a->alg_string, 0, 0); 2808 if (IS_ERR(*hash)) { 2809 *error = error_alg; 2810 r = PTR_ERR(*hash); 2811 *hash = NULL; 2812 return r; 2813 } 2814 2815 if (a->key) { 2816 r = crypto_shash_setkey(*hash, a->key, a->key_size); 2817 if (r) { 2818 *error = error_key; 2819 return r; 2820 } 2821 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 2822 *error = error_key; 2823 return -ENOKEY; 2824 } 2825 } 2826 2827 return 0; 2828 } 2829 2830 static int create_journal(struct dm_integrity_c *ic, char **error) 2831 { 2832 int r = 0; 2833 unsigned i; 2834 __u64 journal_pages, journal_desc_size, journal_tree_size; 2835 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 2836 struct skcipher_request *req = NULL; 2837 2838 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 2839 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 2840 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 2841 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 2842 2843 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 2844 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 2845 journal_desc_size = journal_pages * sizeof(struct page_list); 2846 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 2847 *error = "Journal doesn't fit into memory"; 2848 r = -ENOMEM; 2849 goto bad; 2850 } 2851 ic->journal_pages = journal_pages; 2852 2853 ic->journal = dm_integrity_alloc_page_list(ic); 2854 if (!ic->journal) { 2855 *error = "Could not allocate memory for journal"; 2856 r = -ENOMEM; 2857 goto bad; 2858 } 2859 if (ic->journal_crypt_alg.alg_string) { 2860 unsigned ivsize, blocksize; 2861 struct journal_completion comp; 2862 2863 comp.ic = ic; 2864 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0); 2865 if (IS_ERR(ic->journal_crypt)) { 2866 *error = "Invalid journal cipher"; 2867 r = PTR_ERR(ic->journal_crypt); 2868 ic->journal_crypt = NULL; 2869 goto bad; 2870 } 2871 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 2872 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 2873 2874 if (ic->journal_crypt_alg.key) { 2875 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 2876 ic->journal_crypt_alg.key_size); 2877 if (r) { 2878 *error = "Error setting encryption key"; 2879 goto bad; 2880 } 2881 } 2882 DEBUG_print("cipher %s, block size %u iv size %u\n", 2883 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 2884 2885 ic->journal_io = dm_integrity_alloc_page_list(ic); 2886 if (!ic->journal_io) { 2887 *error = "Could not allocate memory for journal io"; 2888 r = -ENOMEM; 2889 goto bad; 2890 } 2891 2892 if (blocksize == 1) { 2893 struct scatterlist *sg; 2894 2895 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 2896 if (!req) { 2897 *error = "Could not allocate crypt request"; 2898 r = -ENOMEM; 2899 goto bad; 2900 } 2901 2902 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 2903 if (!crypt_iv) { 2904 *error = "Could not allocate iv"; 2905 r = -ENOMEM; 2906 goto bad; 2907 } 2908 2909 ic->journal_xor = dm_integrity_alloc_page_list(ic); 2910 if (!ic->journal_xor) { 2911 *error = "Could not allocate memory for journal xor"; 2912 r = -ENOMEM; 2913 goto bad; 2914 } 2915 2916 sg = kvmalloc_array(ic->journal_pages + 1, 2917 sizeof(struct scatterlist), 2918 GFP_KERNEL); 2919 if (!sg) { 2920 *error = "Unable to allocate sg list"; 2921 r = -ENOMEM; 2922 goto bad; 2923 } 2924 sg_init_table(sg, ic->journal_pages + 1); 2925 for (i = 0; i < ic->journal_pages; i++) { 2926 char *va = lowmem_page_address(ic->journal_xor[i].page); 2927 clear_page(va); 2928 sg_set_buf(&sg[i], va, PAGE_SIZE); 2929 } 2930 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 2931 memset(crypt_iv, 0x00, ivsize); 2932 2933 skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 2934 init_completion(&comp.comp); 2935 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2936 if (do_crypt(true, req, &comp)) 2937 wait_for_completion(&comp.comp); 2938 kvfree(sg); 2939 r = dm_integrity_failed(ic); 2940 if (r) { 2941 *error = "Unable to encrypt journal"; 2942 goto bad; 2943 } 2944 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 2945 2946 crypto_free_skcipher(ic->journal_crypt); 2947 ic->journal_crypt = NULL; 2948 } else { 2949 unsigned crypt_len = roundup(ivsize, blocksize); 2950 2951 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 2952 if (!req) { 2953 *error = "Could not allocate crypt request"; 2954 r = -ENOMEM; 2955 goto bad; 2956 } 2957 2958 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 2959 if (!crypt_iv) { 2960 *error = "Could not allocate iv"; 2961 r = -ENOMEM; 2962 goto bad; 2963 } 2964 2965 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 2966 if (!crypt_data) { 2967 *error = "Unable to allocate crypt data"; 2968 r = -ENOMEM; 2969 goto bad; 2970 } 2971 2972 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 2973 if (!ic->journal_scatterlist) { 2974 *error = "Unable to allocate sg list"; 2975 r = -ENOMEM; 2976 goto bad; 2977 } 2978 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 2979 if (!ic->journal_io_scatterlist) { 2980 *error = "Unable to allocate sg list"; 2981 r = -ENOMEM; 2982 goto bad; 2983 } 2984 ic->sk_requests = kvmalloc_array(ic->journal_sections, 2985 sizeof(struct skcipher_request *), 2986 GFP_KERNEL | __GFP_ZERO); 2987 if (!ic->sk_requests) { 2988 *error = "Unable to allocate sk requests"; 2989 r = -ENOMEM; 2990 goto bad; 2991 } 2992 for (i = 0; i < ic->journal_sections; i++) { 2993 struct scatterlist sg; 2994 struct skcipher_request *section_req; 2995 __u32 section_le = cpu_to_le32(i); 2996 2997 memset(crypt_iv, 0x00, ivsize); 2998 memset(crypt_data, 0x00, crypt_len); 2999 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3000 3001 sg_init_one(&sg, crypt_data, crypt_len); 3002 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3003 init_completion(&comp.comp); 3004 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3005 if (do_crypt(true, req, &comp)) 3006 wait_for_completion(&comp.comp); 3007 3008 r = dm_integrity_failed(ic); 3009 if (r) { 3010 *error = "Unable to generate iv"; 3011 goto bad; 3012 } 3013 3014 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3015 if (!section_req) { 3016 *error = "Unable to allocate crypt request"; 3017 r = -ENOMEM; 3018 goto bad; 3019 } 3020 section_req->iv = kmalloc_array(ivsize, 2, 3021 GFP_KERNEL); 3022 if (!section_req->iv) { 3023 skcipher_request_free(section_req); 3024 *error = "Unable to allocate iv"; 3025 r = -ENOMEM; 3026 goto bad; 3027 } 3028 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3029 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3030 ic->sk_requests[i] = section_req; 3031 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3032 } 3033 } 3034 } 3035 3036 for (i = 0; i < N_COMMIT_IDS; i++) { 3037 unsigned j; 3038 retest_commit_id: 3039 for (j = 0; j < i; j++) { 3040 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3041 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3042 goto retest_commit_id; 3043 } 3044 } 3045 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3046 } 3047 3048 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3049 if (journal_tree_size > ULONG_MAX) { 3050 *error = "Journal doesn't fit into memory"; 3051 r = -ENOMEM; 3052 goto bad; 3053 } 3054 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3055 if (!ic->journal_tree) { 3056 *error = "Could not allocate memory for journal tree"; 3057 r = -ENOMEM; 3058 } 3059 bad: 3060 kfree(crypt_data); 3061 kfree(crypt_iv); 3062 skcipher_request_free(req); 3063 3064 return r; 3065 } 3066 3067 /* 3068 * Construct a integrity mapping 3069 * 3070 * Arguments: 3071 * device 3072 * offset from the start of the device 3073 * tag size 3074 * D - direct writes, J - journal writes, R - recovery mode 3075 * number of optional arguments 3076 * optional arguments: 3077 * journal_sectors 3078 * interleave_sectors 3079 * buffer_sectors 3080 * journal_watermark 3081 * commit_time 3082 * internal_hash 3083 * journal_crypt 3084 * journal_mac 3085 * block_size 3086 */ 3087 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3088 { 3089 struct dm_integrity_c *ic; 3090 char dummy; 3091 int r; 3092 unsigned extra_args; 3093 struct dm_arg_set as; 3094 static const struct dm_arg _args[] = { 3095 {0, 9, "Invalid number of feature args"}, 3096 }; 3097 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3098 bool recalculate; 3099 bool should_write_sb; 3100 __u64 threshold; 3101 unsigned long long start; 3102 3103 #define DIRECT_ARGUMENTS 4 3104 3105 if (argc <= DIRECT_ARGUMENTS) { 3106 ti->error = "Invalid argument count"; 3107 return -EINVAL; 3108 } 3109 3110 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3111 if (!ic) { 3112 ti->error = "Cannot allocate integrity context"; 3113 return -ENOMEM; 3114 } 3115 ti->private = ic; 3116 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3117 3118 ic->in_progress = RB_ROOT; 3119 INIT_LIST_HEAD(&ic->wait_list); 3120 init_waitqueue_head(&ic->endio_wait); 3121 bio_list_init(&ic->flush_bio_list); 3122 init_waitqueue_head(&ic->copy_to_journal_wait); 3123 init_completion(&ic->crypto_backoff); 3124 atomic64_set(&ic->number_of_mismatches, 0); 3125 3126 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3127 if (r) { 3128 ti->error = "Device lookup failed"; 3129 goto bad; 3130 } 3131 3132 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3133 ti->error = "Invalid starting offset"; 3134 r = -EINVAL; 3135 goto bad; 3136 } 3137 ic->start = start; 3138 3139 if (strcmp(argv[2], "-")) { 3140 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3141 ti->error = "Invalid tag size"; 3142 r = -EINVAL; 3143 goto bad; 3144 } 3145 } 3146 3147 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) 3148 ic->mode = argv[3][0]; 3149 else { 3150 ti->error = "Invalid mode (expecting J, D, R)"; 3151 r = -EINVAL; 3152 goto bad; 3153 } 3154 3155 journal_sectors = 0; 3156 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3157 buffer_sectors = DEFAULT_BUFFER_SECTORS; 3158 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 3159 sync_msec = DEFAULT_SYNC_MSEC; 3160 recalculate = false; 3161 ic->sectors_per_block = 1; 3162 3163 as.argc = argc - DIRECT_ARGUMENTS; 3164 as.argv = argv + DIRECT_ARGUMENTS; 3165 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 3166 if (r) 3167 goto bad; 3168 3169 while (extra_args--) { 3170 const char *opt_string; 3171 unsigned val; 3172 opt_string = dm_shift_arg(&as); 3173 if (!opt_string) { 3174 r = -EINVAL; 3175 ti->error = "Not enough feature arguments"; 3176 goto bad; 3177 } 3178 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 3179 journal_sectors = val ? val : 1; 3180 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 3181 interleave_sectors = val; 3182 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 3183 buffer_sectors = val; 3184 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 3185 journal_watermark = val; 3186 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 3187 sync_msec = val; 3188 else if (!memcmp(opt_string, "meta_device:", strlen("meta_device:"))) { 3189 if (ic->meta_dev) { 3190 dm_put_device(ti, ic->meta_dev); 3191 ic->meta_dev = NULL; 3192 } 3193 r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev); 3194 if (r) { 3195 ti->error = "Device lookup failed"; 3196 goto bad; 3197 } 3198 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 3199 if (val < 1 << SECTOR_SHIFT || 3200 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 3201 (val & (val -1))) { 3202 r = -EINVAL; 3203 ti->error = "Invalid block_size argument"; 3204 goto bad; 3205 } 3206 ic->sectors_per_block = val >> SECTOR_SHIFT; 3207 } else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 3208 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 3209 "Invalid internal_hash argument"); 3210 if (r) 3211 goto bad; 3212 } else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 3213 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 3214 "Invalid journal_crypt argument"); 3215 if (r) 3216 goto bad; 3217 } else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 3218 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 3219 "Invalid journal_mac argument"); 3220 if (r) 3221 goto bad; 3222 } else if (!strcmp(opt_string, "recalculate")) { 3223 recalculate = true; 3224 } else { 3225 r = -EINVAL; 3226 ti->error = "Invalid argument"; 3227 goto bad; 3228 } 3229 } 3230 3231 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 3232 if (!ic->meta_dev) 3233 ic->meta_device_sectors = ic->data_device_sectors; 3234 else 3235 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 3236 3237 if (!journal_sectors) { 3238 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 3239 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 3240 } 3241 3242 if (!buffer_sectors) 3243 buffer_sectors = 1; 3244 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 3245 3246 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 3247 "Invalid internal hash", "Error setting internal hash key"); 3248 if (r) 3249 goto bad; 3250 3251 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 3252 "Invalid journal mac", "Error setting journal mac key"); 3253 if (r) 3254 goto bad; 3255 3256 if (!ic->tag_size) { 3257 if (!ic->internal_hash) { 3258 ti->error = "Unknown tag size"; 3259 r = -EINVAL; 3260 goto bad; 3261 } 3262 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 3263 } 3264 if (ic->tag_size > MAX_TAG_SIZE) { 3265 ti->error = "Too big tag size"; 3266 r = -EINVAL; 3267 goto bad; 3268 } 3269 if (!(ic->tag_size & (ic->tag_size - 1))) 3270 ic->log2_tag_size = __ffs(ic->tag_size); 3271 else 3272 ic->log2_tag_size = -1; 3273 3274 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 3275 ic->autocommit_msec = sync_msec; 3276 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 3277 3278 ic->io = dm_io_client_create(); 3279 if (IS_ERR(ic->io)) { 3280 r = PTR_ERR(ic->io); 3281 ic->io = NULL; 3282 ti->error = "Cannot allocate dm io"; 3283 goto bad; 3284 } 3285 3286 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 3287 if (r) { 3288 ti->error = "Cannot allocate mempool"; 3289 goto bad; 3290 } 3291 3292 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 3293 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 3294 if (!ic->metadata_wq) { 3295 ti->error = "Cannot allocate workqueue"; 3296 r = -ENOMEM; 3297 goto bad; 3298 } 3299 3300 /* 3301 * If this workqueue were percpu, it would cause bio reordering 3302 * and reduced performance. 3303 */ 3304 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3305 if (!ic->wait_wq) { 3306 ti->error = "Cannot allocate workqueue"; 3307 r = -ENOMEM; 3308 goto bad; 3309 } 3310 3311 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 3312 if (!ic->commit_wq) { 3313 ti->error = "Cannot allocate workqueue"; 3314 r = -ENOMEM; 3315 goto bad; 3316 } 3317 INIT_WORK(&ic->commit_work, integrity_commit); 3318 3319 if (ic->mode == 'J') { 3320 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 3321 if (!ic->writer_wq) { 3322 ti->error = "Cannot allocate workqueue"; 3323 r = -ENOMEM; 3324 goto bad; 3325 } 3326 INIT_WORK(&ic->writer_work, integrity_writer); 3327 } 3328 3329 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 3330 if (!ic->sb) { 3331 r = -ENOMEM; 3332 ti->error = "Cannot allocate superblock area"; 3333 goto bad; 3334 } 3335 3336 r = sync_rw_sb(ic, REQ_OP_READ, 0); 3337 if (r) { 3338 ti->error = "Error reading superblock"; 3339 goto bad; 3340 } 3341 should_write_sb = false; 3342 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 3343 if (ic->mode != 'R') { 3344 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 3345 r = -EINVAL; 3346 ti->error = "The device is not initialized"; 3347 goto bad; 3348 } 3349 } 3350 3351 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 3352 if (r) { 3353 ti->error = "Could not initialize superblock"; 3354 goto bad; 3355 } 3356 if (ic->mode != 'R') 3357 should_write_sb = true; 3358 } 3359 3360 if (!ic->sb->version || ic->sb->version > SB_VERSION_2) { 3361 r = -EINVAL; 3362 ti->error = "Unknown version"; 3363 goto bad; 3364 } 3365 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 3366 r = -EINVAL; 3367 ti->error = "Tag size doesn't match the information in superblock"; 3368 goto bad; 3369 } 3370 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 3371 r = -EINVAL; 3372 ti->error = "Block size doesn't match the information in superblock"; 3373 goto bad; 3374 } 3375 if (!le32_to_cpu(ic->sb->journal_sections)) { 3376 r = -EINVAL; 3377 ti->error = "Corrupted superblock, journal_sections is 0"; 3378 goto bad; 3379 } 3380 /* make sure that ti->max_io_len doesn't overflow */ 3381 if (!ic->meta_dev) { 3382 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 3383 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 3384 r = -EINVAL; 3385 ti->error = "Invalid interleave_sectors in the superblock"; 3386 goto bad; 3387 } 3388 } else { 3389 if (ic->sb->log2_interleave_sectors) { 3390 r = -EINVAL; 3391 ti->error = "Invalid interleave_sectors in the superblock"; 3392 goto bad; 3393 } 3394 } 3395 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3396 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) { 3397 /* test for overflow */ 3398 r = -EINVAL; 3399 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors"; 3400 goto bad; 3401 } 3402 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 3403 r = -EINVAL; 3404 ti->error = "Journal mac mismatch"; 3405 goto bad; 3406 } 3407 3408 try_smaller_buffer: 3409 r = calculate_device_limits(ic); 3410 if (r) { 3411 if (ic->meta_dev) { 3412 if (ic->log2_buffer_sectors > 3) { 3413 ic->log2_buffer_sectors--; 3414 goto try_smaller_buffer; 3415 } 3416 } 3417 ti->error = "The device is too small"; 3418 goto bad; 3419 } 3420 if (!ic->meta_dev) 3421 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 3422 3423 if (ti->len > ic->provided_data_sectors) { 3424 r = -EINVAL; 3425 ti->error = "Not enough provided sectors for requested mapping size"; 3426 goto bad; 3427 } 3428 3429 3430 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 3431 threshold += 50; 3432 do_div(threshold, 100); 3433 ic->free_sectors_threshold = threshold; 3434 3435 DEBUG_print("initialized:\n"); 3436 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 3437 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 3438 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 3439 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 3440 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 3441 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 3442 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 3443 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 3444 DEBUG_print(" device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors); 3445 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 3446 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 3447 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 3448 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors, 3449 (unsigned long long)ic->provided_data_sectors); 3450 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 3451 3452 if (recalculate && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 3453 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3454 ic->sb->recalc_sector = cpu_to_le64(0); 3455 } 3456 3457 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3458 if (!ic->internal_hash) { 3459 r = -EINVAL; 3460 ti->error = "Recalculate is only valid with internal hash"; 3461 goto bad; 3462 } 3463 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 3464 if (!ic->recalc_wq ) { 3465 ti->error = "Cannot allocate workqueue"; 3466 r = -ENOMEM; 3467 goto bad; 3468 } 3469 INIT_WORK(&ic->recalc_work, integrity_recalc); 3470 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 3471 if (!ic->recalc_buffer) { 3472 ti->error = "Cannot allocate buffer for recalculating"; 3473 r = -ENOMEM; 3474 goto bad; 3475 } 3476 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 3477 ic->tag_size, GFP_KERNEL); 3478 if (!ic->recalc_tags) { 3479 ti->error = "Cannot allocate tags for recalculating"; 3480 r = -ENOMEM; 3481 goto bad; 3482 } 3483 } 3484 3485 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 3486 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 3487 if (IS_ERR(ic->bufio)) { 3488 r = PTR_ERR(ic->bufio); 3489 ti->error = "Cannot initialize dm-bufio"; 3490 ic->bufio = NULL; 3491 goto bad; 3492 } 3493 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 3494 3495 if (ic->mode != 'R') { 3496 r = create_journal(ic, &ti->error); 3497 if (r) 3498 goto bad; 3499 } 3500 3501 if (should_write_sb) { 3502 int r; 3503 3504 init_journal(ic, 0, ic->journal_sections, 0); 3505 r = dm_integrity_failed(ic); 3506 if (unlikely(r)) { 3507 ti->error = "Error initializing journal"; 3508 goto bad; 3509 } 3510 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3511 if (r) { 3512 ti->error = "Error initializing superblock"; 3513 goto bad; 3514 } 3515 ic->just_formatted = true; 3516 } 3517 3518 if (!ic->meta_dev) { 3519 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 3520 if (r) 3521 goto bad; 3522 } 3523 3524 if (!ic->internal_hash) 3525 dm_integrity_set(ti, ic); 3526 3527 ti->num_flush_bios = 1; 3528 ti->flush_supported = true; 3529 3530 return 0; 3531 bad: 3532 dm_integrity_dtr(ti); 3533 return r; 3534 } 3535 3536 static void dm_integrity_dtr(struct dm_target *ti) 3537 { 3538 struct dm_integrity_c *ic = ti->private; 3539 3540 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3541 BUG_ON(!list_empty(&ic->wait_list)); 3542 3543 if (ic->metadata_wq) 3544 destroy_workqueue(ic->metadata_wq); 3545 if (ic->wait_wq) 3546 destroy_workqueue(ic->wait_wq); 3547 if (ic->commit_wq) 3548 destroy_workqueue(ic->commit_wq); 3549 if (ic->writer_wq) 3550 destroy_workqueue(ic->writer_wq); 3551 if (ic->recalc_wq) 3552 destroy_workqueue(ic->recalc_wq); 3553 if (ic->recalc_buffer) 3554 vfree(ic->recalc_buffer); 3555 if (ic->recalc_tags) 3556 kvfree(ic->recalc_tags); 3557 if (ic->bufio) 3558 dm_bufio_client_destroy(ic->bufio); 3559 mempool_exit(&ic->journal_io_mempool); 3560 if (ic->io) 3561 dm_io_client_destroy(ic->io); 3562 if (ic->dev) 3563 dm_put_device(ti, ic->dev); 3564 if (ic->meta_dev) 3565 dm_put_device(ti, ic->meta_dev); 3566 dm_integrity_free_page_list(ic, ic->journal); 3567 dm_integrity_free_page_list(ic, ic->journal_io); 3568 dm_integrity_free_page_list(ic, ic->journal_xor); 3569 if (ic->journal_scatterlist) 3570 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 3571 if (ic->journal_io_scatterlist) 3572 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 3573 if (ic->sk_requests) { 3574 unsigned i; 3575 3576 for (i = 0; i < ic->journal_sections; i++) { 3577 struct skcipher_request *req = ic->sk_requests[i]; 3578 if (req) { 3579 kzfree(req->iv); 3580 skcipher_request_free(req); 3581 } 3582 } 3583 kvfree(ic->sk_requests); 3584 } 3585 kvfree(ic->journal_tree); 3586 if (ic->sb) 3587 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 3588 3589 if (ic->internal_hash) 3590 crypto_free_shash(ic->internal_hash); 3591 free_alg(&ic->internal_hash_alg); 3592 3593 if (ic->journal_crypt) 3594 crypto_free_skcipher(ic->journal_crypt); 3595 free_alg(&ic->journal_crypt_alg); 3596 3597 if (ic->journal_mac) 3598 crypto_free_shash(ic->journal_mac); 3599 free_alg(&ic->journal_mac_alg); 3600 3601 kfree(ic); 3602 } 3603 3604 static struct target_type integrity_target = { 3605 .name = "integrity", 3606 .version = {1, 2, 0}, 3607 .module = THIS_MODULE, 3608 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 3609 .ctr = dm_integrity_ctr, 3610 .dtr = dm_integrity_dtr, 3611 .map = dm_integrity_map, 3612 .postsuspend = dm_integrity_postsuspend, 3613 .resume = dm_integrity_resume, 3614 .status = dm_integrity_status, 3615 .iterate_devices = dm_integrity_iterate_devices, 3616 .io_hints = dm_integrity_io_hints, 3617 }; 3618 3619 int __init dm_integrity_init(void) 3620 { 3621 int r; 3622 3623 journal_io_cache = kmem_cache_create("integrity_journal_io", 3624 sizeof(struct journal_io), 0, 0, NULL); 3625 if (!journal_io_cache) { 3626 DMERR("can't allocate journal io cache"); 3627 return -ENOMEM; 3628 } 3629 3630 r = dm_register_target(&integrity_target); 3631 3632 if (r < 0) 3633 DMERR("register failed %d", r); 3634 3635 return r; 3636 } 3637 3638 void dm_integrity_exit(void) 3639 { 3640 dm_unregister_target(&integrity_target); 3641 kmem_cache_destroy(journal_io_cache); 3642 } 3643 3644 module_init(dm_integrity_init); 3645 module_exit(dm_integrity_exit); 3646 3647 MODULE_AUTHOR("Milan Broz"); 3648 MODULE_AUTHOR("Mikulas Patocka"); 3649 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 3650 MODULE_LICENSE("GPL"); 3651