1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bio-record.h" 10 11 #include <linux/compiler.h> 12 #include <linux/module.h> 13 #include <linux/device-mapper.h> 14 #include <linux/dm-io.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sort.h> 17 #include <linux/rbtree.h> 18 #include <linux/delay.h> 19 #include <linux/random.h> 20 #include <linux/reboot.h> 21 #include <crypto/hash.h> 22 #include <crypto/skcipher.h> 23 #include <linux/async_tx.h> 24 #include <linux/dm-bufio.h> 25 26 #define DM_MSG_PREFIX "integrity" 27 28 #define DEFAULT_INTERLEAVE_SECTORS 32768 29 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 30 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 31 #define DEFAULT_BUFFER_SECTORS 128 32 #define DEFAULT_JOURNAL_WATERMARK 50 33 #define DEFAULT_SYNC_MSEC 10000 34 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 35 #define MIN_LOG2_INTERLEAVE_SECTORS 3 36 #define MAX_LOG2_INTERLEAVE_SECTORS 31 37 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 38 #define RECALC_SECTORS 8192 39 #define RECALC_WRITE_SUPER 16 40 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 41 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 42 #define DISCARD_FILLER 0xf6 43 44 /* 45 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 46 * so it should not be enabled in the official kernel 47 */ 48 //#define DEBUG_PRINT 49 //#define INTERNAL_VERIFY 50 51 /* 52 * On disk structures 53 */ 54 55 #define SB_MAGIC "integrt" 56 #define SB_VERSION_1 1 57 #define SB_VERSION_2 2 58 #define SB_VERSION_3 3 59 #define SB_VERSION_4 4 60 #define SB_SECTORS 8 61 #define MAX_SECTORS_PER_BLOCK 8 62 63 struct superblock { 64 __u8 magic[8]; 65 __u8 version; 66 __u8 log2_interleave_sectors; 67 __u16 integrity_tag_size; 68 __u32 journal_sections; 69 __u64 provided_data_sectors; /* userspace uses this value */ 70 __u32 flags; 71 __u8 log2_sectors_per_block; 72 __u8 log2_blocks_per_bitmap_bit; 73 __u8 pad[2]; 74 __u64 recalc_sector; 75 }; 76 77 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 78 #define SB_FLAG_RECALCULATING 0x2 79 #define SB_FLAG_DIRTY_BITMAP 0x4 80 #define SB_FLAG_FIXED_PADDING 0x8 81 82 #define JOURNAL_ENTRY_ROUNDUP 8 83 84 typedef __u64 commit_id_t; 85 #define JOURNAL_MAC_PER_SECTOR 8 86 87 struct journal_entry { 88 union { 89 struct { 90 __u32 sector_lo; 91 __u32 sector_hi; 92 } s; 93 __u64 sector; 94 } u; 95 commit_id_t last_bytes[]; 96 /* __u8 tag[0]; */ 97 }; 98 99 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 100 101 #if BITS_PER_LONG == 64 102 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 103 #else 104 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 105 #endif 106 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 107 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 108 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 109 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 110 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 111 112 #define JOURNAL_BLOCK_SECTORS 8 113 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 114 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 115 116 struct journal_sector { 117 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 118 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 119 commit_id_t commit_id; 120 }; 121 122 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 123 124 #define METADATA_PADDING_SECTORS 8 125 126 #define N_COMMIT_IDS 4 127 128 static unsigned char prev_commit_seq(unsigned char seq) 129 { 130 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 131 } 132 133 static unsigned char next_commit_seq(unsigned char seq) 134 { 135 return (seq + 1) % N_COMMIT_IDS; 136 } 137 138 /* 139 * In-memory structures 140 */ 141 142 struct journal_node { 143 struct rb_node node; 144 sector_t sector; 145 }; 146 147 struct alg_spec { 148 char *alg_string; 149 char *key_string; 150 __u8 *key; 151 unsigned key_size; 152 }; 153 154 struct dm_integrity_c { 155 struct dm_dev *dev; 156 struct dm_dev *meta_dev; 157 unsigned tag_size; 158 __s8 log2_tag_size; 159 sector_t start; 160 mempool_t journal_io_mempool; 161 struct dm_io_client *io; 162 struct dm_bufio_client *bufio; 163 struct workqueue_struct *metadata_wq; 164 struct superblock *sb; 165 unsigned journal_pages; 166 unsigned n_bitmap_blocks; 167 168 struct page_list *journal; 169 struct page_list *journal_io; 170 struct page_list *journal_xor; 171 struct page_list *recalc_bitmap; 172 struct page_list *may_write_bitmap; 173 struct bitmap_block_status *bbs; 174 unsigned bitmap_flush_interval; 175 int synchronous_mode; 176 struct bio_list synchronous_bios; 177 struct delayed_work bitmap_flush_work; 178 179 struct crypto_skcipher *journal_crypt; 180 struct scatterlist **journal_scatterlist; 181 struct scatterlist **journal_io_scatterlist; 182 struct skcipher_request **sk_requests; 183 184 struct crypto_shash *journal_mac; 185 186 struct journal_node *journal_tree; 187 struct rb_root journal_tree_root; 188 189 sector_t provided_data_sectors; 190 191 unsigned short journal_entry_size; 192 unsigned char journal_entries_per_sector; 193 unsigned char journal_section_entries; 194 unsigned short journal_section_sectors; 195 unsigned journal_sections; 196 unsigned journal_entries; 197 sector_t data_device_sectors; 198 sector_t meta_device_sectors; 199 unsigned initial_sectors; 200 unsigned metadata_run; 201 __s8 log2_metadata_run; 202 __u8 log2_buffer_sectors; 203 __u8 sectors_per_block; 204 __u8 log2_blocks_per_bitmap_bit; 205 206 unsigned char mode; 207 208 int failed; 209 210 struct crypto_shash *internal_hash; 211 212 struct dm_target *ti; 213 214 /* these variables are locked with endio_wait.lock */ 215 struct rb_root in_progress; 216 struct list_head wait_list; 217 wait_queue_head_t endio_wait; 218 struct workqueue_struct *wait_wq; 219 struct workqueue_struct *offload_wq; 220 221 unsigned char commit_seq; 222 commit_id_t commit_ids[N_COMMIT_IDS]; 223 224 unsigned committed_section; 225 unsigned n_committed_sections; 226 227 unsigned uncommitted_section; 228 unsigned n_uncommitted_sections; 229 230 unsigned free_section; 231 unsigned char free_section_entry; 232 unsigned free_sectors; 233 234 unsigned free_sectors_threshold; 235 236 struct workqueue_struct *commit_wq; 237 struct work_struct commit_work; 238 239 struct workqueue_struct *writer_wq; 240 struct work_struct writer_work; 241 242 struct workqueue_struct *recalc_wq; 243 struct work_struct recalc_work; 244 u8 *recalc_buffer; 245 u8 *recalc_tags; 246 247 struct bio_list flush_bio_list; 248 249 unsigned long autocommit_jiffies; 250 struct timer_list autocommit_timer; 251 unsigned autocommit_msec; 252 253 wait_queue_head_t copy_to_journal_wait; 254 255 struct completion crypto_backoff; 256 257 bool journal_uptodate; 258 bool just_formatted; 259 bool recalculate_flag; 260 bool fix_padding; 261 bool discard; 262 263 struct alg_spec internal_hash_alg; 264 struct alg_spec journal_crypt_alg; 265 struct alg_spec journal_mac_alg; 266 267 atomic64_t number_of_mismatches; 268 269 struct notifier_block reboot_notifier; 270 }; 271 272 struct dm_integrity_range { 273 sector_t logical_sector; 274 sector_t n_sectors; 275 bool waiting; 276 union { 277 struct rb_node node; 278 struct { 279 struct task_struct *task; 280 struct list_head wait_entry; 281 }; 282 }; 283 }; 284 285 struct dm_integrity_io { 286 struct work_struct work; 287 288 struct dm_integrity_c *ic; 289 enum req_opf op; 290 bool fua; 291 292 struct dm_integrity_range range; 293 294 sector_t metadata_block; 295 unsigned metadata_offset; 296 297 atomic_t in_flight; 298 blk_status_t bi_status; 299 300 struct completion *completion; 301 302 struct dm_bio_details bio_details; 303 }; 304 305 struct journal_completion { 306 struct dm_integrity_c *ic; 307 atomic_t in_flight; 308 struct completion comp; 309 }; 310 311 struct journal_io { 312 struct dm_integrity_range range; 313 struct journal_completion *comp; 314 }; 315 316 struct bitmap_block_status { 317 struct work_struct work; 318 struct dm_integrity_c *ic; 319 unsigned idx; 320 unsigned long *bitmap; 321 struct bio_list bio_queue; 322 spinlock_t bio_queue_lock; 323 324 }; 325 326 static struct kmem_cache *journal_io_cache; 327 328 #define JOURNAL_IO_MEMPOOL 32 329 330 #ifdef DEBUG_PRINT 331 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 332 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 333 { 334 va_list args; 335 va_start(args, msg); 336 vprintk(msg, args); 337 va_end(args); 338 if (len) 339 pr_cont(":"); 340 while (len) { 341 pr_cont(" %02x", *bytes); 342 bytes++; 343 len--; 344 } 345 pr_cont("\n"); 346 } 347 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 348 #else 349 #define DEBUG_print(x, ...) do { } while (0) 350 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 351 #endif 352 353 static void dm_integrity_prepare(struct request *rq) 354 { 355 } 356 357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 358 { 359 } 360 361 /* 362 * DM Integrity profile, protection is performed layer above (dm-crypt) 363 */ 364 static const struct blk_integrity_profile dm_integrity_profile = { 365 .name = "DM-DIF-EXT-TAG", 366 .generate_fn = NULL, 367 .verify_fn = NULL, 368 .prepare_fn = dm_integrity_prepare, 369 .complete_fn = dm_integrity_complete, 370 }; 371 372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 373 static void integrity_bio_wait(struct work_struct *w); 374 static void dm_integrity_dtr(struct dm_target *ti); 375 376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 377 { 378 if (err == -EILSEQ) 379 atomic64_inc(&ic->number_of_mismatches); 380 if (!cmpxchg(&ic->failed, 0, err)) 381 DMERR("Error on %s: %d", msg, err); 382 } 383 384 static int dm_integrity_failed(struct dm_integrity_c *ic) 385 { 386 return READ_ONCE(ic->failed); 387 } 388 389 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 390 unsigned j, unsigned char seq) 391 { 392 /* 393 * Xor the number with section and sector, so that if a piece of 394 * journal is written at wrong place, it is detected. 395 */ 396 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 397 } 398 399 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 400 sector_t *area, sector_t *offset) 401 { 402 if (!ic->meta_dev) { 403 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 404 *area = data_sector >> log2_interleave_sectors; 405 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 406 } else { 407 *area = 0; 408 *offset = data_sector; 409 } 410 } 411 412 #define sector_to_block(ic, n) \ 413 do { \ 414 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 415 (n) >>= (ic)->sb->log2_sectors_per_block; \ 416 } while (0) 417 418 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 419 sector_t offset, unsigned *metadata_offset) 420 { 421 __u64 ms; 422 unsigned mo; 423 424 ms = area << ic->sb->log2_interleave_sectors; 425 if (likely(ic->log2_metadata_run >= 0)) 426 ms += area << ic->log2_metadata_run; 427 else 428 ms += area * ic->metadata_run; 429 ms >>= ic->log2_buffer_sectors; 430 431 sector_to_block(ic, offset); 432 433 if (likely(ic->log2_tag_size >= 0)) { 434 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 435 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 436 } else { 437 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 438 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 439 } 440 *metadata_offset = mo; 441 return ms; 442 } 443 444 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 445 { 446 sector_t result; 447 448 if (ic->meta_dev) 449 return offset; 450 451 result = area << ic->sb->log2_interleave_sectors; 452 if (likely(ic->log2_metadata_run >= 0)) 453 result += (area + 1) << ic->log2_metadata_run; 454 else 455 result += (area + 1) * ic->metadata_run; 456 457 result += (sector_t)ic->initial_sectors + offset; 458 result += ic->start; 459 460 return result; 461 } 462 463 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 464 { 465 if (unlikely(*sec_ptr >= ic->journal_sections)) 466 *sec_ptr -= ic->journal_sections; 467 } 468 469 static void sb_set_version(struct dm_integrity_c *ic) 470 { 471 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 472 ic->sb->version = SB_VERSION_4; 473 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 474 ic->sb->version = SB_VERSION_3; 475 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 476 ic->sb->version = SB_VERSION_2; 477 else 478 ic->sb->version = SB_VERSION_1; 479 } 480 481 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 482 { 483 struct dm_io_request io_req; 484 struct dm_io_region io_loc; 485 486 io_req.bi_op = op; 487 io_req.bi_op_flags = op_flags; 488 io_req.mem.type = DM_IO_KMEM; 489 io_req.mem.ptr.addr = ic->sb; 490 io_req.notify.fn = NULL; 491 io_req.client = ic->io; 492 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 493 io_loc.sector = ic->start; 494 io_loc.count = SB_SECTORS; 495 496 if (op == REQ_OP_WRITE) 497 sb_set_version(ic); 498 499 return dm_io(&io_req, 1, &io_loc, NULL); 500 } 501 502 #define BITMAP_OP_TEST_ALL_SET 0 503 #define BITMAP_OP_TEST_ALL_CLEAR 1 504 #define BITMAP_OP_SET 2 505 #define BITMAP_OP_CLEAR 3 506 507 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 508 sector_t sector, sector_t n_sectors, int mode) 509 { 510 unsigned long bit, end_bit, this_end_bit, page, end_page; 511 unsigned long *data; 512 513 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 514 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 515 sector, 516 n_sectors, 517 ic->sb->log2_sectors_per_block, 518 ic->log2_blocks_per_bitmap_bit, 519 mode); 520 BUG(); 521 } 522 523 if (unlikely(!n_sectors)) 524 return true; 525 526 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 527 end_bit = (sector + n_sectors - 1) >> 528 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 529 530 page = bit / (PAGE_SIZE * 8); 531 bit %= PAGE_SIZE * 8; 532 533 end_page = end_bit / (PAGE_SIZE * 8); 534 end_bit %= PAGE_SIZE * 8; 535 536 repeat: 537 if (page < end_page) { 538 this_end_bit = PAGE_SIZE * 8 - 1; 539 } else { 540 this_end_bit = end_bit; 541 } 542 543 data = lowmem_page_address(bitmap[page].page); 544 545 if (mode == BITMAP_OP_TEST_ALL_SET) { 546 while (bit <= this_end_bit) { 547 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 548 do { 549 if (data[bit / BITS_PER_LONG] != -1) 550 return false; 551 bit += BITS_PER_LONG; 552 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 553 continue; 554 } 555 if (!test_bit(bit, data)) 556 return false; 557 bit++; 558 } 559 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 560 while (bit <= this_end_bit) { 561 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 562 do { 563 if (data[bit / BITS_PER_LONG] != 0) 564 return false; 565 bit += BITS_PER_LONG; 566 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 567 continue; 568 } 569 if (test_bit(bit, data)) 570 return false; 571 bit++; 572 } 573 } else if (mode == BITMAP_OP_SET) { 574 while (bit <= this_end_bit) { 575 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 576 do { 577 data[bit / BITS_PER_LONG] = -1; 578 bit += BITS_PER_LONG; 579 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 580 continue; 581 } 582 __set_bit(bit, data); 583 bit++; 584 } 585 } else if (mode == BITMAP_OP_CLEAR) { 586 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 587 clear_page(data); 588 else while (bit <= this_end_bit) { 589 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 590 do { 591 data[bit / BITS_PER_LONG] = 0; 592 bit += BITS_PER_LONG; 593 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 594 continue; 595 } 596 __clear_bit(bit, data); 597 bit++; 598 } 599 } else { 600 BUG(); 601 } 602 603 if (unlikely(page < end_page)) { 604 bit = 0; 605 page++; 606 goto repeat; 607 } 608 609 return true; 610 } 611 612 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 613 { 614 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 615 unsigned i; 616 617 for (i = 0; i < n_bitmap_pages; i++) { 618 unsigned long *dst_data = lowmem_page_address(dst[i].page); 619 unsigned long *src_data = lowmem_page_address(src[i].page); 620 copy_page(dst_data, src_data); 621 } 622 } 623 624 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 625 { 626 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 627 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 628 629 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 630 return &ic->bbs[bitmap_block]; 631 } 632 633 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 634 bool e, const char *function) 635 { 636 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 637 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 638 639 if (unlikely(section >= ic->journal_sections) || 640 unlikely(offset >= limit)) { 641 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 642 function, section, offset, ic->journal_sections, limit); 643 BUG(); 644 } 645 #endif 646 } 647 648 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 649 unsigned *pl_index, unsigned *pl_offset) 650 { 651 unsigned sector; 652 653 access_journal_check(ic, section, offset, false, "page_list_location"); 654 655 sector = section * ic->journal_section_sectors + offset; 656 657 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 658 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 659 } 660 661 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 662 unsigned section, unsigned offset, unsigned *n_sectors) 663 { 664 unsigned pl_index, pl_offset; 665 char *va; 666 667 page_list_location(ic, section, offset, &pl_index, &pl_offset); 668 669 if (n_sectors) 670 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 671 672 va = lowmem_page_address(pl[pl_index].page); 673 674 return (struct journal_sector *)(va + pl_offset); 675 } 676 677 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 678 { 679 return access_page_list(ic, ic->journal, section, offset, NULL); 680 } 681 682 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 683 { 684 unsigned rel_sector, offset; 685 struct journal_sector *js; 686 687 access_journal_check(ic, section, n, true, "access_journal_entry"); 688 689 rel_sector = n % JOURNAL_BLOCK_SECTORS; 690 offset = n / JOURNAL_BLOCK_SECTORS; 691 692 js = access_journal(ic, section, rel_sector); 693 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 694 } 695 696 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 697 { 698 n <<= ic->sb->log2_sectors_per_block; 699 700 n += JOURNAL_BLOCK_SECTORS; 701 702 access_journal_check(ic, section, n, false, "access_journal_data"); 703 704 return access_journal(ic, section, n); 705 } 706 707 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 708 { 709 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 710 int r; 711 unsigned j, size; 712 713 desc->tfm = ic->journal_mac; 714 715 r = crypto_shash_init(desc); 716 if (unlikely(r)) { 717 dm_integrity_io_error(ic, "crypto_shash_init", r); 718 goto err; 719 } 720 721 for (j = 0; j < ic->journal_section_entries; j++) { 722 struct journal_entry *je = access_journal_entry(ic, section, j); 723 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 724 if (unlikely(r)) { 725 dm_integrity_io_error(ic, "crypto_shash_update", r); 726 goto err; 727 } 728 } 729 730 size = crypto_shash_digestsize(ic->journal_mac); 731 732 if (likely(size <= JOURNAL_MAC_SIZE)) { 733 r = crypto_shash_final(desc, result); 734 if (unlikely(r)) { 735 dm_integrity_io_error(ic, "crypto_shash_final", r); 736 goto err; 737 } 738 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 739 } else { 740 __u8 digest[HASH_MAX_DIGESTSIZE]; 741 742 if (WARN_ON(size > sizeof(digest))) { 743 dm_integrity_io_error(ic, "digest_size", -EINVAL); 744 goto err; 745 } 746 r = crypto_shash_final(desc, digest); 747 if (unlikely(r)) { 748 dm_integrity_io_error(ic, "crypto_shash_final", r); 749 goto err; 750 } 751 memcpy(result, digest, JOURNAL_MAC_SIZE); 752 } 753 754 return; 755 err: 756 memset(result, 0, JOURNAL_MAC_SIZE); 757 } 758 759 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 760 { 761 __u8 result[JOURNAL_MAC_SIZE]; 762 unsigned j; 763 764 if (!ic->journal_mac) 765 return; 766 767 section_mac(ic, section, result); 768 769 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 770 struct journal_sector *js = access_journal(ic, section, j); 771 772 if (likely(wr)) 773 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 774 else { 775 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 776 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 777 } 778 } 779 } 780 781 static void complete_journal_op(void *context) 782 { 783 struct journal_completion *comp = context; 784 BUG_ON(!atomic_read(&comp->in_flight)); 785 if (likely(atomic_dec_and_test(&comp->in_flight))) 786 complete(&comp->comp); 787 } 788 789 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 790 unsigned n_sections, struct journal_completion *comp) 791 { 792 struct async_submit_ctl submit; 793 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 794 unsigned pl_index, pl_offset, section_index; 795 struct page_list *source_pl, *target_pl; 796 797 if (likely(encrypt)) { 798 source_pl = ic->journal; 799 target_pl = ic->journal_io; 800 } else { 801 source_pl = ic->journal_io; 802 target_pl = ic->journal; 803 } 804 805 page_list_location(ic, section, 0, &pl_index, &pl_offset); 806 807 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 808 809 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 810 811 section_index = pl_index; 812 813 do { 814 size_t this_step; 815 struct page *src_pages[2]; 816 struct page *dst_page; 817 818 while (unlikely(pl_index == section_index)) { 819 unsigned dummy; 820 if (likely(encrypt)) 821 rw_section_mac(ic, section, true); 822 section++; 823 n_sections--; 824 if (!n_sections) 825 break; 826 page_list_location(ic, section, 0, §ion_index, &dummy); 827 } 828 829 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 830 dst_page = target_pl[pl_index].page; 831 src_pages[0] = source_pl[pl_index].page; 832 src_pages[1] = ic->journal_xor[pl_index].page; 833 834 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 835 836 pl_index++; 837 pl_offset = 0; 838 n_bytes -= this_step; 839 } while (n_bytes); 840 841 BUG_ON(n_sections); 842 843 async_tx_issue_pending_all(); 844 } 845 846 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 847 { 848 struct journal_completion *comp = req->data; 849 if (unlikely(err)) { 850 if (likely(err == -EINPROGRESS)) { 851 complete(&comp->ic->crypto_backoff); 852 return; 853 } 854 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 855 } 856 complete_journal_op(comp); 857 } 858 859 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 860 { 861 int r; 862 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 863 complete_journal_encrypt, comp); 864 if (likely(encrypt)) 865 r = crypto_skcipher_encrypt(req); 866 else 867 r = crypto_skcipher_decrypt(req); 868 if (likely(!r)) 869 return false; 870 if (likely(r == -EINPROGRESS)) 871 return true; 872 if (likely(r == -EBUSY)) { 873 wait_for_completion(&comp->ic->crypto_backoff); 874 reinit_completion(&comp->ic->crypto_backoff); 875 return true; 876 } 877 dm_integrity_io_error(comp->ic, "encrypt", r); 878 return false; 879 } 880 881 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 882 unsigned n_sections, struct journal_completion *comp) 883 { 884 struct scatterlist **source_sg; 885 struct scatterlist **target_sg; 886 887 atomic_add(2, &comp->in_flight); 888 889 if (likely(encrypt)) { 890 source_sg = ic->journal_scatterlist; 891 target_sg = ic->journal_io_scatterlist; 892 } else { 893 source_sg = ic->journal_io_scatterlist; 894 target_sg = ic->journal_scatterlist; 895 } 896 897 do { 898 struct skcipher_request *req; 899 unsigned ivsize; 900 char *iv; 901 902 if (likely(encrypt)) 903 rw_section_mac(ic, section, true); 904 905 req = ic->sk_requests[section]; 906 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 907 iv = req->iv; 908 909 memcpy(iv, iv + ivsize, ivsize); 910 911 req->src = source_sg[section]; 912 req->dst = target_sg[section]; 913 914 if (unlikely(do_crypt(encrypt, req, comp))) 915 atomic_inc(&comp->in_flight); 916 917 section++; 918 n_sections--; 919 } while (n_sections); 920 921 atomic_dec(&comp->in_flight); 922 complete_journal_op(comp); 923 } 924 925 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 926 unsigned n_sections, struct journal_completion *comp) 927 { 928 if (ic->journal_xor) 929 return xor_journal(ic, encrypt, section, n_sections, comp); 930 else 931 return crypt_journal(ic, encrypt, section, n_sections, comp); 932 } 933 934 static void complete_journal_io(unsigned long error, void *context) 935 { 936 struct journal_completion *comp = context; 937 if (unlikely(error != 0)) 938 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 939 complete_journal_op(comp); 940 } 941 942 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 943 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 944 { 945 struct dm_io_request io_req; 946 struct dm_io_region io_loc; 947 unsigned pl_index, pl_offset; 948 int r; 949 950 if (unlikely(dm_integrity_failed(ic))) { 951 if (comp) 952 complete_journal_io(-1UL, comp); 953 return; 954 } 955 956 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 957 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 958 959 io_req.bi_op = op; 960 io_req.bi_op_flags = op_flags; 961 io_req.mem.type = DM_IO_PAGE_LIST; 962 if (ic->journal_io) 963 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 964 else 965 io_req.mem.ptr.pl = &ic->journal[pl_index]; 966 io_req.mem.offset = pl_offset; 967 if (likely(comp != NULL)) { 968 io_req.notify.fn = complete_journal_io; 969 io_req.notify.context = comp; 970 } else { 971 io_req.notify.fn = NULL; 972 } 973 io_req.client = ic->io; 974 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 975 io_loc.sector = ic->start + SB_SECTORS + sector; 976 io_loc.count = n_sectors; 977 978 r = dm_io(&io_req, 1, &io_loc, NULL); 979 if (unlikely(r)) { 980 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 981 if (comp) { 982 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 983 complete_journal_io(-1UL, comp); 984 } 985 } 986 } 987 988 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 989 unsigned n_sections, struct journal_completion *comp) 990 { 991 unsigned sector, n_sectors; 992 993 sector = section * ic->journal_section_sectors; 994 n_sectors = n_sections * ic->journal_section_sectors; 995 996 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 997 } 998 999 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 1000 { 1001 struct journal_completion io_comp; 1002 struct journal_completion crypt_comp_1; 1003 struct journal_completion crypt_comp_2; 1004 unsigned i; 1005 1006 io_comp.ic = ic; 1007 init_completion(&io_comp.comp); 1008 1009 if (commit_start + commit_sections <= ic->journal_sections) { 1010 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1011 if (ic->journal_io) { 1012 crypt_comp_1.ic = ic; 1013 init_completion(&crypt_comp_1.comp); 1014 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1015 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1016 wait_for_completion_io(&crypt_comp_1.comp); 1017 } else { 1018 for (i = 0; i < commit_sections; i++) 1019 rw_section_mac(ic, commit_start + i, true); 1020 } 1021 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1022 commit_sections, &io_comp); 1023 } else { 1024 unsigned to_end; 1025 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1026 to_end = ic->journal_sections - commit_start; 1027 if (ic->journal_io) { 1028 crypt_comp_1.ic = ic; 1029 init_completion(&crypt_comp_1.comp); 1030 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1031 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1032 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1033 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1034 reinit_completion(&crypt_comp_1.comp); 1035 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1036 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1037 wait_for_completion_io(&crypt_comp_1.comp); 1038 } else { 1039 crypt_comp_2.ic = ic; 1040 init_completion(&crypt_comp_2.comp); 1041 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1042 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1043 wait_for_completion_io(&crypt_comp_1.comp); 1044 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1045 wait_for_completion_io(&crypt_comp_2.comp); 1046 } 1047 } else { 1048 for (i = 0; i < to_end; i++) 1049 rw_section_mac(ic, commit_start + i, true); 1050 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1051 for (i = 0; i < commit_sections - to_end; i++) 1052 rw_section_mac(ic, i, true); 1053 } 1054 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1055 } 1056 1057 wait_for_completion_io(&io_comp.comp); 1058 } 1059 1060 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1061 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1062 { 1063 struct dm_io_request io_req; 1064 struct dm_io_region io_loc; 1065 int r; 1066 unsigned sector, pl_index, pl_offset; 1067 1068 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1069 1070 if (unlikely(dm_integrity_failed(ic))) { 1071 fn(-1UL, data); 1072 return; 1073 } 1074 1075 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1076 1077 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1078 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1079 1080 io_req.bi_op = REQ_OP_WRITE; 1081 io_req.bi_op_flags = 0; 1082 io_req.mem.type = DM_IO_PAGE_LIST; 1083 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1084 io_req.mem.offset = pl_offset; 1085 io_req.notify.fn = fn; 1086 io_req.notify.context = data; 1087 io_req.client = ic->io; 1088 io_loc.bdev = ic->dev->bdev; 1089 io_loc.sector = target; 1090 io_loc.count = n_sectors; 1091 1092 r = dm_io(&io_req, 1, &io_loc, NULL); 1093 if (unlikely(r)) { 1094 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1095 fn(-1UL, data); 1096 } 1097 } 1098 1099 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1100 { 1101 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1102 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1103 } 1104 1105 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1106 { 1107 struct rb_node **n = &ic->in_progress.rb_node; 1108 struct rb_node *parent; 1109 1110 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1111 1112 if (likely(check_waiting)) { 1113 struct dm_integrity_range *range; 1114 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1115 if (unlikely(ranges_overlap(range, new_range))) 1116 return false; 1117 } 1118 } 1119 1120 parent = NULL; 1121 1122 while (*n) { 1123 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1124 1125 parent = *n; 1126 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1127 n = &range->node.rb_left; 1128 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1129 n = &range->node.rb_right; 1130 } else { 1131 return false; 1132 } 1133 } 1134 1135 rb_link_node(&new_range->node, parent, n); 1136 rb_insert_color(&new_range->node, &ic->in_progress); 1137 1138 return true; 1139 } 1140 1141 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1142 { 1143 rb_erase(&range->node, &ic->in_progress); 1144 while (unlikely(!list_empty(&ic->wait_list))) { 1145 struct dm_integrity_range *last_range = 1146 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1147 struct task_struct *last_range_task; 1148 last_range_task = last_range->task; 1149 list_del(&last_range->wait_entry); 1150 if (!add_new_range(ic, last_range, false)) { 1151 last_range->task = last_range_task; 1152 list_add(&last_range->wait_entry, &ic->wait_list); 1153 break; 1154 } 1155 last_range->waiting = false; 1156 wake_up_process(last_range_task); 1157 } 1158 } 1159 1160 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1161 { 1162 unsigned long flags; 1163 1164 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1165 remove_range_unlocked(ic, range); 1166 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1167 } 1168 1169 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1170 { 1171 new_range->waiting = true; 1172 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1173 new_range->task = current; 1174 do { 1175 __set_current_state(TASK_UNINTERRUPTIBLE); 1176 spin_unlock_irq(&ic->endio_wait.lock); 1177 io_schedule(); 1178 spin_lock_irq(&ic->endio_wait.lock); 1179 } while (unlikely(new_range->waiting)); 1180 } 1181 1182 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1183 { 1184 if (unlikely(!add_new_range(ic, new_range, true))) 1185 wait_and_add_new_range(ic, new_range); 1186 } 1187 1188 static void init_journal_node(struct journal_node *node) 1189 { 1190 RB_CLEAR_NODE(&node->node); 1191 node->sector = (sector_t)-1; 1192 } 1193 1194 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1195 { 1196 struct rb_node **link; 1197 struct rb_node *parent; 1198 1199 node->sector = sector; 1200 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1201 1202 link = &ic->journal_tree_root.rb_node; 1203 parent = NULL; 1204 1205 while (*link) { 1206 struct journal_node *j; 1207 parent = *link; 1208 j = container_of(parent, struct journal_node, node); 1209 if (sector < j->sector) 1210 link = &j->node.rb_left; 1211 else 1212 link = &j->node.rb_right; 1213 } 1214 1215 rb_link_node(&node->node, parent, link); 1216 rb_insert_color(&node->node, &ic->journal_tree_root); 1217 } 1218 1219 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1220 { 1221 BUG_ON(RB_EMPTY_NODE(&node->node)); 1222 rb_erase(&node->node, &ic->journal_tree_root); 1223 init_journal_node(node); 1224 } 1225 1226 #define NOT_FOUND (-1U) 1227 1228 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1229 { 1230 struct rb_node *n = ic->journal_tree_root.rb_node; 1231 unsigned found = NOT_FOUND; 1232 *next_sector = (sector_t)-1; 1233 while (n) { 1234 struct journal_node *j = container_of(n, struct journal_node, node); 1235 if (sector == j->sector) { 1236 found = j - ic->journal_tree; 1237 } 1238 if (sector < j->sector) { 1239 *next_sector = j->sector; 1240 n = j->node.rb_left; 1241 } else { 1242 n = j->node.rb_right; 1243 } 1244 } 1245 1246 return found; 1247 } 1248 1249 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1250 { 1251 struct journal_node *node, *next_node; 1252 struct rb_node *next; 1253 1254 if (unlikely(pos >= ic->journal_entries)) 1255 return false; 1256 node = &ic->journal_tree[pos]; 1257 if (unlikely(RB_EMPTY_NODE(&node->node))) 1258 return false; 1259 if (unlikely(node->sector != sector)) 1260 return false; 1261 1262 next = rb_next(&node->node); 1263 if (unlikely(!next)) 1264 return true; 1265 1266 next_node = container_of(next, struct journal_node, node); 1267 return next_node->sector != sector; 1268 } 1269 1270 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1271 { 1272 struct rb_node *next; 1273 struct journal_node *next_node; 1274 unsigned next_section; 1275 1276 BUG_ON(RB_EMPTY_NODE(&node->node)); 1277 1278 next = rb_next(&node->node); 1279 if (unlikely(!next)) 1280 return false; 1281 1282 next_node = container_of(next, struct journal_node, node); 1283 1284 if (next_node->sector != node->sector) 1285 return false; 1286 1287 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1288 if (next_section >= ic->committed_section && 1289 next_section < ic->committed_section + ic->n_committed_sections) 1290 return true; 1291 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1292 return true; 1293 1294 return false; 1295 } 1296 1297 #define TAG_READ 0 1298 #define TAG_WRITE 1 1299 #define TAG_CMP 2 1300 1301 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1302 unsigned *metadata_offset, unsigned total_size, int op) 1303 { 1304 #define MAY_BE_FILLER 1 1305 #define MAY_BE_HASH 2 1306 unsigned hash_offset = 0; 1307 unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1308 1309 do { 1310 unsigned char *data, *dp; 1311 struct dm_buffer *b; 1312 unsigned to_copy; 1313 int r; 1314 1315 r = dm_integrity_failed(ic); 1316 if (unlikely(r)) 1317 return r; 1318 1319 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1320 if (IS_ERR(data)) 1321 return PTR_ERR(data); 1322 1323 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1324 dp = data + *metadata_offset; 1325 if (op == TAG_READ) { 1326 memcpy(tag, dp, to_copy); 1327 } else if (op == TAG_WRITE) { 1328 memcpy(dp, tag, to_copy); 1329 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1330 } else { 1331 /* e.g.: op == TAG_CMP */ 1332 1333 if (likely(is_power_of_2(ic->tag_size))) { 1334 if (unlikely(memcmp(dp, tag, to_copy))) 1335 if (unlikely(!ic->discard) || 1336 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1337 goto thorough_test; 1338 } 1339 } else { 1340 unsigned i, ts; 1341 thorough_test: 1342 ts = total_size; 1343 1344 for (i = 0; i < to_copy; i++, ts--) { 1345 if (unlikely(dp[i] != tag[i])) 1346 may_be &= ~MAY_BE_HASH; 1347 if (likely(dp[i] != DISCARD_FILLER)) 1348 may_be &= ~MAY_BE_FILLER; 1349 hash_offset++; 1350 if (unlikely(hash_offset == ic->tag_size)) { 1351 if (unlikely(!may_be)) { 1352 dm_bufio_release(b); 1353 return ts; 1354 } 1355 hash_offset = 0; 1356 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1357 } 1358 } 1359 } 1360 } 1361 dm_bufio_release(b); 1362 1363 tag += to_copy; 1364 *metadata_offset += to_copy; 1365 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1366 (*metadata_block)++; 1367 *metadata_offset = 0; 1368 } 1369 1370 if (unlikely(!is_power_of_2(ic->tag_size))) { 1371 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1372 } 1373 1374 total_size -= to_copy; 1375 } while (unlikely(total_size)); 1376 1377 return 0; 1378 #undef MAY_BE_FILLER 1379 #undef MAY_BE_HASH 1380 } 1381 1382 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic) 1383 { 1384 int r; 1385 r = dm_bufio_write_dirty_buffers(ic->bufio); 1386 if (unlikely(r)) 1387 dm_integrity_io_error(ic, "writing tags", r); 1388 } 1389 1390 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1391 { 1392 DECLARE_WAITQUEUE(wait, current); 1393 __add_wait_queue(&ic->endio_wait, &wait); 1394 __set_current_state(TASK_UNINTERRUPTIBLE); 1395 spin_unlock_irq(&ic->endio_wait.lock); 1396 io_schedule(); 1397 spin_lock_irq(&ic->endio_wait.lock); 1398 __remove_wait_queue(&ic->endio_wait, &wait); 1399 } 1400 1401 static void autocommit_fn(struct timer_list *t) 1402 { 1403 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1404 1405 if (likely(!dm_integrity_failed(ic))) 1406 queue_work(ic->commit_wq, &ic->commit_work); 1407 } 1408 1409 static void schedule_autocommit(struct dm_integrity_c *ic) 1410 { 1411 if (!timer_pending(&ic->autocommit_timer)) 1412 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1413 } 1414 1415 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1416 { 1417 struct bio *bio; 1418 unsigned long flags; 1419 1420 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1421 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1422 bio_list_add(&ic->flush_bio_list, bio); 1423 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1424 1425 queue_work(ic->commit_wq, &ic->commit_work); 1426 } 1427 1428 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1429 { 1430 int r = dm_integrity_failed(ic); 1431 if (unlikely(r) && !bio->bi_status) 1432 bio->bi_status = errno_to_blk_status(r); 1433 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1434 unsigned long flags; 1435 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1436 bio_list_add(&ic->synchronous_bios, bio); 1437 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1438 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1439 return; 1440 } 1441 bio_endio(bio); 1442 } 1443 1444 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1445 { 1446 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1447 1448 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1449 submit_flush_bio(ic, dio); 1450 else 1451 do_endio(ic, bio); 1452 } 1453 1454 static void dec_in_flight(struct dm_integrity_io *dio) 1455 { 1456 if (atomic_dec_and_test(&dio->in_flight)) { 1457 struct dm_integrity_c *ic = dio->ic; 1458 struct bio *bio; 1459 1460 remove_range(ic, &dio->range); 1461 1462 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1463 schedule_autocommit(ic); 1464 1465 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1466 1467 if (unlikely(dio->bi_status) && !bio->bi_status) 1468 bio->bi_status = dio->bi_status; 1469 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1470 dio->range.logical_sector += dio->range.n_sectors; 1471 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1472 INIT_WORK(&dio->work, integrity_bio_wait); 1473 queue_work(ic->offload_wq, &dio->work); 1474 return; 1475 } 1476 do_endio_flush(ic, dio); 1477 } 1478 } 1479 1480 static void integrity_end_io(struct bio *bio) 1481 { 1482 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1483 1484 dm_bio_restore(&dio->bio_details, bio); 1485 if (bio->bi_integrity) 1486 bio->bi_opf |= REQ_INTEGRITY; 1487 1488 if (dio->completion) 1489 complete(dio->completion); 1490 1491 dec_in_flight(dio); 1492 } 1493 1494 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1495 const char *data, char *result) 1496 { 1497 __u64 sector_le = cpu_to_le64(sector); 1498 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1499 int r; 1500 unsigned digest_size; 1501 1502 req->tfm = ic->internal_hash; 1503 1504 r = crypto_shash_init(req); 1505 if (unlikely(r < 0)) { 1506 dm_integrity_io_error(ic, "crypto_shash_init", r); 1507 goto failed; 1508 } 1509 1510 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1511 if (unlikely(r < 0)) { 1512 dm_integrity_io_error(ic, "crypto_shash_update", r); 1513 goto failed; 1514 } 1515 1516 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1517 if (unlikely(r < 0)) { 1518 dm_integrity_io_error(ic, "crypto_shash_update", r); 1519 goto failed; 1520 } 1521 1522 r = crypto_shash_final(req, result); 1523 if (unlikely(r < 0)) { 1524 dm_integrity_io_error(ic, "crypto_shash_final", r); 1525 goto failed; 1526 } 1527 1528 digest_size = crypto_shash_digestsize(ic->internal_hash); 1529 if (unlikely(digest_size < ic->tag_size)) 1530 memset(result + digest_size, 0, ic->tag_size - digest_size); 1531 1532 return; 1533 1534 failed: 1535 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1536 get_random_bytes(result, ic->tag_size); 1537 } 1538 1539 static void integrity_metadata(struct work_struct *w) 1540 { 1541 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1542 struct dm_integrity_c *ic = dio->ic; 1543 1544 int r; 1545 1546 if (ic->internal_hash) { 1547 struct bvec_iter iter; 1548 struct bio_vec bv; 1549 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1550 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1551 char *checksums; 1552 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1553 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1554 sector_t sector; 1555 unsigned sectors_to_process; 1556 1557 if (unlikely(ic->mode == 'R')) 1558 goto skip_io; 1559 1560 if (likely(dio->op != REQ_OP_DISCARD)) 1561 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1562 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1563 else 1564 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1565 if (!checksums) { 1566 checksums = checksums_onstack; 1567 if (WARN_ON(extra_space && 1568 digest_size > sizeof(checksums_onstack))) { 1569 r = -EINVAL; 1570 goto error; 1571 } 1572 } 1573 1574 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1575 sector_t bi_sector = dio->bio_details.bi_iter.bi_sector; 1576 unsigned bi_size = dio->bio_details.bi_iter.bi_size; 1577 unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1578 unsigned max_blocks = max_size / ic->tag_size; 1579 memset(checksums, DISCARD_FILLER, max_size); 1580 1581 while (bi_size) { 1582 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1583 this_step_blocks = min(this_step_blocks, max_blocks); 1584 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1585 this_step_blocks * ic->tag_size, TAG_WRITE); 1586 if (unlikely(r)) { 1587 if (likely(checksums != checksums_onstack)) 1588 kfree(checksums); 1589 goto error; 1590 } 1591 1592 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) { 1593 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size); 1594 printk("BUGG: this_step_blocks: %u\n", this_step_blocks); 1595 BUG(); 1596 }*/ 1597 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1598 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block; 1599 } 1600 1601 if (likely(checksums != checksums_onstack)) 1602 kfree(checksums); 1603 goto skip_io; 1604 } 1605 1606 sector = dio->range.logical_sector; 1607 sectors_to_process = dio->range.n_sectors; 1608 1609 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1610 unsigned pos; 1611 char *mem, *checksums_ptr; 1612 1613 again: 1614 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1615 pos = 0; 1616 checksums_ptr = checksums; 1617 do { 1618 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1619 checksums_ptr += ic->tag_size; 1620 sectors_to_process -= ic->sectors_per_block; 1621 pos += ic->sectors_per_block << SECTOR_SHIFT; 1622 sector += ic->sectors_per_block; 1623 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1624 kunmap_atomic(mem); 1625 1626 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1627 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1628 if (unlikely(r)) { 1629 if (r > 0) { 1630 char b[BDEVNAME_SIZE]; 1631 DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b), 1632 (sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1633 r = -EILSEQ; 1634 atomic64_inc(&ic->number_of_mismatches); 1635 } 1636 if (likely(checksums != checksums_onstack)) 1637 kfree(checksums); 1638 goto error; 1639 } 1640 1641 if (!sectors_to_process) 1642 break; 1643 1644 if (unlikely(pos < bv.bv_len)) { 1645 bv.bv_offset += pos; 1646 bv.bv_len -= pos; 1647 goto again; 1648 } 1649 } 1650 1651 if (likely(checksums != checksums_onstack)) 1652 kfree(checksums); 1653 } else { 1654 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1655 1656 if (bip) { 1657 struct bio_vec biv; 1658 struct bvec_iter iter; 1659 unsigned data_to_process = dio->range.n_sectors; 1660 sector_to_block(ic, data_to_process); 1661 data_to_process *= ic->tag_size; 1662 1663 bip_for_each_vec(biv, bip, iter) { 1664 unsigned char *tag; 1665 unsigned this_len; 1666 1667 BUG_ON(PageHighMem(biv.bv_page)); 1668 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1669 this_len = min(biv.bv_len, data_to_process); 1670 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1671 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1672 if (unlikely(r)) 1673 goto error; 1674 data_to_process -= this_len; 1675 if (!data_to_process) 1676 break; 1677 } 1678 } 1679 } 1680 skip_io: 1681 dec_in_flight(dio); 1682 return; 1683 error: 1684 dio->bi_status = errno_to_blk_status(r); 1685 dec_in_flight(dio); 1686 } 1687 1688 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1689 { 1690 struct dm_integrity_c *ic = ti->private; 1691 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1692 struct bio_integrity_payload *bip; 1693 1694 sector_t area, offset; 1695 1696 dio->ic = ic; 1697 dio->bi_status = 0; 1698 dio->op = bio_op(bio); 1699 1700 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1701 if (ti->max_io_len) { 1702 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1703 unsigned log2_max_io_len = __fls(ti->max_io_len); 1704 sector_t start_boundary = sec >> log2_max_io_len; 1705 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1706 if (start_boundary < end_boundary) { 1707 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1708 dm_accept_partial_bio(bio, len); 1709 } 1710 } 1711 } 1712 1713 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1714 submit_flush_bio(ic, dio); 1715 return DM_MAPIO_SUBMITTED; 1716 } 1717 1718 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1719 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1720 if (unlikely(dio->fua)) { 1721 /* 1722 * Don't pass down the FUA flag because we have to flush 1723 * disk cache anyway. 1724 */ 1725 bio->bi_opf &= ~REQ_FUA; 1726 } 1727 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1728 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1729 dio->range.logical_sector, bio_sectors(bio), 1730 ic->provided_data_sectors); 1731 return DM_MAPIO_KILL; 1732 } 1733 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1734 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1735 ic->sectors_per_block, 1736 dio->range.logical_sector, bio_sectors(bio)); 1737 return DM_MAPIO_KILL; 1738 } 1739 1740 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1741 struct bvec_iter iter; 1742 struct bio_vec bv; 1743 bio_for_each_segment(bv, bio, iter) { 1744 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1745 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1746 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1747 return DM_MAPIO_KILL; 1748 } 1749 } 1750 } 1751 1752 bip = bio_integrity(bio); 1753 if (!ic->internal_hash) { 1754 if (bip) { 1755 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1756 if (ic->log2_tag_size >= 0) 1757 wanted_tag_size <<= ic->log2_tag_size; 1758 else 1759 wanted_tag_size *= ic->tag_size; 1760 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1761 DMERR("Invalid integrity data size %u, expected %u", 1762 bip->bip_iter.bi_size, wanted_tag_size); 1763 return DM_MAPIO_KILL; 1764 } 1765 } 1766 } else { 1767 if (unlikely(bip != NULL)) { 1768 DMERR("Unexpected integrity data when using internal hash"); 1769 return DM_MAPIO_KILL; 1770 } 1771 } 1772 1773 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 1774 return DM_MAPIO_KILL; 1775 1776 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1777 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1778 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1779 1780 dm_integrity_map_continue(dio, true); 1781 return DM_MAPIO_SUBMITTED; 1782 } 1783 1784 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1785 unsigned journal_section, unsigned journal_entry) 1786 { 1787 struct dm_integrity_c *ic = dio->ic; 1788 sector_t logical_sector; 1789 unsigned n_sectors; 1790 1791 logical_sector = dio->range.logical_sector; 1792 n_sectors = dio->range.n_sectors; 1793 do { 1794 struct bio_vec bv = bio_iovec(bio); 1795 char *mem; 1796 1797 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1798 bv.bv_len = n_sectors << SECTOR_SHIFT; 1799 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1800 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1801 retry_kmap: 1802 mem = kmap_atomic(bv.bv_page); 1803 if (likely(dio->op == REQ_OP_WRITE)) 1804 flush_dcache_page(bv.bv_page); 1805 1806 do { 1807 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1808 1809 if (unlikely(dio->op == REQ_OP_READ)) { 1810 struct journal_sector *js; 1811 char *mem_ptr; 1812 unsigned s; 1813 1814 if (unlikely(journal_entry_is_inprogress(je))) { 1815 flush_dcache_page(bv.bv_page); 1816 kunmap_atomic(mem); 1817 1818 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1819 goto retry_kmap; 1820 } 1821 smp_rmb(); 1822 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1823 js = access_journal_data(ic, journal_section, journal_entry); 1824 mem_ptr = mem + bv.bv_offset; 1825 s = 0; 1826 do { 1827 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1828 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1829 js++; 1830 mem_ptr += 1 << SECTOR_SHIFT; 1831 } while (++s < ic->sectors_per_block); 1832 #ifdef INTERNAL_VERIFY 1833 if (ic->internal_hash) { 1834 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1835 1836 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1837 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1838 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1839 logical_sector); 1840 } 1841 } 1842 #endif 1843 } 1844 1845 if (!ic->internal_hash) { 1846 struct bio_integrity_payload *bip = bio_integrity(bio); 1847 unsigned tag_todo = ic->tag_size; 1848 char *tag_ptr = journal_entry_tag(ic, je); 1849 1850 if (bip) do { 1851 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1852 unsigned tag_now = min(biv.bv_len, tag_todo); 1853 char *tag_addr; 1854 BUG_ON(PageHighMem(biv.bv_page)); 1855 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1856 if (likely(dio->op == REQ_OP_WRITE)) 1857 memcpy(tag_ptr, tag_addr, tag_now); 1858 else 1859 memcpy(tag_addr, tag_ptr, tag_now); 1860 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1861 tag_ptr += tag_now; 1862 tag_todo -= tag_now; 1863 } while (unlikely(tag_todo)); else { 1864 if (likely(dio->op == REQ_OP_WRITE)) 1865 memset(tag_ptr, 0, tag_todo); 1866 } 1867 } 1868 1869 if (likely(dio->op == REQ_OP_WRITE)) { 1870 struct journal_sector *js; 1871 unsigned s; 1872 1873 js = access_journal_data(ic, journal_section, journal_entry); 1874 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1875 1876 s = 0; 1877 do { 1878 je->last_bytes[s] = js[s].commit_id; 1879 } while (++s < ic->sectors_per_block); 1880 1881 if (ic->internal_hash) { 1882 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1883 if (unlikely(digest_size > ic->tag_size)) { 1884 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1885 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1886 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1887 } else 1888 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1889 } 1890 1891 journal_entry_set_sector(je, logical_sector); 1892 } 1893 logical_sector += ic->sectors_per_block; 1894 1895 journal_entry++; 1896 if (unlikely(journal_entry == ic->journal_section_entries)) { 1897 journal_entry = 0; 1898 journal_section++; 1899 wraparound_section(ic, &journal_section); 1900 } 1901 1902 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1903 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1904 1905 if (unlikely(dio->op == REQ_OP_READ)) 1906 flush_dcache_page(bv.bv_page); 1907 kunmap_atomic(mem); 1908 } while (n_sectors); 1909 1910 if (likely(dio->op == REQ_OP_WRITE)) { 1911 smp_mb(); 1912 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1913 wake_up(&ic->copy_to_journal_wait); 1914 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1915 queue_work(ic->commit_wq, &ic->commit_work); 1916 } else { 1917 schedule_autocommit(ic); 1918 } 1919 } else { 1920 remove_range(ic, &dio->range); 1921 } 1922 1923 if (unlikely(bio->bi_iter.bi_size)) { 1924 sector_t area, offset; 1925 1926 dio->range.logical_sector = logical_sector; 1927 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1928 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1929 return true; 1930 } 1931 1932 return false; 1933 } 1934 1935 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1936 { 1937 struct dm_integrity_c *ic = dio->ic; 1938 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1939 unsigned journal_section, journal_entry; 1940 unsigned journal_read_pos; 1941 struct completion read_comp; 1942 bool discard_retried = false; 1943 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 1944 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 1945 need_sync_io = true; 1946 1947 if (need_sync_io && from_map) { 1948 INIT_WORK(&dio->work, integrity_bio_wait); 1949 queue_work(ic->offload_wq, &dio->work); 1950 return; 1951 } 1952 1953 lock_retry: 1954 spin_lock_irq(&ic->endio_wait.lock); 1955 retry: 1956 if (unlikely(dm_integrity_failed(ic))) { 1957 spin_unlock_irq(&ic->endio_wait.lock); 1958 do_endio(ic, bio); 1959 return; 1960 } 1961 dio->range.n_sectors = bio_sectors(bio); 1962 journal_read_pos = NOT_FOUND; 1963 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 1964 if (dio->op == REQ_OP_WRITE) { 1965 unsigned next_entry, i, pos; 1966 unsigned ws, we, range_sectors; 1967 1968 dio->range.n_sectors = min(dio->range.n_sectors, 1969 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 1970 if (unlikely(!dio->range.n_sectors)) { 1971 if (from_map) 1972 goto offload_to_thread; 1973 sleep_on_endio_wait(ic); 1974 goto retry; 1975 } 1976 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 1977 ic->free_sectors -= range_sectors; 1978 journal_section = ic->free_section; 1979 journal_entry = ic->free_section_entry; 1980 1981 next_entry = ic->free_section_entry + range_sectors; 1982 ic->free_section_entry = next_entry % ic->journal_section_entries; 1983 ic->free_section += next_entry / ic->journal_section_entries; 1984 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 1985 wraparound_section(ic, &ic->free_section); 1986 1987 pos = journal_section * ic->journal_section_entries + journal_entry; 1988 ws = journal_section; 1989 we = journal_entry; 1990 i = 0; 1991 do { 1992 struct journal_entry *je; 1993 1994 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 1995 pos++; 1996 if (unlikely(pos >= ic->journal_entries)) 1997 pos = 0; 1998 1999 je = access_journal_entry(ic, ws, we); 2000 BUG_ON(!journal_entry_is_unused(je)); 2001 journal_entry_set_inprogress(je); 2002 we++; 2003 if (unlikely(we == ic->journal_section_entries)) { 2004 we = 0; 2005 ws++; 2006 wraparound_section(ic, &ws); 2007 } 2008 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2009 2010 spin_unlock_irq(&ic->endio_wait.lock); 2011 goto journal_read_write; 2012 } else { 2013 sector_t next_sector; 2014 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2015 if (likely(journal_read_pos == NOT_FOUND)) { 2016 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2017 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2018 } else { 2019 unsigned i; 2020 unsigned jp = journal_read_pos + 1; 2021 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2022 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2023 break; 2024 } 2025 dio->range.n_sectors = i; 2026 } 2027 } 2028 } 2029 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2030 /* 2031 * We must not sleep in the request routine because it could 2032 * stall bios on current->bio_list. 2033 * So, we offload the bio to a workqueue if we have to sleep. 2034 */ 2035 if (from_map) { 2036 offload_to_thread: 2037 spin_unlock_irq(&ic->endio_wait.lock); 2038 INIT_WORK(&dio->work, integrity_bio_wait); 2039 queue_work(ic->wait_wq, &dio->work); 2040 return; 2041 } 2042 if (journal_read_pos != NOT_FOUND) 2043 dio->range.n_sectors = ic->sectors_per_block; 2044 wait_and_add_new_range(ic, &dio->range); 2045 /* 2046 * wait_and_add_new_range drops the spinlock, so the journal 2047 * may have been changed arbitrarily. We need to recheck. 2048 * To simplify the code, we restrict I/O size to just one block. 2049 */ 2050 if (journal_read_pos != NOT_FOUND) { 2051 sector_t next_sector; 2052 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2053 if (unlikely(new_pos != journal_read_pos)) { 2054 remove_range_unlocked(ic, &dio->range); 2055 goto retry; 2056 } 2057 } 2058 } 2059 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2060 sector_t next_sector; 2061 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2062 if (unlikely(new_pos != NOT_FOUND) || 2063 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2064 remove_range_unlocked(ic, &dio->range); 2065 spin_unlock_irq(&ic->endio_wait.lock); 2066 queue_work(ic->commit_wq, &ic->commit_work); 2067 flush_workqueue(ic->commit_wq); 2068 queue_work(ic->writer_wq, &ic->writer_work); 2069 flush_workqueue(ic->writer_wq); 2070 discard_retried = true; 2071 goto lock_retry; 2072 } 2073 } 2074 spin_unlock_irq(&ic->endio_wait.lock); 2075 2076 if (unlikely(journal_read_pos != NOT_FOUND)) { 2077 journal_section = journal_read_pos / ic->journal_section_entries; 2078 journal_entry = journal_read_pos % ic->journal_section_entries; 2079 goto journal_read_write; 2080 } 2081 2082 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2083 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2084 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2085 struct bitmap_block_status *bbs; 2086 2087 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2088 spin_lock(&bbs->bio_queue_lock); 2089 bio_list_add(&bbs->bio_queue, bio); 2090 spin_unlock(&bbs->bio_queue_lock); 2091 queue_work(ic->writer_wq, &bbs->work); 2092 return; 2093 } 2094 } 2095 2096 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2097 2098 if (need_sync_io) { 2099 init_completion(&read_comp); 2100 dio->completion = &read_comp; 2101 } else 2102 dio->completion = NULL; 2103 2104 dm_bio_record(&dio->bio_details, bio); 2105 bio_set_dev(bio, ic->dev->bdev); 2106 bio->bi_integrity = NULL; 2107 bio->bi_opf &= ~REQ_INTEGRITY; 2108 bio->bi_end_io = integrity_end_io; 2109 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2110 2111 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2112 integrity_metadata(&dio->work); 2113 dm_integrity_flush_buffers(ic); 2114 2115 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2116 dio->completion = NULL; 2117 2118 submit_bio_noacct(bio); 2119 2120 return; 2121 } 2122 2123 submit_bio_noacct(bio); 2124 2125 if (need_sync_io) { 2126 wait_for_completion_io(&read_comp); 2127 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2128 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2129 goto skip_check; 2130 if (ic->mode == 'B') { 2131 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2132 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2133 goto skip_check; 2134 } 2135 2136 if (likely(!bio->bi_status)) 2137 integrity_metadata(&dio->work); 2138 else 2139 skip_check: 2140 dec_in_flight(dio); 2141 2142 } else { 2143 INIT_WORK(&dio->work, integrity_metadata); 2144 queue_work(ic->metadata_wq, &dio->work); 2145 } 2146 2147 return; 2148 2149 journal_read_write: 2150 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2151 goto lock_retry; 2152 2153 do_endio_flush(ic, dio); 2154 } 2155 2156 2157 static void integrity_bio_wait(struct work_struct *w) 2158 { 2159 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2160 2161 dm_integrity_map_continue(dio, false); 2162 } 2163 2164 static void pad_uncommitted(struct dm_integrity_c *ic) 2165 { 2166 if (ic->free_section_entry) { 2167 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2168 ic->free_section_entry = 0; 2169 ic->free_section++; 2170 wraparound_section(ic, &ic->free_section); 2171 ic->n_uncommitted_sections++; 2172 } 2173 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2174 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2175 ic->journal_section_entries + ic->free_sectors)) { 2176 DMCRIT("journal_sections %u, journal_section_entries %u, " 2177 "n_uncommitted_sections %u, n_committed_sections %u, " 2178 "journal_section_entries %u, free_sectors %u", 2179 ic->journal_sections, ic->journal_section_entries, 2180 ic->n_uncommitted_sections, ic->n_committed_sections, 2181 ic->journal_section_entries, ic->free_sectors); 2182 } 2183 } 2184 2185 static void integrity_commit(struct work_struct *w) 2186 { 2187 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2188 unsigned commit_start, commit_sections; 2189 unsigned i, j, n; 2190 struct bio *flushes; 2191 2192 del_timer(&ic->autocommit_timer); 2193 2194 spin_lock_irq(&ic->endio_wait.lock); 2195 flushes = bio_list_get(&ic->flush_bio_list); 2196 if (unlikely(ic->mode != 'J')) { 2197 spin_unlock_irq(&ic->endio_wait.lock); 2198 dm_integrity_flush_buffers(ic); 2199 goto release_flush_bios; 2200 } 2201 2202 pad_uncommitted(ic); 2203 commit_start = ic->uncommitted_section; 2204 commit_sections = ic->n_uncommitted_sections; 2205 spin_unlock_irq(&ic->endio_wait.lock); 2206 2207 if (!commit_sections) 2208 goto release_flush_bios; 2209 2210 i = commit_start; 2211 for (n = 0; n < commit_sections; n++) { 2212 for (j = 0; j < ic->journal_section_entries; j++) { 2213 struct journal_entry *je; 2214 je = access_journal_entry(ic, i, j); 2215 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2216 } 2217 for (j = 0; j < ic->journal_section_sectors; j++) { 2218 struct journal_sector *js; 2219 js = access_journal(ic, i, j); 2220 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2221 } 2222 i++; 2223 if (unlikely(i >= ic->journal_sections)) 2224 ic->commit_seq = next_commit_seq(ic->commit_seq); 2225 wraparound_section(ic, &i); 2226 } 2227 smp_rmb(); 2228 2229 write_journal(ic, commit_start, commit_sections); 2230 2231 spin_lock_irq(&ic->endio_wait.lock); 2232 ic->uncommitted_section += commit_sections; 2233 wraparound_section(ic, &ic->uncommitted_section); 2234 ic->n_uncommitted_sections -= commit_sections; 2235 ic->n_committed_sections += commit_sections; 2236 spin_unlock_irq(&ic->endio_wait.lock); 2237 2238 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2239 queue_work(ic->writer_wq, &ic->writer_work); 2240 2241 release_flush_bios: 2242 while (flushes) { 2243 struct bio *next = flushes->bi_next; 2244 flushes->bi_next = NULL; 2245 do_endio(ic, flushes); 2246 flushes = next; 2247 } 2248 } 2249 2250 static void complete_copy_from_journal(unsigned long error, void *context) 2251 { 2252 struct journal_io *io = context; 2253 struct journal_completion *comp = io->comp; 2254 struct dm_integrity_c *ic = comp->ic; 2255 remove_range(ic, &io->range); 2256 mempool_free(io, &ic->journal_io_mempool); 2257 if (unlikely(error != 0)) 2258 dm_integrity_io_error(ic, "copying from journal", -EIO); 2259 complete_journal_op(comp); 2260 } 2261 2262 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2263 struct journal_entry *je) 2264 { 2265 unsigned s = 0; 2266 do { 2267 js->commit_id = je->last_bytes[s]; 2268 js++; 2269 } while (++s < ic->sectors_per_block); 2270 } 2271 2272 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2273 unsigned write_sections, bool from_replay) 2274 { 2275 unsigned i, j, n; 2276 struct journal_completion comp; 2277 struct blk_plug plug; 2278 2279 blk_start_plug(&plug); 2280 2281 comp.ic = ic; 2282 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2283 init_completion(&comp.comp); 2284 2285 i = write_start; 2286 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2287 #ifndef INTERNAL_VERIFY 2288 if (unlikely(from_replay)) 2289 #endif 2290 rw_section_mac(ic, i, false); 2291 for (j = 0; j < ic->journal_section_entries; j++) { 2292 struct journal_entry *je = access_journal_entry(ic, i, j); 2293 sector_t sec, area, offset; 2294 unsigned k, l, next_loop; 2295 sector_t metadata_block; 2296 unsigned metadata_offset; 2297 struct journal_io *io; 2298 2299 if (journal_entry_is_unused(je)) 2300 continue; 2301 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2302 sec = journal_entry_get_sector(je); 2303 if (unlikely(from_replay)) { 2304 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2305 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2306 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2307 } 2308 } 2309 if (unlikely(sec >= ic->provided_data_sectors)) 2310 continue; 2311 get_area_and_offset(ic, sec, &area, &offset); 2312 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2313 for (k = j + 1; k < ic->journal_section_entries; k++) { 2314 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2315 sector_t sec2, area2, offset2; 2316 if (journal_entry_is_unused(je2)) 2317 break; 2318 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2319 sec2 = journal_entry_get_sector(je2); 2320 if (unlikely(sec2 >= ic->provided_data_sectors)) 2321 break; 2322 get_area_and_offset(ic, sec2, &area2, &offset2); 2323 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2324 break; 2325 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2326 } 2327 next_loop = k - 1; 2328 2329 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2330 io->comp = ∁ 2331 io->range.logical_sector = sec; 2332 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2333 2334 spin_lock_irq(&ic->endio_wait.lock); 2335 add_new_range_and_wait(ic, &io->range); 2336 2337 if (likely(!from_replay)) { 2338 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2339 2340 /* don't write if there is newer committed sector */ 2341 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2342 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2343 2344 journal_entry_set_unused(je2); 2345 remove_journal_node(ic, §ion_node[j]); 2346 j++; 2347 sec += ic->sectors_per_block; 2348 offset += ic->sectors_per_block; 2349 } 2350 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2351 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2352 2353 journal_entry_set_unused(je2); 2354 remove_journal_node(ic, §ion_node[k - 1]); 2355 k--; 2356 } 2357 if (j == k) { 2358 remove_range_unlocked(ic, &io->range); 2359 spin_unlock_irq(&ic->endio_wait.lock); 2360 mempool_free(io, &ic->journal_io_mempool); 2361 goto skip_io; 2362 } 2363 for (l = j; l < k; l++) { 2364 remove_journal_node(ic, §ion_node[l]); 2365 } 2366 } 2367 spin_unlock_irq(&ic->endio_wait.lock); 2368 2369 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2370 for (l = j; l < k; l++) { 2371 int r; 2372 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2373 2374 if ( 2375 #ifndef INTERNAL_VERIFY 2376 unlikely(from_replay) && 2377 #endif 2378 ic->internal_hash) { 2379 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2380 2381 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2382 (char *)access_journal_data(ic, i, l), test_tag); 2383 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2384 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2385 } 2386 2387 journal_entry_set_unused(je2); 2388 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2389 ic->tag_size, TAG_WRITE); 2390 if (unlikely(r)) { 2391 dm_integrity_io_error(ic, "reading tags", r); 2392 } 2393 } 2394 2395 atomic_inc(&comp.in_flight); 2396 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2397 (k - j) << ic->sb->log2_sectors_per_block, 2398 get_data_sector(ic, area, offset), 2399 complete_copy_from_journal, io); 2400 skip_io: 2401 j = next_loop; 2402 } 2403 } 2404 2405 dm_bufio_write_dirty_buffers_async(ic->bufio); 2406 2407 blk_finish_plug(&plug); 2408 2409 complete_journal_op(&comp); 2410 wait_for_completion_io(&comp.comp); 2411 2412 dm_integrity_flush_buffers(ic); 2413 } 2414 2415 static void integrity_writer(struct work_struct *w) 2416 { 2417 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2418 unsigned write_start, write_sections; 2419 2420 unsigned prev_free_sectors; 2421 2422 /* the following test is not needed, but it tests the replay code */ 2423 if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev) 2424 return; 2425 2426 spin_lock_irq(&ic->endio_wait.lock); 2427 write_start = ic->committed_section; 2428 write_sections = ic->n_committed_sections; 2429 spin_unlock_irq(&ic->endio_wait.lock); 2430 2431 if (!write_sections) 2432 return; 2433 2434 do_journal_write(ic, write_start, write_sections, false); 2435 2436 spin_lock_irq(&ic->endio_wait.lock); 2437 2438 ic->committed_section += write_sections; 2439 wraparound_section(ic, &ic->committed_section); 2440 ic->n_committed_sections -= write_sections; 2441 2442 prev_free_sectors = ic->free_sectors; 2443 ic->free_sectors += write_sections * ic->journal_section_entries; 2444 if (unlikely(!prev_free_sectors)) 2445 wake_up_locked(&ic->endio_wait); 2446 2447 spin_unlock_irq(&ic->endio_wait.lock); 2448 } 2449 2450 static void recalc_write_super(struct dm_integrity_c *ic) 2451 { 2452 int r; 2453 2454 dm_integrity_flush_buffers(ic); 2455 if (dm_integrity_failed(ic)) 2456 return; 2457 2458 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2459 if (unlikely(r)) 2460 dm_integrity_io_error(ic, "writing superblock", r); 2461 } 2462 2463 static void integrity_recalc(struct work_struct *w) 2464 { 2465 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2466 struct dm_integrity_range range; 2467 struct dm_io_request io_req; 2468 struct dm_io_region io_loc; 2469 sector_t area, offset; 2470 sector_t metadata_block; 2471 unsigned metadata_offset; 2472 sector_t logical_sector, n_sectors; 2473 __u8 *t; 2474 unsigned i; 2475 int r; 2476 unsigned super_counter = 0; 2477 2478 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2479 2480 spin_lock_irq(&ic->endio_wait.lock); 2481 2482 next_chunk: 2483 2484 if (unlikely(dm_post_suspending(ic->ti))) 2485 goto unlock_ret; 2486 2487 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2488 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2489 if (ic->mode == 'B') { 2490 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2491 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2492 } 2493 goto unlock_ret; 2494 } 2495 2496 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2497 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2498 if (!ic->meta_dev) 2499 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2500 2501 add_new_range_and_wait(ic, &range); 2502 spin_unlock_irq(&ic->endio_wait.lock); 2503 logical_sector = range.logical_sector; 2504 n_sectors = range.n_sectors; 2505 2506 if (ic->mode == 'B') { 2507 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2508 goto advance_and_next; 2509 } 2510 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2511 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2512 logical_sector += ic->sectors_per_block; 2513 n_sectors -= ic->sectors_per_block; 2514 cond_resched(); 2515 } 2516 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2517 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2518 n_sectors -= ic->sectors_per_block; 2519 cond_resched(); 2520 } 2521 get_area_and_offset(ic, logical_sector, &area, &offset); 2522 } 2523 2524 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2525 2526 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2527 recalc_write_super(ic); 2528 if (ic->mode == 'B') { 2529 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2530 } 2531 super_counter = 0; 2532 } 2533 2534 if (unlikely(dm_integrity_failed(ic))) 2535 goto err; 2536 2537 io_req.bi_op = REQ_OP_READ; 2538 io_req.bi_op_flags = 0; 2539 io_req.mem.type = DM_IO_VMA; 2540 io_req.mem.ptr.addr = ic->recalc_buffer; 2541 io_req.notify.fn = NULL; 2542 io_req.client = ic->io; 2543 io_loc.bdev = ic->dev->bdev; 2544 io_loc.sector = get_data_sector(ic, area, offset); 2545 io_loc.count = n_sectors; 2546 2547 r = dm_io(&io_req, 1, &io_loc, NULL); 2548 if (unlikely(r)) { 2549 dm_integrity_io_error(ic, "reading data", r); 2550 goto err; 2551 } 2552 2553 t = ic->recalc_tags; 2554 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2555 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2556 t += ic->tag_size; 2557 } 2558 2559 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2560 2561 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2562 if (unlikely(r)) { 2563 dm_integrity_io_error(ic, "writing tags", r); 2564 goto err; 2565 } 2566 2567 advance_and_next: 2568 cond_resched(); 2569 2570 spin_lock_irq(&ic->endio_wait.lock); 2571 remove_range_unlocked(ic, &range); 2572 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2573 goto next_chunk; 2574 2575 err: 2576 remove_range(ic, &range); 2577 return; 2578 2579 unlock_ret: 2580 spin_unlock_irq(&ic->endio_wait.lock); 2581 2582 recalc_write_super(ic); 2583 } 2584 2585 static void bitmap_block_work(struct work_struct *w) 2586 { 2587 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2588 struct dm_integrity_c *ic = bbs->ic; 2589 struct bio *bio; 2590 struct bio_list bio_queue; 2591 struct bio_list waiting; 2592 2593 bio_list_init(&waiting); 2594 2595 spin_lock(&bbs->bio_queue_lock); 2596 bio_queue = bbs->bio_queue; 2597 bio_list_init(&bbs->bio_queue); 2598 spin_unlock(&bbs->bio_queue_lock); 2599 2600 while ((bio = bio_list_pop(&bio_queue))) { 2601 struct dm_integrity_io *dio; 2602 2603 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2604 2605 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2606 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2607 remove_range(ic, &dio->range); 2608 INIT_WORK(&dio->work, integrity_bio_wait); 2609 queue_work(ic->offload_wq, &dio->work); 2610 } else { 2611 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2612 dio->range.n_sectors, BITMAP_OP_SET); 2613 bio_list_add(&waiting, bio); 2614 } 2615 } 2616 2617 if (bio_list_empty(&waiting)) 2618 return; 2619 2620 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2621 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2622 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2623 2624 while ((bio = bio_list_pop(&waiting))) { 2625 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2626 2627 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2628 dio->range.n_sectors, BITMAP_OP_SET); 2629 2630 remove_range(ic, &dio->range); 2631 INIT_WORK(&dio->work, integrity_bio_wait); 2632 queue_work(ic->offload_wq, &dio->work); 2633 } 2634 2635 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2636 } 2637 2638 static void bitmap_flush_work(struct work_struct *work) 2639 { 2640 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2641 struct dm_integrity_range range; 2642 unsigned long limit; 2643 struct bio *bio; 2644 2645 dm_integrity_flush_buffers(ic); 2646 2647 range.logical_sector = 0; 2648 range.n_sectors = ic->provided_data_sectors; 2649 2650 spin_lock_irq(&ic->endio_wait.lock); 2651 add_new_range_and_wait(ic, &range); 2652 spin_unlock_irq(&ic->endio_wait.lock); 2653 2654 dm_integrity_flush_buffers(ic); 2655 if (ic->meta_dev) 2656 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO); 2657 2658 limit = ic->provided_data_sectors; 2659 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2660 limit = le64_to_cpu(ic->sb->recalc_sector) 2661 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2662 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2663 } 2664 /*DEBUG_print("zeroing journal\n");*/ 2665 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2666 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2667 2668 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2669 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2670 2671 spin_lock_irq(&ic->endio_wait.lock); 2672 remove_range_unlocked(ic, &range); 2673 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2674 bio_endio(bio); 2675 spin_unlock_irq(&ic->endio_wait.lock); 2676 spin_lock_irq(&ic->endio_wait.lock); 2677 } 2678 spin_unlock_irq(&ic->endio_wait.lock); 2679 } 2680 2681 2682 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2683 unsigned n_sections, unsigned char commit_seq) 2684 { 2685 unsigned i, j, n; 2686 2687 if (!n_sections) 2688 return; 2689 2690 for (n = 0; n < n_sections; n++) { 2691 i = start_section + n; 2692 wraparound_section(ic, &i); 2693 for (j = 0; j < ic->journal_section_sectors; j++) { 2694 struct journal_sector *js = access_journal(ic, i, j); 2695 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2696 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2697 } 2698 for (j = 0; j < ic->journal_section_entries; j++) { 2699 struct journal_entry *je = access_journal_entry(ic, i, j); 2700 journal_entry_set_unused(je); 2701 } 2702 } 2703 2704 write_journal(ic, start_section, n_sections); 2705 } 2706 2707 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2708 { 2709 unsigned char k; 2710 for (k = 0; k < N_COMMIT_IDS; k++) { 2711 if (dm_integrity_commit_id(ic, i, j, k) == id) 2712 return k; 2713 } 2714 dm_integrity_io_error(ic, "journal commit id", -EIO); 2715 return -EIO; 2716 } 2717 2718 static void replay_journal(struct dm_integrity_c *ic) 2719 { 2720 unsigned i, j; 2721 bool used_commit_ids[N_COMMIT_IDS]; 2722 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2723 unsigned write_start, write_sections; 2724 unsigned continue_section; 2725 bool journal_empty; 2726 unsigned char unused, last_used, want_commit_seq; 2727 2728 if (ic->mode == 'R') 2729 return; 2730 2731 if (ic->journal_uptodate) 2732 return; 2733 2734 last_used = 0; 2735 write_start = 0; 2736 2737 if (!ic->just_formatted) { 2738 DEBUG_print("reading journal\n"); 2739 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2740 if (ic->journal_io) 2741 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2742 if (ic->journal_io) { 2743 struct journal_completion crypt_comp; 2744 crypt_comp.ic = ic; 2745 init_completion(&crypt_comp.comp); 2746 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2747 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2748 wait_for_completion(&crypt_comp.comp); 2749 } 2750 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2751 } 2752 2753 if (dm_integrity_failed(ic)) 2754 goto clear_journal; 2755 2756 journal_empty = true; 2757 memset(used_commit_ids, 0, sizeof used_commit_ids); 2758 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2759 for (i = 0; i < ic->journal_sections; i++) { 2760 for (j = 0; j < ic->journal_section_sectors; j++) { 2761 int k; 2762 struct journal_sector *js = access_journal(ic, i, j); 2763 k = find_commit_seq(ic, i, j, js->commit_id); 2764 if (k < 0) 2765 goto clear_journal; 2766 used_commit_ids[k] = true; 2767 max_commit_id_sections[k] = i; 2768 } 2769 if (journal_empty) { 2770 for (j = 0; j < ic->journal_section_entries; j++) { 2771 struct journal_entry *je = access_journal_entry(ic, i, j); 2772 if (!journal_entry_is_unused(je)) { 2773 journal_empty = false; 2774 break; 2775 } 2776 } 2777 } 2778 } 2779 2780 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2781 unused = N_COMMIT_IDS - 1; 2782 while (unused && !used_commit_ids[unused - 1]) 2783 unused--; 2784 } else { 2785 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2786 if (!used_commit_ids[unused]) 2787 break; 2788 if (unused == N_COMMIT_IDS) { 2789 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2790 goto clear_journal; 2791 } 2792 } 2793 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2794 unused, used_commit_ids[0], used_commit_ids[1], 2795 used_commit_ids[2], used_commit_ids[3]); 2796 2797 last_used = prev_commit_seq(unused); 2798 want_commit_seq = prev_commit_seq(last_used); 2799 2800 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2801 journal_empty = true; 2802 2803 write_start = max_commit_id_sections[last_used] + 1; 2804 if (unlikely(write_start >= ic->journal_sections)) 2805 want_commit_seq = next_commit_seq(want_commit_seq); 2806 wraparound_section(ic, &write_start); 2807 2808 i = write_start; 2809 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2810 for (j = 0; j < ic->journal_section_sectors; j++) { 2811 struct journal_sector *js = access_journal(ic, i, j); 2812 2813 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2814 /* 2815 * This could be caused by crash during writing. 2816 * We won't replay the inconsistent part of the 2817 * journal. 2818 */ 2819 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2820 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2821 goto brk; 2822 } 2823 } 2824 i++; 2825 if (unlikely(i >= ic->journal_sections)) 2826 want_commit_seq = next_commit_seq(want_commit_seq); 2827 wraparound_section(ic, &i); 2828 } 2829 brk: 2830 2831 if (!journal_empty) { 2832 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2833 write_sections, write_start, want_commit_seq); 2834 do_journal_write(ic, write_start, write_sections, true); 2835 } 2836 2837 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2838 continue_section = write_start; 2839 ic->commit_seq = want_commit_seq; 2840 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2841 } else { 2842 unsigned s; 2843 unsigned char erase_seq; 2844 clear_journal: 2845 DEBUG_print("clearing journal\n"); 2846 2847 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2848 s = write_start; 2849 init_journal(ic, s, 1, erase_seq); 2850 s++; 2851 wraparound_section(ic, &s); 2852 if (ic->journal_sections >= 2) { 2853 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2854 s += ic->journal_sections - 2; 2855 wraparound_section(ic, &s); 2856 init_journal(ic, s, 1, erase_seq); 2857 } 2858 2859 continue_section = 0; 2860 ic->commit_seq = next_commit_seq(erase_seq); 2861 } 2862 2863 ic->committed_section = continue_section; 2864 ic->n_committed_sections = 0; 2865 2866 ic->uncommitted_section = continue_section; 2867 ic->n_uncommitted_sections = 0; 2868 2869 ic->free_section = continue_section; 2870 ic->free_section_entry = 0; 2871 ic->free_sectors = ic->journal_entries; 2872 2873 ic->journal_tree_root = RB_ROOT; 2874 for (i = 0; i < ic->journal_entries; i++) 2875 init_journal_node(&ic->journal_tree[i]); 2876 } 2877 2878 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 2879 { 2880 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 2881 2882 if (ic->mode == 'B') { 2883 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 2884 ic->synchronous_mode = 1; 2885 2886 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2887 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2888 flush_workqueue(ic->commit_wq); 2889 } 2890 } 2891 2892 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 2893 { 2894 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 2895 2896 DEBUG_print("dm_integrity_reboot\n"); 2897 2898 dm_integrity_enter_synchronous_mode(ic); 2899 2900 return NOTIFY_DONE; 2901 } 2902 2903 static void dm_integrity_postsuspend(struct dm_target *ti) 2904 { 2905 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2906 int r; 2907 2908 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 2909 2910 del_timer_sync(&ic->autocommit_timer); 2911 2912 if (ic->recalc_wq) 2913 drain_workqueue(ic->recalc_wq); 2914 2915 if (ic->mode == 'B') 2916 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2917 2918 queue_work(ic->commit_wq, &ic->commit_work); 2919 drain_workqueue(ic->commit_wq); 2920 2921 if (ic->mode == 'J') { 2922 if (ic->meta_dev) 2923 queue_work(ic->writer_wq, &ic->writer_work); 2924 drain_workqueue(ic->writer_wq); 2925 dm_integrity_flush_buffers(ic); 2926 } 2927 2928 if (ic->mode == 'B') { 2929 dm_integrity_flush_buffers(ic); 2930 #if 1 2931 /* set to 0 to test bitmap replay code */ 2932 init_journal(ic, 0, ic->journal_sections, 0); 2933 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2934 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2935 if (unlikely(r)) 2936 dm_integrity_io_error(ic, "writing superblock", r); 2937 #endif 2938 } 2939 2940 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2941 2942 ic->journal_uptodate = true; 2943 } 2944 2945 static void dm_integrity_resume(struct dm_target *ti) 2946 { 2947 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2948 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 2949 int r; 2950 2951 DEBUG_print("resume\n"); 2952 2953 if (ic->provided_data_sectors != old_provided_data_sectors) { 2954 if (ic->provided_data_sectors > old_provided_data_sectors && 2955 ic->mode == 'B' && 2956 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 2957 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 2958 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2959 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 2960 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 2961 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2962 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2963 } 2964 2965 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 2966 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2967 if (unlikely(r)) 2968 dm_integrity_io_error(ic, "writing superblock", r); 2969 } 2970 2971 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 2972 DEBUG_print("resume dirty_bitmap\n"); 2973 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 2974 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2975 if (ic->mode == 'B') { 2976 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 2977 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 2978 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 2979 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 2980 BITMAP_OP_TEST_ALL_CLEAR)) { 2981 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2982 ic->sb->recalc_sector = cpu_to_le64(0); 2983 } 2984 } else { 2985 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 2986 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 2987 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 2988 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2989 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2990 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2991 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2992 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2993 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2994 ic->sb->recalc_sector = cpu_to_le64(0); 2995 } 2996 } else { 2997 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 2998 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) { 2999 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3000 ic->sb->recalc_sector = cpu_to_le64(0); 3001 } 3002 init_journal(ic, 0, ic->journal_sections, 0); 3003 replay_journal(ic); 3004 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3005 } 3006 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3007 if (unlikely(r)) 3008 dm_integrity_io_error(ic, "writing superblock", r); 3009 } else { 3010 replay_journal(ic); 3011 if (ic->mode == 'B') { 3012 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3013 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3014 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3015 if (unlikely(r)) 3016 dm_integrity_io_error(ic, "writing superblock", r); 3017 3018 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3019 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3020 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3021 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3022 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3023 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3024 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3025 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3026 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3027 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3028 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3029 } 3030 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3031 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3032 } 3033 } 3034 3035 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3036 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3037 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3038 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3039 if (recalc_pos < ic->provided_data_sectors) { 3040 queue_work(ic->recalc_wq, &ic->recalc_work); 3041 } else if (recalc_pos > ic->provided_data_sectors) { 3042 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3043 recalc_write_super(ic); 3044 } 3045 } 3046 3047 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3048 ic->reboot_notifier.next = NULL; 3049 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3050 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3051 3052 #if 0 3053 /* set to 1 to stress test synchronous mode */ 3054 dm_integrity_enter_synchronous_mode(ic); 3055 #endif 3056 } 3057 3058 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3059 unsigned status_flags, char *result, unsigned maxlen) 3060 { 3061 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3062 unsigned arg_count; 3063 size_t sz = 0; 3064 3065 switch (type) { 3066 case STATUSTYPE_INFO: 3067 DMEMIT("%llu %llu", 3068 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3069 ic->provided_data_sectors); 3070 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3071 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3072 else 3073 DMEMIT(" -"); 3074 break; 3075 3076 case STATUSTYPE_TABLE: { 3077 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3078 watermark_percentage += ic->journal_entries / 2; 3079 do_div(watermark_percentage, ic->journal_entries); 3080 arg_count = 3; 3081 arg_count += !!ic->meta_dev; 3082 arg_count += ic->sectors_per_block != 1; 3083 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3084 arg_count += ic->discard; 3085 arg_count += ic->mode == 'J'; 3086 arg_count += ic->mode == 'J'; 3087 arg_count += ic->mode == 'B'; 3088 arg_count += ic->mode == 'B'; 3089 arg_count += !!ic->internal_hash_alg.alg_string; 3090 arg_count += !!ic->journal_crypt_alg.alg_string; 3091 arg_count += !!ic->journal_mac_alg.alg_string; 3092 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3093 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3094 ic->tag_size, ic->mode, arg_count); 3095 if (ic->meta_dev) 3096 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3097 if (ic->sectors_per_block != 1) 3098 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3099 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3100 DMEMIT(" recalculate"); 3101 if (ic->discard) 3102 DMEMIT(" allow_discards"); 3103 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3104 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3105 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3106 if (ic->mode == 'J') { 3107 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 3108 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3109 } 3110 if (ic->mode == 'B') { 3111 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3112 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3113 } 3114 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3115 DMEMIT(" fix_padding"); 3116 3117 #define EMIT_ALG(a, n) \ 3118 do { \ 3119 if (ic->a.alg_string) { \ 3120 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3121 if (ic->a.key_string) \ 3122 DMEMIT(":%s", ic->a.key_string);\ 3123 } \ 3124 } while (0) 3125 EMIT_ALG(internal_hash_alg, "internal_hash"); 3126 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3127 EMIT_ALG(journal_mac_alg, "journal_mac"); 3128 break; 3129 } 3130 } 3131 } 3132 3133 static int dm_integrity_iterate_devices(struct dm_target *ti, 3134 iterate_devices_callout_fn fn, void *data) 3135 { 3136 struct dm_integrity_c *ic = ti->private; 3137 3138 if (!ic->meta_dev) 3139 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3140 else 3141 return fn(ti, ic->dev, 0, ti->len, data); 3142 } 3143 3144 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3145 { 3146 struct dm_integrity_c *ic = ti->private; 3147 3148 if (ic->sectors_per_block > 1) { 3149 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3150 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3151 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3152 } 3153 } 3154 3155 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3156 { 3157 unsigned sector_space = JOURNAL_SECTOR_DATA; 3158 3159 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3160 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3161 JOURNAL_ENTRY_ROUNDUP); 3162 3163 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3164 sector_space -= JOURNAL_MAC_PER_SECTOR; 3165 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3166 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3167 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3168 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3169 } 3170 3171 static int calculate_device_limits(struct dm_integrity_c *ic) 3172 { 3173 __u64 initial_sectors; 3174 3175 calculate_journal_section_size(ic); 3176 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3177 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3178 return -EINVAL; 3179 ic->initial_sectors = initial_sectors; 3180 3181 if (!ic->meta_dev) { 3182 sector_t last_sector, last_area, last_offset; 3183 3184 /* we have to maintain excessive padding for compatibility with existing volumes */ 3185 __u64 metadata_run_padding = 3186 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3187 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3188 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3189 3190 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3191 metadata_run_padding) >> SECTOR_SHIFT; 3192 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3193 ic->log2_metadata_run = __ffs(ic->metadata_run); 3194 else 3195 ic->log2_metadata_run = -1; 3196 3197 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3198 last_sector = get_data_sector(ic, last_area, last_offset); 3199 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3200 return -EINVAL; 3201 } else { 3202 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3203 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3204 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3205 meta_size <<= ic->log2_buffer_sectors; 3206 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3207 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3208 return -EINVAL; 3209 ic->metadata_run = 1; 3210 ic->log2_metadata_run = 0; 3211 } 3212 3213 return 0; 3214 } 3215 3216 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3217 { 3218 if (!ic->meta_dev) { 3219 int test_bit; 3220 ic->provided_data_sectors = 0; 3221 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3222 __u64 prev_data_sectors = ic->provided_data_sectors; 3223 3224 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3225 if (calculate_device_limits(ic)) 3226 ic->provided_data_sectors = prev_data_sectors; 3227 } 3228 } else { 3229 ic->provided_data_sectors = ic->data_device_sectors; 3230 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3231 } 3232 } 3233 3234 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3235 { 3236 unsigned journal_sections; 3237 int test_bit; 3238 3239 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3240 memcpy(ic->sb->magic, SB_MAGIC, 8); 3241 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3242 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3243 if (ic->journal_mac_alg.alg_string) 3244 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3245 3246 calculate_journal_section_size(ic); 3247 journal_sections = journal_sectors / ic->journal_section_sectors; 3248 if (!journal_sections) 3249 journal_sections = 1; 3250 3251 if (!ic->meta_dev) { 3252 if (ic->fix_padding) 3253 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3254 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3255 if (!interleave_sectors) 3256 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3257 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3258 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3259 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3260 3261 get_provided_data_sectors(ic); 3262 if (!ic->provided_data_sectors) 3263 return -EINVAL; 3264 } else { 3265 ic->sb->log2_interleave_sectors = 0; 3266 3267 get_provided_data_sectors(ic); 3268 if (!ic->provided_data_sectors) 3269 return -EINVAL; 3270 3271 try_smaller_buffer: 3272 ic->sb->journal_sections = cpu_to_le32(0); 3273 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3274 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3275 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3276 if (test_journal_sections > journal_sections) 3277 continue; 3278 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3279 if (calculate_device_limits(ic)) 3280 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3281 3282 } 3283 if (!le32_to_cpu(ic->sb->journal_sections)) { 3284 if (ic->log2_buffer_sectors > 3) { 3285 ic->log2_buffer_sectors--; 3286 goto try_smaller_buffer; 3287 } 3288 return -EINVAL; 3289 } 3290 } 3291 3292 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3293 3294 sb_set_version(ic); 3295 3296 return 0; 3297 } 3298 3299 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3300 { 3301 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3302 struct blk_integrity bi; 3303 3304 memset(&bi, 0, sizeof(bi)); 3305 bi.profile = &dm_integrity_profile; 3306 bi.tuple_size = ic->tag_size; 3307 bi.tag_size = bi.tuple_size; 3308 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3309 3310 blk_integrity_register(disk, &bi); 3311 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3312 } 3313 3314 static void dm_integrity_free_page_list(struct page_list *pl) 3315 { 3316 unsigned i; 3317 3318 if (!pl) 3319 return; 3320 for (i = 0; pl[i].page; i++) 3321 __free_page(pl[i].page); 3322 kvfree(pl); 3323 } 3324 3325 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3326 { 3327 struct page_list *pl; 3328 unsigned i; 3329 3330 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3331 if (!pl) 3332 return NULL; 3333 3334 for (i = 0; i < n_pages; i++) { 3335 pl[i].page = alloc_page(GFP_KERNEL); 3336 if (!pl[i].page) { 3337 dm_integrity_free_page_list(pl); 3338 return NULL; 3339 } 3340 if (i) 3341 pl[i - 1].next = &pl[i]; 3342 } 3343 pl[i].page = NULL; 3344 pl[i].next = NULL; 3345 3346 return pl; 3347 } 3348 3349 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3350 { 3351 unsigned i; 3352 for (i = 0; i < ic->journal_sections; i++) 3353 kvfree(sl[i]); 3354 kvfree(sl); 3355 } 3356 3357 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3358 struct page_list *pl) 3359 { 3360 struct scatterlist **sl; 3361 unsigned i; 3362 3363 sl = kvmalloc_array(ic->journal_sections, 3364 sizeof(struct scatterlist *), 3365 GFP_KERNEL | __GFP_ZERO); 3366 if (!sl) 3367 return NULL; 3368 3369 for (i = 0; i < ic->journal_sections; i++) { 3370 struct scatterlist *s; 3371 unsigned start_index, start_offset; 3372 unsigned end_index, end_offset; 3373 unsigned n_pages; 3374 unsigned idx; 3375 3376 page_list_location(ic, i, 0, &start_index, &start_offset); 3377 page_list_location(ic, i, ic->journal_section_sectors - 1, 3378 &end_index, &end_offset); 3379 3380 n_pages = (end_index - start_index + 1); 3381 3382 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3383 GFP_KERNEL); 3384 if (!s) { 3385 dm_integrity_free_journal_scatterlist(ic, sl); 3386 return NULL; 3387 } 3388 3389 sg_init_table(s, n_pages); 3390 for (idx = start_index; idx <= end_index; idx++) { 3391 char *va = lowmem_page_address(pl[idx].page); 3392 unsigned start = 0, end = PAGE_SIZE; 3393 if (idx == start_index) 3394 start = start_offset; 3395 if (idx == end_index) 3396 end = end_offset + (1 << SECTOR_SHIFT); 3397 sg_set_buf(&s[idx - start_index], va + start, end - start); 3398 } 3399 3400 sl[i] = s; 3401 } 3402 3403 return sl; 3404 } 3405 3406 static void free_alg(struct alg_spec *a) 3407 { 3408 kfree_sensitive(a->alg_string); 3409 kfree_sensitive(a->key); 3410 memset(a, 0, sizeof *a); 3411 } 3412 3413 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3414 { 3415 char *k; 3416 3417 free_alg(a); 3418 3419 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3420 if (!a->alg_string) 3421 goto nomem; 3422 3423 k = strchr(a->alg_string, ':'); 3424 if (k) { 3425 *k = 0; 3426 a->key_string = k + 1; 3427 if (strlen(a->key_string) & 1) 3428 goto inval; 3429 3430 a->key_size = strlen(a->key_string) / 2; 3431 a->key = kmalloc(a->key_size, GFP_KERNEL); 3432 if (!a->key) 3433 goto nomem; 3434 if (hex2bin(a->key, a->key_string, a->key_size)) 3435 goto inval; 3436 } 3437 3438 return 0; 3439 inval: 3440 *error = error_inval; 3441 return -EINVAL; 3442 nomem: 3443 *error = "Out of memory for an argument"; 3444 return -ENOMEM; 3445 } 3446 3447 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3448 char *error_alg, char *error_key) 3449 { 3450 int r; 3451 3452 if (a->alg_string) { 3453 *hash = crypto_alloc_shash(a->alg_string, 0, 0); 3454 if (IS_ERR(*hash)) { 3455 *error = error_alg; 3456 r = PTR_ERR(*hash); 3457 *hash = NULL; 3458 return r; 3459 } 3460 3461 if (a->key) { 3462 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3463 if (r) { 3464 *error = error_key; 3465 return r; 3466 } 3467 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3468 *error = error_key; 3469 return -ENOKEY; 3470 } 3471 } 3472 3473 return 0; 3474 } 3475 3476 static int create_journal(struct dm_integrity_c *ic, char **error) 3477 { 3478 int r = 0; 3479 unsigned i; 3480 __u64 journal_pages, journal_desc_size, journal_tree_size; 3481 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3482 struct skcipher_request *req = NULL; 3483 3484 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3485 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3486 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3487 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3488 3489 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3490 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3491 journal_desc_size = journal_pages * sizeof(struct page_list); 3492 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3493 *error = "Journal doesn't fit into memory"; 3494 r = -ENOMEM; 3495 goto bad; 3496 } 3497 ic->journal_pages = journal_pages; 3498 3499 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3500 if (!ic->journal) { 3501 *error = "Could not allocate memory for journal"; 3502 r = -ENOMEM; 3503 goto bad; 3504 } 3505 if (ic->journal_crypt_alg.alg_string) { 3506 unsigned ivsize, blocksize; 3507 struct journal_completion comp; 3508 3509 comp.ic = ic; 3510 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0); 3511 if (IS_ERR(ic->journal_crypt)) { 3512 *error = "Invalid journal cipher"; 3513 r = PTR_ERR(ic->journal_crypt); 3514 ic->journal_crypt = NULL; 3515 goto bad; 3516 } 3517 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3518 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3519 3520 if (ic->journal_crypt_alg.key) { 3521 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3522 ic->journal_crypt_alg.key_size); 3523 if (r) { 3524 *error = "Error setting encryption key"; 3525 goto bad; 3526 } 3527 } 3528 DEBUG_print("cipher %s, block size %u iv size %u\n", 3529 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3530 3531 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3532 if (!ic->journal_io) { 3533 *error = "Could not allocate memory for journal io"; 3534 r = -ENOMEM; 3535 goto bad; 3536 } 3537 3538 if (blocksize == 1) { 3539 struct scatterlist *sg; 3540 3541 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3542 if (!req) { 3543 *error = "Could not allocate crypt request"; 3544 r = -ENOMEM; 3545 goto bad; 3546 } 3547 3548 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3549 if (!crypt_iv) { 3550 *error = "Could not allocate iv"; 3551 r = -ENOMEM; 3552 goto bad; 3553 } 3554 3555 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3556 if (!ic->journal_xor) { 3557 *error = "Could not allocate memory for journal xor"; 3558 r = -ENOMEM; 3559 goto bad; 3560 } 3561 3562 sg = kvmalloc_array(ic->journal_pages + 1, 3563 sizeof(struct scatterlist), 3564 GFP_KERNEL); 3565 if (!sg) { 3566 *error = "Unable to allocate sg list"; 3567 r = -ENOMEM; 3568 goto bad; 3569 } 3570 sg_init_table(sg, ic->journal_pages + 1); 3571 for (i = 0; i < ic->journal_pages; i++) { 3572 char *va = lowmem_page_address(ic->journal_xor[i].page); 3573 clear_page(va); 3574 sg_set_buf(&sg[i], va, PAGE_SIZE); 3575 } 3576 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3577 3578 skcipher_request_set_crypt(req, sg, sg, 3579 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3580 init_completion(&comp.comp); 3581 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3582 if (do_crypt(true, req, &comp)) 3583 wait_for_completion(&comp.comp); 3584 kvfree(sg); 3585 r = dm_integrity_failed(ic); 3586 if (r) { 3587 *error = "Unable to encrypt journal"; 3588 goto bad; 3589 } 3590 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3591 3592 crypto_free_skcipher(ic->journal_crypt); 3593 ic->journal_crypt = NULL; 3594 } else { 3595 unsigned crypt_len = roundup(ivsize, blocksize); 3596 3597 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3598 if (!req) { 3599 *error = "Could not allocate crypt request"; 3600 r = -ENOMEM; 3601 goto bad; 3602 } 3603 3604 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3605 if (!crypt_iv) { 3606 *error = "Could not allocate iv"; 3607 r = -ENOMEM; 3608 goto bad; 3609 } 3610 3611 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3612 if (!crypt_data) { 3613 *error = "Unable to allocate crypt data"; 3614 r = -ENOMEM; 3615 goto bad; 3616 } 3617 3618 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3619 if (!ic->journal_scatterlist) { 3620 *error = "Unable to allocate sg list"; 3621 r = -ENOMEM; 3622 goto bad; 3623 } 3624 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3625 if (!ic->journal_io_scatterlist) { 3626 *error = "Unable to allocate sg list"; 3627 r = -ENOMEM; 3628 goto bad; 3629 } 3630 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3631 sizeof(struct skcipher_request *), 3632 GFP_KERNEL | __GFP_ZERO); 3633 if (!ic->sk_requests) { 3634 *error = "Unable to allocate sk requests"; 3635 r = -ENOMEM; 3636 goto bad; 3637 } 3638 for (i = 0; i < ic->journal_sections; i++) { 3639 struct scatterlist sg; 3640 struct skcipher_request *section_req; 3641 __u32 section_le = cpu_to_le32(i); 3642 3643 memset(crypt_iv, 0x00, ivsize); 3644 memset(crypt_data, 0x00, crypt_len); 3645 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3646 3647 sg_init_one(&sg, crypt_data, crypt_len); 3648 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3649 init_completion(&comp.comp); 3650 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3651 if (do_crypt(true, req, &comp)) 3652 wait_for_completion(&comp.comp); 3653 3654 r = dm_integrity_failed(ic); 3655 if (r) { 3656 *error = "Unable to generate iv"; 3657 goto bad; 3658 } 3659 3660 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3661 if (!section_req) { 3662 *error = "Unable to allocate crypt request"; 3663 r = -ENOMEM; 3664 goto bad; 3665 } 3666 section_req->iv = kmalloc_array(ivsize, 2, 3667 GFP_KERNEL); 3668 if (!section_req->iv) { 3669 skcipher_request_free(section_req); 3670 *error = "Unable to allocate iv"; 3671 r = -ENOMEM; 3672 goto bad; 3673 } 3674 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3675 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3676 ic->sk_requests[i] = section_req; 3677 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3678 } 3679 } 3680 } 3681 3682 for (i = 0; i < N_COMMIT_IDS; i++) { 3683 unsigned j; 3684 retest_commit_id: 3685 for (j = 0; j < i; j++) { 3686 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3687 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3688 goto retest_commit_id; 3689 } 3690 } 3691 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3692 } 3693 3694 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3695 if (journal_tree_size > ULONG_MAX) { 3696 *error = "Journal doesn't fit into memory"; 3697 r = -ENOMEM; 3698 goto bad; 3699 } 3700 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3701 if (!ic->journal_tree) { 3702 *error = "Could not allocate memory for journal tree"; 3703 r = -ENOMEM; 3704 } 3705 bad: 3706 kfree(crypt_data); 3707 kfree(crypt_iv); 3708 skcipher_request_free(req); 3709 3710 return r; 3711 } 3712 3713 /* 3714 * Construct a integrity mapping 3715 * 3716 * Arguments: 3717 * device 3718 * offset from the start of the device 3719 * tag size 3720 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3721 * number of optional arguments 3722 * optional arguments: 3723 * journal_sectors 3724 * interleave_sectors 3725 * buffer_sectors 3726 * journal_watermark 3727 * commit_time 3728 * meta_device 3729 * block_size 3730 * sectors_per_bit 3731 * bitmap_flush_interval 3732 * internal_hash 3733 * journal_crypt 3734 * journal_mac 3735 * recalculate 3736 */ 3737 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3738 { 3739 struct dm_integrity_c *ic; 3740 char dummy; 3741 int r; 3742 unsigned extra_args; 3743 struct dm_arg_set as; 3744 static const struct dm_arg _args[] = { 3745 {0, 9, "Invalid number of feature args"}, 3746 }; 3747 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3748 bool should_write_sb; 3749 __u64 threshold; 3750 unsigned long long start; 3751 __s8 log2_sectors_per_bitmap_bit = -1; 3752 __s8 log2_blocks_per_bitmap_bit; 3753 __u64 bits_in_journal; 3754 __u64 n_bitmap_bits; 3755 3756 #define DIRECT_ARGUMENTS 4 3757 3758 if (argc <= DIRECT_ARGUMENTS) { 3759 ti->error = "Invalid argument count"; 3760 return -EINVAL; 3761 } 3762 3763 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3764 if (!ic) { 3765 ti->error = "Cannot allocate integrity context"; 3766 return -ENOMEM; 3767 } 3768 ti->private = ic; 3769 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3770 ic->ti = ti; 3771 3772 ic->in_progress = RB_ROOT; 3773 INIT_LIST_HEAD(&ic->wait_list); 3774 init_waitqueue_head(&ic->endio_wait); 3775 bio_list_init(&ic->flush_bio_list); 3776 init_waitqueue_head(&ic->copy_to_journal_wait); 3777 init_completion(&ic->crypto_backoff); 3778 atomic64_set(&ic->number_of_mismatches, 0); 3779 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 3780 3781 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3782 if (r) { 3783 ti->error = "Device lookup failed"; 3784 goto bad; 3785 } 3786 3787 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3788 ti->error = "Invalid starting offset"; 3789 r = -EINVAL; 3790 goto bad; 3791 } 3792 ic->start = start; 3793 3794 if (strcmp(argv[2], "-")) { 3795 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3796 ti->error = "Invalid tag size"; 3797 r = -EINVAL; 3798 goto bad; 3799 } 3800 } 3801 3802 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 3803 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 3804 ic->mode = argv[3][0]; 3805 } else { 3806 ti->error = "Invalid mode (expecting J, B, D, R)"; 3807 r = -EINVAL; 3808 goto bad; 3809 } 3810 3811 journal_sectors = 0; 3812 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3813 buffer_sectors = DEFAULT_BUFFER_SECTORS; 3814 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 3815 sync_msec = DEFAULT_SYNC_MSEC; 3816 ic->sectors_per_block = 1; 3817 3818 as.argc = argc - DIRECT_ARGUMENTS; 3819 as.argv = argv + DIRECT_ARGUMENTS; 3820 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 3821 if (r) 3822 goto bad; 3823 3824 while (extra_args--) { 3825 const char *opt_string; 3826 unsigned val; 3827 unsigned long long llval; 3828 opt_string = dm_shift_arg(&as); 3829 if (!opt_string) { 3830 r = -EINVAL; 3831 ti->error = "Not enough feature arguments"; 3832 goto bad; 3833 } 3834 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 3835 journal_sectors = val ? val : 1; 3836 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 3837 interleave_sectors = val; 3838 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 3839 buffer_sectors = val; 3840 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 3841 journal_watermark = val; 3842 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 3843 sync_msec = val; 3844 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 3845 if (ic->meta_dev) { 3846 dm_put_device(ti, ic->meta_dev); 3847 ic->meta_dev = NULL; 3848 } 3849 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 3850 dm_table_get_mode(ti->table), &ic->meta_dev); 3851 if (r) { 3852 ti->error = "Device lookup failed"; 3853 goto bad; 3854 } 3855 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 3856 if (val < 1 << SECTOR_SHIFT || 3857 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 3858 (val & (val -1))) { 3859 r = -EINVAL; 3860 ti->error = "Invalid block_size argument"; 3861 goto bad; 3862 } 3863 ic->sectors_per_block = val >> SECTOR_SHIFT; 3864 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 3865 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 3866 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 3867 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 3868 r = -EINVAL; 3869 ti->error = "Invalid bitmap_flush_interval argument"; 3870 } 3871 ic->bitmap_flush_interval = msecs_to_jiffies(val); 3872 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 3873 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 3874 "Invalid internal_hash argument"); 3875 if (r) 3876 goto bad; 3877 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 3878 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 3879 "Invalid journal_crypt argument"); 3880 if (r) 3881 goto bad; 3882 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 3883 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 3884 "Invalid journal_mac argument"); 3885 if (r) 3886 goto bad; 3887 } else if (!strcmp(opt_string, "recalculate")) { 3888 ic->recalculate_flag = true; 3889 } else if (!strcmp(opt_string, "allow_discards")) { 3890 ic->discard = true; 3891 } else if (!strcmp(opt_string, "fix_padding")) { 3892 ic->fix_padding = true; 3893 } else { 3894 r = -EINVAL; 3895 ti->error = "Invalid argument"; 3896 goto bad; 3897 } 3898 } 3899 3900 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 3901 if (!ic->meta_dev) 3902 ic->meta_device_sectors = ic->data_device_sectors; 3903 else 3904 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 3905 3906 if (!journal_sectors) { 3907 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 3908 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 3909 } 3910 3911 if (!buffer_sectors) 3912 buffer_sectors = 1; 3913 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 3914 3915 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 3916 "Invalid internal hash", "Error setting internal hash key"); 3917 if (r) 3918 goto bad; 3919 3920 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 3921 "Invalid journal mac", "Error setting journal mac key"); 3922 if (r) 3923 goto bad; 3924 3925 if (!ic->tag_size) { 3926 if (!ic->internal_hash) { 3927 ti->error = "Unknown tag size"; 3928 r = -EINVAL; 3929 goto bad; 3930 } 3931 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 3932 } 3933 if (ic->tag_size > MAX_TAG_SIZE) { 3934 ti->error = "Too big tag size"; 3935 r = -EINVAL; 3936 goto bad; 3937 } 3938 if (!(ic->tag_size & (ic->tag_size - 1))) 3939 ic->log2_tag_size = __ffs(ic->tag_size); 3940 else 3941 ic->log2_tag_size = -1; 3942 3943 if (ic->mode == 'B' && !ic->internal_hash) { 3944 r = -EINVAL; 3945 ti->error = "Bitmap mode can be only used with internal hash"; 3946 goto bad; 3947 } 3948 3949 if (ic->discard && !ic->internal_hash) { 3950 r = -EINVAL; 3951 ti->error = "Discard can be only used with internal hash"; 3952 goto bad; 3953 } 3954 3955 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 3956 ic->autocommit_msec = sync_msec; 3957 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 3958 3959 ic->io = dm_io_client_create(); 3960 if (IS_ERR(ic->io)) { 3961 r = PTR_ERR(ic->io); 3962 ic->io = NULL; 3963 ti->error = "Cannot allocate dm io"; 3964 goto bad; 3965 } 3966 3967 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 3968 if (r) { 3969 ti->error = "Cannot allocate mempool"; 3970 goto bad; 3971 } 3972 3973 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 3974 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 3975 if (!ic->metadata_wq) { 3976 ti->error = "Cannot allocate workqueue"; 3977 r = -ENOMEM; 3978 goto bad; 3979 } 3980 3981 /* 3982 * If this workqueue were percpu, it would cause bio reordering 3983 * and reduced performance. 3984 */ 3985 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3986 if (!ic->wait_wq) { 3987 ti->error = "Cannot allocate workqueue"; 3988 r = -ENOMEM; 3989 goto bad; 3990 } 3991 3992 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 3993 METADATA_WORKQUEUE_MAX_ACTIVE); 3994 if (!ic->offload_wq) { 3995 ti->error = "Cannot allocate workqueue"; 3996 r = -ENOMEM; 3997 goto bad; 3998 } 3999 4000 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4001 if (!ic->commit_wq) { 4002 ti->error = "Cannot allocate workqueue"; 4003 r = -ENOMEM; 4004 goto bad; 4005 } 4006 INIT_WORK(&ic->commit_work, integrity_commit); 4007 4008 if (ic->mode == 'J' || ic->mode == 'B') { 4009 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4010 if (!ic->writer_wq) { 4011 ti->error = "Cannot allocate workqueue"; 4012 r = -ENOMEM; 4013 goto bad; 4014 } 4015 INIT_WORK(&ic->writer_work, integrity_writer); 4016 } 4017 4018 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4019 if (!ic->sb) { 4020 r = -ENOMEM; 4021 ti->error = "Cannot allocate superblock area"; 4022 goto bad; 4023 } 4024 4025 r = sync_rw_sb(ic, REQ_OP_READ, 0); 4026 if (r) { 4027 ti->error = "Error reading superblock"; 4028 goto bad; 4029 } 4030 should_write_sb = false; 4031 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4032 if (ic->mode != 'R') { 4033 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4034 r = -EINVAL; 4035 ti->error = "The device is not initialized"; 4036 goto bad; 4037 } 4038 } 4039 4040 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4041 if (r) { 4042 ti->error = "Could not initialize superblock"; 4043 goto bad; 4044 } 4045 if (ic->mode != 'R') 4046 should_write_sb = true; 4047 } 4048 4049 if (!ic->sb->version || ic->sb->version > SB_VERSION_4) { 4050 r = -EINVAL; 4051 ti->error = "Unknown version"; 4052 goto bad; 4053 } 4054 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4055 r = -EINVAL; 4056 ti->error = "Tag size doesn't match the information in superblock"; 4057 goto bad; 4058 } 4059 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4060 r = -EINVAL; 4061 ti->error = "Block size doesn't match the information in superblock"; 4062 goto bad; 4063 } 4064 if (!le32_to_cpu(ic->sb->journal_sections)) { 4065 r = -EINVAL; 4066 ti->error = "Corrupted superblock, journal_sections is 0"; 4067 goto bad; 4068 } 4069 /* make sure that ti->max_io_len doesn't overflow */ 4070 if (!ic->meta_dev) { 4071 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4072 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4073 r = -EINVAL; 4074 ti->error = "Invalid interleave_sectors in the superblock"; 4075 goto bad; 4076 } 4077 } else { 4078 if (ic->sb->log2_interleave_sectors) { 4079 r = -EINVAL; 4080 ti->error = "Invalid interleave_sectors in the superblock"; 4081 goto bad; 4082 } 4083 } 4084 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4085 r = -EINVAL; 4086 ti->error = "Journal mac mismatch"; 4087 goto bad; 4088 } 4089 4090 get_provided_data_sectors(ic); 4091 if (!ic->provided_data_sectors) { 4092 r = -EINVAL; 4093 ti->error = "The device is too small"; 4094 goto bad; 4095 } 4096 4097 try_smaller_buffer: 4098 r = calculate_device_limits(ic); 4099 if (r) { 4100 if (ic->meta_dev) { 4101 if (ic->log2_buffer_sectors > 3) { 4102 ic->log2_buffer_sectors--; 4103 goto try_smaller_buffer; 4104 } 4105 } 4106 ti->error = "The device is too small"; 4107 goto bad; 4108 } 4109 4110 if (log2_sectors_per_bitmap_bit < 0) 4111 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4112 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4113 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4114 4115 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4116 if (bits_in_journal > UINT_MAX) 4117 bits_in_journal = UINT_MAX; 4118 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4119 log2_sectors_per_bitmap_bit++; 4120 4121 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4122 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4123 if (should_write_sb) { 4124 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4125 } 4126 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4127 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4128 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4129 4130 if (!ic->meta_dev) 4131 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4132 4133 if (ti->len > ic->provided_data_sectors) { 4134 r = -EINVAL; 4135 ti->error = "Not enough provided sectors for requested mapping size"; 4136 goto bad; 4137 } 4138 4139 4140 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4141 threshold += 50; 4142 do_div(threshold, 100); 4143 ic->free_sectors_threshold = threshold; 4144 4145 DEBUG_print("initialized:\n"); 4146 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4147 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4148 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4149 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4150 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4151 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 4152 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4153 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4154 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT); 4155 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4156 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4157 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4158 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4159 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4160 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4161 4162 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4163 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4164 ic->sb->recalc_sector = cpu_to_le64(0); 4165 } 4166 4167 if (ic->internal_hash) { 4168 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4169 if (!ic->recalc_wq ) { 4170 ti->error = "Cannot allocate workqueue"; 4171 r = -ENOMEM; 4172 goto bad; 4173 } 4174 INIT_WORK(&ic->recalc_work, integrity_recalc); 4175 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 4176 if (!ic->recalc_buffer) { 4177 ti->error = "Cannot allocate buffer for recalculating"; 4178 r = -ENOMEM; 4179 goto bad; 4180 } 4181 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 4182 ic->tag_size, GFP_KERNEL); 4183 if (!ic->recalc_tags) { 4184 ti->error = "Cannot allocate tags for recalculating"; 4185 r = -ENOMEM; 4186 goto bad; 4187 } 4188 } 4189 4190 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4191 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 4192 if (IS_ERR(ic->bufio)) { 4193 r = PTR_ERR(ic->bufio); 4194 ti->error = "Cannot initialize dm-bufio"; 4195 ic->bufio = NULL; 4196 goto bad; 4197 } 4198 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4199 4200 if (ic->mode != 'R') { 4201 r = create_journal(ic, &ti->error); 4202 if (r) 4203 goto bad; 4204 4205 } 4206 4207 if (ic->mode == 'B') { 4208 unsigned i; 4209 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4210 4211 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4212 if (!ic->recalc_bitmap) { 4213 r = -ENOMEM; 4214 goto bad; 4215 } 4216 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4217 if (!ic->may_write_bitmap) { 4218 r = -ENOMEM; 4219 goto bad; 4220 } 4221 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4222 if (!ic->bbs) { 4223 r = -ENOMEM; 4224 goto bad; 4225 } 4226 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4227 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4228 struct bitmap_block_status *bbs = &ic->bbs[i]; 4229 unsigned sector, pl_index, pl_offset; 4230 4231 INIT_WORK(&bbs->work, bitmap_block_work); 4232 bbs->ic = ic; 4233 bbs->idx = i; 4234 bio_list_init(&bbs->bio_queue); 4235 spin_lock_init(&bbs->bio_queue_lock); 4236 4237 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4238 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4239 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4240 4241 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4242 } 4243 } 4244 4245 if (should_write_sb) { 4246 int r; 4247 4248 init_journal(ic, 0, ic->journal_sections, 0); 4249 r = dm_integrity_failed(ic); 4250 if (unlikely(r)) { 4251 ti->error = "Error initializing journal"; 4252 goto bad; 4253 } 4254 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4255 if (r) { 4256 ti->error = "Error initializing superblock"; 4257 goto bad; 4258 } 4259 ic->just_formatted = true; 4260 } 4261 4262 if (!ic->meta_dev) { 4263 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4264 if (r) 4265 goto bad; 4266 } 4267 if (ic->mode == 'B') { 4268 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4269 if (!max_io_len) 4270 max_io_len = 1U << 31; 4271 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4272 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4273 r = dm_set_target_max_io_len(ti, max_io_len); 4274 if (r) 4275 goto bad; 4276 } 4277 } 4278 4279 if (!ic->internal_hash) 4280 dm_integrity_set(ti, ic); 4281 4282 ti->num_flush_bios = 1; 4283 ti->flush_supported = true; 4284 if (ic->discard) 4285 ti->num_discard_bios = 1; 4286 4287 return 0; 4288 4289 bad: 4290 dm_integrity_dtr(ti); 4291 return r; 4292 } 4293 4294 static void dm_integrity_dtr(struct dm_target *ti) 4295 { 4296 struct dm_integrity_c *ic = ti->private; 4297 4298 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4299 BUG_ON(!list_empty(&ic->wait_list)); 4300 4301 if (ic->metadata_wq) 4302 destroy_workqueue(ic->metadata_wq); 4303 if (ic->wait_wq) 4304 destroy_workqueue(ic->wait_wq); 4305 if (ic->offload_wq) 4306 destroy_workqueue(ic->offload_wq); 4307 if (ic->commit_wq) 4308 destroy_workqueue(ic->commit_wq); 4309 if (ic->writer_wq) 4310 destroy_workqueue(ic->writer_wq); 4311 if (ic->recalc_wq) 4312 destroy_workqueue(ic->recalc_wq); 4313 vfree(ic->recalc_buffer); 4314 kvfree(ic->recalc_tags); 4315 kvfree(ic->bbs); 4316 if (ic->bufio) 4317 dm_bufio_client_destroy(ic->bufio); 4318 mempool_exit(&ic->journal_io_mempool); 4319 if (ic->io) 4320 dm_io_client_destroy(ic->io); 4321 if (ic->dev) 4322 dm_put_device(ti, ic->dev); 4323 if (ic->meta_dev) 4324 dm_put_device(ti, ic->meta_dev); 4325 dm_integrity_free_page_list(ic->journal); 4326 dm_integrity_free_page_list(ic->journal_io); 4327 dm_integrity_free_page_list(ic->journal_xor); 4328 dm_integrity_free_page_list(ic->recalc_bitmap); 4329 dm_integrity_free_page_list(ic->may_write_bitmap); 4330 if (ic->journal_scatterlist) 4331 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4332 if (ic->journal_io_scatterlist) 4333 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4334 if (ic->sk_requests) { 4335 unsigned i; 4336 4337 for (i = 0; i < ic->journal_sections; i++) { 4338 struct skcipher_request *req = ic->sk_requests[i]; 4339 if (req) { 4340 kfree_sensitive(req->iv); 4341 skcipher_request_free(req); 4342 } 4343 } 4344 kvfree(ic->sk_requests); 4345 } 4346 kvfree(ic->journal_tree); 4347 if (ic->sb) 4348 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4349 4350 if (ic->internal_hash) 4351 crypto_free_shash(ic->internal_hash); 4352 free_alg(&ic->internal_hash_alg); 4353 4354 if (ic->journal_crypt) 4355 crypto_free_skcipher(ic->journal_crypt); 4356 free_alg(&ic->journal_crypt_alg); 4357 4358 if (ic->journal_mac) 4359 crypto_free_shash(ic->journal_mac); 4360 free_alg(&ic->journal_mac_alg); 4361 4362 kfree(ic); 4363 } 4364 4365 static struct target_type integrity_target = { 4366 .name = "integrity", 4367 .version = {1, 6, 0}, 4368 .module = THIS_MODULE, 4369 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4370 .ctr = dm_integrity_ctr, 4371 .dtr = dm_integrity_dtr, 4372 .map = dm_integrity_map, 4373 .postsuspend = dm_integrity_postsuspend, 4374 .resume = dm_integrity_resume, 4375 .status = dm_integrity_status, 4376 .iterate_devices = dm_integrity_iterate_devices, 4377 .io_hints = dm_integrity_io_hints, 4378 }; 4379 4380 static int __init dm_integrity_init(void) 4381 { 4382 int r; 4383 4384 journal_io_cache = kmem_cache_create("integrity_journal_io", 4385 sizeof(struct journal_io), 0, 0, NULL); 4386 if (!journal_io_cache) { 4387 DMERR("can't allocate journal io cache"); 4388 return -ENOMEM; 4389 } 4390 4391 r = dm_register_target(&integrity_target); 4392 4393 if (r < 0) 4394 DMERR("register failed %d", r); 4395 4396 return r; 4397 } 4398 4399 static void __exit dm_integrity_exit(void) 4400 { 4401 dm_unregister_target(&integrity_target); 4402 kmem_cache_destroy(journal_io_cache); 4403 } 4404 4405 module_init(dm_integrity_init); 4406 module_exit(dm_integrity_exit); 4407 4408 MODULE_AUTHOR("Milan Broz"); 4409 MODULE_AUTHOR("Mikulas Patocka"); 4410 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4411 MODULE_LICENSE("GPL"); 4412