1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
6 *
7 * This file is released under the GPL.
8 */
9
10 #include "dm-bio-record.h"
11
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26
27 #include "dm-audit.h"
28
29 #define DM_MSG_PREFIX "integrity"
30
31 #define DEFAULT_INTERLEAVE_SECTORS 32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
34 #define DEFAULT_BUFFER_SECTORS 128
35 #define DEFAULT_JOURNAL_WATERMARK 50
36 #define DEFAULT_SYNC_MSEC 10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS 3
39 #define MAX_LOG2_INTERLEAVE_SECTORS 31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
41 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER 16
43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
44 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
45 #define DISCARD_FILLER 0xf6
46 #define SALT_SIZE 16
47
48 /*
49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50 * so it should not be enabled in the official kernel
51 */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54
55 /*
56 * On disk structures
57 */
58
59 #define SB_MAGIC "integrt"
60 #define SB_VERSION_1 1
61 #define SB_VERSION_2 2
62 #define SB_VERSION_3 3
63 #define SB_VERSION_4 4
64 #define SB_VERSION_5 5
65 #define SB_SECTORS 8
66 #define MAX_SECTORS_PER_BLOCK 8
67
68 struct superblock {
69 __u8 magic[8];
70 __u8 version;
71 __u8 log2_interleave_sectors;
72 __le16 integrity_tag_size;
73 __le32 journal_sections;
74 __le64 provided_data_sectors; /* userspace uses this value */
75 __le32 flags;
76 __u8 log2_sectors_per_block;
77 __u8 log2_blocks_per_bitmap_bit;
78 __u8 pad[2];
79 __le64 recalc_sector;
80 __u8 pad2[8];
81 __u8 salt[SALT_SIZE];
82 };
83
84 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
85 #define SB_FLAG_RECALCULATING 0x2
86 #define SB_FLAG_DIRTY_BITMAP 0x4
87 #define SB_FLAG_FIXED_PADDING 0x8
88 #define SB_FLAG_FIXED_HMAC 0x10
89
90 #define JOURNAL_ENTRY_ROUNDUP 8
91
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR 8
94
95 struct journal_entry {
96 union {
97 struct {
98 __le32 sector_lo;
99 __le32 sector_hi;
100 } s;
101 __le64 sector;
102 } u;
103 commit_id_t last_bytes[];
104 /* __u8 tag[0]; */
105 };
106
107 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
119
120 #define JOURNAL_BLOCK_SECTORS 8
121 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123
124 struct journal_sector {
125 struct_group(sectors,
126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 __u8 mac[JOURNAL_MAC_PER_SECTOR];
128 );
129 commit_id_t commit_id;
130 };
131
132 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133
134 #define METADATA_PADDING_SECTORS 8
135
136 #define N_COMMIT_IDS 4
137
prev_commit_seq(unsigned char seq)138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142
next_commit_seq(unsigned char seq)143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145 return (seq + 1) % N_COMMIT_IDS;
146 }
147
148 /*
149 * In-memory structures
150 */
151
152 struct journal_node {
153 struct rb_node node;
154 sector_t sector;
155 };
156
157 struct alg_spec {
158 char *alg_string;
159 char *key_string;
160 __u8 *key;
161 unsigned int key_size;
162 };
163
164 struct dm_integrity_c {
165 struct dm_dev *dev;
166 struct dm_dev *meta_dev;
167 unsigned int tag_size;
168 __s8 log2_tag_size;
169 sector_t start;
170 mempool_t journal_io_mempool;
171 struct dm_io_client *io;
172 struct dm_bufio_client *bufio;
173 struct workqueue_struct *metadata_wq;
174 struct superblock *sb;
175 unsigned int journal_pages;
176 unsigned int n_bitmap_blocks;
177
178 struct page_list *journal;
179 struct page_list *journal_io;
180 struct page_list *journal_xor;
181 struct page_list *recalc_bitmap;
182 struct page_list *may_write_bitmap;
183 struct bitmap_block_status *bbs;
184 unsigned int bitmap_flush_interval;
185 int synchronous_mode;
186 struct bio_list synchronous_bios;
187 struct delayed_work bitmap_flush_work;
188
189 struct crypto_skcipher *journal_crypt;
190 struct scatterlist **journal_scatterlist;
191 struct scatterlist **journal_io_scatterlist;
192 struct skcipher_request **sk_requests;
193
194 struct crypto_shash *journal_mac;
195
196 struct journal_node *journal_tree;
197 struct rb_root journal_tree_root;
198
199 sector_t provided_data_sectors;
200
201 unsigned short journal_entry_size;
202 unsigned char journal_entries_per_sector;
203 unsigned char journal_section_entries;
204 unsigned short journal_section_sectors;
205 unsigned int journal_sections;
206 unsigned int journal_entries;
207 sector_t data_device_sectors;
208 sector_t meta_device_sectors;
209 unsigned int initial_sectors;
210 unsigned int metadata_run;
211 __s8 log2_metadata_run;
212 __u8 log2_buffer_sectors;
213 __u8 sectors_per_block;
214 __u8 log2_blocks_per_bitmap_bit;
215
216 unsigned char mode;
217
218 int failed;
219
220 struct crypto_shash *internal_hash;
221
222 struct dm_target *ti;
223
224 /* these variables are locked with endio_wait.lock */
225 struct rb_root in_progress;
226 struct list_head wait_list;
227 wait_queue_head_t endio_wait;
228 struct workqueue_struct *wait_wq;
229 struct workqueue_struct *offload_wq;
230
231 unsigned char commit_seq;
232 commit_id_t commit_ids[N_COMMIT_IDS];
233
234 unsigned int committed_section;
235 unsigned int n_committed_sections;
236
237 unsigned int uncommitted_section;
238 unsigned int n_uncommitted_sections;
239
240 unsigned int free_section;
241 unsigned char free_section_entry;
242 unsigned int free_sectors;
243
244 unsigned int free_sectors_threshold;
245
246 struct workqueue_struct *commit_wq;
247 struct work_struct commit_work;
248
249 struct workqueue_struct *writer_wq;
250 struct work_struct writer_work;
251
252 struct workqueue_struct *recalc_wq;
253 struct work_struct recalc_work;
254
255 struct bio_list flush_bio_list;
256
257 unsigned long autocommit_jiffies;
258 struct timer_list autocommit_timer;
259 unsigned int autocommit_msec;
260
261 wait_queue_head_t copy_to_journal_wait;
262
263 struct completion crypto_backoff;
264
265 bool wrote_to_journal;
266 bool journal_uptodate;
267 bool just_formatted;
268 bool recalculate_flag;
269 bool reset_recalculate_flag;
270 bool discard;
271 bool fix_padding;
272 bool fix_hmac;
273 bool legacy_recalculate;
274
275 struct alg_spec internal_hash_alg;
276 struct alg_spec journal_crypt_alg;
277 struct alg_spec journal_mac_alg;
278
279 atomic64_t number_of_mismatches;
280
281 mempool_t recheck_pool;
282
283 struct notifier_block reboot_notifier;
284 };
285
286 struct dm_integrity_range {
287 sector_t logical_sector;
288 sector_t n_sectors;
289 bool waiting;
290 union {
291 struct rb_node node;
292 struct {
293 struct task_struct *task;
294 struct list_head wait_entry;
295 };
296 };
297 };
298
299 struct dm_integrity_io {
300 struct work_struct work;
301
302 struct dm_integrity_c *ic;
303 enum req_op op;
304 bool fua;
305
306 struct dm_integrity_range range;
307
308 sector_t metadata_block;
309 unsigned int metadata_offset;
310
311 atomic_t in_flight;
312 blk_status_t bi_status;
313
314 struct completion *completion;
315
316 struct dm_bio_details bio_details;
317 };
318
319 struct journal_completion {
320 struct dm_integrity_c *ic;
321 atomic_t in_flight;
322 struct completion comp;
323 };
324
325 struct journal_io {
326 struct dm_integrity_range range;
327 struct journal_completion *comp;
328 };
329
330 struct bitmap_block_status {
331 struct work_struct work;
332 struct dm_integrity_c *ic;
333 unsigned int idx;
334 unsigned long *bitmap;
335 struct bio_list bio_queue;
336 spinlock_t bio_queue_lock;
337
338 };
339
340 static struct kmem_cache *journal_io_cache;
341
342 #define JOURNAL_IO_MEMPOOL 32
343
344 #ifdef DEBUG_PRINT
345 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
346 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347 len ? ": " : "", len, bytes)
348 #else
349 #define DEBUG_print(x, ...) do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
351 #endif
352
dm_integrity_prepare(struct request * rq)353 static void dm_integrity_prepare(struct request *rq)
354 {
355 }
356
dm_integrity_complete(struct request * rq,unsigned int nr_bytes)357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358 {
359 }
360
361 /*
362 * DM Integrity profile, protection is performed layer above (dm-crypt)
363 */
364 static const struct blk_integrity_profile dm_integrity_profile = {
365 .name = "DM-DIF-EXT-TAG",
366 .generate_fn = NULL,
367 .verify_fn = NULL,
368 .prepare_fn = dm_integrity_prepare,
369 .complete_fn = dm_integrity_complete,
370 };
371
372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373 static void integrity_bio_wait(struct work_struct *w);
374 static void dm_integrity_dtr(struct dm_target *ti);
375
dm_integrity_io_error(struct dm_integrity_c * ic,const char * msg,int err)376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377 {
378 if (err == -EILSEQ)
379 atomic64_inc(&ic->number_of_mismatches);
380 if (!cmpxchg(&ic->failed, 0, err))
381 DMERR("Error on %s: %d", msg, err);
382 }
383
dm_integrity_failed(struct dm_integrity_c * ic)384 static int dm_integrity_failed(struct dm_integrity_c *ic)
385 {
386 return READ_ONCE(ic->failed);
387 }
388
dm_integrity_disable_recalculate(struct dm_integrity_c * ic)389 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
390 {
391 if (ic->legacy_recalculate)
392 return false;
393 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
394 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
395 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
396 return true;
397 return false;
398 }
399
dm_integrity_commit_id(struct dm_integrity_c * ic,unsigned int i,unsigned int j,unsigned char seq)400 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
401 unsigned int j, unsigned char seq)
402 {
403 /*
404 * Xor the number with section and sector, so that if a piece of
405 * journal is written at wrong place, it is detected.
406 */
407 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
408 }
409
get_area_and_offset(struct dm_integrity_c * ic,sector_t data_sector,sector_t * area,sector_t * offset)410 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
411 sector_t *area, sector_t *offset)
412 {
413 if (!ic->meta_dev) {
414 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
415 *area = data_sector >> log2_interleave_sectors;
416 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
417 } else {
418 *area = 0;
419 *offset = data_sector;
420 }
421 }
422
423 #define sector_to_block(ic, n) \
424 do { \
425 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
426 (n) >>= (ic)->sb->log2_sectors_per_block; \
427 } while (0)
428
get_metadata_sector_and_offset(struct dm_integrity_c * ic,sector_t area,sector_t offset,unsigned int * metadata_offset)429 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
430 sector_t offset, unsigned int *metadata_offset)
431 {
432 __u64 ms;
433 unsigned int mo;
434
435 ms = area << ic->sb->log2_interleave_sectors;
436 if (likely(ic->log2_metadata_run >= 0))
437 ms += area << ic->log2_metadata_run;
438 else
439 ms += area * ic->metadata_run;
440 ms >>= ic->log2_buffer_sectors;
441
442 sector_to_block(ic, offset);
443
444 if (likely(ic->log2_tag_size >= 0)) {
445 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
446 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
447 } else {
448 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
449 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
450 }
451 *metadata_offset = mo;
452 return ms;
453 }
454
get_data_sector(struct dm_integrity_c * ic,sector_t area,sector_t offset)455 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
456 {
457 sector_t result;
458
459 if (ic->meta_dev)
460 return offset;
461
462 result = area << ic->sb->log2_interleave_sectors;
463 if (likely(ic->log2_metadata_run >= 0))
464 result += (area + 1) << ic->log2_metadata_run;
465 else
466 result += (area + 1) * ic->metadata_run;
467
468 result += (sector_t)ic->initial_sectors + offset;
469 result += ic->start;
470
471 return result;
472 }
473
wraparound_section(struct dm_integrity_c * ic,unsigned int * sec_ptr)474 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
475 {
476 if (unlikely(*sec_ptr >= ic->journal_sections))
477 *sec_ptr -= ic->journal_sections;
478 }
479
sb_set_version(struct dm_integrity_c * ic)480 static void sb_set_version(struct dm_integrity_c *ic)
481 {
482 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
483 ic->sb->version = SB_VERSION_5;
484 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
485 ic->sb->version = SB_VERSION_4;
486 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
487 ic->sb->version = SB_VERSION_3;
488 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
489 ic->sb->version = SB_VERSION_2;
490 else
491 ic->sb->version = SB_VERSION_1;
492 }
493
sb_mac(struct dm_integrity_c * ic,bool wr)494 static int sb_mac(struct dm_integrity_c *ic, bool wr)
495 {
496 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
497 int r;
498 unsigned int size = crypto_shash_digestsize(ic->journal_mac);
499
500 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
501 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
502 return -EINVAL;
503 }
504
505 desc->tfm = ic->journal_mac;
506
507 r = crypto_shash_init(desc);
508 if (unlikely(r < 0)) {
509 dm_integrity_io_error(ic, "crypto_shash_init", r);
510 return r;
511 }
512
513 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
514 if (unlikely(r < 0)) {
515 dm_integrity_io_error(ic, "crypto_shash_update", r);
516 return r;
517 }
518
519 if (likely(wr)) {
520 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
521 if (unlikely(r < 0)) {
522 dm_integrity_io_error(ic, "crypto_shash_final", r);
523 return r;
524 }
525 } else {
526 __u8 result[HASH_MAX_DIGESTSIZE];
527
528 r = crypto_shash_final(desc, result);
529 if (unlikely(r < 0)) {
530 dm_integrity_io_error(ic, "crypto_shash_final", r);
531 return r;
532 }
533 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
534 dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
535 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
536 return -EILSEQ;
537 }
538 }
539
540 return 0;
541 }
542
sync_rw_sb(struct dm_integrity_c * ic,blk_opf_t opf)543 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
544 {
545 struct dm_io_request io_req;
546 struct dm_io_region io_loc;
547 const enum req_op op = opf & REQ_OP_MASK;
548 int r;
549
550 io_req.bi_opf = opf;
551 io_req.mem.type = DM_IO_KMEM;
552 io_req.mem.ptr.addr = ic->sb;
553 io_req.notify.fn = NULL;
554 io_req.client = ic->io;
555 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
556 io_loc.sector = ic->start;
557 io_loc.count = SB_SECTORS;
558
559 if (op == REQ_OP_WRITE) {
560 sb_set_version(ic);
561 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
562 r = sb_mac(ic, true);
563 if (unlikely(r))
564 return r;
565 }
566 }
567
568 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
569 if (unlikely(r))
570 return r;
571
572 if (op == REQ_OP_READ) {
573 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
574 r = sb_mac(ic, false);
575 if (unlikely(r))
576 return r;
577 }
578 }
579
580 return 0;
581 }
582
583 #define BITMAP_OP_TEST_ALL_SET 0
584 #define BITMAP_OP_TEST_ALL_CLEAR 1
585 #define BITMAP_OP_SET 2
586 #define BITMAP_OP_CLEAR 3
587
block_bitmap_op(struct dm_integrity_c * ic,struct page_list * bitmap,sector_t sector,sector_t n_sectors,int mode)588 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
589 sector_t sector, sector_t n_sectors, int mode)
590 {
591 unsigned long bit, end_bit, this_end_bit, page, end_page;
592 unsigned long *data;
593
594 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
595 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
596 sector,
597 n_sectors,
598 ic->sb->log2_sectors_per_block,
599 ic->log2_blocks_per_bitmap_bit,
600 mode);
601 BUG();
602 }
603
604 if (unlikely(!n_sectors))
605 return true;
606
607 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
608 end_bit = (sector + n_sectors - 1) >>
609 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
610
611 page = bit / (PAGE_SIZE * 8);
612 bit %= PAGE_SIZE * 8;
613
614 end_page = end_bit / (PAGE_SIZE * 8);
615 end_bit %= PAGE_SIZE * 8;
616
617 repeat:
618 if (page < end_page)
619 this_end_bit = PAGE_SIZE * 8 - 1;
620 else
621 this_end_bit = end_bit;
622
623 data = lowmem_page_address(bitmap[page].page);
624
625 if (mode == BITMAP_OP_TEST_ALL_SET) {
626 while (bit <= this_end_bit) {
627 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
628 do {
629 if (data[bit / BITS_PER_LONG] != -1)
630 return false;
631 bit += BITS_PER_LONG;
632 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
633 continue;
634 }
635 if (!test_bit(bit, data))
636 return false;
637 bit++;
638 }
639 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
640 while (bit <= this_end_bit) {
641 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
642 do {
643 if (data[bit / BITS_PER_LONG] != 0)
644 return false;
645 bit += BITS_PER_LONG;
646 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
647 continue;
648 }
649 if (test_bit(bit, data))
650 return false;
651 bit++;
652 }
653 } else if (mode == BITMAP_OP_SET) {
654 while (bit <= this_end_bit) {
655 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
656 do {
657 data[bit / BITS_PER_LONG] = -1;
658 bit += BITS_PER_LONG;
659 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
660 continue;
661 }
662 __set_bit(bit, data);
663 bit++;
664 }
665 } else if (mode == BITMAP_OP_CLEAR) {
666 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
667 clear_page(data);
668 else {
669 while (bit <= this_end_bit) {
670 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
671 do {
672 data[bit / BITS_PER_LONG] = 0;
673 bit += BITS_PER_LONG;
674 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
675 continue;
676 }
677 __clear_bit(bit, data);
678 bit++;
679 }
680 }
681 } else {
682 BUG();
683 }
684
685 if (unlikely(page < end_page)) {
686 bit = 0;
687 page++;
688 goto repeat;
689 }
690
691 return true;
692 }
693
block_bitmap_copy(struct dm_integrity_c * ic,struct page_list * dst,struct page_list * src)694 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
695 {
696 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
697 unsigned int i;
698
699 for (i = 0; i < n_bitmap_pages; i++) {
700 unsigned long *dst_data = lowmem_page_address(dst[i].page);
701 unsigned long *src_data = lowmem_page_address(src[i].page);
702
703 copy_page(dst_data, src_data);
704 }
705 }
706
sector_to_bitmap_block(struct dm_integrity_c * ic,sector_t sector)707 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
708 {
709 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
710 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
711
712 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
713 return &ic->bbs[bitmap_block];
714 }
715
access_journal_check(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,bool e,const char * function)716 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
717 bool e, const char *function)
718 {
719 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
720 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
721
722 if (unlikely(section >= ic->journal_sections) ||
723 unlikely(offset >= limit)) {
724 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
725 function, section, offset, ic->journal_sections, limit);
726 BUG();
727 }
728 #endif
729 }
730
page_list_location(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int * pl_index,unsigned int * pl_offset)731 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
732 unsigned int *pl_index, unsigned int *pl_offset)
733 {
734 unsigned int sector;
735
736 access_journal_check(ic, section, offset, false, "page_list_location");
737
738 sector = section * ic->journal_section_sectors + offset;
739
740 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
741 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
742 }
743
access_page_list(struct dm_integrity_c * ic,struct page_list * pl,unsigned int section,unsigned int offset,unsigned int * n_sectors)744 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
745 unsigned int section, unsigned int offset, unsigned int *n_sectors)
746 {
747 unsigned int pl_index, pl_offset;
748 char *va;
749
750 page_list_location(ic, section, offset, &pl_index, &pl_offset);
751
752 if (n_sectors)
753 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
754
755 va = lowmem_page_address(pl[pl_index].page);
756
757 return (struct journal_sector *)(va + pl_offset);
758 }
759
access_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset)760 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
761 {
762 return access_page_list(ic, ic->journal, section, offset, NULL);
763 }
764
access_journal_entry(struct dm_integrity_c * ic,unsigned int section,unsigned int n)765 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
766 {
767 unsigned int rel_sector, offset;
768 struct journal_sector *js;
769
770 access_journal_check(ic, section, n, true, "access_journal_entry");
771
772 rel_sector = n % JOURNAL_BLOCK_SECTORS;
773 offset = n / JOURNAL_BLOCK_SECTORS;
774
775 js = access_journal(ic, section, rel_sector);
776 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
777 }
778
access_journal_data(struct dm_integrity_c * ic,unsigned int section,unsigned int n)779 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
780 {
781 n <<= ic->sb->log2_sectors_per_block;
782
783 n += JOURNAL_BLOCK_SECTORS;
784
785 access_journal_check(ic, section, n, false, "access_journal_data");
786
787 return access_journal(ic, section, n);
788 }
789
section_mac(struct dm_integrity_c * ic,unsigned int section,__u8 result[JOURNAL_MAC_SIZE])790 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
791 {
792 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
793 int r;
794 unsigned int j, size;
795
796 desc->tfm = ic->journal_mac;
797
798 r = crypto_shash_init(desc);
799 if (unlikely(r < 0)) {
800 dm_integrity_io_error(ic, "crypto_shash_init", r);
801 goto err;
802 }
803
804 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
805 __le64 section_le;
806
807 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
808 if (unlikely(r < 0)) {
809 dm_integrity_io_error(ic, "crypto_shash_update", r);
810 goto err;
811 }
812
813 section_le = cpu_to_le64(section);
814 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le));
815 if (unlikely(r < 0)) {
816 dm_integrity_io_error(ic, "crypto_shash_update", r);
817 goto err;
818 }
819 }
820
821 for (j = 0; j < ic->journal_section_entries; j++) {
822 struct journal_entry *je = access_journal_entry(ic, section, j);
823
824 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
825 if (unlikely(r < 0)) {
826 dm_integrity_io_error(ic, "crypto_shash_update", r);
827 goto err;
828 }
829 }
830
831 size = crypto_shash_digestsize(ic->journal_mac);
832
833 if (likely(size <= JOURNAL_MAC_SIZE)) {
834 r = crypto_shash_final(desc, result);
835 if (unlikely(r < 0)) {
836 dm_integrity_io_error(ic, "crypto_shash_final", r);
837 goto err;
838 }
839 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
840 } else {
841 __u8 digest[HASH_MAX_DIGESTSIZE];
842
843 if (WARN_ON(size > sizeof(digest))) {
844 dm_integrity_io_error(ic, "digest_size", -EINVAL);
845 goto err;
846 }
847 r = crypto_shash_final(desc, digest);
848 if (unlikely(r < 0)) {
849 dm_integrity_io_error(ic, "crypto_shash_final", r);
850 goto err;
851 }
852 memcpy(result, digest, JOURNAL_MAC_SIZE);
853 }
854
855 return;
856 err:
857 memset(result, 0, JOURNAL_MAC_SIZE);
858 }
859
rw_section_mac(struct dm_integrity_c * ic,unsigned int section,bool wr)860 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
861 {
862 __u8 result[JOURNAL_MAC_SIZE];
863 unsigned int j;
864
865 if (!ic->journal_mac)
866 return;
867
868 section_mac(ic, section, result);
869
870 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
871 struct journal_sector *js = access_journal(ic, section, j);
872
873 if (likely(wr))
874 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
875 else {
876 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
877 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
878 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
879 }
880 }
881 }
882 }
883
complete_journal_op(void * context)884 static void complete_journal_op(void *context)
885 {
886 struct journal_completion *comp = context;
887
888 BUG_ON(!atomic_read(&comp->in_flight));
889 if (likely(atomic_dec_and_test(&comp->in_flight)))
890 complete(&comp->comp);
891 }
892
xor_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
894 unsigned int n_sections, struct journal_completion *comp)
895 {
896 struct async_submit_ctl submit;
897 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
898 unsigned int pl_index, pl_offset, section_index;
899 struct page_list *source_pl, *target_pl;
900
901 if (likely(encrypt)) {
902 source_pl = ic->journal;
903 target_pl = ic->journal_io;
904 } else {
905 source_pl = ic->journal_io;
906 target_pl = ic->journal;
907 }
908
909 page_list_location(ic, section, 0, &pl_index, &pl_offset);
910
911 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
912
913 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
914
915 section_index = pl_index;
916
917 do {
918 size_t this_step;
919 struct page *src_pages[2];
920 struct page *dst_page;
921
922 while (unlikely(pl_index == section_index)) {
923 unsigned int dummy;
924
925 if (likely(encrypt))
926 rw_section_mac(ic, section, true);
927 section++;
928 n_sections--;
929 if (!n_sections)
930 break;
931 page_list_location(ic, section, 0, §ion_index, &dummy);
932 }
933
934 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
935 dst_page = target_pl[pl_index].page;
936 src_pages[0] = source_pl[pl_index].page;
937 src_pages[1] = ic->journal_xor[pl_index].page;
938
939 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
940
941 pl_index++;
942 pl_offset = 0;
943 n_bytes -= this_step;
944 } while (n_bytes);
945
946 BUG_ON(n_sections);
947
948 async_tx_issue_pending_all();
949 }
950
complete_journal_encrypt(void * data,int err)951 static void complete_journal_encrypt(void *data, int err)
952 {
953 struct journal_completion *comp = data;
954
955 if (unlikely(err)) {
956 if (likely(err == -EINPROGRESS)) {
957 complete(&comp->ic->crypto_backoff);
958 return;
959 }
960 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
961 }
962 complete_journal_op(comp);
963 }
964
do_crypt(bool encrypt,struct skcipher_request * req,struct journal_completion * comp)965 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
966 {
967 int r;
968
969 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
970 complete_journal_encrypt, comp);
971 if (likely(encrypt))
972 r = crypto_skcipher_encrypt(req);
973 else
974 r = crypto_skcipher_decrypt(req);
975 if (likely(!r))
976 return false;
977 if (likely(r == -EINPROGRESS))
978 return true;
979 if (likely(r == -EBUSY)) {
980 wait_for_completion(&comp->ic->crypto_backoff);
981 reinit_completion(&comp->ic->crypto_backoff);
982 return true;
983 }
984 dm_integrity_io_error(comp->ic, "encrypt", r);
985 return false;
986 }
987
crypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)988 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
989 unsigned int n_sections, struct journal_completion *comp)
990 {
991 struct scatterlist **source_sg;
992 struct scatterlist **target_sg;
993
994 atomic_add(2, &comp->in_flight);
995
996 if (likely(encrypt)) {
997 source_sg = ic->journal_scatterlist;
998 target_sg = ic->journal_io_scatterlist;
999 } else {
1000 source_sg = ic->journal_io_scatterlist;
1001 target_sg = ic->journal_scatterlist;
1002 }
1003
1004 do {
1005 struct skcipher_request *req;
1006 unsigned int ivsize;
1007 char *iv;
1008
1009 if (likely(encrypt))
1010 rw_section_mac(ic, section, true);
1011
1012 req = ic->sk_requests[section];
1013 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1014 iv = req->iv;
1015
1016 memcpy(iv, iv + ivsize, ivsize);
1017
1018 req->src = source_sg[section];
1019 req->dst = target_sg[section];
1020
1021 if (unlikely(do_crypt(encrypt, req, comp)))
1022 atomic_inc(&comp->in_flight);
1023
1024 section++;
1025 n_sections--;
1026 } while (n_sections);
1027
1028 atomic_dec(&comp->in_flight);
1029 complete_journal_op(comp);
1030 }
1031
encrypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1032 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1033 unsigned int n_sections, struct journal_completion *comp)
1034 {
1035 if (ic->journal_xor)
1036 return xor_journal(ic, encrypt, section, n_sections, comp);
1037 else
1038 return crypt_journal(ic, encrypt, section, n_sections, comp);
1039 }
1040
complete_journal_io(unsigned long error,void * context)1041 static void complete_journal_io(unsigned long error, void *context)
1042 {
1043 struct journal_completion *comp = context;
1044
1045 if (unlikely(error != 0))
1046 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1047 complete_journal_op(comp);
1048 }
1049
rw_journal_sectors(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int sector,unsigned int n_sectors,struct journal_completion * comp)1050 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1051 unsigned int sector, unsigned int n_sectors,
1052 struct journal_completion *comp)
1053 {
1054 struct dm_io_request io_req;
1055 struct dm_io_region io_loc;
1056 unsigned int pl_index, pl_offset;
1057 int r;
1058
1059 if (unlikely(dm_integrity_failed(ic))) {
1060 if (comp)
1061 complete_journal_io(-1UL, comp);
1062 return;
1063 }
1064
1065 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1066 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1067
1068 io_req.bi_opf = opf;
1069 io_req.mem.type = DM_IO_PAGE_LIST;
1070 if (ic->journal_io)
1071 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1072 else
1073 io_req.mem.ptr.pl = &ic->journal[pl_index];
1074 io_req.mem.offset = pl_offset;
1075 if (likely(comp != NULL)) {
1076 io_req.notify.fn = complete_journal_io;
1077 io_req.notify.context = comp;
1078 } else {
1079 io_req.notify.fn = NULL;
1080 }
1081 io_req.client = ic->io;
1082 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1083 io_loc.sector = ic->start + SB_SECTORS + sector;
1084 io_loc.count = n_sectors;
1085
1086 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1087 if (unlikely(r)) {
1088 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1089 "reading journal" : "writing journal", r);
1090 if (comp) {
1091 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1092 complete_journal_io(-1UL, comp);
1093 }
1094 }
1095 }
1096
rw_journal(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1097 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1098 unsigned int section, unsigned int n_sections,
1099 struct journal_completion *comp)
1100 {
1101 unsigned int sector, n_sectors;
1102
1103 sector = section * ic->journal_section_sectors;
1104 n_sectors = n_sections * ic->journal_section_sectors;
1105
1106 rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1107 }
1108
write_journal(struct dm_integrity_c * ic,unsigned int commit_start,unsigned int commit_sections)1109 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1110 {
1111 struct journal_completion io_comp;
1112 struct journal_completion crypt_comp_1;
1113 struct journal_completion crypt_comp_2;
1114 unsigned int i;
1115
1116 io_comp.ic = ic;
1117 init_completion(&io_comp.comp);
1118
1119 if (commit_start + commit_sections <= ic->journal_sections) {
1120 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1121 if (ic->journal_io) {
1122 crypt_comp_1.ic = ic;
1123 init_completion(&crypt_comp_1.comp);
1124 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1125 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1126 wait_for_completion_io(&crypt_comp_1.comp);
1127 } else {
1128 for (i = 0; i < commit_sections; i++)
1129 rw_section_mac(ic, commit_start + i, true);
1130 }
1131 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1132 commit_sections, &io_comp);
1133 } else {
1134 unsigned int to_end;
1135
1136 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1137 to_end = ic->journal_sections - commit_start;
1138 if (ic->journal_io) {
1139 crypt_comp_1.ic = ic;
1140 init_completion(&crypt_comp_1.comp);
1141 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1142 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1143 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1144 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1145 commit_start, to_end, &io_comp);
1146 reinit_completion(&crypt_comp_1.comp);
1147 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1148 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1149 wait_for_completion_io(&crypt_comp_1.comp);
1150 } else {
1151 crypt_comp_2.ic = ic;
1152 init_completion(&crypt_comp_2.comp);
1153 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1154 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1155 wait_for_completion_io(&crypt_comp_1.comp);
1156 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1157 wait_for_completion_io(&crypt_comp_2.comp);
1158 }
1159 } else {
1160 for (i = 0; i < to_end; i++)
1161 rw_section_mac(ic, commit_start + i, true);
1162 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1163 for (i = 0; i < commit_sections - to_end; i++)
1164 rw_section_mac(ic, i, true);
1165 }
1166 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1167 }
1168
1169 wait_for_completion_io(&io_comp.comp);
1170 }
1171
copy_from_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int n_sectors,sector_t target,io_notify_fn fn,void * data)1172 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1173 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1174 {
1175 struct dm_io_request io_req;
1176 struct dm_io_region io_loc;
1177 int r;
1178 unsigned int sector, pl_index, pl_offset;
1179
1180 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1181
1182 if (unlikely(dm_integrity_failed(ic))) {
1183 fn(-1UL, data);
1184 return;
1185 }
1186
1187 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1188
1189 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1190 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1191
1192 io_req.bi_opf = REQ_OP_WRITE;
1193 io_req.mem.type = DM_IO_PAGE_LIST;
1194 io_req.mem.ptr.pl = &ic->journal[pl_index];
1195 io_req.mem.offset = pl_offset;
1196 io_req.notify.fn = fn;
1197 io_req.notify.context = data;
1198 io_req.client = ic->io;
1199 io_loc.bdev = ic->dev->bdev;
1200 io_loc.sector = target;
1201 io_loc.count = n_sectors;
1202
1203 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1204 if (unlikely(r)) {
1205 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1206 fn(-1UL, data);
1207 }
1208 }
1209
ranges_overlap(struct dm_integrity_range * range1,struct dm_integrity_range * range2)1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1211 {
1212 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1213 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1214 }
1215
add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range,bool check_waiting)1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1217 {
1218 struct rb_node **n = &ic->in_progress.rb_node;
1219 struct rb_node *parent;
1220
1221 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1222
1223 if (likely(check_waiting)) {
1224 struct dm_integrity_range *range;
1225
1226 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1227 if (unlikely(ranges_overlap(range, new_range)))
1228 return false;
1229 }
1230 }
1231
1232 parent = NULL;
1233
1234 while (*n) {
1235 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1236
1237 parent = *n;
1238 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1239 n = &range->node.rb_left;
1240 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1241 n = &range->node.rb_right;
1242 else
1243 return false;
1244 }
1245
1246 rb_link_node(&new_range->node, parent, n);
1247 rb_insert_color(&new_range->node, &ic->in_progress);
1248
1249 return true;
1250 }
1251
remove_range_unlocked(struct dm_integrity_c * ic,struct dm_integrity_range * range)1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1253 {
1254 rb_erase(&range->node, &ic->in_progress);
1255 while (unlikely(!list_empty(&ic->wait_list))) {
1256 struct dm_integrity_range *last_range =
1257 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1258 struct task_struct *last_range_task;
1259
1260 last_range_task = last_range->task;
1261 list_del(&last_range->wait_entry);
1262 if (!add_new_range(ic, last_range, false)) {
1263 last_range->task = last_range_task;
1264 list_add(&last_range->wait_entry, &ic->wait_list);
1265 break;
1266 }
1267 last_range->waiting = false;
1268 wake_up_process(last_range_task);
1269 }
1270 }
1271
remove_range(struct dm_integrity_c * ic,struct dm_integrity_range * range)1272 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1273 {
1274 unsigned long flags;
1275
1276 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1277 remove_range_unlocked(ic, range);
1278 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1279 }
1280
wait_and_add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1281 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1282 {
1283 new_range->waiting = true;
1284 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1285 new_range->task = current;
1286 do {
1287 __set_current_state(TASK_UNINTERRUPTIBLE);
1288 spin_unlock_irq(&ic->endio_wait.lock);
1289 io_schedule();
1290 spin_lock_irq(&ic->endio_wait.lock);
1291 } while (unlikely(new_range->waiting));
1292 }
1293
add_new_range_and_wait(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1294 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1295 {
1296 if (unlikely(!add_new_range(ic, new_range, true)))
1297 wait_and_add_new_range(ic, new_range);
1298 }
1299
init_journal_node(struct journal_node * node)1300 static void init_journal_node(struct journal_node *node)
1301 {
1302 RB_CLEAR_NODE(&node->node);
1303 node->sector = (sector_t)-1;
1304 }
1305
add_journal_node(struct dm_integrity_c * ic,struct journal_node * node,sector_t sector)1306 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1307 {
1308 struct rb_node **link;
1309 struct rb_node *parent;
1310
1311 node->sector = sector;
1312 BUG_ON(!RB_EMPTY_NODE(&node->node));
1313
1314 link = &ic->journal_tree_root.rb_node;
1315 parent = NULL;
1316
1317 while (*link) {
1318 struct journal_node *j;
1319
1320 parent = *link;
1321 j = container_of(parent, struct journal_node, node);
1322 if (sector < j->sector)
1323 link = &j->node.rb_left;
1324 else
1325 link = &j->node.rb_right;
1326 }
1327
1328 rb_link_node(&node->node, parent, link);
1329 rb_insert_color(&node->node, &ic->journal_tree_root);
1330 }
1331
remove_journal_node(struct dm_integrity_c * ic,struct journal_node * node)1332 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1333 {
1334 BUG_ON(RB_EMPTY_NODE(&node->node));
1335 rb_erase(&node->node, &ic->journal_tree_root);
1336 init_journal_node(node);
1337 }
1338
1339 #define NOT_FOUND (-1U)
1340
find_journal_node(struct dm_integrity_c * ic,sector_t sector,sector_t * next_sector)1341 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1342 {
1343 struct rb_node *n = ic->journal_tree_root.rb_node;
1344 unsigned int found = NOT_FOUND;
1345
1346 *next_sector = (sector_t)-1;
1347 while (n) {
1348 struct journal_node *j = container_of(n, struct journal_node, node);
1349
1350 if (sector == j->sector)
1351 found = j - ic->journal_tree;
1352
1353 if (sector < j->sector) {
1354 *next_sector = j->sector;
1355 n = j->node.rb_left;
1356 } else
1357 n = j->node.rb_right;
1358 }
1359
1360 return found;
1361 }
1362
test_journal_node(struct dm_integrity_c * ic,unsigned int pos,sector_t sector)1363 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1364 {
1365 struct journal_node *node, *next_node;
1366 struct rb_node *next;
1367
1368 if (unlikely(pos >= ic->journal_entries))
1369 return false;
1370 node = &ic->journal_tree[pos];
1371 if (unlikely(RB_EMPTY_NODE(&node->node)))
1372 return false;
1373 if (unlikely(node->sector != sector))
1374 return false;
1375
1376 next = rb_next(&node->node);
1377 if (unlikely(!next))
1378 return true;
1379
1380 next_node = container_of(next, struct journal_node, node);
1381 return next_node->sector != sector;
1382 }
1383
find_newer_committed_node(struct dm_integrity_c * ic,struct journal_node * node)1384 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1385 {
1386 struct rb_node *next;
1387 struct journal_node *next_node;
1388 unsigned int next_section;
1389
1390 BUG_ON(RB_EMPTY_NODE(&node->node));
1391
1392 next = rb_next(&node->node);
1393 if (unlikely(!next))
1394 return false;
1395
1396 next_node = container_of(next, struct journal_node, node);
1397
1398 if (next_node->sector != node->sector)
1399 return false;
1400
1401 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1402 if (next_section >= ic->committed_section &&
1403 next_section < ic->committed_section + ic->n_committed_sections)
1404 return true;
1405 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1406 return true;
1407
1408 return false;
1409 }
1410
1411 #define TAG_READ 0
1412 #define TAG_WRITE 1
1413 #define TAG_CMP 2
1414
dm_integrity_rw_tag(struct dm_integrity_c * ic,unsigned char * tag,sector_t * metadata_block,unsigned int * metadata_offset,unsigned int total_size,int op)1415 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1416 unsigned int *metadata_offset, unsigned int total_size, int op)
1417 {
1418 #define MAY_BE_FILLER 1
1419 #define MAY_BE_HASH 2
1420 unsigned int hash_offset = 0;
1421 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1422
1423 do {
1424 unsigned char *data, *dp;
1425 struct dm_buffer *b;
1426 unsigned int to_copy;
1427 int r;
1428
1429 r = dm_integrity_failed(ic);
1430 if (unlikely(r))
1431 return r;
1432
1433 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1434 if (IS_ERR(data))
1435 return PTR_ERR(data);
1436
1437 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1438 dp = data + *metadata_offset;
1439 if (op == TAG_READ) {
1440 memcpy(tag, dp, to_copy);
1441 } else if (op == TAG_WRITE) {
1442 if (memcmp(dp, tag, to_copy)) {
1443 memcpy(dp, tag, to_copy);
1444 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1445 }
1446 } else {
1447 /* e.g.: op == TAG_CMP */
1448
1449 if (likely(is_power_of_2(ic->tag_size))) {
1450 if (unlikely(memcmp(dp, tag, to_copy)))
1451 if (unlikely(!ic->discard) ||
1452 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1453 goto thorough_test;
1454 }
1455 } else {
1456 unsigned int i, ts;
1457 thorough_test:
1458 ts = total_size;
1459
1460 for (i = 0; i < to_copy; i++, ts--) {
1461 if (unlikely(dp[i] != tag[i]))
1462 may_be &= ~MAY_BE_HASH;
1463 if (likely(dp[i] != DISCARD_FILLER))
1464 may_be &= ~MAY_BE_FILLER;
1465 hash_offset++;
1466 if (unlikely(hash_offset == ic->tag_size)) {
1467 if (unlikely(!may_be)) {
1468 dm_bufio_release(b);
1469 return ts;
1470 }
1471 hash_offset = 0;
1472 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1473 }
1474 }
1475 }
1476 }
1477 dm_bufio_release(b);
1478
1479 tag += to_copy;
1480 *metadata_offset += to_copy;
1481 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1482 (*metadata_block)++;
1483 *metadata_offset = 0;
1484 }
1485
1486 if (unlikely(!is_power_of_2(ic->tag_size)))
1487 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1488
1489 total_size -= to_copy;
1490 } while (unlikely(total_size));
1491
1492 return 0;
1493 #undef MAY_BE_FILLER
1494 #undef MAY_BE_HASH
1495 }
1496
1497 struct flush_request {
1498 struct dm_io_request io_req;
1499 struct dm_io_region io_reg;
1500 struct dm_integrity_c *ic;
1501 struct completion comp;
1502 };
1503
flush_notify(unsigned long error,void * fr_)1504 static void flush_notify(unsigned long error, void *fr_)
1505 {
1506 struct flush_request *fr = fr_;
1507
1508 if (unlikely(error != 0))
1509 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1510 complete(&fr->comp);
1511 }
1512
dm_integrity_flush_buffers(struct dm_integrity_c * ic,bool flush_data)1513 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1514 {
1515 int r;
1516 struct flush_request fr;
1517
1518 if (!ic->meta_dev)
1519 flush_data = false;
1520 if (flush_data) {
1521 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1522 fr.io_req.mem.type = DM_IO_KMEM,
1523 fr.io_req.mem.ptr.addr = NULL,
1524 fr.io_req.notify.fn = flush_notify,
1525 fr.io_req.notify.context = &fr;
1526 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1527 fr.io_reg.bdev = ic->dev->bdev,
1528 fr.io_reg.sector = 0,
1529 fr.io_reg.count = 0,
1530 fr.ic = ic;
1531 init_completion(&fr.comp);
1532 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1533 BUG_ON(r);
1534 }
1535
1536 r = dm_bufio_write_dirty_buffers(ic->bufio);
1537 if (unlikely(r))
1538 dm_integrity_io_error(ic, "writing tags", r);
1539
1540 if (flush_data)
1541 wait_for_completion(&fr.comp);
1542 }
1543
sleep_on_endio_wait(struct dm_integrity_c * ic)1544 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1545 {
1546 DECLARE_WAITQUEUE(wait, current);
1547
1548 __add_wait_queue(&ic->endio_wait, &wait);
1549 __set_current_state(TASK_UNINTERRUPTIBLE);
1550 spin_unlock_irq(&ic->endio_wait.lock);
1551 io_schedule();
1552 spin_lock_irq(&ic->endio_wait.lock);
1553 __remove_wait_queue(&ic->endio_wait, &wait);
1554 }
1555
autocommit_fn(struct timer_list * t)1556 static void autocommit_fn(struct timer_list *t)
1557 {
1558 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1559
1560 if (likely(!dm_integrity_failed(ic)))
1561 queue_work(ic->commit_wq, &ic->commit_work);
1562 }
1563
schedule_autocommit(struct dm_integrity_c * ic)1564 static void schedule_autocommit(struct dm_integrity_c *ic)
1565 {
1566 if (!timer_pending(&ic->autocommit_timer))
1567 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1568 }
1569
submit_flush_bio(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1570 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1571 {
1572 struct bio *bio;
1573 unsigned long flags;
1574
1575 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1576 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1577 bio_list_add(&ic->flush_bio_list, bio);
1578 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1579
1580 queue_work(ic->commit_wq, &ic->commit_work);
1581 }
1582
do_endio(struct dm_integrity_c * ic,struct bio * bio)1583 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1584 {
1585 int r;
1586
1587 r = dm_integrity_failed(ic);
1588 if (unlikely(r) && !bio->bi_status)
1589 bio->bi_status = errno_to_blk_status(r);
1590 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1591 unsigned long flags;
1592
1593 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1594 bio_list_add(&ic->synchronous_bios, bio);
1595 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1596 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1597 return;
1598 }
1599 bio_endio(bio);
1600 }
1601
do_endio_flush(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1602 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1603 {
1604 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1605
1606 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1607 submit_flush_bio(ic, dio);
1608 else
1609 do_endio(ic, bio);
1610 }
1611
dec_in_flight(struct dm_integrity_io * dio)1612 static void dec_in_flight(struct dm_integrity_io *dio)
1613 {
1614 if (atomic_dec_and_test(&dio->in_flight)) {
1615 struct dm_integrity_c *ic = dio->ic;
1616 struct bio *bio;
1617
1618 remove_range(ic, &dio->range);
1619
1620 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1621 schedule_autocommit(ic);
1622
1623 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1624 if (unlikely(dio->bi_status) && !bio->bi_status)
1625 bio->bi_status = dio->bi_status;
1626 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1627 dio->range.logical_sector += dio->range.n_sectors;
1628 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1629 INIT_WORK(&dio->work, integrity_bio_wait);
1630 queue_work(ic->offload_wq, &dio->work);
1631 return;
1632 }
1633 do_endio_flush(ic, dio);
1634 }
1635 }
1636
integrity_end_io(struct bio * bio)1637 static void integrity_end_io(struct bio *bio)
1638 {
1639 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1640
1641 dm_bio_restore(&dio->bio_details, bio);
1642 if (bio->bi_integrity)
1643 bio->bi_opf |= REQ_INTEGRITY;
1644
1645 if (dio->completion)
1646 complete(dio->completion);
1647
1648 dec_in_flight(dio);
1649 }
1650
integrity_sector_checksum(struct dm_integrity_c * ic,sector_t sector,const char * data,char * result)1651 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1652 const char *data, char *result)
1653 {
1654 __le64 sector_le = cpu_to_le64(sector);
1655 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1656 int r;
1657 unsigned int digest_size;
1658
1659 req->tfm = ic->internal_hash;
1660
1661 r = crypto_shash_init(req);
1662 if (unlikely(r < 0)) {
1663 dm_integrity_io_error(ic, "crypto_shash_init", r);
1664 goto failed;
1665 }
1666
1667 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1668 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1669 if (unlikely(r < 0)) {
1670 dm_integrity_io_error(ic, "crypto_shash_update", r);
1671 goto failed;
1672 }
1673 }
1674
1675 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le));
1676 if (unlikely(r < 0)) {
1677 dm_integrity_io_error(ic, "crypto_shash_update", r);
1678 goto failed;
1679 }
1680
1681 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1682 if (unlikely(r < 0)) {
1683 dm_integrity_io_error(ic, "crypto_shash_update", r);
1684 goto failed;
1685 }
1686
1687 r = crypto_shash_final(req, result);
1688 if (unlikely(r < 0)) {
1689 dm_integrity_io_error(ic, "crypto_shash_final", r);
1690 goto failed;
1691 }
1692
1693 digest_size = crypto_shash_digestsize(ic->internal_hash);
1694 if (unlikely(digest_size < ic->tag_size))
1695 memset(result + digest_size, 0, ic->tag_size - digest_size);
1696
1697 return;
1698
1699 failed:
1700 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1701 get_random_bytes(result, ic->tag_size);
1702 }
1703
integrity_recheck(struct dm_integrity_io * dio,char * checksum)1704 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1705 {
1706 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1707 struct dm_integrity_c *ic = dio->ic;
1708 struct bvec_iter iter;
1709 struct bio_vec bv;
1710 sector_t sector, logical_sector, area, offset;
1711 struct page *page;
1712
1713 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1714 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1715 &dio->metadata_offset);
1716 sector = get_data_sector(ic, area, offset);
1717 logical_sector = dio->range.logical_sector;
1718
1719 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1720
1721 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1722 unsigned pos = 0;
1723
1724 do {
1725 sector_t alignment;
1726 char *mem;
1727 char *buffer = page_to_virt(page);
1728 int r;
1729 struct dm_io_request io_req;
1730 struct dm_io_region io_loc;
1731 io_req.bi_opf = REQ_OP_READ;
1732 io_req.mem.type = DM_IO_KMEM;
1733 io_req.mem.ptr.addr = buffer;
1734 io_req.notify.fn = NULL;
1735 io_req.client = ic->io;
1736 io_loc.bdev = ic->dev->bdev;
1737 io_loc.sector = sector;
1738 io_loc.count = ic->sectors_per_block;
1739
1740 /* Align the bio to logical block size */
1741 alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1742 alignment &= -alignment;
1743 io_loc.sector = round_down(io_loc.sector, alignment);
1744 io_loc.count += sector - io_loc.sector;
1745 buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1746 io_loc.count = round_up(io_loc.count, alignment);
1747
1748 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1749 if (unlikely(r)) {
1750 dio->bi_status = errno_to_blk_status(r);
1751 goto free_ret;
1752 }
1753
1754 integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1755 r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1756 &dio->metadata_offset, ic->tag_size, TAG_CMP);
1757 if (r) {
1758 if (r > 0) {
1759 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1760 bio->bi_bdev, logical_sector);
1761 atomic64_inc(&ic->number_of_mismatches);
1762 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1763 bio, logical_sector, 0);
1764 r = -EILSEQ;
1765 }
1766 dio->bi_status = errno_to_blk_status(r);
1767 goto free_ret;
1768 }
1769
1770 mem = bvec_kmap_local(&bv);
1771 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1772 kunmap_local(mem);
1773
1774 pos += ic->sectors_per_block << SECTOR_SHIFT;
1775 sector += ic->sectors_per_block;
1776 logical_sector += ic->sectors_per_block;
1777 } while (pos < bv.bv_len);
1778 }
1779 free_ret:
1780 mempool_free(page, &ic->recheck_pool);
1781 }
1782
integrity_metadata(struct work_struct * w)1783 static void integrity_metadata(struct work_struct *w)
1784 {
1785 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1786 struct dm_integrity_c *ic = dio->ic;
1787
1788 int r;
1789
1790 if (ic->internal_hash) {
1791 struct bvec_iter iter;
1792 struct bio_vec bv;
1793 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1794 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1795 char *checksums;
1796 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1797 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1798 sector_t sector;
1799 unsigned int sectors_to_process;
1800
1801 if (unlikely(ic->mode == 'R'))
1802 goto skip_io;
1803
1804 if (likely(dio->op != REQ_OP_DISCARD))
1805 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1806 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1807 else
1808 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1809 if (!checksums) {
1810 checksums = checksums_onstack;
1811 if (WARN_ON(extra_space &&
1812 digest_size > sizeof(checksums_onstack))) {
1813 r = -EINVAL;
1814 goto error;
1815 }
1816 }
1817
1818 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1819 unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1820 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1821 unsigned int max_blocks = max_size / ic->tag_size;
1822
1823 memset(checksums, DISCARD_FILLER, max_size);
1824
1825 while (bi_size) {
1826 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1827
1828 this_step_blocks = min(this_step_blocks, max_blocks);
1829 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1830 this_step_blocks * ic->tag_size, TAG_WRITE);
1831 if (unlikely(r)) {
1832 if (likely(checksums != checksums_onstack))
1833 kfree(checksums);
1834 goto error;
1835 }
1836
1837 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1838 }
1839
1840 if (likely(checksums != checksums_onstack))
1841 kfree(checksums);
1842 goto skip_io;
1843 }
1844
1845 sector = dio->range.logical_sector;
1846 sectors_to_process = dio->range.n_sectors;
1847
1848 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1849 struct bio_vec bv_copy = bv;
1850 unsigned int pos;
1851 char *mem, *checksums_ptr;
1852
1853 again:
1854 mem = bvec_kmap_local(&bv_copy);
1855 pos = 0;
1856 checksums_ptr = checksums;
1857 do {
1858 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1859 checksums_ptr += ic->tag_size;
1860 sectors_to_process -= ic->sectors_per_block;
1861 pos += ic->sectors_per_block << SECTOR_SHIFT;
1862 sector += ic->sectors_per_block;
1863 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1864 kunmap_local(mem);
1865
1866 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1867 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1868 if (unlikely(r)) {
1869 if (likely(checksums != checksums_onstack))
1870 kfree(checksums);
1871 if (r > 0) {
1872 integrity_recheck(dio, checksums_onstack);
1873 goto skip_io;
1874 }
1875 goto error;
1876 }
1877
1878 if (!sectors_to_process)
1879 break;
1880
1881 if (unlikely(pos < bv_copy.bv_len)) {
1882 bv_copy.bv_offset += pos;
1883 bv_copy.bv_len -= pos;
1884 goto again;
1885 }
1886 }
1887
1888 if (likely(checksums != checksums_onstack))
1889 kfree(checksums);
1890 } else {
1891 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1892
1893 if (bip) {
1894 struct bio_vec biv;
1895 struct bvec_iter iter;
1896 unsigned int data_to_process = dio->range.n_sectors;
1897
1898 sector_to_block(ic, data_to_process);
1899 data_to_process *= ic->tag_size;
1900
1901 bip_for_each_vec(biv, bip, iter) {
1902 unsigned char *tag;
1903 unsigned int this_len;
1904
1905 BUG_ON(PageHighMem(biv.bv_page));
1906 tag = bvec_virt(&biv);
1907 this_len = min(biv.bv_len, data_to_process);
1908 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1909 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1910 if (unlikely(r))
1911 goto error;
1912 data_to_process -= this_len;
1913 if (!data_to_process)
1914 break;
1915 }
1916 }
1917 }
1918 skip_io:
1919 dec_in_flight(dio);
1920 return;
1921 error:
1922 dio->bi_status = errno_to_blk_status(r);
1923 dec_in_flight(dio);
1924 }
1925
dm_integrity_map(struct dm_target * ti,struct bio * bio)1926 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1927 {
1928 struct dm_integrity_c *ic = ti->private;
1929 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1930 struct bio_integrity_payload *bip;
1931
1932 sector_t area, offset;
1933
1934 dio->ic = ic;
1935 dio->bi_status = 0;
1936 dio->op = bio_op(bio);
1937
1938 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1939 if (ti->max_io_len) {
1940 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1941 unsigned int log2_max_io_len = __fls(ti->max_io_len);
1942 sector_t start_boundary = sec >> log2_max_io_len;
1943 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1944
1945 if (start_boundary < end_boundary) {
1946 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1947
1948 dm_accept_partial_bio(bio, len);
1949 }
1950 }
1951 }
1952
1953 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1954 submit_flush_bio(ic, dio);
1955 return DM_MAPIO_SUBMITTED;
1956 }
1957
1958 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1959 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1960 if (unlikely(dio->fua)) {
1961 /*
1962 * Don't pass down the FUA flag because we have to flush
1963 * disk cache anyway.
1964 */
1965 bio->bi_opf &= ~REQ_FUA;
1966 }
1967 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1968 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1969 dio->range.logical_sector, bio_sectors(bio),
1970 ic->provided_data_sectors);
1971 return DM_MAPIO_KILL;
1972 }
1973 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1974 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1975 ic->sectors_per_block,
1976 dio->range.logical_sector, bio_sectors(bio));
1977 return DM_MAPIO_KILL;
1978 }
1979
1980 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1981 struct bvec_iter iter;
1982 struct bio_vec bv;
1983
1984 bio_for_each_segment(bv, bio, iter) {
1985 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1986 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1987 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1988 return DM_MAPIO_KILL;
1989 }
1990 }
1991 }
1992
1993 bip = bio_integrity(bio);
1994 if (!ic->internal_hash) {
1995 if (bip) {
1996 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1997
1998 if (ic->log2_tag_size >= 0)
1999 wanted_tag_size <<= ic->log2_tag_size;
2000 else
2001 wanted_tag_size *= ic->tag_size;
2002 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
2003 DMERR("Invalid integrity data size %u, expected %u",
2004 bip->bip_iter.bi_size, wanted_tag_size);
2005 return DM_MAPIO_KILL;
2006 }
2007 }
2008 } else {
2009 if (unlikely(bip != NULL)) {
2010 DMERR("Unexpected integrity data when using internal hash");
2011 return DM_MAPIO_KILL;
2012 }
2013 }
2014
2015 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2016 return DM_MAPIO_KILL;
2017
2018 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2019 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2020 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2021
2022 dm_integrity_map_continue(dio, true);
2023 return DM_MAPIO_SUBMITTED;
2024 }
2025
__journal_read_write(struct dm_integrity_io * dio,struct bio * bio,unsigned int journal_section,unsigned int journal_entry)2026 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2027 unsigned int journal_section, unsigned int journal_entry)
2028 {
2029 struct dm_integrity_c *ic = dio->ic;
2030 sector_t logical_sector;
2031 unsigned int n_sectors;
2032
2033 logical_sector = dio->range.logical_sector;
2034 n_sectors = dio->range.n_sectors;
2035 do {
2036 struct bio_vec bv = bio_iovec(bio);
2037 char *mem;
2038
2039 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2040 bv.bv_len = n_sectors << SECTOR_SHIFT;
2041 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2042 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2043 retry_kmap:
2044 mem = kmap_local_page(bv.bv_page);
2045 if (likely(dio->op == REQ_OP_WRITE))
2046 flush_dcache_page(bv.bv_page);
2047
2048 do {
2049 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2050
2051 if (unlikely(dio->op == REQ_OP_READ)) {
2052 struct journal_sector *js;
2053 char *mem_ptr;
2054 unsigned int s;
2055
2056 if (unlikely(journal_entry_is_inprogress(je))) {
2057 flush_dcache_page(bv.bv_page);
2058 kunmap_local(mem);
2059
2060 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2061 goto retry_kmap;
2062 }
2063 smp_rmb();
2064 BUG_ON(journal_entry_get_sector(je) != logical_sector);
2065 js = access_journal_data(ic, journal_section, journal_entry);
2066 mem_ptr = mem + bv.bv_offset;
2067 s = 0;
2068 do {
2069 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2070 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2071 js++;
2072 mem_ptr += 1 << SECTOR_SHIFT;
2073 } while (++s < ic->sectors_per_block);
2074 #ifdef INTERNAL_VERIFY
2075 if (ic->internal_hash) {
2076 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2077
2078 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2079 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2080 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2081 logical_sector);
2082 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2083 bio, logical_sector, 0);
2084 }
2085 }
2086 #endif
2087 }
2088
2089 if (!ic->internal_hash) {
2090 struct bio_integrity_payload *bip = bio_integrity(bio);
2091 unsigned int tag_todo = ic->tag_size;
2092 char *tag_ptr = journal_entry_tag(ic, je);
2093
2094 if (bip) {
2095 do {
2096 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2097 unsigned int tag_now = min(biv.bv_len, tag_todo);
2098 char *tag_addr;
2099
2100 BUG_ON(PageHighMem(biv.bv_page));
2101 tag_addr = bvec_virt(&biv);
2102 if (likely(dio->op == REQ_OP_WRITE))
2103 memcpy(tag_ptr, tag_addr, tag_now);
2104 else
2105 memcpy(tag_addr, tag_ptr, tag_now);
2106 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2107 tag_ptr += tag_now;
2108 tag_todo -= tag_now;
2109 } while (unlikely(tag_todo));
2110 } else if (likely(dio->op == REQ_OP_WRITE))
2111 memset(tag_ptr, 0, tag_todo);
2112 }
2113
2114 if (likely(dio->op == REQ_OP_WRITE)) {
2115 struct journal_sector *js;
2116 unsigned int s;
2117
2118 js = access_journal_data(ic, journal_section, journal_entry);
2119 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2120
2121 s = 0;
2122 do {
2123 je->last_bytes[s] = js[s].commit_id;
2124 } while (++s < ic->sectors_per_block);
2125
2126 if (ic->internal_hash) {
2127 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2128
2129 if (unlikely(digest_size > ic->tag_size)) {
2130 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2131
2132 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2133 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2134 } else
2135 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2136 }
2137
2138 journal_entry_set_sector(je, logical_sector);
2139 }
2140 logical_sector += ic->sectors_per_block;
2141
2142 journal_entry++;
2143 if (unlikely(journal_entry == ic->journal_section_entries)) {
2144 journal_entry = 0;
2145 journal_section++;
2146 wraparound_section(ic, &journal_section);
2147 }
2148
2149 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2150 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2151
2152 if (unlikely(dio->op == REQ_OP_READ))
2153 flush_dcache_page(bv.bv_page);
2154 kunmap_local(mem);
2155 } while (n_sectors);
2156
2157 if (likely(dio->op == REQ_OP_WRITE)) {
2158 smp_mb();
2159 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2160 wake_up(&ic->copy_to_journal_wait);
2161 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2162 queue_work(ic->commit_wq, &ic->commit_work);
2163 else
2164 schedule_autocommit(ic);
2165 } else
2166 remove_range(ic, &dio->range);
2167
2168 if (unlikely(bio->bi_iter.bi_size)) {
2169 sector_t area, offset;
2170
2171 dio->range.logical_sector = logical_sector;
2172 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2173 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2174 return true;
2175 }
2176
2177 return false;
2178 }
2179
dm_integrity_map_continue(struct dm_integrity_io * dio,bool from_map)2180 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2181 {
2182 struct dm_integrity_c *ic = dio->ic;
2183 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2184 unsigned int journal_section, journal_entry;
2185 unsigned int journal_read_pos;
2186 sector_t recalc_sector;
2187 struct completion read_comp;
2188 bool discard_retried = false;
2189 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2190
2191 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2192 need_sync_io = true;
2193
2194 if (need_sync_io && from_map) {
2195 INIT_WORK(&dio->work, integrity_bio_wait);
2196 queue_work(ic->offload_wq, &dio->work);
2197 return;
2198 }
2199
2200 lock_retry:
2201 spin_lock_irq(&ic->endio_wait.lock);
2202 retry:
2203 if (unlikely(dm_integrity_failed(ic))) {
2204 spin_unlock_irq(&ic->endio_wait.lock);
2205 do_endio(ic, bio);
2206 return;
2207 }
2208 dio->range.n_sectors = bio_sectors(bio);
2209 journal_read_pos = NOT_FOUND;
2210 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2211 if (dio->op == REQ_OP_WRITE) {
2212 unsigned int next_entry, i, pos;
2213 unsigned int ws, we, range_sectors;
2214
2215 dio->range.n_sectors = min(dio->range.n_sectors,
2216 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2217 if (unlikely(!dio->range.n_sectors)) {
2218 if (from_map)
2219 goto offload_to_thread;
2220 sleep_on_endio_wait(ic);
2221 goto retry;
2222 }
2223 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2224 ic->free_sectors -= range_sectors;
2225 journal_section = ic->free_section;
2226 journal_entry = ic->free_section_entry;
2227
2228 next_entry = ic->free_section_entry + range_sectors;
2229 ic->free_section_entry = next_entry % ic->journal_section_entries;
2230 ic->free_section += next_entry / ic->journal_section_entries;
2231 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2232 wraparound_section(ic, &ic->free_section);
2233
2234 pos = journal_section * ic->journal_section_entries + journal_entry;
2235 ws = journal_section;
2236 we = journal_entry;
2237 i = 0;
2238 do {
2239 struct journal_entry *je;
2240
2241 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2242 pos++;
2243 if (unlikely(pos >= ic->journal_entries))
2244 pos = 0;
2245
2246 je = access_journal_entry(ic, ws, we);
2247 BUG_ON(!journal_entry_is_unused(je));
2248 journal_entry_set_inprogress(je);
2249 we++;
2250 if (unlikely(we == ic->journal_section_entries)) {
2251 we = 0;
2252 ws++;
2253 wraparound_section(ic, &ws);
2254 }
2255 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2256
2257 spin_unlock_irq(&ic->endio_wait.lock);
2258 goto journal_read_write;
2259 } else {
2260 sector_t next_sector;
2261
2262 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2263 if (likely(journal_read_pos == NOT_FOUND)) {
2264 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2265 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2266 } else {
2267 unsigned int i;
2268 unsigned int jp = journal_read_pos + 1;
2269
2270 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2271 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2272 break;
2273 }
2274 dio->range.n_sectors = i;
2275 }
2276 }
2277 }
2278 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2279 /*
2280 * We must not sleep in the request routine because it could
2281 * stall bios on current->bio_list.
2282 * So, we offload the bio to a workqueue if we have to sleep.
2283 */
2284 if (from_map) {
2285 offload_to_thread:
2286 spin_unlock_irq(&ic->endio_wait.lock);
2287 INIT_WORK(&dio->work, integrity_bio_wait);
2288 queue_work(ic->wait_wq, &dio->work);
2289 return;
2290 }
2291 if (journal_read_pos != NOT_FOUND)
2292 dio->range.n_sectors = ic->sectors_per_block;
2293 wait_and_add_new_range(ic, &dio->range);
2294 /*
2295 * wait_and_add_new_range drops the spinlock, so the journal
2296 * may have been changed arbitrarily. We need to recheck.
2297 * To simplify the code, we restrict I/O size to just one block.
2298 */
2299 if (journal_read_pos != NOT_FOUND) {
2300 sector_t next_sector;
2301 unsigned int new_pos;
2302
2303 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2304 if (unlikely(new_pos != journal_read_pos)) {
2305 remove_range_unlocked(ic, &dio->range);
2306 goto retry;
2307 }
2308 }
2309 }
2310 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2311 sector_t next_sector;
2312 unsigned int new_pos;
2313
2314 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2315 if (unlikely(new_pos != NOT_FOUND) ||
2316 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2317 remove_range_unlocked(ic, &dio->range);
2318 spin_unlock_irq(&ic->endio_wait.lock);
2319 queue_work(ic->commit_wq, &ic->commit_work);
2320 flush_workqueue(ic->commit_wq);
2321 queue_work(ic->writer_wq, &ic->writer_work);
2322 flush_workqueue(ic->writer_wq);
2323 discard_retried = true;
2324 goto lock_retry;
2325 }
2326 }
2327 recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2328 spin_unlock_irq(&ic->endio_wait.lock);
2329
2330 if (unlikely(journal_read_pos != NOT_FOUND)) {
2331 journal_section = journal_read_pos / ic->journal_section_entries;
2332 journal_entry = journal_read_pos % ic->journal_section_entries;
2333 goto journal_read_write;
2334 }
2335
2336 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2337 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2338 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2339 struct bitmap_block_status *bbs;
2340
2341 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2342 spin_lock(&bbs->bio_queue_lock);
2343 bio_list_add(&bbs->bio_queue, bio);
2344 spin_unlock(&bbs->bio_queue_lock);
2345 queue_work(ic->writer_wq, &bbs->work);
2346 return;
2347 }
2348 }
2349
2350 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2351
2352 if (need_sync_io) {
2353 init_completion(&read_comp);
2354 dio->completion = &read_comp;
2355 } else
2356 dio->completion = NULL;
2357
2358 dm_bio_record(&dio->bio_details, bio);
2359 bio_set_dev(bio, ic->dev->bdev);
2360 bio->bi_integrity = NULL;
2361 bio->bi_opf &= ~REQ_INTEGRITY;
2362 bio->bi_end_io = integrity_end_io;
2363 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2364
2365 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2366 integrity_metadata(&dio->work);
2367 dm_integrity_flush_buffers(ic, false);
2368
2369 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2370 dio->completion = NULL;
2371
2372 submit_bio_noacct(bio);
2373
2374 return;
2375 }
2376
2377 submit_bio_noacct(bio);
2378
2379 if (need_sync_io) {
2380 wait_for_completion_io(&read_comp);
2381 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2382 dio->range.logical_sector + dio->range.n_sectors > recalc_sector)
2383 goto skip_check;
2384 if (ic->mode == 'B') {
2385 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2386 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2387 goto skip_check;
2388 }
2389
2390 if (likely(!bio->bi_status))
2391 integrity_metadata(&dio->work);
2392 else
2393 skip_check:
2394 dec_in_flight(dio);
2395 } else {
2396 INIT_WORK(&dio->work, integrity_metadata);
2397 queue_work(ic->metadata_wq, &dio->work);
2398 }
2399
2400 return;
2401
2402 journal_read_write:
2403 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2404 goto lock_retry;
2405
2406 do_endio_flush(ic, dio);
2407 }
2408
2409
integrity_bio_wait(struct work_struct * w)2410 static void integrity_bio_wait(struct work_struct *w)
2411 {
2412 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2413
2414 dm_integrity_map_continue(dio, false);
2415 }
2416
pad_uncommitted(struct dm_integrity_c * ic)2417 static void pad_uncommitted(struct dm_integrity_c *ic)
2418 {
2419 if (ic->free_section_entry) {
2420 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2421 ic->free_section_entry = 0;
2422 ic->free_section++;
2423 wraparound_section(ic, &ic->free_section);
2424 ic->n_uncommitted_sections++;
2425 }
2426 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2427 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2428 ic->journal_section_entries + ic->free_sectors)) {
2429 DMCRIT("journal_sections %u, journal_section_entries %u, "
2430 "n_uncommitted_sections %u, n_committed_sections %u, "
2431 "journal_section_entries %u, free_sectors %u",
2432 ic->journal_sections, ic->journal_section_entries,
2433 ic->n_uncommitted_sections, ic->n_committed_sections,
2434 ic->journal_section_entries, ic->free_sectors);
2435 }
2436 }
2437
integrity_commit(struct work_struct * w)2438 static void integrity_commit(struct work_struct *w)
2439 {
2440 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2441 unsigned int commit_start, commit_sections;
2442 unsigned int i, j, n;
2443 struct bio *flushes;
2444
2445 del_timer(&ic->autocommit_timer);
2446
2447 spin_lock_irq(&ic->endio_wait.lock);
2448 flushes = bio_list_get(&ic->flush_bio_list);
2449 if (unlikely(ic->mode != 'J')) {
2450 spin_unlock_irq(&ic->endio_wait.lock);
2451 dm_integrity_flush_buffers(ic, true);
2452 goto release_flush_bios;
2453 }
2454
2455 pad_uncommitted(ic);
2456 commit_start = ic->uncommitted_section;
2457 commit_sections = ic->n_uncommitted_sections;
2458 spin_unlock_irq(&ic->endio_wait.lock);
2459
2460 if (!commit_sections)
2461 goto release_flush_bios;
2462
2463 ic->wrote_to_journal = true;
2464
2465 i = commit_start;
2466 for (n = 0; n < commit_sections; n++) {
2467 for (j = 0; j < ic->journal_section_entries; j++) {
2468 struct journal_entry *je;
2469
2470 je = access_journal_entry(ic, i, j);
2471 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2472 }
2473 for (j = 0; j < ic->journal_section_sectors; j++) {
2474 struct journal_sector *js;
2475
2476 js = access_journal(ic, i, j);
2477 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2478 }
2479 i++;
2480 if (unlikely(i >= ic->journal_sections))
2481 ic->commit_seq = next_commit_seq(ic->commit_seq);
2482 wraparound_section(ic, &i);
2483 }
2484 smp_rmb();
2485
2486 write_journal(ic, commit_start, commit_sections);
2487
2488 spin_lock_irq(&ic->endio_wait.lock);
2489 ic->uncommitted_section += commit_sections;
2490 wraparound_section(ic, &ic->uncommitted_section);
2491 ic->n_uncommitted_sections -= commit_sections;
2492 ic->n_committed_sections += commit_sections;
2493 spin_unlock_irq(&ic->endio_wait.lock);
2494
2495 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2496 queue_work(ic->writer_wq, &ic->writer_work);
2497
2498 release_flush_bios:
2499 while (flushes) {
2500 struct bio *next = flushes->bi_next;
2501
2502 flushes->bi_next = NULL;
2503 do_endio(ic, flushes);
2504 flushes = next;
2505 }
2506 }
2507
complete_copy_from_journal(unsigned long error,void * context)2508 static void complete_copy_from_journal(unsigned long error, void *context)
2509 {
2510 struct journal_io *io = context;
2511 struct journal_completion *comp = io->comp;
2512 struct dm_integrity_c *ic = comp->ic;
2513
2514 remove_range(ic, &io->range);
2515 mempool_free(io, &ic->journal_io_mempool);
2516 if (unlikely(error != 0))
2517 dm_integrity_io_error(ic, "copying from journal", -EIO);
2518 complete_journal_op(comp);
2519 }
2520
restore_last_bytes(struct dm_integrity_c * ic,struct journal_sector * js,struct journal_entry * je)2521 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2522 struct journal_entry *je)
2523 {
2524 unsigned int s = 0;
2525
2526 do {
2527 js->commit_id = je->last_bytes[s];
2528 js++;
2529 } while (++s < ic->sectors_per_block);
2530 }
2531
do_journal_write(struct dm_integrity_c * ic,unsigned int write_start,unsigned int write_sections,bool from_replay)2532 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2533 unsigned int write_sections, bool from_replay)
2534 {
2535 unsigned int i, j, n;
2536 struct journal_completion comp;
2537 struct blk_plug plug;
2538
2539 blk_start_plug(&plug);
2540
2541 comp.ic = ic;
2542 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2543 init_completion(&comp.comp);
2544
2545 i = write_start;
2546 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2547 #ifndef INTERNAL_VERIFY
2548 if (unlikely(from_replay))
2549 #endif
2550 rw_section_mac(ic, i, false);
2551 for (j = 0; j < ic->journal_section_entries; j++) {
2552 struct journal_entry *je = access_journal_entry(ic, i, j);
2553 sector_t sec, area, offset;
2554 unsigned int k, l, next_loop;
2555 sector_t metadata_block;
2556 unsigned int metadata_offset;
2557 struct journal_io *io;
2558
2559 if (journal_entry_is_unused(je))
2560 continue;
2561 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2562 sec = journal_entry_get_sector(je);
2563 if (unlikely(from_replay)) {
2564 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2565 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2566 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2567 }
2568 if (unlikely(sec >= ic->provided_data_sectors)) {
2569 journal_entry_set_unused(je);
2570 continue;
2571 }
2572 }
2573 get_area_and_offset(ic, sec, &area, &offset);
2574 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2575 for (k = j + 1; k < ic->journal_section_entries; k++) {
2576 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2577 sector_t sec2, area2, offset2;
2578
2579 if (journal_entry_is_unused(je2))
2580 break;
2581 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2582 sec2 = journal_entry_get_sector(je2);
2583 if (unlikely(sec2 >= ic->provided_data_sectors))
2584 break;
2585 get_area_and_offset(ic, sec2, &area2, &offset2);
2586 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2587 break;
2588 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2589 }
2590 next_loop = k - 1;
2591
2592 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2593 io->comp = ∁
2594 io->range.logical_sector = sec;
2595 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2596
2597 spin_lock_irq(&ic->endio_wait.lock);
2598 add_new_range_and_wait(ic, &io->range);
2599
2600 if (likely(!from_replay)) {
2601 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2602
2603 /* don't write if there is newer committed sector */
2604 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2605 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2606
2607 journal_entry_set_unused(je2);
2608 remove_journal_node(ic, §ion_node[j]);
2609 j++;
2610 sec += ic->sectors_per_block;
2611 offset += ic->sectors_per_block;
2612 }
2613 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2614 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2615
2616 journal_entry_set_unused(je2);
2617 remove_journal_node(ic, §ion_node[k - 1]);
2618 k--;
2619 }
2620 if (j == k) {
2621 remove_range_unlocked(ic, &io->range);
2622 spin_unlock_irq(&ic->endio_wait.lock);
2623 mempool_free(io, &ic->journal_io_mempool);
2624 goto skip_io;
2625 }
2626 for (l = j; l < k; l++)
2627 remove_journal_node(ic, §ion_node[l]);
2628 }
2629 spin_unlock_irq(&ic->endio_wait.lock);
2630
2631 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2632 for (l = j; l < k; l++) {
2633 int r;
2634 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2635
2636 if (
2637 #ifndef INTERNAL_VERIFY
2638 unlikely(from_replay) &&
2639 #endif
2640 ic->internal_hash) {
2641 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2642
2643 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2644 (char *)access_journal_data(ic, i, l), test_tag);
2645 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2646 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2647 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2648 }
2649 }
2650
2651 journal_entry_set_unused(je2);
2652 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2653 ic->tag_size, TAG_WRITE);
2654 if (unlikely(r))
2655 dm_integrity_io_error(ic, "reading tags", r);
2656 }
2657
2658 atomic_inc(&comp.in_flight);
2659 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2660 (k - j) << ic->sb->log2_sectors_per_block,
2661 get_data_sector(ic, area, offset),
2662 complete_copy_from_journal, io);
2663 skip_io:
2664 j = next_loop;
2665 }
2666 }
2667
2668 dm_bufio_write_dirty_buffers_async(ic->bufio);
2669
2670 blk_finish_plug(&plug);
2671
2672 complete_journal_op(&comp);
2673 wait_for_completion_io(&comp.comp);
2674
2675 dm_integrity_flush_buffers(ic, true);
2676 }
2677
integrity_writer(struct work_struct * w)2678 static void integrity_writer(struct work_struct *w)
2679 {
2680 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2681 unsigned int write_start, write_sections;
2682 unsigned int prev_free_sectors;
2683
2684 spin_lock_irq(&ic->endio_wait.lock);
2685 write_start = ic->committed_section;
2686 write_sections = ic->n_committed_sections;
2687 spin_unlock_irq(&ic->endio_wait.lock);
2688
2689 if (!write_sections)
2690 return;
2691
2692 do_journal_write(ic, write_start, write_sections, false);
2693
2694 spin_lock_irq(&ic->endio_wait.lock);
2695
2696 ic->committed_section += write_sections;
2697 wraparound_section(ic, &ic->committed_section);
2698 ic->n_committed_sections -= write_sections;
2699
2700 prev_free_sectors = ic->free_sectors;
2701 ic->free_sectors += write_sections * ic->journal_section_entries;
2702 if (unlikely(!prev_free_sectors))
2703 wake_up_locked(&ic->endio_wait);
2704
2705 spin_unlock_irq(&ic->endio_wait.lock);
2706 }
2707
recalc_write_super(struct dm_integrity_c * ic)2708 static void recalc_write_super(struct dm_integrity_c *ic)
2709 {
2710 int r;
2711
2712 dm_integrity_flush_buffers(ic, false);
2713 if (dm_integrity_failed(ic))
2714 return;
2715
2716 r = sync_rw_sb(ic, REQ_OP_WRITE);
2717 if (unlikely(r))
2718 dm_integrity_io_error(ic, "writing superblock", r);
2719 }
2720
integrity_recalc(struct work_struct * w)2721 static void integrity_recalc(struct work_struct *w)
2722 {
2723 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2724 size_t recalc_tags_size;
2725 u8 *recalc_buffer = NULL;
2726 u8 *recalc_tags = NULL;
2727 struct dm_integrity_range range;
2728 struct dm_io_request io_req;
2729 struct dm_io_region io_loc;
2730 sector_t area, offset;
2731 sector_t metadata_block;
2732 unsigned int metadata_offset;
2733 sector_t logical_sector, n_sectors;
2734 __u8 *t;
2735 unsigned int i;
2736 int r;
2737 unsigned int super_counter = 0;
2738 unsigned recalc_sectors = RECALC_SECTORS;
2739
2740 retry:
2741 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2742 if (!recalc_buffer) {
2743 oom:
2744 recalc_sectors >>= 1;
2745 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2746 goto retry;
2747 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2748 goto free_ret;
2749 }
2750 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2751 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2752 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2753 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2754 if (!recalc_tags) {
2755 vfree(recalc_buffer);
2756 recalc_buffer = NULL;
2757 goto oom;
2758 }
2759
2760 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2761
2762 spin_lock_irq(&ic->endio_wait.lock);
2763
2764 next_chunk:
2765
2766 if (unlikely(dm_post_suspending(ic->ti)))
2767 goto unlock_ret;
2768
2769 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2770 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2771 if (ic->mode == 'B') {
2772 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2773 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2774 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2775 }
2776 goto unlock_ret;
2777 }
2778
2779 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2780 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2781 if (!ic->meta_dev)
2782 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2783
2784 add_new_range_and_wait(ic, &range);
2785 spin_unlock_irq(&ic->endio_wait.lock);
2786 logical_sector = range.logical_sector;
2787 n_sectors = range.n_sectors;
2788
2789 if (ic->mode == 'B') {
2790 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2791 goto advance_and_next;
2792
2793 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2794 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2795 logical_sector += ic->sectors_per_block;
2796 n_sectors -= ic->sectors_per_block;
2797 cond_resched();
2798 }
2799 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2800 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2801 n_sectors -= ic->sectors_per_block;
2802 cond_resched();
2803 }
2804 get_area_and_offset(ic, logical_sector, &area, &offset);
2805 }
2806
2807 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2808
2809 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2810 recalc_write_super(ic);
2811 if (ic->mode == 'B')
2812 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2813
2814 super_counter = 0;
2815 }
2816
2817 if (unlikely(dm_integrity_failed(ic)))
2818 goto err;
2819
2820 io_req.bi_opf = REQ_OP_READ;
2821 io_req.mem.type = DM_IO_VMA;
2822 io_req.mem.ptr.addr = recalc_buffer;
2823 io_req.notify.fn = NULL;
2824 io_req.client = ic->io;
2825 io_loc.bdev = ic->dev->bdev;
2826 io_loc.sector = get_data_sector(ic, area, offset);
2827 io_loc.count = n_sectors;
2828
2829 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
2830 if (unlikely(r)) {
2831 dm_integrity_io_error(ic, "reading data", r);
2832 goto err;
2833 }
2834
2835 t = recalc_tags;
2836 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2837 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2838 t += ic->tag_size;
2839 }
2840
2841 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2842
2843 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2844 if (unlikely(r)) {
2845 dm_integrity_io_error(ic, "writing tags", r);
2846 goto err;
2847 }
2848
2849 if (ic->mode == 'B') {
2850 sector_t start, end;
2851
2852 start = (range.logical_sector >>
2853 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2854 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2855 end = ((range.logical_sector + range.n_sectors) >>
2856 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2857 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2858 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2859 }
2860
2861 advance_and_next:
2862 cond_resched();
2863
2864 spin_lock_irq(&ic->endio_wait.lock);
2865 remove_range_unlocked(ic, &range);
2866 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2867 goto next_chunk;
2868
2869 err:
2870 remove_range(ic, &range);
2871 goto free_ret;
2872
2873 unlock_ret:
2874 spin_unlock_irq(&ic->endio_wait.lock);
2875
2876 recalc_write_super(ic);
2877
2878 free_ret:
2879 vfree(recalc_buffer);
2880 kvfree(recalc_tags);
2881 }
2882
bitmap_block_work(struct work_struct * w)2883 static void bitmap_block_work(struct work_struct *w)
2884 {
2885 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2886 struct dm_integrity_c *ic = bbs->ic;
2887 struct bio *bio;
2888 struct bio_list bio_queue;
2889 struct bio_list waiting;
2890
2891 bio_list_init(&waiting);
2892
2893 spin_lock(&bbs->bio_queue_lock);
2894 bio_queue = bbs->bio_queue;
2895 bio_list_init(&bbs->bio_queue);
2896 spin_unlock(&bbs->bio_queue_lock);
2897
2898 while ((bio = bio_list_pop(&bio_queue))) {
2899 struct dm_integrity_io *dio;
2900
2901 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2902
2903 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2904 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2905 remove_range(ic, &dio->range);
2906 INIT_WORK(&dio->work, integrity_bio_wait);
2907 queue_work(ic->offload_wq, &dio->work);
2908 } else {
2909 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2910 dio->range.n_sectors, BITMAP_OP_SET);
2911 bio_list_add(&waiting, bio);
2912 }
2913 }
2914
2915 if (bio_list_empty(&waiting))
2916 return;
2917
2918 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2919 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2920 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2921
2922 while ((bio = bio_list_pop(&waiting))) {
2923 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2924
2925 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2926 dio->range.n_sectors, BITMAP_OP_SET);
2927
2928 remove_range(ic, &dio->range);
2929 INIT_WORK(&dio->work, integrity_bio_wait);
2930 queue_work(ic->offload_wq, &dio->work);
2931 }
2932
2933 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2934 }
2935
bitmap_flush_work(struct work_struct * work)2936 static void bitmap_flush_work(struct work_struct *work)
2937 {
2938 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2939 struct dm_integrity_range range;
2940 unsigned long limit;
2941 struct bio *bio;
2942
2943 dm_integrity_flush_buffers(ic, false);
2944
2945 range.logical_sector = 0;
2946 range.n_sectors = ic->provided_data_sectors;
2947
2948 spin_lock_irq(&ic->endio_wait.lock);
2949 add_new_range_and_wait(ic, &range);
2950 spin_unlock_irq(&ic->endio_wait.lock);
2951
2952 dm_integrity_flush_buffers(ic, true);
2953
2954 limit = ic->provided_data_sectors;
2955 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2956 limit = le64_to_cpu(ic->sb->recalc_sector)
2957 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2958 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2959 }
2960 /*DEBUG_print("zeroing journal\n");*/
2961 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2962 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2963
2964 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2965 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2966
2967 spin_lock_irq(&ic->endio_wait.lock);
2968 remove_range_unlocked(ic, &range);
2969 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2970 bio_endio(bio);
2971 spin_unlock_irq(&ic->endio_wait.lock);
2972 spin_lock_irq(&ic->endio_wait.lock);
2973 }
2974 spin_unlock_irq(&ic->endio_wait.lock);
2975 }
2976
2977
init_journal(struct dm_integrity_c * ic,unsigned int start_section,unsigned int n_sections,unsigned char commit_seq)2978 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2979 unsigned int n_sections, unsigned char commit_seq)
2980 {
2981 unsigned int i, j, n;
2982
2983 if (!n_sections)
2984 return;
2985
2986 for (n = 0; n < n_sections; n++) {
2987 i = start_section + n;
2988 wraparound_section(ic, &i);
2989 for (j = 0; j < ic->journal_section_sectors; j++) {
2990 struct journal_sector *js = access_journal(ic, i, j);
2991
2992 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2993 memset(&js->sectors, 0, sizeof(js->sectors));
2994 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2995 }
2996 for (j = 0; j < ic->journal_section_entries; j++) {
2997 struct journal_entry *je = access_journal_entry(ic, i, j);
2998
2999 journal_entry_set_unused(je);
3000 }
3001 }
3002
3003 write_journal(ic, start_section, n_sections);
3004 }
3005
find_commit_seq(struct dm_integrity_c * ic,unsigned int i,unsigned int j,commit_id_t id)3006 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
3007 {
3008 unsigned char k;
3009
3010 for (k = 0; k < N_COMMIT_IDS; k++) {
3011 if (dm_integrity_commit_id(ic, i, j, k) == id)
3012 return k;
3013 }
3014 dm_integrity_io_error(ic, "journal commit id", -EIO);
3015 return -EIO;
3016 }
3017
replay_journal(struct dm_integrity_c * ic)3018 static void replay_journal(struct dm_integrity_c *ic)
3019 {
3020 unsigned int i, j;
3021 bool used_commit_ids[N_COMMIT_IDS];
3022 unsigned int max_commit_id_sections[N_COMMIT_IDS];
3023 unsigned int write_start, write_sections;
3024 unsigned int continue_section;
3025 bool journal_empty;
3026 unsigned char unused, last_used, want_commit_seq;
3027
3028 if (ic->mode == 'R')
3029 return;
3030
3031 if (ic->journal_uptodate)
3032 return;
3033
3034 last_used = 0;
3035 write_start = 0;
3036
3037 if (!ic->just_formatted) {
3038 DEBUG_print("reading journal\n");
3039 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3040 if (ic->journal_io)
3041 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3042 if (ic->journal_io) {
3043 struct journal_completion crypt_comp;
3044
3045 crypt_comp.ic = ic;
3046 init_completion(&crypt_comp.comp);
3047 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3048 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3049 wait_for_completion(&crypt_comp.comp);
3050 }
3051 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3052 }
3053
3054 if (dm_integrity_failed(ic))
3055 goto clear_journal;
3056
3057 journal_empty = true;
3058 memset(used_commit_ids, 0, sizeof(used_commit_ids));
3059 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3060 for (i = 0; i < ic->journal_sections; i++) {
3061 for (j = 0; j < ic->journal_section_sectors; j++) {
3062 int k;
3063 struct journal_sector *js = access_journal(ic, i, j);
3064
3065 k = find_commit_seq(ic, i, j, js->commit_id);
3066 if (k < 0)
3067 goto clear_journal;
3068 used_commit_ids[k] = true;
3069 max_commit_id_sections[k] = i;
3070 }
3071 if (journal_empty) {
3072 for (j = 0; j < ic->journal_section_entries; j++) {
3073 struct journal_entry *je = access_journal_entry(ic, i, j);
3074
3075 if (!journal_entry_is_unused(je)) {
3076 journal_empty = false;
3077 break;
3078 }
3079 }
3080 }
3081 }
3082
3083 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3084 unused = N_COMMIT_IDS - 1;
3085 while (unused && !used_commit_ids[unused - 1])
3086 unused--;
3087 } else {
3088 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3089 if (!used_commit_ids[unused])
3090 break;
3091 if (unused == N_COMMIT_IDS) {
3092 dm_integrity_io_error(ic, "journal commit ids", -EIO);
3093 goto clear_journal;
3094 }
3095 }
3096 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3097 unused, used_commit_ids[0], used_commit_ids[1],
3098 used_commit_ids[2], used_commit_ids[3]);
3099
3100 last_used = prev_commit_seq(unused);
3101 want_commit_seq = prev_commit_seq(last_used);
3102
3103 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3104 journal_empty = true;
3105
3106 write_start = max_commit_id_sections[last_used] + 1;
3107 if (unlikely(write_start >= ic->journal_sections))
3108 want_commit_seq = next_commit_seq(want_commit_seq);
3109 wraparound_section(ic, &write_start);
3110
3111 i = write_start;
3112 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3113 for (j = 0; j < ic->journal_section_sectors; j++) {
3114 struct journal_sector *js = access_journal(ic, i, j);
3115
3116 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3117 /*
3118 * This could be caused by crash during writing.
3119 * We won't replay the inconsistent part of the
3120 * journal.
3121 */
3122 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3123 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3124 goto brk;
3125 }
3126 }
3127 i++;
3128 if (unlikely(i >= ic->journal_sections))
3129 want_commit_seq = next_commit_seq(want_commit_seq);
3130 wraparound_section(ic, &i);
3131 }
3132 brk:
3133
3134 if (!journal_empty) {
3135 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3136 write_sections, write_start, want_commit_seq);
3137 do_journal_write(ic, write_start, write_sections, true);
3138 }
3139
3140 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3141 continue_section = write_start;
3142 ic->commit_seq = want_commit_seq;
3143 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3144 } else {
3145 unsigned int s;
3146 unsigned char erase_seq;
3147
3148 clear_journal:
3149 DEBUG_print("clearing journal\n");
3150
3151 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3152 s = write_start;
3153 init_journal(ic, s, 1, erase_seq);
3154 s++;
3155 wraparound_section(ic, &s);
3156 if (ic->journal_sections >= 2) {
3157 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3158 s += ic->journal_sections - 2;
3159 wraparound_section(ic, &s);
3160 init_journal(ic, s, 1, erase_seq);
3161 }
3162
3163 continue_section = 0;
3164 ic->commit_seq = next_commit_seq(erase_seq);
3165 }
3166
3167 ic->committed_section = continue_section;
3168 ic->n_committed_sections = 0;
3169
3170 ic->uncommitted_section = continue_section;
3171 ic->n_uncommitted_sections = 0;
3172
3173 ic->free_section = continue_section;
3174 ic->free_section_entry = 0;
3175 ic->free_sectors = ic->journal_entries;
3176
3177 ic->journal_tree_root = RB_ROOT;
3178 for (i = 0; i < ic->journal_entries; i++)
3179 init_journal_node(&ic->journal_tree[i]);
3180 }
3181
dm_integrity_enter_synchronous_mode(struct dm_integrity_c * ic)3182 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3183 {
3184 DEBUG_print("%s\n", __func__);
3185
3186 if (ic->mode == 'B') {
3187 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3188 ic->synchronous_mode = 1;
3189
3190 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3191 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3192 flush_workqueue(ic->commit_wq);
3193 }
3194 }
3195
dm_integrity_reboot(struct notifier_block * n,unsigned long code,void * x)3196 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3197 {
3198 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3199
3200 DEBUG_print("%s\n", __func__);
3201
3202 dm_integrity_enter_synchronous_mode(ic);
3203
3204 return NOTIFY_DONE;
3205 }
3206
dm_integrity_postsuspend(struct dm_target * ti)3207 static void dm_integrity_postsuspend(struct dm_target *ti)
3208 {
3209 struct dm_integrity_c *ic = ti->private;
3210 int r;
3211
3212 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3213
3214 del_timer_sync(&ic->autocommit_timer);
3215
3216 if (ic->recalc_wq)
3217 drain_workqueue(ic->recalc_wq);
3218
3219 if (ic->mode == 'B')
3220 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3221
3222 queue_work(ic->commit_wq, &ic->commit_work);
3223 drain_workqueue(ic->commit_wq);
3224
3225 if (ic->mode == 'J') {
3226 queue_work(ic->writer_wq, &ic->writer_work);
3227 drain_workqueue(ic->writer_wq);
3228 dm_integrity_flush_buffers(ic, true);
3229 if (ic->wrote_to_journal) {
3230 init_journal(ic, ic->free_section,
3231 ic->journal_sections - ic->free_section, ic->commit_seq);
3232 if (ic->free_section) {
3233 init_journal(ic, 0, ic->free_section,
3234 next_commit_seq(ic->commit_seq));
3235 }
3236 }
3237 }
3238
3239 if (ic->mode == 'B') {
3240 dm_integrity_flush_buffers(ic, true);
3241 #if 1
3242 /* set to 0 to test bitmap replay code */
3243 init_journal(ic, 0, ic->journal_sections, 0);
3244 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3245 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3246 if (unlikely(r))
3247 dm_integrity_io_error(ic, "writing superblock", r);
3248 #endif
3249 }
3250
3251 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3252
3253 ic->journal_uptodate = true;
3254 }
3255
dm_integrity_resume(struct dm_target * ti)3256 static void dm_integrity_resume(struct dm_target *ti)
3257 {
3258 struct dm_integrity_c *ic = ti->private;
3259 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3260 int r;
3261
3262 DEBUG_print("resume\n");
3263
3264 ic->wrote_to_journal = false;
3265
3266 if (ic->provided_data_sectors != old_provided_data_sectors) {
3267 if (ic->provided_data_sectors > old_provided_data_sectors &&
3268 ic->mode == 'B' &&
3269 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3270 rw_journal_sectors(ic, REQ_OP_READ, 0,
3271 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3272 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3273 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3274 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3275 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3276 }
3277
3278 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3279 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3280 if (unlikely(r))
3281 dm_integrity_io_error(ic, "writing superblock", r);
3282 }
3283
3284 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3285 DEBUG_print("resume dirty_bitmap\n");
3286 rw_journal_sectors(ic, REQ_OP_READ, 0,
3287 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3288 if (ic->mode == 'B') {
3289 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3290 !ic->reset_recalculate_flag) {
3291 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3292 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3293 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3294 BITMAP_OP_TEST_ALL_CLEAR)) {
3295 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3296 ic->sb->recalc_sector = cpu_to_le64(0);
3297 }
3298 } else {
3299 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3300 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3301 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3302 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3303 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3304 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3305 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3306 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3307 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3308 ic->sb->recalc_sector = cpu_to_le64(0);
3309 }
3310 } else {
3311 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3312 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3313 ic->reset_recalculate_flag) {
3314 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3315 ic->sb->recalc_sector = cpu_to_le64(0);
3316 }
3317 init_journal(ic, 0, ic->journal_sections, 0);
3318 replay_journal(ic);
3319 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3320 }
3321 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3322 if (unlikely(r))
3323 dm_integrity_io_error(ic, "writing superblock", r);
3324 } else {
3325 replay_journal(ic);
3326 if (ic->reset_recalculate_flag) {
3327 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3328 ic->sb->recalc_sector = cpu_to_le64(0);
3329 }
3330 if (ic->mode == 'B') {
3331 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3332 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3333 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3334 if (unlikely(r))
3335 dm_integrity_io_error(ic, "writing superblock", r);
3336
3337 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3338 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3339 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3340 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3341 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3342 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3343 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3344 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3345 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3346 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3347 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3348 }
3349 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3350 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3351 }
3352 }
3353
3354 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3355 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3356 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3357
3358 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3359 if (recalc_pos < ic->provided_data_sectors) {
3360 queue_work(ic->recalc_wq, &ic->recalc_work);
3361 } else if (recalc_pos > ic->provided_data_sectors) {
3362 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3363 recalc_write_super(ic);
3364 }
3365 }
3366
3367 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3368 ic->reboot_notifier.next = NULL;
3369 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3370 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3371
3372 #if 0
3373 /* set to 1 to stress test synchronous mode */
3374 dm_integrity_enter_synchronous_mode(ic);
3375 #endif
3376 }
3377
dm_integrity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3378 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3379 unsigned int status_flags, char *result, unsigned int maxlen)
3380 {
3381 struct dm_integrity_c *ic = ti->private;
3382 unsigned int arg_count;
3383 size_t sz = 0;
3384
3385 switch (type) {
3386 case STATUSTYPE_INFO:
3387 DMEMIT("%llu %llu",
3388 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3389 ic->provided_data_sectors);
3390 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3391 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3392 else
3393 DMEMIT(" -");
3394 break;
3395
3396 case STATUSTYPE_TABLE: {
3397 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3398
3399 watermark_percentage += ic->journal_entries / 2;
3400 do_div(watermark_percentage, ic->journal_entries);
3401 arg_count = 3;
3402 arg_count += !!ic->meta_dev;
3403 arg_count += ic->sectors_per_block != 1;
3404 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3405 arg_count += ic->reset_recalculate_flag;
3406 arg_count += ic->discard;
3407 arg_count += ic->mode == 'J';
3408 arg_count += ic->mode == 'J';
3409 arg_count += ic->mode == 'B';
3410 arg_count += ic->mode == 'B';
3411 arg_count += !!ic->internal_hash_alg.alg_string;
3412 arg_count += !!ic->journal_crypt_alg.alg_string;
3413 arg_count += !!ic->journal_mac_alg.alg_string;
3414 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3415 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3416 arg_count += ic->legacy_recalculate;
3417 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3418 ic->tag_size, ic->mode, arg_count);
3419 if (ic->meta_dev)
3420 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3421 if (ic->sectors_per_block != 1)
3422 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3423 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3424 DMEMIT(" recalculate");
3425 if (ic->reset_recalculate_flag)
3426 DMEMIT(" reset_recalculate");
3427 if (ic->discard)
3428 DMEMIT(" allow_discards");
3429 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3430 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3431 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3432 if (ic->mode == 'J') {
3433 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3434 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3435 }
3436 if (ic->mode == 'B') {
3437 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3438 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3439 }
3440 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3441 DMEMIT(" fix_padding");
3442 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3443 DMEMIT(" fix_hmac");
3444 if (ic->legacy_recalculate)
3445 DMEMIT(" legacy_recalculate");
3446
3447 #define EMIT_ALG(a, n) \
3448 do { \
3449 if (ic->a.alg_string) { \
3450 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3451 if (ic->a.key_string) \
3452 DMEMIT(":%s", ic->a.key_string);\
3453 } \
3454 } while (0)
3455 EMIT_ALG(internal_hash_alg, "internal_hash");
3456 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3457 EMIT_ALG(journal_mac_alg, "journal_mac");
3458 break;
3459 }
3460 case STATUSTYPE_IMA:
3461 DMEMIT_TARGET_NAME_VERSION(ti->type);
3462 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3463 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3464
3465 if (ic->meta_dev)
3466 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3467 if (ic->sectors_per_block != 1)
3468 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3469
3470 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3471 'y' : 'n');
3472 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3473 DMEMIT(",fix_padding=%c",
3474 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3475 DMEMIT(",fix_hmac=%c",
3476 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3477 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3478
3479 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3480 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3481 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3482 DMEMIT(";");
3483 break;
3484 }
3485 }
3486
dm_integrity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3487 static int dm_integrity_iterate_devices(struct dm_target *ti,
3488 iterate_devices_callout_fn fn, void *data)
3489 {
3490 struct dm_integrity_c *ic = ti->private;
3491
3492 if (!ic->meta_dev)
3493 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3494 else
3495 return fn(ti, ic->dev, 0, ti->len, data);
3496 }
3497
dm_integrity_io_hints(struct dm_target * ti,struct queue_limits * limits)3498 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3499 {
3500 struct dm_integrity_c *ic = ti->private;
3501
3502 if (ic->sectors_per_block > 1) {
3503 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3504 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3505 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3506 limits->dma_alignment = limits->logical_block_size - 1;
3507 }
3508 }
3509
calculate_journal_section_size(struct dm_integrity_c * ic)3510 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3511 {
3512 unsigned int sector_space = JOURNAL_SECTOR_DATA;
3513
3514 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3515 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3516 JOURNAL_ENTRY_ROUNDUP);
3517
3518 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3519 sector_space -= JOURNAL_MAC_PER_SECTOR;
3520 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3521 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3522 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3523 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3524 }
3525
calculate_device_limits(struct dm_integrity_c * ic)3526 static int calculate_device_limits(struct dm_integrity_c *ic)
3527 {
3528 __u64 initial_sectors;
3529
3530 calculate_journal_section_size(ic);
3531 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3532 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3533 return -EINVAL;
3534 ic->initial_sectors = initial_sectors;
3535
3536 if (!ic->meta_dev) {
3537 sector_t last_sector, last_area, last_offset;
3538
3539 /* we have to maintain excessive padding for compatibility with existing volumes */
3540 __u64 metadata_run_padding =
3541 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3542 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3543 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3544
3545 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3546 metadata_run_padding) >> SECTOR_SHIFT;
3547 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3548 ic->log2_metadata_run = __ffs(ic->metadata_run);
3549 else
3550 ic->log2_metadata_run = -1;
3551
3552 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3553 last_sector = get_data_sector(ic, last_area, last_offset);
3554 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3555 return -EINVAL;
3556 } else {
3557 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3558
3559 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3560 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3561 meta_size <<= ic->log2_buffer_sectors;
3562 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3563 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3564 return -EINVAL;
3565 ic->metadata_run = 1;
3566 ic->log2_metadata_run = 0;
3567 }
3568
3569 return 0;
3570 }
3571
get_provided_data_sectors(struct dm_integrity_c * ic)3572 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3573 {
3574 if (!ic->meta_dev) {
3575 int test_bit;
3576
3577 ic->provided_data_sectors = 0;
3578 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3579 __u64 prev_data_sectors = ic->provided_data_sectors;
3580
3581 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3582 if (calculate_device_limits(ic))
3583 ic->provided_data_sectors = prev_data_sectors;
3584 }
3585 } else {
3586 ic->provided_data_sectors = ic->data_device_sectors;
3587 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3588 }
3589 }
3590
initialize_superblock(struct dm_integrity_c * ic,unsigned int journal_sectors,unsigned int interleave_sectors)3591 static int initialize_superblock(struct dm_integrity_c *ic,
3592 unsigned int journal_sectors, unsigned int interleave_sectors)
3593 {
3594 unsigned int journal_sections;
3595 int test_bit;
3596
3597 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3598 memcpy(ic->sb->magic, SB_MAGIC, 8);
3599 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3600 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3601 if (ic->journal_mac_alg.alg_string)
3602 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3603
3604 calculate_journal_section_size(ic);
3605 journal_sections = journal_sectors / ic->journal_section_sectors;
3606 if (!journal_sections)
3607 journal_sections = 1;
3608
3609 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3610 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3611 get_random_bytes(ic->sb->salt, SALT_SIZE);
3612 }
3613
3614 if (!ic->meta_dev) {
3615 if (ic->fix_padding)
3616 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3617 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3618 if (!interleave_sectors)
3619 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3620 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3621 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3622 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3623
3624 get_provided_data_sectors(ic);
3625 if (!ic->provided_data_sectors)
3626 return -EINVAL;
3627 } else {
3628 ic->sb->log2_interleave_sectors = 0;
3629
3630 get_provided_data_sectors(ic);
3631 if (!ic->provided_data_sectors)
3632 return -EINVAL;
3633
3634 try_smaller_buffer:
3635 ic->sb->journal_sections = cpu_to_le32(0);
3636 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3637 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3638 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3639
3640 if (test_journal_sections > journal_sections)
3641 continue;
3642 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3643 if (calculate_device_limits(ic))
3644 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3645
3646 }
3647 if (!le32_to_cpu(ic->sb->journal_sections)) {
3648 if (ic->log2_buffer_sectors > 3) {
3649 ic->log2_buffer_sectors--;
3650 goto try_smaller_buffer;
3651 }
3652 return -EINVAL;
3653 }
3654 }
3655
3656 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3657
3658 sb_set_version(ic);
3659
3660 return 0;
3661 }
3662
dm_integrity_set(struct dm_target * ti,struct dm_integrity_c * ic)3663 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3664 {
3665 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3666 struct blk_integrity bi;
3667
3668 memset(&bi, 0, sizeof(bi));
3669 bi.profile = &dm_integrity_profile;
3670 bi.tuple_size = ic->tag_size;
3671 bi.tag_size = bi.tuple_size;
3672 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3673
3674 blk_integrity_register(disk, &bi);
3675 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3676 }
3677
dm_integrity_free_page_list(struct page_list * pl)3678 static void dm_integrity_free_page_list(struct page_list *pl)
3679 {
3680 unsigned int i;
3681
3682 if (!pl)
3683 return;
3684 for (i = 0; pl[i].page; i++)
3685 __free_page(pl[i].page);
3686 kvfree(pl);
3687 }
3688
dm_integrity_alloc_page_list(unsigned int n_pages)3689 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3690 {
3691 struct page_list *pl;
3692 unsigned int i;
3693
3694 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3695 if (!pl)
3696 return NULL;
3697
3698 for (i = 0; i < n_pages; i++) {
3699 pl[i].page = alloc_page(GFP_KERNEL);
3700 if (!pl[i].page) {
3701 dm_integrity_free_page_list(pl);
3702 return NULL;
3703 }
3704 if (i)
3705 pl[i - 1].next = &pl[i];
3706 }
3707 pl[i].page = NULL;
3708 pl[i].next = NULL;
3709
3710 return pl;
3711 }
3712
dm_integrity_free_journal_scatterlist(struct dm_integrity_c * ic,struct scatterlist ** sl)3713 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3714 {
3715 unsigned int i;
3716
3717 for (i = 0; i < ic->journal_sections; i++)
3718 kvfree(sl[i]);
3719 kvfree(sl);
3720 }
3721
dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c * ic,struct page_list * pl)3722 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3723 struct page_list *pl)
3724 {
3725 struct scatterlist **sl;
3726 unsigned int i;
3727
3728 sl = kvmalloc_array(ic->journal_sections,
3729 sizeof(struct scatterlist *),
3730 GFP_KERNEL | __GFP_ZERO);
3731 if (!sl)
3732 return NULL;
3733
3734 for (i = 0; i < ic->journal_sections; i++) {
3735 struct scatterlist *s;
3736 unsigned int start_index, start_offset;
3737 unsigned int end_index, end_offset;
3738 unsigned int n_pages;
3739 unsigned int idx;
3740
3741 page_list_location(ic, i, 0, &start_index, &start_offset);
3742 page_list_location(ic, i, ic->journal_section_sectors - 1,
3743 &end_index, &end_offset);
3744
3745 n_pages = (end_index - start_index + 1);
3746
3747 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3748 GFP_KERNEL);
3749 if (!s) {
3750 dm_integrity_free_journal_scatterlist(ic, sl);
3751 return NULL;
3752 }
3753
3754 sg_init_table(s, n_pages);
3755 for (idx = start_index; idx <= end_index; idx++) {
3756 char *va = lowmem_page_address(pl[idx].page);
3757 unsigned int start = 0, end = PAGE_SIZE;
3758
3759 if (idx == start_index)
3760 start = start_offset;
3761 if (idx == end_index)
3762 end = end_offset + (1 << SECTOR_SHIFT);
3763 sg_set_buf(&s[idx - start_index], va + start, end - start);
3764 }
3765
3766 sl[i] = s;
3767 }
3768
3769 return sl;
3770 }
3771
free_alg(struct alg_spec * a)3772 static void free_alg(struct alg_spec *a)
3773 {
3774 kfree_sensitive(a->alg_string);
3775 kfree_sensitive(a->key);
3776 memset(a, 0, sizeof(*a));
3777 }
3778
get_alg_and_key(const char * arg,struct alg_spec * a,char ** error,char * error_inval)3779 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3780 {
3781 char *k;
3782
3783 free_alg(a);
3784
3785 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3786 if (!a->alg_string)
3787 goto nomem;
3788
3789 k = strchr(a->alg_string, ':');
3790 if (k) {
3791 *k = 0;
3792 a->key_string = k + 1;
3793 if (strlen(a->key_string) & 1)
3794 goto inval;
3795
3796 a->key_size = strlen(a->key_string) / 2;
3797 a->key = kmalloc(a->key_size, GFP_KERNEL);
3798 if (!a->key)
3799 goto nomem;
3800 if (hex2bin(a->key, a->key_string, a->key_size))
3801 goto inval;
3802 }
3803
3804 return 0;
3805 inval:
3806 *error = error_inval;
3807 return -EINVAL;
3808 nomem:
3809 *error = "Out of memory for an argument";
3810 return -ENOMEM;
3811 }
3812
get_mac(struct crypto_shash ** hash,struct alg_spec * a,char ** error,char * error_alg,char * error_key)3813 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3814 char *error_alg, char *error_key)
3815 {
3816 int r;
3817
3818 if (a->alg_string) {
3819 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3820 if (IS_ERR(*hash)) {
3821 *error = error_alg;
3822 r = PTR_ERR(*hash);
3823 *hash = NULL;
3824 return r;
3825 }
3826
3827 if (a->key) {
3828 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3829 if (r) {
3830 *error = error_key;
3831 return r;
3832 }
3833 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3834 *error = error_key;
3835 return -ENOKEY;
3836 }
3837 }
3838
3839 return 0;
3840 }
3841
create_journal(struct dm_integrity_c * ic,char ** error)3842 static int create_journal(struct dm_integrity_c *ic, char **error)
3843 {
3844 int r = 0;
3845 unsigned int i;
3846 __u64 journal_pages, journal_desc_size, journal_tree_size;
3847 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3848 struct skcipher_request *req = NULL;
3849
3850 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3851 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3852 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3853 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3854
3855 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3856 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3857 journal_desc_size = journal_pages * sizeof(struct page_list);
3858 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3859 *error = "Journal doesn't fit into memory";
3860 r = -ENOMEM;
3861 goto bad;
3862 }
3863 ic->journal_pages = journal_pages;
3864
3865 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3866 if (!ic->journal) {
3867 *error = "Could not allocate memory for journal";
3868 r = -ENOMEM;
3869 goto bad;
3870 }
3871 if (ic->journal_crypt_alg.alg_string) {
3872 unsigned int ivsize, blocksize;
3873 struct journal_completion comp;
3874
3875 comp.ic = ic;
3876 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3877 if (IS_ERR(ic->journal_crypt)) {
3878 *error = "Invalid journal cipher";
3879 r = PTR_ERR(ic->journal_crypt);
3880 ic->journal_crypt = NULL;
3881 goto bad;
3882 }
3883 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3884 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3885
3886 if (ic->journal_crypt_alg.key) {
3887 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3888 ic->journal_crypt_alg.key_size);
3889 if (r) {
3890 *error = "Error setting encryption key";
3891 goto bad;
3892 }
3893 }
3894 DEBUG_print("cipher %s, block size %u iv size %u\n",
3895 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3896
3897 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3898 if (!ic->journal_io) {
3899 *error = "Could not allocate memory for journal io";
3900 r = -ENOMEM;
3901 goto bad;
3902 }
3903
3904 if (blocksize == 1) {
3905 struct scatterlist *sg;
3906
3907 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3908 if (!req) {
3909 *error = "Could not allocate crypt request";
3910 r = -ENOMEM;
3911 goto bad;
3912 }
3913
3914 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3915 if (!crypt_iv) {
3916 *error = "Could not allocate iv";
3917 r = -ENOMEM;
3918 goto bad;
3919 }
3920
3921 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3922 if (!ic->journal_xor) {
3923 *error = "Could not allocate memory for journal xor";
3924 r = -ENOMEM;
3925 goto bad;
3926 }
3927
3928 sg = kvmalloc_array(ic->journal_pages + 1,
3929 sizeof(struct scatterlist),
3930 GFP_KERNEL);
3931 if (!sg) {
3932 *error = "Unable to allocate sg list";
3933 r = -ENOMEM;
3934 goto bad;
3935 }
3936 sg_init_table(sg, ic->journal_pages + 1);
3937 for (i = 0; i < ic->journal_pages; i++) {
3938 char *va = lowmem_page_address(ic->journal_xor[i].page);
3939
3940 clear_page(va);
3941 sg_set_buf(&sg[i], va, PAGE_SIZE);
3942 }
3943 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3944
3945 skcipher_request_set_crypt(req, sg, sg,
3946 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3947 init_completion(&comp.comp);
3948 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3949 if (do_crypt(true, req, &comp))
3950 wait_for_completion(&comp.comp);
3951 kvfree(sg);
3952 r = dm_integrity_failed(ic);
3953 if (r) {
3954 *error = "Unable to encrypt journal";
3955 goto bad;
3956 }
3957 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3958
3959 crypto_free_skcipher(ic->journal_crypt);
3960 ic->journal_crypt = NULL;
3961 } else {
3962 unsigned int crypt_len = roundup(ivsize, blocksize);
3963
3964 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3965 if (!req) {
3966 *error = "Could not allocate crypt request";
3967 r = -ENOMEM;
3968 goto bad;
3969 }
3970
3971 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3972 if (!crypt_iv) {
3973 *error = "Could not allocate iv";
3974 r = -ENOMEM;
3975 goto bad;
3976 }
3977
3978 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3979 if (!crypt_data) {
3980 *error = "Unable to allocate crypt data";
3981 r = -ENOMEM;
3982 goto bad;
3983 }
3984
3985 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3986 if (!ic->journal_scatterlist) {
3987 *error = "Unable to allocate sg list";
3988 r = -ENOMEM;
3989 goto bad;
3990 }
3991 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3992 if (!ic->journal_io_scatterlist) {
3993 *error = "Unable to allocate sg list";
3994 r = -ENOMEM;
3995 goto bad;
3996 }
3997 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3998 sizeof(struct skcipher_request *),
3999 GFP_KERNEL | __GFP_ZERO);
4000 if (!ic->sk_requests) {
4001 *error = "Unable to allocate sk requests";
4002 r = -ENOMEM;
4003 goto bad;
4004 }
4005 for (i = 0; i < ic->journal_sections; i++) {
4006 struct scatterlist sg;
4007 struct skcipher_request *section_req;
4008 __le32 section_le = cpu_to_le32(i);
4009
4010 memset(crypt_iv, 0x00, ivsize);
4011 memset(crypt_data, 0x00, crypt_len);
4012 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le)));
4013
4014 sg_init_one(&sg, crypt_data, crypt_len);
4015 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4016 init_completion(&comp.comp);
4017 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4018 if (do_crypt(true, req, &comp))
4019 wait_for_completion(&comp.comp);
4020
4021 r = dm_integrity_failed(ic);
4022 if (r) {
4023 *error = "Unable to generate iv";
4024 goto bad;
4025 }
4026
4027 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4028 if (!section_req) {
4029 *error = "Unable to allocate crypt request";
4030 r = -ENOMEM;
4031 goto bad;
4032 }
4033 section_req->iv = kmalloc_array(ivsize, 2,
4034 GFP_KERNEL);
4035 if (!section_req->iv) {
4036 skcipher_request_free(section_req);
4037 *error = "Unable to allocate iv";
4038 r = -ENOMEM;
4039 goto bad;
4040 }
4041 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4042 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4043 ic->sk_requests[i] = section_req;
4044 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4045 }
4046 }
4047 }
4048
4049 for (i = 0; i < N_COMMIT_IDS; i++) {
4050 unsigned int j;
4051
4052 retest_commit_id:
4053 for (j = 0; j < i; j++) {
4054 if (ic->commit_ids[j] == ic->commit_ids[i]) {
4055 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4056 goto retest_commit_id;
4057 }
4058 }
4059 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4060 }
4061
4062 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4063 if (journal_tree_size > ULONG_MAX) {
4064 *error = "Journal doesn't fit into memory";
4065 r = -ENOMEM;
4066 goto bad;
4067 }
4068 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4069 if (!ic->journal_tree) {
4070 *error = "Could not allocate memory for journal tree";
4071 r = -ENOMEM;
4072 }
4073 bad:
4074 kfree(crypt_data);
4075 kfree(crypt_iv);
4076 skcipher_request_free(req);
4077
4078 return r;
4079 }
4080
4081 /*
4082 * Construct a integrity mapping
4083 *
4084 * Arguments:
4085 * device
4086 * offset from the start of the device
4087 * tag size
4088 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4089 * number of optional arguments
4090 * optional arguments:
4091 * journal_sectors
4092 * interleave_sectors
4093 * buffer_sectors
4094 * journal_watermark
4095 * commit_time
4096 * meta_device
4097 * block_size
4098 * sectors_per_bit
4099 * bitmap_flush_interval
4100 * internal_hash
4101 * journal_crypt
4102 * journal_mac
4103 * recalculate
4104 */
dm_integrity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)4105 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4106 {
4107 struct dm_integrity_c *ic;
4108 char dummy;
4109 int r;
4110 unsigned int extra_args;
4111 struct dm_arg_set as;
4112 static const struct dm_arg _args[] = {
4113 {0, 18, "Invalid number of feature args"},
4114 };
4115 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4116 bool should_write_sb;
4117 __u64 threshold;
4118 unsigned long long start;
4119 __s8 log2_sectors_per_bitmap_bit = -1;
4120 __s8 log2_blocks_per_bitmap_bit;
4121 __u64 bits_in_journal;
4122 __u64 n_bitmap_bits;
4123
4124 #define DIRECT_ARGUMENTS 4
4125
4126 if (argc <= DIRECT_ARGUMENTS) {
4127 ti->error = "Invalid argument count";
4128 return -EINVAL;
4129 }
4130
4131 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4132 if (!ic) {
4133 ti->error = "Cannot allocate integrity context";
4134 return -ENOMEM;
4135 }
4136 ti->private = ic;
4137 ti->per_io_data_size = sizeof(struct dm_integrity_io);
4138 ic->ti = ti;
4139
4140 ic->in_progress = RB_ROOT;
4141 INIT_LIST_HEAD(&ic->wait_list);
4142 init_waitqueue_head(&ic->endio_wait);
4143 bio_list_init(&ic->flush_bio_list);
4144 init_waitqueue_head(&ic->copy_to_journal_wait);
4145 init_completion(&ic->crypto_backoff);
4146 atomic64_set(&ic->number_of_mismatches, 0);
4147 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4148
4149 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4150 if (r) {
4151 ti->error = "Device lookup failed";
4152 goto bad;
4153 }
4154
4155 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4156 ti->error = "Invalid starting offset";
4157 r = -EINVAL;
4158 goto bad;
4159 }
4160 ic->start = start;
4161
4162 if (strcmp(argv[2], "-")) {
4163 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4164 ti->error = "Invalid tag size";
4165 r = -EINVAL;
4166 goto bad;
4167 }
4168 }
4169
4170 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4171 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4172 ic->mode = argv[3][0];
4173 } else {
4174 ti->error = "Invalid mode (expecting J, B, D, R)";
4175 r = -EINVAL;
4176 goto bad;
4177 }
4178
4179 journal_sectors = 0;
4180 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4181 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4182 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4183 sync_msec = DEFAULT_SYNC_MSEC;
4184 ic->sectors_per_block = 1;
4185
4186 as.argc = argc - DIRECT_ARGUMENTS;
4187 as.argv = argv + DIRECT_ARGUMENTS;
4188 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4189 if (r)
4190 goto bad;
4191
4192 while (extra_args--) {
4193 const char *opt_string;
4194 unsigned int val;
4195 unsigned long long llval;
4196
4197 opt_string = dm_shift_arg(&as);
4198 if (!opt_string) {
4199 r = -EINVAL;
4200 ti->error = "Not enough feature arguments";
4201 goto bad;
4202 }
4203 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4204 journal_sectors = val ? val : 1;
4205 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4206 interleave_sectors = val;
4207 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4208 buffer_sectors = val;
4209 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4210 journal_watermark = val;
4211 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4212 sync_msec = val;
4213 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4214 if (ic->meta_dev) {
4215 dm_put_device(ti, ic->meta_dev);
4216 ic->meta_dev = NULL;
4217 }
4218 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4219 dm_table_get_mode(ti->table), &ic->meta_dev);
4220 if (r) {
4221 ti->error = "Device lookup failed";
4222 goto bad;
4223 }
4224 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4225 if (val < 1 << SECTOR_SHIFT ||
4226 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4227 (val & (val - 1))) {
4228 r = -EINVAL;
4229 ti->error = "Invalid block_size argument";
4230 goto bad;
4231 }
4232 ic->sectors_per_block = val >> SECTOR_SHIFT;
4233 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4234 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4235 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4236 if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4237 r = -EINVAL;
4238 ti->error = "Invalid bitmap_flush_interval argument";
4239 goto bad;
4240 }
4241 ic->bitmap_flush_interval = msecs_to_jiffies(val);
4242 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4243 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4244 "Invalid internal_hash argument");
4245 if (r)
4246 goto bad;
4247 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4248 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4249 "Invalid journal_crypt argument");
4250 if (r)
4251 goto bad;
4252 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4253 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4254 "Invalid journal_mac argument");
4255 if (r)
4256 goto bad;
4257 } else if (!strcmp(opt_string, "recalculate")) {
4258 ic->recalculate_flag = true;
4259 } else if (!strcmp(opt_string, "reset_recalculate")) {
4260 ic->recalculate_flag = true;
4261 ic->reset_recalculate_flag = true;
4262 } else if (!strcmp(opt_string, "allow_discards")) {
4263 ic->discard = true;
4264 } else if (!strcmp(opt_string, "fix_padding")) {
4265 ic->fix_padding = true;
4266 } else if (!strcmp(opt_string, "fix_hmac")) {
4267 ic->fix_hmac = true;
4268 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4269 ic->legacy_recalculate = true;
4270 } else {
4271 r = -EINVAL;
4272 ti->error = "Invalid argument";
4273 goto bad;
4274 }
4275 }
4276
4277 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4278 if (!ic->meta_dev)
4279 ic->meta_device_sectors = ic->data_device_sectors;
4280 else
4281 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4282
4283 if (!journal_sectors) {
4284 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4285 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4286 }
4287
4288 if (!buffer_sectors)
4289 buffer_sectors = 1;
4290 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4291
4292 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4293 "Invalid internal hash", "Error setting internal hash key");
4294 if (r)
4295 goto bad;
4296
4297 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4298 "Invalid journal mac", "Error setting journal mac key");
4299 if (r)
4300 goto bad;
4301
4302 if (!ic->tag_size) {
4303 if (!ic->internal_hash) {
4304 ti->error = "Unknown tag size";
4305 r = -EINVAL;
4306 goto bad;
4307 }
4308 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4309 }
4310 if (ic->tag_size > MAX_TAG_SIZE) {
4311 ti->error = "Too big tag size";
4312 r = -EINVAL;
4313 goto bad;
4314 }
4315 if (!(ic->tag_size & (ic->tag_size - 1)))
4316 ic->log2_tag_size = __ffs(ic->tag_size);
4317 else
4318 ic->log2_tag_size = -1;
4319
4320 if (ic->mode == 'B' && !ic->internal_hash) {
4321 r = -EINVAL;
4322 ti->error = "Bitmap mode can be only used with internal hash";
4323 goto bad;
4324 }
4325
4326 if (ic->discard && !ic->internal_hash) {
4327 r = -EINVAL;
4328 ti->error = "Discard can be only used with internal hash";
4329 goto bad;
4330 }
4331
4332 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4333 ic->autocommit_msec = sync_msec;
4334 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4335
4336 ic->io = dm_io_client_create();
4337 if (IS_ERR(ic->io)) {
4338 r = PTR_ERR(ic->io);
4339 ic->io = NULL;
4340 ti->error = "Cannot allocate dm io";
4341 goto bad;
4342 }
4343
4344 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4345 if (r) {
4346 ti->error = "Cannot allocate mempool";
4347 goto bad;
4348 }
4349
4350 r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4351 if (r) {
4352 ti->error = "Cannot allocate mempool";
4353 goto bad;
4354 }
4355
4356 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4357 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4358 if (!ic->metadata_wq) {
4359 ti->error = "Cannot allocate workqueue";
4360 r = -ENOMEM;
4361 goto bad;
4362 }
4363
4364 /*
4365 * If this workqueue weren't ordered, it would cause bio reordering
4366 * and reduced performance.
4367 */
4368 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4369 if (!ic->wait_wq) {
4370 ti->error = "Cannot allocate workqueue";
4371 r = -ENOMEM;
4372 goto bad;
4373 }
4374
4375 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4376 METADATA_WORKQUEUE_MAX_ACTIVE);
4377 if (!ic->offload_wq) {
4378 ti->error = "Cannot allocate workqueue";
4379 r = -ENOMEM;
4380 goto bad;
4381 }
4382
4383 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4384 if (!ic->commit_wq) {
4385 ti->error = "Cannot allocate workqueue";
4386 r = -ENOMEM;
4387 goto bad;
4388 }
4389 INIT_WORK(&ic->commit_work, integrity_commit);
4390
4391 if (ic->mode == 'J' || ic->mode == 'B') {
4392 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4393 if (!ic->writer_wq) {
4394 ti->error = "Cannot allocate workqueue";
4395 r = -ENOMEM;
4396 goto bad;
4397 }
4398 INIT_WORK(&ic->writer_work, integrity_writer);
4399 }
4400
4401 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4402 if (!ic->sb) {
4403 r = -ENOMEM;
4404 ti->error = "Cannot allocate superblock area";
4405 goto bad;
4406 }
4407
4408 r = sync_rw_sb(ic, REQ_OP_READ);
4409 if (r) {
4410 ti->error = "Error reading superblock";
4411 goto bad;
4412 }
4413 should_write_sb = false;
4414 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4415 if (ic->mode != 'R') {
4416 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4417 r = -EINVAL;
4418 ti->error = "The device is not initialized";
4419 goto bad;
4420 }
4421 }
4422
4423 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4424 if (r) {
4425 ti->error = "Could not initialize superblock";
4426 goto bad;
4427 }
4428 if (ic->mode != 'R')
4429 should_write_sb = true;
4430 }
4431
4432 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4433 r = -EINVAL;
4434 ti->error = "Unknown version";
4435 goto bad;
4436 }
4437 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4438 r = -EINVAL;
4439 ti->error = "Tag size doesn't match the information in superblock";
4440 goto bad;
4441 }
4442 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4443 r = -EINVAL;
4444 ti->error = "Block size doesn't match the information in superblock";
4445 goto bad;
4446 }
4447 if (!le32_to_cpu(ic->sb->journal_sections)) {
4448 r = -EINVAL;
4449 ti->error = "Corrupted superblock, journal_sections is 0";
4450 goto bad;
4451 }
4452 /* make sure that ti->max_io_len doesn't overflow */
4453 if (!ic->meta_dev) {
4454 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4455 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4456 r = -EINVAL;
4457 ti->error = "Invalid interleave_sectors in the superblock";
4458 goto bad;
4459 }
4460 } else {
4461 if (ic->sb->log2_interleave_sectors) {
4462 r = -EINVAL;
4463 ti->error = "Invalid interleave_sectors in the superblock";
4464 goto bad;
4465 }
4466 }
4467 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4468 r = -EINVAL;
4469 ti->error = "Journal mac mismatch";
4470 goto bad;
4471 }
4472
4473 get_provided_data_sectors(ic);
4474 if (!ic->provided_data_sectors) {
4475 r = -EINVAL;
4476 ti->error = "The device is too small";
4477 goto bad;
4478 }
4479
4480 try_smaller_buffer:
4481 r = calculate_device_limits(ic);
4482 if (r) {
4483 if (ic->meta_dev) {
4484 if (ic->log2_buffer_sectors > 3) {
4485 ic->log2_buffer_sectors--;
4486 goto try_smaller_buffer;
4487 }
4488 }
4489 ti->error = "The device is too small";
4490 goto bad;
4491 }
4492
4493 if (log2_sectors_per_bitmap_bit < 0)
4494 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4495 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4496 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4497
4498 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4499 if (bits_in_journal > UINT_MAX)
4500 bits_in_journal = UINT_MAX;
4501 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4502 log2_sectors_per_bitmap_bit++;
4503
4504 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4505 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4506 if (should_write_sb)
4507 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4508
4509 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4510 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4511 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4512
4513 if (!ic->meta_dev)
4514 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4515
4516 if (ti->len > ic->provided_data_sectors) {
4517 r = -EINVAL;
4518 ti->error = "Not enough provided sectors for requested mapping size";
4519 goto bad;
4520 }
4521
4522
4523 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4524 threshold += 50;
4525 do_div(threshold, 100);
4526 ic->free_sectors_threshold = threshold;
4527
4528 DEBUG_print("initialized:\n");
4529 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4530 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4531 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4532 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4533 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4534 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4535 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4536 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4537 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4538 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4539 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4540 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4541 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4542 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4543 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4544
4545 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4546 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4547 ic->sb->recalc_sector = cpu_to_le64(0);
4548 }
4549
4550 if (ic->internal_hash) {
4551 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4552 if (!ic->recalc_wq) {
4553 ti->error = "Cannot allocate workqueue";
4554 r = -ENOMEM;
4555 goto bad;
4556 }
4557 INIT_WORK(&ic->recalc_work, integrity_recalc);
4558 } else {
4559 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4560 ti->error = "Recalculate can only be specified with internal_hash";
4561 r = -EINVAL;
4562 goto bad;
4563 }
4564 }
4565
4566 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4567 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4568 dm_integrity_disable_recalculate(ic)) {
4569 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4570 r = -EOPNOTSUPP;
4571 goto bad;
4572 }
4573
4574 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4575 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4576 if (IS_ERR(ic->bufio)) {
4577 r = PTR_ERR(ic->bufio);
4578 ti->error = "Cannot initialize dm-bufio";
4579 ic->bufio = NULL;
4580 goto bad;
4581 }
4582 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4583
4584 if (ic->mode != 'R') {
4585 r = create_journal(ic, &ti->error);
4586 if (r)
4587 goto bad;
4588
4589 }
4590
4591 if (ic->mode == 'B') {
4592 unsigned int i;
4593 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4594
4595 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4596 if (!ic->recalc_bitmap) {
4597 r = -ENOMEM;
4598 goto bad;
4599 }
4600 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4601 if (!ic->may_write_bitmap) {
4602 r = -ENOMEM;
4603 goto bad;
4604 }
4605 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4606 if (!ic->bbs) {
4607 r = -ENOMEM;
4608 goto bad;
4609 }
4610 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4611 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4612 struct bitmap_block_status *bbs = &ic->bbs[i];
4613 unsigned int sector, pl_index, pl_offset;
4614
4615 INIT_WORK(&bbs->work, bitmap_block_work);
4616 bbs->ic = ic;
4617 bbs->idx = i;
4618 bio_list_init(&bbs->bio_queue);
4619 spin_lock_init(&bbs->bio_queue_lock);
4620
4621 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4622 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4623 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4624
4625 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4626 }
4627 }
4628
4629 if (should_write_sb) {
4630 init_journal(ic, 0, ic->journal_sections, 0);
4631 r = dm_integrity_failed(ic);
4632 if (unlikely(r)) {
4633 ti->error = "Error initializing journal";
4634 goto bad;
4635 }
4636 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4637 if (r) {
4638 ti->error = "Error initializing superblock";
4639 goto bad;
4640 }
4641 ic->just_formatted = true;
4642 }
4643
4644 if (!ic->meta_dev) {
4645 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4646 if (r)
4647 goto bad;
4648 }
4649 if (ic->mode == 'B') {
4650 unsigned int max_io_len;
4651
4652 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4653 if (!max_io_len)
4654 max_io_len = 1U << 31;
4655 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4656 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4657 r = dm_set_target_max_io_len(ti, max_io_len);
4658 if (r)
4659 goto bad;
4660 }
4661 }
4662
4663 if (!ic->internal_hash)
4664 dm_integrity_set(ti, ic);
4665
4666 ti->num_flush_bios = 1;
4667 ti->flush_supported = true;
4668 if (ic->discard)
4669 ti->num_discard_bios = 1;
4670
4671 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4672 return 0;
4673
4674 bad:
4675 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4676 dm_integrity_dtr(ti);
4677 return r;
4678 }
4679
dm_integrity_dtr(struct dm_target * ti)4680 static void dm_integrity_dtr(struct dm_target *ti)
4681 {
4682 struct dm_integrity_c *ic = ti->private;
4683
4684 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4685 BUG_ON(!list_empty(&ic->wait_list));
4686
4687 if (ic->mode == 'B')
4688 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4689 if (ic->metadata_wq)
4690 destroy_workqueue(ic->metadata_wq);
4691 if (ic->wait_wq)
4692 destroy_workqueue(ic->wait_wq);
4693 if (ic->offload_wq)
4694 destroy_workqueue(ic->offload_wq);
4695 if (ic->commit_wq)
4696 destroy_workqueue(ic->commit_wq);
4697 if (ic->writer_wq)
4698 destroy_workqueue(ic->writer_wq);
4699 if (ic->recalc_wq)
4700 destroy_workqueue(ic->recalc_wq);
4701 kvfree(ic->bbs);
4702 if (ic->bufio)
4703 dm_bufio_client_destroy(ic->bufio);
4704 mempool_exit(&ic->recheck_pool);
4705 mempool_exit(&ic->journal_io_mempool);
4706 if (ic->io)
4707 dm_io_client_destroy(ic->io);
4708 if (ic->dev)
4709 dm_put_device(ti, ic->dev);
4710 if (ic->meta_dev)
4711 dm_put_device(ti, ic->meta_dev);
4712 dm_integrity_free_page_list(ic->journal);
4713 dm_integrity_free_page_list(ic->journal_io);
4714 dm_integrity_free_page_list(ic->journal_xor);
4715 dm_integrity_free_page_list(ic->recalc_bitmap);
4716 dm_integrity_free_page_list(ic->may_write_bitmap);
4717 if (ic->journal_scatterlist)
4718 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4719 if (ic->journal_io_scatterlist)
4720 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4721 if (ic->sk_requests) {
4722 unsigned int i;
4723
4724 for (i = 0; i < ic->journal_sections; i++) {
4725 struct skcipher_request *req;
4726
4727 req = ic->sk_requests[i];
4728 if (req) {
4729 kfree_sensitive(req->iv);
4730 skcipher_request_free(req);
4731 }
4732 }
4733 kvfree(ic->sk_requests);
4734 }
4735 kvfree(ic->journal_tree);
4736 if (ic->sb)
4737 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4738
4739 if (ic->internal_hash)
4740 crypto_free_shash(ic->internal_hash);
4741 free_alg(&ic->internal_hash_alg);
4742
4743 if (ic->journal_crypt)
4744 crypto_free_skcipher(ic->journal_crypt);
4745 free_alg(&ic->journal_crypt_alg);
4746
4747 if (ic->journal_mac)
4748 crypto_free_shash(ic->journal_mac);
4749 free_alg(&ic->journal_mac_alg);
4750
4751 kfree(ic);
4752 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4753 }
4754
4755 static struct target_type integrity_target = {
4756 .name = "integrity",
4757 .version = {1, 10, 0},
4758 .module = THIS_MODULE,
4759 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4760 .ctr = dm_integrity_ctr,
4761 .dtr = dm_integrity_dtr,
4762 .map = dm_integrity_map,
4763 .postsuspend = dm_integrity_postsuspend,
4764 .resume = dm_integrity_resume,
4765 .status = dm_integrity_status,
4766 .iterate_devices = dm_integrity_iterate_devices,
4767 .io_hints = dm_integrity_io_hints,
4768 };
4769
dm_integrity_init(void)4770 static int __init dm_integrity_init(void)
4771 {
4772 int r;
4773
4774 journal_io_cache = kmem_cache_create("integrity_journal_io",
4775 sizeof(struct journal_io), 0, 0, NULL);
4776 if (!journal_io_cache) {
4777 DMERR("can't allocate journal io cache");
4778 return -ENOMEM;
4779 }
4780
4781 r = dm_register_target(&integrity_target);
4782 if (r < 0) {
4783 kmem_cache_destroy(journal_io_cache);
4784 return r;
4785 }
4786
4787 return 0;
4788 }
4789
dm_integrity_exit(void)4790 static void __exit dm_integrity_exit(void)
4791 {
4792 dm_unregister_target(&integrity_target);
4793 kmem_cache_destroy(journal_io_cache);
4794 }
4795
4796 module_init(dm_integrity_init);
4797 module_exit(dm_integrity_exit);
4798
4799 MODULE_AUTHOR("Milan Broz");
4800 MODULE_AUTHOR("Mikulas Patocka");
4801 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4802 MODULE_LICENSE("GPL");
4803