xref: /openbmc/linux/drivers/md/dm-crypt.c (revision f7c35abe)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <keys/user-type.h>
35 
36 #include <linux/device-mapper.h>
37 
38 #define DM_MSG_PREFIX "crypt"
39 
40 /*
41  * context holding the current state of a multi-part conversion
42  */
43 struct convert_context {
44 	struct completion restart;
45 	struct bio *bio_in;
46 	struct bio *bio_out;
47 	struct bvec_iter iter_in;
48 	struct bvec_iter iter_out;
49 	sector_t cc_sector;
50 	atomic_t cc_pending;
51 	struct skcipher_request *req;
52 };
53 
54 /*
55  * per bio private data
56  */
57 struct dm_crypt_io {
58 	struct crypt_config *cc;
59 	struct bio *base_bio;
60 	struct work_struct work;
61 
62 	struct convert_context ctx;
63 
64 	atomic_t io_pending;
65 	int error;
66 	sector_t sector;
67 
68 	struct rb_node rb_node;
69 } CRYPTO_MINALIGN_ATTR;
70 
71 struct dm_crypt_request {
72 	struct convert_context *ctx;
73 	struct scatterlist sg_in;
74 	struct scatterlist sg_out;
75 	sector_t iv_sector;
76 };
77 
78 struct crypt_config;
79 
80 struct crypt_iv_operations {
81 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
82 		   const char *opts);
83 	void (*dtr)(struct crypt_config *cc);
84 	int (*init)(struct crypt_config *cc);
85 	int (*wipe)(struct crypt_config *cc);
86 	int (*generator)(struct crypt_config *cc, u8 *iv,
87 			 struct dm_crypt_request *dmreq);
88 	int (*post)(struct crypt_config *cc, u8 *iv,
89 		    struct dm_crypt_request *dmreq);
90 };
91 
92 struct iv_essiv_private {
93 	struct crypto_ahash *hash_tfm;
94 	u8 *salt;
95 };
96 
97 struct iv_benbi_private {
98 	int shift;
99 };
100 
101 #define LMK_SEED_SIZE 64 /* hash + 0 */
102 struct iv_lmk_private {
103 	struct crypto_shash *hash_tfm;
104 	u8 *seed;
105 };
106 
107 #define TCW_WHITENING_SIZE 16
108 struct iv_tcw_private {
109 	struct crypto_shash *crc32_tfm;
110 	u8 *iv_seed;
111 	u8 *whitening;
112 };
113 
114 /*
115  * Crypt: maps a linear range of a block device
116  * and encrypts / decrypts at the same time.
117  */
118 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
119 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
120 
121 /*
122  * The fields in here must be read only after initialization.
123  */
124 struct crypt_config {
125 	struct dm_dev *dev;
126 	sector_t start;
127 
128 	/*
129 	 * pool for per bio private data, crypto requests and
130 	 * encryption requeusts/buffer pages
131 	 */
132 	mempool_t *req_pool;
133 	mempool_t *page_pool;
134 	struct bio_set *bs;
135 	struct mutex bio_alloc_lock;
136 
137 	struct workqueue_struct *io_queue;
138 	struct workqueue_struct *crypt_queue;
139 
140 	struct task_struct *write_thread;
141 	wait_queue_head_t write_thread_wait;
142 	struct rb_root write_tree;
143 
144 	char *cipher;
145 	char *cipher_string;
146 	char *key_string;
147 
148 	const struct crypt_iv_operations *iv_gen_ops;
149 	union {
150 		struct iv_essiv_private essiv;
151 		struct iv_benbi_private benbi;
152 		struct iv_lmk_private lmk;
153 		struct iv_tcw_private tcw;
154 	} iv_gen_private;
155 	sector_t iv_offset;
156 	unsigned int iv_size;
157 
158 	/* ESSIV: struct crypto_cipher *essiv_tfm */
159 	void *iv_private;
160 	struct crypto_skcipher **tfms;
161 	unsigned tfms_count;
162 
163 	/*
164 	 * Layout of each crypto request:
165 	 *
166 	 *   struct skcipher_request
167 	 *      context
168 	 *      padding
169 	 *   struct dm_crypt_request
170 	 *      padding
171 	 *   IV
172 	 *
173 	 * The padding is added so that dm_crypt_request and the IV are
174 	 * correctly aligned.
175 	 */
176 	unsigned int dmreq_start;
177 
178 	unsigned int per_bio_data_size;
179 
180 	unsigned long flags;
181 	unsigned int key_size;
182 	unsigned int key_parts;      /* independent parts in key buffer */
183 	unsigned int key_extra_size; /* additional keys length */
184 	u8 key[0];
185 };
186 
187 #define MIN_IOS        64
188 
189 static void clone_init(struct dm_crypt_io *, struct bio *);
190 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
191 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
192 
193 /*
194  * Use this to access cipher attributes that are the same for each CPU.
195  */
196 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
197 {
198 	return cc->tfms[0];
199 }
200 
201 /*
202  * Different IV generation algorithms:
203  *
204  * plain: the initial vector is the 32-bit little-endian version of the sector
205  *        number, padded with zeros if necessary.
206  *
207  * plain64: the initial vector is the 64-bit little-endian version of the sector
208  *        number, padded with zeros if necessary.
209  *
210  * essiv: "encrypted sector|salt initial vector", the sector number is
211  *        encrypted with the bulk cipher using a salt as key. The salt
212  *        should be derived from the bulk cipher's key via hashing.
213  *
214  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
215  *        (needed for LRW-32-AES and possible other narrow block modes)
216  *
217  * null: the initial vector is always zero.  Provides compatibility with
218  *       obsolete loop_fish2 devices.  Do not use for new devices.
219  *
220  * lmk:  Compatible implementation of the block chaining mode used
221  *       by the Loop-AES block device encryption system
222  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
223  *       It operates on full 512 byte sectors and uses CBC
224  *       with an IV derived from the sector number, the data and
225  *       optionally extra IV seed.
226  *       This means that after decryption the first block
227  *       of sector must be tweaked according to decrypted data.
228  *       Loop-AES can use three encryption schemes:
229  *         version 1: is plain aes-cbc mode
230  *         version 2: uses 64 multikey scheme with lmk IV generator
231  *         version 3: the same as version 2 with additional IV seed
232  *                   (it uses 65 keys, last key is used as IV seed)
233  *
234  * tcw:  Compatible implementation of the block chaining mode used
235  *       by the TrueCrypt device encryption system (prior to version 4.1).
236  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
237  *       It operates on full 512 byte sectors and uses CBC
238  *       with an IV derived from initial key and the sector number.
239  *       In addition, whitening value is applied on every sector, whitening
240  *       is calculated from initial key, sector number and mixed using CRC32.
241  *       Note that this encryption scheme is vulnerable to watermarking attacks
242  *       and should be used for old compatible containers access only.
243  *
244  * plumb: unimplemented, see:
245  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
246  */
247 
248 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
249 			      struct dm_crypt_request *dmreq)
250 {
251 	memset(iv, 0, cc->iv_size);
252 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
253 
254 	return 0;
255 }
256 
257 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
258 				struct dm_crypt_request *dmreq)
259 {
260 	memset(iv, 0, cc->iv_size);
261 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
262 
263 	return 0;
264 }
265 
266 /* Initialise ESSIV - compute salt but no local memory allocations */
267 static int crypt_iv_essiv_init(struct crypt_config *cc)
268 {
269 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
270 	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
271 	struct scatterlist sg;
272 	struct crypto_cipher *essiv_tfm;
273 	int err;
274 
275 	sg_init_one(&sg, cc->key, cc->key_size);
276 	ahash_request_set_tfm(req, essiv->hash_tfm);
277 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
278 	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
279 
280 	err = crypto_ahash_digest(req);
281 	ahash_request_zero(req);
282 	if (err)
283 		return err;
284 
285 	essiv_tfm = cc->iv_private;
286 
287 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
288 			    crypto_ahash_digestsize(essiv->hash_tfm));
289 	if (err)
290 		return err;
291 
292 	return 0;
293 }
294 
295 /* Wipe salt and reset key derived from volume key */
296 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
297 {
298 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
299 	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
300 	struct crypto_cipher *essiv_tfm;
301 	int r, err = 0;
302 
303 	memset(essiv->salt, 0, salt_size);
304 
305 	essiv_tfm = cc->iv_private;
306 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
307 	if (r)
308 		err = r;
309 
310 	return err;
311 }
312 
313 /* Set up per cpu cipher state */
314 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
315 					     struct dm_target *ti,
316 					     u8 *salt, unsigned saltsize)
317 {
318 	struct crypto_cipher *essiv_tfm;
319 	int err;
320 
321 	/* Setup the essiv_tfm with the given salt */
322 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
323 	if (IS_ERR(essiv_tfm)) {
324 		ti->error = "Error allocating crypto tfm for ESSIV";
325 		return essiv_tfm;
326 	}
327 
328 	if (crypto_cipher_blocksize(essiv_tfm) !=
329 	    crypto_skcipher_ivsize(any_tfm(cc))) {
330 		ti->error = "Block size of ESSIV cipher does "
331 			    "not match IV size of block cipher";
332 		crypto_free_cipher(essiv_tfm);
333 		return ERR_PTR(-EINVAL);
334 	}
335 
336 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
337 	if (err) {
338 		ti->error = "Failed to set key for ESSIV cipher";
339 		crypto_free_cipher(essiv_tfm);
340 		return ERR_PTR(err);
341 	}
342 
343 	return essiv_tfm;
344 }
345 
346 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
347 {
348 	struct crypto_cipher *essiv_tfm;
349 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
350 
351 	crypto_free_ahash(essiv->hash_tfm);
352 	essiv->hash_tfm = NULL;
353 
354 	kzfree(essiv->salt);
355 	essiv->salt = NULL;
356 
357 	essiv_tfm = cc->iv_private;
358 
359 	if (essiv_tfm)
360 		crypto_free_cipher(essiv_tfm);
361 
362 	cc->iv_private = NULL;
363 }
364 
365 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
366 			      const char *opts)
367 {
368 	struct crypto_cipher *essiv_tfm = NULL;
369 	struct crypto_ahash *hash_tfm = NULL;
370 	u8 *salt = NULL;
371 	int err;
372 
373 	if (!opts) {
374 		ti->error = "Digest algorithm missing for ESSIV mode";
375 		return -EINVAL;
376 	}
377 
378 	/* Allocate hash algorithm */
379 	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
380 	if (IS_ERR(hash_tfm)) {
381 		ti->error = "Error initializing ESSIV hash";
382 		err = PTR_ERR(hash_tfm);
383 		goto bad;
384 	}
385 
386 	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
387 	if (!salt) {
388 		ti->error = "Error kmallocing salt storage in ESSIV";
389 		err = -ENOMEM;
390 		goto bad;
391 	}
392 
393 	cc->iv_gen_private.essiv.salt = salt;
394 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
395 
396 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
397 				crypto_ahash_digestsize(hash_tfm));
398 	if (IS_ERR(essiv_tfm)) {
399 		crypt_iv_essiv_dtr(cc);
400 		return PTR_ERR(essiv_tfm);
401 	}
402 	cc->iv_private = essiv_tfm;
403 
404 	return 0;
405 
406 bad:
407 	if (hash_tfm && !IS_ERR(hash_tfm))
408 		crypto_free_ahash(hash_tfm);
409 	kfree(salt);
410 	return err;
411 }
412 
413 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
414 			      struct dm_crypt_request *dmreq)
415 {
416 	struct crypto_cipher *essiv_tfm = cc->iv_private;
417 
418 	memset(iv, 0, cc->iv_size);
419 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
420 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
421 
422 	return 0;
423 }
424 
425 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
426 			      const char *opts)
427 {
428 	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
429 	int log = ilog2(bs);
430 
431 	/* we need to calculate how far we must shift the sector count
432 	 * to get the cipher block count, we use this shift in _gen */
433 
434 	if (1 << log != bs) {
435 		ti->error = "cypher blocksize is not a power of 2";
436 		return -EINVAL;
437 	}
438 
439 	if (log > 9) {
440 		ti->error = "cypher blocksize is > 512";
441 		return -EINVAL;
442 	}
443 
444 	cc->iv_gen_private.benbi.shift = 9 - log;
445 
446 	return 0;
447 }
448 
449 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
450 {
451 }
452 
453 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
454 			      struct dm_crypt_request *dmreq)
455 {
456 	__be64 val;
457 
458 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
459 
460 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
461 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
462 
463 	return 0;
464 }
465 
466 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
467 			     struct dm_crypt_request *dmreq)
468 {
469 	memset(iv, 0, cc->iv_size);
470 
471 	return 0;
472 }
473 
474 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
475 {
476 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
477 
478 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
479 		crypto_free_shash(lmk->hash_tfm);
480 	lmk->hash_tfm = NULL;
481 
482 	kzfree(lmk->seed);
483 	lmk->seed = NULL;
484 }
485 
486 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
487 			    const char *opts)
488 {
489 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
490 
491 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
492 	if (IS_ERR(lmk->hash_tfm)) {
493 		ti->error = "Error initializing LMK hash";
494 		return PTR_ERR(lmk->hash_tfm);
495 	}
496 
497 	/* No seed in LMK version 2 */
498 	if (cc->key_parts == cc->tfms_count) {
499 		lmk->seed = NULL;
500 		return 0;
501 	}
502 
503 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
504 	if (!lmk->seed) {
505 		crypt_iv_lmk_dtr(cc);
506 		ti->error = "Error kmallocing seed storage in LMK";
507 		return -ENOMEM;
508 	}
509 
510 	return 0;
511 }
512 
513 static int crypt_iv_lmk_init(struct crypt_config *cc)
514 {
515 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
516 	int subkey_size = cc->key_size / cc->key_parts;
517 
518 	/* LMK seed is on the position of LMK_KEYS + 1 key */
519 	if (lmk->seed)
520 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
521 		       crypto_shash_digestsize(lmk->hash_tfm));
522 
523 	return 0;
524 }
525 
526 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
527 {
528 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529 
530 	if (lmk->seed)
531 		memset(lmk->seed, 0, LMK_SEED_SIZE);
532 
533 	return 0;
534 }
535 
536 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
537 			    struct dm_crypt_request *dmreq,
538 			    u8 *data)
539 {
540 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
541 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
542 	struct md5_state md5state;
543 	__le32 buf[4];
544 	int i, r;
545 
546 	desc->tfm = lmk->hash_tfm;
547 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
548 
549 	r = crypto_shash_init(desc);
550 	if (r)
551 		return r;
552 
553 	if (lmk->seed) {
554 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
555 		if (r)
556 			return r;
557 	}
558 
559 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
560 	r = crypto_shash_update(desc, data + 16, 16 * 31);
561 	if (r)
562 		return r;
563 
564 	/* Sector is cropped to 56 bits here */
565 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
566 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
567 	buf[2] = cpu_to_le32(4024);
568 	buf[3] = 0;
569 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
570 	if (r)
571 		return r;
572 
573 	/* No MD5 padding here */
574 	r = crypto_shash_export(desc, &md5state);
575 	if (r)
576 		return r;
577 
578 	for (i = 0; i < MD5_HASH_WORDS; i++)
579 		__cpu_to_le32s(&md5state.hash[i]);
580 	memcpy(iv, &md5state.hash, cc->iv_size);
581 
582 	return 0;
583 }
584 
585 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
586 			    struct dm_crypt_request *dmreq)
587 {
588 	u8 *src;
589 	int r = 0;
590 
591 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
592 		src = kmap_atomic(sg_page(&dmreq->sg_in));
593 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
594 		kunmap_atomic(src);
595 	} else
596 		memset(iv, 0, cc->iv_size);
597 
598 	return r;
599 }
600 
601 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
602 			     struct dm_crypt_request *dmreq)
603 {
604 	u8 *dst;
605 	int r;
606 
607 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
608 		return 0;
609 
610 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
611 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
612 
613 	/* Tweak the first block of plaintext sector */
614 	if (!r)
615 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
616 
617 	kunmap_atomic(dst);
618 	return r;
619 }
620 
621 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
622 {
623 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
624 
625 	kzfree(tcw->iv_seed);
626 	tcw->iv_seed = NULL;
627 	kzfree(tcw->whitening);
628 	tcw->whitening = NULL;
629 
630 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
631 		crypto_free_shash(tcw->crc32_tfm);
632 	tcw->crc32_tfm = NULL;
633 }
634 
635 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
636 			    const char *opts)
637 {
638 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
639 
640 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
641 		ti->error = "Wrong key size for TCW";
642 		return -EINVAL;
643 	}
644 
645 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
646 	if (IS_ERR(tcw->crc32_tfm)) {
647 		ti->error = "Error initializing CRC32 in TCW";
648 		return PTR_ERR(tcw->crc32_tfm);
649 	}
650 
651 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
652 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
653 	if (!tcw->iv_seed || !tcw->whitening) {
654 		crypt_iv_tcw_dtr(cc);
655 		ti->error = "Error allocating seed storage in TCW";
656 		return -ENOMEM;
657 	}
658 
659 	return 0;
660 }
661 
662 static int crypt_iv_tcw_init(struct crypt_config *cc)
663 {
664 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
665 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
666 
667 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
668 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
669 	       TCW_WHITENING_SIZE);
670 
671 	return 0;
672 }
673 
674 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
675 {
676 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
677 
678 	memset(tcw->iv_seed, 0, cc->iv_size);
679 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
680 
681 	return 0;
682 }
683 
684 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
685 				  struct dm_crypt_request *dmreq,
686 				  u8 *data)
687 {
688 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
689 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
690 	u8 buf[TCW_WHITENING_SIZE];
691 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
692 	int i, r;
693 
694 	/* xor whitening with sector number */
695 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
696 	crypto_xor(buf, (u8 *)&sector, 8);
697 	crypto_xor(&buf[8], (u8 *)&sector, 8);
698 
699 	/* calculate crc32 for every 32bit part and xor it */
700 	desc->tfm = tcw->crc32_tfm;
701 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
702 	for (i = 0; i < 4; i++) {
703 		r = crypto_shash_init(desc);
704 		if (r)
705 			goto out;
706 		r = crypto_shash_update(desc, &buf[i * 4], 4);
707 		if (r)
708 			goto out;
709 		r = crypto_shash_final(desc, &buf[i * 4]);
710 		if (r)
711 			goto out;
712 	}
713 	crypto_xor(&buf[0], &buf[12], 4);
714 	crypto_xor(&buf[4], &buf[8], 4);
715 
716 	/* apply whitening (8 bytes) to whole sector */
717 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
718 		crypto_xor(data + i * 8, buf, 8);
719 out:
720 	memzero_explicit(buf, sizeof(buf));
721 	return r;
722 }
723 
724 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
725 			    struct dm_crypt_request *dmreq)
726 {
727 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
728 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
729 	u8 *src;
730 	int r = 0;
731 
732 	/* Remove whitening from ciphertext */
733 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
734 		src = kmap_atomic(sg_page(&dmreq->sg_in));
735 		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
736 		kunmap_atomic(src);
737 	}
738 
739 	/* Calculate IV */
740 	memcpy(iv, tcw->iv_seed, cc->iv_size);
741 	crypto_xor(iv, (u8 *)&sector, 8);
742 	if (cc->iv_size > 8)
743 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
744 
745 	return r;
746 }
747 
748 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
749 			     struct dm_crypt_request *dmreq)
750 {
751 	u8 *dst;
752 	int r;
753 
754 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
755 		return 0;
756 
757 	/* Apply whitening on ciphertext */
758 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
759 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
760 	kunmap_atomic(dst);
761 
762 	return r;
763 }
764 
765 static const struct crypt_iv_operations crypt_iv_plain_ops = {
766 	.generator = crypt_iv_plain_gen
767 };
768 
769 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
770 	.generator = crypt_iv_plain64_gen
771 };
772 
773 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
774 	.ctr       = crypt_iv_essiv_ctr,
775 	.dtr       = crypt_iv_essiv_dtr,
776 	.init      = crypt_iv_essiv_init,
777 	.wipe      = crypt_iv_essiv_wipe,
778 	.generator = crypt_iv_essiv_gen
779 };
780 
781 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
782 	.ctr	   = crypt_iv_benbi_ctr,
783 	.dtr	   = crypt_iv_benbi_dtr,
784 	.generator = crypt_iv_benbi_gen
785 };
786 
787 static const struct crypt_iv_operations crypt_iv_null_ops = {
788 	.generator = crypt_iv_null_gen
789 };
790 
791 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
792 	.ctr	   = crypt_iv_lmk_ctr,
793 	.dtr	   = crypt_iv_lmk_dtr,
794 	.init	   = crypt_iv_lmk_init,
795 	.wipe	   = crypt_iv_lmk_wipe,
796 	.generator = crypt_iv_lmk_gen,
797 	.post	   = crypt_iv_lmk_post
798 };
799 
800 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
801 	.ctr	   = crypt_iv_tcw_ctr,
802 	.dtr	   = crypt_iv_tcw_dtr,
803 	.init	   = crypt_iv_tcw_init,
804 	.wipe	   = crypt_iv_tcw_wipe,
805 	.generator = crypt_iv_tcw_gen,
806 	.post	   = crypt_iv_tcw_post
807 };
808 
809 static void crypt_convert_init(struct crypt_config *cc,
810 			       struct convert_context *ctx,
811 			       struct bio *bio_out, struct bio *bio_in,
812 			       sector_t sector)
813 {
814 	ctx->bio_in = bio_in;
815 	ctx->bio_out = bio_out;
816 	if (bio_in)
817 		ctx->iter_in = bio_in->bi_iter;
818 	if (bio_out)
819 		ctx->iter_out = bio_out->bi_iter;
820 	ctx->cc_sector = sector + cc->iv_offset;
821 	init_completion(&ctx->restart);
822 }
823 
824 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
825 					     struct skcipher_request *req)
826 {
827 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
828 }
829 
830 static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
831 					       struct dm_crypt_request *dmreq)
832 {
833 	return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
834 }
835 
836 static u8 *iv_of_dmreq(struct crypt_config *cc,
837 		       struct dm_crypt_request *dmreq)
838 {
839 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
840 		crypto_skcipher_alignmask(any_tfm(cc)) + 1);
841 }
842 
843 static int crypt_convert_block(struct crypt_config *cc,
844 			       struct convert_context *ctx,
845 			       struct skcipher_request *req)
846 {
847 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
848 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
849 	struct dm_crypt_request *dmreq;
850 	u8 *iv;
851 	int r;
852 
853 	dmreq = dmreq_of_req(cc, req);
854 	iv = iv_of_dmreq(cc, dmreq);
855 
856 	dmreq->iv_sector = ctx->cc_sector;
857 	dmreq->ctx = ctx;
858 	sg_init_table(&dmreq->sg_in, 1);
859 	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
860 		    bv_in.bv_offset);
861 
862 	sg_init_table(&dmreq->sg_out, 1);
863 	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
864 		    bv_out.bv_offset);
865 
866 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
867 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
868 
869 	if (cc->iv_gen_ops) {
870 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
871 		if (r < 0)
872 			return r;
873 	}
874 
875 	skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
876 				   1 << SECTOR_SHIFT, iv);
877 
878 	if (bio_data_dir(ctx->bio_in) == WRITE)
879 		r = crypto_skcipher_encrypt(req);
880 	else
881 		r = crypto_skcipher_decrypt(req);
882 
883 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
884 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
885 
886 	return r;
887 }
888 
889 static void kcryptd_async_done(struct crypto_async_request *async_req,
890 			       int error);
891 
892 static void crypt_alloc_req(struct crypt_config *cc,
893 			    struct convert_context *ctx)
894 {
895 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
896 
897 	if (!ctx->req)
898 		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
899 
900 	skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
901 
902 	/*
903 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
904 	 * requests if driver request queue is full.
905 	 */
906 	skcipher_request_set_callback(ctx->req,
907 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
908 	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
909 }
910 
911 static void crypt_free_req(struct crypt_config *cc,
912 			   struct skcipher_request *req, struct bio *base_bio)
913 {
914 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
915 
916 	if ((struct skcipher_request *)(io + 1) != req)
917 		mempool_free(req, cc->req_pool);
918 }
919 
920 /*
921  * Encrypt / decrypt data from one bio to another one (can be the same one)
922  */
923 static int crypt_convert(struct crypt_config *cc,
924 			 struct convert_context *ctx)
925 {
926 	int r;
927 
928 	atomic_set(&ctx->cc_pending, 1);
929 
930 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
931 
932 		crypt_alloc_req(cc, ctx);
933 
934 		atomic_inc(&ctx->cc_pending);
935 
936 		r = crypt_convert_block(cc, ctx, ctx->req);
937 
938 		switch (r) {
939 		/*
940 		 * The request was queued by a crypto driver
941 		 * but the driver request queue is full, let's wait.
942 		 */
943 		case -EBUSY:
944 			wait_for_completion(&ctx->restart);
945 			reinit_completion(&ctx->restart);
946 			/* fall through */
947 		/*
948 		 * The request is queued and processed asynchronously,
949 		 * completion function kcryptd_async_done() will be called.
950 		 */
951 		case -EINPROGRESS:
952 			ctx->req = NULL;
953 			ctx->cc_sector++;
954 			continue;
955 		/*
956 		 * The request was already processed (synchronously).
957 		 */
958 		case 0:
959 			atomic_dec(&ctx->cc_pending);
960 			ctx->cc_sector++;
961 			cond_resched();
962 			continue;
963 
964 		/* There was an error while processing the request. */
965 		default:
966 			atomic_dec(&ctx->cc_pending);
967 			return r;
968 		}
969 	}
970 
971 	return 0;
972 }
973 
974 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
975 
976 /*
977  * Generate a new unfragmented bio with the given size
978  * This should never violate the device limitations (but only because
979  * max_segment_size is being constrained to PAGE_SIZE).
980  *
981  * This function may be called concurrently. If we allocate from the mempool
982  * concurrently, there is a possibility of deadlock. For example, if we have
983  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
984  * the mempool concurrently, it may deadlock in a situation where both processes
985  * have allocated 128 pages and the mempool is exhausted.
986  *
987  * In order to avoid this scenario we allocate the pages under a mutex.
988  *
989  * In order to not degrade performance with excessive locking, we try
990  * non-blocking allocations without a mutex first but on failure we fallback
991  * to blocking allocations with a mutex.
992  */
993 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
994 {
995 	struct crypt_config *cc = io->cc;
996 	struct bio *clone;
997 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
998 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
999 	unsigned i, len, remaining_size;
1000 	struct page *page;
1001 
1002 retry:
1003 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1004 		mutex_lock(&cc->bio_alloc_lock);
1005 
1006 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1007 	if (!clone)
1008 		goto return_clone;
1009 
1010 	clone_init(io, clone);
1011 
1012 	remaining_size = size;
1013 
1014 	for (i = 0; i < nr_iovecs; i++) {
1015 		page = mempool_alloc(cc->page_pool, gfp_mask);
1016 		if (!page) {
1017 			crypt_free_buffer_pages(cc, clone);
1018 			bio_put(clone);
1019 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1020 			goto retry;
1021 		}
1022 
1023 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1024 
1025 		bio_add_page(clone, page, len, 0);
1026 
1027 		remaining_size -= len;
1028 	}
1029 
1030 return_clone:
1031 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1032 		mutex_unlock(&cc->bio_alloc_lock);
1033 
1034 	return clone;
1035 }
1036 
1037 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1038 {
1039 	unsigned int i;
1040 	struct bio_vec *bv;
1041 
1042 	bio_for_each_segment_all(bv, clone, i) {
1043 		BUG_ON(!bv->bv_page);
1044 		mempool_free(bv->bv_page, cc->page_pool);
1045 		bv->bv_page = NULL;
1046 	}
1047 }
1048 
1049 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1050 			  struct bio *bio, sector_t sector)
1051 {
1052 	io->cc = cc;
1053 	io->base_bio = bio;
1054 	io->sector = sector;
1055 	io->error = 0;
1056 	io->ctx.req = NULL;
1057 	atomic_set(&io->io_pending, 0);
1058 }
1059 
1060 static void crypt_inc_pending(struct dm_crypt_io *io)
1061 {
1062 	atomic_inc(&io->io_pending);
1063 }
1064 
1065 /*
1066  * One of the bios was finished. Check for completion of
1067  * the whole request and correctly clean up the buffer.
1068  */
1069 static void crypt_dec_pending(struct dm_crypt_io *io)
1070 {
1071 	struct crypt_config *cc = io->cc;
1072 	struct bio *base_bio = io->base_bio;
1073 	int error = io->error;
1074 
1075 	if (!atomic_dec_and_test(&io->io_pending))
1076 		return;
1077 
1078 	if (io->ctx.req)
1079 		crypt_free_req(cc, io->ctx.req, base_bio);
1080 
1081 	base_bio->bi_error = error;
1082 	bio_endio(base_bio);
1083 }
1084 
1085 /*
1086  * kcryptd/kcryptd_io:
1087  *
1088  * Needed because it would be very unwise to do decryption in an
1089  * interrupt context.
1090  *
1091  * kcryptd performs the actual encryption or decryption.
1092  *
1093  * kcryptd_io performs the IO submission.
1094  *
1095  * They must be separated as otherwise the final stages could be
1096  * starved by new requests which can block in the first stages due
1097  * to memory allocation.
1098  *
1099  * The work is done per CPU global for all dm-crypt instances.
1100  * They should not depend on each other and do not block.
1101  */
1102 static void crypt_endio(struct bio *clone)
1103 {
1104 	struct dm_crypt_io *io = clone->bi_private;
1105 	struct crypt_config *cc = io->cc;
1106 	unsigned rw = bio_data_dir(clone);
1107 	int error;
1108 
1109 	/*
1110 	 * free the processed pages
1111 	 */
1112 	if (rw == WRITE)
1113 		crypt_free_buffer_pages(cc, clone);
1114 
1115 	error = clone->bi_error;
1116 	bio_put(clone);
1117 
1118 	if (rw == READ && !error) {
1119 		kcryptd_queue_crypt(io);
1120 		return;
1121 	}
1122 
1123 	if (unlikely(error))
1124 		io->error = error;
1125 
1126 	crypt_dec_pending(io);
1127 }
1128 
1129 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1130 {
1131 	struct crypt_config *cc = io->cc;
1132 
1133 	clone->bi_private = io;
1134 	clone->bi_end_io  = crypt_endio;
1135 	clone->bi_bdev    = cc->dev->bdev;
1136 	clone->bi_opf	  = io->base_bio->bi_opf;
1137 }
1138 
1139 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1140 {
1141 	struct crypt_config *cc = io->cc;
1142 	struct bio *clone;
1143 
1144 	/*
1145 	 * We need the original biovec array in order to decrypt
1146 	 * the whole bio data *afterwards* -- thanks to immutable
1147 	 * biovecs we don't need to worry about the block layer
1148 	 * modifying the biovec array; so leverage bio_clone_fast().
1149 	 */
1150 	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1151 	if (!clone)
1152 		return 1;
1153 
1154 	crypt_inc_pending(io);
1155 
1156 	clone_init(io, clone);
1157 	clone->bi_iter.bi_sector = cc->start + io->sector;
1158 
1159 	generic_make_request(clone);
1160 	return 0;
1161 }
1162 
1163 static void kcryptd_io_read_work(struct work_struct *work)
1164 {
1165 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1166 
1167 	crypt_inc_pending(io);
1168 	if (kcryptd_io_read(io, GFP_NOIO))
1169 		io->error = -ENOMEM;
1170 	crypt_dec_pending(io);
1171 }
1172 
1173 static void kcryptd_queue_read(struct dm_crypt_io *io)
1174 {
1175 	struct crypt_config *cc = io->cc;
1176 
1177 	INIT_WORK(&io->work, kcryptd_io_read_work);
1178 	queue_work(cc->io_queue, &io->work);
1179 }
1180 
1181 static void kcryptd_io_write(struct dm_crypt_io *io)
1182 {
1183 	struct bio *clone = io->ctx.bio_out;
1184 
1185 	generic_make_request(clone);
1186 }
1187 
1188 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1189 
1190 static int dmcrypt_write(void *data)
1191 {
1192 	struct crypt_config *cc = data;
1193 	struct dm_crypt_io *io;
1194 
1195 	while (1) {
1196 		struct rb_root write_tree;
1197 		struct blk_plug plug;
1198 
1199 		DECLARE_WAITQUEUE(wait, current);
1200 
1201 		spin_lock_irq(&cc->write_thread_wait.lock);
1202 continue_locked:
1203 
1204 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1205 			goto pop_from_list;
1206 
1207 		set_current_state(TASK_INTERRUPTIBLE);
1208 		__add_wait_queue(&cc->write_thread_wait, &wait);
1209 
1210 		spin_unlock_irq(&cc->write_thread_wait.lock);
1211 
1212 		if (unlikely(kthread_should_stop())) {
1213 			set_current_state(TASK_RUNNING);
1214 			remove_wait_queue(&cc->write_thread_wait, &wait);
1215 			break;
1216 		}
1217 
1218 		schedule();
1219 
1220 		set_current_state(TASK_RUNNING);
1221 		spin_lock_irq(&cc->write_thread_wait.lock);
1222 		__remove_wait_queue(&cc->write_thread_wait, &wait);
1223 		goto continue_locked;
1224 
1225 pop_from_list:
1226 		write_tree = cc->write_tree;
1227 		cc->write_tree = RB_ROOT;
1228 		spin_unlock_irq(&cc->write_thread_wait.lock);
1229 
1230 		BUG_ON(rb_parent(write_tree.rb_node));
1231 
1232 		/*
1233 		 * Note: we cannot walk the tree here with rb_next because
1234 		 * the structures may be freed when kcryptd_io_write is called.
1235 		 */
1236 		blk_start_plug(&plug);
1237 		do {
1238 			io = crypt_io_from_node(rb_first(&write_tree));
1239 			rb_erase(&io->rb_node, &write_tree);
1240 			kcryptd_io_write(io);
1241 		} while (!RB_EMPTY_ROOT(&write_tree));
1242 		blk_finish_plug(&plug);
1243 	}
1244 	return 0;
1245 }
1246 
1247 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1248 {
1249 	struct bio *clone = io->ctx.bio_out;
1250 	struct crypt_config *cc = io->cc;
1251 	unsigned long flags;
1252 	sector_t sector;
1253 	struct rb_node **rbp, *parent;
1254 
1255 	if (unlikely(io->error < 0)) {
1256 		crypt_free_buffer_pages(cc, clone);
1257 		bio_put(clone);
1258 		crypt_dec_pending(io);
1259 		return;
1260 	}
1261 
1262 	/* crypt_convert should have filled the clone bio */
1263 	BUG_ON(io->ctx.iter_out.bi_size);
1264 
1265 	clone->bi_iter.bi_sector = cc->start + io->sector;
1266 
1267 	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1268 		generic_make_request(clone);
1269 		return;
1270 	}
1271 
1272 	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1273 	rbp = &cc->write_tree.rb_node;
1274 	parent = NULL;
1275 	sector = io->sector;
1276 	while (*rbp) {
1277 		parent = *rbp;
1278 		if (sector < crypt_io_from_node(parent)->sector)
1279 			rbp = &(*rbp)->rb_left;
1280 		else
1281 			rbp = &(*rbp)->rb_right;
1282 	}
1283 	rb_link_node(&io->rb_node, parent, rbp);
1284 	rb_insert_color(&io->rb_node, &cc->write_tree);
1285 
1286 	wake_up_locked(&cc->write_thread_wait);
1287 	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1288 }
1289 
1290 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1291 {
1292 	struct crypt_config *cc = io->cc;
1293 	struct bio *clone;
1294 	int crypt_finished;
1295 	sector_t sector = io->sector;
1296 	int r;
1297 
1298 	/*
1299 	 * Prevent io from disappearing until this function completes.
1300 	 */
1301 	crypt_inc_pending(io);
1302 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1303 
1304 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1305 	if (unlikely(!clone)) {
1306 		io->error = -EIO;
1307 		goto dec;
1308 	}
1309 
1310 	io->ctx.bio_out = clone;
1311 	io->ctx.iter_out = clone->bi_iter;
1312 
1313 	sector += bio_sectors(clone);
1314 
1315 	crypt_inc_pending(io);
1316 	r = crypt_convert(cc, &io->ctx);
1317 	if (r)
1318 		io->error = -EIO;
1319 	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1320 
1321 	/* Encryption was already finished, submit io now */
1322 	if (crypt_finished) {
1323 		kcryptd_crypt_write_io_submit(io, 0);
1324 		io->sector = sector;
1325 	}
1326 
1327 dec:
1328 	crypt_dec_pending(io);
1329 }
1330 
1331 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1332 {
1333 	crypt_dec_pending(io);
1334 }
1335 
1336 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1337 {
1338 	struct crypt_config *cc = io->cc;
1339 	int r = 0;
1340 
1341 	crypt_inc_pending(io);
1342 
1343 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1344 			   io->sector);
1345 
1346 	r = crypt_convert(cc, &io->ctx);
1347 	if (r < 0)
1348 		io->error = -EIO;
1349 
1350 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1351 		kcryptd_crypt_read_done(io);
1352 
1353 	crypt_dec_pending(io);
1354 }
1355 
1356 static void kcryptd_async_done(struct crypto_async_request *async_req,
1357 			       int error)
1358 {
1359 	struct dm_crypt_request *dmreq = async_req->data;
1360 	struct convert_context *ctx = dmreq->ctx;
1361 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1362 	struct crypt_config *cc = io->cc;
1363 
1364 	/*
1365 	 * A request from crypto driver backlog is going to be processed now,
1366 	 * finish the completion and continue in crypt_convert().
1367 	 * (Callback will be called for the second time for this request.)
1368 	 */
1369 	if (error == -EINPROGRESS) {
1370 		complete(&ctx->restart);
1371 		return;
1372 	}
1373 
1374 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1375 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1376 
1377 	if (error < 0)
1378 		io->error = -EIO;
1379 
1380 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1381 
1382 	if (!atomic_dec_and_test(&ctx->cc_pending))
1383 		return;
1384 
1385 	if (bio_data_dir(io->base_bio) == READ)
1386 		kcryptd_crypt_read_done(io);
1387 	else
1388 		kcryptd_crypt_write_io_submit(io, 1);
1389 }
1390 
1391 static void kcryptd_crypt(struct work_struct *work)
1392 {
1393 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1394 
1395 	if (bio_data_dir(io->base_bio) == READ)
1396 		kcryptd_crypt_read_convert(io);
1397 	else
1398 		kcryptd_crypt_write_convert(io);
1399 }
1400 
1401 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1402 {
1403 	struct crypt_config *cc = io->cc;
1404 
1405 	INIT_WORK(&io->work, kcryptd_crypt);
1406 	queue_work(cc->crypt_queue, &io->work);
1407 }
1408 
1409 /*
1410  * Decode key from its hex representation
1411  */
1412 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1413 {
1414 	char buffer[3];
1415 	unsigned int i;
1416 
1417 	buffer[2] = '\0';
1418 
1419 	for (i = 0; i < size; i++) {
1420 		buffer[0] = *hex++;
1421 		buffer[1] = *hex++;
1422 
1423 		if (kstrtou8(buffer, 16, &key[i]))
1424 			return -EINVAL;
1425 	}
1426 
1427 	if (*hex != '\0')
1428 		return -EINVAL;
1429 
1430 	return 0;
1431 }
1432 
1433 static void crypt_free_tfms(struct crypt_config *cc)
1434 {
1435 	unsigned i;
1436 
1437 	if (!cc->tfms)
1438 		return;
1439 
1440 	for (i = 0; i < cc->tfms_count; i++)
1441 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1442 			crypto_free_skcipher(cc->tfms[i]);
1443 			cc->tfms[i] = NULL;
1444 		}
1445 
1446 	kfree(cc->tfms);
1447 	cc->tfms = NULL;
1448 }
1449 
1450 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1451 {
1452 	unsigned i;
1453 	int err;
1454 
1455 	cc->tfms = kzalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1456 			   GFP_KERNEL);
1457 	if (!cc->tfms)
1458 		return -ENOMEM;
1459 
1460 	for (i = 0; i < cc->tfms_count; i++) {
1461 		cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1462 		if (IS_ERR(cc->tfms[i])) {
1463 			err = PTR_ERR(cc->tfms[i]);
1464 			crypt_free_tfms(cc);
1465 			return err;
1466 		}
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 static int crypt_setkey(struct crypt_config *cc)
1473 {
1474 	unsigned subkey_size;
1475 	int err = 0, i, r;
1476 
1477 	/* Ignore extra keys (which are used for IV etc) */
1478 	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1479 
1480 	for (i = 0; i < cc->tfms_count; i++) {
1481 		r = crypto_skcipher_setkey(cc->tfms[i],
1482 					   cc->key + (i * subkey_size),
1483 					   subkey_size);
1484 		if (r)
1485 			err = r;
1486 	}
1487 
1488 	return err;
1489 }
1490 
1491 #ifdef CONFIG_KEYS
1492 
1493 static bool contains_whitespace(const char *str)
1494 {
1495 	while (*str)
1496 		if (isspace(*str++))
1497 			return true;
1498 	return false;
1499 }
1500 
1501 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1502 {
1503 	char *new_key_string, *key_desc;
1504 	int ret;
1505 	struct key *key;
1506 	const struct user_key_payload *ukp;
1507 
1508 	/*
1509 	 * Reject key_string with whitespace. dm core currently lacks code for
1510 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1511 	 */
1512 	if (contains_whitespace(key_string)) {
1513 		DMERR("whitespace chars not allowed in key string");
1514 		return -EINVAL;
1515 	}
1516 
1517 	/* look for next ':' separating key_type from key_description */
1518 	key_desc = strpbrk(key_string, ":");
1519 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1520 		return -EINVAL;
1521 
1522 	if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
1523 	    strncmp(key_string, "user:", key_desc - key_string + 1))
1524 		return -EINVAL;
1525 
1526 	new_key_string = kstrdup(key_string, GFP_KERNEL);
1527 	if (!new_key_string)
1528 		return -ENOMEM;
1529 
1530 	key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
1531 			  key_desc + 1, NULL);
1532 	if (IS_ERR(key)) {
1533 		kzfree(new_key_string);
1534 		return PTR_ERR(key);
1535 	}
1536 
1537 	down_read(&key->sem);
1538 
1539 	ukp = user_key_payload_locked(key);
1540 	if (!ukp) {
1541 		up_read(&key->sem);
1542 		key_put(key);
1543 		kzfree(new_key_string);
1544 		return -EKEYREVOKED;
1545 	}
1546 
1547 	if (cc->key_size != ukp->datalen) {
1548 		up_read(&key->sem);
1549 		key_put(key);
1550 		kzfree(new_key_string);
1551 		return -EINVAL;
1552 	}
1553 
1554 	memcpy(cc->key, ukp->data, cc->key_size);
1555 
1556 	up_read(&key->sem);
1557 	key_put(key);
1558 
1559 	/* clear the flag since following operations may invalidate previously valid key */
1560 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1561 
1562 	ret = crypt_setkey(cc);
1563 
1564 	/* wipe the kernel key payload copy in each case */
1565 	memset(cc->key, 0, cc->key_size * sizeof(u8));
1566 
1567 	if (!ret) {
1568 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1569 		kzfree(cc->key_string);
1570 		cc->key_string = new_key_string;
1571 	} else
1572 		kzfree(new_key_string);
1573 
1574 	return ret;
1575 }
1576 
1577 static int get_key_size(char **key_string)
1578 {
1579 	char *colon, dummy;
1580 	int ret;
1581 
1582 	if (*key_string[0] != ':')
1583 		return strlen(*key_string) >> 1;
1584 
1585 	/* look for next ':' in key string */
1586 	colon = strpbrk(*key_string + 1, ":");
1587 	if (!colon)
1588 		return -EINVAL;
1589 
1590 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
1591 		return -EINVAL;
1592 
1593 	*key_string = colon;
1594 
1595 	/* remaining key string should be :<logon|user>:<key_desc> */
1596 
1597 	return ret;
1598 }
1599 
1600 #else
1601 
1602 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1603 {
1604 	return -EINVAL;
1605 }
1606 
1607 static int get_key_size(char **key_string)
1608 {
1609 	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
1610 }
1611 
1612 #endif
1613 
1614 static int crypt_set_key(struct crypt_config *cc, char *key)
1615 {
1616 	int r = -EINVAL;
1617 	int key_string_len = strlen(key);
1618 
1619 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1620 	if (!cc->key_size && strcmp(key, "-"))
1621 		goto out;
1622 
1623 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
1624 	if (key[0] == ':') {
1625 		r = crypt_set_keyring_key(cc, key + 1);
1626 		goto out;
1627 	}
1628 
1629 	/* clear the flag since following operations may invalidate previously valid key */
1630 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1631 
1632 	/* wipe references to any kernel keyring key */
1633 	kzfree(cc->key_string);
1634 	cc->key_string = NULL;
1635 
1636 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1637 		goto out;
1638 
1639 	r = crypt_setkey(cc);
1640 	if (!r)
1641 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1642 
1643 out:
1644 	/* Hex key string not needed after here, so wipe it. */
1645 	memset(key, '0', key_string_len);
1646 
1647 	return r;
1648 }
1649 
1650 static int crypt_wipe_key(struct crypt_config *cc)
1651 {
1652 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1653 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1654 	kzfree(cc->key_string);
1655 	cc->key_string = NULL;
1656 
1657 	return crypt_setkey(cc);
1658 }
1659 
1660 static void crypt_dtr(struct dm_target *ti)
1661 {
1662 	struct crypt_config *cc = ti->private;
1663 
1664 	ti->private = NULL;
1665 
1666 	if (!cc)
1667 		return;
1668 
1669 	if (cc->write_thread)
1670 		kthread_stop(cc->write_thread);
1671 
1672 	if (cc->io_queue)
1673 		destroy_workqueue(cc->io_queue);
1674 	if (cc->crypt_queue)
1675 		destroy_workqueue(cc->crypt_queue);
1676 
1677 	crypt_free_tfms(cc);
1678 
1679 	if (cc->bs)
1680 		bioset_free(cc->bs);
1681 
1682 	mempool_destroy(cc->page_pool);
1683 	mempool_destroy(cc->req_pool);
1684 
1685 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1686 		cc->iv_gen_ops->dtr(cc);
1687 
1688 	if (cc->dev)
1689 		dm_put_device(ti, cc->dev);
1690 
1691 	kzfree(cc->cipher);
1692 	kzfree(cc->cipher_string);
1693 	kzfree(cc->key_string);
1694 
1695 	/* Must zero key material before freeing */
1696 	kzfree(cc);
1697 }
1698 
1699 static int crypt_ctr_cipher(struct dm_target *ti,
1700 			    char *cipher_in, char *key)
1701 {
1702 	struct crypt_config *cc = ti->private;
1703 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1704 	char *cipher_api = NULL;
1705 	int ret = -EINVAL;
1706 	char dummy;
1707 
1708 	/* Convert to crypto api definition? */
1709 	if (strchr(cipher_in, '(')) {
1710 		ti->error = "Bad cipher specification";
1711 		return -EINVAL;
1712 	}
1713 
1714 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1715 	if (!cc->cipher_string)
1716 		goto bad_mem;
1717 
1718 	/*
1719 	 * Legacy dm-crypt cipher specification
1720 	 * cipher[:keycount]-mode-iv:ivopts
1721 	 */
1722 	tmp = cipher_in;
1723 	keycount = strsep(&tmp, "-");
1724 	cipher = strsep(&keycount, ":");
1725 
1726 	if (!keycount)
1727 		cc->tfms_count = 1;
1728 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1729 		 !is_power_of_2(cc->tfms_count)) {
1730 		ti->error = "Bad cipher key count specification";
1731 		return -EINVAL;
1732 	}
1733 	cc->key_parts = cc->tfms_count;
1734 	cc->key_extra_size = 0;
1735 
1736 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1737 	if (!cc->cipher)
1738 		goto bad_mem;
1739 
1740 	chainmode = strsep(&tmp, "-");
1741 	ivopts = strsep(&tmp, "-");
1742 	ivmode = strsep(&ivopts, ":");
1743 
1744 	if (tmp)
1745 		DMWARN("Ignoring unexpected additional cipher options");
1746 
1747 	/*
1748 	 * For compatibility with the original dm-crypt mapping format, if
1749 	 * only the cipher name is supplied, use cbc-plain.
1750 	 */
1751 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1752 		chainmode = "cbc";
1753 		ivmode = "plain";
1754 	}
1755 
1756 	if (strcmp(chainmode, "ecb") && !ivmode) {
1757 		ti->error = "IV mechanism required";
1758 		return -EINVAL;
1759 	}
1760 
1761 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1762 	if (!cipher_api)
1763 		goto bad_mem;
1764 
1765 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1766 		       "%s(%s)", chainmode, cipher);
1767 	if (ret < 0) {
1768 		kfree(cipher_api);
1769 		goto bad_mem;
1770 	}
1771 
1772 	/* Allocate cipher */
1773 	ret = crypt_alloc_tfms(cc, cipher_api);
1774 	if (ret < 0) {
1775 		ti->error = "Error allocating crypto tfm";
1776 		goto bad;
1777 	}
1778 
1779 	/* Initialize IV */
1780 	cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1781 	if (cc->iv_size)
1782 		/* at least a 64 bit sector number should fit in our buffer */
1783 		cc->iv_size = max(cc->iv_size,
1784 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1785 	else if (ivmode) {
1786 		DMWARN("Selected cipher does not support IVs");
1787 		ivmode = NULL;
1788 	}
1789 
1790 	/* Choose ivmode, see comments at iv code. */
1791 	if (ivmode == NULL)
1792 		cc->iv_gen_ops = NULL;
1793 	else if (strcmp(ivmode, "plain") == 0)
1794 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1795 	else if (strcmp(ivmode, "plain64") == 0)
1796 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1797 	else if (strcmp(ivmode, "essiv") == 0)
1798 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1799 	else if (strcmp(ivmode, "benbi") == 0)
1800 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1801 	else if (strcmp(ivmode, "null") == 0)
1802 		cc->iv_gen_ops = &crypt_iv_null_ops;
1803 	else if (strcmp(ivmode, "lmk") == 0) {
1804 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1805 		/*
1806 		 * Version 2 and 3 is recognised according
1807 		 * to length of provided multi-key string.
1808 		 * If present (version 3), last key is used as IV seed.
1809 		 * All keys (including IV seed) are always the same size.
1810 		 */
1811 		if (cc->key_size % cc->key_parts) {
1812 			cc->key_parts++;
1813 			cc->key_extra_size = cc->key_size / cc->key_parts;
1814 		}
1815 	} else if (strcmp(ivmode, "tcw") == 0) {
1816 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1817 		cc->key_parts += 2; /* IV + whitening */
1818 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1819 	} else {
1820 		ret = -EINVAL;
1821 		ti->error = "Invalid IV mode";
1822 		goto bad;
1823 	}
1824 
1825 	/* Initialize and set key */
1826 	ret = crypt_set_key(cc, key);
1827 	if (ret < 0) {
1828 		ti->error = "Error decoding and setting key";
1829 		goto bad;
1830 	}
1831 
1832 	/* Allocate IV */
1833 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1834 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1835 		if (ret < 0) {
1836 			ti->error = "Error creating IV";
1837 			goto bad;
1838 		}
1839 	}
1840 
1841 	/* Initialize IV (set keys for ESSIV etc) */
1842 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1843 		ret = cc->iv_gen_ops->init(cc);
1844 		if (ret < 0) {
1845 			ti->error = "Error initialising IV";
1846 			goto bad;
1847 		}
1848 	}
1849 
1850 	ret = 0;
1851 bad:
1852 	kfree(cipher_api);
1853 	return ret;
1854 
1855 bad_mem:
1856 	ti->error = "Cannot allocate cipher strings";
1857 	return -ENOMEM;
1858 }
1859 
1860 /*
1861  * Construct an encryption mapping:
1862  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
1863  */
1864 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1865 {
1866 	struct crypt_config *cc;
1867 	int key_size;
1868 	unsigned int opt_params;
1869 	unsigned long long tmpll;
1870 	int ret;
1871 	size_t iv_size_padding;
1872 	struct dm_arg_set as;
1873 	const char *opt_string;
1874 	char dummy;
1875 
1876 	static struct dm_arg _args[] = {
1877 		{0, 3, "Invalid number of feature args"},
1878 	};
1879 
1880 	if (argc < 5) {
1881 		ti->error = "Not enough arguments";
1882 		return -EINVAL;
1883 	}
1884 
1885 	key_size = get_key_size(&argv[1]);
1886 	if (key_size < 0) {
1887 		ti->error = "Cannot parse key size";
1888 		return -EINVAL;
1889 	}
1890 
1891 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1892 	if (!cc) {
1893 		ti->error = "Cannot allocate encryption context";
1894 		return -ENOMEM;
1895 	}
1896 	cc->key_size = key_size;
1897 
1898 	ti->private = cc;
1899 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1900 	if (ret < 0)
1901 		goto bad;
1902 
1903 	cc->dmreq_start = sizeof(struct skcipher_request);
1904 	cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
1905 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1906 
1907 	if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1908 		/* Allocate the padding exactly */
1909 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1910 				& crypto_skcipher_alignmask(any_tfm(cc));
1911 	} else {
1912 		/*
1913 		 * If the cipher requires greater alignment than kmalloc
1914 		 * alignment, we don't know the exact position of the
1915 		 * initialization vector. We must assume worst case.
1916 		 */
1917 		iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1918 	}
1919 
1920 	ret = -ENOMEM;
1921 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1922 			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1923 	if (!cc->req_pool) {
1924 		ti->error = "Cannot allocate crypt request mempool";
1925 		goto bad;
1926 	}
1927 
1928 	cc->per_bio_data_size = ti->per_io_data_size =
1929 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1930 		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1931 		      ARCH_KMALLOC_MINALIGN);
1932 
1933 	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1934 	if (!cc->page_pool) {
1935 		ti->error = "Cannot allocate page mempool";
1936 		goto bad;
1937 	}
1938 
1939 	cc->bs = bioset_create(MIN_IOS, 0);
1940 	if (!cc->bs) {
1941 		ti->error = "Cannot allocate crypt bioset";
1942 		goto bad;
1943 	}
1944 
1945 	mutex_init(&cc->bio_alloc_lock);
1946 
1947 	ret = -EINVAL;
1948 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1949 		ti->error = "Invalid iv_offset sector";
1950 		goto bad;
1951 	}
1952 	cc->iv_offset = tmpll;
1953 
1954 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1955 	if (ret) {
1956 		ti->error = "Device lookup failed";
1957 		goto bad;
1958 	}
1959 
1960 	ret = -EINVAL;
1961 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1962 		ti->error = "Invalid device sector";
1963 		goto bad;
1964 	}
1965 	cc->start = tmpll;
1966 
1967 	argv += 5;
1968 	argc -= 5;
1969 
1970 	/* Optional parameters */
1971 	if (argc) {
1972 		as.argc = argc;
1973 		as.argv = argv;
1974 
1975 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1976 		if (ret)
1977 			goto bad;
1978 
1979 		ret = -EINVAL;
1980 		while (opt_params--) {
1981 			opt_string = dm_shift_arg(&as);
1982 			if (!opt_string) {
1983 				ti->error = "Not enough feature arguments";
1984 				goto bad;
1985 			}
1986 
1987 			if (!strcasecmp(opt_string, "allow_discards"))
1988 				ti->num_discard_bios = 1;
1989 
1990 			else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1991 				set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1992 
1993 			else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1994 				set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1995 
1996 			else {
1997 				ti->error = "Invalid feature arguments";
1998 				goto bad;
1999 			}
2000 		}
2001 	}
2002 
2003 	ret = -ENOMEM;
2004 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
2005 	if (!cc->io_queue) {
2006 		ti->error = "Couldn't create kcryptd io queue";
2007 		goto bad;
2008 	}
2009 
2010 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2011 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2012 	else
2013 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2014 						  num_online_cpus());
2015 	if (!cc->crypt_queue) {
2016 		ti->error = "Couldn't create kcryptd queue";
2017 		goto bad;
2018 	}
2019 
2020 	init_waitqueue_head(&cc->write_thread_wait);
2021 	cc->write_tree = RB_ROOT;
2022 
2023 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2024 	if (IS_ERR(cc->write_thread)) {
2025 		ret = PTR_ERR(cc->write_thread);
2026 		cc->write_thread = NULL;
2027 		ti->error = "Couldn't spawn write thread";
2028 		goto bad;
2029 	}
2030 	wake_up_process(cc->write_thread);
2031 
2032 	ti->num_flush_bios = 1;
2033 	ti->discard_zeroes_data_unsupported = true;
2034 
2035 	return 0;
2036 
2037 bad:
2038 	crypt_dtr(ti);
2039 	return ret;
2040 }
2041 
2042 static int crypt_map(struct dm_target *ti, struct bio *bio)
2043 {
2044 	struct dm_crypt_io *io;
2045 	struct crypt_config *cc = ti->private;
2046 
2047 	/*
2048 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2049 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2050 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2051 	 */
2052 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2053 	    bio_op(bio) == REQ_OP_DISCARD)) {
2054 		bio->bi_bdev = cc->dev->bdev;
2055 		if (bio_sectors(bio))
2056 			bio->bi_iter.bi_sector = cc->start +
2057 				dm_target_offset(ti, bio->bi_iter.bi_sector);
2058 		return DM_MAPIO_REMAPPED;
2059 	}
2060 
2061 	/*
2062 	 * Check if bio is too large, split as needed.
2063 	 */
2064 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2065 	    bio_data_dir(bio) == WRITE)
2066 		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2067 
2068 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
2069 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2070 	io->ctx.req = (struct skcipher_request *)(io + 1);
2071 
2072 	if (bio_data_dir(io->base_bio) == READ) {
2073 		if (kcryptd_io_read(io, GFP_NOWAIT))
2074 			kcryptd_queue_read(io);
2075 	} else
2076 		kcryptd_queue_crypt(io);
2077 
2078 	return DM_MAPIO_SUBMITTED;
2079 }
2080 
2081 static void crypt_status(struct dm_target *ti, status_type_t type,
2082 			 unsigned status_flags, char *result, unsigned maxlen)
2083 {
2084 	struct crypt_config *cc = ti->private;
2085 	unsigned i, sz = 0;
2086 	int num_feature_args = 0;
2087 
2088 	switch (type) {
2089 	case STATUSTYPE_INFO:
2090 		result[0] = '\0';
2091 		break;
2092 
2093 	case STATUSTYPE_TABLE:
2094 		DMEMIT("%s ", cc->cipher_string);
2095 
2096 		if (cc->key_size > 0) {
2097 			if (cc->key_string)
2098 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2099 			else
2100 				for (i = 0; i < cc->key_size; i++)
2101 					DMEMIT("%02x", cc->key[i]);
2102 		} else
2103 			DMEMIT("-");
2104 
2105 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2106 				cc->dev->name, (unsigned long long)cc->start);
2107 
2108 		num_feature_args += !!ti->num_discard_bios;
2109 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2110 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2111 		if (num_feature_args) {
2112 			DMEMIT(" %d", num_feature_args);
2113 			if (ti->num_discard_bios)
2114 				DMEMIT(" allow_discards");
2115 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2116 				DMEMIT(" same_cpu_crypt");
2117 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2118 				DMEMIT(" submit_from_crypt_cpus");
2119 		}
2120 
2121 		break;
2122 	}
2123 }
2124 
2125 static void crypt_postsuspend(struct dm_target *ti)
2126 {
2127 	struct crypt_config *cc = ti->private;
2128 
2129 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2130 }
2131 
2132 static int crypt_preresume(struct dm_target *ti)
2133 {
2134 	struct crypt_config *cc = ti->private;
2135 
2136 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2137 		DMERR("aborting resume - crypt key is not set.");
2138 		return -EAGAIN;
2139 	}
2140 
2141 	return 0;
2142 }
2143 
2144 static void crypt_resume(struct dm_target *ti)
2145 {
2146 	struct crypt_config *cc = ti->private;
2147 
2148 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2149 }
2150 
2151 /* Message interface
2152  *	key set <key>
2153  *	key wipe
2154  */
2155 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2156 {
2157 	struct crypt_config *cc = ti->private;
2158 	int key_size, ret = -EINVAL;
2159 
2160 	if (argc < 2)
2161 		goto error;
2162 
2163 	if (!strcasecmp(argv[0], "key")) {
2164 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2165 			DMWARN("not suspended during key manipulation.");
2166 			return -EINVAL;
2167 		}
2168 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
2169 			/* The key size may not be changed. */
2170 			key_size = get_key_size(&argv[2]);
2171 			if (key_size < 0 || cc->key_size != key_size) {
2172 				memset(argv[2], '0', strlen(argv[2]));
2173 				return -EINVAL;
2174 			}
2175 
2176 			ret = crypt_set_key(cc, argv[2]);
2177 			if (ret)
2178 				return ret;
2179 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2180 				ret = cc->iv_gen_ops->init(cc);
2181 			return ret;
2182 		}
2183 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2184 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2185 				ret = cc->iv_gen_ops->wipe(cc);
2186 				if (ret)
2187 					return ret;
2188 			}
2189 			return crypt_wipe_key(cc);
2190 		}
2191 	}
2192 
2193 error:
2194 	DMWARN("unrecognised message received.");
2195 	return -EINVAL;
2196 }
2197 
2198 static int crypt_iterate_devices(struct dm_target *ti,
2199 				 iterate_devices_callout_fn fn, void *data)
2200 {
2201 	struct crypt_config *cc = ti->private;
2202 
2203 	return fn(ti, cc->dev, cc->start, ti->len, data);
2204 }
2205 
2206 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2207 {
2208 	/*
2209 	 * Unfortunate constraint that is required to avoid the potential
2210 	 * for exceeding underlying device's max_segments limits -- due to
2211 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2212 	 * bio that are not as physically contiguous as the original bio.
2213 	 */
2214 	limits->max_segment_size = PAGE_SIZE;
2215 }
2216 
2217 static struct target_type crypt_target = {
2218 	.name   = "crypt",
2219 	.version = {1, 15, 0},
2220 	.module = THIS_MODULE,
2221 	.ctr    = crypt_ctr,
2222 	.dtr    = crypt_dtr,
2223 	.map    = crypt_map,
2224 	.status = crypt_status,
2225 	.postsuspend = crypt_postsuspend,
2226 	.preresume = crypt_preresume,
2227 	.resume = crypt_resume,
2228 	.message = crypt_message,
2229 	.iterate_devices = crypt_iterate_devices,
2230 	.io_hints = crypt_io_hints,
2231 };
2232 
2233 static int __init dm_crypt_init(void)
2234 {
2235 	int r;
2236 
2237 	r = dm_register_target(&crypt_target);
2238 	if (r < 0)
2239 		DMERR("register failed %d", r);
2240 
2241 	return r;
2242 }
2243 
2244 static void __exit dm_crypt_exit(void)
2245 {
2246 	dm_unregister_target(&crypt_target);
2247 }
2248 
2249 module_init(dm_crypt_init);
2250 module_exit(dm_crypt_exit);
2251 
2252 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2253 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2254 MODULE_LICENSE("GPL");
2255