xref: /openbmc/linux/drivers/md/dm-crypt.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
26 #include <asm/page.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
31 #include <crypto/skcipher.h>
32 
33 #include <linux/device-mapper.h>
34 
35 #define DM_MSG_PREFIX "crypt"
36 
37 /*
38  * context holding the current state of a multi-part conversion
39  */
40 struct convert_context {
41 	struct completion restart;
42 	struct bio *bio_in;
43 	struct bio *bio_out;
44 	struct bvec_iter iter_in;
45 	struct bvec_iter iter_out;
46 	sector_t cc_sector;
47 	atomic_t cc_pending;
48 	struct skcipher_request *req;
49 };
50 
51 /*
52  * per bio private data
53  */
54 struct dm_crypt_io {
55 	struct crypt_config *cc;
56 	struct bio *base_bio;
57 	struct work_struct work;
58 
59 	struct convert_context ctx;
60 
61 	atomic_t io_pending;
62 	int error;
63 	sector_t sector;
64 
65 	struct rb_node rb_node;
66 } CRYPTO_MINALIGN_ATTR;
67 
68 struct dm_crypt_request {
69 	struct convert_context *ctx;
70 	struct scatterlist sg_in;
71 	struct scatterlist sg_out;
72 	sector_t iv_sector;
73 };
74 
75 struct crypt_config;
76 
77 struct crypt_iv_operations {
78 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
79 		   const char *opts);
80 	void (*dtr)(struct crypt_config *cc);
81 	int (*init)(struct crypt_config *cc);
82 	int (*wipe)(struct crypt_config *cc);
83 	int (*generator)(struct crypt_config *cc, u8 *iv,
84 			 struct dm_crypt_request *dmreq);
85 	int (*post)(struct crypt_config *cc, u8 *iv,
86 		    struct dm_crypt_request *dmreq);
87 };
88 
89 struct iv_essiv_private {
90 	struct crypto_ahash *hash_tfm;
91 	u8 *salt;
92 };
93 
94 struct iv_benbi_private {
95 	int shift;
96 };
97 
98 #define LMK_SEED_SIZE 64 /* hash + 0 */
99 struct iv_lmk_private {
100 	struct crypto_shash *hash_tfm;
101 	u8 *seed;
102 };
103 
104 #define TCW_WHITENING_SIZE 16
105 struct iv_tcw_private {
106 	struct crypto_shash *crc32_tfm;
107 	u8 *iv_seed;
108 	u8 *whitening;
109 };
110 
111 /*
112  * Crypt: maps a linear range of a block device
113  * and encrypts / decrypts at the same time.
114  */
115 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
116 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
117 
118 /*
119  * The fields in here must be read only after initialization.
120  */
121 struct crypt_config {
122 	struct dm_dev *dev;
123 	sector_t start;
124 
125 	/*
126 	 * pool for per bio private data, crypto requests and
127 	 * encryption requeusts/buffer pages
128 	 */
129 	mempool_t *req_pool;
130 	mempool_t *page_pool;
131 	struct bio_set *bs;
132 	struct mutex bio_alloc_lock;
133 
134 	struct workqueue_struct *io_queue;
135 	struct workqueue_struct *crypt_queue;
136 
137 	struct task_struct *write_thread;
138 	wait_queue_head_t write_thread_wait;
139 	struct rb_root write_tree;
140 
141 	char *cipher;
142 	char *cipher_string;
143 
144 	struct crypt_iv_operations *iv_gen_ops;
145 	union {
146 		struct iv_essiv_private essiv;
147 		struct iv_benbi_private benbi;
148 		struct iv_lmk_private lmk;
149 		struct iv_tcw_private tcw;
150 	} iv_gen_private;
151 	sector_t iv_offset;
152 	unsigned int iv_size;
153 
154 	/* ESSIV: struct crypto_cipher *essiv_tfm */
155 	void *iv_private;
156 	struct crypto_skcipher **tfms;
157 	unsigned tfms_count;
158 
159 	/*
160 	 * Layout of each crypto request:
161 	 *
162 	 *   struct skcipher_request
163 	 *      context
164 	 *      padding
165 	 *   struct dm_crypt_request
166 	 *      padding
167 	 *   IV
168 	 *
169 	 * The padding is added so that dm_crypt_request and the IV are
170 	 * correctly aligned.
171 	 */
172 	unsigned int dmreq_start;
173 
174 	unsigned int per_bio_data_size;
175 
176 	unsigned long flags;
177 	unsigned int key_size;
178 	unsigned int key_parts;      /* independent parts in key buffer */
179 	unsigned int key_extra_size; /* additional keys length */
180 	u8 key[0];
181 };
182 
183 #define MIN_IOS        64
184 
185 static void clone_init(struct dm_crypt_io *, struct bio *);
186 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
187 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
188 
189 /*
190  * Use this to access cipher attributes that are the same for each CPU.
191  */
192 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
193 {
194 	return cc->tfms[0];
195 }
196 
197 /*
198  * Different IV generation algorithms:
199  *
200  * plain: the initial vector is the 32-bit little-endian version of the sector
201  *        number, padded with zeros if necessary.
202  *
203  * plain64: the initial vector is the 64-bit little-endian version of the sector
204  *        number, padded with zeros if necessary.
205  *
206  * essiv: "encrypted sector|salt initial vector", the sector number is
207  *        encrypted with the bulk cipher using a salt as key. The salt
208  *        should be derived from the bulk cipher's key via hashing.
209  *
210  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
211  *        (needed for LRW-32-AES and possible other narrow block modes)
212  *
213  * null: the initial vector is always zero.  Provides compatibility with
214  *       obsolete loop_fish2 devices.  Do not use for new devices.
215  *
216  * lmk:  Compatible implementation of the block chaining mode used
217  *       by the Loop-AES block device encryption system
218  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
219  *       It operates on full 512 byte sectors and uses CBC
220  *       with an IV derived from the sector number, the data and
221  *       optionally extra IV seed.
222  *       This means that after decryption the first block
223  *       of sector must be tweaked according to decrypted data.
224  *       Loop-AES can use three encryption schemes:
225  *         version 1: is plain aes-cbc mode
226  *         version 2: uses 64 multikey scheme with lmk IV generator
227  *         version 3: the same as version 2 with additional IV seed
228  *                   (it uses 65 keys, last key is used as IV seed)
229  *
230  * tcw:  Compatible implementation of the block chaining mode used
231  *       by the TrueCrypt device encryption system (prior to version 4.1).
232  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
233  *       It operates on full 512 byte sectors and uses CBC
234  *       with an IV derived from initial key and the sector number.
235  *       In addition, whitening value is applied on every sector, whitening
236  *       is calculated from initial key, sector number and mixed using CRC32.
237  *       Note that this encryption scheme is vulnerable to watermarking attacks
238  *       and should be used for old compatible containers access only.
239  *
240  * plumb: unimplemented, see:
241  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
242  */
243 
244 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
245 			      struct dm_crypt_request *dmreq)
246 {
247 	memset(iv, 0, cc->iv_size);
248 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
249 
250 	return 0;
251 }
252 
253 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
254 				struct dm_crypt_request *dmreq)
255 {
256 	memset(iv, 0, cc->iv_size);
257 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
258 
259 	return 0;
260 }
261 
262 /* Initialise ESSIV - compute salt but no local memory allocations */
263 static int crypt_iv_essiv_init(struct crypt_config *cc)
264 {
265 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
266 	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
267 	struct scatterlist sg;
268 	struct crypto_cipher *essiv_tfm;
269 	int err;
270 
271 	sg_init_one(&sg, cc->key, cc->key_size);
272 	ahash_request_set_tfm(req, essiv->hash_tfm);
273 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
274 	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
275 
276 	err = crypto_ahash_digest(req);
277 	ahash_request_zero(req);
278 	if (err)
279 		return err;
280 
281 	essiv_tfm = cc->iv_private;
282 
283 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
284 			    crypto_ahash_digestsize(essiv->hash_tfm));
285 	if (err)
286 		return err;
287 
288 	return 0;
289 }
290 
291 /* Wipe salt and reset key derived from volume key */
292 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
293 {
294 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
295 	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
296 	struct crypto_cipher *essiv_tfm;
297 	int r, err = 0;
298 
299 	memset(essiv->salt, 0, salt_size);
300 
301 	essiv_tfm = cc->iv_private;
302 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
303 	if (r)
304 		err = r;
305 
306 	return err;
307 }
308 
309 /* Set up per cpu cipher state */
310 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
311 					     struct dm_target *ti,
312 					     u8 *salt, unsigned saltsize)
313 {
314 	struct crypto_cipher *essiv_tfm;
315 	int err;
316 
317 	/* Setup the essiv_tfm with the given salt */
318 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
319 	if (IS_ERR(essiv_tfm)) {
320 		ti->error = "Error allocating crypto tfm for ESSIV";
321 		return essiv_tfm;
322 	}
323 
324 	if (crypto_cipher_blocksize(essiv_tfm) !=
325 	    crypto_skcipher_ivsize(any_tfm(cc))) {
326 		ti->error = "Block size of ESSIV cipher does "
327 			    "not match IV size of block cipher";
328 		crypto_free_cipher(essiv_tfm);
329 		return ERR_PTR(-EINVAL);
330 	}
331 
332 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
333 	if (err) {
334 		ti->error = "Failed to set key for ESSIV cipher";
335 		crypto_free_cipher(essiv_tfm);
336 		return ERR_PTR(err);
337 	}
338 
339 	return essiv_tfm;
340 }
341 
342 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
343 {
344 	struct crypto_cipher *essiv_tfm;
345 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
346 
347 	crypto_free_ahash(essiv->hash_tfm);
348 	essiv->hash_tfm = NULL;
349 
350 	kzfree(essiv->salt);
351 	essiv->salt = NULL;
352 
353 	essiv_tfm = cc->iv_private;
354 
355 	if (essiv_tfm)
356 		crypto_free_cipher(essiv_tfm);
357 
358 	cc->iv_private = NULL;
359 }
360 
361 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
362 			      const char *opts)
363 {
364 	struct crypto_cipher *essiv_tfm = NULL;
365 	struct crypto_ahash *hash_tfm = NULL;
366 	u8 *salt = NULL;
367 	int err;
368 
369 	if (!opts) {
370 		ti->error = "Digest algorithm missing for ESSIV mode";
371 		return -EINVAL;
372 	}
373 
374 	/* Allocate hash algorithm */
375 	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
376 	if (IS_ERR(hash_tfm)) {
377 		ti->error = "Error initializing ESSIV hash";
378 		err = PTR_ERR(hash_tfm);
379 		goto bad;
380 	}
381 
382 	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
383 	if (!salt) {
384 		ti->error = "Error kmallocing salt storage in ESSIV";
385 		err = -ENOMEM;
386 		goto bad;
387 	}
388 
389 	cc->iv_gen_private.essiv.salt = salt;
390 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
391 
392 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
393 				crypto_ahash_digestsize(hash_tfm));
394 	if (IS_ERR(essiv_tfm)) {
395 		crypt_iv_essiv_dtr(cc);
396 		return PTR_ERR(essiv_tfm);
397 	}
398 	cc->iv_private = essiv_tfm;
399 
400 	return 0;
401 
402 bad:
403 	if (hash_tfm && !IS_ERR(hash_tfm))
404 		crypto_free_ahash(hash_tfm);
405 	kfree(salt);
406 	return err;
407 }
408 
409 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
410 			      struct dm_crypt_request *dmreq)
411 {
412 	struct crypto_cipher *essiv_tfm = cc->iv_private;
413 
414 	memset(iv, 0, cc->iv_size);
415 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
416 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
417 
418 	return 0;
419 }
420 
421 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
422 			      const char *opts)
423 {
424 	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
425 	int log = ilog2(bs);
426 
427 	/* we need to calculate how far we must shift the sector count
428 	 * to get the cipher block count, we use this shift in _gen */
429 
430 	if (1 << log != bs) {
431 		ti->error = "cypher blocksize is not a power of 2";
432 		return -EINVAL;
433 	}
434 
435 	if (log > 9) {
436 		ti->error = "cypher blocksize is > 512";
437 		return -EINVAL;
438 	}
439 
440 	cc->iv_gen_private.benbi.shift = 9 - log;
441 
442 	return 0;
443 }
444 
445 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
446 {
447 }
448 
449 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
450 			      struct dm_crypt_request *dmreq)
451 {
452 	__be64 val;
453 
454 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
455 
456 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
457 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
458 
459 	return 0;
460 }
461 
462 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
463 			     struct dm_crypt_request *dmreq)
464 {
465 	memset(iv, 0, cc->iv_size);
466 
467 	return 0;
468 }
469 
470 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
471 {
472 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
473 
474 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
475 		crypto_free_shash(lmk->hash_tfm);
476 	lmk->hash_tfm = NULL;
477 
478 	kzfree(lmk->seed);
479 	lmk->seed = NULL;
480 }
481 
482 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
483 			    const char *opts)
484 {
485 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
486 
487 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
488 	if (IS_ERR(lmk->hash_tfm)) {
489 		ti->error = "Error initializing LMK hash";
490 		return PTR_ERR(lmk->hash_tfm);
491 	}
492 
493 	/* No seed in LMK version 2 */
494 	if (cc->key_parts == cc->tfms_count) {
495 		lmk->seed = NULL;
496 		return 0;
497 	}
498 
499 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
500 	if (!lmk->seed) {
501 		crypt_iv_lmk_dtr(cc);
502 		ti->error = "Error kmallocing seed storage in LMK";
503 		return -ENOMEM;
504 	}
505 
506 	return 0;
507 }
508 
509 static int crypt_iv_lmk_init(struct crypt_config *cc)
510 {
511 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
512 	int subkey_size = cc->key_size / cc->key_parts;
513 
514 	/* LMK seed is on the position of LMK_KEYS + 1 key */
515 	if (lmk->seed)
516 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
517 		       crypto_shash_digestsize(lmk->hash_tfm));
518 
519 	return 0;
520 }
521 
522 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
523 {
524 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
525 
526 	if (lmk->seed)
527 		memset(lmk->seed, 0, LMK_SEED_SIZE);
528 
529 	return 0;
530 }
531 
532 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
533 			    struct dm_crypt_request *dmreq,
534 			    u8 *data)
535 {
536 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
537 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
538 	struct md5_state md5state;
539 	__le32 buf[4];
540 	int i, r;
541 
542 	desc->tfm = lmk->hash_tfm;
543 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
544 
545 	r = crypto_shash_init(desc);
546 	if (r)
547 		return r;
548 
549 	if (lmk->seed) {
550 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
551 		if (r)
552 			return r;
553 	}
554 
555 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
556 	r = crypto_shash_update(desc, data + 16, 16 * 31);
557 	if (r)
558 		return r;
559 
560 	/* Sector is cropped to 56 bits here */
561 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
562 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
563 	buf[2] = cpu_to_le32(4024);
564 	buf[3] = 0;
565 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
566 	if (r)
567 		return r;
568 
569 	/* No MD5 padding here */
570 	r = crypto_shash_export(desc, &md5state);
571 	if (r)
572 		return r;
573 
574 	for (i = 0; i < MD5_HASH_WORDS; i++)
575 		__cpu_to_le32s(&md5state.hash[i]);
576 	memcpy(iv, &md5state.hash, cc->iv_size);
577 
578 	return 0;
579 }
580 
581 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
582 			    struct dm_crypt_request *dmreq)
583 {
584 	u8 *src;
585 	int r = 0;
586 
587 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
588 		src = kmap_atomic(sg_page(&dmreq->sg_in));
589 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
590 		kunmap_atomic(src);
591 	} else
592 		memset(iv, 0, cc->iv_size);
593 
594 	return r;
595 }
596 
597 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
598 			     struct dm_crypt_request *dmreq)
599 {
600 	u8 *dst;
601 	int r;
602 
603 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
604 		return 0;
605 
606 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
607 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
608 
609 	/* Tweak the first block of plaintext sector */
610 	if (!r)
611 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
612 
613 	kunmap_atomic(dst);
614 	return r;
615 }
616 
617 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
618 {
619 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
620 
621 	kzfree(tcw->iv_seed);
622 	tcw->iv_seed = NULL;
623 	kzfree(tcw->whitening);
624 	tcw->whitening = NULL;
625 
626 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
627 		crypto_free_shash(tcw->crc32_tfm);
628 	tcw->crc32_tfm = NULL;
629 }
630 
631 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
632 			    const char *opts)
633 {
634 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
635 
636 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
637 		ti->error = "Wrong key size for TCW";
638 		return -EINVAL;
639 	}
640 
641 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
642 	if (IS_ERR(tcw->crc32_tfm)) {
643 		ti->error = "Error initializing CRC32 in TCW";
644 		return PTR_ERR(tcw->crc32_tfm);
645 	}
646 
647 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
648 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
649 	if (!tcw->iv_seed || !tcw->whitening) {
650 		crypt_iv_tcw_dtr(cc);
651 		ti->error = "Error allocating seed storage in TCW";
652 		return -ENOMEM;
653 	}
654 
655 	return 0;
656 }
657 
658 static int crypt_iv_tcw_init(struct crypt_config *cc)
659 {
660 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
661 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
662 
663 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
664 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
665 	       TCW_WHITENING_SIZE);
666 
667 	return 0;
668 }
669 
670 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
671 {
672 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
673 
674 	memset(tcw->iv_seed, 0, cc->iv_size);
675 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
676 
677 	return 0;
678 }
679 
680 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
681 				  struct dm_crypt_request *dmreq,
682 				  u8 *data)
683 {
684 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
685 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
686 	u8 buf[TCW_WHITENING_SIZE];
687 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
688 	int i, r;
689 
690 	/* xor whitening with sector number */
691 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
692 	crypto_xor(buf, (u8 *)&sector, 8);
693 	crypto_xor(&buf[8], (u8 *)&sector, 8);
694 
695 	/* calculate crc32 for every 32bit part and xor it */
696 	desc->tfm = tcw->crc32_tfm;
697 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
698 	for (i = 0; i < 4; i++) {
699 		r = crypto_shash_init(desc);
700 		if (r)
701 			goto out;
702 		r = crypto_shash_update(desc, &buf[i * 4], 4);
703 		if (r)
704 			goto out;
705 		r = crypto_shash_final(desc, &buf[i * 4]);
706 		if (r)
707 			goto out;
708 	}
709 	crypto_xor(&buf[0], &buf[12], 4);
710 	crypto_xor(&buf[4], &buf[8], 4);
711 
712 	/* apply whitening (8 bytes) to whole sector */
713 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
714 		crypto_xor(data + i * 8, buf, 8);
715 out:
716 	memzero_explicit(buf, sizeof(buf));
717 	return r;
718 }
719 
720 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
721 			    struct dm_crypt_request *dmreq)
722 {
723 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
724 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
725 	u8 *src;
726 	int r = 0;
727 
728 	/* Remove whitening from ciphertext */
729 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
730 		src = kmap_atomic(sg_page(&dmreq->sg_in));
731 		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
732 		kunmap_atomic(src);
733 	}
734 
735 	/* Calculate IV */
736 	memcpy(iv, tcw->iv_seed, cc->iv_size);
737 	crypto_xor(iv, (u8 *)&sector, 8);
738 	if (cc->iv_size > 8)
739 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
740 
741 	return r;
742 }
743 
744 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
745 			     struct dm_crypt_request *dmreq)
746 {
747 	u8 *dst;
748 	int r;
749 
750 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
751 		return 0;
752 
753 	/* Apply whitening on ciphertext */
754 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
755 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
756 	kunmap_atomic(dst);
757 
758 	return r;
759 }
760 
761 static struct crypt_iv_operations crypt_iv_plain_ops = {
762 	.generator = crypt_iv_plain_gen
763 };
764 
765 static struct crypt_iv_operations crypt_iv_plain64_ops = {
766 	.generator = crypt_iv_plain64_gen
767 };
768 
769 static struct crypt_iv_operations crypt_iv_essiv_ops = {
770 	.ctr       = crypt_iv_essiv_ctr,
771 	.dtr       = crypt_iv_essiv_dtr,
772 	.init      = crypt_iv_essiv_init,
773 	.wipe      = crypt_iv_essiv_wipe,
774 	.generator = crypt_iv_essiv_gen
775 };
776 
777 static struct crypt_iv_operations crypt_iv_benbi_ops = {
778 	.ctr	   = crypt_iv_benbi_ctr,
779 	.dtr	   = crypt_iv_benbi_dtr,
780 	.generator = crypt_iv_benbi_gen
781 };
782 
783 static struct crypt_iv_operations crypt_iv_null_ops = {
784 	.generator = crypt_iv_null_gen
785 };
786 
787 static struct crypt_iv_operations crypt_iv_lmk_ops = {
788 	.ctr	   = crypt_iv_lmk_ctr,
789 	.dtr	   = crypt_iv_lmk_dtr,
790 	.init	   = crypt_iv_lmk_init,
791 	.wipe	   = crypt_iv_lmk_wipe,
792 	.generator = crypt_iv_lmk_gen,
793 	.post	   = crypt_iv_lmk_post
794 };
795 
796 static struct crypt_iv_operations crypt_iv_tcw_ops = {
797 	.ctr	   = crypt_iv_tcw_ctr,
798 	.dtr	   = crypt_iv_tcw_dtr,
799 	.init	   = crypt_iv_tcw_init,
800 	.wipe	   = crypt_iv_tcw_wipe,
801 	.generator = crypt_iv_tcw_gen,
802 	.post	   = crypt_iv_tcw_post
803 };
804 
805 static void crypt_convert_init(struct crypt_config *cc,
806 			       struct convert_context *ctx,
807 			       struct bio *bio_out, struct bio *bio_in,
808 			       sector_t sector)
809 {
810 	ctx->bio_in = bio_in;
811 	ctx->bio_out = bio_out;
812 	if (bio_in)
813 		ctx->iter_in = bio_in->bi_iter;
814 	if (bio_out)
815 		ctx->iter_out = bio_out->bi_iter;
816 	ctx->cc_sector = sector + cc->iv_offset;
817 	init_completion(&ctx->restart);
818 }
819 
820 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
821 					     struct skcipher_request *req)
822 {
823 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
824 }
825 
826 static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
827 					       struct dm_crypt_request *dmreq)
828 {
829 	return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
830 }
831 
832 static u8 *iv_of_dmreq(struct crypt_config *cc,
833 		       struct dm_crypt_request *dmreq)
834 {
835 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
836 		crypto_skcipher_alignmask(any_tfm(cc)) + 1);
837 }
838 
839 static int crypt_convert_block(struct crypt_config *cc,
840 			       struct convert_context *ctx,
841 			       struct skcipher_request *req)
842 {
843 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
844 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
845 	struct dm_crypt_request *dmreq;
846 	u8 *iv;
847 	int r;
848 
849 	dmreq = dmreq_of_req(cc, req);
850 	iv = iv_of_dmreq(cc, dmreq);
851 
852 	dmreq->iv_sector = ctx->cc_sector;
853 	dmreq->ctx = ctx;
854 	sg_init_table(&dmreq->sg_in, 1);
855 	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
856 		    bv_in.bv_offset);
857 
858 	sg_init_table(&dmreq->sg_out, 1);
859 	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
860 		    bv_out.bv_offset);
861 
862 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
863 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
864 
865 	if (cc->iv_gen_ops) {
866 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
867 		if (r < 0)
868 			return r;
869 	}
870 
871 	skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
872 				   1 << SECTOR_SHIFT, iv);
873 
874 	if (bio_data_dir(ctx->bio_in) == WRITE)
875 		r = crypto_skcipher_encrypt(req);
876 	else
877 		r = crypto_skcipher_decrypt(req);
878 
879 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
880 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
881 
882 	return r;
883 }
884 
885 static void kcryptd_async_done(struct crypto_async_request *async_req,
886 			       int error);
887 
888 static void crypt_alloc_req(struct crypt_config *cc,
889 			    struct convert_context *ctx)
890 {
891 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
892 
893 	if (!ctx->req)
894 		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
895 
896 	skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
897 
898 	/*
899 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
900 	 * requests if driver request queue is full.
901 	 */
902 	skcipher_request_set_callback(ctx->req,
903 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
904 	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
905 }
906 
907 static void crypt_free_req(struct crypt_config *cc,
908 			   struct skcipher_request *req, struct bio *base_bio)
909 {
910 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
911 
912 	if ((struct skcipher_request *)(io + 1) != req)
913 		mempool_free(req, cc->req_pool);
914 }
915 
916 /*
917  * Encrypt / decrypt data from one bio to another one (can be the same one)
918  */
919 static int crypt_convert(struct crypt_config *cc,
920 			 struct convert_context *ctx)
921 {
922 	int r;
923 
924 	atomic_set(&ctx->cc_pending, 1);
925 
926 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
927 
928 		crypt_alloc_req(cc, ctx);
929 
930 		atomic_inc(&ctx->cc_pending);
931 
932 		r = crypt_convert_block(cc, ctx, ctx->req);
933 
934 		switch (r) {
935 		/*
936 		 * The request was queued by a crypto driver
937 		 * but the driver request queue is full, let's wait.
938 		 */
939 		case -EBUSY:
940 			wait_for_completion(&ctx->restart);
941 			reinit_completion(&ctx->restart);
942 			/* fall through */
943 		/*
944 		 * The request is queued and processed asynchronously,
945 		 * completion function kcryptd_async_done() will be called.
946 		 */
947 		case -EINPROGRESS:
948 			ctx->req = NULL;
949 			ctx->cc_sector++;
950 			continue;
951 		/*
952 		 * The request was already processed (synchronously).
953 		 */
954 		case 0:
955 			atomic_dec(&ctx->cc_pending);
956 			ctx->cc_sector++;
957 			cond_resched();
958 			continue;
959 
960 		/* There was an error while processing the request. */
961 		default:
962 			atomic_dec(&ctx->cc_pending);
963 			return r;
964 		}
965 	}
966 
967 	return 0;
968 }
969 
970 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
971 
972 /*
973  * Generate a new unfragmented bio with the given size
974  * This should never violate the device limitations (but only because
975  * max_segment_size is being constrained to PAGE_SIZE).
976  *
977  * This function may be called concurrently. If we allocate from the mempool
978  * concurrently, there is a possibility of deadlock. For example, if we have
979  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
980  * the mempool concurrently, it may deadlock in a situation where both processes
981  * have allocated 128 pages and the mempool is exhausted.
982  *
983  * In order to avoid this scenario we allocate the pages under a mutex.
984  *
985  * In order to not degrade performance with excessive locking, we try
986  * non-blocking allocations without a mutex first but on failure we fallback
987  * to blocking allocations with a mutex.
988  */
989 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
990 {
991 	struct crypt_config *cc = io->cc;
992 	struct bio *clone;
993 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
994 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
995 	unsigned i, len, remaining_size;
996 	struct page *page;
997 	struct bio_vec *bvec;
998 
999 retry:
1000 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1001 		mutex_lock(&cc->bio_alloc_lock);
1002 
1003 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1004 	if (!clone)
1005 		goto return_clone;
1006 
1007 	clone_init(io, clone);
1008 
1009 	remaining_size = size;
1010 
1011 	for (i = 0; i < nr_iovecs; i++) {
1012 		page = mempool_alloc(cc->page_pool, gfp_mask);
1013 		if (!page) {
1014 			crypt_free_buffer_pages(cc, clone);
1015 			bio_put(clone);
1016 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1017 			goto retry;
1018 		}
1019 
1020 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1021 
1022 		bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1023 		bvec->bv_page = page;
1024 		bvec->bv_len = len;
1025 		bvec->bv_offset = 0;
1026 
1027 		clone->bi_iter.bi_size += len;
1028 
1029 		remaining_size -= len;
1030 	}
1031 
1032 return_clone:
1033 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1034 		mutex_unlock(&cc->bio_alloc_lock);
1035 
1036 	return clone;
1037 }
1038 
1039 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1040 {
1041 	unsigned int i;
1042 	struct bio_vec *bv;
1043 
1044 	bio_for_each_segment_all(bv, clone, i) {
1045 		BUG_ON(!bv->bv_page);
1046 		mempool_free(bv->bv_page, cc->page_pool);
1047 		bv->bv_page = NULL;
1048 	}
1049 }
1050 
1051 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1052 			  struct bio *bio, sector_t sector)
1053 {
1054 	io->cc = cc;
1055 	io->base_bio = bio;
1056 	io->sector = sector;
1057 	io->error = 0;
1058 	io->ctx.req = NULL;
1059 	atomic_set(&io->io_pending, 0);
1060 }
1061 
1062 static void crypt_inc_pending(struct dm_crypt_io *io)
1063 {
1064 	atomic_inc(&io->io_pending);
1065 }
1066 
1067 /*
1068  * One of the bios was finished. Check for completion of
1069  * the whole request and correctly clean up the buffer.
1070  */
1071 static void crypt_dec_pending(struct dm_crypt_io *io)
1072 {
1073 	struct crypt_config *cc = io->cc;
1074 	struct bio *base_bio = io->base_bio;
1075 	int error = io->error;
1076 
1077 	if (!atomic_dec_and_test(&io->io_pending))
1078 		return;
1079 
1080 	if (io->ctx.req)
1081 		crypt_free_req(cc, io->ctx.req, base_bio);
1082 
1083 	base_bio->bi_error = error;
1084 	bio_endio(base_bio);
1085 }
1086 
1087 /*
1088  * kcryptd/kcryptd_io:
1089  *
1090  * Needed because it would be very unwise to do decryption in an
1091  * interrupt context.
1092  *
1093  * kcryptd performs the actual encryption or decryption.
1094  *
1095  * kcryptd_io performs the IO submission.
1096  *
1097  * They must be separated as otherwise the final stages could be
1098  * starved by new requests which can block in the first stages due
1099  * to memory allocation.
1100  *
1101  * The work is done per CPU global for all dm-crypt instances.
1102  * They should not depend on each other and do not block.
1103  */
1104 static void crypt_endio(struct bio *clone)
1105 {
1106 	struct dm_crypt_io *io = clone->bi_private;
1107 	struct crypt_config *cc = io->cc;
1108 	unsigned rw = bio_data_dir(clone);
1109 	int error;
1110 
1111 	/*
1112 	 * free the processed pages
1113 	 */
1114 	if (rw == WRITE)
1115 		crypt_free_buffer_pages(cc, clone);
1116 
1117 	error = clone->bi_error;
1118 	bio_put(clone);
1119 
1120 	if (rw == READ && !error) {
1121 		kcryptd_queue_crypt(io);
1122 		return;
1123 	}
1124 
1125 	if (unlikely(error))
1126 		io->error = error;
1127 
1128 	crypt_dec_pending(io);
1129 }
1130 
1131 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1132 {
1133 	struct crypt_config *cc = io->cc;
1134 
1135 	clone->bi_private = io;
1136 	clone->bi_end_io  = crypt_endio;
1137 	clone->bi_bdev    = cc->dev->bdev;
1138 	bio_set_op_attrs(clone, bio_op(io->base_bio), bio_flags(io->base_bio));
1139 }
1140 
1141 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1142 {
1143 	struct crypt_config *cc = io->cc;
1144 	struct bio *clone;
1145 
1146 	/*
1147 	 * We need the original biovec array in order to decrypt
1148 	 * the whole bio data *afterwards* -- thanks to immutable
1149 	 * biovecs we don't need to worry about the block layer
1150 	 * modifying the biovec array; so leverage bio_clone_fast().
1151 	 */
1152 	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1153 	if (!clone)
1154 		return 1;
1155 
1156 	crypt_inc_pending(io);
1157 
1158 	clone_init(io, clone);
1159 	clone->bi_iter.bi_sector = cc->start + io->sector;
1160 
1161 	generic_make_request(clone);
1162 	return 0;
1163 }
1164 
1165 static void kcryptd_io_read_work(struct work_struct *work)
1166 {
1167 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1168 
1169 	crypt_inc_pending(io);
1170 	if (kcryptd_io_read(io, GFP_NOIO))
1171 		io->error = -ENOMEM;
1172 	crypt_dec_pending(io);
1173 }
1174 
1175 static void kcryptd_queue_read(struct dm_crypt_io *io)
1176 {
1177 	struct crypt_config *cc = io->cc;
1178 
1179 	INIT_WORK(&io->work, kcryptd_io_read_work);
1180 	queue_work(cc->io_queue, &io->work);
1181 }
1182 
1183 static void kcryptd_io_write(struct dm_crypt_io *io)
1184 {
1185 	struct bio *clone = io->ctx.bio_out;
1186 
1187 	generic_make_request(clone);
1188 }
1189 
1190 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1191 
1192 static int dmcrypt_write(void *data)
1193 {
1194 	struct crypt_config *cc = data;
1195 	struct dm_crypt_io *io;
1196 
1197 	while (1) {
1198 		struct rb_root write_tree;
1199 		struct blk_plug plug;
1200 
1201 		DECLARE_WAITQUEUE(wait, current);
1202 
1203 		spin_lock_irq(&cc->write_thread_wait.lock);
1204 continue_locked:
1205 
1206 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1207 			goto pop_from_list;
1208 
1209 		set_current_state(TASK_INTERRUPTIBLE);
1210 		__add_wait_queue(&cc->write_thread_wait, &wait);
1211 
1212 		spin_unlock_irq(&cc->write_thread_wait.lock);
1213 
1214 		if (unlikely(kthread_should_stop())) {
1215 			set_task_state(current, TASK_RUNNING);
1216 			remove_wait_queue(&cc->write_thread_wait, &wait);
1217 			break;
1218 		}
1219 
1220 		schedule();
1221 
1222 		set_task_state(current, TASK_RUNNING);
1223 		spin_lock_irq(&cc->write_thread_wait.lock);
1224 		__remove_wait_queue(&cc->write_thread_wait, &wait);
1225 		goto continue_locked;
1226 
1227 pop_from_list:
1228 		write_tree = cc->write_tree;
1229 		cc->write_tree = RB_ROOT;
1230 		spin_unlock_irq(&cc->write_thread_wait.lock);
1231 
1232 		BUG_ON(rb_parent(write_tree.rb_node));
1233 
1234 		/*
1235 		 * Note: we cannot walk the tree here with rb_next because
1236 		 * the structures may be freed when kcryptd_io_write is called.
1237 		 */
1238 		blk_start_plug(&plug);
1239 		do {
1240 			io = crypt_io_from_node(rb_first(&write_tree));
1241 			rb_erase(&io->rb_node, &write_tree);
1242 			kcryptd_io_write(io);
1243 		} while (!RB_EMPTY_ROOT(&write_tree));
1244 		blk_finish_plug(&plug);
1245 	}
1246 	return 0;
1247 }
1248 
1249 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1250 {
1251 	struct bio *clone = io->ctx.bio_out;
1252 	struct crypt_config *cc = io->cc;
1253 	unsigned long flags;
1254 	sector_t sector;
1255 	struct rb_node **rbp, *parent;
1256 
1257 	if (unlikely(io->error < 0)) {
1258 		crypt_free_buffer_pages(cc, clone);
1259 		bio_put(clone);
1260 		crypt_dec_pending(io);
1261 		return;
1262 	}
1263 
1264 	/* crypt_convert should have filled the clone bio */
1265 	BUG_ON(io->ctx.iter_out.bi_size);
1266 
1267 	clone->bi_iter.bi_sector = cc->start + io->sector;
1268 
1269 	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1270 		generic_make_request(clone);
1271 		return;
1272 	}
1273 
1274 	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1275 	rbp = &cc->write_tree.rb_node;
1276 	parent = NULL;
1277 	sector = io->sector;
1278 	while (*rbp) {
1279 		parent = *rbp;
1280 		if (sector < crypt_io_from_node(parent)->sector)
1281 			rbp = &(*rbp)->rb_left;
1282 		else
1283 			rbp = &(*rbp)->rb_right;
1284 	}
1285 	rb_link_node(&io->rb_node, parent, rbp);
1286 	rb_insert_color(&io->rb_node, &cc->write_tree);
1287 
1288 	wake_up_locked(&cc->write_thread_wait);
1289 	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1290 }
1291 
1292 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1293 {
1294 	struct crypt_config *cc = io->cc;
1295 	struct bio *clone;
1296 	int crypt_finished;
1297 	sector_t sector = io->sector;
1298 	int r;
1299 
1300 	/*
1301 	 * Prevent io from disappearing until this function completes.
1302 	 */
1303 	crypt_inc_pending(io);
1304 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1305 
1306 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1307 	if (unlikely(!clone)) {
1308 		io->error = -EIO;
1309 		goto dec;
1310 	}
1311 
1312 	io->ctx.bio_out = clone;
1313 	io->ctx.iter_out = clone->bi_iter;
1314 
1315 	sector += bio_sectors(clone);
1316 
1317 	crypt_inc_pending(io);
1318 	r = crypt_convert(cc, &io->ctx);
1319 	if (r)
1320 		io->error = -EIO;
1321 	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1322 
1323 	/* Encryption was already finished, submit io now */
1324 	if (crypt_finished) {
1325 		kcryptd_crypt_write_io_submit(io, 0);
1326 		io->sector = sector;
1327 	}
1328 
1329 dec:
1330 	crypt_dec_pending(io);
1331 }
1332 
1333 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1334 {
1335 	crypt_dec_pending(io);
1336 }
1337 
1338 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1339 {
1340 	struct crypt_config *cc = io->cc;
1341 	int r = 0;
1342 
1343 	crypt_inc_pending(io);
1344 
1345 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1346 			   io->sector);
1347 
1348 	r = crypt_convert(cc, &io->ctx);
1349 	if (r < 0)
1350 		io->error = -EIO;
1351 
1352 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1353 		kcryptd_crypt_read_done(io);
1354 
1355 	crypt_dec_pending(io);
1356 }
1357 
1358 static void kcryptd_async_done(struct crypto_async_request *async_req,
1359 			       int error)
1360 {
1361 	struct dm_crypt_request *dmreq = async_req->data;
1362 	struct convert_context *ctx = dmreq->ctx;
1363 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1364 	struct crypt_config *cc = io->cc;
1365 
1366 	/*
1367 	 * A request from crypto driver backlog is going to be processed now,
1368 	 * finish the completion and continue in crypt_convert().
1369 	 * (Callback will be called for the second time for this request.)
1370 	 */
1371 	if (error == -EINPROGRESS) {
1372 		complete(&ctx->restart);
1373 		return;
1374 	}
1375 
1376 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1377 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1378 
1379 	if (error < 0)
1380 		io->error = -EIO;
1381 
1382 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1383 
1384 	if (!atomic_dec_and_test(&ctx->cc_pending))
1385 		return;
1386 
1387 	if (bio_data_dir(io->base_bio) == READ)
1388 		kcryptd_crypt_read_done(io);
1389 	else
1390 		kcryptd_crypt_write_io_submit(io, 1);
1391 }
1392 
1393 static void kcryptd_crypt(struct work_struct *work)
1394 {
1395 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1396 
1397 	if (bio_data_dir(io->base_bio) == READ)
1398 		kcryptd_crypt_read_convert(io);
1399 	else
1400 		kcryptd_crypt_write_convert(io);
1401 }
1402 
1403 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1404 {
1405 	struct crypt_config *cc = io->cc;
1406 
1407 	INIT_WORK(&io->work, kcryptd_crypt);
1408 	queue_work(cc->crypt_queue, &io->work);
1409 }
1410 
1411 /*
1412  * Decode key from its hex representation
1413  */
1414 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1415 {
1416 	char buffer[3];
1417 	unsigned int i;
1418 
1419 	buffer[2] = '\0';
1420 
1421 	for (i = 0; i < size; i++) {
1422 		buffer[0] = *hex++;
1423 		buffer[1] = *hex++;
1424 
1425 		if (kstrtou8(buffer, 16, &key[i]))
1426 			return -EINVAL;
1427 	}
1428 
1429 	if (*hex != '\0')
1430 		return -EINVAL;
1431 
1432 	return 0;
1433 }
1434 
1435 static void crypt_free_tfms(struct crypt_config *cc)
1436 {
1437 	unsigned i;
1438 
1439 	if (!cc->tfms)
1440 		return;
1441 
1442 	for (i = 0; i < cc->tfms_count; i++)
1443 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1444 			crypto_free_skcipher(cc->tfms[i]);
1445 			cc->tfms[i] = NULL;
1446 		}
1447 
1448 	kfree(cc->tfms);
1449 	cc->tfms = NULL;
1450 }
1451 
1452 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1453 {
1454 	unsigned i;
1455 	int err;
1456 
1457 	cc->tfms = kzalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1458 			   GFP_KERNEL);
1459 	if (!cc->tfms)
1460 		return -ENOMEM;
1461 
1462 	for (i = 0; i < cc->tfms_count; i++) {
1463 		cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1464 		if (IS_ERR(cc->tfms[i])) {
1465 			err = PTR_ERR(cc->tfms[i]);
1466 			crypt_free_tfms(cc);
1467 			return err;
1468 		}
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 static int crypt_setkey_allcpus(struct crypt_config *cc)
1475 {
1476 	unsigned subkey_size;
1477 	int err = 0, i, r;
1478 
1479 	/* Ignore extra keys (which are used for IV etc) */
1480 	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1481 
1482 	for (i = 0; i < cc->tfms_count; i++) {
1483 		r = crypto_skcipher_setkey(cc->tfms[i],
1484 					   cc->key + (i * subkey_size),
1485 					   subkey_size);
1486 		if (r)
1487 			err = r;
1488 	}
1489 
1490 	return err;
1491 }
1492 
1493 static int crypt_set_key(struct crypt_config *cc, char *key)
1494 {
1495 	int r = -EINVAL;
1496 	int key_string_len = strlen(key);
1497 
1498 	/* The key size may not be changed. */
1499 	if (cc->key_size != (key_string_len >> 1))
1500 		goto out;
1501 
1502 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1503 	if (!cc->key_size && strcmp(key, "-"))
1504 		goto out;
1505 
1506 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1507 		goto out;
1508 
1509 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1510 
1511 	r = crypt_setkey_allcpus(cc);
1512 
1513 out:
1514 	/* Hex key string not needed after here, so wipe it. */
1515 	memset(key, '0', key_string_len);
1516 
1517 	return r;
1518 }
1519 
1520 static int crypt_wipe_key(struct crypt_config *cc)
1521 {
1522 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1523 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1524 
1525 	return crypt_setkey_allcpus(cc);
1526 }
1527 
1528 static void crypt_dtr(struct dm_target *ti)
1529 {
1530 	struct crypt_config *cc = ti->private;
1531 
1532 	ti->private = NULL;
1533 
1534 	if (!cc)
1535 		return;
1536 
1537 	if (cc->write_thread)
1538 		kthread_stop(cc->write_thread);
1539 
1540 	if (cc->io_queue)
1541 		destroy_workqueue(cc->io_queue);
1542 	if (cc->crypt_queue)
1543 		destroy_workqueue(cc->crypt_queue);
1544 
1545 	crypt_free_tfms(cc);
1546 
1547 	if (cc->bs)
1548 		bioset_free(cc->bs);
1549 
1550 	mempool_destroy(cc->page_pool);
1551 	mempool_destroy(cc->req_pool);
1552 
1553 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1554 		cc->iv_gen_ops->dtr(cc);
1555 
1556 	if (cc->dev)
1557 		dm_put_device(ti, cc->dev);
1558 
1559 	kzfree(cc->cipher);
1560 	kzfree(cc->cipher_string);
1561 
1562 	/* Must zero key material before freeing */
1563 	kzfree(cc);
1564 }
1565 
1566 static int crypt_ctr_cipher(struct dm_target *ti,
1567 			    char *cipher_in, char *key)
1568 {
1569 	struct crypt_config *cc = ti->private;
1570 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1571 	char *cipher_api = NULL;
1572 	int ret = -EINVAL;
1573 	char dummy;
1574 
1575 	/* Convert to crypto api definition? */
1576 	if (strchr(cipher_in, '(')) {
1577 		ti->error = "Bad cipher specification";
1578 		return -EINVAL;
1579 	}
1580 
1581 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1582 	if (!cc->cipher_string)
1583 		goto bad_mem;
1584 
1585 	/*
1586 	 * Legacy dm-crypt cipher specification
1587 	 * cipher[:keycount]-mode-iv:ivopts
1588 	 */
1589 	tmp = cipher_in;
1590 	keycount = strsep(&tmp, "-");
1591 	cipher = strsep(&keycount, ":");
1592 
1593 	if (!keycount)
1594 		cc->tfms_count = 1;
1595 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1596 		 !is_power_of_2(cc->tfms_count)) {
1597 		ti->error = "Bad cipher key count specification";
1598 		return -EINVAL;
1599 	}
1600 	cc->key_parts = cc->tfms_count;
1601 	cc->key_extra_size = 0;
1602 
1603 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1604 	if (!cc->cipher)
1605 		goto bad_mem;
1606 
1607 	chainmode = strsep(&tmp, "-");
1608 	ivopts = strsep(&tmp, "-");
1609 	ivmode = strsep(&ivopts, ":");
1610 
1611 	if (tmp)
1612 		DMWARN("Ignoring unexpected additional cipher options");
1613 
1614 	/*
1615 	 * For compatibility with the original dm-crypt mapping format, if
1616 	 * only the cipher name is supplied, use cbc-plain.
1617 	 */
1618 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1619 		chainmode = "cbc";
1620 		ivmode = "plain";
1621 	}
1622 
1623 	if (strcmp(chainmode, "ecb") && !ivmode) {
1624 		ti->error = "IV mechanism required";
1625 		return -EINVAL;
1626 	}
1627 
1628 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1629 	if (!cipher_api)
1630 		goto bad_mem;
1631 
1632 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1633 		       "%s(%s)", chainmode, cipher);
1634 	if (ret < 0) {
1635 		kfree(cipher_api);
1636 		goto bad_mem;
1637 	}
1638 
1639 	/* Allocate cipher */
1640 	ret = crypt_alloc_tfms(cc, cipher_api);
1641 	if (ret < 0) {
1642 		ti->error = "Error allocating crypto tfm";
1643 		goto bad;
1644 	}
1645 
1646 	/* Initialize IV */
1647 	cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1648 	if (cc->iv_size)
1649 		/* at least a 64 bit sector number should fit in our buffer */
1650 		cc->iv_size = max(cc->iv_size,
1651 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1652 	else if (ivmode) {
1653 		DMWARN("Selected cipher does not support IVs");
1654 		ivmode = NULL;
1655 	}
1656 
1657 	/* Choose ivmode, see comments at iv code. */
1658 	if (ivmode == NULL)
1659 		cc->iv_gen_ops = NULL;
1660 	else if (strcmp(ivmode, "plain") == 0)
1661 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1662 	else if (strcmp(ivmode, "plain64") == 0)
1663 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1664 	else if (strcmp(ivmode, "essiv") == 0)
1665 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1666 	else if (strcmp(ivmode, "benbi") == 0)
1667 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1668 	else if (strcmp(ivmode, "null") == 0)
1669 		cc->iv_gen_ops = &crypt_iv_null_ops;
1670 	else if (strcmp(ivmode, "lmk") == 0) {
1671 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1672 		/*
1673 		 * Version 2 and 3 is recognised according
1674 		 * to length of provided multi-key string.
1675 		 * If present (version 3), last key is used as IV seed.
1676 		 * All keys (including IV seed) are always the same size.
1677 		 */
1678 		if (cc->key_size % cc->key_parts) {
1679 			cc->key_parts++;
1680 			cc->key_extra_size = cc->key_size / cc->key_parts;
1681 		}
1682 	} else if (strcmp(ivmode, "tcw") == 0) {
1683 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1684 		cc->key_parts += 2; /* IV + whitening */
1685 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1686 	} else {
1687 		ret = -EINVAL;
1688 		ti->error = "Invalid IV mode";
1689 		goto bad;
1690 	}
1691 
1692 	/* Initialize and set key */
1693 	ret = crypt_set_key(cc, key);
1694 	if (ret < 0) {
1695 		ti->error = "Error decoding and setting key";
1696 		goto bad;
1697 	}
1698 
1699 	/* Allocate IV */
1700 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1701 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1702 		if (ret < 0) {
1703 			ti->error = "Error creating IV";
1704 			goto bad;
1705 		}
1706 	}
1707 
1708 	/* Initialize IV (set keys for ESSIV etc) */
1709 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1710 		ret = cc->iv_gen_ops->init(cc);
1711 		if (ret < 0) {
1712 			ti->error = "Error initialising IV";
1713 			goto bad;
1714 		}
1715 	}
1716 
1717 	ret = 0;
1718 bad:
1719 	kfree(cipher_api);
1720 	return ret;
1721 
1722 bad_mem:
1723 	ti->error = "Cannot allocate cipher strings";
1724 	return -ENOMEM;
1725 }
1726 
1727 /*
1728  * Construct an encryption mapping:
1729  * <cipher> <key> <iv_offset> <dev_path> <start>
1730  */
1731 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1732 {
1733 	struct crypt_config *cc;
1734 	unsigned int key_size, opt_params;
1735 	unsigned long long tmpll;
1736 	int ret;
1737 	size_t iv_size_padding;
1738 	struct dm_arg_set as;
1739 	const char *opt_string;
1740 	char dummy;
1741 
1742 	static struct dm_arg _args[] = {
1743 		{0, 3, "Invalid number of feature args"},
1744 	};
1745 
1746 	if (argc < 5) {
1747 		ti->error = "Not enough arguments";
1748 		return -EINVAL;
1749 	}
1750 
1751 	key_size = strlen(argv[1]) >> 1;
1752 
1753 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1754 	if (!cc) {
1755 		ti->error = "Cannot allocate encryption context";
1756 		return -ENOMEM;
1757 	}
1758 	cc->key_size = key_size;
1759 
1760 	ti->private = cc;
1761 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1762 	if (ret < 0)
1763 		goto bad;
1764 
1765 	cc->dmreq_start = sizeof(struct skcipher_request);
1766 	cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
1767 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1768 
1769 	if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1770 		/* Allocate the padding exactly */
1771 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1772 				& crypto_skcipher_alignmask(any_tfm(cc));
1773 	} else {
1774 		/*
1775 		 * If the cipher requires greater alignment than kmalloc
1776 		 * alignment, we don't know the exact position of the
1777 		 * initialization vector. We must assume worst case.
1778 		 */
1779 		iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1780 	}
1781 
1782 	ret = -ENOMEM;
1783 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1784 			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1785 	if (!cc->req_pool) {
1786 		ti->error = "Cannot allocate crypt request mempool";
1787 		goto bad;
1788 	}
1789 
1790 	cc->per_bio_data_size = ti->per_io_data_size =
1791 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1792 		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1793 		      ARCH_KMALLOC_MINALIGN);
1794 
1795 	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1796 	if (!cc->page_pool) {
1797 		ti->error = "Cannot allocate page mempool";
1798 		goto bad;
1799 	}
1800 
1801 	cc->bs = bioset_create(MIN_IOS, 0);
1802 	if (!cc->bs) {
1803 		ti->error = "Cannot allocate crypt bioset";
1804 		goto bad;
1805 	}
1806 
1807 	mutex_init(&cc->bio_alloc_lock);
1808 
1809 	ret = -EINVAL;
1810 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1811 		ti->error = "Invalid iv_offset sector";
1812 		goto bad;
1813 	}
1814 	cc->iv_offset = tmpll;
1815 
1816 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1817 	if (ret) {
1818 		ti->error = "Device lookup failed";
1819 		goto bad;
1820 	}
1821 
1822 	ret = -EINVAL;
1823 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1824 		ti->error = "Invalid device sector";
1825 		goto bad;
1826 	}
1827 	cc->start = tmpll;
1828 
1829 	argv += 5;
1830 	argc -= 5;
1831 
1832 	/* Optional parameters */
1833 	if (argc) {
1834 		as.argc = argc;
1835 		as.argv = argv;
1836 
1837 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1838 		if (ret)
1839 			goto bad;
1840 
1841 		ret = -EINVAL;
1842 		while (opt_params--) {
1843 			opt_string = dm_shift_arg(&as);
1844 			if (!opt_string) {
1845 				ti->error = "Not enough feature arguments";
1846 				goto bad;
1847 			}
1848 
1849 			if (!strcasecmp(opt_string, "allow_discards"))
1850 				ti->num_discard_bios = 1;
1851 
1852 			else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1853 				set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1854 
1855 			else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1856 				set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1857 
1858 			else {
1859 				ti->error = "Invalid feature arguments";
1860 				goto bad;
1861 			}
1862 		}
1863 	}
1864 
1865 	ret = -ENOMEM;
1866 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1867 	if (!cc->io_queue) {
1868 		ti->error = "Couldn't create kcryptd io queue";
1869 		goto bad;
1870 	}
1871 
1872 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1873 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1874 	else
1875 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1876 						  num_online_cpus());
1877 	if (!cc->crypt_queue) {
1878 		ti->error = "Couldn't create kcryptd queue";
1879 		goto bad;
1880 	}
1881 
1882 	init_waitqueue_head(&cc->write_thread_wait);
1883 	cc->write_tree = RB_ROOT;
1884 
1885 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1886 	if (IS_ERR(cc->write_thread)) {
1887 		ret = PTR_ERR(cc->write_thread);
1888 		cc->write_thread = NULL;
1889 		ti->error = "Couldn't spawn write thread";
1890 		goto bad;
1891 	}
1892 	wake_up_process(cc->write_thread);
1893 
1894 	ti->num_flush_bios = 1;
1895 	ti->discard_zeroes_data_unsupported = true;
1896 
1897 	return 0;
1898 
1899 bad:
1900 	crypt_dtr(ti);
1901 	return ret;
1902 }
1903 
1904 static int crypt_map(struct dm_target *ti, struct bio *bio)
1905 {
1906 	struct dm_crypt_io *io;
1907 	struct crypt_config *cc = ti->private;
1908 
1909 	/*
1910 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
1911 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
1912 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
1913 	 */
1914 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
1915 	    bio_op(bio) == REQ_OP_DISCARD)) {
1916 		bio->bi_bdev = cc->dev->bdev;
1917 		if (bio_sectors(bio))
1918 			bio->bi_iter.bi_sector = cc->start +
1919 				dm_target_offset(ti, bio->bi_iter.bi_sector);
1920 		return DM_MAPIO_REMAPPED;
1921 	}
1922 
1923 	/*
1924 	 * Check if bio is too large, split as needed.
1925 	 */
1926 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
1927 	    bio_data_dir(bio) == WRITE)
1928 		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
1929 
1930 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1931 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1932 	io->ctx.req = (struct skcipher_request *)(io + 1);
1933 
1934 	if (bio_data_dir(io->base_bio) == READ) {
1935 		if (kcryptd_io_read(io, GFP_NOWAIT))
1936 			kcryptd_queue_read(io);
1937 	} else
1938 		kcryptd_queue_crypt(io);
1939 
1940 	return DM_MAPIO_SUBMITTED;
1941 }
1942 
1943 static void crypt_status(struct dm_target *ti, status_type_t type,
1944 			 unsigned status_flags, char *result, unsigned maxlen)
1945 {
1946 	struct crypt_config *cc = ti->private;
1947 	unsigned i, sz = 0;
1948 	int num_feature_args = 0;
1949 
1950 	switch (type) {
1951 	case STATUSTYPE_INFO:
1952 		result[0] = '\0';
1953 		break;
1954 
1955 	case STATUSTYPE_TABLE:
1956 		DMEMIT("%s ", cc->cipher_string);
1957 
1958 		if (cc->key_size > 0)
1959 			for (i = 0; i < cc->key_size; i++)
1960 				DMEMIT("%02x", cc->key[i]);
1961 		else
1962 			DMEMIT("-");
1963 
1964 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1965 				cc->dev->name, (unsigned long long)cc->start);
1966 
1967 		num_feature_args += !!ti->num_discard_bios;
1968 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1969 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1970 		if (num_feature_args) {
1971 			DMEMIT(" %d", num_feature_args);
1972 			if (ti->num_discard_bios)
1973 				DMEMIT(" allow_discards");
1974 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1975 				DMEMIT(" same_cpu_crypt");
1976 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1977 				DMEMIT(" submit_from_crypt_cpus");
1978 		}
1979 
1980 		break;
1981 	}
1982 }
1983 
1984 static void crypt_postsuspend(struct dm_target *ti)
1985 {
1986 	struct crypt_config *cc = ti->private;
1987 
1988 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1989 }
1990 
1991 static int crypt_preresume(struct dm_target *ti)
1992 {
1993 	struct crypt_config *cc = ti->private;
1994 
1995 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1996 		DMERR("aborting resume - crypt key is not set.");
1997 		return -EAGAIN;
1998 	}
1999 
2000 	return 0;
2001 }
2002 
2003 static void crypt_resume(struct dm_target *ti)
2004 {
2005 	struct crypt_config *cc = ti->private;
2006 
2007 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2008 }
2009 
2010 /* Message interface
2011  *	key set <key>
2012  *	key wipe
2013  */
2014 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2015 {
2016 	struct crypt_config *cc = ti->private;
2017 	int ret = -EINVAL;
2018 
2019 	if (argc < 2)
2020 		goto error;
2021 
2022 	if (!strcasecmp(argv[0], "key")) {
2023 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2024 			DMWARN("not suspended during key manipulation.");
2025 			return -EINVAL;
2026 		}
2027 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
2028 			ret = crypt_set_key(cc, argv[2]);
2029 			if (ret)
2030 				return ret;
2031 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2032 				ret = cc->iv_gen_ops->init(cc);
2033 			return ret;
2034 		}
2035 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2036 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2037 				ret = cc->iv_gen_ops->wipe(cc);
2038 				if (ret)
2039 					return ret;
2040 			}
2041 			return crypt_wipe_key(cc);
2042 		}
2043 	}
2044 
2045 error:
2046 	DMWARN("unrecognised message received.");
2047 	return -EINVAL;
2048 }
2049 
2050 static int crypt_iterate_devices(struct dm_target *ti,
2051 				 iterate_devices_callout_fn fn, void *data)
2052 {
2053 	struct crypt_config *cc = ti->private;
2054 
2055 	return fn(ti, cc->dev, cc->start, ti->len, data);
2056 }
2057 
2058 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2059 {
2060 	/*
2061 	 * Unfortunate constraint that is required to avoid the potential
2062 	 * for exceeding underlying device's max_segments limits -- due to
2063 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2064 	 * bio that are not as physically contiguous as the original bio.
2065 	 */
2066 	limits->max_segment_size = PAGE_SIZE;
2067 }
2068 
2069 static struct target_type crypt_target = {
2070 	.name   = "crypt",
2071 	.version = {1, 14, 1},
2072 	.module = THIS_MODULE,
2073 	.ctr    = crypt_ctr,
2074 	.dtr    = crypt_dtr,
2075 	.map    = crypt_map,
2076 	.status = crypt_status,
2077 	.postsuspend = crypt_postsuspend,
2078 	.preresume = crypt_preresume,
2079 	.resume = crypt_resume,
2080 	.message = crypt_message,
2081 	.iterate_devices = crypt_iterate_devices,
2082 	.io_hints = crypt_io_hints,
2083 };
2084 
2085 static int __init dm_crypt_init(void)
2086 {
2087 	int r;
2088 
2089 	r = dm_register_target(&crypt_target);
2090 	if (r < 0)
2091 		DMERR("register failed %d", r);
2092 
2093 	return r;
2094 }
2095 
2096 static void __exit dm_crypt_exit(void)
2097 {
2098 	dm_unregister_target(&crypt_target);
2099 }
2100 
2101 module_init(dm_crypt_init);
2102 module_exit(dm_crypt_exit);
2103 
2104 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2105 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2106 MODULE_LICENSE("GPL");
2107