1 /* 2 * Copyright (C) 2003 Jana Saout <jana@saout.de> 3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved. 5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com> 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/completion.h> 11 #include <linux/err.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/bio.h> 16 #include <linux/blkdev.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/crypto.h> 20 #include <linux/workqueue.h> 21 #include <linux/kthread.h> 22 #include <linux/backing-dev.h> 23 #include <linux/atomic.h> 24 #include <linux/scatterlist.h> 25 #include <linux/rbtree.h> 26 #include <asm/page.h> 27 #include <asm/unaligned.h> 28 #include <crypto/hash.h> 29 #include <crypto/md5.h> 30 #include <crypto/algapi.h> 31 #include <crypto/skcipher.h> 32 33 #include <linux/device-mapper.h> 34 35 #define DM_MSG_PREFIX "crypt" 36 37 /* 38 * context holding the current state of a multi-part conversion 39 */ 40 struct convert_context { 41 struct completion restart; 42 struct bio *bio_in; 43 struct bio *bio_out; 44 struct bvec_iter iter_in; 45 struct bvec_iter iter_out; 46 sector_t cc_sector; 47 atomic_t cc_pending; 48 struct skcipher_request *req; 49 }; 50 51 /* 52 * per bio private data 53 */ 54 struct dm_crypt_io { 55 struct crypt_config *cc; 56 struct bio *base_bio; 57 struct work_struct work; 58 59 struct convert_context ctx; 60 61 atomic_t io_pending; 62 int error; 63 sector_t sector; 64 65 struct rb_node rb_node; 66 } CRYPTO_MINALIGN_ATTR; 67 68 struct dm_crypt_request { 69 struct convert_context *ctx; 70 struct scatterlist sg_in; 71 struct scatterlist sg_out; 72 sector_t iv_sector; 73 }; 74 75 struct crypt_config; 76 77 struct crypt_iv_operations { 78 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 79 const char *opts); 80 void (*dtr)(struct crypt_config *cc); 81 int (*init)(struct crypt_config *cc); 82 int (*wipe)(struct crypt_config *cc); 83 int (*generator)(struct crypt_config *cc, u8 *iv, 84 struct dm_crypt_request *dmreq); 85 int (*post)(struct crypt_config *cc, u8 *iv, 86 struct dm_crypt_request *dmreq); 87 }; 88 89 struct iv_essiv_private { 90 struct crypto_ahash *hash_tfm; 91 u8 *salt; 92 }; 93 94 struct iv_benbi_private { 95 int shift; 96 }; 97 98 #define LMK_SEED_SIZE 64 /* hash + 0 */ 99 struct iv_lmk_private { 100 struct crypto_shash *hash_tfm; 101 u8 *seed; 102 }; 103 104 #define TCW_WHITENING_SIZE 16 105 struct iv_tcw_private { 106 struct crypto_shash *crc32_tfm; 107 u8 *iv_seed; 108 u8 *whitening; 109 }; 110 111 /* 112 * Crypt: maps a linear range of a block device 113 * and encrypts / decrypts at the same time. 114 */ 115 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, 116 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD }; 117 118 /* 119 * The fields in here must be read only after initialization. 120 */ 121 struct crypt_config { 122 struct dm_dev *dev; 123 sector_t start; 124 125 /* 126 * pool for per bio private data, crypto requests and 127 * encryption requeusts/buffer pages 128 */ 129 mempool_t *req_pool; 130 mempool_t *page_pool; 131 struct bio_set *bs; 132 struct mutex bio_alloc_lock; 133 134 struct workqueue_struct *io_queue; 135 struct workqueue_struct *crypt_queue; 136 137 struct task_struct *write_thread; 138 wait_queue_head_t write_thread_wait; 139 struct rb_root write_tree; 140 141 char *cipher; 142 char *cipher_string; 143 144 struct crypt_iv_operations *iv_gen_ops; 145 union { 146 struct iv_essiv_private essiv; 147 struct iv_benbi_private benbi; 148 struct iv_lmk_private lmk; 149 struct iv_tcw_private tcw; 150 } iv_gen_private; 151 sector_t iv_offset; 152 unsigned int iv_size; 153 154 /* ESSIV: struct crypto_cipher *essiv_tfm */ 155 void *iv_private; 156 struct crypto_skcipher **tfms; 157 unsigned tfms_count; 158 159 /* 160 * Layout of each crypto request: 161 * 162 * struct skcipher_request 163 * context 164 * padding 165 * struct dm_crypt_request 166 * padding 167 * IV 168 * 169 * The padding is added so that dm_crypt_request and the IV are 170 * correctly aligned. 171 */ 172 unsigned int dmreq_start; 173 174 unsigned int per_bio_data_size; 175 176 unsigned long flags; 177 unsigned int key_size; 178 unsigned int key_parts; /* independent parts in key buffer */ 179 unsigned int key_extra_size; /* additional keys length */ 180 u8 key[0]; 181 }; 182 183 #define MIN_IOS 64 184 185 static void clone_init(struct dm_crypt_io *, struct bio *); 186 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 187 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq); 188 189 /* 190 * Use this to access cipher attributes that are the same for each CPU. 191 */ 192 static struct crypto_skcipher *any_tfm(struct crypt_config *cc) 193 { 194 return cc->tfms[0]; 195 } 196 197 /* 198 * Different IV generation algorithms: 199 * 200 * plain: the initial vector is the 32-bit little-endian version of the sector 201 * number, padded with zeros if necessary. 202 * 203 * plain64: the initial vector is the 64-bit little-endian version of the sector 204 * number, padded with zeros if necessary. 205 * 206 * essiv: "encrypted sector|salt initial vector", the sector number is 207 * encrypted with the bulk cipher using a salt as key. The salt 208 * should be derived from the bulk cipher's key via hashing. 209 * 210 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 211 * (needed for LRW-32-AES and possible other narrow block modes) 212 * 213 * null: the initial vector is always zero. Provides compatibility with 214 * obsolete loop_fish2 devices. Do not use for new devices. 215 * 216 * lmk: Compatible implementation of the block chaining mode used 217 * by the Loop-AES block device encryption system 218 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 219 * It operates on full 512 byte sectors and uses CBC 220 * with an IV derived from the sector number, the data and 221 * optionally extra IV seed. 222 * This means that after decryption the first block 223 * of sector must be tweaked according to decrypted data. 224 * Loop-AES can use three encryption schemes: 225 * version 1: is plain aes-cbc mode 226 * version 2: uses 64 multikey scheme with lmk IV generator 227 * version 3: the same as version 2 with additional IV seed 228 * (it uses 65 keys, last key is used as IV seed) 229 * 230 * tcw: Compatible implementation of the block chaining mode used 231 * by the TrueCrypt device encryption system (prior to version 4.1). 232 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat 233 * It operates on full 512 byte sectors and uses CBC 234 * with an IV derived from initial key and the sector number. 235 * In addition, whitening value is applied on every sector, whitening 236 * is calculated from initial key, sector number and mixed using CRC32. 237 * Note that this encryption scheme is vulnerable to watermarking attacks 238 * and should be used for old compatible containers access only. 239 * 240 * plumb: unimplemented, see: 241 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 242 */ 243 244 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 245 struct dm_crypt_request *dmreq) 246 { 247 memset(iv, 0, cc->iv_size); 248 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 249 250 return 0; 251 } 252 253 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 254 struct dm_crypt_request *dmreq) 255 { 256 memset(iv, 0, cc->iv_size); 257 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 258 259 return 0; 260 } 261 262 /* Initialise ESSIV - compute salt but no local memory allocations */ 263 static int crypt_iv_essiv_init(struct crypt_config *cc) 264 { 265 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 266 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm); 267 struct scatterlist sg; 268 struct crypto_cipher *essiv_tfm; 269 int err; 270 271 sg_init_one(&sg, cc->key, cc->key_size); 272 ahash_request_set_tfm(req, essiv->hash_tfm); 273 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); 274 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size); 275 276 err = crypto_ahash_digest(req); 277 ahash_request_zero(req); 278 if (err) 279 return err; 280 281 essiv_tfm = cc->iv_private; 282 283 err = crypto_cipher_setkey(essiv_tfm, essiv->salt, 284 crypto_ahash_digestsize(essiv->hash_tfm)); 285 if (err) 286 return err; 287 288 return 0; 289 } 290 291 /* Wipe salt and reset key derived from volume key */ 292 static int crypt_iv_essiv_wipe(struct crypt_config *cc) 293 { 294 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 295 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm); 296 struct crypto_cipher *essiv_tfm; 297 int r, err = 0; 298 299 memset(essiv->salt, 0, salt_size); 300 301 essiv_tfm = cc->iv_private; 302 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size); 303 if (r) 304 err = r; 305 306 return err; 307 } 308 309 /* Set up per cpu cipher state */ 310 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc, 311 struct dm_target *ti, 312 u8 *salt, unsigned saltsize) 313 { 314 struct crypto_cipher *essiv_tfm; 315 int err; 316 317 /* Setup the essiv_tfm with the given salt */ 318 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC); 319 if (IS_ERR(essiv_tfm)) { 320 ti->error = "Error allocating crypto tfm for ESSIV"; 321 return essiv_tfm; 322 } 323 324 if (crypto_cipher_blocksize(essiv_tfm) != 325 crypto_skcipher_ivsize(any_tfm(cc))) { 326 ti->error = "Block size of ESSIV cipher does " 327 "not match IV size of block cipher"; 328 crypto_free_cipher(essiv_tfm); 329 return ERR_PTR(-EINVAL); 330 } 331 332 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize); 333 if (err) { 334 ti->error = "Failed to set key for ESSIV cipher"; 335 crypto_free_cipher(essiv_tfm); 336 return ERR_PTR(err); 337 } 338 339 return essiv_tfm; 340 } 341 342 static void crypt_iv_essiv_dtr(struct crypt_config *cc) 343 { 344 struct crypto_cipher *essiv_tfm; 345 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 346 347 crypto_free_ahash(essiv->hash_tfm); 348 essiv->hash_tfm = NULL; 349 350 kzfree(essiv->salt); 351 essiv->salt = NULL; 352 353 essiv_tfm = cc->iv_private; 354 355 if (essiv_tfm) 356 crypto_free_cipher(essiv_tfm); 357 358 cc->iv_private = NULL; 359 } 360 361 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, 362 const char *opts) 363 { 364 struct crypto_cipher *essiv_tfm = NULL; 365 struct crypto_ahash *hash_tfm = NULL; 366 u8 *salt = NULL; 367 int err; 368 369 if (!opts) { 370 ti->error = "Digest algorithm missing for ESSIV mode"; 371 return -EINVAL; 372 } 373 374 /* Allocate hash algorithm */ 375 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC); 376 if (IS_ERR(hash_tfm)) { 377 ti->error = "Error initializing ESSIV hash"; 378 err = PTR_ERR(hash_tfm); 379 goto bad; 380 } 381 382 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL); 383 if (!salt) { 384 ti->error = "Error kmallocing salt storage in ESSIV"; 385 err = -ENOMEM; 386 goto bad; 387 } 388 389 cc->iv_gen_private.essiv.salt = salt; 390 cc->iv_gen_private.essiv.hash_tfm = hash_tfm; 391 392 essiv_tfm = setup_essiv_cpu(cc, ti, salt, 393 crypto_ahash_digestsize(hash_tfm)); 394 if (IS_ERR(essiv_tfm)) { 395 crypt_iv_essiv_dtr(cc); 396 return PTR_ERR(essiv_tfm); 397 } 398 cc->iv_private = essiv_tfm; 399 400 return 0; 401 402 bad: 403 if (hash_tfm && !IS_ERR(hash_tfm)) 404 crypto_free_ahash(hash_tfm); 405 kfree(salt); 406 return err; 407 } 408 409 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 410 struct dm_crypt_request *dmreq) 411 { 412 struct crypto_cipher *essiv_tfm = cc->iv_private; 413 414 memset(iv, 0, cc->iv_size); 415 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 416 crypto_cipher_encrypt_one(essiv_tfm, iv, iv); 417 418 return 0; 419 } 420 421 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 422 const char *opts) 423 { 424 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc)); 425 int log = ilog2(bs); 426 427 /* we need to calculate how far we must shift the sector count 428 * to get the cipher block count, we use this shift in _gen */ 429 430 if (1 << log != bs) { 431 ti->error = "cypher blocksize is not a power of 2"; 432 return -EINVAL; 433 } 434 435 if (log > 9) { 436 ti->error = "cypher blocksize is > 512"; 437 return -EINVAL; 438 } 439 440 cc->iv_gen_private.benbi.shift = 9 - log; 441 442 return 0; 443 } 444 445 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 446 { 447 } 448 449 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 450 struct dm_crypt_request *dmreq) 451 { 452 __be64 val; 453 454 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 455 456 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 457 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 458 459 return 0; 460 } 461 462 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 463 struct dm_crypt_request *dmreq) 464 { 465 memset(iv, 0, cc->iv_size); 466 467 return 0; 468 } 469 470 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 471 { 472 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 473 474 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) 475 crypto_free_shash(lmk->hash_tfm); 476 lmk->hash_tfm = NULL; 477 478 kzfree(lmk->seed); 479 lmk->seed = NULL; 480 } 481 482 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 483 const char *opts) 484 { 485 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 486 487 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0); 488 if (IS_ERR(lmk->hash_tfm)) { 489 ti->error = "Error initializing LMK hash"; 490 return PTR_ERR(lmk->hash_tfm); 491 } 492 493 /* No seed in LMK version 2 */ 494 if (cc->key_parts == cc->tfms_count) { 495 lmk->seed = NULL; 496 return 0; 497 } 498 499 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 500 if (!lmk->seed) { 501 crypt_iv_lmk_dtr(cc); 502 ti->error = "Error kmallocing seed storage in LMK"; 503 return -ENOMEM; 504 } 505 506 return 0; 507 } 508 509 static int crypt_iv_lmk_init(struct crypt_config *cc) 510 { 511 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 512 int subkey_size = cc->key_size / cc->key_parts; 513 514 /* LMK seed is on the position of LMK_KEYS + 1 key */ 515 if (lmk->seed) 516 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 517 crypto_shash_digestsize(lmk->hash_tfm)); 518 519 return 0; 520 } 521 522 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 523 { 524 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 525 526 if (lmk->seed) 527 memset(lmk->seed, 0, LMK_SEED_SIZE); 528 529 return 0; 530 } 531 532 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 533 struct dm_crypt_request *dmreq, 534 u8 *data) 535 { 536 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 537 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); 538 struct md5_state md5state; 539 __le32 buf[4]; 540 int i, r; 541 542 desc->tfm = lmk->hash_tfm; 543 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 544 545 r = crypto_shash_init(desc); 546 if (r) 547 return r; 548 549 if (lmk->seed) { 550 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); 551 if (r) 552 return r; 553 } 554 555 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 556 r = crypto_shash_update(desc, data + 16, 16 * 31); 557 if (r) 558 return r; 559 560 /* Sector is cropped to 56 bits here */ 561 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 562 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 563 buf[2] = cpu_to_le32(4024); 564 buf[3] = 0; 565 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); 566 if (r) 567 return r; 568 569 /* No MD5 padding here */ 570 r = crypto_shash_export(desc, &md5state); 571 if (r) 572 return r; 573 574 for (i = 0; i < MD5_HASH_WORDS; i++) 575 __cpu_to_le32s(&md5state.hash[i]); 576 memcpy(iv, &md5state.hash, cc->iv_size); 577 578 return 0; 579 } 580 581 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 582 struct dm_crypt_request *dmreq) 583 { 584 u8 *src; 585 int r = 0; 586 587 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 588 src = kmap_atomic(sg_page(&dmreq->sg_in)); 589 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset); 590 kunmap_atomic(src); 591 } else 592 memset(iv, 0, cc->iv_size); 593 594 return r; 595 } 596 597 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 598 struct dm_crypt_request *dmreq) 599 { 600 u8 *dst; 601 int r; 602 603 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 604 return 0; 605 606 dst = kmap_atomic(sg_page(&dmreq->sg_out)); 607 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset); 608 609 /* Tweak the first block of plaintext sector */ 610 if (!r) 611 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size); 612 613 kunmap_atomic(dst); 614 return r; 615 } 616 617 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 618 { 619 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 620 621 kzfree(tcw->iv_seed); 622 tcw->iv_seed = NULL; 623 kzfree(tcw->whitening); 624 tcw->whitening = NULL; 625 626 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) 627 crypto_free_shash(tcw->crc32_tfm); 628 tcw->crc32_tfm = NULL; 629 } 630 631 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 632 const char *opts) 633 { 634 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 635 636 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 637 ti->error = "Wrong key size for TCW"; 638 return -EINVAL; 639 } 640 641 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0); 642 if (IS_ERR(tcw->crc32_tfm)) { 643 ti->error = "Error initializing CRC32 in TCW"; 644 return PTR_ERR(tcw->crc32_tfm); 645 } 646 647 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 648 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 649 if (!tcw->iv_seed || !tcw->whitening) { 650 crypt_iv_tcw_dtr(cc); 651 ti->error = "Error allocating seed storage in TCW"; 652 return -ENOMEM; 653 } 654 655 return 0; 656 } 657 658 static int crypt_iv_tcw_init(struct crypt_config *cc) 659 { 660 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 661 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 662 663 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 664 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 665 TCW_WHITENING_SIZE); 666 667 return 0; 668 } 669 670 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 671 { 672 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 673 674 memset(tcw->iv_seed, 0, cc->iv_size); 675 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 676 677 return 0; 678 } 679 680 static int crypt_iv_tcw_whitening(struct crypt_config *cc, 681 struct dm_crypt_request *dmreq, 682 u8 *data) 683 { 684 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 685 __le64 sector = cpu_to_le64(dmreq->iv_sector); 686 u8 buf[TCW_WHITENING_SIZE]; 687 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm); 688 int i, r; 689 690 /* xor whitening with sector number */ 691 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE); 692 crypto_xor(buf, (u8 *)§or, 8); 693 crypto_xor(&buf[8], (u8 *)§or, 8); 694 695 /* calculate crc32 for every 32bit part and xor it */ 696 desc->tfm = tcw->crc32_tfm; 697 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 698 for (i = 0; i < 4; i++) { 699 r = crypto_shash_init(desc); 700 if (r) 701 goto out; 702 r = crypto_shash_update(desc, &buf[i * 4], 4); 703 if (r) 704 goto out; 705 r = crypto_shash_final(desc, &buf[i * 4]); 706 if (r) 707 goto out; 708 } 709 crypto_xor(&buf[0], &buf[12], 4); 710 crypto_xor(&buf[4], &buf[8], 4); 711 712 /* apply whitening (8 bytes) to whole sector */ 713 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 714 crypto_xor(data + i * 8, buf, 8); 715 out: 716 memzero_explicit(buf, sizeof(buf)); 717 return r; 718 } 719 720 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 721 struct dm_crypt_request *dmreq) 722 { 723 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 724 __le64 sector = cpu_to_le64(dmreq->iv_sector); 725 u8 *src; 726 int r = 0; 727 728 /* Remove whitening from ciphertext */ 729 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 730 src = kmap_atomic(sg_page(&dmreq->sg_in)); 731 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset); 732 kunmap_atomic(src); 733 } 734 735 /* Calculate IV */ 736 memcpy(iv, tcw->iv_seed, cc->iv_size); 737 crypto_xor(iv, (u8 *)§or, 8); 738 if (cc->iv_size > 8) 739 crypto_xor(&iv[8], (u8 *)§or, cc->iv_size - 8); 740 741 return r; 742 } 743 744 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 745 struct dm_crypt_request *dmreq) 746 { 747 u8 *dst; 748 int r; 749 750 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 751 return 0; 752 753 /* Apply whitening on ciphertext */ 754 dst = kmap_atomic(sg_page(&dmreq->sg_out)); 755 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset); 756 kunmap_atomic(dst); 757 758 return r; 759 } 760 761 static struct crypt_iv_operations crypt_iv_plain_ops = { 762 .generator = crypt_iv_plain_gen 763 }; 764 765 static struct crypt_iv_operations crypt_iv_plain64_ops = { 766 .generator = crypt_iv_plain64_gen 767 }; 768 769 static struct crypt_iv_operations crypt_iv_essiv_ops = { 770 .ctr = crypt_iv_essiv_ctr, 771 .dtr = crypt_iv_essiv_dtr, 772 .init = crypt_iv_essiv_init, 773 .wipe = crypt_iv_essiv_wipe, 774 .generator = crypt_iv_essiv_gen 775 }; 776 777 static struct crypt_iv_operations crypt_iv_benbi_ops = { 778 .ctr = crypt_iv_benbi_ctr, 779 .dtr = crypt_iv_benbi_dtr, 780 .generator = crypt_iv_benbi_gen 781 }; 782 783 static struct crypt_iv_operations crypt_iv_null_ops = { 784 .generator = crypt_iv_null_gen 785 }; 786 787 static struct crypt_iv_operations crypt_iv_lmk_ops = { 788 .ctr = crypt_iv_lmk_ctr, 789 .dtr = crypt_iv_lmk_dtr, 790 .init = crypt_iv_lmk_init, 791 .wipe = crypt_iv_lmk_wipe, 792 .generator = crypt_iv_lmk_gen, 793 .post = crypt_iv_lmk_post 794 }; 795 796 static struct crypt_iv_operations crypt_iv_tcw_ops = { 797 .ctr = crypt_iv_tcw_ctr, 798 .dtr = crypt_iv_tcw_dtr, 799 .init = crypt_iv_tcw_init, 800 .wipe = crypt_iv_tcw_wipe, 801 .generator = crypt_iv_tcw_gen, 802 .post = crypt_iv_tcw_post 803 }; 804 805 static void crypt_convert_init(struct crypt_config *cc, 806 struct convert_context *ctx, 807 struct bio *bio_out, struct bio *bio_in, 808 sector_t sector) 809 { 810 ctx->bio_in = bio_in; 811 ctx->bio_out = bio_out; 812 if (bio_in) 813 ctx->iter_in = bio_in->bi_iter; 814 if (bio_out) 815 ctx->iter_out = bio_out->bi_iter; 816 ctx->cc_sector = sector + cc->iv_offset; 817 init_completion(&ctx->restart); 818 } 819 820 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 821 struct skcipher_request *req) 822 { 823 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 824 } 825 826 static struct skcipher_request *req_of_dmreq(struct crypt_config *cc, 827 struct dm_crypt_request *dmreq) 828 { 829 return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start); 830 } 831 832 static u8 *iv_of_dmreq(struct crypt_config *cc, 833 struct dm_crypt_request *dmreq) 834 { 835 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 836 crypto_skcipher_alignmask(any_tfm(cc)) + 1); 837 } 838 839 static int crypt_convert_block(struct crypt_config *cc, 840 struct convert_context *ctx, 841 struct skcipher_request *req) 842 { 843 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 844 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 845 struct dm_crypt_request *dmreq; 846 u8 *iv; 847 int r; 848 849 dmreq = dmreq_of_req(cc, req); 850 iv = iv_of_dmreq(cc, dmreq); 851 852 dmreq->iv_sector = ctx->cc_sector; 853 dmreq->ctx = ctx; 854 sg_init_table(&dmreq->sg_in, 1); 855 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT, 856 bv_in.bv_offset); 857 858 sg_init_table(&dmreq->sg_out, 1); 859 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT, 860 bv_out.bv_offset); 861 862 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT); 863 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT); 864 865 if (cc->iv_gen_ops) { 866 r = cc->iv_gen_ops->generator(cc, iv, dmreq); 867 if (r < 0) 868 return r; 869 } 870 871 skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out, 872 1 << SECTOR_SHIFT, iv); 873 874 if (bio_data_dir(ctx->bio_in) == WRITE) 875 r = crypto_skcipher_encrypt(req); 876 else 877 r = crypto_skcipher_decrypt(req); 878 879 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 880 r = cc->iv_gen_ops->post(cc, iv, dmreq); 881 882 return r; 883 } 884 885 static void kcryptd_async_done(struct crypto_async_request *async_req, 886 int error); 887 888 static void crypt_alloc_req(struct crypt_config *cc, 889 struct convert_context *ctx) 890 { 891 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1); 892 893 if (!ctx->req) 894 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO); 895 896 skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]); 897 898 /* 899 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 900 * requests if driver request queue is full. 901 */ 902 skcipher_request_set_callback(ctx->req, 903 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 904 kcryptd_async_done, dmreq_of_req(cc, ctx->req)); 905 } 906 907 static void crypt_free_req(struct crypt_config *cc, 908 struct skcipher_request *req, struct bio *base_bio) 909 { 910 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 911 912 if ((struct skcipher_request *)(io + 1) != req) 913 mempool_free(req, cc->req_pool); 914 } 915 916 /* 917 * Encrypt / decrypt data from one bio to another one (can be the same one) 918 */ 919 static int crypt_convert(struct crypt_config *cc, 920 struct convert_context *ctx) 921 { 922 int r; 923 924 atomic_set(&ctx->cc_pending, 1); 925 926 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 927 928 crypt_alloc_req(cc, ctx); 929 930 atomic_inc(&ctx->cc_pending); 931 932 r = crypt_convert_block(cc, ctx, ctx->req); 933 934 switch (r) { 935 /* 936 * The request was queued by a crypto driver 937 * but the driver request queue is full, let's wait. 938 */ 939 case -EBUSY: 940 wait_for_completion(&ctx->restart); 941 reinit_completion(&ctx->restart); 942 /* fall through */ 943 /* 944 * The request is queued and processed asynchronously, 945 * completion function kcryptd_async_done() will be called. 946 */ 947 case -EINPROGRESS: 948 ctx->req = NULL; 949 ctx->cc_sector++; 950 continue; 951 /* 952 * The request was already processed (synchronously). 953 */ 954 case 0: 955 atomic_dec(&ctx->cc_pending); 956 ctx->cc_sector++; 957 cond_resched(); 958 continue; 959 960 /* There was an error while processing the request. */ 961 default: 962 atomic_dec(&ctx->cc_pending); 963 return r; 964 } 965 } 966 967 return 0; 968 } 969 970 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); 971 972 /* 973 * Generate a new unfragmented bio with the given size 974 * This should never violate the device limitations (but only because 975 * max_segment_size is being constrained to PAGE_SIZE). 976 * 977 * This function may be called concurrently. If we allocate from the mempool 978 * concurrently, there is a possibility of deadlock. For example, if we have 979 * mempool of 256 pages, two processes, each wanting 256, pages allocate from 980 * the mempool concurrently, it may deadlock in a situation where both processes 981 * have allocated 128 pages and the mempool is exhausted. 982 * 983 * In order to avoid this scenario we allocate the pages under a mutex. 984 * 985 * In order to not degrade performance with excessive locking, we try 986 * non-blocking allocations without a mutex first but on failure we fallback 987 * to blocking allocations with a mutex. 988 */ 989 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size) 990 { 991 struct crypt_config *cc = io->cc; 992 struct bio *clone; 993 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 994 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; 995 unsigned i, len, remaining_size; 996 struct page *page; 997 struct bio_vec *bvec; 998 999 retry: 1000 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1001 mutex_lock(&cc->bio_alloc_lock); 1002 1003 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs); 1004 if (!clone) 1005 goto return_clone; 1006 1007 clone_init(io, clone); 1008 1009 remaining_size = size; 1010 1011 for (i = 0; i < nr_iovecs; i++) { 1012 page = mempool_alloc(cc->page_pool, gfp_mask); 1013 if (!page) { 1014 crypt_free_buffer_pages(cc, clone); 1015 bio_put(clone); 1016 gfp_mask |= __GFP_DIRECT_RECLAIM; 1017 goto retry; 1018 } 1019 1020 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size; 1021 1022 bvec = &clone->bi_io_vec[clone->bi_vcnt++]; 1023 bvec->bv_page = page; 1024 bvec->bv_len = len; 1025 bvec->bv_offset = 0; 1026 1027 clone->bi_iter.bi_size += len; 1028 1029 remaining_size -= len; 1030 } 1031 1032 return_clone: 1033 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1034 mutex_unlock(&cc->bio_alloc_lock); 1035 1036 return clone; 1037 } 1038 1039 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1040 { 1041 unsigned int i; 1042 struct bio_vec *bv; 1043 1044 bio_for_each_segment_all(bv, clone, i) { 1045 BUG_ON(!bv->bv_page); 1046 mempool_free(bv->bv_page, cc->page_pool); 1047 bv->bv_page = NULL; 1048 } 1049 } 1050 1051 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, 1052 struct bio *bio, sector_t sector) 1053 { 1054 io->cc = cc; 1055 io->base_bio = bio; 1056 io->sector = sector; 1057 io->error = 0; 1058 io->ctx.req = NULL; 1059 atomic_set(&io->io_pending, 0); 1060 } 1061 1062 static void crypt_inc_pending(struct dm_crypt_io *io) 1063 { 1064 atomic_inc(&io->io_pending); 1065 } 1066 1067 /* 1068 * One of the bios was finished. Check for completion of 1069 * the whole request and correctly clean up the buffer. 1070 */ 1071 static void crypt_dec_pending(struct dm_crypt_io *io) 1072 { 1073 struct crypt_config *cc = io->cc; 1074 struct bio *base_bio = io->base_bio; 1075 int error = io->error; 1076 1077 if (!atomic_dec_and_test(&io->io_pending)) 1078 return; 1079 1080 if (io->ctx.req) 1081 crypt_free_req(cc, io->ctx.req, base_bio); 1082 1083 base_bio->bi_error = error; 1084 bio_endio(base_bio); 1085 } 1086 1087 /* 1088 * kcryptd/kcryptd_io: 1089 * 1090 * Needed because it would be very unwise to do decryption in an 1091 * interrupt context. 1092 * 1093 * kcryptd performs the actual encryption or decryption. 1094 * 1095 * kcryptd_io performs the IO submission. 1096 * 1097 * They must be separated as otherwise the final stages could be 1098 * starved by new requests which can block in the first stages due 1099 * to memory allocation. 1100 * 1101 * The work is done per CPU global for all dm-crypt instances. 1102 * They should not depend on each other and do not block. 1103 */ 1104 static void crypt_endio(struct bio *clone) 1105 { 1106 struct dm_crypt_io *io = clone->bi_private; 1107 struct crypt_config *cc = io->cc; 1108 unsigned rw = bio_data_dir(clone); 1109 int error; 1110 1111 /* 1112 * free the processed pages 1113 */ 1114 if (rw == WRITE) 1115 crypt_free_buffer_pages(cc, clone); 1116 1117 error = clone->bi_error; 1118 bio_put(clone); 1119 1120 if (rw == READ && !error) { 1121 kcryptd_queue_crypt(io); 1122 return; 1123 } 1124 1125 if (unlikely(error)) 1126 io->error = error; 1127 1128 crypt_dec_pending(io); 1129 } 1130 1131 static void clone_init(struct dm_crypt_io *io, struct bio *clone) 1132 { 1133 struct crypt_config *cc = io->cc; 1134 1135 clone->bi_private = io; 1136 clone->bi_end_io = crypt_endio; 1137 clone->bi_bdev = cc->dev->bdev; 1138 bio_set_op_attrs(clone, bio_op(io->base_bio), bio_flags(io->base_bio)); 1139 } 1140 1141 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1142 { 1143 struct crypt_config *cc = io->cc; 1144 struct bio *clone; 1145 1146 /* 1147 * We need the original biovec array in order to decrypt 1148 * the whole bio data *afterwards* -- thanks to immutable 1149 * biovecs we don't need to worry about the block layer 1150 * modifying the biovec array; so leverage bio_clone_fast(). 1151 */ 1152 clone = bio_clone_fast(io->base_bio, gfp, cc->bs); 1153 if (!clone) 1154 return 1; 1155 1156 crypt_inc_pending(io); 1157 1158 clone_init(io, clone); 1159 clone->bi_iter.bi_sector = cc->start + io->sector; 1160 1161 generic_make_request(clone); 1162 return 0; 1163 } 1164 1165 static void kcryptd_io_read_work(struct work_struct *work) 1166 { 1167 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1168 1169 crypt_inc_pending(io); 1170 if (kcryptd_io_read(io, GFP_NOIO)) 1171 io->error = -ENOMEM; 1172 crypt_dec_pending(io); 1173 } 1174 1175 static void kcryptd_queue_read(struct dm_crypt_io *io) 1176 { 1177 struct crypt_config *cc = io->cc; 1178 1179 INIT_WORK(&io->work, kcryptd_io_read_work); 1180 queue_work(cc->io_queue, &io->work); 1181 } 1182 1183 static void kcryptd_io_write(struct dm_crypt_io *io) 1184 { 1185 struct bio *clone = io->ctx.bio_out; 1186 1187 generic_make_request(clone); 1188 } 1189 1190 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) 1191 1192 static int dmcrypt_write(void *data) 1193 { 1194 struct crypt_config *cc = data; 1195 struct dm_crypt_io *io; 1196 1197 while (1) { 1198 struct rb_root write_tree; 1199 struct blk_plug plug; 1200 1201 DECLARE_WAITQUEUE(wait, current); 1202 1203 spin_lock_irq(&cc->write_thread_wait.lock); 1204 continue_locked: 1205 1206 if (!RB_EMPTY_ROOT(&cc->write_tree)) 1207 goto pop_from_list; 1208 1209 set_current_state(TASK_INTERRUPTIBLE); 1210 __add_wait_queue(&cc->write_thread_wait, &wait); 1211 1212 spin_unlock_irq(&cc->write_thread_wait.lock); 1213 1214 if (unlikely(kthread_should_stop())) { 1215 set_task_state(current, TASK_RUNNING); 1216 remove_wait_queue(&cc->write_thread_wait, &wait); 1217 break; 1218 } 1219 1220 schedule(); 1221 1222 set_task_state(current, TASK_RUNNING); 1223 spin_lock_irq(&cc->write_thread_wait.lock); 1224 __remove_wait_queue(&cc->write_thread_wait, &wait); 1225 goto continue_locked; 1226 1227 pop_from_list: 1228 write_tree = cc->write_tree; 1229 cc->write_tree = RB_ROOT; 1230 spin_unlock_irq(&cc->write_thread_wait.lock); 1231 1232 BUG_ON(rb_parent(write_tree.rb_node)); 1233 1234 /* 1235 * Note: we cannot walk the tree here with rb_next because 1236 * the structures may be freed when kcryptd_io_write is called. 1237 */ 1238 blk_start_plug(&plug); 1239 do { 1240 io = crypt_io_from_node(rb_first(&write_tree)); 1241 rb_erase(&io->rb_node, &write_tree); 1242 kcryptd_io_write(io); 1243 } while (!RB_EMPTY_ROOT(&write_tree)); 1244 blk_finish_plug(&plug); 1245 } 1246 return 0; 1247 } 1248 1249 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 1250 { 1251 struct bio *clone = io->ctx.bio_out; 1252 struct crypt_config *cc = io->cc; 1253 unsigned long flags; 1254 sector_t sector; 1255 struct rb_node **rbp, *parent; 1256 1257 if (unlikely(io->error < 0)) { 1258 crypt_free_buffer_pages(cc, clone); 1259 bio_put(clone); 1260 crypt_dec_pending(io); 1261 return; 1262 } 1263 1264 /* crypt_convert should have filled the clone bio */ 1265 BUG_ON(io->ctx.iter_out.bi_size); 1266 1267 clone->bi_iter.bi_sector = cc->start + io->sector; 1268 1269 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) { 1270 generic_make_request(clone); 1271 return; 1272 } 1273 1274 spin_lock_irqsave(&cc->write_thread_wait.lock, flags); 1275 rbp = &cc->write_tree.rb_node; 1276 parent = NULL; 1277 sector = io->sector; 1278 while (*rbp) { 1279 parent = *rbp; 1280 if (sector < crypt_io_from_node(parent)->sector) 1281 rbp = &(*rbp)->rb_left; 1282 else 1283 rbp = &(*rbp)->rb_right; 1284 } 1285 rb_link_node(&io->rb_node, parent, rbp); 1286 rb_insert_color(&io->rb_node, &cc->write_tree); 1287 1288 wake_up_locked(&cc->write_thread_wait); 1289 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags); 1290 } 1291 1292 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 1293 { 1294 struct crypt_config *cc = io->cc; 1295 struct bio *clone; 1296 int crypt_finished; 1297 sector_t sector = io->sector; 1298 int r; 1299 1300 /* 1301 * Prevent io from disappearing until this function completes. 1302 */ 1303 crypt_inc_pending(io); 1304 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector); 1305 1306 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 1307 if (unlikely(!clone)) { 1308 io->error = -EIO; 1309 goto dec; 1310 } 1311 1312 io->ctx.bio_out = clone; 1313 io->ctx.iter_out = clone->bi_iter; 1314 1315 sector += bio_sectors(clone); 1316 1317 crypt_inc_pending(io); 1318 r = crypt_convert(cc, &io->ctx); 1319 if (r) 1320 io->error = -EIO; 1321 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending); 1322 1323 /* Encryption was already finished, submit io now */ 1324 if (crypt_finished) { 1325 kcryptd_crypt_write_io_submit(io, 0); 1326 io->sector = sector; 1327 } 1328 1329 dec: 1330 crypt_dec_pending(io); 1331 } 1332 1333 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 1334 { 1335 crypt_dec_pending(io); 1336 } 1337 1338 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 1339 { 1340 struct crypt_config *cc = io->cc; 1341 int r = 0; 1342 1343 crypt_inc_pending(io); 1344 1345 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 1346 io->sector); 1347 1348 r = crypt_convert(cc, &io->ctx); 1349 if (r < 0) 1350 io->error = -EIO; 1351 1352 if (atomic_dec_and_test(&io->ctx.cc_pending)) 1353 kcryptd_crypt_read_done(io); 1354 1355 crypt_dec_pending(io); 1356 } 1357 1358 static void kcryptd_async_done(struct crypto_async_request *async_req, 1359 int error) 1360 { 1361 struct dm_crypt_request *dmreq = async_req->data; 1362 struct convert_context *ctx = dmreq->ctx; 1363 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1364 struct crypt_config *cc = io->cc; 1365 1366 /* 1367 * A request from crypto driver backlog is going to be processed now, 1368 * finish the completion and continue in crypt_convert(). 1369 * (Callback will be called for the second time for this request.) 1370 */ 1371 if (error == -EINPROGRESS) { 1372 complete(&ctx->restart); 1373 return; 1374 } 1375 1376 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 1377 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq); 1378 1379 if (error < 0) 1380 io->error = -EIO; 1381 1382 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); 1383 1384 if (!atomic_dec_and_test(&ctx->cc_pending)) 1385 return; 1386 1387 if (bio_data_dir(io->base_bio) == READ) 1388 kcryptd_crypt_read_done(io); 1389 else 1390 kcryptd_crypt_write_io_submit(io, 1); 1391 } 1392 1393 static void kcryptd_crypt(struct work_struct *work) 1394 { 1395 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1396 1397 if (bio_data_dir(io->base_bio) == READ) 1398 kcryptd_crypt_read_convert(io); 1399 else 1400 kcryptd_crypt_write_convert(io); 1401 } 1402 1403 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 1404 { 1405 struct crypt_config *cc = io->cc; 1406 1407 INIT_WORK(&io->work, kcryptd_crypt); 1408 queue_work(cc->crypt_queue, &io->work); 1409 } 1410 1411 /* 1412 * Decode key from its hex representation 1413 */ 1414 static int crypt_decode_key(u8 *key, char *hex, unsigned int size) 1415 { 1416 char buffer[3]; 1417 unsigned int i; 1418 1419 buffer[2] = '\0'; 1420 1421 for (i = 0; i < size; i++) { 1422 buffer[0] = *hex++; 1423 buffer[1] = *hex++; 1424 1425 if (kstrtou8(buffer, 16, &key[i])) 1426 return -EINVAL; 1427 } 1428 1429 if (*hex != '\0') 1430 return -EINVAL; 1431 1432 return 0; 1433 } 1434 1435 static void crypt_free_tfms(struct crypt_config *cc) 1436 { 1437 unsigned i; 1438 1439 if (!cc->tfms) 1440 return; 1441 1442 for (i = 0; i < cc->tfms_count; i++) 1443 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) { 1444 crypto_free_skcipher(cc->tfms[i]); 1445 cc->tfms[i] = NULL; 1446 } 1447 1448 kfree(cc->tfms); 1449 cc->tfms = NULL; 1450 } 1451 1452 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 1453 { 1454 unsigned i; 1455 int err; 1456 1457 cc->tfms = kzalloc(cc->tfms_count * sizeof(struct crypto_skcipher *), 1458 GFP_KERNEL); 1459 if (!cc->tfms) 1460 return -ENOMEM; 1461 1462 for (i = 0; i < cc->tfms_count; i++) { 1463 cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0); 1464 if (IS_ERR(cc->tfms[i])) { 1465 err = PTR_ERR(cc->tfms[i]); 1466 crypt_free_tfms(cc); 1467 return err; 1468 } 1469 } 1470 1471 return 0; 1472 } 1473 1474 static int crypt_setkey_allcpus(struct crypt_config *cc) 1475 { 1476 unsigned subkey_size; 1477 int err = 0, i, r; 1478 1479 /* Ignore extra keys (which are used for IV etc) */ 1480 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 1481 1482 for (i = 0; i < cc->tfms_count; i++) { 1483 r = crypto_skcipher_setkey(cc->tfms[i], 1484 cc->key + (i * subkey_size), 1485 subkey_size); 1486 if (r) 1487 err = r; 1488 } 1489 1490 return err; 1491 } 1492 1493 static int crypt_set_key(struct crypt_config *cc, char *key) 1494 { 1495 int r = -EINVAL; 1496 int key_string_len = strlen(key); 1497 1498 /* The key size may not be changed. */ 1499 if (cc->key_size != (key_string_len >> 1)) 1500 goto out; 1501 1502 /* Hyphen (which gives a key_size of zero) means there is no key. */ 1503 if (!cc->key_size && strcmp(key, "-")) 1504 goto out; 1505 1506 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0) 1507 goto out; 1508 1509 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1510 1511 r = crypt_setkey_allcpus(cc); 1512 1513 out: 1514 /* Hex key string not needed after here, so wipe it. */ 1515 memset(key, '0', key_string_len); 1516 1517 return r; 1518 } 1519 1520 static int crypt_wipe_key(struct crypt_config *cc) 1521 { 1522 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1523 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 1524 1525 return crypt_setkey_allcpus(cc); 1526 } 1527 1528 static void crypt_dtr(struct dm_target *ti) 1529 { 1530 struct crypt_config *cc = ti->private; 1531 1532 ti->private = NULL; 1533 1534 if (!cc) 1535 return; 1536 1537 if (cc->write_thread) 1538 kthread_stop(cc->write_thread); 1539 1540 if (cc->io_queue) 1541 destroy_workqueue(cc->io_queue); 1542 if (cc->crypt_queue) 1543 destroy_workqueue(cc->crypt_queue); 1544 1545 crypt_free_tfms(cc); 1546 1547 if (cc->bs) 1548 bioset_free(cc->bs); 1549 1550 mempool_destroy(cc->page_pool); 1551 mempool_destroy(cc->req_pool); 1552 1553 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 1554 cc->iv_gen_ops->dtr(cc); 1555 1556 if (cc->dev) 1557 dm_put_device(ti, cc->dev); 1558 1559 kzfree(cc->cipher); 1560 kzfree(cc->cipher_string); 1561 1562 /* Must zero key material before freeing */ 1563 kzfree(cc); 1564 } 1565 1566 static int crypt_ctr_cipher(struct dm_target *ti, 1567 char *cipher_in, char *key) 1568 { 1569 struct crypt_config *cc = ti->private; 1570 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount; 1571 char *cipher_api = NULL; 1572 int ret = -EINVAL; 1573 char dummy; 1574 1575 /* Convert to crypto api definition? */ 1576 if (strchr(cipher_in, '(')) { 1577 ti->error = "Bad cipher specification"; 1578 return -EINVAL; 1579 } 1580 1581 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 1582 if (!cc->cipher_string) 1583 goto bad_mem; 1584 1585 /* 1586 * Legacy dm-crypt cipher specification 1587 * cipher[:keycount]-mode-iv:ivopts 1588 */ 1589 tmp = cipher_in; 1590 keycount = strsep(&tmp, "-"); 1591 cipher = strsep(&keycount, ":"); 1592 1593 if (!keycount) 1594 cc->tfms_count = 1; 1595 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 1596 !is_power_of_2(cc->tfms_count)) { 1597 ti->error = "Bad cipher key count specification"; 1598 return -EINVAL; 1599 } 1600 cc->key_parts = cc->tfms_count; 1601 cc->key_extra_size = 0; 1602 1603 cc->cipher = kstrdup(cipher, GFP_KERNEL); 1604 if (!cc->cipher) 1605 goto bad_mem; 1606 1607 chainmode = strsep(&tmp, "-"); 1608 ivopts = strsep(&tmp, "-"); 1609 ivmode = strsep(&ivopts, ":"); 1610 1611 if (tmp) 1612 DMWARN("Ignoring unexpected additional cipher options"); 1613 1614 /* 1615 * For compatibility with the original dm-crypt mapping format, if 1616 * only the cipher name is supplied, use cbc-plain. 1617 */ 1618 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) { 1619 chainmode = "cbc"; 1620 ivmode = "plain"; 1621 } 1622 1623 if (strcmp(chainmode, "ecb") && !ivmode) { 1624 ti->error = "IV mechanism required"; 1625 return -EINVAL; 1626 } 1627 1628 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 1629 if (!cipher_api) 1630 goto bad_mem; 1631 1632 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 1633 "%s(%s)", chainmode, cipher); 1634 if (ret < 0) { 1635 kfree(cipher_api); 1636 goto bad_mem; 1637 } 1638 1639 /* Allocate cipher */ 1640 ret = crypt_alloc_tfms(cc, cipher_api); 1641 if (ret < 0) { 1642 ti->error = "Error allocating crypto tfm"; 1643 goto bad; 1644 } 1645 1646 /* Initialize IV */ 1647 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 1648 if (cc->iv_size) 1649 /* at least a 64 bit sector number should fit in our buffer */ 1650 cc->iv_size = max(cc->iv_size, 1651 (unsigned int)(sizeof(u64) / sizeof(u8))); 1652 else if (ivmode) { 1653 DMWARN("Selected cipher does not support IVs"); 1654 ivmode = NULL; 1655 } 1656 1657 /* Choose ivmode, see comments at iv code. */ 1658 if (ivmode == NULL) 1659 cc->iv_gen_ops = NULL; 1660 else if (strcmp(ivmode, "plain") == 0) 1661 cc->iv_gen_ops = &crypt_iv_plain_ops; 1662 else if (strcmp(ivmode, "plain64") == 0) 1663 cc->iv_gen_ops = &crypt_iv_plain64_ops; 1664 else if (strcmp(ivmode, "essiv") == 0) 1665 cc->iv_gen_ops = &crypt_iv_essiv_ops; 1666 else if (strcmp(ivmode, "benbi") == 0) 1667 cc->iv_gen_ops = &crypt_iv_benbi_ops; 1668 else if (strcmp(ivmode, "null") == 0) 1669 cc->iv_gen_ops = &crypt_iv_null_ops; 1670 else if (strcmp(ivmode, "lmk") == 0) { 1671 cc->iv_gen_ops = &crypt_iv_lmk_ops; 1672 /* 1673 * Version 2 and 3 is recognised according 1674 * to length of provided multi-key string. 1675 * If present (version 3), last key is used as IV seed. 1676 * All keys (including IV seed) are always the same size. 1677 */ 1678 if (cc->key_size % cc->key_parts) { 1679 cc->key_parts++; 1680 cc->key_extra_size = cc->key_size / cc->key_parts; 1681 } 1682 } else if (strcmp(ivmode, "tcw") == 0) { 1683 cc->iv_gen_ops = &crypt_iv_tcw_ops; 1684 cc->key_parts += 2; /* IV + whitening */ 1685 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 1686 } else { 1687 ret = -EINVAL; 1688 ti->error = "Invalid IV mode"; 1689 goto bad; 1690 } 1691 1692 /* Initialize and set key */ 1693 ret = crypt_set_key(cc, key); 1694 if (ret < 0) { 1695 ti->error = "Error decoding and setting key"; 1696 goto bad; 1697 } 1698 1699 /* Allocate IV */ 1700 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 1701 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 1702 if (ret < 0) { 1703 ti->error = "Error creating IV"; 1704 goto bad; 1705 } 1706 } 1707 1708 /* Initialize IV (set keys for ESSIV etc) */ 1709 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 1710 ret = cc->iv_gen_ops->init(cc); 1711 if (ret < 0) { 1712 ti->error = "Error initialising IV"; 1713 goto bad; 1714 } 1715 } 1716 1717 ret = 0; 1718 bad: 1719 kfree(cipher_api); 1720 return ret; 1721 1722 bad_mem: 1723 ti->error = "Cannot allocate cipher strings"; 1724 return -ENOMEM; 1725 } 1726 1727 /* 1728 * Construct an encryption mapping: 1729 * <cipher> <key> <iv_offset> <dev_path> <start> 1730 */ 1731 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1732 { 1733 struct crypt_config *cc; 1734 unsigned int key_size, opt_params; 1735 unsigned long long tmpll; 1736 int ret; 1737 size_t iv_size_padding; 1738 struct dm_arg_set as; 1739 const char *opt_string; 1740 char dummy; 1741 1742 static struct dm_arg _args[] = { 1743 {0, 3, "Invalid number of feature args"}, 1744 }; 1745 1746 if (argc < 5) { 1747 ti->error = "Not enough arguments"; 1748 return -EINVAL; 1749 } 1750 1751 key_size = strlen(argv[1]) >> 1; 1752 1753 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); 1754 if (!cc) { 1755 ti->error = "Cannot allocate encryption context"; 1756 return -ENOMEM; 1757 } 1758 cc->key_size = key_size; 1759 1760 ti->private = cc; 1761 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 1762 if (ret < 0) 1763 goto bad; 1764 1765 cc->dmreq_start = sizeof(struct skcipher_request); 1766 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); 1767 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); 1768 1769 if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) { 1770 /* Allocate the padding exactly */ 1771 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) 1772 & crypto_skcipher_alignmask(any_tfm(cc)); 1773 } else { 1774 /* 1775 * If the cipher requires greater alignment than kmalloc 1776 * alignment, we don't know the exact position of the 1777 * initialization vector. We must assume worst case. 1778 */ 1779 iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc)); 1780 } 1781 1782 ret = -ENOMEM; 1783 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + 1784 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size); 1785 if (!cc->req_pool) { 1786 ti->error = "Cannot allocate crypt request mempool"; 1787 goto bad; 1788 } 1789 1790 cc->per_bio_data_size = ti->per_io_data_size = 1791 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + 1792 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size, 1793 ARCH_KMALLOC_MINALIGN); 1794 1795 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0); 1796 if (!cc->page_pool) { 1797 ti->error = "Cannot allocate page mempool"; 1798 goto bad; 1799 } 1800 1801 cc->bs = bioset_create(MIN_IOS, 0); 1802 if (!cc->bs) { 1803 ti->error = "Cannot allocate crypt bioset"; 1804 goto bad; 1805 } 1806 1807 mutex_init(&cc->bio_alloc_lock); 1808 1809 ret = -EINVAL; 1810 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) { 1811 ti->error = "Invalid iv_offset sector"; 1812 goto bad; 1813 } 1814 cc->iv_offset = tmpll; 1815 1816 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); 1817 if (ret) { 1818 ti->error = "Device lookup failed"; 1819 goto bad; 1820 } 1821 1822 ret = -EINVAL; 1823 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) { 1824 ti->error = "Invalid device sector"; 1825 goto bad; 1826 } 1827 cc->start = tmpll; 1828 1829 argv += 5; 1830 argc -= 5; 1831 1832 /* Optional parameters */ 1833 if (argc) { 1834 as.argc = argc; 1835 as.argv = argv; 1836 1837 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 1838 if (ret) 1839 goto bad; 1840 1841 ret = -EINVAL; 1842 while (opt_params--) { 1843 opt_string = dm_shift_arg(&as); 1844 if (!opt_string) { 1845 ti->error = "Not enough feature arguments"; 1846 goto bad; 1847 } 1848 1849 if (!strcasecmp(opt_string, "allow_discards")) 1850 ti->num_discard_bios = 1; 1851 1852 else if (!strcasecmp(opt_string, "same_cpu_crypt")) 1853 set_bit(DM_CRYPT_SAME_CPU, &cc->flags); 1854 1855 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) 1856 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 1857 1858 else { 1859 ti->error = "Invalid feature arguments"; 1860 goto bad; 1861 } 1862 } 1863 } 1864 1865 ret = -ENOMEM; 1866 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1); 1867 if (!cc->io_queue) { 1868 ti->error = "Couldn't create kcryptd io queue"; 1869 goto bad; 1870 } 1871 1872 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 1873 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1); 1874 else 1875 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, 1876 num_online_cpus()); 1877 if (!cc->crypt_queue) { 1878 ti->error = "Couldn't create kcryptd queue"; 1879 goto bad; 1880 } 1881 1882 init_waitqueue_head(&cc->write_thread_wait); 1883 cc->write_tree = RB_ROOT; 1884 1885 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write"); 1886 if (IS_ERR(cc->write_thread)) { 1887 ret = PTR_ERR(cc->write_thread); 1888 cc->write_thread = NULL; 1889 ti->error = "Couldn't spawn write thread"; 1890 goto bad; 1891 } 1892 wake_up_process(cc->write_thread); 1893 1894 ti->num_flush_bios = 1; 1895 ti->discard_zeroes_data_unsupported = true; 1896 1897 return 0; 1898 1899 bad: 1900 crypt_dtr(ti); 1901 return ret; 1902 } 1903 1904 static int crypt_map(struct dm_target *ti, struct bio *bio) 1905 { 1906 struct dm_crypt_io *io; 1907 struct crypt_config *cc = ti->private; 1908 1909 /* 1910 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. 1911 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight 1912 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters 1913 */ 1914 if (unlikely(bio->bi_opf & REQ_PREFLUSH || 1915 bio_op(bio) == REQ_OP_DISCARD)) { 1916 bio->bi_bdev = cc->dev->bdev; 1917 if (bio_sectors(bio)) 1918 bio->bi_iter.bi_sector = cc->start + 1919 dm_target_offset(ti, bio->bi_iter.bi_sector); 1920 return DM_MAPIO_REMAPPED; 1921 } 1922 1923 /* 1924 * Check if bio is too large, split as needed. 1925 */ 1926 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) && 1927 bio_data_dir(bio) == WRITE) 1928 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT)); 1929 1930 io = dm_per_bio_data(bio, cc->per_bio_data_size); 1931 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 1932 io->ctx.req = (struct skcipher_request *)(io + 1); 1933 1934 if (bio_data_dir(io->base_bio) == READ) { 1935 if (kcryptd_io_read(io, GFP_NOWAIT)) 1936 kcryptd_queue_read(io); 1937 } else 1938 kcryptd_queue_crypt(io); 1939 1940 return DM_MAPIO_SUBMITTED; 1941 } 1942 1943 static void crypt_status(struct dm_target *ti, status_type_t type, 1944 unsigned status_flags, char *result, unsigned maxlen) 1945 { 1946 struct crypt_config *cc = ti->private; 1947 unsigned i, sz = 0; 1948 int num_feature_args = 0; 1949 1950 switch (type) { 1951 case STATUSTYPE_INFO: 1952 result[0] = '\0'; 1953 break; 1954 1955 case STATUSTYPE_TABLE: 1956 DMEMIT("%s ", cc->cipher_string); 1957 1958 if (cc->key_size > 0) 1959 for (i = 0; i < cc->key_size; i++) 1960 DMEMIT("%02x", cc->key[i]); 1961 else 1962 DMEMIT("-"); 1963 1964 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 1965 cc->dev->name, (unsigned long long)cc->start); 1966 1967 num_feature_args += !!ti->num_discard_bios; 1968 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); 1969 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 1970 if (num_feature_args) { 1971 DMEMIT(" %d", num_feature_args); 1972 if (ti->num_discard_bios) 1973 DMEMIT(" allow_discards"); 1974 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 1975 DMEMIT(" same_cpu_crypt"); 1976 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) 1977 DMEMIT(" submit_from_crypt_cpus"); 1978 } 1979 1980 break; 1981 } 1982 } 1983 1984 static void crypt_postsuspend(struct dm_target *ti) 1985 { 1986 struct crypt_config *cc = ti->private; 1987 1988 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 1989 } 1990 1991 static int crypt_preresume(struct dm_target *ti) 1992 { 1993 struct crypt_config *cc = ti->private; 1994 1995 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 1996 DMERR("aborting resume - crypt key is not set."); 1997 return -EAGAIN; 1998 } 1999 2000 return 0; 2001 } 2002 2003 static void crypt_resume(struct dm_target *ti) 2004 { 2005 struct crypt_config *cc = ti->private; 2006 2007 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 2008 } 2009 2010 /* Message interface 2011 * key set <key> 2012 * key wipe 2013 */ 2014 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv) 2015 { 2016 struct crypt_config *cc = ti->private; 2017 int ret = -EINVAL; 2018 2019 if (argc < 2) 2020 goto error; 2021 2022 if (!strcasecmp(argv[0], "key")) { 2023 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 2024 DMWARN("not suspended during key manipulation."); 2025 return -EINVAL; 2026 } 2027 if (argc == 3 && !strcasecmp(argv[1], "set")) { 2028 ret = crypt_set_key(cc, argv[2]); 2029 if (ret) 2030 return ret; 2031 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 2032 ret = cc->iv_gen_ops->init(cc); 2033 return ret; 2034 } 2035 if (argc == 2 && !strcasecmp(argv[1], "wipe")) { 2036 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 2037 ret = cc->iv_gen_ops->wipe(cc); 2038 if (ret) 2039 return ret; 2040 } 2041 return crypt_wipe_key(cc); 2042 } 2043 } 2044 2045 error: 2046 DMWARN("unrecognised message received."); 2047 return -EINVAL; 2048 } 2049 2050 static int crypt_iterate_devices(struct dm_target *ti, 2051 iterate_devices_callout_fn fn, void *data) 2052 { 2053 struct crypt_config *cc = ti->private; 2054 2055 return fn(ti, cc->dev, cc->start, ti->len, data); 2056 } 2057 2058 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) 2059 { 2060 /* 2061 * Unfortunate constraint that is required to avoid the potential 2062 * for exceeding underlying device's max_segments limits -- due to 2063 * crypt_alloc_buffer() possibly allocating pages for the encryption 2064 * bio that are not as physically contiguous as the original bio. 2065 */ 2066 limits->max_segment_size = PAGE_SIZE; 2067 } 2068 2069 static struct target_type crypt_target = { 2070 .name = "crypt", 2071 .version = {1, 14, 1}, 2072 .module = THIS_MODULE, 2073 .ctr = crypt_ctr, 2074 .dtr = crypt_dtr, 2075 .map = crypt_map, 2076 .status = crypt_status, 2077 .postsuspend = crypt_postsuspend, 2078 .preresume = crypt_preresume, 2079 .resume = crypt_resume, 2080 .message = crypt_message, 2081 .iterate_devices = crypt_iterate_devices, 2082 .io_hints = crypt_io_hints, 2083 }; 2084 2085 static int __init dm_crypt_init(void) 2086 { 2087 int r; 2088 2089 r = dm_register_target(&crypt_target); 2090 if (r < 0) 2091 DMERR("register failed %d", r); 2092 2093 return r; 2094 } 2095 2096 static void __exit dm_crypt_exit(void) 2097 { 2098 dm_unregister_target(&crypt_target); 2099 } 2100 2101 module_init(dm_crypt_init); 2102 module_exit(dm_crypt_exit); 2103 2104 MODULE_AUTHOR("Jana Saout <jana@saout.de>"); 2105 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 2106 MODULE_LICENSE("GPL"); 2107