xref: /openbmc/linux/drivers/md/dm-crypt.c (revision dd3438ab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2003 Jana Saout <jana@saout.de>
4  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7  *
8  * This file is released under the GPL.
9  */
10 
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <asm/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43 
44 #include <linux/device-mapper.h>
45 
46 #include "dm-audit.h"
47 
48 #define DM_MSG_PREFIX "crypt"
49 
50 /*
51  * context holding the current state of a multi-part conversion
52  */
53 struct convert_context {
54 	struct completion restart;
55 	struct bio *bio_in;
56 	struct bio *bio_out;
57 	struct bvec_iter iter_in;
58 	struct bvec_iter iter_out;
59 	u64 cc_sector;
60 	atomic_t cc_pending;
61 	union {
62 		struct skcipher_request *req;
63 		struct aead_request *req_aead;
64 	} r;
65 
66 };
67 
68 /*
69  * per bio private data
70  */
71 struct dm_crypt_io {
72 	struct crypt_config *cc;
73 	struct bio *base_bio;
74 	u8 *integrity_metadata;
75 	bool integrity_metadata_from_pool:1;
76 	bool in_tasklet:1;
77 
78 	struct work_struct work;
79 	struct tasklet_struct tasklet;
80 
81 	struct convert_context ctx;
82 
83 	atomic_t io_pending;
84 	blk_status_t error;
85 	sector_t sector;
86 
87 	struct rb_node rb_node;
88 } CRYPTO_MINALIGN_ATTR;
89 
90 struct dm_crypt_request {
91 	struct convert_context *ctx;
92 	struct scatterlist sg_in[4];
93 	struct scatterlist sg_out[4];
94 	u64 iv_sector;
95 };
96 
97 struct crypt_config;
98 
99 struct crypt_iv_operations {
100 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
101 		   const char *opts);
102 	void (*dtr)(struct crypt_config *cc);
103 	int (*init)(struct crypt_config *cc);
104 	int (*wipe)(struct crypt_config *cc);
105 	int (*generator)(struct crypt_config *cc, u8 *iv,
106 			 struct dm_crypt_request *dmreq);
107 	int (*post)(struct crypt_config *cc, u8 *iv,
108 		    struct dm_crypt_request *dmreq);
109 };
110 
111 struct iv_benbi_private {
112 	int shift;
113 };
114 
115 #define LMK_SEED_SIZE 64 /* hash + 0 */
116 struct iv_lmk_private {
117 	struct crypto_shash *hash_tfm;
118 	u8 *seed;
119 };
120 
121 #define TCW_WHITENING_SIZE 16
122 struct iv_tcw_private {
123 	struct crypto_shash *crc32_tfm;
124 	u8 *iv_seed;
125 	u8 *whitening;
126 };
127 
128 #define ELEPHANT_MAX_KEY_SIZE 32
129 struct iv_elephant_private {
130 	struct crypto_skcipher *tfm;
131 };
132 
133 /*
134  * Crypt: maps a linear range of a block device
135  * and encrypts / decrypts at the same time.
136  */
137 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
138 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
139 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
140 	     DM_CRYPT_WRITE_INLINE };
141 
142 enum cipher_flags {
143 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
144 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
145 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
146 };
147 
148 /*
149  * The fields in here must be read only after initialization.
150  */
151 struct crypt_config {
152 	struct dm_dev *dev;
153 	sector_t start;
154 
155 	struct percpu_counter n_allocated_pages;
156 
157 	struct workqueue_struct *io_queue;
158 	struct workqueue_struct *crypt_queue;
159 
160 	spinlock_t write_thread_lock;
161 	struct task_struct *write_thread;
162 	struct rb_root write_tree;
163 
164 	char *cipher_string;
165 	char *cipher_auth;
166 	char *key_string;
167 
168 	const struct crypt_iv_operations *iv_gen_ops;
169 	union {
170 		struct iv_benbi_private benbi;
171 		struct iv_lmk_private lmk;
172 		struct iv_tcw_private tcw;
173 		struct iv_elephant_private elephant;
174 	} iv_gen_private;
175 	u64 iv_offset;
176 	unsigned int iv_size;
177 	unsigned short sector_size;
178 	unsigned char sector_shift;
179 
180 	union {
181 		struct crypto_skcipher **tfms;
182 		struct crypto_aead **tfms_aead;
183 	} cipher_tfm;
184 	unsigned int tfms_count;
185 	unsigned long cipher_flags;
186 
187 	/*
188 	 * Layout of each crypto request:
189 	 *
190 	 *   struct skcipher_request
191 	 *      context
192 	 *      padding
193 	 *   struct dm_crypt_request
194 	 *      padding
195 	 *   IV
196 	 *
197 	 * The padding is added so that dm_crypt_request and the IV are
198 	 * correctly aligned.
199 	 */
200 	unsigned int dmreq_start;
201 
202 	unsigned int per_bio_data_size;
203 
204 	unsigned long flags;
205 	unsigned int key_size;
206 	unsigned int key_parts;      /* independent parts in key buffer */
207 	unsigned int key_extra_size; /* additional keys length */
208 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
209 
210 	unsigned int integrity_tag_size;
211 	unsigned int integrity_iv_size;
212 	unsigned int on_disk_tag_size;
213 
214 	/*
215 	 * pool for per bio private data, crypto requests,
216 	 * encryption requeusts/buffer pages and integrity tags
217 	 */
218 	unsigned int tag_pool_max_sectors;
219 	mempool_t tag_pool;
220 	mempool_t req_pool;
221 	mempool_t page_pool;
222 
223 	struct bio_set bs;
224 	struct mutex bio_alloc_lock;
225 
226 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
227 	u8 key[];
228 };
229 
230 #define MIN_IOS		64
231 #define MAX_TAG_SIZE	480
232 #define POOL_ENTRY_SIZE	512
233 
234 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
235 static unsigned int dm_crypt_clients_n;
236 static volatile unsigned long dm_crypt_pages_per_client;
237 #define DM_CRYPT_MEMORY_PERCENT			2
238 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
239 
240 static void crypt_endio(struct bio *clone);
241 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
242 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
243 					     struct scatterlist *sg);
244 
245 static bool crypt_integrity_aead(struct crypt_config *cc);
246 
247 /*
248  * Use this to access cipher attributes that are independent of the key.
249  */
250 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
251 {
252 	return cc->cipher_tfm.tfms[0];
253 }
254 
255 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
256 {
257 	return cc->cipher_tfm.tfms_aead[0];
258 }
259 
260 /*
261  * Different IV generation algorithms:
262  *
263  * plain: the initial vector is the 32-bit little-endian version of the sector
264  *        number, padded with zeros if necessary.
265  *
266  * plain64: the initial vector is the 64-bit little-endian version of the sector
267  *        number, padded with zeros if necessary.
268  *
269  * plain64be: the initial vector is the 64-bit big-endian version of the sector
270  *        number, padded with zeros if necessary.
271  *
272  * essiv: "encrypted sector|salt initial vector", the sector number is
273  *        encrypted with the bulk cipher using a salt as key. The salt
274  *        should be derived from the bulk cipher's key via hashing.
275  *
276  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
277  *        (needed for LRW-32-AES and possible other narrow block modes)
278  *
279  * null: the initial vector is always zero.  Provides compatibility with
280  *       obsolete loop_fish2 devices.  Do not use for new devices.
281  *
282  * lmk:  Compatible implementation of the block chaining mode used
283  *       by the Loop-AES block device encryption system
284  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
285  *       It operates on full 512 byte sectors and uses CBC
286  *       with an IV derived from the sector number, the data and
287  *       optionally extra IV seed.
288  *       This means that after decryption the first block
289  *       of sector must be tweaked according to decrypted data.
290  *       Loop-AES can use three encryption schemes:
291  *         version 1: is plain aes-cbc mode
292  *         version 2: uses 64 multikey scheme with lmk IV generator
293  *         version 3: the same as version 2 with additional IV seed
294  *                   (it uses 65 keys, last key is used as IV seed)
295  *
296  * tcw:  Compatible implementation of the block chaining mode used
297  *       by the TrueCrypt device encryption system (prior to version 4.1).
298  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
299  *       It operates on full 512 byte sectors and uses CBC
300  *       with an IV derived from initial key and the sector number.
301  *       In addition, whitening value is applied on every sector, whitening
302  *       is calculated from initial key, sector number and mixed using CRC32.
303  *       Note that this encryption scheme is vulnerable to watermarking attacks
304  *       and should be used for old compatible containers access only.
305  *
306  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
307  *        The IV is encrypted little-endian byte-offset (with the same key
308  *        and cipher as the volume).
309  *
310  * elephant: The extended version of eboiv with additional Elephant diffuser
311  *           used with Bitlocker CBC mode.
312  *           This mode was used in older Windows systems
313  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
314  */
315 
316 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
317 			      struct dm_crypt_request *dmreq)
318 {
319 	memset(iv, 0, cc->iv_size);
320 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
321 
322 	return 0;
323 }
324 
325 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
326 				struct dm_crypt_request *dmreq)
327 {
328 	memset(iv, 0, cc->iv_size);
329 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
330 
331 	return 0;
332 }
333 
334 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
335 				  struct dm_crypt_request *dmreq)
336 {
337 	memset(iv, 0, cc->iv_size);
338 	/* iv_size is at least of size u64; usually it is 16 bytes */
339 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
340 
341 	return 0;
342 }
343 
344 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
345 			      struct dm_crypt_request *dmreq)
346 {
347 	/*
348 	 * ESSIV encryption of the IV is now handled by the crypto API,
349 	 * so just pass the plain sector number here.
350 	 */
351 	memset(iv, 0, cc->iv_size);
352 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
353 
354 	return 0;
355 }
356 
357 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
358 			      const char *opts)
359 {
360 	unsigned int bs;
361 	int log;
362 
363 	if (crypt_integrity_aead(cc))
364 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
365 	else
366 		bs = crypto_skcipher_blocksize(any_tfm(cc));
367 	log = ilog2(bs);
368 
369 	/*
370 	 * We need to calculate how far we must shift the sector count
371 	 * to get the cipher block count, we use this shift in _gen.
372 	 */
373 	if (1 << log != bs) {
374 		ti->error = "cypher blocksize is not a power of 2";
375 		return -EINVAL;
376 	}
377 
378 	if (log > 9) {
379 		ti->error = "cypher blocksize is > 512";
380 		return -EINVAL;
381 	}
382 
383 	cc->iv_gen_private.benbi.shift = 9 - log;
384 
385 	return 0;
386 }
387 
388 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
389 {
390 }
391 
392 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
393 			      struct dm_crypt_request *dmreq)
394 {
395 	__be64 val;
396 
397 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
398 
399 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
400 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
401 
402 	return 0;
403 }
404 
405 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
406 			     struct dm_crypt_request *dmreq)
407 {
408 	memset(iv, 0, cc->iv_size);
409 
410 	return 0;
411 }
412 
413 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
414 {
415 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
416 
417 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
418 		crypto_free_shash(lmk->hash_tfm);
419 	lmk->hash_tfm = NULL;
420 
421 	kfree_sensitive(lmk->seed);
422 	lmk->seed = NULL;
423 }
424 
425 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
426 			    const char *opts)
427 {
428 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
429 
430 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
431 		ti->error = "Unsupported sector size for LMK";
432 		return -EINVAL;
433 	}
434 
435 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
436 					   CRYPTO_ALG_ALLOCATES_MEMORY);
437 	if (IS_ERR(lmk->hash_tfm)) {
438 		ti->error = "Error initializing LMK hash";
439 		return PTR_ERR(lmk->hash_tfm);
440 	}
441 
442 	/* No seed in LMK version 2 */
443 	if (cc->key_parts == cc->tfms_count) {
444 		lmk->seed = NULL;
445 		return 0;
446 	}
447 
448 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
449 	if (!lmk->seed) {
450 		crypt_iv_lmk_dtr(cc);
451 		ti->error = "Error kmallocing seed storage in LMK";
452 		return -ENOMEM;
453 	}
454 
455 	return 0;
456 }
457 
458 static int crypt_iv_lmk_init(struct crypt_config *cc)
459 {
460 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
461 	int subkey_size = cc->key_size / cc->key_parts;
462 
463 	/* LMK seed is on the position of LMK_KEYS + 1 key */
464 	if (lmk->seed)
465 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
466 		       crypto_shash_digestsize(lmk->hash_tfm));
467 
468 	return 0;
469 }
470 
471 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
472 {
473 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
474 
475 	if (lmk->seed)
476 		memset(lmk->seed, 0, LMK_SEED_SIZE);
477 
478 	return 0;
479 }
480 
481 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
482 			    struct dm_crypt_request *dmreq,
483 			    u8 *data)
484 {
485 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
486 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
487 	struct md5_state md5state;
488 	__le32 buf[4];
489 	int i, r;
490 
491 	desc->tfm = lmk->hash_tfm;
492 
493 	r = crypto_shash_init(desc);
494 	if (r)
495 		return r;
496 
497 	if (lmk->seed) {
498 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
499 		if (r)
500 			return r;
501 	}
502 
503 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
504 	r = crypto_shash_update(desc, data + 16, 16 * 31);
505 	if (r)
506 		return r;
507 
508 	/* Sector is cropped to 56 bits here */
509 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
510 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
511 	buf[2] = cpu_to_le32(4024);
512 	buf[3] = 0;
513 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
514 	if (r)
515 		return r;
516 
517 	/* No MD5 padding here */
518 	r = crypto_shash_export(desc, &md5state);
519 	if (r)
520 		return r;
521 
522 	for (i = 0; i < MD5_HASH_WORDS; i++)
523 		__cpu_to_le32s(&md5state.hash[i]);
524 	memcpy(iv, &md5state.hash, cc->iv_size);
525 
526 	return 0;
527 }
528 
529 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
530 			    struct dm_crypt_request *dmreq)
531 {
532 	struct scatterlist *sg;
533 	u8 *src;
534 	int r = 0;
535 
536 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
537 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
538 		src = kmap_local_page(sg_page(sg));
539 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
540 		kunmap_local(src);
541 	} else
542 		memset(iv, 0, cc->iv_size);
543 
544 	return r;
545 }
546 
547 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
548 			     struct dm_crypt_request *dmreq)
549 {
550 	struct scatterlist *sg;
551 	u8 *dst;
552 	int r;
553 
554 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
555 		return 0;
556 
557 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
558 	dst = kmap_local_page(sg_page(sg));
559 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
560 
561 	/* Tweak the first block of plaintext sector */
562 	if (!r)
563 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
564 
565 	kunmap_local(dst);
566 	return r;
567 }
568 
569 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
570 {
571 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
572 
573 	kfree_sensitive(tcw->iv_seed);
574 	tcw->iv_seed = NULL;
575 	kfree_sensitive(tcw->whitening);
576 	tcw->whitening = NULL;
577 
578 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
579 		crypto_free_shash(tcw->crc32_tfm);
580 	tcw->crc32_tfm = NULL;
581 }
582 
583 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
584 			    const char *opts)
585 {
586 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
587 
588 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
589 		ti->error = "Unsupported sector size for TCW";
590 		return -EINVAL;
591 	}
592 
593 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
594 		ti->error = "Wrong key size for TCW";
595 		return -EINVAL;
596 	}
597 
598 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
599 					    CRYPTO_ALG_ALLOCATES_MEMORY);
600 	if (IS_ERR(tcw->crc32_tfm)) {
601 		ti->error = "Error initializing CRC32 in TCW";
602 		return PTR_ERR(tcw->crc32_tfm);
603 	}
604 
605 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
606 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
607 	if (!tcw->iv_seed || !tcw->whitening) {
608 		crypt_iv_tcw_dtr(cc);
609 		ti->error = "Error allocating seed storage in TCW";
610 		return -ENOMEM;
611 	}
612 
613 	return 0;
614 }
615 
616 static int crypt_iv_tcw_init(struct crypt_config *cc)
617 {
618 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
619 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
620 
621 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
622 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
623 	       TCW_WHITENING_SIZE);
624 
625 	return 0;
626 }
627 
628 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
629 {
630 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
631 
632 	memset(tcw->iv_seed, 0, cc->iv_size);
633 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
634 
635 	return 0;
636 }
637 
638 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
639 				  struct dm_crypt_request *dmreq,
640 				  u8 *data)
641 {
642 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
643 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
644 	u8 buf[TCW_WHITENING_SIZE];
645 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
646 	int i, r;
647 
648 	/* xor whitening with sector number */
649 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
650 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
651 
652 	/* calculate crc32 for every 32bit part and xor it */
653 	desc->tfm = tcw->crc32_tfm;
654 	for (i = 0; i < 4; i++) {
655 		r = crypto_shash_init(desc);
656 		if (r)
657 			goto out;
658 		r = crypto_shash_update(desc, &buf[i * 4], 4);
659 		if (r)
660 			goto out;
661 		r = crypto_shash_final(desc, &buf[i * 4]);
662 		if (r)
663 			goto out;
664 	}
665 	crypto_xor(&buf[0], &buf[12], 4);
666 	crypto_xor(&buf[4], &buf[8], 4);
667 
668 	/* apply whitening (8 bytes) to whole sector */
669 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
670 		crypto_xor(data + i * 8, buf, 8);
671 out:
672 	memzero_explicit(buf, sizeof(buf));
673 	return r;
674 }
675 
676 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
677 			    struct dm_crypt_request *dmreq)
678 {
679 	struct scatterlist *sg;
680 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
681 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
682 	u8 *src;
683 	int r = 0;
684 
685 	/* Remove whitening from ciphertext */
686 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
687 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
688 		src = kmap_local_page(sg_page(sg));
689 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
690 		kunmap_local(src);
691 	}
692 
693 	/* Calculate IV */
694 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
695 	if (cc->iv_size > 8)
696 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
697 			       cc->iv_size - 8);
698 
699 	return r;
700 }
701 
702 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
703 			     struct dm_crypt_request *dmreq)
704 {
705 	struct scatterlist *sg;
706 	u8 *dst;
707 	int r;
708 
709 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
710 		return 0;
711 
712 	/* Apply whitening on ciphertext */
713 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
714 	dst = kmap_local_page(sg_page(sg));
715 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
716 	kunmap_local(dst);
717 
718 	return r;
719 }
720 
721 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
722 				struct dm_crypt_request *dmreq)
723 {
724 	/* Used only for writes, there must be an additional space to store IV */
725 	get_random_bytes(iv, cc->iv_size);
726 	return 0;
727 }
728 
729 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
730 			    const char *opts)
731 {
732 	if (crypt_integrity_aead(cc)) {
733 		ti->error = "AEAD transforms not supported for EBOIV";
734 		return -EINVAL;
735 	}
736 
737 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
738 		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
739 		return -EINVAL;
740 	}
741 
742 	return 0;
743 }
744 
745 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
746 			    struct dm_crypt_request *dmreq)
747 {
748 	struct crypto_skcipher *tfm = any_tfm(cc);
749 	struct skcipher_request *req;
750 	struct scatterlist src, dst;
751 	DECLARE_CRYPTO_WAIT(wait);
752 	unsigned int reqsize;
753 	int err;
754 	u8 *buf;
755 
756 	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
757 	reqsize = ALIGN(reqsize, __alignof__(__le64));
758 
759 	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
760 	if (!req)
761 		return -ENOMEM;
762 
763 	skcipher_request_set_tfm(req, tfm);
764 
765 	buf = (u8 *)req + reqsize;
766 	memset(buf, 0, cc->iv_size);
767 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
768 
769 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
770 	sg_init_one(&dst, iv, cc->iv_size);
771 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
772 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
773 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
774 	kfree_sensitive(req);
775 
776 	return err;
777 }
778 
779 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
780 {
781 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
782 
783 	crypto_free_skcipher(elephant->tfm);
784 	elephant->tfm = NULL;
785 }
786 
787 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
788 			    const char *opts)
789 {
790 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
791 	int r;
792 
793 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
794 					      CRYPTO_ALG_ALLOCATES_MEMORY);
795 	if (IS_ERR(elephant->tfm)) {
796 		r = PTR_ERR(elephant->tfm);
797 		elephant->tfm = NULL;
798 		return r;
799 	}
800 
801 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
802 	if (r)
803 		crypt_iv_elephant_dtr(cc);
804 	return r;
805 }
806 
807 static void diffuser_disk_to_cpu(u32 *d, size_t n)
808 {
809 #ifndef __LITTLE_ENDIAN
810 	int i;
811 
812 	for (i = 0; i < n; i++)
813 		d[i] = le32_to_cpu((__le32)d[i]);
814 #endif
815 }
816 
817 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
818 {
819 #ifndef __LITTLE_ENDIAN
820 	int i;
821 
822 	for (i = 0; i < n; i++)
823 		d[i] = cpu_to_le32((u32)d[i]);
824 #endif
825 }
826 
827 static void diffuser_a_decrypt(u32 *d, size_t n)
828 {
829 	int i, i1, i2, i3;
830 
831 	for (i = 0; i < 5; i++) {
832 		i1 = 0;
833 		i2 = n - 2;
834 		i3 = n - 5;
835 
836 		while (i1 < (n - 1)) {
837 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
838 			i1++; i2++; i3++;
839 
840 			if (i3 >= n)
841 				i3 -= n;
842 
843 			d[i1] += d[i2] ^ d[i3];
844 			i1++; i2++; i3++;
845 
846 			if (i2 >= n)
847 				i2 -= n;
848 
849 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
850 			i1++; i2++; i3++;
851 
852 			d[i1] += d[i2] ^ d[i3];
853 			i1++; i2++; i3++;
854 		}
855 	}
856 }
857 
858 static void diffuser_a_encrypt(u32 *d, size_t n)
859 {
860 	int i, i1, i2, i3;
861 
862 	for (i = 0; i < 5; i++) {
863 		i1 = n - 1;
864 		i2 = n - 2 - 1;
865 		i3 = n - 5 - 1;
866 
867 		while (i1 > 0) {
868 			d[i1] -= d[i2] ^ d[i3];
869 			i1--; i2--; i3--;
870 
871 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
872 			i1--; i2--; i3--;
873 
874 			if (i2 < 0)
875 				i2 += n;
876 
877 			d[i1] -= d[i2] ^ d[i3];
878 			i1--; i2--; i3--;
879 
880 			if (i3 < 0)
881 				i3 += n;
882 
883 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
884 			i1--; i2--; i3--;
885 		}
886 	}
887 }
888 
889 static void diffuser_b_decrypt(u32 *d, size_t n)
890 {
891 	int i, i1, i2, i3;
892 
893 	for (i = 0; i < 3; i++) {
894 		i1 = 0;
895 		i2 = 2;
896 		i3 = 5;
897 
898 		while (i1 < (n - 1)) {
899 			d[i1] += d[i2] ^ d[i3];
900 			i1++; i2++; i3++;
901 
902 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
903 			i1++; i2++; i3++;
904 
905 			if (i2 >= n)
906 				i2 -= n;
907 
908 			d[i1] += d[i2] ^ d[i3];
909 			i1++; i2++; i3++;
910 
911 			if (i3 >= n)
912 				i3 -= n;
913 
914 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
915 			i1++; i2++; i3++;
916 		}
917 	}
918 }
919 
920 static void diffuser_b_encrypt(u32 *d, size_t n)
921 {
922 	int i, i1, i2, i3;
923 
924 	for (i = 0; i < 3; i++) {
925 		i1 = n - 1;
926 		i2 = 2 - 1;
927 		i3 = 5 - 1;
928 
929 		while (i1 > 0) {
930 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
931 			i1--; i2--; i3--;
932 
933 			if (i3 < 0)
934 				i3 += n;
935 
936 			d[i1] -= d[i2] ^ d[i3];
937 			i1--; i2--; i3--;
938 
939 			if (i2 < 0)
940 				i2 += n;
941 
942 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
943 			i1--; i2--; i3--;
944 
945 			d[i1] -= d[i2] ^ d[i3];
946 			i1--; i2--; i3--;
947 		}
948 	}
949 }
950 
951 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
952 {
953 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
954 	u8 *es, *ks, *data, *data2, *data_offset;
955 	struct skcipher_request *req;
956 	struct scatterlist *sg, *sg2, src, dst;
957 	DECLARE_CRYPTO_WAIT(wait);
958 	int i, r;
959 
960 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
961 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
962 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
963 
964 	if (!req || !es || !ks) {
965 		r = -ENOMEM;
966 		goto out;
967 	}
968 
969 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
970 
971 	/* E(Ks, e(s)) */
972 	sg_init_one(&src, es, 16);
973 	sg_init_one(&dst, ks, 16);
974 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
975 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
976 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
977 	if (r)
978 		goto out;
979 
980 	/* E(Ks, e'(s)) */
981 	es[15] = 0x80;
982 	sg_init_one(&dst, &ks[16], 16);
983 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
984 	if (r)
985 		goto out;
986 
987 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
988 	data = kmap_local_page(sg_page(sg));
989 	data_offset = data + sg->offset;
990 
991 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
992 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
993 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
994 		data2 = kmap_local_page(sg_page(sg2));
995 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
996 		kunmap_local(data2);
997 	}
998 
999 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
1000 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1001 		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1002 		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1003 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1004 	}
1005 
1006 	for (i = 0; i < (cc->sector_size / 32); i++)
1007 		crypto_xor(data_offset + i * 32, ks, 32);
1008 
1009 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1010 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1011 		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1012 		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1013 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1014 	}
1015 
1016 	kunmap_local(data);
1017 out:
1018 	kfree_sensitive(ks);
1019 	kfree_sensitive(es);
1020 	skcipher_request_free(req);
1021 	return r;
1022 }
1023 
1024 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1025 			    struct dm_crypt_request *dmreq)
1026 {
1027 	int r;
1028 
1029 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1030 		r = crypt_iv_elephant(cc, dmreq);
1031 		if (r)
1032 			return r;
1033 	}
1034 
1035 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1036 }
1037 
1038 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1039 				  struct dm_crypt_request *dmreq)
1040 {
1041 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1042 		return crypt_iv_elephant(cc, dmreq);
1043 
1044 	return 0;
1045 }
1046 
1047 static int crypt_iv_elephant_init(struct crypt_config *cc)
1048 {
1049 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1050 	int key_offset = cc->key_size - cc->key_extra_size;
1051 
1052 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1053 }
1054 
1055 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1056 {
1057 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1058 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1059 
1060 	memset(key, 0, cc->key_extra_size);
1061 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1062 }
1063 
1064 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1065 	.generator = crypt_iv_plain_gen
1066 };
1067 
1068 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1069 	.generator = crypt_iv_plain64_gen
1070 };
1071 
1072 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1073 	.generator = crypt_iv_plain64be_gen
1074 };
1075 
1076 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1077 	.generator = crypt_iv_essiv_gen
1078 };
1079 
1080 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1081 	.ctr	   = crypt_iv_benbi_ctr,
1082 	.dtr	   = crypt_iv_benbi_dtr,
1083 	.generator = crypt_iv_benbi_gen
1084 };
1085 
1086 static const struct crypt_iv_operations crypt_iv_null_ops = {
1087 	.generator = crypt_iv_null_gen
1088 };
1089 
1090 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1091 	.ctr	   = crypt_iv_lmk_ctr,
1092 	.dtr	   = crypt_iv_lmk_dtr,
1093 	.init	   = crypt_iv_lmk_init,
1094 	.wipe	   = crypt_iv_lmk_wipe,
1095 	.generator = crypt_iv_lmk_gen,
1096 	.post	   = crypt_iv_lmk_post
1097 };
1098 
1099 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1100 	.ctr	   = crypt_iv_tcw_ctr,
1101 	.dtr	   = crypt_iv_tcw_dtr,
1102 	.init	   = crypt_iv_tcw_init,
1103 	.wipe	   = crypt_iv_tcw_wipe,
1104 	.generator = crypt_iv_tcw_gen,
1105 	.post	   = crypt_iv_tcw_post
1106 };
1107 
1108 static const struct crypt_iv_operations crypt_iv_random_ops = {
1109 	.generator = crypt_iv_random_gen
1110 };
1111 
1112 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1113 	.ctr	   = crypt_iv_eboiv_ctr,
1114 	.generator = crypt_iv_eboiv_gen
1115 };
1116 
1117 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1118 	.ctr	   = crypt_iv_elephant_ctr,
1119 	.dtr	   = crypt_iv_elephant_dtr,
1120 	.init	   = crypt_iv_elephant_init,
1121 	.wipe	   = crypt_iv_elephant_wipe,
1122 	.generator = crypt_iv_elephant_gen,
1123 	.post	   = crypt_iv_elephant_post
1124 };
1125 
1126 /*
1127  * Integrity extensions
1128  */
1129 static bool crypt_integrity_aead(struct crypt_config *cc)
1130 {
1131 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1132 }
1133 
1134 static bool crypt_integrity_hmac(struct crypt_config *cc)
1135 {
1136 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1137 }
1138 
1139 /* Get sg containing data */
1140 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1141 					     struct scatterlist *sg)
1142 {
1143 	if (unlikely(crypt_integrity_aead(cc)))
1144 		return &sg[2];
1145 
1146 	return sg;
1147 }
1148 
1149 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1150 {
1151 	struct bio_integrity_payload *bip;
1152 	unsigned int tag_len;
1153 	int ret;
1154 
1155 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1156 		return 0;
1157 
1158 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1159 	if (IS_ERR(bip))
1160 		return PTR_ERR(bip);
1161 
1162 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1163 
1164 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1165 
1166 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1167 				     tag_len, offset_in_page(io->integrity_metadata));
1168 	if (unlikely(ret != tag_len))
1169 		return -ENOMEM;
1170 
1171 	return 0;
1172 }
1173 
1174 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1175 {
1176 #ifdef CONFIG_BLK_DEV_INTEGRITY
1177 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1178 	struct mapped_device *md = dm_table_get_md(ti->table);
1179 
1180 	/* From now we require underlying device with our integrity profile */
1181 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1182 		ti->error = "Integrity profile not supported.";
1183 		return -EINVAL;
1184 	}
1185 
1186 	if (bi->tag_size != cc->on_disk_tag_size ||
1187 	    bi->tuple_size != cc->on_disk_tag_size) {
1188 		ti->error = "Integrity profile tag size mismatch.";
1189 		return -EINVAL;
1190 	}
1191 	if (1 << bi->interval_exp != cc->sector_size) {
1192 		ti->error = "Integrity profile sector size mismatch.";
1193 		return -EINVAL;
1194 	}
1195 
1196 	if (crypt_integrity_aead(cc)) {
1197 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1198 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1199 		       cc->integrity_tag_size, cc->integrity_iv_size);
1200 
1201 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1202 			ti->error = "Integrity AEAD auth tag size is not supported.";
1203 			return -EINVAL;
1204 		}
1205 	} else if (cc->integrity_iv_size)
1206 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1207 		       cc->integrity_iv_size);
1208 
1209 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1210 		ti->error = "Not enough space for integrity tag in the profile.";
1211 		return -EINVAL;
1212 	}
1213 
1214 	return 0;
1215 #else
1216 	ti->error = "Integrity profile not supported.";
1217 	return -EINVAL;
1218 #endif
1219 }
1220 
1221 static void crypt_convert_init(struct crypt_config *cc,
1222 			       struct convert_context *ctx,
1223 			       struct bio *bio_out, struct bio *bio_in,
1224 			       sector_t sector)
1225 {
1226 	ctx->bio_in = bio_in;
1227 	ctx->bio_out = bio_out;
1228 	if (bio_in)
1229 		ctx->iter_in = bio_in->bi_iter;
1230 	if (bio_out)
1231 		ctx->iter_out = bio_out->bi_iter;
1232 	ctx->cc_sector = sector + cc->iv_offset;
1233 	init_completion(&ctx->restart);
1234 }
1235 
1236 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1237 					     void *req)
1238 {
1239 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1240 }
1241 
1242 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1243 {
1244 	return (void *)((char *)dmreq - cc->dmreq_start);
1245 }
1246 
1247 static u8 *iv_of_dmreq(struct crypt_config *cc,
1248 		       struct dm_crypt_request *dmreq)
1249 {
1250 	if (crypt_integrity_aead(cc))
1251 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1252 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1253 	else
1254 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1255 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1256 }
1257 
1258 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1259 		       struct dm_crypt_request *dmreq)
1260 {
1261 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1262 }
1263 
1264 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1265 		       struct dm_crypt_request *dmreq)
1266 {
1267 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1268 
1269 	return (__le64 *) ptr;
1270 }
1271 
1272 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1273 		       struct dm_crypt_request *dmreq)
1274 {
1275 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1276 		  cc->iv_size + sizeof(uint64_t);
1277 
1278 	return (unsigned int *)ptr;
1279 }
1280 
1281 static void *tag_from_dmreq(struct crypt_config *cc,
1282 				struct dm_crypt_request *dmreq)
1283 {
1284 	struct convert_context *ctx = dmreq->ctx;
1285 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1286 
1287 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1288 		cc->on_disk_tag_size];
1289 }
1290 
1291 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1292 			       struct dm_crypt_request *dmreq)
1293 {
1294 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1295 }
1296 
1297 static int crypt_convert_block_aead(struct crypt_config *cc,
1298 				     struct convert_context *ctx,
1299 				     struct aead_request *req,
1300 				     unsigned int tag_offset)
1301 {
1302 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1303 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1304 	struct dm_crypt_request *dmreq;
1305 	u8 *iv, *org_iv, *tag_iv, *tag;
1306 	__le64 *sector;
1307 	int r = 0;
1308 
1309 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1310 
1311 	/* Reject unexpected unaligned bio. */
1312 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1313 		return -EIO;
1314 
1315 	dmreq = dmreq_of_req(cc, req);
1316 	dmreq->iv_sector = ctx->cc_sector;
1317 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1318 		dmreq->iv_sector >>= cc->sector_shift;
1319 	dmreq->ctx = ctx;
1320 
1321 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1322 
1323 	sector = org_sector_of_dmreq(cc, dmreq);
1324 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1325 
1326 	iv = iv_of_dmreq(cc, dmreq);
1327 	org_iv = org_iv_of_dmreq(cc, dmreq);
1328 	tag = tag_from_dmreq(cc, dmreq);
1329 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1330 
1331 	/* AEAD request:
1332 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1333 	 *  | (authenticated) | (auth+encryption) |              |
1334 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1335 	 */
1336 	sg_init_table(dmreq->sg_in, 4);
1337 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1338 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1339 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1340 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1341 
1342 	sg_init_table(dmreq->sg_out, 4);
1343 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1344 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1345 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1346 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1347 
1348 	if (cc->iv_gen_ops) {
1349 		/* For READs use IV stored in integrity metadata */
1350 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1351 			memcpy(org_iv, tag_iv, cc->iv_size);
1352 		} else {
1353 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1354 			if (r < 0)
1355 				return r;
1356 			/* Store generated IV in integrity metadata */
1357 			if (cc->integrity_iv_size)
1358 				memcpy(tag_iv, org_iv, cc->iv_size);
1359 		}
1360 		/* Working copy of IV, to be modified in crypto API */
1361 		memcpy(iv, org_iv, cc->iv_size);
1362 	}
1363 
1364 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1365 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1366 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1367 				       cc->sector_size, iv);
1368 		r = crypto_aead_encrypt(req);
1369 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1370 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1371 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1372 	} else {
1373 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1374 				       cc->sector_size + cc->integrity_tag_size, iv);
1375 		r = crypto_aead_decrypt(req);
1376 	}
1377 
1378 	if (r == -EBADMSG) {
1379 		sector_t s = le64_to_cpu(*sector);
1380 
1381 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1382 			    ctx->bio_in->bi_bdev, s);
1383 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1384 				 ctx->bio_in, s, 0);
1385 	}
1386 
1387 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1388 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1389 
1390 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1391 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1392 
1393 	return r;
1394 }
1395 
1396 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1397 					struct convert_context *ctx,
1398 					struct skcipher_request *req,
1399 					unsigned int tag_offset)
1400 {
1401 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1402 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1403 	struct scatterlist *sg_in, *sg_out;
1404 	struct dm_crypt_request *dmreq;
1405 	u8 *iv, *org_iv, *tag_iv;
1406 	__le64 *sector;
1407 	int r = 0;
1408 
1409 	/* Reject unexpected unaligned bio. */
1410 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1411 		return -EIO;
1412 
1413 	dmreq = dmreq_of_req(cc, req);
1414 	dmreq->iv_sector = ctx->cc_sector;
1415 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1416 		dmreq->iv_sector >>= cc->sector_shift;
1417 	dmreq->ctx = ctx;
1418 
1419 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1420 
1421 	iv = iv_of_dmreq(cc, dmreq);
1422 	org_iv = org_iv_of_dmreq(cc, dmreq);
1423 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1424 
1425 	sector = org_sector_of_dmreq(cc, dmreq);
1426 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1427 
1428 	/* For skcipher we use only the first sg item */
1429 	sg_in  = &dmreq->sg_in[0];
1430 	sg_out = &dmreq->sg_out[0];
1431 
1432 	sg_init_table(sg_in, 1);
1433 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1434 
1435 	sg_init_table(sg_out, 1);
1436 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1437 
1438 	if (cc->iv_gen_ops) {
1439 		/* For READs use IV stored in integrity metadata */
1440 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1441 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1442 		} else {
1443 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1444 			if (r < 0)
1445 				return r;
1446 			/* Data can be already preprocessed in generator */
1447 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1448 				sg_in = sg_out;
1449 			/* Store generated IV in integrity metadata */
1450 			if (cc->integrity_iv_size)
1451 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1452 		}
1453 		/* Working copy of IV, to be modified in crypto API */
1454 		memcpy(iv, org_iv, cc->iv_size);
1455 	}
1456 
1457 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1458 
1459 	if (bio_data_dir(ctx->bio_in) == WRITE)
1460 		r = crypto_skcipher_encrypt(req);
1461 	else
1462 		r = crypto_skcipher_decrypt(req);
1463 
1464 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1465 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1466 
1467 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1468 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1469 
1470 	return r;
1471 }
1472 
1473 static void kcryptd_async_done(void *async_req, int error);
1474 
1475 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1476 				     struct convert_context *ctx)
1477 {
1478 	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1479 
1480 	if (!ctx->r.req) {
1481 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1482 		if (!ctx->r.req)
1483 			return -ENOMEM;
1484 	}
1485 
1486 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1487 
1488 	/*
1489 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1490 	 * requests if driver request queue is full.
1491 	 */
1492 	skcipher_request_set_callback(ctx->r.req,
1493 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1494 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1495 
1496 	return 0;
1497 }
1498 
1499 static int crypt_alloc_req_aead(struct crypt_config *cc,
1500 				 struct convert_context *ctx)
1501 {
1502 	if (!ctx->r.req_aead) {
1503 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1504 		if (!ctx->r.req_aead)
1505 			return -ENOMEM;
1506 	}
1507 
1508 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1509 
1510 	/*
1511 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1512 	 * requests if driver request queue is full.
1513 	 */
1514 	aead_request_set_callback(ctx->r.req_aead,
1515 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1516 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1517 
1518 	return 0;
1519 }
1520 
1521 static int crypt_alloc_req(struct crypt_config *cc,
1522 			    struct convert_context *ctx)
1523 {
1524 	if (crypt_integrity_aead(cc))
1525 		return crypt_alloc_req_aead(cc, ctx);
1526 	else
1527 		return crypt_alloc_req_skcipher(cc, ctx);
1528 }
1529 
1530 static void crypt_free_req_skcipher(struct crypt_config *cc,
1531 				    struct skcipher_request *req, struct bio *base_bio)
1532 {
1533 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1534 
1535 	if ((struct skcipher_request *)(io + 1) != req)
1536 		mempool_free(req, &cc->req_pool);
1537 }
1538 
1539 static void crypt_free_req_aead(struct crypt_config *cc,
1540 				struct aead_request *req, struct bio *base_bio)
1541 {
1542 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1543 
1544 	if ((struct aead_request *)(io + 1) != req)
1545 		mempool_free(req, &cc->req_pool);
1546 }
1547 
1548 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1549 {
1550 	if (crypt_integrity_aead(cc))
1551 		crypt_free_req_aead(cc, req, base_bio);
1552 	else
1553 		crypt_free_req_skcipher(cc, req, base_bio);
1554 }
1555 
1556 /*
1557  * Encrypt / decrypt data from one bio to another one (can be the same one)
1558  */
1559 static blk_status_t crypt_convert(struct crypt_config *cc,
1560 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1561 {
1562 	unsigned int tag_offset = 0;
1563 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1564 	int r;
1565 
1566 	/*
1567 	 * if reset_pending is set we are dealing with the bio for the first time,
1568 	 * else we're continuing to work on the previous bio, so don't mess with
1569 	 * the cc_pending counter
1570 	 */
1571 	if (reset_pending)
1572 		atomic_set(&ctx->cc_pending, 1);
1573 
1574 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1575 
1576 		r = crypt_alloc_req(cc, ctx);
1577 		if (r) {
1578 			complete(&ctx->restart);
1579 			return BLK_STS_DEV_RESOURCE;
1580 		}
1581 
1582 		atomic_inc(&ctx->cc_pending);
1583 
1584 		if (crypt_integrity_aead(cc))
1585 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1586 		else
1587 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1588 
1589 		switch (r) {
1590 		/*
1591 		 * The request was queued by a crypto driver
1592 		 * but the driver request queue is full, let's wait.
1593 		 */
1594 		case -EBUSY:
1595 			if (in_interrupt()) {
1596 				if (try_wait_for_completion(&ctx->restart)) {
1597 					/*
1598 					 * we don't have to block to wait for completion,
1599 					 * so proceed
1600 					 */
1601 				} else {
1602 					/*
1603 					 * we can't wait for completion without blocking
1604 					 * exit and continue processing in a workqueue
1605 					 */
1606 					ctx->r.req = NULL;
1607 					ctx->cc_sector += sector_step;
1608 					tag_offset++;
1609 					return BLK_STS_DEV_RESOURCE;
1610 				}
1611 			} else {
1612 				wait_for_completion(&ctx->restart);
1613 			}
1614 			reinit_completion(&ctx->restart);
1615 			fallthrough;
1616 		/*
1617 		 * The request is queued and processed asynchronously,
1618 		 * completion function kcryptd_async_done() will be called.
1619 		 */
1620 		case -EINPROGRESS:
1621 			ctx->r.req = NULL;
1622 			ctx->cc_sector += sector_step;
1623 			tag_offset++;
1624 			continue;
1625 		/*
1626 		 * The request was already processed (synchronously).
1627 		 */
1628 		case 0:
1629 			atomic_dec(&ctx->cc_pending);
1630 			ctx->cc_sector += sector_step;
1631 			tag_offset++;
1632 			if (!atomic)
1633 				cond_resched();
1634 			continue;
1635 		/*
1636 		 * There was a data integrity error.
1637 		 */
1638 		case -EBADMSG:
1639 			atomic_dec(&ctx->cc_pending);
1640 			return BLK_STS_PROTECTION;
1641 		/*
1642 		 * There was an error while processing the request.
1643 		 */
1644 		default:
1645 			atomic_dec(&ctx->cc_pending);
1646 			return BLK_STS_IOERR;
1647 		}
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1654 
1655 /*
1656  * Generate a new unfragmented bio with the given size
1657  * This should never violate the device limitations (but only because
1658  * max_segment_size is being constrained to PAGE_SIZE).
1659  *
1660  * This function may be called concurrently. If we allocate from the mempool
1661  * concurrently, there is a possibility of deadlock. For example, if we have
1662  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1663  * the mempool concurrently, it may deadlock in a situation where both processes
1664  * have allocated 128 pages and the mempool is exhausted.
1665  *
1666  * In order to avoid this scenario we allocate the pages under a mutex.
1667  *
1668  * In order to not degrade performance with excessive locking, we try
1669  * non-blocking allocations without a mutex first but on failure we fallback
1670  * to blocking allocations with a mutex.
1671  *
1672  * In order to reduce allocation overhead, we try to allocate compound pages in
1673  * the first pass. If they are not available, we fall back to the mempool.
1674  */
1675 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1676 {
1677 	struct crypt_config *cc = io->cc;
1678 	struct bio *clone;
1679 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1680 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1681 	unsigned int remaining_size;
1682 	unsigned int order = MAX_ORDER - 1;
1683 
1684 retry:
1685 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1686 		mutex_lock(&cc->bio_alloc_lock);
1687 
1688 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1689 				 GFP_NOIO, &cc->bs);
1690 	clone->bi_private = io;
1691 	clone->bi_end_io = crypt_endio;
1692 
1693 	remaining_size = size;
1694 
1695 	while (remaining_size) {
1696 		struct page *pages;
1697 		unsigned size_to_add;
1698 		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1699 		order = min(order, remaining_order);
1700 
1701 		while (order > 0) {
1702 			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1703 					(1 << order) > dm_crypt_pages_per_client))
1704 				goto decrease_order;
1705 			pages = alloc_pages(gfp_mask
1706 				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1707 				order);
1708 			if (likely(pages != NULL)) {
1709 				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1710 				goto have_pages;
1711 			}
1712 decrease_order:
1713 			order--;
1714 		}
1715 
1716 		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1717 		if (!pages) {
1718 			crypt_free_buffer_pages(cc, clone);
1719 			bio_put(clone);
1720 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1721 			order = 0;
1722 			goto retry;
1723 		}
1724 
1725 have_pages:
1726 		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1727 		__bio_add_page(clone, pages, size_to_add, 0);
1728 		remaining_size -= size_to_add;
1729 	}
1730 
1731 	/* Allocate space for integrity tags */
1732 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1733 		crypt_free_buffer_pages(cc, clone);
1734 		bio_put(clone);
1735 		clone = NULL;
1736 	}
1737 
1738 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1739 		mutex_unlock(&cc->bio_alloc_lock);
1740 
1741 	return clone;
1742 }
1743 
1744 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1745 {
1746 	struct folio_iter fi;
1747 
1748 	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1749 		bio_for_each_folio_all(fi, clone) {
1750 			if (folio_test_large(fi.folio)) {
1751 				percpu_counter_sub(&cc->n_allocated_pages,
1752 						1 << folio_order(fi.folio));
1753 				folio_put(fi.folio);
1754 			} else {
1755 				mempool_free(&fi.folio->page, &cc->page_pool);
1756 			}
1757 		}
1758 	}
1759 }
1760 
1761 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1762 			  struct bio *bio, sector_t sector)
1763 {
1764 	io->cc = cc;
1765 	io->base_bio = bio;
1766 	io->sector = sector;
1767 	io->error = 0;
1768 	io->ctx.r.req = NULL;
1769 	io->integrity_metadata = NULL;
1770 	io->integrity_metadata_from_pool = false;
1771 	io->in_tasklet = false;
1772 	atomic_set(&io->io_pending, 0);
1773 }
1774 
1775 static void crypt_inc_pending(struct dm_crypt_io *io)
1776 {
1777 	atomic_inc(&io->io_pending);
1778 }
1779 
1780 static void kcryptd_io_bio_endio(struct work_struct *work)
1781 {
1782 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1783 
1784 	bio_endio(io->base_bio);
1785 }
1786 
1787 /*
1788  * One of the bios was finished. Check for completion of
1789  * the whole request and correctly clean up the buffer.
1790  */
1791 static void crypt_dec_pending(struct dm_crypt_io *io)
1792 {
1793 	struct crypt_config *cc = io->cc;
1794 	struct bio *base_bio = io->base_bio;
1795 	blk_status_t error = io->error;
1796 
1797 	if (!atomic_dec_and_test(&io->io_pending))
1798 		return;
1799 
1800 	if (io->ctx.r.req)
1801 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1802 
1803 	if (unlikely(io->integrity_metadata_from_pool))
1804 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1805 	else
1806 		kfree(io->integrity_metadata);
1807 
1808 	base_bio->bi_status = error;
1809 
1810 	/*
1811 	 * If we are running this function from our tasklet,
1812 	 * we can't call bio_endio() here, because it will call
1813 	 * clone_endio() from dm.c, which in turn will
1814 	 * free the current struct dm_crypt_io structure with
1815 	 * our tasklet. In this case we need to delay bio_endio()
1816 	 * execution to after the tasklet is done and dequeued.
1817 	 */
1818 	if (io->in_tasklet) {
1819 		INIT_WORK(&io->work, kcryptd_io_bio_endio);
1820 		queue_work(cc->io_queue, &io->work);
1821 		return;
1822 	}
1823 
1824 	bio_endio(base_bio);
1825 }
1826 
1827 /*
1828  * kcryptd/kcryptd_io:
1829  *
1830  * Needed because it would be very unwise to do decryption in an
1831  * interrupt context.
1832  *
1833  * kcryptd performs the actual encryption or decryption.
1834  *
1835  * kcryptd_io performs the IO submission.
1836  *
1837  * They must be separated as otherwise the final stages could be
1838  * starved by new requests which can block in the first stages due
1839  * to memory allocation.
1840  *
1841  * The work is done per CPU global for all dm-crypt instances.
1842  * They should not depend on each other and do not block.
1843  */
1844 static void crypt_endio(struct bio *clone)
1845 {
1846 	struct dm_crypt_io *io = clone->bi_private;
1847 	struct crypt_config *cc = io->cc;
1848 	unsigned int rw = bio_data_dir(clone);
1849 	blk_status_t error;
1850 
1851 	/*
1852 	 * free the processed pages
1853 	 */
1854 	if (rw == WRITE)
1855 		crypt_free_buffer_pages(cc, clone);
1856 
1857 	error = clone->bi_status;
1858 	bio_put(clone);
1859 
1860 	if (rw == READ && !error) {
1861 		kcryptd_queue_crypt(io);
1862 		return;
1863 	}
1864 
1865 	if (unlikely(error))
1866 		io->error = error;
1867 
1868 	crypt_dec_pending(io);
1869 }
1870 
1871 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1872 
1873 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1874 {
1875 	struct crypt_config *cc = io->cc;
1876 	struct bio *clone;
1877 
1878 	/*
1879 	 * We need the original biovec array in order to decrypt the whole bio
1880 	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1881 	 * worry about the block layer modifying the biovec array; so leverage
1882 	 * bio_alloc_clone().
1883 	 */
1884 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1885 	if (!clone)
1886 		return 1;
1887 	clone->bi_private = io;
1888 	clone->bi_end_io = crypt_endio;
1889 
1890 	crypt_inc_pending(io);
1891 
1892 	clone->bi_iter.bi_sector = cc->start + io->sector;
1893 
1894 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1895 		crypt_dec_pending(io);
1896 		bio_put(clone);
1897 		return 1;
1898 	}
1899 
1900 	dm_submit_bio_remap(io->base_bio, clone);
1901 	return 0;
1902 }
1903 
1904 static void kcryptd_io_read_work(struct work_struct *work)
1905 {
1906 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1907 
1908 	crypt_inc_pending(io);
1909 	if (kcryptd_io_read(io, GFP_NOIO))
1910 		io->error = BLK_STS_RESOURCE;
1911 	crypt_dec_pending(io);
1912 }
1913 
1914 static void kcryptd_queue_read(struct dm_crypt_io *io)
1915 {
1916 	struct crypt_config *cc = io->cc;
1917 
1918 	INIT_WORK(&io->work, kcryptd_io_read_work);
1919 	queue_work(cc->io_queue, &io->work);
1920 }
1921 
1922 static void kcryptd_io_write(struct dm_crypt_io *io)
1923 {
1924 	struct bio *clone = io->ctx.bio_out;
1925 
1926 	dm_submit_bio_remap(io->base_bio, clone);
1927 }
1928 
1929 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1930 
1931 static int dmcrypt_write(void *data)
1932 {
1933 	struct crypt_config *cc = data;
1934 	struct dm_crypt_io *io;
1935 
1936 	while (1) {
1937 		struct rb_root write_tree;
1938 		struct blk_plug plug;
1939 
1940 		spin_lock_irq(&cc->write_thread_lock);
1941 continue_locked:
1942 
1943 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1944 			goto pop_from_list;
1945 
1946 		set_current_state(TASK_INTERRUPTIBLE);
1947 
1948 		spin_unlock_irq(&cc->write_thread_lock);
1949 
1950 		if (unlikely(kthread_should_stop())) {
1951 			set_current_state(TASK_RUNNING);
1952 			break;
1953 		}
1954 
1955 		schedule();
1956 
1957 		set_current_state(TASK_RUNNING);
1958 		spin_lock_irq(&cc->write_thread_lock);
1959 		goto continue_locked;
1960 
1961 pop_from_list:
1962 		write_tree = cc->write_tree;
1963 		cc->write_tree = RB_ROOT;
1964 		spin_unlock_irq(&cc->write_thread_lock);
1965 
1966 		BUG_ON(rb_parent(write_tree.rb_node));
1967 
1968 		/*
1969 		 * Note: we cannot walk the tree here with rb_next because
1970 		 * the structures may be freed when kcryptd_io_write is called.
1971 		 */
1972 		blk_start_plug(&plug);
1973 		do {
1974 			io = crypt_io_from_node(rb_first(&write_tree));
1975 			rb_erase(&io->rb_node, &write_tree);
1976 			kcryptd_io_write(io);
1977 			cond_resched();
1978 		} while (!RB_EMPTY_ROOT(&write_tree));
1979 		blk_finish_plug(&plug);
1980 	}
1981 	return 0;
1982 }
1983 
1984 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1985 {
1986 	struct bio *clone = io->ctx.bio_out;
1987 	struct crypt_config *cc = io->cc;
1988 	unsigned long flags;
1989 	sector_t sector;
1990 	struct rb_node **rbp, *parent;
1991 
1992 	if (unlikely(io->error)) {
1993 		crypt_free_buffer_pages(cc, clone);
1994 		bio_put(clone);
1995 		crypt_dec_pending(io);
1996 		return;
1997 	}
1998 
1999 	/* crypt_convert should have filled the clone bio */
2000 	BUG_ON(io->ctx.iter_out.bi_size);
2001 
2002 	clone->bi_iter.bi_sector = cc->start + io->sector;
2003 
2004 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2005 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2006 		dm_submit_bio_remap(io->base_bio, clone);
2007 		return;
2008 	}
2009 
2010 	spin_lock_irqsave(&cc->write_thread_lock, flags);
2011 	if (RB_EMPTY_ROOT(&cc->write_tree))
2012 		wake_up_process(cc->write_thread);
2013 	rbp = &cc->write_tree.rb_node;
2014 	parent = NULL;
2015 	sector = io->sector;
2016 	while (*rbp) {
2017 		parent = *rbp;
2018 		if (sector < crypt_io_from_node(parent)->sector)
2019 			rbp = &(*rbp)->rb_left;
2020 		else
2021 			rbp = &(*rbp)->rb_right;
2022 	}
2023 	rb_link_node(&io->rb_node, parent, rbp);
2024 	rb_insert_color(&io->rb_node, &cc->write_tree);
2025 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2026 }
2027 
2028 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2029 				       struct convert_context *ctx)
2030 
2031 {
2032 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2033 		return false;
2034 
2035 	/*
2036 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2037 	 * constraints so they do not need to be issued inline by
2038 	 * kcryptd_crypt_write_convert().
2039 	 */
2040 	switch (bio_op(ctx->bio_in)) {
2041 	case REQ_OP_WRITE:
2042 	case REQ_OP_WRITE_ZEROES:
2043 		return true;
2044 	default:
2045 		return false;
2046 	}
2047 }
2048 
2049 static void kcryptd_crypt_write_continue(struct work_struct *work)
2050 {
2051 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2052 	struct crypt_config *cc = io->cc;
2053 	struct convert_context *ctx = &io->ctx;
2054 	int crypt_finished;
2055 	sector_t sector = io->sector;
2056 	blk_status_t r;
2057 
2058 	wait_for_completion(&ctx->restart);
2059 	reinit_completion(&ctx->restart);
2060 
2061 	r = crypt_convert(cc, &io->ctx, true, false);
2062 	if (r)
2063 		io->error = r;
2064 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2065 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2066 		/* Wait for completion signaled by kcryptd_async_done() */
2067 		wait_for_completion(&ctx->restart);
2068 		crypt_finished = 1;
2069 	}
2070 
2071 	/* Encryption was already finished, submit io now */
2072 	if (crypt_finished) {
2073 		kcryptd_crypt_write_io_submit(io, 0);
2074 		io->sector = sector;
2075 	}
2076 
2077 	crypt_dec_pending(io);
2078 }
2079 
2080 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2081 {
2082 	struct crypt_config *cc = io->cc;
2083 	struct convert_context *ctx = &io->ctx;
2084 	struct bio *clone;
2085 	int crypt_finished;
2086 	sector_t sector = io->sector;
2087 	blk_status_t r;
2088 
2089 	/*
2090 	 * Prevent io from disappearing until this function completes.
2091 	 */
2092 	crypt_inc_pending(io);
2093 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2094 
2095 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2096 	if (unlikely(!clone)) {
2097 		io->error = BLK_STS_IOERR;
2098 		goto dec;
2099 	}
2100 
2101 	io->ctx.bio_out = clone;
2102 	io->ctx.iter_out = clone->bi_iter;
2103 
2104 	sector += bio_sectors(clone);
2105 
2106 	crypt_inc_pending(io);
2107 	r = crypt_convert(cc, ctx,
2108 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2109 	/*
2110 	 * Crypto API backlogged the request, because its queue was full
2111 	 * and we're in softirq context, so continue from a workqueue
2112 	 * (TODO: is it actually possible to be in softirq in the write path?)
2113 	 */
2114 	if (r == BLK_STS_DEV_RESOURCE) {
2115 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2116 		queue_work(cc->crypt_queue, &io->work);
2117 		return;
2118 	}
2119 	if (r)
2120 		io->error = r;
2121 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2122 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2123 		/* Wait for completion signaled by kcryptd_async_done() */
2124 		wait_for_completion(&ctx->restart);
2125 		crypt_finished = 1;
2126 	}
2127 
2128 	/* Encryption was already finished, submit io now */
2129 	if (crypt_finished) {
2130 		kcryptd_crypt_write_io_submit(io, 0);
2131 		io->sector = sector;
2132 	}
2133 
2134 dec:
2135 	crypt_dec_pending(io);
2136 }
2137 
2138 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2139 {
2140 	crypt_dec_pending(io);
2141 }
2142 
2143 static void kcryptd_crypt_read_continue(struct work_struct *work)
2144 {
2145 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2146 	struct crypt_config *cc = io->cc;
2147 	blk_status_t r;
2148 
2149 	wait_for_completion(&io->ctx.restart);
2150 	reinit_completion(&io->ctx.restart);
2151 
2152 	r = crypt_convert(cc, &io->ctx, true, false);
2153 	if (r)
2154 		io->error = r;
2155 
2156 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2157 		kcryptd_crypt_read_done(io);
2158 
2159 	crypt_dec_pending(io);
2160 }
2161 
2162 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2163 {
2164 	struct crypt_config *cc = io->cc;
2165 	blk_status_t r;
2166 
2167 	crypt_inc_pending(io);
2168 
2169 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2170 			   io->sector);
2171 
2172 	r = crypt_convert(cc, &io->ctx,
2173 			  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2174 	/*
2175 	 * Crypto API backlogged the request, because its queue was full
2176 	 * and we're in softirq context, so continue from a workqueue
2177 	 */
2178 	if (r == BLK_STS_DEV_RESOURCE) {
2179 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2180 		queue_work(cc->crypt_queue, &io->work);
2181 		return;
2182 	}
2183 	if (r)
2184 		io->error = r;
2185 
2186 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2187 		kcryptd_crypt_read_done(io);
2188 
2189 	crypt_dec_pending(io);
2190 }
2191 
2192 static void kcryptd_async_done(void *data, int error)
2193 {
2194 	struct dm_crypt_request *dmreq = data;
2195 	struct convert_context *ctx = dmreq->ctx;
2196 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2197 	struct crypt_config *cc = io->cc;
2198 
2199 	/*
2200 	 * A request from crypto driver backlog is going to be processed now,
2201 	 * finish the completion and continue in crypt_convert().
2202 	 * (Callback will be called for the second time for this request.)
2203 	 */
2204 	if (error == -EINPROGRESS) {
2205 		complete(&ctx->restart);
2206 		return;
2207 	}
2208 
2209 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2210 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2211 
2212 	if (error == -EBADMSG) {
2213 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2214 
2215 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2216 			    ctx->bio_in->bi_bdev, s);
2217 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2218 				 ctx->bio_in, s, 0);
2219 		io->error = BLK_STS_PROTECTION;
2220 	} else if (error < 0)
2221 		io->error = BLK_STS_IOERR;
2222 
2223 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2224 
2225 	if (!atomic_dec_and_test(&ctx->cc_pending))
2226 		return;
2227 
2228 	/*
2229 	 * The request is fully completed: for inline writes, let
2230 	 * kcryptd_crypt_write_convert() do the IO submission.
2231 	 */
2232 	if (bio_data_dir(io->base_bio) == READ) {
2233 		kcryptd_crypt_read_done(io);
2234 		return;
2235 	}
2236 
2237 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2238 		complete(&ctx->restart);
2239 		return;
2240 	}
2241 
2242 	kcryptd_crypt_write_io_submit(io, 1);
2243 }
2244 
2245 static void kcryptd_crypt(struct work_struct *work)
2246 {
2247 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2248 
2249 	if (bio_data_dir(io->base_bio) == READ)
2250 		kcryptd_crypt_read_convert(io);
2251 	else
2252 		kcryptd_crypt_write_convert(io);
2253 }
2254 
2255 static void kcryptd_crypt_tasklet(unsigned long work)
2256 {
2257 	kcryptd_crypt((struct work_struct *)work);
2258 }
2259 
2260 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2261 {
2262 	struct crypt_config *cc = io->cc;
2263 
2264 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2265 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2266 		/*
2267 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2268 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2269 		 * it is being executed with irqs disabled.
2270 		 */
2271 		if (in_hardirq() || irqs_disabled()) {
2272 			io->in_tasklet = true;
2273 			tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2274 			tasklet_schedule(&io->tasklet);
2275 			return;
2276 		}
2277 
2278 		kcryptd_crypt(&io->work);
2279 		return;
2280 	}
2281 
2282 	INIT_WORK(&io->work, kcryptd_crypt);
2283 	queue_work(cc->crypt_queue, &io->work);
2284 }
2285 
2286 static void crypt_free_tfms_aead(struct crypt_config *cc)
2287 {
2288 	if (!cc->cipher_tfm.tfms_aead)
2289 		return;
2290 
2291 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2292 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2293 		cc->cipher_tfm.tfms_aead[0] = NULL;
2294 	}
2295 
2296 	kfree(cc->cipher_tfm.tfms_aead);
2297 	cc->cipher_tfm.tfms_aead = NULL;
2298 }
2299 
2300 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2301 {
2302 	unsigned int i;
2303 
2304 	if (!cc->cipher_tfm.tfms)
2305 		return;
2306 
2307 	for (i = 0; i < cc->tfms_count; i++)
2308 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2309 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2310 			cc->cipher_tfm.tfms[i] = NULL;
2311 		}
2312 
2313 	kfree(cc->cipher_tfm.tfms);
2314 	cc->cipher_tfm.tfms = NULL;
2315 }
2316 
2317 static void crypt_free_tfms(struct crypt_config *cc)
2318 {
2319 	if (crypt_integrity_aead(cc))
2320 		crypt_free_tfms_aead(cc);
2321 	else
2322 		crypt_free_tfms_skcipher(cc);
2323 }
2324 
2325 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2326 {
2327 	unsigned int i;
2328 	int err;
2329 
2330 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2331 				      sizeof(struct crypto_skcipher *),
2332 				      GFP_KERNEL);
2333 	if (!cc->cipher_tfm.tfms)
2334 		return -ENOMEM;
2335 
2336 	for (i = 0; i < cc->tfms_count; i++) {
2337 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2338 						CRYPTO_ALG_ALLOCATES_MEMORY);
2339 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2340 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2341 			crypt_free_tfms(cc);
2342 			return err;
2343 		}
2344 	}
2345 
2346 	/*
2347 	 * dm-crypt performance can vary greatly depending on which crypto
2348 	 * algorithm implementation is used.  Help people debug performance
2349 	 * problems by logging the ->cra_driver_name.
2350 	 */
2351 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2352 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2353 	return 0;
2354 }
2355 
2356 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2357 {
2358 	int err;
2359 
2360 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2361 	if (!cc->cipher_tfm.tfms)
2362 		return -ENOMEM;
2363 
2364 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2365 						CRYPTO_ALG_ALLOCATES_MEMORY);
2366 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2367 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2368 		crypt_free_tfms(cc);
2369 		return err;
2370 	}
2371 
2372 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2373 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2374 	return 0;
2375 }
2376 
2377 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2378 {
2379 	if (crypt_integrity_aead(cc))
2380 		return crypt_alloc_tfms_aead(cc, ciphermode);
2381 	else
2382 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2383 }
2384 
2385 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2386 {
2387 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2388 }
2389 
2390 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2391 {
2392 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2393 }
2394 
2395 /*
2396  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2397  * the key must be for some reason in special format.
2398  * This funcion converts cc->key to this special format.
2399  */
2400 static void crypt_copy_authenckey(char *p, const void *key,
2401 				  unsigned int enckeylen, unsigned int authkeylen)
2402 {
2403 	struct crypto_authenc_key_param *param;
2404 	struct rtattr *rta;
2405 
2406 	rta = (struct rtattr *)p;
2407 	param = RTA_DATA(rta);
2408 	param->enckeylen = cpu_to_be32(enckeylen);
2409 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2410 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2411 	p += RTA_SPACE(sizeof(*param));
2412 	memcpy(p, key + enckeylen, authkeylen);
2413 	p += authkeylen;
2414 	memcpy(p, key, enckeylen);
2415 }
2416 
2417 static int crypt_setkey(struct crypt_config *cc)
2418 {
2419 	unsigned int subkey_size;
2420 	int err = 0, i, r;
2421 
2422 	/* Ignore extra keys (which are used for IV etc) */
2423 	subkey_size = crypt_subkey_size(cc);
2424 
2425 	if (crypt_integrity_hmac(cc)) {
2426 		if (subkey_size < cc->key_mac_size)
2427 			return -EINVAL;
2428 
2429 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2430 				      subkey_size - cc->key_mac_size,
2431 				      cc->key_mac_size);
2432 	}
2433 
2434 	for (i = 0; i < cc->tfms_count; i++) {
2435 		if (crypt_integrity_hmac(cc))
2436 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2437 				cc->authenc_key, crypt_authenckey_size(cc));
2438 		else if (crypt_integrity_aead(cc))
2439 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2440 					       cc->key + (i * subkey_size),
2441 					       subkey_size);
2442 		else
2443 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2444 						   cc->key + (i * subkey_size),
2445 						   subkey_size);
2446 		if (r)
2447 			err = r;
2448 	}
2449 
2450 	if (crypt_integrity_hmac(cc))
2451 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2452 
2453 	return err;
2454 }
2455 
2456 #ifdef CONFIG_KEYS
2457 
2458 static bool contains_whitespace(const char *str)
2459 {
2460 	while (*str)
2461 		if (isspace(*str++))
2462 			return true;
2463 	return false;
2464 }
2465 
2466 static int set_key_user(struct crypt_config *cc, struct key *key)
2467 {
2468 	const struct user_key_payload *ukp;
2469 
2470 	ukp = user_key_payload_locked(key);
2471 	if (!ukp)
2472 		return -EKEYREVOKED;
2473 
2474 	if (cc->key_size != ukp->datalen)
2475 		return -EINVAL;
2476 
2477 	memcpy(cc->key, ukp->data, cc->key_size);
2478 
2479 	return 0;
2480 }
2481 
2482 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2483 {
2484 	const struct encrypted_key_payload *ekp;
2485 
2486 	ekp = key->payload.data[0];
2487 	if (!ekp)
2488 		return -EKEYREVOKED;
2489 
2490 	if (cc->key_size != ekp->decrypted_datalen)
2491 		return -EINVAL;
2492 
2493 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2494 
2495 	return 0;
2496 }
2497 
2498 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2499 {
2500 	const struct trusted_key_payload *tkp;
2501 
2502 	tkp = key->payload.data[0];
2503 	if (!tkp)
2504 		return -EKEYREVOKED;
2505 
2506 	if (cc->key_size != tkp->key_len)
2507 		return -EINVAL;
2508 
2509 	memcpy(cc->key, tkp->key, cc->key_size);
2510 
2511 	return 0;
2512 }
2513 
2514 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2515 {
2516 	char *new_key_string, *key_desc;
2517 	int ret;
2518 	struct key_type *type;
2519 	struct key *key;
2520 	int (*set_key)(struct crypt_config *cc, struct key *key);
2521 
2522 	/*
2523 	 * Reject key_string with whitespace. dm core currently lacks code for
2524 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2525 	 */
2526 	if (contains_whitespace(key_string)) {
2527 		DMERR("whitespace chars not allowed in key string");
2528 		return -EINVAL;
2529 	}
2530 
2531 	/* look for next ':' separating key_type from key_description */
2532 	key_desc = strchr(key_string, ':');
2533 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2534 		return -EINVAL;
2535 
2536 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2537 		type = &key_type_logon;
2538 		set_key = set_key_user;
2539 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2540 		type = &key_type_user;
2541 		set_key = set_key_user;
2542 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2543 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2544 		type = &key_type_encrypted;
2545 		set_key = set_key_encrypted;
2546 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2547 		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2548 		type = &key_type_trusted;
2549 		set_key = set_key_trusted;
2550 	} else {
2551 		return -EINVAL;
2552 	}
2553 
2554 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2555 	if (!new_key_string)
2556 		return -ENOMEM;
2557 
2558 	key = request_key(type, key_desc + 1, NULL);
2559 	if (IS_ERR(key)) {
2560 		kfree_sensitive(new_key_string);
2561 		return PTR_ERR(key);
2562 	}
2563 
2564 	down_read(&key->sem);
2565 
2566 	ret = set_key(cc, key);
2567 	if (ret < 0) {
2568 		up_read(&key->sem);
2569 		key_put(key);
2570 		kfree_sensitive(new_key_string);
2571 		return ret;
2572 	}
2573 
2574 	up_read(&key->sem);
2575 	key_put(key);
2576 
2577 	/* clear the flag since following operations may invalidate previously valid key */
2578 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2579 
2580 	ret = crypt_setkey(cc);
2581 
2582 	if (!ret) {
2583 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2584 		kfree_sensitive(cc->key_string);
2585 		cc->key_string = new_key_string;
2586 	} else
2587 		kfree_sensitive(new_key_string);
2588 
2589 	return ret;
2590 }
2591 
2592 static int get_key_size(char **key_string)
2593 {
2594 	char *colon, dummy;
2595 	int ret;
2596 
2597 	if (*key_string[0] != ':')
2598 		return strlen(*key_string) >> 1;
2599 
2600 	/* look for next ':' in key string */
2601 	colon = strpbrk(*key_string + 1, ":");
2602 	if (!colon)
2603 		return -EINVAL;
2604 
2605 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2606 		return -EINVAL;
2607 
2608 	*key_string = colon;
2609 
2610 	/* remaining key string should be :<logon|user>:<key_desc> */
2611 
2612 	return ret;
2613 }
2614 
2615 #else
2616 
2617 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2618 {
2619 	return -EINVAL;
2620 }
2621 
2622 static int get_key_size(char **key_string)
2623 {
2624 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2625 }
2626 
2627 #endif /* CONFIG_KEYS */
2628 
2629 static int crypt_set_key(struct crypt_config *cc, char *key)
2630 {
2631 	int r = -EINVAL;
2632 	int key_string_len = strlen(key);
2633 
2634 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2635 	if (!cc->key_size && strcmp(key, "-"))
2636 		goto out;
2637 
2638 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2639 	if (key[0] == ':') {
2640 		r = crypt_set_keyring_key(cc, key + 1);
2641 		goto out;
2642 	}
2643 
2644 	/* clear the flag since following operations may invalidate previously valid key */
2645 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2646 
2647 	/* wipe references to any kernel keyring key */
2648 	kfree_sensitive(cc->key_string);
2649 	cc->key_string = NULL;
2650 
2651 	/* Decode key from its hex representation. */
2652 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2653 		goto out;
2654 
2655 	r = crypt_setkey(cc);
2656 	if (!r)
2657 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2658 
2659 out:
2660 	/* Hex key string not needed after here, so wipe it. */
2661 	memset(key, '0', key_string_len);
2662 
2663 	return r;
2664 }
2665 
2666 static int crypt_wipe_key(struct crypt_config *cc)
2667 {
2668 	int r;
2669 
2670 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2671 	get_random_bytes(&cc->key, cc->key_size);
2672 
2673 	/* Wipe IV private keys */
2674 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2675 		r = cc->iv_gen_ops->wipe(cc);
2676 		if (r)
2677 			return r;
2678 	}
2679 
2680 	kfree_sensitive(cc->key_string);
2681 	cc->key_string = NULL;
2682 	r = crypt_setkey(cc);
2683 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2684 
2685 	return r;
2686 }
2687 
2688 static void crypt_calculate_pages_per_client(void)
2689 {
2690 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2691 
2692 	if (!dm_crypt_clients_n)
2693 		return;
2694 
2695 	pages /= dm_crypt_clients_n;
2696 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2697 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2698 	dm_crypt_pages_per_client = pages;
2699 }
2700 
2701 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2702 {
2703 	struct crypt_config *cc = pool_data;
2704 	struct page *page;
2705 
2706 	/*
2707 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2708 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2709 	 * but avoids potential spinlock contention of an exact result.
2710 	 */
2711 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2712 	    likely(gfp_mask & __GFP_NORETRY))
2713 		return NULL;
2714 
2715 	page = alloc_page(gfp_mask);
2716 	if (likely(page != NULL))
2717 		percpu_counter_add(&cc->n_allocated_pages, 1);
2718 
2719 	return page;
2720 }
2721 
2722 static void crypt_page_free(void *page, void *pool_data)
2723 {
2724 	struct crypt_config *cc = pool_data;
2725 
2726 	__free_page(page);
2727 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2728 }
2729 
2730 static void crypt_dtr(struct dm_target *ti)
2731 {
2732 	struct crypt_config *cc = ti->private;
2733 
2734 	ti->private = NULL;
2735 
2736 	if (!cc)
2737 		return;
2738 
2739 	if (cc->write_thread)
2740 		kthread_stop(cc->write_thread);
2741 
2742 	if (cc->io_queue)
2743 		destroy_workqueue(cc->io_queue);
2744 	if (cc->crypt_queue)
2745 		destroy_workqueue(cc->crypt_queue);
2746 
2747 	crypt_free_tfms(cc);
2748 
2749 	bioset_exit(&cc->bs);
2750 
2751 	mempool_exit(&cc->page_pool);
2752 	mempool_exit(&cc->req_pool);
2753 	mempool_exit(&cc->tag_pool);
2754 
2755 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2756 	percpu_counter_destroy(&cc->n_allocated_pages);
2757 
2758 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2759 		cc->iv_gen_ops->dtr(cc);
2760 
2761 	if (cc->dev)
2762 		dm_put_device(ti, cc->dev);
2763 
2764 	kfree_sensitive(cc->cipher_string);
2765 	kfree_sensitive(cc->key_string);
2766 	kfree_sensitive(cc->cipher_auth);
2767 	kfree_sensitive(cc->authenc_key);
2768 
2769 	mutex_destroy(&cc->bio_alloc_lock);
2770 
2771 	/* Must zero key material before freeing */
2772 	kfree_sensitive(cc);
2773 
2774 	spin_lock(&dm_crypt_clients_lock);
2775 	WARN_ON(!dm_crypt_clients_n);
2776 	dm_crypt_clients_n--;
2777 	crypt_calculate_pages_per_client();
2778 	spin_unlock(&dm_crypt_clients_lock);
2779 
2780 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2781 }
2782 
2783 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2784 {
2785 	struct crypt_config *cc = ti->private;
2786 
2787 	if (crypt_integrity_aead(cc))
2788 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2789 	else
2790 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2791 
2792 	if (cc->iv_size)
2793 		/* at least a 64 bit sector number should fit in our buffer */
2794 		cc->iv_size = max(cc->iv_size,
2795 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2796 	else if (ivmode) {
2797 		DMWARN("Selected cipher does not support IVs");
2798 		ivmode = NULL;
2799 	}
2800 
2801 	/* Choose ivmode, see comments at iv code. */
2802 	if (ivmode == NULL)
2803 		cc->iv_gen_ops = NULL;
2804 	else if (strcmp(ivmode, "plain") == 0)
2805 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2806 	else if (strcmp(ivmode, "plain64") == 0)
2807 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2808 	else if (strcmp(ivmode, "plain64be") == 0)
2809 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2810 	else if (strcmp(ivmode, "essiv") == 0)
2811 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2812 	else if (strcmp(ivmode, "benbi") == 0)
2813 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2814 	else if (strcmp(ivmode, "null") == 0)
2815 		cc->iv_gen_ops = &crypt_iv_null_ops;
2816 	else if (strcmp(ivmode, "eboiv") == 0)
2817 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2818 	else if (strcmp(ivmode, "elephant") == 0) {
2819 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2820 		cc->key_parts = 2;
2821 		cc->key_extra_size = cc->key_size / 2;
2822 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2823 			return -EINVAL;
2824 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2825 	} else if (strcmp(ivmode, "lmk") == 0) {
2826 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2827 		/*
2828 		 * Version 2 and 3 is recognised according
2829 		 * to length of provided multi-key string.
2830 		 * If present (version 3), last key is used as IV seed.
2831 		 * All keys (including IV seed) are always the same size.
2832 		 */
2833 		if (cc->key_size % cc->key_parts) {
2834 			cc->key_parts++;
2835 			cc->key_extra_size = cc->key_size / cc->key_parts;
2836 		}
2837 	} else if (strcmp(ivmode, "tcw") == 0) {
2838 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2839 		cc->key_parts += 2; /* IV + whitening */
2840 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2841 	} else if (strcmp(ivmode, "random") == 0) {
2842 		cc->iv_gen_ops = &crypt_iv_random_ops;
2843 		/* Need storage space in integrity fields. */
2844 		cc->integrity_iv_size = cc->iv_size;
2845 	} else {
2846 		ti->error = "Invalid IV mode";
2847 		return -EINVAL;
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 /*
2854  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2855  * The HMAC is needed to calculate tag size (HMAC digest size).
2856  * This should be probably done by crypto-api calls (once available...)
2857  */
2858 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2859 {
2860 	char *start, *end, *mac_alg = NULL;
2861 	struct crypto_ahash *mac;
2862 
2863 	if (!strstarts(cipher_api, "authenc("))
2864 		return 0;
2865 
2866 	start = strchr(cipher_api, '(');
2867 	end = strchr(cipher_api, ',');
2868 	if (!start || !end || ++start > end)
2869 		return -EINVAL;
2870 
2871 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2872 	if (!mac_alg)
2873 		return -ENOMEM;
2874 	strncpy(mac_alg, start, end - start);
2875 
2876 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2877 	kfree(mac_alg);
2878 
2879 	if (IS_ERR(mac))
2880 		return PTR_ERR(mac);
2881 
2882 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2883 	crypto_free_ahash(mac);
2884 
2885 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2886 	if (!cc->authenc_key)
2887 		return -ENOMEM;
2888 
2889 	return 0;
2890 }
2891 
2892 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2893 				char **ivmode, char **ivopts)
2894 {
2895 	struct crypt_config *cc = ti->private;
2896 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2897 	int ret = -EINVAL;
2898 
2899 	cc->tfms_count = 1;
2900 
2901 	/*
2902 	 * New format (capi: prefix)
2903 	 * capi:cipher_api_spec-iv:ivopts
2904 	 */
2905 	tmp = &cipher_in[strlen("capi:")];
2906 
2907 	/* Separate IV options if present, it can contain another '-' in hash name */
2908 	*ivopts = strrchr(tmp, ':');
2909 	if (*ivopts) {
2910 		**ivopts = '\0';
2911 		(*ivopts)++;
2912 	}
2913 	/* Parse IV mode */
2914 	*ivmode = strrchr(tmp, '-');
2915 	if (*ivmode) {
2916 		**ivmode = '\0';
2917 		(*ivmode)++;
2918 	}
2919 	/* The rest is crypto API spec */
2920 	cipher_api = tmp;
2921 
2922 	/* Alloc AEAD, can be used only in new format. */
2923 	if (crypt_integrity_aead(cc)) {
2924 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2925 		if (ret < 0) {
2926 			ti->error = "Invalid AEAD cipher spec";
2927 			return ret;
2928 		}
2929 	}
2930 
2931 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2932 		cc->tfms_count = 64;
2933 
2934 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2935 		if (!*ivopts) {
2936 			ti->error = "Digest algorithm missing for ESSIV mode";
2937 			return -EINVAL;
2938 		}
2939 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2940 			       cipher_api, *ivopts);
2941 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2942 			ti->error = "Cannot allocate cipher string";
2943 			return -ENOMEM;
2944 		}
2945 		cipher_api = buf;
2946 	}
2947 
2948 	cc->key_parts = cc->tfms_count;
2949 
2950 	/* Allocate cipher */
2951 	ret = crypt_alloc_tfms(cc, cipher_api);
2952 	if (ret < 0) {
2953 		ti->error = "Error allocating crypto tfm";
2954 		return ret;
2955 	}
2956 
2957 	if (crypt_integrity_aead(cc))
2958 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2959 	else
2960 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2961 
2962 	return 0;
2963 }
2964 
2965 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2966 				char **ivmode, char **ivopts)
2967 {
2968 	struct crypt_config *cc = ti->private;
2969 	char *tmp, *cipher, *chainmode, *keycount;
2970 	char *cipher_api = NULL;
2971 	int ret = -EINVAL;
2972 	char dummy;
2973 
2974 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2975 		ti->error = "Bad cipher specification";
2976 		return -EINVAL;
2977 	}
2978 
2979 	/*
2980 	 * Legacy dm-crypt cipher specification
2981 	 * cipher[:keycount]-mode-iv:ivopts
2982 	 */
2983 	tmp = cipher_in;
2984 	keycount = strsep(&tmp, "-");
2985 	cipher = strsep(&keycount, ":");
2986 
2987 	if (!keycount)
2988 		cc->tfms_count = 1;
2989 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2990 		 !is_power_of_2(cc->tfms_count)) {
2991 		ti->error = "Bad cipher key count specification";
2992 		return -EINVAL;
2993 	}
2994 	cc->key_parts = cc->tfms_count;
2995 
2996 	chainmode = strsep(&tmp, "-");
2997 	*ivmode = strsep(&tmp, ":");
2998 	*ivopts = tmp;
2999 
3000 	/*
3001 	 * For compatibility with the original dm-crypt mapping format, if
3002 	 * only the cipher name is supplied, use cbc-plain.
3003 	 */
3004 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3005 		chainmode = "cbc";
3006 		*ivmode = "plain";
3007 	}
3008 
3009 	if (strcmp(chainmode, "ecb") && !*ivmode) {
3010 		ti->error = "IV mechanism required";
3011 		return -EINVAL;
3012 	}
3013 
3014 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3015 	if (!cipher_api)
3016 		goto bad_mem;
3017 
3018 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3019 		if (!*ivopts) {
3020 			ti->error = "Digest algorithm missing for ESSIV mode";
3021 			kfree(cipher_api);
3022 			return -EINVAL;
3023 		}
3024 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3025 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3026 	} else {
3027 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3028 			       "%s(%s)", chainmode, cipher);
3029 	}
3030 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3031 		kfree(cipher_api);
3032 		goto bad_mem;
3033 	}
3034 
3035 	/* Allocate cipher */
3036 	ret = crypt_alloc_tfms(cc, cipher_api);
3037 	if (ret < 0) {
3038 		ti->error = "Error allocating crypto tfm";
3039 		kfree(cipher_api);
3040 		return ret;
3041 	}
3042 	kfree(cipher_api);
3043 
3044 	return 0;
3045 bad_mem:
3046 	ti->error = "Cannot allocate cipher strings";
3047 	return -ENOMEM;
3048 }
3049 
3050 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3051 {
3052 	struct crypt_config *cc = ti->private;
3053 	char *ivmode = NULL, *ivopts = NULL;
3054 	int ret;
3055 
3056 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3057 	if (!cc->cipher_string) {
3058 		ti->error = "Cannot allocate cipher strings";
3059 		return -ENOMEM;
3060 	}
3061 
3062 	if (strstarts(cipher_in, "capi:"))
3063 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3064 	else
3065 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3066 	if (ret)
3067 		return ret;
3068 
3069 	/* Initialize IV */
3070 	ret = crypt_ctr_ivmode(ti, ivmode);
3071 	if (ret < 0)
3072 		return ret;
3073 
3074 	/* Initialize and set key */
3075 	ret = crypt_set_key(cc, key);
3076 	if (ret < 0) {
3077 		ti->error = "Error decoding and setting key";
3078 		return ret;
3079 	}
3080 
3081 	/* Allocate IV */
3082 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3083 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3084 		if (ret < 0) {
3085 			ti->error = "Error creating IV";
3086 			return ret;
3087 		}
3088 	}
3089 
3090 	/* Initialize IV (set keys for ESSIV etc) */
3091 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3092 		ret = cc->iv_gen_ops->init(cc);
3093 		if (ret < 0) {
3094 			ti->error = "Error initialising IV";
3095 			return ret;
3096 		}
3097 	}
3098 
3099 	/* wipe the kernel key payload copy */
3100 	if (cc->key_string)
3101 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3102 
3103 	return ret;
3104 }
3105 
3106 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3107 {
3108 	struct crypt_config *cc = ti->private;
3109 	struct dm_arg_set as;
3110 	static const struct dm_arg _args[] = {
3111 		{0, 8, "Invalid number of feature args"},
3112 	};
3113 	unsigned int opt_params, val;
3114 	const char *opt_string, *sval;
3115 	char dummy;
3116 	int ret;
3117 
3118 	/* Optional parameters */
3119 	as.argc = argc;
3120 	as.argv = argv;
3121 
3122 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3123 	if (ret)
3124 		return ret;
3125 
3126 	while (opt_params--) {
3127 		opt_string = dm_shift_arg(&as);
3128 		if (!opt_string) {
3129 			ti->error = "Not enough feature arguments";
3130 			return -EINVAL;
3131 		}
3132 
3133 		if (!strcasecmp(opt_string, "allow_discards"))
3134 			ti->num_discard_bios = 1;
3135 
3136 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3137 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3138 
3139 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3140 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3141 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3142 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3143 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3144 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3145 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3146 			if (val == 0 || val > MAX_TAG_SIZE) {
3147 				ti->error = "Invalid integrity arguments";
3148 				return -EINVAL;
3149 			}
3150 			cc->on_disk_tag_size = val;
3151 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3152 			if (!strcasecmp(sval, "aead")) {
3153 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3154 			} else  if (strcasecmp(sval, "none")) {
3155 				ti->error = "Unknown integrity profile";
3156 				return -EINVAL;
3157 			}
3158 
3159 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3160 			if (!cc->cipher_auth)
3161 				return -ENOMEM;
3162 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3163 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3164 			    cc->sector_size > 4096 ||
3165 			    (cc->sector_size & (cc->sector_size - 1))) {
3166 				ti->error = "Invalid feature value for sector_size";
3167 				return -EINVAL;
3168 			}
3169 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3170 				ti->error = "Device size is not multiple of sector_size feature";
3171 				return -EINVAL;
3172 			}
3173 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3174 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3175 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3176 		else {
3177 			ti->error = "Invalid feature arguments";
3178 			return -EINVAL;
3179 		}
3180 	}
3181 
3182 	return 0;
3183 }
3184 
3185 #ifdef CONFIG_BLK_DEV_ZONED
3186 static int crypt_report_zones(struct dm_target *ti,
3187 		struct dm_report_zones_args *args, unsigned int nr_zones)
3188 {
3189 	struct crypt_config *cc = ti->private;
3190 
3191 	return dm_report_zones(cc->dev->bdev, cc->start,
3192 			cc->start + dm_target_offset(ti, args->next_sector),
3193 			args, nr_zones);
3194 }
3195 #else
3196 #define crypt_report_zones NULL
3197 #endif
3198 
3199 /*
3200  * Construct an encryption mapping:
3201  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3202  */
3203 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3204 {
3205 	struct crypt_config *cc;
3206 	const char *devname = dm_table_device_name(ti->table);
3207 	int key_size;
3208 	unsigned int align_mask;
3209 	unsigned long long tmpll;
3210 	int ret;
3211 	size_t iv_size_padding, additional_req_size;
3212 	char dummy;
3213 
3214 	if (argc < 5) {
3215 		ti->error = "Not enough arguments";
3216 		return -EINVAL;
3217 	}
3218 
3219 	key_size = get_key_size(&argv[1]);
3220 	if (key_size < 0) {
3221 		ti->error = "Cannot parse key size";
3222 		return -EINVAL;
3223 	}
3224 
3225 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3226 	if (!cc) {
3227 		ti->error = "Cannot allocate encryption context";
3228 		return -ENOMEM;
3229 	}
3230 	cc->key_size = key_size;
3231 	cc->sector_size = (1 << SECTOR_SHIFT);
3232 	cc->sector_shift = 0;
3233 
3234 	ti->private = cc;
3235 
3236 	spin_lock(&dm_crypt_clients_lock);
3237 	dm_crypt_clients_n++;
3238 	crypt_calculate_pages_per_client();
3239 	spin_unlock(&dm_crypt_clients_lock);
3240 
3241 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3242 	if (ret < 0)
3243 		goto bad;
3244 
3245 	/* Optional parameters need to be read before cipher constructor */
3246 	if (argc > 5) {
3247 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3248 		if (ret)
3249 			goto bad;
3250 	}
3251 
3252 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3253 	if (ret < 0)
3254 		goto bad;
3255 
3256 	if (crypt_integrity_aead(cc)) {
3257 		cc->dmreq_start = sizeof(struct aead_request);
3258 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3259 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3260 	} else {
3261 		cc->dmreq_start = sizeof(struct skcipher_request);
3262 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3263 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3264 	}
3265 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3266 
3267 	if (align_mask < CRYPTO_MINALIGN) {
3268 		/* Allocate the padding exactly */
3269 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3270 				& align_mask;
3271 	} else {
3272 		/*
3273 		 * If the cipher requires greater alignment than kmalloc
3274 		 * alignment, we don't know the exact position of the
3275 		 * initialization vector. We must assume worst case.
3276 		 */
3277 		iv_size_padding = align_mask;
3278 	}
3279 
3280 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3281 	additional_req_size = sizeof(struct dm_crypt_request) +
3282 		iv_size_padding + cc->iv_size +
3283 		cc->iv_size +
3284 		sizeof(uint64_t) +
3285 		sizeof(unsigned int);
3286 
3287 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3288 	if (ret) {
3289 		ti->error = "Cannot allocate crypt request mempool";
3290 		goto bad;
3291 	}
3292 
3293 	cc->per_bio_data_size = ti->per_io_data_size =
3294 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3295 		      ARCH_DMA_MINALIGN);
3296 
3297 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3298 	if (ret) {
3299 		ti->error = "Cannot allocate page mempool";
3300 		goto bad;
3301 	}
3302 
3303 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3304 	if (ret) {
3305 		ti->error = "Cannot allocate crypt bioset";
3306 		goto bad;
3307 	}
3308 
3309 	mutex_init(&cc->bio_alloc_lock);
3310 
3311 	ret = -EINVAL;
3312 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3313 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3314 		ti->error = "Invalid iv_offset sector";
3315 		goto bad;
3316 	}
3317 	cc->iv_offset = tmpll;
3318 
3319 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3320 	if (ret) {
3321 		ti->error = "Device lookup failed";
3322 		goto bad;
3323 	}
3324 
3325 	ret = -EINVAL;
3326 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3327 		ti->error = "Invalid device sector";
3328 		goto bad;
3329 	}
3330 	cc->start = tmpll;
3331 
3332 	if (bdev_is_zoned(cc->dev->bdev)) {
3333 		/*
3334 		 * For zoned block devices, we need to preserve the issuer write
3335 		 * ordering. To do so, disable write workqueues and force inline
3336 		 * encryption completion.
3337 		 */
3338 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3339 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3340 
3341 		/*
3342 		 * All zone append writes to a zone of a zoned block device will
3343 		 * have the same BIO sector, the start of the zone. When the
3344 		 * cypher IV mode uses sector values, all data targeting a
3345 		 * zone will be encrypted using the first sector numbers of the
3346 		 * zone. This will not result in write errors but will
3347 		 * cause most reads to fail as reads will use the sector values
3348 		 * for the actual data locations, resulting in IV mismatch.
3349 		 * To avoid this problem, ask DM core to emulate zone append
3350 		 * operations with regular writes.
3351 		 */
3352 		DMDEBUG("Zone append operations will be emulated");
3353 		ti->emulate_zone_append = true;
3354 	}
3355 
3356 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3357 		ret = crypt_integrity_ctr(cc, ti);
3358 		if (ret)
3359 			goto bad;
3360 
3361 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3362 		if (!cc->tag_pool_max_sectors)
3363 			cc->tag_pool_max_sectors = 1;
3364 
3365 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3366 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3367 		if (ret) {
3368 			ti->error = "Cannot allocate integrity tags mempool";
3369 			goto bad;
3370 		}
3371 
3372 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3373 	}
3374 
3375 	ret = -ENOMEM;
3376 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3377 	if (!cc->io_queue) {
3378 		ti->error = "Couldn't create kcryptd io queue";
3379 		goto bad;
3380 	}
3381 
3382 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3383 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3384 						  1, devname);
3385 	else
3386 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3387 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3388 						  num_online_cpus(), devname);
3389 	if (!cc->crypt_queue) {
3390 		ti->error = "Couldn't create kcryptd queue";
3391 		goto bad;
3392 	}
3393 
3394 	spin_lock_init(&cc->write_thread_lock);
3395 	cc->write_tree = RB_ROOT;
3396 
3397 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3398 	if (IS_ERR(cc->write_thread)) {
3399 		ret = PTR_ERR(cc->write_thread);
3400 		cc->write_thread = NULL;
3401 		ti->error = "Couldn't spawn write thread";
3402 		goto bad;
3403 	}
3404 
3405 	ti->num_flush_bios = 1;
3406 	ti->limit_swap_bios = true;
3407 	ti->accounts_remapped_io = true;
3408 
3409 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3410 	return 0;
3411 
3412 bad:
3413 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3414 	crypt_dtr(ti);
3415 	return ret;
3416 }
3417 
3418 static int crypt_map(struct dm_target *ti, struct bio *bio)
3419 {
3420 	struct dm_crypt_io *io;
3421 	struct crypt_config *cc = ti->private;
3422 
3423 	/*
3424 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3425 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3426 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3427 	 */
3428 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3429 	    bio_op(bio) == REQ_OP_DISCARD)) {
3430 		bio_set_dev(bio, cc->dev->bdev);
3431 		if (bio_sectors(bio))
3432 			bio->bi_iter.bi_sector = cc->start +
3433 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3434 		return DM_MAPIO_REMAPPED;
3435 	}
3436 
3437 	/*
3438 	 * Check if bio is too large, split as needed.
3439 	 */
3440 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3441 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3442 		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3443 
3444 	/*
3445 	 * Ensure that bio is a multiple of internal sector encryption size
3446 	 * and is aligned to this size as defined in IO hints.
3447 	 */
3448 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3449 		return DM_MAPIO_KILL;
3450 
3451 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3452 		return DM_MAPIO_KILL;
3453 
3454 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3455 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3456 
3457 	if (cc->on_disk_tag_size) {
3458 		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3459 
3460 		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3461 			io->integrity_metadata = NULL;
3462 		else
3463 			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3464 
3465 		if (unlikely(!io->integrity_metadata)) {
3466 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3467 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3468 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3469 			io->integrity_metadata_from_pool = true;
3470 		}
3471 	}
3472 
3473 	if (crypt_integrity_aead(cc))
3474 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3475 	else
3476 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3477 
3478 	if (bio_data_dir(io->base_bio) == READ) {
3479 		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3480 			kcryptd_queue_read(io);
3481 	} else
3482 		kcryptd_queue_crypt(io);
3483 
3484 	return DM_MAPIO_SUBMITTED;
3485 }
3486 
3487 static char hex2asc(unsigned char c)
3488 {
3489 	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3490 }
3491 
3492 static void crypt_status(struct dm_target *ti, status_type_t type,
3493 			 unsigned int status_flags, char *result, unsigned int maxlen)
3494 {
3495 	struct crypt_config *cc = ti->private;
3496 	unsigned int i, sz = 0;
3497 	int num_feature_args = 0;
3498 
3499 	switch (type) {
3500 	case STATUSTYPE_INFO:
3501 		result[0] = '\0';
3502 		break;
3503 
3504 	case STATUSTYPE_TABLE:
3505 		DMEMIT("%s ", cc->cipher_string);
3506 
3507 		if (cc->key_size > 0) {
3508 			if (cc->key_string)
3509 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3510 			else {
3511 				for (i = 0; i < cc->key_size; i++) {
3512 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3513 					       hex2asc(cc->key[i] & 0xf));
3514 				}
3515 			}
3516 		} else
3517 			DMEMIT("-");
3518 
3519 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3520 				cc->dev->name, (unsigned long long)cc->start);
3521 
3522 		num_feature_args += !!ti->num_discard_bios;
3523 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3524 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3525 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3526 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3527 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3528 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3529 		if (cc->on_disk_tag_size)
3530 			num_feature_args++;
3531 		if (num_feature_args) {
3532 			DMEMIT(" %d", num_feature_args);
3533 			if (ti->num_discard_bios)
3534 				DMEMIT(" allow_discards");
3535 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3536 				DMEMIT(" same_cpu_crypt");
3537 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3538 				DMEMIT(" submit_from_crypt_cpus");
3539 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3540 				DMEMIT(" no_read_workqueue");
3541 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3542 				DMEMIT(" no_write_workqueue");
3543 			if (cc->on_disk_tag_size)
3544 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3545 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3546 				DMEMIT(" sector_size:%d", cc->sector_size);
3547 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3548 				DMEMIT(" iv_large_sectors");
3549 		}
3550 		break;
3551 
3552 	case STATUSTYPE_IMA:
3553 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3554 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3555 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3556 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3557 		       'y' : 'n');
3558 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3559 		       'y' : 'n');
3560 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3561 		       'y' : 'n');
3562 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3563 		       'y' : 'n');
3564 
3565 		if (cc->on_disk_tag_size)
3566 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3567 			       cc->on_disk_tag_size, cc->cipher_auth);
3568 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3569 			DMEMIT(",sector_size=%d", cc->sector_size);
3570 		if (cc->cipher_string)
3571 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3572 
3573 		DMEMIT(",key_size=%u", cc->key_size);
3574 		DMEMIT(",key_parts=%u", cc->key_parts);
3575 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3576 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3577 		DMEMIT(";");
3578 		break;
3579 	}
3580 }
3581 
3582 static void crypt_postsuspend(struct dm_target *ti)
3583 {
3584 	struct crypt_config *cc = ti->private;
3585 
3586 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3587 }
3588 
3589 static int crypt_preresume(struct dm_target *ti)
3590 {
3591 	struct crypt_config *cc = ti->private;
3592 
3593 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3594 		DMERR("aborting resume - crypt key is not set.");
3595 		return -EAGAIN;
3596 	}
3597 
3598 	return 0;
3599 }
3600 
3601 static void crypt_resume(struct dm_target *ti)
3602 {
3603 	struct crypt_config *cc = ti->private;
3604 
3605 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3606 }
3607 
3608 /* Message interface
3609  *	key set <key>
3610  *	key wipe
3611  */
3612 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3613 			 char *result, unsigned int maxlen)
3614 {
3615 	struct crypt_config *cc = ti->private;
3616 	int key_size, ret = -EINVAL;
3617 
3618 	if (argc < 2)
3619 		goto error;
3620 
3621 	if (!strcasecmp(argv[0], "key")) {
3622 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3623 			DMWARN("not suspended during key manipulation.");
3624 			return -EINVAL;
3625 		}
3626 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3627 			/* The key size may not be changed. */
3628 			key_size = get_key_size(&argv[2]);
3629 			if (key_size < 0 || cc->key_size != key_size) {
3630 				memset(argv[2], '0', strlen(argv[2]));
3631 				return -EINVAL;
3632 			}
3633 
3634 			ret = crypt_set_key(cc, argv[2]);
3635 			if (ret)
3636 				return ret;
3637 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3638 				ret = cc->iv_gen_ops->init(cc);
3639 			/* wipe the kernel key payload copy */
3640 			if (cc->key_string)
3641 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3642 			return ret;
3643 		}
3644 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3645 			return crypt_wipe_key(cc);
3646 	}
3647 
3648 error:
3649 	DMWARN("unrecognised message received.");
3650 	return -EINVAL;
3651 }
3652 
3653 static int crypt_iterate_devices(struct dm_target *ti,
3654 				 iterate_devices_callout_fn fn, void *data)
3655 {
3656 	struct crypt_config *cc = ti->private;
3657 
3658 	return fn(ti, cc->dev, cc->start, ti->len, data);
3659 }
3660 
3661 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3662 {
3663 	struct crypt_config *cc = ti->private;
3664 
3665 	/*
3666 	 * Unfortunate constraint that is required to avoid the potential
3667 	 * for exceeding underlying device's max_segments limits -- due to
3668 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3669 	 * bio that are not as physically contiguous as the original bio.
3670 	 */
3671 	limits->max_segment_size = PAGE_SIZE;
3672 
3673 	limits->logical_block_size =
3674 		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3675 	limits->physical_block_size =
3676 		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3677 	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3678 	limits->dma_alignment = limits->logical_block_size - 1;
3679 }
3680 
3681 static struct target_type crypt_target = {
3682 	.name   = "crypt",
3683 	.version = {1, 24, 0},
3684 	.module = THIS_MODULE,
3685 	.ctr    = crypt_ctr,
3686 	.dtr    = crypt_dtr,
3687 	.features = DM_TARGET_ZONED_HM,
3688 	.report_zones = crypt_report_zones,
3689 	.map    = crypt_map,
3690 	.status = crypt_status,
3691 	.postsuspend = crypt_postsuspend,
3692 	.preresume = crypt_preresume,
3693 	.resume = crypt_resume,
3694 	.message = crypt_message,
3695 	.iterate_devices = crypt_iterate_devices,
3696 	.io_hints = crypt_io_hints,
3697 };
3698 module_dm(crypt);
3699 
3700 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3701 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3702 MODULE_LICENSE("GPL");
3703