xref: /openbmc/linux/drivers/md/dm-crypt.c (revision d2999e1b)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/backing-dev.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
29 
30 #include <linux/device-mapper.h>
31 
32 #define DM_MSG_PREFIX "crypt"
33 
34 /*
35  * context holding the current state of a multi-part conversion
36  */
37 struct convert_context {
38 	struct completion restart;
39 	struct bio *bio_in;
40 	struct bio *bio_out;
41 	struct bvec_iter iter_in;
42 	struct bvec_iter iter_out;
43 	sector_t cc_sector;
44 	atomic_t cc_pending;
45 	struct ablkcipher_request *req;
46 };
47 
48 /*
49  * per bio private data
50  */
51 struct dm_crypt_io {
52 	struct crypt_config *cc;
53 	struct bio *base_bio;
54 	struct work_struct work;
55 
56 	struct convert_context ctx;
57 
58 	atomic_t io_pending;
59 	int error;
60 	sector_t sector;
61 	struct dm_crypt_io *base_io;
62 };
63 
64 struct dm_crypt_request {
65 	struct convert_context *ctx;
66 	struct scatterlist sg_in;
67 	struct scatterlist sg_out;
68 	sector_t iv_sector;
69 };
70 
71 struct crypt_config;
72 
73 struct crypt_iv_operations {
74 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
75 		   const char *opts);
76 	void (*dtr)(struct crypt_config *cc);
77 	int (*init)(struct crypt_config *cc);
78 	int (*wipe)(struct crypt_config *cc);
79 	int (*generator)(struct crypt_config *cc, u8 *iv,
80 			 struct dm_crypt_request *dmreq);
81 	int (*post)(struct crypt_config *cc, u8 *iv,
82 		    struct dm_crypt_request *dmreq);
83 };
84 
85 struct iv_essiv_private {
86 	struct crypto_hash *hash_tfm;
87 	u8 *salt;
88 };
89 
90 struct iv_benbi_private {
91 	int shift;
92 };
93 
94 #define LMK_SEED_SIZE 64 /* hash + 0 */
95 struct iv_lmk_private {
96 	struct crypto_shash *hash_tfm;
97 	u8 *seed;
98 };
99 
100 #define TCW_WHITENING_SIZE 16
101 struct iv_tcw_private {
102 	struct crypto_shash *crc32_tfm;
103 	u8 *iv_seed;
104 	u8 *whitening;
105 };
106 
107 /*
108  * Crypt: maps a linear range of a block device
109  * and encrypts / decrypts at the same time.
110  */
111 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
112 
113 /*
114  * The fields in here must be read only after initialization.
115  */
116 struct crypt_config {
117 	struct dm_dev *dev;
118 	sector_t start;
119 
120 	/*
121 	 * pool for per bio private data, crypto requests and
122 	 * encryption requeusts/buffer pages
123 	 */
124 	mempool_t *io_pool;
125 	mempool_t *req_pool;
126 	mempool_t *page_pool;
127 	struct bio_set *bs;
128 
129 	struct workqueue_struct *io_queue;
130 	struct workqueue_struct *crypt_queue;
131 
132 	char *cipher;
133 	char *cipher_string;
134 
135 	struct crypt_iv_operations *iv_gen_ops;
136 	union {
137 		struct iv_essiv_private essiv;
138 		struct iv_benbi_private benbi;
139 		struct iv_lmk_private lmk;
140 		struct iv_tcw_private tcw;
141 	} iv_gen_private;
142 	sector_t iv_offset;
143 	unsigned int iv_size;
144 
145 	/* ESSIV: struct crypto_cipher *essiv_tfm */
146 	void *iv_private;
147 	struct crypto_ablkcipher **tfms;
148 	unsigned tfms_count;
149 
150 	/*
151 	 * Layout of each crypto request:
152 	 *
153 	 *   struct ablkcipher_request
154 	 *      context
155 	 *      padding
156 	 *   struct dm_crypt_request
157 	 *      padding
158 	 *   IV
159 	 *
160 	 * The padding is added so that dm_crypt_request and the IV are
161 	 * correctly aligned.
162 	 */
163 	unsigned int dmreq_start;
164 
165 	unsigned long flags;
166 	unsigned int key_size;
167 	unsigned int key_parts;      /* independent parts in key buffer */
168 	unsigned int key_extra_size; /* additional keys length */
169 	u8 key[0];
170 };
171 
172 #define MIN_IOS        16
173 #define MIN_POOL_PAGES 32
174 
175 static struct kmem_cache *_crypt_io_pool;
176 
177 static void clone_init(struct dm_crypt_io *, struct bio *);
178 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
179 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
180 
181 /*
182  * Use this to access cipher attributes that are the same for each CPU.
183  */
184 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
185 {
186 	return cc->tfms[0];
187 }
188 
189 /*
190  * Different IV generation algorithms:
191  *
192  * plain: the initial vector is the 32-bit little-endian version of the sector
193  *        number, padded with zeros if necessary.
194  *
195  * plain64: the initial vector is the 64-bit little-endian version of the sector
196  *        number, padded with zeros if necessary.
197  *
198  * essiv: "encrypted sector|salt initial vector", the sector number is
199  *        encrypted with the bulk cipher using a salt as key. The salt
200  *        should be derived from the bulk cipher's key via hashing.
201  *
202  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
203  *        (needed for LRW-32-AES and possible other narrow block modes)
204  *
205  * null: the initial vector is always zero.  Provides compatibility with
206  *       obsolete loop_fish2 devices.  Do not use for new devices.
207  *
208  * lmk:  Compatible implementation of the block chaining mode used
209  *       by the Loop-AES block device encryption system
210  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
211  *       It operates on full 512 byte sectors and uses CBC
212  *       with an IV derived from the sector number, the data and
213  *       optionally extra IV seed.
214  *       This means that after decryption the first block
215  *       of sector must be tweaked according to decrypted data.
216  *       Loop-AES can use three encryption schemes:
217  *         version 1: is plain aes-cbc mode
218  *         version 2: uses 64 multikey scheme with lmk IV generator
219  *         version 3: the same as version 2 with additional IV seed
220  *                   (it uses 65 keys, last key is used as IV seed)
221  *
222  * tcw:  Compatible implementation of the block chaining mode used
223  *       by the TrueCrypt device encryption system (prior to version 4.1).
224  *       For more info see: http://www.truecrypt.org
225  *       It operates on full 512 byte sectors and uses CBC
226  *       with an IV derived from initial key and the sector number.
227  *       In addition, whitening value is applied on every sector, whitening
228  *       is calculated from initial key, sector number and mixed using CRC32.
229  *       Note that this encryption scheme is vulnerable to watermarking attacks
230  *       and should be used for old compatible containers access only.
231  *
232  * plumb: unimplemented, see:
233  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
234  */
235 
236 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
237 			      struct dm_crypt_request *dmreq)
238 {
239 	memset(iv, 0, cc->iv_size);
240 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
241 
242 	return 0;
243 }
244 
245 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
246 				struct dm_crypt_request *dmreq)
247 {
248 	memset(iv, 0, cc->iv_size);
249 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
250 
251 	return 0;
252 }
253 
254 /* Initialise ESSIV - compute salt but no local memory allocations */
255 static int crypt_iv_essiv_init(struct crypt_config *cc)
256 {
257 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
258 	struct hash_desc desc;
259 	struct scatterlist sg;
260 	struct crypto_cipher *essiv_tfm;
261 	int err;
262 
263 	sg_init_one(&sg, cc->key, cc->key_size);
264 	desc.tfm = essiv->hash_tfm;
265 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
266 
267 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
268 	if (err)
269 		return err;
270 
271 	essiv_tfm = cc->iv_private;
272 
273 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
274 			    crypto_hash_digestsize(essiv->hash_tfm));
275 	if (err)
276 		return err;
277 
278 	return 0;
279 }
280 
281 /* Wipe salt and reset key derived from volume key */
282 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
283 {
284 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
285 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
286 	struct crypto_cipher *essiv_tfm;
287 	int r, err = 0;
288 
289 	memset(essiv->salt, 0, salt_size);
290 
291 	essiv_tfm = cc->iv_private;
292 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
293 	if (r)
294 		err = r;
295 
296 	return err;
297 }
298 
299 /* Set up per cpu cipher state */
300 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
301 					     struct dm_target *ti,
302 					     u8 *salt, unsigned saltsize)
303 {
304 	struct crypto_cipher *essiv_tfm;
305 	int err;
306 
307 	/* Setup the essiv_tfm with the given salt */
308 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
309 	if (IS_ERR(essiv_tfm)) {
310 		ti->error = "Error allocating crypto tfm for ESSIV";
311 		return essiv_tfm;
312 	}
313 
314 	if (crypto_cipher_blocksize(essiv_tfm) !=
315 	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
316 		ti->error = "Block size of ESSIV cipher does "
317 			    "not match IV size of block cipher";
318 		crypto_free_cipher(essiv_tfm);
319 		return ERR_PTR(-EINVAL);
320 	}
321 
322 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
323 	if (err) {
324 		ti->error = "Failed to set key for ESSIV cipher";
325 		crypto_free_cipher(essiv_tfm);
326 		return ERR_PTR(err);
327 	}
328 
329 	return essiv_tfm;
330 }
331 
332 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
333 {
334 	struct crypto_cipher *essiv_tfm;
335 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
336 
337 	crypto_free_hash(essiv->hash_tfm);
338 	essiv->hash_tfm = NULL;
339 
340 	kzfree(essiv->salt);
341 	essiv->salt = NULL;
342 
343 	essiv_tfm = cc->iv_private;
344 
345 	if (essiv_tfm)
346 		crypto_free_cipher(essiv_tfm);
347 
348 	cc->iv_private = NULL;
349 }
350 
351 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
352 			      const char *opts)
353 {
354 	struct crypto_cipher *essiv_tfm = NULL;
355 	struct crypto_hash *hash_tfm = NULL;
356 	u8 *salt = NULL;
357 	int err;
358 
359 	if (!opts) {
360 		ti->error = "Digest algorithm missing for ESSIV mode";
361 		return -EINVAL;
362 	}
363 
364 	/* Allocate hash algorithm */
365 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
366 	if (IS_ERR(hash_tfm)) {
367 		ti->error = "Error initializing ESSIV hash";
368 		err = PTR_ERR(hash_tfm);
369 		goto bad;
370 	}
371 
372 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
373 	if (!salt) {
374 		ti->error = "Error kmallocing salt storage in ESSIV";
375 		err = -ENOMEM;
376 		goto bad;
377 	}
378 
379 	cc->iv_gen_private.essiv.salt = salt;
380 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
381 
382 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
383 				crypto_hash_digestsize(hash_tfm));
384 	if (IS_ERR(essiv_tfm)) {
385 		crypt_iv_essiv_dtr(cc);
386 		return PTR_ERR(essiv_tfm);
387 	}
388 	cc->iv_private = essiv_tfm;
389 
390 	return 0;
391 
392 bad:
393 	if (hash_tfm && !IS_ERR(hash_tfm))
394 		crypto_free_hash(hash_tfm);
395 	kfree(salt);
396 	return err;
397 }
398 
399 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
400 			      struct dm_crypt_request *dmreq)
401 {
402 	struct crypto_cipher *essiv_tfm = cc->iv_private;
403 
404 	memset(iv, 0, cc->iv_size);
405 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
406 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
407 
408 	return 0;
409 }
410 
411 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
412 			      const char *opts)
413 {
414 	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
415 	int log = ilog2(bs);
416 
417 	/* we need to calculate how far we must shift the sector count
418 	 * to get the cipher block count, we use this shift in _gen */
419 
420 	if (1 << log != bs) {
421 		ti->error = "cypher blocksize is not a power of 2";
422 		return -EINVAL;
423 	}
424 
425 	if (log > 9) {
426 		ti->error = "cypher blocksize is > 512";
427 		return -EINVAL;
428 	}
429 
430 	cc->iv_gen_private.benbi.shift = 9 - log;
431 
432 	return 0;
433 }
434 
435 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
436 {
437 }
438 
439 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
440 			      struct dm_crypt_request *dmreq)
441 {
442 	__be64 val;
443 
444 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
445 
446 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
447 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
448 
449 	return 0;
450 }
451 
452 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
453 			     struct dm_crypt_request *dmreq)
454 {
455 	memset(iv, 0, cc->iv_size);
456 
457 	return 0;
458 }
459 
460 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
461 {
462 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
463 
464 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
465 		crypto_free_shash(lmk->hash_tfm);
466 	lmk->hash_tfm = NULL;
467 
468 	kzfree(lmk->seed);
469 	lmk->seed = NULL;
470 }
471 
472 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
473 			    const char *opts)
474 {
475 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
476 
477 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
478 	if (IS_ERR(lmk->hash_tfm)) {
479 		ti->error = "Error initializing LMK hash";
480 		return PTR_ERR(lmk->hash_tfm);
481 	}
482 
483 	/* No seed in LMK version 2 */
484 	if (cc->key_parts == cc->tfms_count) {
485 		lmk->seed = NULL;
486 		return 0;
487 	}
488 
489 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
490 	if (!lmk->seed) {
491 		crypt_iv_lmk_dtr(cc);
492 		ti->error = "Error kmallocing seed storage in LMK";
493 		return -ENOMEM;
494 	}
495 
496 	return 0;
497 }
498 
499 static int crypt_iv_lmk_init(struct crypt_config *cc)
500 {
501 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
502 	int subkey_size = cc->key_size / cc->key_parts;
503 
504 	/* LMK seed is on the position of LMK_KEYS + 1 key */
505 	if (lmk->seed)
506 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
507 		       crypto_shash_digestsize(lmk->hash_tfm));
508 
509 	return 0;
510 }
511 
512 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
513 {
514 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
515 
516 	if (lmk->seed)
517 		memset(lmk->seed, 0, LMK_SEED_SIZE);
518 
519 	return 0;
520 }
521 
522 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
523 			    struct dm_crypt_request *dmreq,
524 			    u8 *data)
525 {
526 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
527 	struct {
528 		struct shash_desc desc;
529 		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
530 	} sdesc;
531 	struct md5_state md5state;
532 	__le32 buf[4];
533 	int i, r;
534 
535 	sdesc.desc.tfm = lmk->hash_tfm;
536 	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
537 
538 	r = crypto_shash_init(&sdesc.desc);
539 	if (r)
540 		return r;
541 
542 	if (lmk->seed) {
543 		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
544 		if (r)
545 			return r;
546 	}
547 
548 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
549 	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
550 	if (r)
551 		return r;
552 
553 	/* Sector is cropped to 56 bits here */
554 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
555 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
556 	buf[2] = cpu_to_le32(4024);
557 	buf[3] = 0;
558 	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
559 	if (r)
560 		return r;
561 
562 	/* No MD5 padding here */
563 	r = crypto_shash_export(&sdesc.desc, &md5state);
564 	if (r)
565 		return r;
566 
567 	for (i = 0; i < MD5_HASH_WORDS; i++)
568 		__cpu_to_le32s(&md5state.hash[i]);
569 	memcpy(iv, &md5state.hash, cc->iv_size);
570 
571 	return 0;
572 }
573 
574 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
575 			    struct dm_crypt_request *dmreq)
576 {
577 	u8 *src;
578 	int r = 0;
579 
580 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
581 		src = kmap_atomic(sg_page(&dmreq->sg_in));
582 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
583 		kunmap_atomic(src);
584 	} else
585 		memset(iv, 0, cc->iv_size);
586 
587 	return r;
588 }
589 
590 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
591 			     struct dm_crypt_request *dmreq)
592 {
593 	u8 *dst;
594 	int r;
595 
596 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
597 		return 0;
598 
599 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
600 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
601 
602 	/* Tweak the first block of plaintext sector */
603 	if (!r)
604 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
605 
606 	kunmap_atomic(dst);
607 	return r;
608 }
609 
610 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
611 {
612 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
613 
614 	kzfree(tcw->iv_seed);
615 	tcw->iv_seed = NULL;
616 	kzfree(tcw->whitening);
617 	tcw->whitening = NULL;
618 
619 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
620 		crypto_free_shash(tcw->crc32_tfm);
621 	tcw->crc32_tfm = NULL;
622 }
623 
624 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
625 			    const char *opts)
626 {
627 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
628 
629 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
630 		ti->error = "Wrong key size for TCW";
631 		return -EINVAL;
632 	}
633 
634 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
635 	if (IS_ERR(tcw->crc32_tfm)) {
636 		ti->error = "Error initializing CRC32 in TCW";
637 		return PTR_ERR(tcw->crc32_tfm);
638 	}
639 
640 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
641 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
642 	if (!tcw->iv_seed || !tcw->whitening) {
643 		crypt_iv_tcw_dtr(cc);
644 		ti->error = "Error allocating seed storage in TCW";
645 		return -ENOMEM;
646 	}
647 
648 	return 0;
649 }
650 
651 static int crypt_iv_tcw_init(struct crypt_config *cc)
652 {
653 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
654 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
655 
656 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
657 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
658 	       TCW_WHITENING_SIZE);
659 
660 	return 0;
661 }
662 
663 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
664 {
665 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
666 
667 	memset(tcw->iv_seed, 0, cc->iv_size);
668 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
669 
670 	return 0;
671 }
672 
673 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
674 				  struct dm_crypt_request *dmreq,
675 				  u8 *data)
676 {
677 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
678 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
679 	u8 buf[TCW_WHITENING_SIZE];
680 	struct {
681 		struct shash_desc desc;
682 		char ctx[crypto_shash_descsize(tcw->crc32_tfm)];
683 	} sdesc;
684 	int i, r;
685 
686 	/* xor whitening with sector number */
687 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
688 	crypto_xor(buf, (u8 *)&sector, 8);
689 	crypto_xor(&buf[8], (u8 *)&sector, 8);
690 
691 	/* calculate crc32 for every 32bit part and xor it */
692 	sdesc.desc.tfm = tcw->crc32_tfm;
693 	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
694 	for (i = 0; i < 4; i++) {
695 		r = crypto_shash_init(&sdesc.desc);
696 		if (r)
697 			goto out;
698 		r = crypto_shash_update(&sdesc.desc, &buf[i * 4], 4);
699 		if (r)
700 			goto out;
701 		r = crypto_shash_final(&sdesc.desc, &buf[i * 4]);
702 		if (r)
703 			goto out;
704 	}
705 	crypto_xor(&buf[0], &buf[12], 4);
706 	crypto_xor(&buf[4], &buf[8], 4);
707 
708 	/* apply whitening (8 bytes) to whole sector */
709 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
710 		crypto_xor(data + i * 8, buf, 8);
711 out:
712 	memset(buf, 0, sizeof(buf));
713 	return r;
714 }
715 
716 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
717 			    struct dm_crypt_request *dmreq)
718 {
719 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
720 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
721 	u8 *src;
722 	int r = 0;
723 
724 	/* Remove whitening from ciphertext */
725 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
726 		src = kmap_atomic(sg_page(&dmreq->sg_in));
727 		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
728 		kunmap_atomic(src);
729 	}
730 
731 	/* Calculate IV */
732 	memcpy(iv, tcw->iv_seed, cc->iv_size);
733 	crypto_xor(iv, (u8 *)&sector, 8);
734 	if (cc->iv_size > 8)
735 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
736 
737 	return r;
738 }
739 
740 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
741 			     struct dm_crypt_request *dmreq)
742 {
743 	u8 *dst;
744 	int r;
745 
746 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
747 		return 0;
748 
749 	/* Apply whitening on ciphertext */
750 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
751 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
752 	kunmap_atomic(dst);
753 
754 	return r;
755 }
756 
757 static struct crypt_iv_operations crypt_iv_plain_ops = {
758 	.generator = crypt_iv_plain_gen
759 };
760 
761 static struct crypt_iv_operations crypt_iv_plain64_ops = {
762 	.generator = crypt_iv_plain64_gen
763 };
764 
765 static struct crypt_iv_operations crypt_iv_essiv_ops = {
766 	.ctr       = crypt_iv_essiv_ctr,
767 	.dtr       = crypt_iv_essiv_dtr,
768 	.init      = crypt_iv_essiv_init,
769 	.wipe      = crypt_iv_essiv_wipe,
770 	.generator = crypt_iv_essiv_gen
771 };
772 
773 static struct crypt_iv_operations crypt_iv_benbi_ops = {
774 	.ctr	   = crypt_iv_benbi_ctr,
775 	.dtr	   = crypt_iv_benbi_dtr,
776 	.generator = crypt_iv_benbi_gen
777 };
778 
779 static struct crypt_iv_operations crypt_iv_null_ops = {
780 	.generator = crypt_iv_null_gen
781 };
782 
783 static struct crypt_iv_operations crypt_iv_lmk_ops = {
784 	.ctr	   = crypt_iv_lmk_ctr,
785 	.dtr	   = crypt_iv_lmk_dtr,
786 	.init	   = crypt_iv_lmk_init,
787 	.wipe	   = crypt_iv_lmk_wipe,
788 	.generator = crypt_iv_lmk_gen,
789 	.post	   = crypt_iv_lmk_post
790 };
791 
792 static struct crypt_iv_operations crypt_iv_tcw_ops = {
793 	.ctr	   = crypt_iv_tcw_ctr,
794 	.dtr	   = crypt_iv_tcw_dtr,
795 	.init	   = crypt_iv_tcw_init,
796 	.wipe	   = crypt_iv_tcw_wipe,
797 	.generator = crypt_iv_tcw_gen,
798 	.post	   = crypt_iv_tcw_post
799 };
800 
801 static void crypt_convert_init(struct crypt_config *cc,
802 			       struct convert_context *ctx,
803 			       struct bio *bio_out, struct bio *bio_in,
804 			       sector_t sector)
805 {
806 	ctx->bio_in = bio_in;
807 	ctx->bio_out = bio_out;
808 	if (bio_in)
809 		ctx->iter_in = bio_in->bi_iter;
810 	if (bio_out)
811 		ctx->iter_out = bio_out->bi_iter;
812 	ctx->cc_sector = sector + cc->iv_offset;
813 	init_completion(&ctx->restart);
814 }
815 
816 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
817 					     struct ablkcipher_request *req)
818 {
819 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
820 }
821 
822 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
823 					       struct dm_crypt_request *dmreq)
824 {
825 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
826 }
827 
828 static u8 *iv_of_dmreq(struct crypt_config *cc,
829 		       struct dm_crypt_request *dmreq)
830 {
831 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
832 		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
833 }
834 
835 static int crypt_convert_block(struct crypt_config *cc,
836 			       struct convert_context *ctx,
837 			       struct ablkcipher_request *req)
838 {
839 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
840 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
841 	struct dm_crypt_request *dmreq;
842 	u8 *iv;
843 	int r;
844 
845 	dmreq = dmreq_of_req(cc, req);
846 	iv = iv_of_dmreq(cc, dmreq);
847 
848 	dmreq->iv_sector = ctx->cc_sector;
849 	dmreq->ctx = ctx;
850 	sg_init_table(&dmreq->sg_in, 1);
851 	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
852 		    bv_in.bv_offset);
853 
854 	sg_init_table(&dmreq->sg_out, 1);
855 	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
856 		    bv_out.bv_offset);
857 
858 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
859 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
860 
861 	if (cc->iv_gen_ops) {
862 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
863 		if (r < 0)
864 			return r;
865 	}
866 
867 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
868 				     1 << SECTOR_SHIFT, iv);
869 
870 	if (bio_data_dir(ctx->bio_in) == WRITE)
871 		r = crypto_ablkcipher_encrypt(req);
872 	else
873 		r = crypto_ablkcipher_decrypt(req);
874 
875 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
876 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
877 
878 	return r;
879 }
880 
881 static void kcryptd_async_done(struct crypto_async_request *async_req,
882 			       int error);
883 
884 static void crypt_alloc_req(struct crypt_config *cc,
885 			    struct convert_context *ctx)
886 {
887 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
888 
889 	if (!ctx->req)
890 		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
891 
892 	ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
893 	ablkcipher_request_set_callback(ctx->req,
894 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
895 	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
896 }
897 
898 /*
899  * Encrypt / decrypt data from one bio to another one (can be the same one)
900  */
901 static int crypt_convert(struct crypt_config *cc,
902 			 struct convert_context *ctx)
903 {
904 	int r;
905 
906 	atomic_set(&ctx->cc_pending, 1);
907 
908 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
909 
910 		crypt_alloc_req(cc, ctx);
911 
912 		atomic_inc(&ctx->cc_pending);
913 
914 		r = crypt_convert_block(cc, ctx, ctx->req);
915 
916 		switch (r) {
917 		/* async */
918 		case -EBUSY:
919 			wait_for_completion(&ctx->restart);
920 			reinit_completion(&ctx->restart);
921 			/* fall through*/
922 		case -EINPROGRESS:
923 			ctx->req = NULL;
924 			ctx->cc_sector++;
925 			continue;
926 
927 		/* sync */
928 		case 0:
929 			atomic_dec(&ctx->cc_pending);
930 			ctx->cc_sector++;
931 			cond_resched();
932 			continue;
933 
934 		/* error */
935 		default:
936 			atomic_dec(&ctx->cc_pending);
937 			return r;
938 		}
939 	}
940 
941 	return 0;
942 }
943 
944 /*
945  * Generate a new unfragmented bio with the given size
946  * This should never violate the device limitations
947  * May return a smaller bio when running out of pages, indicated by
948  * *out_of_pages set to 1.
949  */
950 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
951 				      unsigned *out_of_pages)
952 {
953 	struct crypt_config *cc = io->cc;
954 	struct bio *clone;
955 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
956 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
957 	unsigned i, len;
958 	struct page *page;
959 
960 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
961 	if (!clone)
962 		return NULL;
963 
964 	clone_init(io, clone);
965 	*out_of_pages = 0;
966 
967 	for (i = 0; i < nr_iovecs; i++) {
968 		page = mempool_alloc(cc->page_pool, gfp_mask);
969 		if (!page) {
970 			*out_of_pages = 1;
971 			break;
972 		}
973 
974 		/*
975 		 * If additional pages cannot be allocated without waiting,
976 		 * return a partially-allocated bio.  The caller will then try
977 		 * to allocate more bios while submitting this partial bio.
978 		 */
979 		gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
980 
981 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
982 
983 		if (!bio_add_page(clone, page, len, 0)) {
984 			mempool_free(page, cc->page_pool);
985 			break;
986 		}
987 
988 		size -= len;
989 	}
990 
991 	if (!clone->bi_iter.bi_size) {
992 		bio_put(clone);
993 		return NULL;
994 	}
995 
996 	return clone;
997 }
998 
999 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1000 {
1001 	unsigned int i;
1002 	struct bio_vec *bv;
1003 
1004 	bio_for_each_segment_all(bv, clone, i) {
1005 		BUG_ON(!bv->bv_page);
1006 		mempool_free(bv->bv_page, cc->page_pool);
1007 		bv->bv_page = NULL;
1008 	}
1009 }
1010 
1011 static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
1012 					  struct bio *bio, sector_t sector)
1013 {
1014 	struct dm_crypt_io *io;
1015 
1016 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
1017 	io->cc = cc;
1018 	io->base_bio = bio;
1019 	io->sector = sector;
1020 	io->error = 0;
1021 	io->base_io = NULL;
1022 	io->ctx.req = NULL;
1023 	atomic_set(&io->io_pending, 0);
1024 
1025 	return io;
1026 }
1027 
1028 static void crypt_inc_pending(struct dm_crypt_io *io)
1029 {
1030 	atomic_inc(&io->io_pending);
1031 }
1032 
1033 /*
1034  * One of the bios was finished. Check for completion of
1035  * the whole request and correctly clean up the buffer.
1036  * If base_io is set, wait for the last fragment to complete.
1037  */
1038 static void crypt_dec_pending(struct dm_crypt_io *io)
1039 {
1040 	struct crypt_config *cc = io->cc;
1041 	struct bio *base_bio = io->base_bio;
1042 	struct dm_crypt_io *base_io = io->base_io;
1043 	int error = io->error;
1044 
1045 	if (!atomic_dec_and_test(&io->io_pending))
1046 		return;
1047 
1048 	if (io->ctx.req)
1049 		mempool_free(io->ctx.req, cc->req_pool);
1050 	mempool_free(io, cc->io_pool);
1051 
1052 	if (likely(!base_io))
1053 		bio_endio(base_bio, error);
1054 	else {
1055 		if (error && !base_io->error)
1056 			base_io->error = error;
1057 		crypt_dec_pending(base_io);
1058 	}
1059 }
1060 
1061 /*
1062  * kcryptd/kcryptd_io:
1063  *
1064  * Needed because it would be very unwise to do decryption in an
1065  * interrupt context.
1066  *
1067  * kcryptd performs the actual encryption or decryption.
1068  *
1069  * kcryptd_io performs the IO submission.
1070  *
1071  * They must be separated as otherwise the final stages could be
1072  * starved by new requests which can block in the first stages due
1073  * to memory allocation.
1074  *
1075  * The work is done per CPU global for all dm-crypt instances.
1076  * They should not depend on each other and do not block.
1077  */
1078 static void crypt_endio(struct bio *clone, int error)
1079 {
1080 	struct dm_crypt_io *io = clone->bi_private;
1081 	struct crypt_config *cc = io->cc;
1082 	unsigned rw = bio_data_dir(clone);
1083 
1084 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1085 		error = -EIO;
1086 
1087 	/*
1088 	 * free the processed pages
1089 	 */
1090 	if (rw == WRITE)
1091 		crypt_free_buffer_pages(cc, clone);
1092 
1093 	bio_put(clone);
1094 
1095 	if (rw == READ && !error) {
1096 		kcryptd_queue_crypt(io);
1097 		return;
1098 	}
1099 
1100 	if (unlikely(error))
1101 		io->error = error;
1102 
1103 	crypt_dec_pending(io);
1104 }
1105 
1106 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1107 {
1108 	struct crypt_config *cc = io->cc;
1109 
1110 	clone->bi_private = io;
1111 	clone->bi_end_io  = crypt_endio;
1112 	clone->bi_bdev    = cc->dev->bdev;
1113 	clone->bi_rw      = io->base_bio->bi_rw;
1114 }
1115 
1116 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1117 {
1118 	struct crypt_config *cc = io->cc;
1119 	struct bio *base_bio = io->base_bio;
1120 	struct bio *clone;
1121 
1122 	/*
1123 	 * The block layer might modify the bvec array, so always
1124 	 * copy the required bvecs because we need the original
1125 	 * one in order to decrypt the whole bio data *afterwards*.
1126 	 */
1127 	clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1128 	if (!clone)
1129 		return 1;
1130 
1131 	crypt_inc_pending(io);
1132 
1133 	clone_init(io, clone);
1134 	clone->bi_iter.bi_sector = cc->start + io->sector;
1135 
1136 	generic_make_request(clone);
1137 	return 0;
1138 }
1139 
1140 static void kcryptd_io_write(struct dm_crypt_io *io)
1141 {
1142 	struct bio *clone = io->ctx.bio_out;
1143 	generic_make_request(clone);
1144 }
1145 
1146 static void kcryptd_io(struct work_struct *work)
1147 {
1148 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1149 
1150 	if (bio_data_dir(io->base_bio) == READ) {
1151 		crypt_inc_pending(io);
1152 		if (kcryptd_io_read(io, GFP_NOIO))
1153 			io->error = -ENOMEM;
1154 		crypt_dec_pending(io);
1155 	} else
1156 		kcryptd_io_write(io);
1157 }
1158 
1159 static void kcryptd_queue_io(struct dm_crypt_io *io)
1160 {
1161 	struct crypt_config *cc = io->cc;
1162 
1163 	INIT_WORK(&io->work, kcryptd_io);
1164 	queue_work(cc->io_queue, &io->work);
1165 }
1166 
1167 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1168 {
1169 	struct bio *clone = io->ctx.bio_out;
1170 	struct crypt_config *cc = io->cc;
1171 
1172 	if (unlikely(io->error < 0)) {
1173 		crypt_free_buffer_pages(cc, clone);
1174 		bio_put(clone);
1175 		crypt_dec_pending(io);
1176 		return;
1177 	}
1178 
1179 	/* crypt_convert should have filled the clone bio */
1180 	BUG_ON(io->ctx.iter_out.bi_size);
1181 
1182 	clone->bi_iter.bi_sector = cc->start + io->sector;
1183 
1184 	if (async)
1185 		kcryptd_queue_io(io);
1186 	else
1187 		generic_make_request(clone);
1188 }
1189 
1190 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1191 {
1192 	struct crypt_config *cc = io->cc;
1193 	struct bio *clone;
1194 	struct dm_crypt_io *new_io;
1195 	int crypt_finished;
1196 	unsigned out_of_pages = 0;
1197 	unsigned remaining = io->base_bio->bi_iter.bi_size;
1198 	sector_t sector = io->sector;
1199 	int r;
1200 
1201 	/*
1202 	 * Prevent io from disappearing until this function completes.
1203 	 */
1204 	crypt_inc_pending(io);
1205 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1206 
1207 	/*
1208 	 * The allocated buffers can be smaller than the whole bio,
1209 	 * so repeat the whole process until all the data can be handled.
1210 	 */
1211 	while (remaining) {
1212 		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1213 		if (unlikely(!clone)) {
1214 			io->error = -ENOMEM;
1215 			break;
1216 		}
1217 
1218 		io->ctx.bio_out = clone;
1219 		io->ctx.iter_out = clone->bi_iter;
1220 
1221 		remaining -= clone->bi_iter.bi_size;
1222 		sector += bio_sectors(clone);
1223 
1224 		crypt_inc_pending(io);
1225 
1226 		r = crypt_convert(cc, &io->ctx);
1227 		if (r < 0)
1228 			io->error = -EIO;
1229 
1230 		crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1231 
1232 		/* Encryption was already finished, submit io now */
1233 		if (crypt_finished) {
1234 			kcryptd_crypt_write_io_submit(io, 0);
1235 
1236 			/*
1237 			 * If there was an error, do not try next fragments.
1238 			 * For async, error is processed in async handler.
1239 			 */
1240 			if (unlikely(r < 0))
1241 				break;
1242 
1243 			io->sector = sector;
1244 		}
1245 
1246 		/*
1247 		 * Out of memory -> run queues
1248 		 * But don't wait if split was due to the io size restriction
1249 		 */
1250 		if (unlikely(out_of_pages))
1251 			congestion_wait(BLK_RW_ASYNC, HZ/100);
1252 
1253 		/*
1254 		 * With async crypto it is unsafe to share the crypto context
1255 		 * between fragments, so switch to a new dm_crypt_io structure.
1256 		 */
1257 		if (unlikely(!crypt_finished && remaining)) {
1258 			new_io = crypt_io_alloc(io->cc, io->base_bio,
1259 						sector);
1260 			crypt_inc_pending(new_io);
1261 			crypt_convert_init(cc, &new_io->ctx, NULL,
1262 					   io->base_bio, sector);
1263 			new_io->ctx.iter_in = io->ctx.iter_in;
1264 
1265 			/*
1266 			 * Fragments after the first use the base_io
1267 			 * pending count.
1268 			 */
1269 			if (!io->base_io)
1270 				new_io->base_io = io;
1271 			else {
1272 				new_io->base_io = io->base_io;
1273 				crypt_inc_pending(io->base_io);
1274 				crypt_dec_pending(io);
1275 			}
1276 
1277 			io = new_io;
1278 		}
1279 	}
1280 
1281 	crypt_dec_pending(io);
1282 }
1283 
1284 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1285 {
1286 	crypt_dec_pending(io);
1287 }
1288 
1289 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1290 {
1291 	struct crypt_config *cc = io->cc;
1292 	int r = 0;
1293 
1294 	crypt_inc_pending(io);
1295 
1296 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1297 			   io->sector);
1298 
1299 	r = crypt_convert(cc, &io->ctx);
1300 	if (r < 0)
1301 		io->error = -EIO;
1302 
1303 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1304 		kcryptd_crypt_read_done(io);
1305 
1306 	crypt_dec_pending(io);
1307 }
1308 
1309 static void kcryptd_async_done(struct crypto_async_request *async_req,
1310 			       int error)
1311 {
1312 	struct dm_crypt_request *dmreq = async_req->data;
1313 	struct convert_context *ctx = dmreq->ctx;
1314 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1315 	struct crypt_config *cc = io->cc;
1316 
1317 	if (error == -EINPROGRESS) {
1318 		complete(&ctx->restart);
1319 		return;
1320 	}
1321 
1322 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1323 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1324 
1325 	if (error < 0)
1326 		io->error = -EIO;
1327 
1328 	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1329 
1330 	if (!atomic_dec_and_test(&ctx->cc_pending))
1331 		return;
1332 
1333 	if (bio_data_dir(io->base_bio) == READ)
1334 		kcryptd_crypt_read_done(io);
1335 	else
1336 		kcryptd_crypt_write_io_submit(io, 1);
1337 }
1338 
1339 static void kcryptd_crypt(struct work_struct *work)
1340 {
1341 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1342 
1343 	if (bio_data_dir(io->base_bio) == READ)
1344 		kcryptd_crypt_read_convert(io);
1345 	else
1346 		kcryptd_crypt_write_convert(io);
1347 }
1348 
1349 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1350 {
1351 	struct crypt_config *cc = io->cc;
1352 
1353 	INIT_WORK(&io->work, kcryptd_crypt);
1354 	queue_work(cc->crypt_queue, &io->work);
1355 }
1356 
1357 /*
1358  * Decode key from its hex representation
1359  */
1360 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1361 {
1362 	char buffer[3];
1363 	unsigned int i;
1364 
1365 	buffer[2] = '\0';
1366 
1367 	for (i = 0; i < size; i++) {
1368 		buffer[0] = *hex++;
1369 		buffer[1] = *hex++;
1370 
1371 		if (kstrtou8(buffer, 16, &key[i]))
1372 			return -EINVAL;
1373 	}
1374 
1375 	if (*hex != '\0')
1376 		return -EINVAL;
1377 
1378 	return 0;
1379 }
1380 
1381 static void crypt_free_tfms(struct crypt_config *cc)
1382 {
1383 	unsigned i;
1384 
1385 	if (!cc->tfms)
1386 		return;
1387 
1388 	for (i = 0; i < cc->tfms_count; i++)
1389 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1390 			crypto_free_ablkcipher(cc->tfms[i]);
1391 			cc->tfms[i] = NULL;
1392 		}
1393 
1394 	kfree(cc->tfms);
1395 	cc->tfms = NULL;
1396 }
1397 
1398 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1399 {
1400 	unsigned i;
1401 	int err;
1402 
1403 	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1404 			   GFP_KERNEL);
1405 	if (!cc->tfms)
1406 		return -ENOMEM;
1407 
1408 	for (i = 0; i < cc->tfms_count; i++) {
1409 		cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1410 		if (IS_ERR(cc->tfms[i])) {
1411 			err = PTR_ERR(cc->tfms[i]);
1412 			crypt_free_tfms(cc);
1413 			return err;
1414 		}
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 static int crypt_setkey_allcpus(struct crypt_config *cc)
1421 {
1422 	unsigned subkey_size;
1423 	int err = 0, i, r;
1424 
1425 	/* Ignore extra keys (which are used for IV etc) */
1426 	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1427 
1428 	for (i = 0; i < cc->tfms_count; i++) {
1429 		r = crypto_ablkcipher_setkey(cc->tfms[i],
1430 					     cc->key + (i * subkey_size),
1431 					     subkey_size);
1432 		if (r)
1433 			err = r;
1434 	}
1435 
1436 	return err;
1437 }
1438 
1439 static int crypt_set_key(struct crypt_config *cc, char *key)
1440 {
1441 	int r = -EINVAL;
1442 	int key_string_len = strlen(key);
1443 
1444 	/* The key size may not be changed. */
1445 	if (cc->key_size != (key_string_len >> 1))
1446 		goto out;
1447 
1448 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1449 	if (!cc->key_size && strcmp(key, "-"))
1450 		goto out;
1451 
1452 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1453 		goto out;
1454 
1455 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1456 
1457 	r = crypt_setkey_allcpus(cc);
1458 
1459 out:
1460 	/* Hex key string not needed after here, so wipe it. */
1461 	memset(key, '0', key_string_len);
1462 
1463 	return r;
1464 }
1465 
1466 static int crypt_wipe_key(struct crypt_config *cc)
1467 {
1468 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1469 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1470 
1471 	return crypt_setkey_allcpus(cc);
1472 }
1473 
1474 static void crypt_dtr(struct dm_target *ti)
1475 {
1476 	struct crypt_config *cc = ti->private;
1477 
1478 	ti->private = NULL;
1479 
1480 	if (!cc)
1481 		return;
1482 
1483 	if (cc->io_queue)
1484 		destroy_workqueue(cc->io_queue);
1485 	if (cc->crypt_queue)
1486 		destroy_workqueue(cc->crypt_queue);
1487 
1488 	crypt_free_tfms(cc);
1489 
1490 	if (cc->bs)
1491 		bioset_free(cc->bs);
1492 
1493 	if (cc->page_pool)
1494 		mempool_destroy(cc->page_pool);
1495 	if (cc->req_pool)
1496 		mempool_destroy(cc->req_pool);
1497 	if (cc->io_pool)
1498 		mempool_destroy(cc->io_pool);
1499 
1500 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1501 		cc->iv_gen_ops->dtr(cc);
1502 
1503 	if (cc->dev)
1504 		dm_put_device(ti, cc->dev);
1505 
1506 	kzfree(cc->cipher);
1507 	kzfree(cc->cipher_string);
1508 
1509 	/* Must zero key material before freeing */
1510 	kzfree(cc);
1511 }
1512 
1513 static int crypt_ctr_cipher(struct dm_target *ti,
1514 			    char *cipher_in, char *key)
1515 {
1516 	struct crypt_config *cc = ti->private;
1517 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1518 	char *cipher_api = NULL;
1519 	int ret = -EINVAL;
1520 	char dummy;
1521 
1522 	/* Convert to crypto api definition? */
1523 	if (strchr(cipher_in, '(')) {
1524 		ti->error = "Bad cipher specification";
1525 		return -EINVAL;
1526 	}
1527 
1528 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1529 	if (!cc->cipher_string)
1530 		goto bad_mem;
1531 
1532 	/*
1533 	 * Legacy dm-crypt cipher specification
1534 	 * cipher[:keycount]-mode-iv:ivopts
1535 	 */
1536 	tmp = cipher_in;
1537 	keycount = strsep(&tmp, "-");
1538 	cipher = strsep(&keycount, ":");
1539 
1540 	if (!keycount)
1541 		cc->tfms_count = 1;
1542 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1543 		 !is_power_of_2(cc->tfms_count)) {
1544 		ti->error = "Bad cipher key count specification";
1545 		return -EINVAL;
1546 	}
1547 	cc->key_parts = cc->tfms_count;
1548 	cc->key_extra_size = 0;
1549 
1550 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1551 	if (!cc->cipher)
1552 		goto bad_mem;
1553 
1554 	chainmode = strsep(&tmp, "-");
1555 	ivopts = strsep(&tmp, "-");
1556 	ivmode = strsep(&ivopts, ":");
1557 
1558 	if (tmp)
1559 		DMWARN("Ignoring unexpected additional cipher options");
1560 
1561 	/*
1562 	 * For compatibility with the original dm-crypt mapping format, if
1563 	 * only the cipher name is supplied, use cbc-plain.
1564 	 */
1565 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1566 		chainmode = "cbc";
1567 		ivmode = "plain";
1568 	}
1569 
1570 	if (strcmp(chainmode, "ecb") && !ivmode) {
1571 		ti->error = "IV mechanism required";
1572 		return -EINVAL;
1573 	}
1574 
1575 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1576 	if (!cipher_api)
1577 		goto bad_mem;
1578 
1579 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1580 		       "%s(%s)", chainmode, cipher);
1581 	if (ret < 0) {
1582 		kfree(cipher_api);
1583 		goto bad_mem;
1584 	}
1585 
1586 	/* Allocate cipher */
1587 	ret = crypt_alloc_tfms(cc, cipher_api);
1588 	if (ret < 0) {
1589 		ti->error = "Error allocating crypto tfm";
1590 		goto bad;
1591 	}
1592 
1593 	/* Initialize IV */
1594 	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1595 	if (cc->iv_size)
1596 		/* at least a 64 bit sector number should fit in our buffer */
1597 		cc->iv_size = max(cc->iv_size,
1598 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1599 	else if (ivmode) {
1600 		DMWARN("Selected cipher does not support IVs");
1601 		ivmode = NULL;
1602 	}
1603 
1604 	/* Choose ivmode, see comments at iv code. */
1605 	if (ivmode == NULL)
1606 		cc->iv_gen_ops = NULL;
1607 	else if (strcmp(ivmode, "plain") == 0)
1608 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1609 	else if (strcmp(ivmode, "plain64") == 0)
1610 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1611 	else if (strcmp(ivmode, "essiv") == 0)
1612 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1613 	else if (strcmp(ivmode, "benbi") == 0)
1614 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1615 	else if (strcmp(ivmode, "null") == 0)
1616 		cc->iv_gen_ops = &crypt_iv_null_ops;
1617 	else if (strcmp(ivmode, "lmk") == 0) {
1618 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1619 		/*
1620 		 * Version 2 and 3 is recognised according
1621 		 * to length of provided multi-key string.
1622 		 * If present (version 3), last key is used as IV seed.
1623 		 * All keys (including IV seed) are always the same size.
1624 		 */
1625 		if (cc->key_size % cc->key_parts) {
1626 			cc->key_parts++;
1627 			cc->key_extra_size = cc->key_size / cc->key_parts;
1628 		}
1629 	} else if (strcmp(ivmode, "tcw") == 0) {
1630 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1631 		cc->key_parts += 2; /* IV + whitening */
1632 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1633 	} else {
1634 		ret = -EINVAL;
1635 		ti->error = "Invalid IV mode";
1636 		goto bad;
1637 	}
1638 
1639 	/* Initialize and set key */
1640 	ret = crypt_set_key(cc, key);
1641 	if (ret < 0) {
1642 		ti->error = "Error decoding and setting key";
1643 		goto bad;
1644 	}
1645 
1646 	/* Allocate IV */
1647 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1648 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1649 		if (ret < 0) {
1650 			ti->error = "Error creating IV";
1651 			goto bad;
1652 		}
1653 	}
1654 
1655 	/* Initialize IV (set keys for ESSIV etc) */
1656 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1657 		ret = cc->iv_gen_ops->init(cc);
1658 		if (ret < 0) {
1659 			ti->error = "Error initialising IV";
1660 			goto bad;
1661 		}
1662 	}
1663 
1664 	ret = 0;
1665 bad:
1666 	kfree(cipher_api);
1667 	return ret;
1668 
1669 bad_mem:
1670 	ti->error = "Cannot allocate cipher strings";
1671 	return -ENOMEM;
1672 }
1673 
1674 /*
1675  * Construct an encryption mapping:
1676  * <cipher> <key> <iv_offset> <dev_path> <start>
1677  */
1678 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1679 {
1680 	struct crypt_config *cc;
1681 	unsigned int key_size, opt_params;
1682 	unsigned long long tmpll;
1683 	int ret;
1684 	struct dm_arg_set as;
1685 	const char *opt_string;
1686 	char dummy;
1687 
1688 	static struct dm_arg _args[] = {
1689 		{0, 1, "Invalid number of feature args"},
1690 	};
1691 
1692 	if (argc < 5) {
1693 		ti->error = "Not enough arguments";
1694 		return -EINVAL;
1695 	}
1696 
1697 	key_size = strlen(argv[1]) >> 1;
1698 
1699 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1700 	if (!cc) {
1701 		ti->error = "Cannot allocate encryption context";
1702 		return -ENOMEM;
1703 	}
1704 	cc->key_size = key_size;
1705 
1706 	ti->private = cc;
1707 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1708 	if (ret < 0)
1709 		goto bad;
1710 
1711 	ret = -ENOMEM;
1712 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1713 	if (!cc->io_pool) {
1714 		ti->error = "Cannot allocate crypt io mempool";
1715 		goto bad;
1716 	}
1717 
1718 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1719 	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1720 	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1721 	cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1722 			   ~(crypto_tfm_ctx_alignment() - 1);
1723 
1724 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1725 			sizeof(struct dm_crypt_request) + cc->iv_size);
1726 	if (!cc->req_pool) {
1727 		ti->error = "Cannot allocate crypt request mempool";
1728 		goto bad;
1729 	}
1730 
1731 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1732 	if (!cc->page_pool) {
1733 		ti->error = "Cannot allocate page mempool";
1734 		goto bad;
1735 	}
1736 
1737 	cc->bs = bioset_create(MIN_IOS, 0);
1738 	if (!cc->bs) {
1739 		ti->error = "Cannot allocate crypt bioset";
1740 		goto bad;
1741 	}
1742 
1743 	ret = -EINVAL;
1744 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1745 		ti->error = "Invalid iv_offset sector";
1746 		goto bad;
1747 	}
1748 	cc->iv_offset = tmpll;
1749 
1750 	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1751 		ti->error = "Device lookup failed";
1752 		goto bad;
1753 	}
1754 
1755 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1756 		ti->error = "Invalid device sector";
1757 		goto bad;
1758 	}
1759 	cc->start = tmpll;
1760 
1761 	argv += 5;
1762 	argc -= 5;
1763 
1764 	/* Optional parameters */
1765 	if (argc) {
1766 		as.argc = argc;
1767 		as.argv = argv;
1768 
1769 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1770 		if (ret)
1771 			goto bad;
1772 
1773 		opt_string = dm_shift_arg(&as);
1774 
1775 		if (opt_params == 1 && opt_string &&
1776 		    !strcasecmp(opt_string, "allow_discards"))
1777 			ti->num_discard_bios = 1;
1778 		else if (opt_params) {
1779 			ret = -EINVAL;
1780 			ti->error = "Invalid feature arguments";
1781 			goto bad;
1782 		}
1783 	}
1784 
1785 	ret = -ENOMEM;
1786 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1787 	if (!cc->io_queue) {
1788 		ti->error = "Couldn't create kcryptd io queue";
1789 		goto bad;
1790 	}
1791 
1792 	cc->crypt_queue = alloc_workqueue("kcryptd",
1793 					  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1794 	if (!cc->crypt_queue) {
1795 		ti->error = "Couldn't create kcryptd queue";
1796 		goto bad;
1797 	}
1798 
1799 	ti->num_flush_bios = 1;
1800 	ti->discard_zeroes_data_unsupported = true;
1801 
1802 	return 0;
1803 
1804 bad:
1805 	crypt_dtr(ti);
1806 	return ret;
1807 }
1808 
1809 static int crypt_map(struct dm_target *ti, struct bio *bio)
1810 {
1811 	struct dm_crypt_io *io;
1812 	struct crypt_config *cc = ti->private;
1813 
1814 	/*
1815 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1816 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1817 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1818 	 */
1819 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1820 		bio->bi_bdev = cc->dev->bdev;
1821 		if (bio_sectors(bio))
1822 			bio->bi_iter.bi_sector = cc->start +
1823 				dm_target_offset(ti, bio->bi_iter.bi_sector);
1824 		return DM_MAPIO_REMAPPED;
1825 	}
1826 
1827 	io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1828 
1829 	if (bio_data_dir(io->base_bio) == READ) {
1830 		if (kcryptd_io_read(io, GFP_NOWAIT))
1831 			kcryptd_queue_io(io);
1832 	} else
1833 		kcryptd_queue_crypt(io);
1834 
1835 	return DM_MAPIO_SUBMITTED;
1836 }
1837 
1838 static void crypt_status(struct dm_target *ti, status_type_t type,
1839 			 unsigned status_flags, char *result, unsigned maxlen)
1840 {
1841 	struct crypt_config *cc = ti->private;
1842 	unsigned i, sz = 0;
1843 
1844 	switch (type) {
1845 	case STATUSTYPE_INFO:
1846 		result[0] = '\0';
1847 		break;
1848 
1849 	case STATUSTYPE_TABLE:
1850 		DMEMIT("%s ", cc->cipher_string);
1851 
1852 		if (cc->key_size > 0)
1853 			for (i = 0; i < cc->key_size; i++)
1854 				DMEMIT("%02x", cc->key[i]);
1855 		else
1856 			DMEMIT("-");
1857 
1858 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1859 				cc->dev->name, (unsigned long long)cc->start);
1860 
1861 		if (ti->num_discard_bios)
1862 			DMEMIT(" 1 allow_discards");
1863 
1864 		break;
1865 	}
1866 }
1867 
1868 static void crypt_postsuspend(struct dm_target *ti)
1869 {
1870 	struct crypt_config *cc = ti->private;
1871 
1872 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1873 }
1874 
1875 static int crypt_preresume(struct dm_target *ti)
1876 {
1877 	struct crypt_config *cc = ti->private;
1878 
1879 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1880 		DMERR("aborting resume - crypt key is not set.");
1881 		return -EAGAIN;
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 static void crypt_resume(struct dm_target *ti)
1888 {
1889 	struct crypt_config *cc = ti->private;
1890 
1891 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1892 }
1893 
1894 /* Message interface
1895  *	key set <key>
1896  *	key wipe
1897  */
1898 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1899 {
1900 	struct crypt_config *cc = ti->private;
1901 	int ret = -EINVAL;
1902 
1903 	if (argc < 2)
1904 		goto error;
1905 
1906 	if (!strcasecmp(argv[0], "key")) {
1907 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1908 			DMWARN("not suspended during key manipulation.");
1909 			return -EINVAL;
1910 		}
1911 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1912 			ret = crypt_set_key(cc, argv[2]);
1913 			if (ret)
1914 				return ret;
1915 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1916 				ret = cc->iv_gen_ops->init(cc);
1917 			return ret;
1918 		}
1919 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1920 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1921 				ret = cc->iv_gen_ops->wipe(cc);
1922 				if (ret)
1923 					return ret;
1924 			}
1925 			return crypt_wipe_key(cc);
1926 		}
1927 	}
1928 
1929 error:
1930 	DMWARN("unrecognised message received.");
1931 	return -EINVAL;
1932 }
1933 
1934 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1935 		       struct bio_vec *biovec, int max_size)
1936 {
1937 	struct crypt_config *cc = ti->private;
1938 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1939 
1940 	if (!q->merge_bvec_fn)
1941 		return max_size;
1942 
1943 	bvm->bi_bdev = cc->dev->bdev;
1944 	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1945 
1946 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1947 }
1948 
1949 static int crypt_iterate_devices(struct dm_target *ti,
1950 				 iterate_devices_callout_fn fn, void *data)
1951 {
1952 	struct crypt_config *cc = ti->private;
1953 
1954 	return fn(ti, cc->dev, cc->start, ti->len, data);
1955 }
1956 
1957 static struct target_type crypt_target = {
1958 	.name   = "crypt",
1959 	.version = {1, 13, 0},
1960 	.module = THIS_MODULE,
1961 	.ctr    = crypt_ctr,
1962 	.dtr    = crypt_dtr,
1963 	.map    = crypt_map,
1964 	.status = crypt_status,
1965 	.postsuspend = crypt_postsuspend,
1966 	.preresume = crypt_preresume,
1967 	.resume = crypt_resume,
1968 	.message = crypt_message,
1969 	.merge  = crypt_merge,
1970 	.iterate_devices = crypt_iterate_devices,
1971 };
1972 
1973 static int __init dm_crypt_init(void)
1974 {
1975 	int r;
1976 
1977 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1978 	if (!_crypt_io_pool)
1979 		return -ENOMEM;
1980 
1981 	r = dm_register_target(&crypt_target);
1982 	if (r < 0) {
1983 		DMERR("register failed %d", r);
1984 		kmem_cache_destroy(_crypt_io_pool);
1985 	}
1986 
1987 	return r;
1988 }
1989 
1990 static void __exit dm_crypt_exit(void)
1991 {
1992 	dm_unregister_target(&crypt_target);
1993 	kmem_cache_destroy(_crypt_io_pool);
1994 }
1995 
1996 module_init(dm_crypt_init);
1997 module_exit(dm_crypt_exit);
1998 
1999 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
2000 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2001 MODULE_LICENSE("GPL");
2002