xref: /openbmc/linux/drivers/md/dm-crypt.c (revision d0b73b48)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
29 
30 #include <linux/device-mapper.h>
31 
32 #define DM_MSG_PREFIX "crypt"
33 
34 /*
35  * context holding the current state of a multi-part conversion
36  */
37 struct convert_context {
38 	struct completion restart;
39 	struct bio *bio_in;
40 	struct bio *bio_out;
41 	unsigned int offset_in;
42 	unsigned int offset_out;
43 	unsigned int idx_in;
44 	unsigned int idx_out;
45 	sector_t cc_sector;
46 	atomic_t cc_pending;
47 };
48 
49 /*
50  * per bio private data
51  */
52 struct dm_crypt_io {
53 	struct crypt_config *cc;
54 	struct bio *base_bio;
55 	struct work_struct work;
56 
57 	struct convert_context ctx;
58 
59 	atomic_t io_pending;
60 	int error;
61 	sector_t sector;
62 	struct dm_crypt_io *base_io;
63 };
64 
65 struct dm_crypt_request {
66 	struct convert_context *ctx;
67 	struct scatterlist sg_in;
68 	struct scatterlist sg_out;
69 	sector_t iv_sector;
70 };
71 
72 struct crypt_config;
73 
74 struct crypt_iv_operations {
75 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
76 		   const char *opts);
77 	void (*dtr)(struct crypt_config *cc);
78 	int (*init)(struct crypt_config *cc);
79 	int (*wipe)(struct crypt_config *cc);
80 	int (*generator)(struct crypt_config *cc, u8 *iv,
81 			 struct dm_crypt_request *dmreq);
82 	int (*post)(struct crypt_config *cc, u8 *iv,
83 		    struct dm_crypt_request *dmreq);
84 };
85 
86 struct iv_essiv_private {
87 	struct crypto_hash *hash_tfm;
88 	u8 *salt;
89 };
90 
91 struct iv_benbi_private {
92 	int shift;
93 };
94 
95 #define LMK_SEED_SIZE 64 /* hash + 0 */
96 struct iv_lmk_private {
97 	struct crypto_shash *hash_tfm;
98 	u8 *seed;
99 };
100 
101 /*
102  * Crypt: maps a linear range of a block device
103  * and encrypts / decrypts at the same time.
104  */
105 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
106 
107 /*
108  * Duplicated per-CPU state for cipher.
109  */
110 struct crypt_cpu {
111 	struct ablkcipher_request *req;
112 };
113 
114 /*
115  * The fields in here must be read only after initialization,
116  * changing state should be in crypt_cpu.
117  */
118 struct crypt_config {
119 	struct dm_dev *dev;
120 	sector_t start;
121 
122 	/*
123 	 * pool for per bio private data, crypto requests and
124 	 * encryption requeusts/buffer pages
125 	 */
126 	mempool_t *io_pool;
127 	mempool_t *req_pool;
128 	mempool_t *page_pool;
129 	struct bio_set *bs;
130 
131 	struct workqueue_struct *io_queue;
132 	struct workqueue_struct *crypt_queue;
133 
134 	char *cipher;
135 	char *cipher_string;
136 
137 	struct crypt_iv_operations *iv_gen_ops;
138 	union {
139 		struct iv_essiv_private essiv;
140 		struct iv_benbi_private benbi;
141 		struct iv_lmk_private lmk;
142 	} iv_gen_private;
143 	sector_t iv_offset;
144 	unsigned int iv_size;
145 
146 	/*
147 	 * Duplicated per cpu state. Access through
148 	 * per_cpu_ptr() only.
149 	 */
150 	struct crypt_cpu __percpu *cpu;
151 
152 	/* ESSIV: struct crypto_cipher *essiv_tfm */
153 	void *iv_private;
154 	struct crypto_ablkcipher **tfms;
155 	unsigned tfms_count;
156 
157 	/*
158 	 * Layout of each crypto request:
159 	 *
160 	 *   struct ablkcipher_request
161 	 *      context
162 	 *      padding
163 	 *   struct dm_crypt_request
164 	 *      padding
165 	 *   IV
166 	 *
167 	 * The padding is added so that dm_crypt_request and the IV are
168 	 * correctly aligned.
169 	 */
170 	unsigned int dmreq_start;
171 
172 	unsigned long flags;
173 	unsigned int key_size;
174 	unsigned int key_parts;
175 	u8 key[0];
176 };
177 
178 #define MIN_IOS        16
179 #define MIN_POOL_PAGES 32
180 
181 static struct kmem_cache *_crypt_io_pool;
182 
183 static void clone_init(struct dm_crypt_io *, struct bio *);
184 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
185 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
186 
187 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
188 {
189 	return this_cpu_ptr(cc->cpu);
190 }
191 
192 /*
193  * Use this to access cipher attributes that are the same for each CPU.
194  */
195 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
196 {
197 	return cc->tfms[0];
198 }
199 
200 /*
201  * Different IV generation algorithms:
202  *
203  * plain: the initial vector is the 32-bit little-endian version of the sector
204  *        number, padded with zeros if necessary.
205  *
206  * plain64: the initial vector is the 64-bit little-endian version of the sector
207  *        number, padded with zeros if necessary.
208  *
209  * essiv: "encrypted sector|salt initial vector", the sector number is
210  *        encrypted with the bulk cipher using a salt as key. The salt
211  *        should be derived from the bulk cipher's key via hashing.
212  *
213  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
214  *        (needed for LRW-32-AES and possible other narrow block modes)
215  *
216  * null: the initial vector is always zero.  Provides compatibility with
217  *       obsolete loop_fish2 devices.  Do not use for new devices.
218  *
219  * lmk:  Compatible implementation of the block chaining mode used
220  *       by the Loop-AES block device encryption system
221  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
222  *       It operates on full 512 byte sectors and uses CBC
223  *       with an IV derived from the sector number, the data and
224  *       optionally extra IV seed.
225  *       This means that after decryption the first block
226  *       of sector must be tweaked according to decrypted data.
227  *       Loop-AES can use three encryption schemes:
228  *         version 1: is plain aes-cbc mode
229  *         version 2: uses 64 multikey scheme with lmk IV generator
230  *         version 3: the same as version 2 with additional IV seed
231  *                   (it uses 65 keys, last key is used as IV seed)
232  *
233  * plumb: unimplemented, see:
234  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
235  */
236 
237 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
238 			      struct dm_crypt_request *dmreq)
239 {
240 	memset(iv, 0, cc->iv_size);
241 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
242 
243 	return 0;
244 }
245 
246 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
247 				struct dm_crypt_request *dmreq)
248 {
249 	memset(iv, 0, cc->iv_size);
250 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
251 
252 	return 0;
253 }
254 
255 /* Initialise ESSIV - compute salt but no local memory allocations */
256 static int crypt_iv_essiv_init(struct crypt_config *cc)
257 {
258 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
259 	struct hash_desc desc;
260 	struct scatterlist sg;
261 	struct crypto_cipher *essiv_tfm;
262 	int err;
263 
264 	sg_init_one(&sg, cc->key, cc->key_size);
265 	desc.tfm = essiv->hash_tfm;
266 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
267 
268 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
269 	if (err)
270 		return err;
271 
272 	essiv_tfm = cc->iv_private;
273 
274 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
275 			    crypto_hash_digestsize(essiv->hash_tfm));
276 	if (err)
277 		return err;
278 
279 	return 0;
280 }
281 
282 /* Wipe salt and reset key derived from volume key */
283 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
284 {
285 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
286 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
287 	struct crypto_cipher *essiv_tfm;
288 	int r, err = 0;
289 
290 	memset(essiv->salt, 0, salt_size);
291 
292 	essiv_tfm = cc->iv_private;
293 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
294 	if (r)
295 		err = r;
296 
297 	return err;
298 }
299 
300 /* Set up per cpu cipher state */
301 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
302 					     struct dm_target *ti,
303 					     u8 *salt, unsigned saltsize)
304 {
305 	struct crypto_cipher *essiv_tfm;
306 	int err;
307 
308 	/* Setup the essiv_tfm with the given salt */
309 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
310 	if (IS_ERR(essiv_tfm)) {
311 		ti->error = "Error allocating crypto tfm for ESSIV";
312 		return essiv_tfm;
313 	}
314 
315 	if (crypto_cipher_blocksize(essiv_tfm) !=
316 	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
317 		ti->error = "Block size of ESSIV cipher does "
318 			    "not match IV size of block cipher";
319 		crypto_free_cipher(essiv_tfm);
320 		return ERR_PTR(-EINVAL);
321 	}
322 
323 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
324 	if (err) {
325 		ti->error = "Failed to set key for ESSIV cipher";
326 		crypto_free_cipher(essiv_tfm);
327 		return ERR_PTR(err);
328 	}
329 
330 	return essiv_tfm;
331 }
332 
333 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
334 {
335 	struct crypto_cipher *essiv_tfm;
336 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
337 
338 	crypto_free_hash(essiv->hash_tfm);
339 	essiv->hash_tfm = NULL;
340 
341 	kzfree(essiv->salt);
342 	essiv->salt = NULL;
343 
344 	essiv_tfm = cc->iv_private;
345 
346 	if (essiv_tfm)
347 		crypto_free_cipher(essiv_tfm);
348 
349 	cc->iv_private = NULL;
350 }
351 
352 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
353 			      const char *opts)
354 {
355 	struct crypto_cipher *essiv_tfm = NULL;
356 	struct crypto_hash *hash_tfm = NULL;
357 	u8 *salt = NULL;
358 	int err;
359 
360 	if (!opts) {
361 		ti->error = "Digest algorithm missing for ESSIV mode";
362 		return -EINVAL;
363 	}
364 
365 	/* Allocate hash algorithm */
366 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
367 	if (IS_ERR(hash_tfm)) {
368 		ti->error = "Error initializing ESSIV hash";
369 		err = PTR_ERR(hash_tfm);
370 		goto bad;
371 	}
372 
373 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
374 	if (!salt) {
375 		ti->error = "Error kmallocing salt storage in ESSIV";
376 		err = -ENOMEM;
377 		goto bad;
378 	}
379 
380 	cc->iv_gen_private.essiv.salt = salt;
381 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
382 
383 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
384 				crypto_hash_digestsize(hash_tfm));
385 	if (IS_ERR(essiv_tfm)) {
386 		crypt_iv_essiv_dtr(cc);
387 		return PTR_ERR(essiv_tfm);
388 	}
389 	cc->iv_private = essiv_tfm;
390 
391 	return 0;
392 
393 bad:
394 	if (hash_tfm && !IS_ERR(hash_tfm))
395 		crypto_free_hash(hash_tfm);
396 	kfree(salt);
397 	return err;
398 }
399 
400 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
401 			      struct dm_crypt_request *dmreq)
402 {
403 	struct crypto_cipher *essiv_tfm = cc->iv_private;
404 
405 	memset(iv, 0, cc->iv_size);
406 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
407 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
408 
409 	return 0;
410 }
411 
412 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
413 			      const char *opts)
414 {
415 	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
416 	int log = ilog2(bs);
417 
418 	/* we need to calculate how far we must shift the sector count
419 	 * to get the cipher block count, we use this shift in _gen */
420 
421 	if (1 << log != bs) {
422 		ti->error = "cypher blocksize is not a power of 2";
423 		return -EINVAL;
424 	}
425 
426 	if (log > 9) {
427 		ti->error = "cypher blocksize is > 512";
428 		return -EINVAL;
429 	}
430 
431 	cc->iv_gen_private.benbi.shift = 9 - log;
432 
433 	return 0;
434 }
435 
436 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
437 {
438 }
439 
440 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
441 			      struct dm_crypt_request *dmreq)
442 {
443 	__be64 val;
444 
445 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
446 
447 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
448 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
449 
450 	return 0;
451 }
452 
453 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
454 			     struct dm_crypt_request *dmreq)
455 {
456 	memset(iv, 0, cc->iv_size);
457 
458 	return 0;
459 }
460 
461 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
462 {
463 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
464 
465 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
466 		crypto_free_shash(lmk->hash_tfm);
467 	lmk->hash_tfm = NULL;
468 
469 	kzfree(lmk->seed);
470 	lmk->seed = NULL;
471 }
472 
473 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
474 			    const char *opts)
475 {
476 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
477 
478 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
479 	if (IS_ERR(lmk->hash_tfm)) {
480 		ti->error = "Error initializing LMK hash";
481 		return PTR_ERR(lmk->hash_tfm);
482 	}
483 
484 	/* No seed in LMK version 2 */
485 	if (cc->key_parts == cc->tfms_count) {
486 		lmk->seed = NULL;
487 		return 0;
488 	}
489 
490 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
491 	if (!lmk->seed) {
492 		crypt_iv_lmk_dtr(cc);
493 		ti->error = "Error kmallocing seed storage in LMK";
494 		return -ENOMEM;
495 	}
496 
497 	return 0;
498 }
499 
500 static int crypt_iv_lmk_init(struct crypt_config *cc)
501 {
502 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
503 	int subkey_size = cc->key_size / cc->key_parts;
504 
505 	/* LMK seed is on the position of LMK_KEYS + 1 key */
506 	if (lmk->seed)
507 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
508 		       crypto_shash_digestsize(lmk->hash_tfm));
509 
510 	return 0;
511 }
512 
513 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
514 {
515 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
516 
517 	if (lmk->seed)
518 		memset(lmk->seed, 0, LMK_SEED_SIZE);
519 
520 	return 0;
521 }
522 
523 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
524 			    struct dm_crypt_request *dmreq,
525 			    u8 *data)
526 {
527 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
528 	struct {
529 		struct shash_desc desc;
530 		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
531 	} sdesc;
532 	struct md5_state md5state;
533 	u32 buf[4];
534 	int i, r;
535 
536 	sdesc.desc.tfm = lmk->hash_tfm;
537 	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
538 
539 	r = crypto_shash_init(&sdesc.desc);
540 	if (r)
541 		return r;
542 
543 	if (lmk->seed) {
544 		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
545 		if (r)
546 			return r;
547 	}
548 
549 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
550 	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
551 	if (r)
552 		return r;
553 
554 	/* Sector is cropped to 56 bits here */
555 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
556 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
557 	buf[2] = cpu_to_le32(4024);
558 	buf[3] = 0;
559 	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
560 	if (r)
561 		return r;
562 
563 	/* No MD5 padding here */
564 	r = crypto_shash_export(&sdesc.desc, &md5state);
565 	if (r)
566 		return r;
567 
568 	for (i = 0; i < MD5_HASH_WORDS; i++)
569 		__cpu_to_le32s(&md5state.hash[i]);
570 	memcpy(iv, &md5state.hash, cc->iv_size);
571 
572 	return 0;
573 }
574 
575 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
576 			    struct dm_crypt_request *dmreq)
577 {
578 	u8 *src;
579 	int r = 0;
580 
581 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
582 		src = kmap_atomic(sg_page(&dmreq->sg_in));
583 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
584 		kunmap_atomic(src);
585 	} else
586 		memset(iv, 0, cc->iv_size);
587 
588 	return r;
589 }
590 
591 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
592 			     struct dm_crypt_request *dmreq)
593 {
594 	u8 *dst;
595 	int r;
596 
597 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
598 		return 0;
599 
600 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
601 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
602 
603 	/* Tweak the first block of plaintext sector */
604 	if (!r)
605 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
606 
607 	kunmap_atomic(dst);
608 	return r;
609 }
610 
611 static struct crypt_iv_operations crypt_iv_plain_ops = {
612 	.generator = crypt_iv_plain_gen
613 };
614 
615 static struct crypt_iv_operations crypt_iv_plain64_ops = {
616 	.generator = crypt_iv_plain64_gen
617 };
618 
619 static struct crypt_iv_operations crypt_iv_essiv_ops = {
620 	.ctr       = crypt_iv_essiv_ctr,
621 	.dtr       = crypt_iv_essiv_dtr,
622 	.init      = crypt_iv_essiv_init,
623 	.wipe      = crypt_iv_essiv_wipe,
624 	.generator = crypt_iv_essiv_gen
625 };
626 
627 static struct crypt_iv_operations crypt_iv_benbi_ops = {
628 	.ctr	   = crypt_iv_benbi_ctr,
629 	.dtr	   = crypt_iv_benbi_dtr,
630 	.generator = crypt_iv_benbi_gen
631 };
632 
633 static struct crypt_iv_operations crypt_iv_null_ops = {
634 	.generator = crypt_iv_null_gen
635 };
636 
637 static struct crypt_iv_operations crypt_iv_lmk_ops = {
638 	.ctr	   = crypt_iv_lmk_ctr,
639 	.dtr	   = crypt_iv_lmk_dtr,
640 	.init	   = crypt_iv_lmk_init,
641 	.wipe	   = crypt_iv_lmk_wipe,
642 	.generator = crypt_iv_lmk_gen,
643 	.post	   = crypt_iv_lmk_post
644 };
645 
646 static void crypt_convert_init(struct crypt_config *cc,
647 			       struct convert_context *ctx,
648 			       struct bio *bio_out, struct bio *bio_in,
649 			       sector_t sector)
650 {
651 	ctx->bio_in = bio_in;
652 	ctx->bio_out = bio_out;
653 	ctx->offset_in = 0;
654 	ctx->offset_out = 0;
655 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
656 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
657 	ctx->cc_sector = sector + cc->iv_offset;
658 	init_completion(&ctx->restart);
659 }
660 
661 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
662 					     struct ablkcipher_request *req)
663 {
664 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
665 }
666 
667 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
668 					       struct dm_crypt_request *dmreq)
669 {
670 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
671 }
672 
673 static u8 *iv_of_dmreq(struct crypt_config *cc,
674 		       struct dm_crypt_request *dmreq)
675 {
676 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
677 		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
678 }
679 
680 static int crypt_convert_block(struct crypt_config *cc,
681 			       struct convert_context *ctx,
682 			       struct ablkcipher_request *req)
683 {
684 	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
685 	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
686 	struct dm_crypt_request *dmreq;
687 	u8 *iv;
688 	int r;
689 
690 	dmreq = dmreq_of_req(cc, req);
691 	iv = iv_of_dmreq(cc, dmreq);
692 
693 	dmreq->iv_sector = ctx->cc_sector;
694 	dmreq->ctx = ctx;
695 	sg_init_table(&dmreq->sg_in, 1);
696 	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
697 		    bv_in->bv_offset + ctx->offset_in);
698 
699 	sg_init_table(&dmreq->sg_out, 1);
700 	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
701 		    bv_out->bv_offset + ctx->offset_out);
702 
703 	ctx->offset_in += 1 << SECTOR_SHIFT;
704 	if (ctx->offset_in >= bv_in->bv_len) {
705 		ctx->offset_in = 0;
706 		ctx->idx_in++;
707 	}
708 
709 	ctx->offset_out += 1 << SECTOR_SHIFT;
710 	if (ctx->offset_out >= bv_out->bv_len) {
711 		ctx->offset_out = 0;
712 		ctx->idx_out++;
713 	}
714 
715 	if (cc->iv_gen_ops) {
716 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
717 		if (r < 0)
718 			return r;
719 	}
720 
721 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
722 				     1 << SECTOR_SHIFT, iv);
723 
724 	if (bio_data_dir(ctx->bio_in) == WRITE)
725 		r = crypto_ablkcipher_encrypt(req);
726 	else
727 		r = crypto_ablkcipher_decrypt(req);
728 
729 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
730 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
731 
732 	return r;
733 }
734 
735 static void kcryptd_async_done(struct crypto_async_request *async_req,
736 			       int error);
737 
738 static void crypt_alloc_req(struct crypt_config *cc,
739 			    struct convert_context *ctx)
740 {
741 	struct crypt_cpu *this_cc = this_crypt_config(cc);
742 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
743 
744 	if (!this_cc->req)
745 		this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
746 
747 	ablkcipher_request_set_tfm(this_cc->req, cc->tfms[key_index]);
748 	ablkcipher_request_set_callback(this_cc->req,
749 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
750 	    kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
751 }
752 
753 /*
754  * Encrypt / decrypt data from one bio to another one (can be the same one)
755  */
756 static int crypt_convert(struct crypt_config *cc,
757 			 struct convert_context *ctx)
758 {
759 	struct crypt_cpu *this_cc = this_crypt_config(cc);
760 	int r;
761 
762 	atomic_set(&ctx->cc_pending, 1);
763 
764 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
765 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
766 
767 		crypt_alloc_req(cc, ctx);
768 
769 		atomic_inc(&ctx->cc_pending);
770 
771 		r = crypt_convert_block(cc, ctx, this_cc->req);
772 
773 		switch (r) {
774 		/* async */
775 		case -EBUSY:
776 			wait_for_completion(&ctx->restart);
777 			INIT_COMPLETION(ctx->restart);
778 			/* fall through*/
779 		case -EINPROGRESS:
780 			this_cc->req = NULL;
781 			ctx->cc_sector++;
782 			continue;
783 
784 		/* sync */
785 		case 0:
786 			atomic_dec(&ctx->cc_pending);
787 			ctx->cc_sector++;
788 			cond_resched();
789 			continue;
790 
791 		/* error */
792 		default:
793 			atomic_dec(&ctx->cc_pending);
794 			return r;
795 		}
796 	}
797 
798 	return 0;
799 }
800 
801 /*
802  * Generate a new unfragmented bio with the given size
803  * This should never violate the device limitations
804  * May return a smaller bio when running out of pages, indicated by
805  * *out_of_pages set to 1.
806  */
807 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
808 				      unsigned *out_of_pages)
809 {
810 	struct crypt_config *cc = io->cc;
811 	struct bio *clone;
812 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
813 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
814 	unsigned i, len;
815 	struct page *page;
816 
817 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
818 	if (!clone)
819 		return NULL;
820 
821 	clone_init(io, clone);
822 	*out_of_pages = 0;
823 
824 	for (i = 0; i < nr_iovecs; i++) {
825 		page = mempool_alloc(cc->page_pool, gfp_mask);
826 		if (!page) {
827 			*out_of_pages = 1;
828 			break;
829 		}
830 
831 		/*
832 		 * If additional pages cannot be allocated without waiting,
833 		 * return a partially-allocated bio.  The caller will then try
834 		 * to allocate more bios while submitting this partial bio.
835 		 */
836 		gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
837 
838 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
839 
840 		if (!bio_add_page(clone, page, len, 0)) {
841 			mempool_free(page, cc->page_pool);
842 			break;
843 		}
844 
845 		size -= len;
846 	}
847 
848 	if (!clone->bi_size) {
849 		bio_put(clone);
850 		return NULL;
851 	}
852 
853 	return clone;
854 }
855 
856 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
857 {
858 	unsigned int i;
859 	struct bio_vec *bv;
860 
861 	for (i = 0; i < clone->bi_vcnt; i++) {
862 		bv = bio_iovec_idx(clone, i);
863 		BUG_ON(!bv->bv_page);
864 		mempool_free(bv->bv_page, cc->page_pool);
865 		bv->bv_page = NULL;
866 	}
867 }
868 
869 static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
870 					  struct bio *bio, sector_t sector)
871 {
872 	struct dm_crypt_io *io;
873 
874 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
875 	io->cc = cc;
876 	io->base_bio = bio;
877 	io->sector = sector;
878 	io->error = 0;
879 	io->base_io = NULL;
880 	atomic_set(&io->io_pending, 0);
881 
882 	return io;
883 }
884 
885 static void crypt_inc_pending(struct dm_crypt_io *io)
886 {
887 	atomic_inc(&io->io_pending);
888 }
889 
890 /*
891  * One of the bios was finished. Check for completion of
892  * the whole request and correctly clean up the buffer.
893  * If base_io is set, wait for the last fragment to complete.
894  */
895 static void crypt_dec_pending(struct dm_crypt_io *io)
896 {
897 	struct crypt_config *cc = io->cc;
898 	struct bio *base_bio = io->base_bio;
899 	struct dm_crypt_io *base_io = io->base_io;
900 	int error = io->error;
901 
902 	if (!atomic_dec_and_test(&io->io_pending))
903 		return;
904 
905 	mempool_free(io, cc->io_pool);
906 
907 	if (likely(!base_io))
908 		bio_endio(base_bio, error);
909 	else {
910 		if (error && !base_io->error)
911 			base_io->error = error;
912 		crypt_dec_pending(base_io);
913 	}
914 }
915 
916 /*
917  * kcryptd/kcryptd_io:
918  *
919  * Needed because it would be very unwise to do decryption in an
920  * interrupt context.
921  *
922  * kcryptd performs the actual encryption or decryption.
923  *
924  * kcryptd_io performs the IO submission.
925  *
926  * They must be separated as otherwise the final stages could be
927  * starved by new requests which can block in the first stages due
928  * to memory allocation.
929  *
930  * The work is done per CPU global for all dm-crypt instances.
931  * They should not depend on each other and do not block.
932  */
933 static void crypt_endio(struct bio *clone, int error)
934 {
935 	struct dm_crypt_io *io = clone->bi_private;
936 	struct crypt_config *cc = io->cc;
937 	unsigned rw = bio_data_dir(clone);
938 
939 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
940 		error = -EIO;
941 
942 	/*
943 	 * free the processed pages
944 	 */
945 	if (rw == WRITE)
946 		crypt_free_buffer_pages(cc, clone);
947 
948 	bio_put(clone);
949 
950 	if (rw == READ && !error) {
951 		kcryptd_queue_crypt(io);
952 		return;
953 	}
954 
955 	if (unlikely(error))
956 		io->error = error;
957 
958 	crypt_dec_pending(io);
959 }
960 
961 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
962 {
963 	struct crypt_config *cc = io->cc;
964 
965 	clone->bi_private = io;
966 	clone->bi_end_io  = crypt_endio;
967 	clone->bi_bdev    = cc->dev->bdev;
968 	clone->bi_rw      = io->base_bio->bi_rw;
969 }
970 
971 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
972 {
973 	struct crypt_config *cc = io->cc;
974 	struct bio *base_bio = io->base_bio;
975 	struct bio *clone;
976 
977 	/*
978 	 * The block layer might modify the bvec array, so always
979 	 * copy the required bvecs because we need the original
980 	 * one in order to decrypt the whole bio data *afterwards*.
981 	 */
982 	clone = bio_clone_bioset(base_bio, gfp, cc->bs);
983 	if (!clone)
984 		return 1;
985 
986 	crypt_inc_pending(io);
987 
988 	clone_init(io, clone);
989 	clone->bi_sector = cc->start + io->sector;
990 
991 	generic_make_request(clone);
992 	return 0;
993 }
994 
995 static void kcryptd_io_write(struct dm_crypt_io *io)
996 {
997 	struct bio *clone = io->ctx.bio_out;
998 	generic_make_request(clone);
999 }
1000 
1001 static void kcryptd_io(struct work_struct *work)
1002 {
1003 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1004 
1005 	if (bio_data_dir(io->base_bio) == READ) {
1006 		crypt_inc_pending(io);
1007 		if (kcryptd_io_read(io, GFP_NOIO))
1008 			io->error = -ENOMEM;
1009 		crypt_dec_pending(io);
1010 	} else
1011 		kcryptd_io_write(io);
1012 }
1013 
1014 static void kcryptd_queue_io(struct dm_crypt_io *io)
1015 {
1016 	struct crypt_config *cc = io->cc;
1017 
1018 	INIT_WORK(&io->work, kcryptd_io);
1019 	queue_work(cc->io_queue, &io->work);
1020 }
1021 
1022 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1023 {
1024 	struct bio *clone = io->ctx.bio_out;
1025 	struct crypt_config *cc = io->cc;
1026 
1027 	if (unlikely(io->error < 0)) {
1028 		crypt_free_buffer_pages(cc, clone);
1029 		bio_put(clone);
1030 		crypt_dec_pending(io);
1031 		return;
1032 	}
1033 
1034 	/* crypt_convert should have filled the clone bio */
1035 	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1036 
1037 	clone->bi_sector = cc->start + io->sector;
1038 
1039 	if (async)
1040 		kcryptd_queue_io(io);
1041 	else
1042 		generic_make_request(clone);
1043 }
1044 
1045 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1046 {
1047 	struct crypt_config *cc = io->cc;
1048 	struct bio *clone;
1049 	struct dm_crypt_io *new_io;
1050 	int crypt_finished;
1051 	unsigned out_of_pages = 0;
1052 	unsigned remaining = io->base_bio->bi_size;
1053 	sector_t sector = io->sector;
1054 	int r;
1055 
1056 	/*
1057 	 * Prevent io from disappearing until this function completes.
1058 	 */
1059 	crypt_inc_pending(io);
1060 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1061 
1062 	/*
1063 	 * The allocated buffers can be smaller than the whole bio,
1064 	 * so repeat the whole process until all the data can be handled.
1065 	 */
1066 	while (remaining) {
1067 		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1068 		if (unlikely(!clone)) {
1069 			io->error = -ENOMEM;
1070 			break;
1071 		}
1072 
1073 		io->ctx.bio_out = clone;
1074 		io->ctx.idx_out = 0;
1075 
1076 		remaining -= clone->bi_size;
1077 		sector += bio_sectors(clone);
1078 
1079 		crypt_inc_pending(io);
1080 
1081 		r = crypt_convert(cc, &io->ctx);
1082 		if (r < 0)
1083 			io->error = -EIO;
1084 
1085 		crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1086 
1087 		/* Encryption was already finished, submit io now */
1088 		if (crypt_finished) {
1089 			kcryptd_crypt_write_io_submit(io, 0);
1090 
1091 			/*
1092 			 * If there was an error, do not try next fragments.
1093 			 * For async, error is processed in async handler.
1094 			 */
1095 			if (unlikely(r < 0))
1096 				break;
1097 
1098 			io->sector = sector;
1099 		}
1100 
1101 		/*
1102 		 * Out of memory -> run queues
1103 		 * But don't wait if split was due to the io size restriction
1104 		 */
1105 		if (unlikely(out_of_pages))
1106 			congestion_wait(BLK_RW_ASYNC, HZ/100);
1107 
1108 		/*
1109 		 * With async crypto it is unsafe to share the crypto context
1110 		 * between fragments, so switch to a new dm_crypt_io structure.
1111 		 */
1112 		if (unlikely(!crypt_finished && remaining)) {
1113 			new_io = crypt_io_alloc(io->cc, io->base_bio,
1114 						sector);
1115 			crypt_inc_pending(new_io);
1116 			crypt_convert_init(cc, &new_io->ctx, NULL,
1117 					   io->base_bio, sector);
1118 			new_io->ctx.idx_in = io->ctx.idx_in;
1119 			new_io->ctx.offset_in = io->ctx.offset_in;
1120 
1121 			/*
1122 			 * Fragments after the first use the base_io
1123 			 * pending count.
1124 			 */
1125 			if (!io->base_io)
1126 				new_io->base_io = io;
1127 			else {
1128 				new_io->base_io = io->base_io;
1129 				crypt_inc_pending(io->base_io);
1130 				crypt_dec_pending(io);
1131 			}
1132 
1133 			io = new_io;
1134 		}
1135 	}
1136 
1137 	crypt_dec_pending(io);
1138 }
1139 
1140 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1141 {
1142 	crypt_dec_pending(io);
1143 }
1144 
1145 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1146 {
1147 	struct crypt_config *cc = io->cc;
1148 	int r = 0;
1149 
1150 	crypt_inc_pending(io);
1151 
1152 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1153 			   io->sector);
1154 
1155 	r = crypt_convert(cc, &io->ctx);
1156 	if (r < 0)
1157 		io->error = -EIO;
1158 
1159 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1160 		kcryptd_crypt_read_done(io);
1161 
1162 	crypt_dec_pending(io);
1163 }
1164 
1165 static void kcryptd_async_done(struct crypto_async_request *async_req,
1166 			       int error)
1167 {
1168 	struct dm_crypt_request *dmreq = async_req->data;
1169 	struct convert_context *ctx = dmreq->ctx;
1170 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1171 	struct crypt_config *cc = io->cc;
1172 
1173 	if (error == -EINPROGRESS) {
1174 		complete(&ctx->restart);
1175 		return;
1176 	}
1177 
1178 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1179 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1180 
1181 	if (error < 0)
1182 		io->error = -EIO;
1183 
1184 	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1185 
1186 	if (!atomic_dec_and_test(&ctx->cc_pending))
1187 		return;
1188 
1189 	if (bio_data_dir(io->base_bio) == READ)
1190 		kcryptd_crypt_read_done(io);
1191 	else
1192 		kcryptd_crypt_write_io_submit(io, 1);
1193 }
1194 
1195 static void kcryptd_crypt(struct work_struct *work)
1196 {
1197 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1198 
1199 	if (bio_data_dir(io->base_bio) == READ)
1200 		kcryptd_crypt_read_convert(io);
1201 	else
1202 		kcryptd_crypt_write_convert(io);
1203 }
1204 
1205 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1206 {
1207 	struct crypt_config *cc = io->cc;
1208 
1209 	INIT_WORK(&io->work, kcryptd_crypt);
1210 	queue_work(cc->crypt_queue, &io->work);
1211 }
1212 
1213 /*
1214  * Decode key from its hex representation
1215  */
1216 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1217 {
1218 	char buffer[3];
1219 	unsigned int i;
1220 
1221 	buffer[2] = '\0';
1222 
1223 	for (i = 0; i < size; i++) {
1224 		buffer[0] = *hex++;
1225 		buffer[1] = *hex++;
1226 
1227 		if (kstrtou8(buffer, 16, &key[i]))
1228 			return -EINVAL;
1229 	}
1230 
1231 	if (*hex != '\0')
1232 		return -EINVAL;
1233 
1234 	return 0;
1235 }
1236 
1237 /*
1238  * Encode key into its hex representation
1239  */
1240 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
1241 {
1242 	unsigned int i;
1243 
1244 	for (i = 0; i < size; i++) {
1245 		sprintf(hex, "%02x", *key);
1246 		hex += 2;
1247 		key++;
1248 	}
1249 }
1250 
1251 static void crypt_free_tfms(struct crypt_config *cc)
1252 {
1253 	unsigned i;
1254 
1255 	if (!cc->tfms)
1256 		return;
1257 
1258 	for (i = 0; i < cc->tfms_count; i++)
1259 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1260 			crypto_free_ablkcipher(cc->tfms[i]);
1261 			cc->tfms[i] = NULL;
1262 		}
1263 
1264 	kfree(cc->tfms);
1265 	cc->tfms = NULL;
1266 }
1267 
1268 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1269 {
1270 	unsigned i;
1271 	int err;
1272 
1273 	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1274 			   GFP_KERNEL);
1275 	if (!cc->tfms)
1276 		return -ENOMEM;
1277 
1278 	for (i = 0; i < cc->tfms_count; i++) {
1279 		cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1280 		if (IS_ERR(cc->tfms[i])) {
1281 			err = PTR_ERR(cc->tfms[i]);
1282 			crypt_free_tfms(cc);
1283 			return err;
1284 		}
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 static int crypt_setkey_allcpus(struct crypt_config *cc)
1291 {
1292 	unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1293 	int err = 0, i, r;
1294 
1295 	for (i = 0; i < cc->tfms_count; i++) {
1296 		r = crypto_ablkcipher_setkey(cc->tfms[i],
1297 					     cc->key + (i * subkey_size),
1298 					     subkey_size);
1299 		if (r)
1300 			err = r;
1301 	}
1302 
1303 	return err;
1304 }
1305 
1306 static int crypt_set_key(struct crypt_config *cc, char *key)
1307 {
1308 	int r = -EINVAL;
1309 	int key_string_len = strlen(key);
1310 
1311 	/* The key size may not be changed. */
1312 	if (cc->key_size != (key_string_len >> 1))
1313 		goto out;
1314 
1315 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1316 	if (!cc->key_size && strcmp(key, "-"))
1317 		goto out;
1318 
1319 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1320 		goto out;
1321 
1322 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1323 
1324 	r = crypt_setkey_allcpus(cc);
1325 
1326 out:
1327 	/* Hex key string not needed after here, so wipe it. */
1328 	memset(key, '0', key_string_len);
1329 
1330 	return r;
1331 }
1332 
1333 static int crypt_wipe_key(struct crypt_config *cc)
1334 {
1335 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1336 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1337 
1338 	return crypt_setkey_allcpus(cc);
1339 }
1340 
1341 static void crypt_dtr(struct dm_target *ti)
1342 {
1343 	struct crypt_config *cc = ti->private;
1344 	struct crypt_cpu *cpu_cc;
1345 	int cpu;
1346 
1347 	ti->private = NULL;
1348 
1349 	if (!cc)
1350 		return;
1351 
1352 	if (cc->io_queue)
1353 		destroy_workqueue(cc->io_queue);
1354 	if (cc->crypt_queue)
1355 		destroy_workqueue(cc->crypt_queue);
1356 
1357 	if (cc->cpu)
1358 		for_each_possible_cpu(cpu) {
1359 			cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1360 			if (cpu_cc->req)
1361 				mempool_free(cpu_cc->req, cc->req_pool);
1362 		}
1363 
1364 	crypt_free_tfms(cc);
1365 
1366 	if (cc->bs)
1367 		bioset_free(cc->bs);
1368 
1369 	if (cc->page_pool)
1370 		mempool_destroy(cc->page_pool);
1371 	if (cc->req_pool)
1372 		mempool_destroy(cc->req_pool);
1373 	if (cc->io_pool)
1374 		mempool_destroy(cc->io_pool);
1375 
1376 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1377 		cc->iv_gen_ops->dtr(cc);
1378 
1379 	if (cc->dev)
1380 		dm_put_device(ti, cc->dev);
1381 
1382 	if (cc->cpu)
1383 		free_percpu(cc->cpu);
1384 
1385 	kzfree(cc->cipher);
1386 	kzfree(cc->cipher_string);
1387 
1388 	/* Must zero key material before freeing */
1389 	kzfree(cc);
1390 }
1391 
1392 static int crypt_ctr_cipher(struct dm_target *ti,
1393 			    char *cipher_in, char *key)
1394 {
1395 	struct crypt_config *cc = ti->private;
1396 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1397 	char *cipher_api = NULL;
1398 	int ret = -EINVAL;
1399 	char dummy;
1400 
1401 	/* Convert to crypto api definition? */
1402 	if (strchr(cipher_in, '(')) {
1403 		ti->error = "Bad cipher specification";
1404 		return -EINVAL;
1405 	}
1406 
1407 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1408 	if (!cc->cipher_string)
1409 		goto bad_mem;
1410 
1411 	/*
1412 	 * Legacy dm-crypt cipher specification
1413 	 * cipher[:keycount]-mode-iv:ivopts
1414 	 */
1415 	tmp = cipher_in;
1416 	keycount = strsep(&tmp, "-");
1417 	cipher = strsep(&keycount, ":");
1418 
1419 	if (!keycount)
1420 		cc->tfms_count = 1;
1421 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1422 		 !is_power_of_2(cc->tfms_count)) {
1423 		ti->error = "Bad cipher key count specification";
1424 		return -EINVAL;
1425 	}
1426 	cc->key_parts = cc->tfms_count;
1427 
1428 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1429 	if (!cc->cipher)
1430 		goto bad_mem;
1431 
1432 	chainmode = strsep(&tmp, "-");
1433 	ivopts = strsep(&tmp, "-");
1434 	ivmode = strsep(&ivopts, ":");
1435 
1436 	if (tmp)
1437 		DMWARN("Ignoring unexpected additional cipher options");
1438 
1439 	cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)),
1440 				 __alignof__(struct crypt_cpu));
1441 	if (!cc->cpu) {
1442 		ti->error = "Cannot allocate per cpu state";
1443 		goto bad_mem;
1444 	}
1445 
1446 	/*
1447 	 * For compatibility with the original dm-crypt mapping format, if
1448 	 * only the cipher name is supplied, use cbc-plain.
1449 	 */
1450 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1451 		chainmode = "cbc";
1452 		ivmode = "plain";
1453 	}
1454 
1455 	if (strcmp(chainmode, "ecb") && !ivmode) {
1456 		ti->error = "IV mechanism required";
1457 		return -EINVAL;
1458 	}
1459 
1460 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1461 	if (!cipher_api)
1462 		goto bad_mem;
1463 
1464 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1465 		       "%s(%s)", chainmode, cipher);
1466 	if (ret < 0) {
1467 		kfree(cipher_api);
1468 		goto bad_mem;
1469 	}
1470 
1471 	/* Allocate cipher */
1472 	ret = crypt_alloc_tfms(cc, cipher_api);
1473 	if (ret < 0) {
1474 		ti->error = "Error allocating crypto tfm";
1475 		goto bad;
1476 	}
1477 
1478 	/* Initialize and set key */
1479 	ret = crypt_set_key(cc, key);
1480 	if (ret < 0) {
1481 		ti->error = "Error decoding and setting key";
1482 		goto bad;
1483 	}
1484 
1485 	/* Initialize IV */
1486 	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1487 	if (cc->iv_size)
1488 		/* at least a 64 bit sector number should fit in our buffer */
1489 		cc->iv_size = max(cc->iv_size,
1490 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1491 	else if (ivmode) {
1492 		DMWARN("Selected cipher does not support IVs");
1493 		ivmode = NULL;
1494 	}
1495 
1496 	/* Choose ivmode, see comments at iv code. */
1497 	if (ivmode == NULL)
1498 		cc->iv_gen_ops = NULL;
1499 	else if (strcmp(ivmode, "plain") == 0)
1500 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1501 	else if (strcmp(ivmode, "plain64") == 0)
1502 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1503 	else if (strcmp(ivmode, "essiv") == 0)
1504 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1505 	else if (strcmp(ivmode, "benbi") == 0)
1506 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1507 	else if (strcmp(ivmode, "null") == 0)
1508 		cc->iv_gen_ops = &crypt_iv_null_ops;
1509 	else if (strcmp(ivmode, "lmk") == 0) {
1510 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1511 		/* Version 2 and 3 is recognised according
1512 		 * to length of provided multi-key string.
1513 		 * If present (version 3), last key is used as IV seed.
1514 		 */
1515 		if (cc->key_size % cc->key_parts)
1516 			cc->key_parts++;
1517 	} else {
1518 		ret = -EINVAL;
1519 		ti->error = "Invalid IV mode";
1520 		goto bad;
1521 	}
1522 
1523 	/* Allocate IV */
1524 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1525 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1526 		if (ret < 0) {
1527 			ti->error = "Error creating IV";
1528 			goto bad;
1529 		}
1530 	}
1531 
1532 	/* Initialize IV (set keys for ESSIV etc) */
1533 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1534 		ret = cc->iv_gen_ops->init(cc);
1535 		if (ret < 0) {
1536 			ti->error = "Error initialising IV";
1537 			goto bad;
1538 		}
1539 	}
1540 
1541 	ret = 0;
1542 bad:
1543 	kfree(cipher_api);
1544 	return ret;
1545 
1546 bad_mem:
1547 	ti->error = "Cannot allocate cipher strings";
1548 	return -ENOMEM;
1549 }
1550 
1551 /*
1552  * Construct an encryption mapping:
1553  * <cipher> <key> <iv_offset> <dev_path> <start>
1554  */
1555 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1556 {
1557 	struct crypt_config *cc;
1558 	unsigned int key_size, opt_params;
1559 	unsigned long long tmpll;
1560 	int ret;
1561 	struct dm_arg_set as;
1562 	const char *opt_string;
1563 	char dummy;
1564 
1565 	static struct dm_arg _args[] = {
1566 		{0, 1, "Invalid number of feature args"},
1567 	};
1568 
1569 	if (argc < 5) {
1570 		ti->error = "Not enough arguments";
1571 		return -EINVAL;
1572 	}
1573 
1574 	key_size = strlen(argv[1]) >> 1;
1575 
1576 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1577 	if (!cc) {
1578 		ti->error = "Cannot allocate encryption context";
1579 		return -ENOMEM;
1580 	}
1581 	cc->key_size = key_size;
1582 
1583 	ti->private = cc;
1584 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1585 	if (ret < 0)
1586 		goto bad;
1587 
1588 	ret = -ENOMEM;
1589 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1590 	if (!cc->io_pool) {
1591 		ti->error = "Cannot allocate crypt io mempool";
1592 		goto bad;
1593 	}
1594 
1595 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1596 	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1597 	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1598 	cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1599 			   ~(crypto_tfm_ctx_alignment() - 1);
1600 
1601 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1602 			sizeof(struct dm_crypt_request) + cc->iv_size);
1603 	if (!cc->req_pool) {
1604 		ti->error = "Cannot allocate crypt request mempool";
1605 		goto bad;
1606 	}
1607 
1608 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1609 	if (!cc->page_pool) {
1610 		ti->error = "Cannot allocate page mempool";
1611 		goto bad;
1612 	}
1613 
1614 	cc->bs = bioset_create(MIN_IOS, 0);
1615 	if (!cc->bs) {
1616 		ti->error = "Cannot allocate crypt bioset";
1617 		goto bad;
1618 	}
1619 
1620 	ret = -EINVAL;
1621 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1622 		ti->error = "Invalid iv_offset sector";
1623 		goto bad;
1624 	}
1625 	cc->iv_offset = tmpll;
1626 
1627 	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1628 		ti->error = "Device lookup failed";
1629 		goto bad;
1630 	}
1631 
1632 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1633 		ti->error = "Invalid device sector";
1634 		goto bad;
1635 	}
1636 	cc->start = tmpll;
1637 
1638 	argv += 5;
1639 	argc -= 5;
1640 
1641 	/* Optional parameters */
1642 	if (argc) {
1643 		as.argc = argc;
1644 		as.argv = argv;
1645 
1646 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1647 		if (ret)
1648 			goto bad;
1649 
1650 		opt_string = dm_shift_arg(&as);
1651 
1652 		if (opt_params == 1 && opt_string &&
1653 		    !strcasecmp(opt_string, "allow_discards"))
1654 			ti->num_discard_requests = 1;
1655 		else if (opt_params) {
1656 			ret = -EINVAL;
1657 			ti->error = "Invalid feature arguments";
1658 			goto bad;
1659 		}
1660 	}
1661 
1662 	ret = -ENOMEM;
1663 	cc->io_queue = alloc_workqueue("kcryptd_io",
1664 				       WQ_NON_REENTRANT|
1665 				       WQ_MEM_RECLAIM,
1666 				       1);
1667 	if (!cc->io_queue) {
1668 		ti->error = "Couldn't create kcryptd io queue";
1669 		goto bad;
1670 	}
1671 
1672 	cc->crypt_queue = alloc_workqueue("kcryptd",
1673 					  WQ_NON_REENTRANT|
1674 					  WQ_CPU_INTENSIVE|
1675 					  WQ_MEM_RECLAIM,
1676 					  1);
1677 	if (!cc->crypt_queue) {
1678 		ti->error = "Couldn't create kcryptd queue";
1679 		goto bad;
1680 	}
1681 
1682 	ti->num_flush_requests = 1;
1683 	ti->discard_zeroes_data_unsupported = true;
1684 
1685 	return 0;
1686 
1687 bad:
1688 	crypt_dtr(ti);
1689 	return ret;
1690 }
1691 
1692 static int crypt_map(struct dm_target *ti, struct bio *bio)
1693 {
1694 	struct dm_crypt_io *io;
1695 	struct crypt_config *cc = ti->private;
1696 
1697 	/*
1698 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1699 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1700 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1701 	 */
1702 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1703 		bio->bi_bdev = cc->dev->bdev;
1704 		if (bio_sectors(bio))
1705 			bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1706 		return DM_MAPIO_REMAPPED;
1707 	}
1708 
1709 	io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_sector));
1710 
1711 	if (bio_data_dir(io->base_bio) == READ) {
1712 		if (kcryptd_io_read(io, GFP_NOWAIT))
1713 			kcryptd_queue_io(io);
1714 	} else
1715 		kcryptd_queue_crypt(io);
1716 
1717 	return DM_MAPIO_SUBMITTED;
1718 }
1719 
1720 static int crypt_status(struct dm_target *ti, status_type_t type,
1721 			unsigned status_flags, char *result, unsigned maxlen)
1722 {
1723 	struct crypt_config *cc = ti->private;
1724 	unsigned int sz = 0;
1725 
1726 	switch (type) {
1727 	case STATUSTYPE_INFO:
1728 		result[0] = '\0';
1729 		break;
1730 
1731 	case STATUSTYPE_TABLE:
1732 		DMEMIT("%s ", cc->cipher_string);
1733 
1734 		if (cc->key_size > 0) {
1735 			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1736 				return -ENOMEM;
1737 
1738 			crypt_encode_key(result + sz, cc->key, cc->key_size);
1739 			sz += cc->key_size << 1;
1740 		} else {
1741 			if (sz >= maxlen)
1742 				return -ENOMEM;
1743 			result[sz++] = '-';
1744 		}
1745 
1746 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1747 				cc->dev->name, (unsigned long long)cc->start);
1748 
1749 		if (ti->num_discard_requests)
1750 			DMEMIT(" 1 allow_discards");
1751 
1752 		break;
1753 	}
1754 	return 0;
1755 }
1756 
1757 static void crypt_postsuspend(struct dm_target *ti)
1758 {
1759 	struct crypt_config *cc = ti->private;
1760 
1761 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1762 }
1763 
1764 static int crypt_preresume(struct dm_target *ti)
1765 {
1766 	struct crypt_config *cc = ti->private;
1767 
1768 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1769 		DMERR("aborting resume - crypt key is not set.");
1770 		return -EAGAIN;
1771 	}
1772 
1773 	return 0;
1774 }
1775 
1776 static void crypt_resume(struct dm_target *ti)
1777 {
1778 	struct crypt_config *cc = ti->private;
1779 
1780 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1781 }
1782 
1783 /* Message interface
1784  *	key set <key>
1785  *	key wipe
1786  */
1787 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1788 {
1789 	struct crypt_config *cc = ti->private;
1790 	int ret = -EINVAL;
1791 
1792 	if (argc < 2)
1793 		goto error;
1794 
1795 	if (!strcasecmp(argv[0], "key")) {
1796 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1797 			DMWARN("not suspended during key manipulation.");
1798 			return -EINVAL;
1799 		}
1800 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1801 			ret = crypt_set_key(cc, argv[2]);
1802 			if (ret)
1803 				return ret;
1804 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1805 				ret = cc->iv_gen_ops->init(cc);
1806 			return ret;
1807 		}
1808 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1809 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1810 				ret = cc->iv_gen_ops->wipe(cc);
1811 				if (ret)
1812 					return ret;
1813 			}
1814 			return crypt_wipe_key(cc);
1815 		}
1816 	}
1817 
1818 error:
1819 	DMWARN("unrecognised message received.");
1820 	return -EINVAL;
1821 }
1822 
1823 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1824 		       struct bio_vec *biovec, int max_size)
1825 {
1826 	struct crypt_config *cc = ti->private;
1827 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1828 
1829 	if (!q->merge_bvec_fn)
1830 		return max_size;
1831 
1832 	bvm->bi_bdev = cc->dev->bdev;
1833 	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1834 
1835 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1836 }
1837 
1838 static int crypt_iterate_devices(struct dm_target *ti,
1839 				 iterate_devices_callout_fn fn, void *data)
1840 {
1841 	struct crypt_config *cc = ti->private;
1842 
1843 	return fn(ti, cc->dev, cc->start, ti->len, data);
1844 }
1845 
1846 static struct target_type crypt_target = {
1847 	.name   = "crypt",
1848 	.version = {1, 12, 0},
1849 	.module = THIS_MODULE,
1850 	.ctr    = crypt_ctr,
1851 	.dtr    = crypt_dtr,
1852 	.map    = crypt_map,
1853 	.status = crypt_status,
1854 	.postsuspend = crypt_postsuspend,
1855 	.preresume = crypt_preresume,
1856 	.resume = crypt_resume,
1857 	.message = crypt_message,
1858 	.merge  = crypt_merge,
1859 	.iterate_devices = crypt_iterate_devices,
1860 };
1861 
1862 static int __init dm_crypt_init(void)
1863 {
1864 	int r;
1865 
1866 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1867 	if (!_crypt_io_pool)
1868 		return -ENOMEM;
1869 
1870 	r = dm_register_target(&crypt_target);
1871 	if (r < 0) {
1872 		DMERR("register failed %d", r);
1873 		kmem_cache_destroy(_crypt_io_pool);
1874 	}
1875 
1876 	return r;
1877 }
1878 
1879 static void __exit dm_crypt_exit(void)
1880 {
1881 	dm_unregister_target(&crypt_target);
1882 	kmem_cache_destroy(_crypt_io_pool);
1883 }
1884 
1885 module_init(dm_crypt_init);
1886 module_exit(dm_crypt_exit);
1887 
1888 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1889 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1890 MODULE_LICENSE("GPL");
1891