xref: /openbmc/linux/drivers/md/dm-crypt.c (revision ce666cec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2003 Jana Saout <jana@saout.de>
4  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7  *
8  * This file is released under the GPL.
9  */
10 
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <asm/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43 
44 #include <linux/device-mapper.h>
45 
46 #include "dm-audit.h"
47 
48 #define DM_MSG_PREFIX "crypt"
49 
50 /*
51  * context holding the current state of a multi-part conversion
52  */
53 struct convert_context {
54 	struct completion restart;
55 	struct bio *bio_in;
56 	struct bvec_iter iter_in;
57 	struct bio *bio_out;
58 	struct bvec_iter iter_out;
59 	atomic_t cc_pending;
60 	u64 cc_sector;
61 	union {
62 		struct skcipher_request *req;
63 		struct aead_request *req_aead;
64 	} r;
65 	bool aead_recheck;
66 	bool aead_failed;
67 
68 };
69 
70 /*
71  * per bio private data
72  */
73 struct dm_crypt_io {
74 	struct crypt_config *cc;
75 	struct bio *base_bio;
76 	u8 *integrity_metadata;
77 	bool integrity_metadata_from_pool:1;
78 
79 	struct work_struct work;
80 
81 	struct convert_context ctx;
82 
83 	atomic_t io_pending;
84 	blk_status_t error;
85 	sector_t sector;
86 
87 	struct bvec_iter saved_bi_iter;
88 
89 	struct rb_node rb_node;
90 } CRYPTO_MINALIGN_ATTR;
91 
92 struct dm_crypt_request {
93 	struct convert_context *ctx;
94 	struct scatterlist sg_in[4];
95 	struct scatterlist sg_out[4];
96 	u64 iv_sector;
97 };
98 
99 struct crypt_config;
100 
101 struct crypt_iv_operations {
102 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
103 		   const char *opts);
104 	void (*dtr)(struct crypt_config *cc);
105 	int (*init)(struct crypt_config *cc);
106 	int (*wipe)(struct crypt_config *cc);
107 	int (*generator)(struct crypt_config *cc, u8 *iv,
108 			 struct dm_crypt_request *dmreq);
109 	int (*post)(struct crypt_config *cc, u8 *iv,
110 		    struct dm_crypt_request *dmreq);
111 };
112 
113 struct iv_benbi_private {
114 	int shift;
115 };
116 
117 #define LMK_SEED_SIZE 64 /* hash + 0 */
118 struct iv_lmk_private {
119 	struct crypto_shash *hash_tfm;
120 	u8 *seed;
121 };
122 
123 #define TCW_WHITENING_SIZE 16
124 struct iv_tcw_private {
125 	struct crypto_shash *crc32_tfm;
126 	u8 *iv_seed;
127 	u8 *whitening;
128 };
129 
130 #define ELEPHANT_MAX_KEY_SIZE 32
131 struct iv_elephant_private {
132 	struct crypto_skcipher *tfm;
133 };
134 
135 /*
136  * Crypt: maps a linear range of a block device
137  * and encrypts / decrypts at the same time.
138  */
139 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
140 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
141 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
142 	     DM_CRYPT_WRITE_INLINE };
143 
144 enum cipher_flags {
145 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
146 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
147 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
148 };
149 
150 /*
151  * The fields in here must be read only after initialization.
152  */
153 struct crypt_config {
154 	struct dm_dev *dev;
155 	sector_t start;
156 
157 	struct percpu_counter n_allocated_pages;
158 
159 	struct workqueue_struct *io_queue;
160 	struct workqueue_struct *crypt_queue;
161 
162 	spinlock_t write_thread_lock;
163 	struct task_struct *write_thread;
164 	struct rb_root write_tree;
165 
166 	char *cipher_string;
167 	char *cipher_auth;
168 	char *key_string;
169 
170 	const struct crypt_iv_operations *iv_gen_ops;
171 	union {
172 		struct iv_benbi_private benbi;
173 		struct iv_lmk_private lmk;
174 		struct iv_tcw_private tcw;
175 		struct iv_elephant_private elephant;
176 	} iv_gen_private;
177 	u64 iv_offset;
178 	unsigned int iv_size;
179 	unsigned short sector_size;
180 	unsigned char sector_shift;
181 
182 	union {
183 		struct crypto_skcipher **tfms;
184 		struct crypto_aead **tfms_aead;
185 	} cipher_tfm;
186 	unsigned int tfms_count;
187 	unsigned long cipher_flags;
188 
189 	/*
190 	 * Layout of each crypto request:
191 	 *
192 	 *   struct skcipher_request
193 	 *      context
194 	 *      padding
195 	 *   struct dm_crypt_request
196 	 *      padding
197 	 *   IV
198 	 *
199 	 * The padding is added so that dm_crypt_request and the IV are
200 	 * correctly aligned.
201 	 */
202 	unsigned int dmreq_start;
203 
204 	unsigned int per_bio_data_size;
205 
206 	unsigned long flags;
207 	unsigned int key_size;
208 	unsigned int key_parts;      /* independent parts in key buffer */
209 	unsigned int key_extra_size; /* additional keys length */
210 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
211 
212 	unsigned int integrity_tag_size;
213 	unsigned int integrity_iv_size;
214 	unsigned int on_disk_tag_size;
215 
216 	/*
217 	 * pool for per bio private data, crypto requests,
218 	 * encryption requeusts/buffer pages and integrity tags
219 	 */
220 	unsigned int tag_pool_max_sectors;
221 	mempool_t tag_pool;
222 	mempool_t req_pool;
223 	mempool_t page_pool;
224 
225 	struct bio_set bs;
226 	struct mutex bio_alloc_lock;
227 
228 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
229 	u8 key[];
230 };
231 
232 #define MIN_IOS		64
233 #define MAX_TAG_SIZE	480
234 #define POOL_ENTRY_SIZE	512
235 
236 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
237 static unsigned int dm_crypt_clients_n;
238 static volatile unsigned long dm_crypt_pages_per_client;
239 #define DM_CRYPT_MEMORY_PERCENT			2
240 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
241 
242 static void crypt_endio(struct bio *clone);
243 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
244 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
245 					     struct scatterlist *sg);
246 
247 static bool crypt_integrity_aead(struct crypt_config *cc);
248 
249 /*
250  * Use this to access cipher attributes that are independent of the key.
251  */
252 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
253 {
254 	return cc->cipher_tfm.tfms[0];
255 }
256 
257 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
258 {
259 	return cc->cipher_tfm.tfms_aead[0];
260 }
261 
262 /*
263  * Different IV generation algorithms:
264  *
265  * plain: the initial vector is the 32-bit little-endian version of the sector
266  *        number, padded with zeros if necessary.
267  *
268  * plain64: the initial vector is the 64-bit little-endian version of the sector
269  *        number, padded with zeros if necessary.
270  *
271  * plain64be: the initial vector is the 64-bit big-endian version of the sector
272  *        number, padded with zeros if necessary.
273  *
274  * essiv: "encrypted sector|salt initial vector", the sector number is
275  *        encrypted with the bulk cipher using a salt as key. The salt
276  *        should be derived from the bulk cipher's key via hashing.
277  *
278  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
279  *        (needed for LRW-32-AES and possible other narrow block modes)
280  *
281  * null: the initial vector is always zero.  Provides compatibility with
282  *       obsolete loop_fish2 devices.  Do not use for new devices.
283  *
284  * lmk:  Compatible implementation of the block chaining mode used
285  *       by the Loop-AES block device encryption system
286  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
287  *       It operates on full 512 byte sectors and uses CBC
288  *       with an IV derived from the sector number, the data and
289  *       optionally extra IV seed.
290  *       This means that after decryption the first block
291  *       of sector must be tweaked according to decrypted data.
292  *       Loop-AES can use three encryption schemes:
293  *         version 1: is plain aes-cbc mode
294  *         version 2: uses 64 multikey scheme with lmk IV generator
295  *         version 3: the same as version 2 with additional IV seed
296  *                   (it uses 65 keys, last key is used as IV seed)
297  *
298  * tcw:  Compatible implementation of the block chaining mode used
299  *       by the TrueCrypt device encryption system (prior to version 4.1).
300  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
301  *       It operates on full 512 byte sectors and uses CBC
302  *       with an IV derived from initial key and the sector number.
303  *       In addition, whitening value is applied on every sector, whitening
304  *       is calculated from initial key, sector number and mixed using CRC32.
305  *       Note that this encryption scheme is vulnerable to watermarking attacks
306  *       and should be used for old compatible containers access only.
307  *
308  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
309  *        The IV is encrypted little-endian byte-offset (with the same key
310  *        and cipher as the volume).
311  *
312  * elephant: The extended version of eboiv with additional Elephant diffuser
313  *           used with Bitlocker CBC mode.
314  *           This mode was used in older Windows systems
315  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
316  */
317 
318 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
319 			      struct dm_crypt_request *dmreq)
320 {
321 	memset(iv, 0, cc->iv_size);
322 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
323 
324 	return 0;
325 }
326 
327 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
328 				struct dm_crypt_request *dmreq)
329 {
330 	memset(iv, 0, cc->iv_size);
331 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
332 
333 	return 0;
334 }
335 
336 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
337 				  struct dm_crypt_request *dmreq)
338 {
339 	memset(iv, 0, cc->iv_size);
340 	/* iv_size is at least of size u64; usually it is 16 bytes */
341 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
342 
343 	return 0;
344 }
345 
346 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
347 			      struct dm_crypt_request *dmreq)
348 {
349 	/*
350 	 * ESSIV encryption of the IV is now handled by the crypto API,
351 	 * so just pass the plain sector number here.
352 	 */
353 	memset(iv, 0, cc->iv_size);
354 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
355 
356 	return 0;
357 }
358 
359 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
360 			      const char *opts)
361 {
362 	unsigned int bs;
363 	int log;
364 
365 	if (crypt_integrity_aead(cc))
366 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
367 	else
368 		bs = crypto_skcipher_blocksize(any_tfm(cc));
369 	log = ilog2(bs);
370 
371 	/*
372 	 * We need to calculate how far we must shift the sector count
373 	 * to get the cipher block count, we use this shift in _gen.
374 	 */
375 	if (1 << log != bs) {
376 		ti->error = "cypher blocksize is not a power of 2";
377 		return -EINVAL;
378 	}
379 
380 	if (log > 9) {
381 		ti->error = "cypher blocksize is > 512";
382 		return -EINVAL;
383 	}
384 
385 	cc->iv_gen_private.benbi.shift = 9 - log;
386 
387 	return 0;
388 }
389 
390 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
391 {
392 }
393 
394 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
395 			      struct dm_crypt_request *dmreq)
396 {
397 	__be64 val;
398 
399 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
400 
401 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
402 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
403 
404 	return 0;
405 }
406 
407 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
408 			     struct dm_crypt_request *dmreq)
409 {
410 	memset(iv, 0, cc->iv_size);
411 
412 	return 0;
413 }
414 
415 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
416 {
417 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
418 
419 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
420 		crypto_free_shash(lmk->hash_tfm);
421 	lmk->hash_tfm = NULL;
422 
423 	kfree_sensitive(lmk->seed);
424 	lmk->seed = NULL;
425 }
426 
427 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
428 			    const char *opts)
429 {
430 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
431 
432 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
433 		ti->error = "Unsupported sector size for LMK";
434 		return -EINVAL;
435 	}
436 
437 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
438 					   CRYPTO_ALG_ALLOCATES_MEMORY);
439 	if (IS_ERR(lmk->hash_tfm)) {
440 		ti->error = "Error initializing LMK hash";
441 		return PTR_ERR(lmk->hash_tfm);
442 	}
443 
444 	/* No seed in LMK version 2 */
445 	if (cc->key_parts == cc->tfms_count) {
446 		lmk->seed = NULL;
447 		return 0;
448 	}
449 
450 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
451 	if (!lmk->seed) {
452 		crypt_iv_lmk_dtr(cc);
453 		ti->error = "Error kmallocing seed storage in LMK";
454 		return -ENOMEM;
455 	}
456 
457 	return 0;
458 }
459 
460 static int crypt_iv_lmk_init(struct crypt_config *cc)
461 {
462 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
463 	int subkey_size = cc->key_size / cc->key_parts;
464 
465 	/* LMK seed is on the position of LMK_KEYS + 1 key */
466 	if (lmk->seed)
467 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
468 		       crypto_shash_digestsize(lmk->hash_tfm));
469 
470 	return 0;
471 }
472 
473 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
474 {
475 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
476 
477 	if (lmk->seed)
478 		memset(lmk->seed, 0, LMK_SEED_SIZE);
479 
480 	return 0;
481 }
482 
483 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
484 			    struct dm_crypt_request *dmreq,
485 			    u8 *data)
486 {
487 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
488 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
489 	struct md5_state md5state;
490 	__le32 buf[4];
491 	int i, r;
492 
493 	desc->tfm = lmk->hash_tfm;
494 
495 	r = crypto_shash_init(desc);
496 	if (r)
497 		return r;
498 
499 	if (lmk->seed) {
500 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
501 		if (r)
502 			return r;
503 	}
504 
505 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
506 	r = crypto_shash_update(desc, data + 16, 16 * 31);
507 	if (r)
508 		return r;
509 
510 	/* Sector is cropped to 56 bits here */
511 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
512 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
513 	buf[2] = cpu_to_le32(4024);
514 	buf[3] = 0;
515 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
516 	if (r)
517 		return r;
518 
519 	/* No MD5 padding here */
520 	r = crypto_shash_export(desc, &md5state);
521 	if (r)
522 		return r;
523 
524 	for (i = 0; i < MD5_HASH_WORDS; i++)
525 		__cpu_to_le32s(&md5state.hash[i]);
526 	memcpy(iv, &md5state.hash, cc->iv_size);
527 
528 	return 0;
529 }
530 
531 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
532 			    struct dm_crypt_request *dmreq)
533 {
534 	struct scatterlist *sg;
535 	u8 *src;
536 	int r = 0;
537 
538 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
539 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
540 		src = kmap_local_page(sg_page(sg));
541 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
542 		kunmap_local(src);
543 	} else
544 		memset(iv, 0, cc->iv_size);
545 
546 	return r;
547 }
548 
549 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
550 			     struct dm_crypt_request *dmreq)
551 {
552 	struct scatterlist *sg;
553 	u8 *dst;
554 	int r;
555 
556 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
557 		return 0;
558 
559 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
560 	dst = kmap_local_page(sg_page(sg));
561 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
562 
563 	/* Tweak the first block of plaintext sector */
564 	if (!r)
565 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
566 
567 	kunmap_local(dst);
568 	return r;
569 }
570 
571 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
572 {
573 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
574 
575 	kfree_sensitive(tcw->iv_seed);
576 	tcw->iv_seed = NULL;
577 	kfree_sensitive(tcw->whitening);
578 	tcw->whitening = NULL;
579 
580 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
581 		crypto_free_shash(tcw->crc32_tfm);
582 	tcw->crc32_tfm = NULL;
583 }
584 
585 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
586 			    const char *opts)
587 {
588 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
589 
590 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
591 		ti->error = "Unsupported sector size for TCW";
592 		return -EINVAL;
593 	}
594 
595 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
596 		ti->error = "Wrong key size for TCW";
597 		return -EINVAL;
598 	}
599 
600 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
601 					    CRYPTO_ALG_ALLOCATES_MEMORY);
602 	if (IS_ERR(tcw->crc32_tfm)) {
603 		ti->error = "Error initializing CRC32 in TCW";
604 		return PTR_ERR(tcw->crc32_tfm);
605 	}
606 
607 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
608 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
609 	if (!tcw->iv_seed || !tcw->whitening) {
610 		crypt_iv_tcw_dtr(cc);
611 		ti->error = "Error allocating seed storage in TCW";
612 		return -ENOMEM;
613 	}
614 
615 	return 0;
616 }
617 
618 static int crypt_iv_tcw_init(struct crypt_config *cc)
619 {
620 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
621 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
622 
623 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
624 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
625 	       TCW_WHITENING_SIZE);
626 
627 	return 0;
628 }
629 
630 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
631 {
632 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
633 
634 	memset(tcw->iv_seed, 0, cc->iv_size);
635 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
636 
637 	return 0;
638 }
639 
640 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
641 				  struct dm_crypt_request *dmreq,
642 				  u8 *data)
643 {
644 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
645 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
646 	u8 buf[TCW_WHITENING_SIZE];
647 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
648 	int i, r;
649 
650 	/* xor whitening with sector number */
651 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
652 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
653 
654 	/* calculate crc32 for every 32bit part and xor it */
655 	desc->tfm = tcw->crc32_tfm;
656 	for (i = 0; i < 4; i++) {
657 		r = crypto_shash_init(desc);
658 		if (r)
659 			goto out;
660 		r = crypto_shash_update(desc, &buf[i * 4], 4);
661 		if (r)
662 			goto out;
663 		r = crypto_shash_final(desc, &buf[i * 4]);
664 		if (r)
665 			goto out;
666 	}
667 	crypto_xor(&buf[0], &buf[12], 4);
668 	crypto_xor(&buf[4], &buf[8], 4);
669 
670 	/* apply whitening (8 bytes) to whole sector */
671 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
672 		crypto_xor(data + i * 8, buf, 8);
673 out:
674 	memzero_explicit(buf, sizeof(buf));
675 	return r;
676 }
677 
678 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
679 			    struct dm_crypt_request *dmreq)
680 {
681 	struct scatterlist *sg;
682 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
683 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
684 	u8 *src;
685 	int r = 0;
686 
687 	/* Remove whitening from ciphertext */
688 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
689 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
690 		src = kmap_local_page(sg_page(sg));
691 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
692 		kunmap_local(src);
693 	}
694 
695 	/* Calculate IV */
696 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
697 	if (cc->iv_size > 8)
698 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
699 			       cc->iv_size - 8);
700 
701 	return r;
702 }
703 
704 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
705 			     struct dm_crypt_request *dmreq)
706 {
707 	struct scatterlist *sg;
708 	u8 *dst;
709 	int r;
710 
711 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
712 		return 0;
713 
714 	/* Apply whitening on ciphertext */
715 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
716 	dst = kmap_local_page(sg_page(sg));
717 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
718 	kunmap_local(dst);
719 
720 	return r;
721 }
722 
723 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
724 				struct dm_crypt_request *dmreq)
725 {
726 	/* Used only for writes, there must be an additional space to store IV */
727 	get_random_bytes(iv, cc->iv_size);
728 	return 0;
729 }
730 
731 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
732 			    const char *opts)
733 {
734 	if (crypt_integrity_aead(cc)) {
735 		ti->error = "AEAD transforms not supported for EBOIV";
736 		return -EINVAL;
737 	}
738 
739 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
740 		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
741 		return -EINVAL;
742 	}
743 
744 	return 0;
745 }
746 
747 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
748 			    struct dm_crypt_request *dmreq)
749 {
750 	struct crypto_skcipher *tfm = any_tfm(cc);
751 	struct skcipher_request *req;
752 	struct scatterlist src, dst;
753 	DECLARE_CRYPTO_WAIT(wait);
754 	unsigned int reqsize;
755 	int err;
756 	u8 *buf;
757 
758 	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
759 	reqsize = ALIGN(reqsize, __alignof__(__le64));
760 
761 	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
762 	if (!req)
763 		return -ENOMEM;
764 
765 	skcipher_request_set_tfm(req, tfm);
766 
767 	buf = (u8 *)req + reqsize;
768 	memset(buf, 0, cc->iv_size);
769 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
770 
771 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
772 	sg_init_one(&dst, iv, cc->iv_size);
773 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
774 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
775 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
776 	kfree_sensitive(req);
777 
778 	return err;
779 }
780 
781 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
782 {
783 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
784 
785 	crypto_free_skcipher(elephant->tfm);
786 	elephant->tfm = NULL;
787 }
788 
789 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
790 			    const char *opts)
791 {
792 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
793 	int r;
794 
795 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
796 					      CRYPTO_ALG_ALLOCATES_MEMORY);
797 	if (IS_ERR(elephant->tfm)) {
798 		r = PTR_ERR(elephant->tfm);
799 		elephant->tfm = NULL;
800 		return r;
801 	}
802 
803 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
804 	if (r)
805 		crypt_iv_elephant_dtr(cc);
806 	return r;
807 }
808 
809 static void diffuser_disk_to_cpu(u32 *d, size_t n)
810 {
811 #ifndef __LITTLE_ENDIAN
812 	int i;
813 
814 	for (i = 0; i < n; i++)
815 		d[i] = le32_to_cpu((__le32)d[i]);
816 #endif
817 }
818 
819 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
820 {
821 #ifndef __LITTLE_ENDIAN
822 	int i;
823 
824 	for (i = 0; i < n; i++)
825 		d[i] = cpu_to_le32((u32)d[i]);
826 #endif
827 }
828 
829 static void diffuser_a_decrypt(u32 *d, size_t n)
830 {
831 	int i, i1, i2, i3;
832 
833 	for (i = 0; i < 5; i++) {
834 		i1 = 0;
835 		i2 = n - 2;
836 		i3 = n - 5;
837 
838 		while (i1 < (n - 1)) {
839 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
840 			i1++; i2++; i3++;
841 
842 			if (i3 >= n)
843 				i3 -= n;
844 
845 			d[i1] += d[i2] ^ d[i3];
846 			i1++; i2++; i3++;
847 
848 			if (i2 >= n)
849 				i2 -= n;
850 
851 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
852 			i1++; i2++; i3++;
853 
854 			d[i1] += d[i2] ^ d[i3];
855 			i1++; i2++; i3++;
856 		}
857 	}
858 }
859 
860 static void diffuser_a_encrypt(u32 *d, size_t n)
861 {
862 	int i, i1, i2, i3;
863 
864 	for (i = 0; i < 5; i++) {
865 		i1 = n - 1;
866 		i2 = n - 2 - 1;
867 		i3 = n - 5 - 1;
868 
869 		while (i1 > 0) {
870 			d[i1] -= d[i2] ^ d[i3];
871 			i1--; i2--; i3--;
872 
873 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
874 			i1--; i2--; i3--;
875 
876 			if (i2 < 0)
877 				i2 += n;
878 
879 			d[i1] -= d[i2] ^ d[i3];
880 			i1--; i2--; i3--;
881 
882 			if (i3 < 0)
883 				i3 += n;
884 
885 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
886 			i1--; i2--; i3--;
887 		}
888 	}
889 }
890 
891 static void diffuser_b_decrypt(u32 *d, size_t n)
892 {
893 	int i, i1, i2, i3;
894 
895 	for (i = 0; i < 3; i++) {
896 		i1 = 0;
897 		i2 = 2;
898 		i3 = 5;
899 
900 		while (i1 < (n - 1)) {
901 			d[i1] += d[i2] ^ d[i3];
902 			i1++; i2++; i3++;
903 
904 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
905 			i1++; i2++; i3++;
906 
907 			if (i2 >= n)
908 				i2 -= n;
909 
910 			d[i1] += d[i2] ^ d[i3];
911 			i1++; i2++; i3++;
912 
913 			if (i3 >= n)
914 				i3 -= n;
915 
916 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
917 			i1++; i2++; i3++;
918 		}
919 	}
920 }
921 
922 static void diffuser_b_encrypt(u32 *d, size_t n)
923 {
924 	int i, i1, i2, i3;
925 
926 	for (i = 0; i < 3; i++) {
927 		i1 = n - 1;
928 		i2 = 2 - 1;
929 		i3 = 5 - 1;
930 
931 		while (i1 > 0) {
932 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
933 			i1--; i2--; i3--;
934 
935 			if (i3 < 0)
936 				i3 += n;
937 
938 			d[i1] -= d[i2] ^ d[i3];
939 			i1--; i2--; i3--;
940 
941 			if (i2 < 0)
942 				i2 += n;
943 
944 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
945 			i1--; i2--; i3--;
946 
947 			d[i1] -= d[i2] ^ d[i3];
948 			i1--; i2--; i3--;
949 		}
950 	}
951 }
952 
953 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
954 {
955 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
956 	u8 *es, *ks, *data, *data2, *data_offset;
957 	struct skcipher_request *req;
958 	struct scatterlist *sg, *sg2, src, dst;
959 	DECLARE_CRYPTO_WAIT(wait);
960 	int i, r;
961 
962 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
963 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
964 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
965 
966 	if (!req || !es || !ks) {
967 		r = -ENOMEM;
968 		goto out;
969 	}
970 
971 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
972 
973 	/* E(Ks, e(s)) */
974 	sg_init_one(&src, es, 16);
975 	sg_init_one(&dst, ks, 16);
976 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
977 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
978 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
979 	if (r)
980 		goto out;
981 
982 	/* E(Ks, e'(s)) */
983 	es[15] = 0x80;
984 	sg_init_one(&dst, &ks[16], 16);
985 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
986 	if (r)
987 		goto out;
988 
989 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
990 	data = kmap_local_page(sg_page(sg));
991 	data_offset = data + sg->offset;
992 
993 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
994 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
995 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
996 		data2 = kmap_local_page(sg_page(sg2));
997 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
998 		kunmap_local(data2);
999 	}
1000 
1001 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
1002 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1003 		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1004 		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1005 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1006 	}
1007 
1008 	for (i = 0; i < (cc->sector_size / 32); i++)
1009 		crypto_xor(data_offset + i * 32, ks, 32);
1010 
1011 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1012 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1013 		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1014 		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1015 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1016 	}
1017 
1018 	kunmap_local(data);
1019 out:
1020 	kfree_sensitive(ks);
1021 	kfree_sensitive(es);
1022 	skcipher_request_free(req);
1023 	return r;
1024 }
1025 
1026 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1027 			    struct dm_crypt_request *dmreq)
1028 {
1029 	int r;
1030 
1031 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1032 		r = crypt_iv_elephant(cc, dmreq);
1033 		if (r)
1034 			return r;
1035 	}
1036 
1037 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1038 }
1039 
1040 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1041 				  struct dm_crypt_request *dmreq)
1042 {
1043 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1044 		return crypt_iv_elephant(cc, dmreq);
1045 
1046 	return 0;
1047 }
1048 
1049 static int crypt_iv_elephant_init(struct crypt_config *cc)
1050 {
1051 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1052 	int key_offset = cc->key_size - cc->key_extra_size;
1053 
1054 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1055 }
1056 
1057 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1058 {
1059 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1060 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1061 
1062 	memset(key, 0, cc->key_extra_size);
1063 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1064 }
1065 
1066 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1067 	.generator = crypt_iv_plain_gen
1068 };
1069 
1070 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1071 	.generator = crypt_iv_plain64_gen
1072 };
1073 
1074 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1075 	.generator = crypt_iv_plain64be_gen
1076 };
1077 
1078 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1079 	.generator = crypt_iv_essiv_gen
1080 };
1081 
1082 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1083 	.ctr	   = crypt_iv_benbi_ctr,
1084 	.dtr	   = crypt_iv_benbi_dtr,
1085 	.generator = crypt_iv_benbi_gen
1086 };
1087 
1088 static const struct crypt_iv_operations crypt_iv_null_ops = {
1089 	.generator = crypt_iv_null_gen
1090 };
1091 
1092 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1093 	.ctr	   = crypt_iv_lmk_ctr,
1094 	.dtr	   = crypt_iv_lmk_dtr,
1095 	.init	   = crypt_iv_lmk_init,
1096 	.wipe	   = crypt_iv_lmk_wipe,
1097 	.generator = crypt_iv_lmk_gen,
1098 	.post	   = crypt_iv_lmk_post
1099 };
1100 
1101 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1102 	.ctr	   = crypt_iv_tcw_ctr,
1103 	.dtr	   = crypt_iv_tcw_dtr,
1104 	.init	   = crypt_iv_tcw_init,
1105 	.wipe	   = crypt_iv_tcw_wipe,
1106 	.generator = crypt_iv_tcw_gen,
1107 	.post	   = crypt_iv_tcw_post
1108 };
1109 
1110 static const struct crypt_iv_operations crypt_iv_random_ops = {
1111 	.generator = crypt_iv_random_gen
1112 };
1113 
1114 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1115 	.ctr	   = crypt_iv_eboiv_ctr,
1116 	.generator = crypt_iv_eboiv_gen
1117 };
1118 
1119 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1120 	.ctr	   = crypt_iv_elephant_ctr,
1121 	.dtr	   = crypt_iv_elephant_dtr,
1122 	.init	   = crypt_iv_elephant_init,
1123 	.wipe	   = crypt_iv_elephant_wipe,
1124 	.generator = crypt_iv_elephant_gen,
1125 	.post	   = crypt_iv_elephant_post
1126 };
1127 
1128 /*
1129  * Integrity extensions
1130  */
1131 static bool crypt_integrity_aead(struct crypt_config *cc)
1132 {
1133 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1134 }
1135 
1136 static bool crypt_integrity_hmac(struct crypt_config *cc)
1137 {
1138 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1139 }
1140 
1141 /* Get sg containing data */
1142 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1143 					     struct scatterlist *sg)
1144 {
1145 	if (unlikely(crypt_integrity_aead(cc)))
1146 		return &sg[2];
1147 
1148 	return sg;
1149 }
1150 
1151 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1152 {
1153 	struct bio_integrity_payload *bip;
1154 	unsigned int tag_len;
1155 	int ret;
1156 
1157 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1158 		return 0;
1159 
1160 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1161 	if (IS_ERR(bip))
1162 		return PTR_ERR(bip);
1163 
1164 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1165 
1166 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1167 
1168 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1169 				     tag_len, offset_in_page(io->integrity_metadata));
1170 	if (unlikely(ret != tag_len))
1171 		return -ENOMEM;
1172 
1173 	return 0;
1174 }
1175 
1176 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1177 {
1178 #ifdef CONFIG_BLK_DEV_INTEGRITY
1179 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1180 	struct mapped_device *md = dm_table_get_md(ti->table);
1181 
1182 	/* From now we require underlying device with our integrity profile */
1183 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1184 		ti->error = "Integrity profile not supported.";
1185 		return -EINVAL;
1186 	}
1187 
1188 	if (bi->tag_size != cc->on_disk_tag_size ||
1189 	    bi->tuple_size != cc->on_disk_tag_size) {
1190 		ti->error = "Integrity profile tag size mismatch.";
1191 		return -EINVAL;
1192 	}
1193 	if (1 << bi->interval_exp != cc->sector_size) {
1194 		ti->error = "Integrity profile sector size mismatch.";
1195 		return -EINVAL;
1196 	}
1197 
1198 	if (crypt_integrity_aead(cc)) {
1199 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1200 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1201 		       cc->integrity_tag_size, cc->integrity_iv_size);
1202 
1203 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1204 			ti->error = "Integrity AEAD auth tag size is not supported.";
1205 			return -EINVAL;
1206 		}
1207 	} else if (cc->integrity_iv_size)
1208 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1209 		       cc->integrity_iv_size);
1210 
1211 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1212 		ti->error = "Not enough space for integrity tag in the profile.";
1213 		return -EINVAL;
1214 	}
1215 
1216 	return 0;
1217 #else
1218 	ti->error = "Integrity profile not supported.";
1219 	return -EINVAL;
1220 #endif
1221 }
1222 
1223 static void crypt_convert_init(struct crypt_config *cc,
1224 			       struct convert_context *ctx,
1225 			       struct bio *bio_out, struct bio *bio_in,
1226 			       sector_t sector)
1227 {
1228 	ctx->bio_in = bio_in;
1229 	ctx->bio_out = bio_out;
1230 	if (bio_in)
1231 		ctx->iter_in = bio_in->bi_iter;
1232 	if (bio_out)
1233 		ctx->iter_out = bio_out->bi_iter;
1234 	ctx->cc_sector = sector + cc->iv_offset;
1235 	init_completion(&ctx->restart);
1236 }
1237 
1238 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1239 					     void *req)
1240 {
1241 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1242 }
1243 
1244 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1245 {
1246 	return (void *)((char *)dmreq - cc->dmreq_start);
1247 }
1248 
1249 static u8 *iv_of_dmreq(struct crypt_config *cc,
1250 		       struct dm_crypt_request *dmreq)
1251 {
1252 	if (crypt_integrity_aead(cc))
1253 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1254 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1255 	else
1256 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1257 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1258 }
1259 
1260 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1261 		       struct dm_crypt_request *dmreq)
1262 {
1263 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1264 }
1265 
1266 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1267 		       struct dm_crypt_request *dmreq)
1268 {
1269 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1270 
1271 	return (__le64 *) ptr;
1272 }
1273 
1274 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1275 		       struct dm_crypt_request *dmreq)
1276 {
1277 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1278 		  cc->iv_size + sizeof(uint64_t);
1279 
1280 	return (unsigned int *)ptr;
1281 }
1282 
1283 static void *tag_from_dmreq(struct crypt_config *cc,
1284 				struct dm_crypt_request *dmreq)
1285 {
1286 	struct convert_context *ctx = dmreq->ctx;
1287 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1288 
1289 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1290 		cc->on_disk_tag_size];
1291 }
1292 
1293 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1294 			       struct dm_crypt_request *dmreq)
1295 {
1296 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1297 }
1298 
1299 static int crypt_convert_block_aead(struct crypt_config *cc,
1300 				     struct convert_context *ctx,
1301 				     struct aead_request *req,
1302 				     unsigned int tag_offset)
1303 {
1304 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1305 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1306 	struct dm_crypt_request *dmreq;
1307 	u8 *iv, *org_iv, *tag_iv, *tag;
1308 	__le64 *sector;
1309 	int r = 0;
1310 
1311 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1312 
1313 	/* Reject unexpected unaligned bio. */
1314 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1315 		return -EIO;
1316 
1317 	dmreq = dmreq_of_req(cc, req);
1318 	dmreq->iv_sector = ctx->cc_sector;
1319 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1320 		dmreq->iv_sector >>= cc->sector_shift;
1321 	dmreq->ctx = ctx;
1322 
1323 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1324 
1325 	sector = org_sector_of_dmreq(cc, dmreq);
1326 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1327 
1328 	iv = iv_of_dmreq(cc, dmreq);
1329 	org_iv = org_iv_of_dmreq(cc, dmreq);
1330 	tag = tag_from_dmreq(cc, dmreq);
1331 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1332 
1333 	/* AEAD request:
1334 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1335 	 *  | (authenticated) | (auth+encryption) |              |
1336 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1337 	 */
1338 	sg_init_table(dmreq->sg_in, 4);
1339 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1340 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1341 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1342 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1343 
1344 	sg_init_table(dmreq->sg_out, 4);
1345 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1346 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1347 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1348 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1349 
1350 	if (cc->iv_gen_ops) {
1351 		/* For READs use IV stored in integrity metadata */
1352 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1353 			memcpy(org_iv, tag_iv, cc->iv_size);
1354 		} else {
1355 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1356 			if (r < 0)
1357 				return r;
1358 			/* Store generated IV in integrity metadata */
1359 			if (cc->integrity_iv_size)
1360 				memcpy(tag_iv, org_iv, cc->iv_size);
1361 		}
1362 		/* Working copy of IV, to be modified in crypto API */
1363 		memcpy(iv, org_iv, cc->iv_size);
1364 	}
1365 
1366 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1367 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1368 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1369 				       cc->sector_size, iv);
1370 		r = crypto_aead_encrypt(req);
1371 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1372 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1373 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1374 	} else {
1375 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1376 				       cc->sector_size + cc->integrity_tag_size, iv);
1377 		r = crypto_aead_decrypt(req);
1378 	}
1379 
1380 	if (r == -EBADMSG) {
1381 		sector_t s = le64_to_cpu(*sector);
1382 
1383 		ctx->aead_failed = true;
1384 		if (ctx->aead_recheck) {
1385 			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1386 				    ctx->bio_in->bi_bdev, s);
1387 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1388 					 ctx->bio_in, s, 0);
1389 		}
1390 	}
1391 
1392 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1393 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1394 
1395 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1396 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1397 
1398 	return r;
1399 }
1400 
1401 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1402 					struct convert_context *ctx,
1403 					struct skcipher_request *req,
1404 					unsigned int tag_offset)
1405 {
1406 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1407 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1408 	struct scatterlist *sg_in, *sg_out;
1409 	struct dm_crypt_request *dmreq;
1410 	u8 *iv, *org_iv, *tag_iv;
1411 	__le64 *sector;
1412 	int r = 0;
1413 
1414 	/* Reject unexpected unaligned bio. */
1415 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1416 		return -EIO;
1417 
1418 	dmreq = dmreq_of_req(cc, req);
1419 	dmreq->iv_sector = ctx->cc_sector;
1420 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1421 		dmreq->iv_sector >>= cc->sector_shift;
1422 	dmreq->ctx = ctx;
1423 
1424 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1425 
1426 	iv = iv_of_dmreq(cc, dmreq);
1427 	org_iv = org_iv_of_dmreq(cc, dmreq);
1428 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1429 
1430 	sector = org_sector_of_dmreq(cc, dmreq);
1431 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1432 
1433 	/* For skcipher we use only the first sg item */
1434 	sg_in  = &dmreq->sg_in[0];
1435 	sg_out = &dmreq->sg_out[0];
1436 
1437 	sg_init_table(sg_in, 1);
1438 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1439 
1440 	sg_init_table(sg_out, 1);
1441 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1442 
1443 	if (cc->iv_gen_ops) {
1444 		/* For READs use IV stored in integrity metadata */
1445 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1446 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1447 		} else {
1448 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1449 			if (r < 0)
1450 				return r;
1451 			/* Data can be already preprocessed in generator */
1452 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1453 				sg_in = sg_out;
1454 			/* Store generated IV in integrity metadata */
1455 			if (cc->integrity_iv_size)
1456 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1457 		}
1458 		/* Working copy of IV, to be modified in crypto API */
1459 		memcpy(iv, org_iv, cc->iv_size);
1460 	}
1461 
1462 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1463 
1464 	if (bio_data_dir(ctx->bio_in) == WRITE)
1465 		r = crypto_skcipher_encrypt(req);
1466 	else
1467 		r = crypto_skcipher_decrypt(req);
1468 
1469 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1470 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1471 
1472 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1473 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1474 
1475 	return r;
1476 }
1477 
1478 static void kcryptd_async_done(void *async_req, int error);
1479 
1480 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1481 				     struct convert_context *ctx)
1482 {
1483 	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1484 
1485 	if (!ctx->r.req) {
1486 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1487 		if (!ctx->r.req)
1488 			return -ENOMEM;
1489 	}
1490 
1491 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1492 
1493 	/*
1494 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1495 	 * requests if driver request queue is full.
1496 	 */
1497 	skcipher_request_set_callback(ctx->r.req,
1498 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1499 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1500 
1501 	return 0;
1502 }
1503 
1504 static int crypt_alloc_req_aead(struct crypt_config *cc,
1505 				 struct convert_context *ctx)
1506 {
1507 	if (!ctx->r.req_aead) {
1508 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1509 		if (!ctx->r.req_aead)
1510 			return -ENOMEM;
1511 	}
1512 
1513 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1514 
1515 	/*
1516 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1517 	 * requests if driver request queue is full.
1518 	 */
1519 	aead_request_set_callback(ctx->r.req_aead,
1520 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1521 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1522 
1523 	return 0;
1524 }
1525 
1526 static int crypt_alloc_req(struct crypt_config *cc,
1527 			    struct convert_context *ctx)
1528 {
1529 	if (crypt_integrity_aead(cc))
1530 		return crypt_alloc_req_aead(cc, ctx);
1531 	else
1532 		return crypt_alloc_req_skcipher(cc, ctx);
1533 }
1534 
1535 static void crypt_free_req_skcipher(struct crypt_config *cc,
1536 				    struct skcipher_request *req, struct bio *base_bio)
1537 {
1538 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1539 
1540 	if ((struct skcipher_request *)(io + 1) != req)
1541 		mempool_free(req, &cc->req_pool);
1542 }
1543 
1544 static void crypt_free_req_aead(struct crypt_config *cc,
1545 				struct aead_request *req, struct bio *base_bio)
1546 {
1547 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1548 
1549 	if ((struct aead_request *)(io + 1) != req)
1550 		mempool_free(req, &cc->req_pool);
1551 }
1552 
1553 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1554 {
1555 	if (crypt_integrity_aead(cc))
1556 		crypt_free_req_aead(cc, req, base_bio);
1557 	else
1558 		crypt_free_req_skcipher(cc, req, base_bio);
1559 }
1560 
1561 /*
1562  * Encrypt / decrypt data from one bio to another one (can be the same one)
1563  */
1564 static blk_status_t crypt_convert(struct crypt_config *cc,
1565 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1566 {
1567 	unsigned int tag_offset = 0;
1568 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1569 	int r;
1570 
1571 	/*
1572 	 * if reset_pending is set we are dealing with the bio for the first time,
1573 	 * else we're continuing to work on the previous bio, so don't mess with
1574 	 * the cc_pending counter
1575 	 */
1576 	if (reset_pending)
1577 		atomic_set(&ctx->cc_pending, 1);
1578 
1579 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1580 
1581 		r = crypt_alloc_req(cc, ctx);
1582 		if (r) {
1583 			complete(&ctx->restart);
1584 			return BLK_STS_DEV_RESOURCE;
1585 		}
1586 
1587 		atomic_inc(&ctx->cc_pending);
1588 
1589 		if (crypt_integrity_aead(cc))
1590 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1591 		else
1592 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1593 
1594 		switch (r) {
1595 		/*
1596 		 * The request was queued by a crypto driver
1597 		 * but the driver request queue is full, let's wait.
1598 		 */
1599 		case -EBUSY:
1600 			if (in_interrupt()) {
1601 				if (try_wait_for_completion(&ctx->restart)) {
1602 					/*
1603 					 * we don't have to block to wait for completion,
1604 					 * so proceed
1605 					 */
1606 				} else {
1607 					/*
1608 					 * we can't wait for completion without blocking
1609 					 * exit and continue processing in a workqueue
1610 					 */
1611 					ctx->r.req = NULL;
1612 					ctx->cc_sector += sector_step;
1613 					tag_offset++;
1614 					return BLK_STS_DEV_RESOURCE;
1615 				}
1616 			} else {
1617 				wait_for_completion(&ctx->restart);
1618 			}
1619 			reinit_completion(&ctx->restart);
1620 			fallthrough;
1621 		/*
1622 		 * The request is queued and processed asynchronously,
1623 		 * completion function kcryptd_async_done() will be called.
1624 		 */
1625 		case -EINPROGRESS:
1626 			ctx->r.req = NULL;
1627 			ctx->cc_sector += sector_step;
1628 			tag_offset++;
1629 			continue;
1630 		/*
1631 		 * The request was already processed (synchronously).
1632 		 */
1633 		case 0:
1634 			atomic_dec(&ctx->cc_pending);
1635 			ctx->cc_sector += sector_step;
1636 			tag_offset++;
1637 			if (!atomic)
1638 				cond_resched();
1639 			continue;
1640 		/*
1641 		 * There was a data integrity error.
1642 		 */
1643 		case -EBADMSG:
1644 			atomic_dec(&ctx->cc_pending);
1645 			return BLK_STS_PROTECTION;
1646 		/*
1647 		 * There was an error while processing the request.
1648 		 */
1649 		default:
1650 			atomic_dec(&ctx->cc_pending);
1651 			return BLK_STS_IOERR;
1652 		}
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1659 
1660 /*
1661  * Generate a new unfragmented bio with the given size
1662  * This should never violate the device limitations (but only because
1663  * max_segment_size is being constrained to PAGE_SIZE).
1664  *
1665  * This function may be called concurrently. If we allocate from the mempool
1666  * concurrently, there is a possibility of deadlock. For example, if we have
1667  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1668  * the mempool concurrently, it may deadlock in a situation where both processes
1669  * have allocated 128 pages and the mempool is exhausted.
1670  *
1671  * In order to avoid this scenario we allocate the pages under a mutex.
1672  *
1673  * In order to not degrade performance with excessive locking, we try
1674  * non-blocking allocations without a mutex first but on failure we fallback
1675  * to blocking allocations with a mutex.
1676  *
1677  * In order to reduce allocation overhead, we try to allocate compound pages in
1678  * the first pass. If they are not available, we fall back to the mempool.
1679  */
1680 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1681 {
1682 	struct crypt_config *cc = io->cc;
1683 	struct bio *clone;
1684 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1685 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1686 	unsigned int remaining_size;
1687 	unsigned int order = MAX_ORDER;
1688 
1689 retry:
1690 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1691 		mutex_lock(&cc->bio_alloc_lock);
1692 
1693 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1694 				 GFP_NOIO, &cc->bs);
1695 	clone->bi_private = io;
1696 	clone->bi_end_io = crypt_endio;
1697 
1698 	remaining_size = size;
1699 
1700 	while (remaining_size) {
1701 		struct page *pages;
1702 		unsigned size_to_add;
1703 		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1704 		order = min(order, remaining_order);
1705 
1706 		while (order > 0) {
1707 			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1708 					(1 << order) > dm_crypt_pages_per_client))
1709 				goto decrease_order;
1710 			pages = alloc_pages(gfp_mask
1711 				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1712 				order);
1713 			if (likely(pages != NULL)) {
1714 				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1715 				goto have_pages;
1716 			}
1717 decrease_order:
1718 			order--;
1719 		}
1720 
1721 		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1722 		if (!pages) {
1723 			crypt_free_buffer_pages(cc, clone);
1724 			bio_put(clone);
1725 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1726 			order = 0;
1727 			goto retry;
1728 		}
1729 
1730 have_pages:
1731 		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1732 		__bio_add_page(clone, pages, size_to_add, 0);
1733 		remaining_size -= size_to_add;
1734 	}
1735 
1736 	/* Allocate space for integrity tags */
1737 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1738 		crypt_free_buffer_pages(cc, clone);
1739 		bio_put(clone);
1740 		clone = NULL;
1741 	}
1742 
1743 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1744 		mutex_unlock(&cc->bio_alloc_lock);
1745 
1746 	return clone;
1747 }
1748 
1749 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1750 {
1751 	struct folio_iter fi;
1752 
1753 	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1754 		bio_for_each_folio_all(fi, clone) {
1755 			if (folio_test_large(fi.folio)) {
1756 				percpu_counter_sub(&cc->n_allocated_pages,
1757 						1 << folio_order(fi.folio));
1758 				folio_put(fi.folio);
1759 			} else {
1760 				mempool_free(&fi.folio->page, &cc->page_pool);
1761 			}
1762 		}
1763 	}
1764 }
1765 
1766 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1767 			  struct bio *bio, sector_t sector)
1768 {
1769 	io->cc = cc;
1770 	io->base_bio = bio;
1771 	io->sector = sector;
1772 	io->error = 0;
1773 	io->ctx.aead_recheck = false;
1774 	io->ctx.aead_failed = false;
1775 	io->ctx.r.req = NULL;
1776 	io->integrity_metadata = NULL;
1777 	io->integrity_metadata_from_pool = false;
1778 	atomic_set(&io->io_pending, 0);
1779 }
1780 
1781 static void crypt_inc_pending(struct dm_crypt_io *io)
1782 {
1783 	atomic_inc(&io->io_pending);
1784 }
1785 
1786 static void kcryptd_queue_read(struct dm_crypt_io *io);
1787 
1788 /*
1789  * One of the bios was finished. Check for completion of
1790  * the whole request and correctly clean up the buffer.
1791  */
1792 static void crypt_dec_pending(struct dm_crypt_io *io)
1793 {
1794 	struct crypt_config *cc = io->cc;
1795 	struct bio *base_bio = io->base_bio;
1796 	blk_status_t error = io->error;
1797 
1798 	if (!atomic_dec_and_test(&io->io_pending))
1799 		return;
1800 
1801 	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1802 	    cc->on_disk_tag_size && bio_data_dir(base_bio) == READ) {
1803 		io->ctx.aead_recheck = true;
1804 		io->ctx.aead_failed = false;
1805 		io->error = 0;
1806 		kcryptd_queue_read(io);
1807 		return;
1808 	}
1809 
1810 	if (io->ctx.r.req)
1811 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1812 
1813 	if (unlikely(io->integrity_metadata_from_pool))
1814 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1815 	else
1816 		kfree(io->integrity_metadata);
1817 
1818 	base_bio->bi_status = error;
1819 
1820 	bio_endio(base_bio);
1821 }
1822 
1823 /*
1824  * kcryptd/kcryptd_io:
1825  *
1826  * Needed because it would be very unwise to do decryption in an
1827  * interrupt context.
1828  *
1829  * kcryptd performs the actual encryption or decryption.
1830  *
1831  * kcryptd_io performs the IO submission.
1832  *
1833  * They must be separated as otherwise the final stages could be
1834  * starved by new requests which can block in the first stages due
1835  * to memory allocation.
1836  *
1837  * The work is done per CPU global for all dm-crypt instances.
1838  * They should not depend on each other and do not block.
1839  */
1840 static void crypt_endio(struct bio *clone)
1841 {
1842 	struct dm_crypt_io *io = clone->bi_private;
1843 	struct crypt_config *cc = io->cc;
1844 	unsigned int rw = bio_data_dir(clone);
1845 	blk_status_t error = clone->bi_status;
1846 
1847 	if (io->ctx.aead_recheck && !error) {
1848 		kcryptd_queue_crypt(io);
1849 		return;
1850 	}
1851 
1852 	/*
1853 	 * free the processed pages
1854 	 */
1855 	if (rw == WRITE || io->ctx.aead_recheck)
1856 		crypt_free_buffer_pages(cc, clone);
1857 
1858 	bio_put(clone);
1859 
1860 	if (rw == READ && !error) {
1861 		kcryptd_queue_crypt(io);
1862 		return;
1863 	}
1864 
1865 	if (unlikely(error))
1866 		io->error = error;
1867 
1868 	crypt_dec_pending(io);
1869 }
1870 
1871 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1872 
1873 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1874 {
1875 	struct crypt_config *cc = io->cc;
1876 	struct bio *clone;
1877 
1878 	if (io->ctx.aead_recheck) {
1879 		if (!(gfp & __GFP_DIRECT_RECLAIM))
1880 			return 1;
1881 		crypt_inc_pending(io);
1882 		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1883 		if (unlikely(!clone)) {
1884 			crypt_dec_pending(io);
1885 			return 1;
1886 		}
1887 		clone->bi_iter.bi_sector = cc->start + io->sector;
1888 		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1889 		io->saved_bi_iter = clone->bi_iter;
1890 		dm_submit_bio_remap(io->base_bio, clone);
1891 		return 0;
1892 	}
1893 
1894 	/*
1895 	 * We need the original biovec array in order to decrypt the whole bio
1896 	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1897 	 * worry about the block layer modifying the biovec array; so leverage
1898 	 * bio_alloc_clone().
1899 	 */
1900 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1901 	if (!clone)
1902 		return 1;
1903 	clone->bi_private = io;
1904 	clone->bi_end_io = crypt_endio;
1905 
1906 	crypt_inc_pending(io);
1907 
1908 	clone->bi_iter.bi_sector = cc->start + io->sector;
1909 
1910 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1911 		crypt_dec_pending(io);
1912 		bio_put(clone);
1913 		return 1;
1914 	}
1915 
1916 	dm_submit_bio_remap(io->base_bio, clone);
1917 	return 0;
1918 }
1919 
1920 static void kcryptd_io_read_work(struct work_struct *work)
1921 {
1922 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1923 
1924 	crypt_inc_pending(io);
1925 	if (kcryptd_io_read(io, GFP_NOIO))
1926 		io->error = BLK_STS_RESOURCE;
1927 	crypt_dec_pending(io);
1928 }
1929 
1930 static void kcryptd_queue_read(struct dm_crypt_io *io)
1931 {
1932 	struct crypt_config *cc = io->cc;
1933 
1934 	INIT_WORK(&io->work, kcryptd_io_read_work);
1935 	queue_work(cc->io_queue, &io->work);
1936 }
1937 
1938 static void kcryptd_io_write(struct dm_crypt_io *io)
1939 {
1940 	struct bio *clone = io->ctx.bio_out;
1941 
1942 	dm_submit_bio_remap(io->base_bio, clone);
1943 }
1944 
1945 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1946 
1947 static int dmcrypt_write(void *data)
1948 {
1949 	struct crypt_config *cc = data;
1950 	struct dm_crypt_io *io;
1951 
1952 	while (1) {
1953 		struct rb_root write_tree;
1954 		struct blk_plug plug;
1955 
1956 		spin_lock_irq(&cc->write_thread_lock);
1957 continue_locked:
1958 
1959 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1960 			goto pop_from_list;
1961 
1962 		set_current_state(TASK_INTERRUPTIBLE);
1963 
1964 		spin_unlock_irq(&cc->write_thread_lock);
1965 
1966 		if (unlikely(kthread_should_stop())) {
1967 			set_current_state(TASK_RUNNING);
1968 			break;
1969 		}
1970 
1971 		schedule();
1972 
1973 		set_current_state(TASK_RUNNING);
1974 		spin_lock_irq(&cc->write_thread_lock);
1975 		goto continue_locked;
1976 
1977 pop_from_list:
1978 		write_tree = cc->write_tree;
1979 		cc->write_tree = RB_ROOT;
1980 		spin_unlock_irq(&cc->write_thread_lock);
1981 
1982 		BUG_ON(rb_parent(write_tree.rb_node));
1983 
1984 		/*
1985 		 * Note: we cannot walk the tree here with rb_next because
1986 		 * the structures may be freed when kcryptd_io_write is called.
1987 		 */
1988 		blk_start_plug(&plug);
1989 		do {
1990 			io = crypt_io_from_node(rb_first(&write_tree));
1991 			rb_erase(&io->rb_node, &write_tree);
1992 			kcryptd_io_write(io);
1993 			cond_resched();
1994 		} while (!RB_EMPTY_ROOT(&write_tree));
1995 		blk_finish_plug(&plug);
1996 	}
1997 	return 0;
1998 }
1999 
2000 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
2001 {
2002 	struct bio *clone = io->ctx.bio_out;
2003 	struct crypt_config *cc = io->cc;
2004 	unsigned long flags;
2005 	sector_t sector;
2006 	struct rb_node **rbp, *parent;
2007 
2008 	if (unlikely(io->error)) {
2009 		crypt_free_buffer_pages(cc, clone);
2010 		bio_put(clone);
2011 		crypt_dec_pending(io);
2012 		return;
2013 	}
2014 
2015 	/* crypt_convert should have filled the clone bio */
2016 	BUG_ON(io->ctx.iter_out.bi_size);
2017 
2018 	clone->bi_iter.bi_sector = cc->start + io->sector;
2019 
2020 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2021 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2022 		dm_submit_bio_remap(io->base_bio, clone);
2023 		return;
2024 	}
2025 
2026 	spin_lock_irqsave(&cc->write_thread_lock, flags);
2027 	if (RB_EMPTY_ROOT(&cc->write_tree))
2028 		wake_up_process(cc->write_thread);
2029 	rbp = &cc->write_tree.rb_node;
2030 	parent = NULL;
2031 	sector = io->sector;
2032 	while (*rbp) {
2033 		parent = *rbp;
2034 		if (sector < crypt_io_from_node(parent)->sector)
2035 			rbp = &(*rbp)->rb_left;
2036 		else
2037 			rbp = &(*rbp)->rb_right;
2038 	}
2039 	rb_link_node(&io->rb_node, parent, rbp);
2040 	rb_insert_color(&io->rb_node, &cc->write_tree);
2041 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2042 }
2043 
2044 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2045 				       struct convert_context *ctx)
2046 
2047 {
2048 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2049 		return false;
2050 
2051 	/*
2052 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2053 	 * constraints so they do not need to be issued inline by
2054 	 * kcryptd_crypt_write_convert().
2055 	 */
2056 	switch (bio_op(ctx->bio_in)) {
2057 	case REQ_OP_WRITE:
2058 	case REQ_OP_WRITE_ZEROES:
2059 		return true;
2060 	default:
2061 		return false;
2062 	}
2063 }
2064 
2065 static void kcryptd_crypt_write_continue(struct work_struct *work)
2066 {
2067 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2068 	struct crypt_config *cc = io->cc;
2069 	struct convert_context *ctx = &io->ctx;
2070 	int crypt_finished;
2071 	sector_t sector = io->sector;
2072 	blk_status_t r;
2073 
2074 	wait_for_completion(&ctx->restart);
2075 	reinit_completion(&ctx->restart);
2076 
2077 	r = crypt_convert(cc, &io->ctx, true, false);
2078 	if (r)
2079 		io->error = r;
2080 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2081 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2082 		/* Wait for completion signaled by kcryptd_async_done() */
2083 		wait_for_completion(&ctx->restart);
2084 		crypt_finished = 1;
2085 	}
2086 
2087 	/* Encryption was already finished, submit io now */
2088 	if (crypt_finished) {
2089 		kcryptd_crypt_write_io_submit(io, 0);
2090 		io->sector = sector;
2091 	}
2092 
2093 	crypt_dec_pending(io);
2094 }
2095 
2096 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2097 {
2098 	struct crypt_config *cc = io->cc;
2099 	struct convert_context *ctx = &io->ctx;
2100 	struct bio *clone;
2101 	int crypt_finished;
2102 	sector_t sector = io->sector;
2103 	blk_status_t r;
2104 
2105 	/*
2106 	 * Prevent io from disappearing until this function completes.
2107 	 */
2108 	crypt_inc_pending(io);
2109 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2110 
2111 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2112 	if (unlikely(!clone)) {
2113 		io->error = BLK_STS_IOERR;
2114 		goto dec;
2115 	}
2116 
2117 	io->ctx.bio_out = clone;
2118 	io->ctx.iter_out = clone->bi_iter;
2119 
2120 	if (crypt_integrity_aead(cc)) {
2121 		bio_copy_data(clone, io->base_bio);
2122 		io->ctx.bio_in = clone;
2123 		io->ctx.iter_in = clone->bi_iter;
2124 	}
2125 
2126 	sector += bio_sectors(clone);
2127 
2128 	crypt_inc_pending(io);
2129 	r = crypt_convert(cc, ctx,
2130 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2131 	/*
2132 	 * Crypto API backlogged the request, because its queue was full
2133 	 * and we're in softirq context, so continue from a workqueue
2134 	 * (TODO: is it actually possible to be in softirq in the write path?)
2135 	 */
2136 	if (r == BLK_STS_DEV_RESOURCE) {
2137 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2138 		queue_work(cc->crypt_queue, &io->work);
2139 		return;
2140 	}
2141 	if (r)
2142 		io->error = r;
2143 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2144 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2145 		/* Wait for completion signaled by kcryptd_async_done() */
2146 		wait_for_completion(&ctx->restart);
2147 		crypt_finished = 1;
2148 	}
2149 
2150 	/* Encryption was already finished, submit io now */
2151 	if (crypt_finished) {
2152 		kcryptd_crypt_write_io_submit(io, 0);
2153 		io->sector = sector;
2154 	}
2155 
2156 dec:
2157 	crypt_dec_pending(io);
2158 }
2159 
2160 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2161 {
2162 	if (io->ctx.aead_recheck) {
2163 		if (!io->error) {
2164 			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2165 			bio_copy_data(io->base_bio, io->ctx.bio_in);
2166 		}
2167 		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2168 		bio_put(io->ctx.bio_in);
2169 	}
2170 	crypt_dec_pending(io);
2171 }
2172 
2173 static void kcryptd_crypt_read_continue(struct work_struct *work)
2174 {
2175 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2176 	struct crypt_config *cc = io->cc;
2177 	blk_status_t r;
2178 
2179 	wait_for_completion(&io->ctx.restart);
2180 	reinit_completion(&io->ctx.restart);
2181 
2182 	r = crypt_convert(cc, &io->ctx, true, false);
2183 	if (r)
2184 		io->error = r;
2185 
2186 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2187 		kcryptd_crypt_read_done(io);
2188 
2189 	crypt_dec_pending(io);
2190 }
2191 
2192 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2193 {
2194 	struct crypt_config *cc = io->cc;
2195 	blk_status_t r;
2196 
2197 	crypt_inc_pending(io);
2198 
2199 	if (io->ctx.aead_recheck) {
2200 		io->ctx.cc_sector = io->sector + cc->iv_offset;
2201 		r = crypt_convert(cc, &io->ctx,
2202 				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2203 	} else {
2204 		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2205 				   io->sector);
2206 
2207 		r = crypt_convert(cc, &io->ctx,
2208 				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2209 	}
2210 	/*
2211 	 * Crypto API backlogged the request, because its queue was full
2212 	 * and we're in softirq context, so continue from a workqueue
2213 	 */
2214 	if (r == BLK_STS_DEV_RESOURCE) {
2215 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2216 		queue_work(cc->crypt_queue, &io->work);
2217 		return;
2218 	}
2219 	if (r)
2220 		io->error = r;
2221 
2222 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2223 		kcryptd_crypt_read_done(io);
2224 
2225 	crypt_dec_pending(io);
2226 }
2227 
2228 static void kcryptd_async_done(void *data, int error)
2229 {
2230 	struct dm_crypt_request *dmreq = data;
2231 	struct convert_context *ctx = dmreq->ctx;
2232 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2233 	struct crypt_config *cc = io->cc;
2234 
2235 	/*
2236 	 * A request from crypto driver backlog is going to be processed now,
2237 	 * finish the completion and continue in crypt_convert().
2238 	 * (Callback will be called for the second time for this request.)
2239 	 */
2240 	if (error == -EINPROGRESS) {
2241 		complete(&ctx->restart);
2242 		return;
2243 	}
2244 
2245 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2246 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2247 
2248 	if (error == -EBADMSG) {
2249 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2250 
2251 		ctx->aead_failed = true;
2252 		if (ctx->aead_recheck) {
2253 			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2254 				    ctx->bio_in->bi_bdev, s);
2255 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2256 					 ctx->bio_in, s, 0);
2257 		}
2258 		io->error = BLK_STS_PROTECTION;
2259 	} else if (error < 0)
2260 		io->error = BLK_STS_IOERR;
2261 
2262 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2263 
2264 	if (!atomic_dec_and_test(&ctx->cc_pending))
2265 		return;
2266 
2267 	/*
2268 	 * The request is fully completed: for inline writes, let
2269 	 * kcryptd_crypt_write_convert() do the IO submission.
2270 	 */
2271 	if (bio_data_dir(io->base_bio) == READ) {
2272 		kcryptd_crypt_read_done(io);
2273 		return;
2274 	}
2275 
2276 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2277 		complete(&ctx->restart);
2278 		return;
2279 	}
2280 
2281 	kcryptd_crypt_write_io_submit(io, 1);
2282 }
2283 
2284 static void kcryptd_crypt(struct work_struct *work)
2285 {
2286 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2287 
2288 	if (bio_data_dir(io->base_bio) == READ)
2289 		kcryptd_crypt_read_convert(io);
2290 	else
2291 		kcryptd_crypt_write_convert(io);
2292 }
2293 
2294 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2295 {
2296 	struct crypt_config *cc = io->cc;
2297 
2298 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2299 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2300 		/*
2301 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2302 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2303 		 * it is being executed with irqs disabled.
2304 		 */
2305 		if (!(in_hardirq() || irqs_disabled())) {
2306 			kcryptd_crypt(&io->work);
2307 			return;
2308 		}
2309 	}
2310 
2311 	INIT_WORK(&io->work, kcryptd_crypt);
2312 	queue_work(cc->crypt_queue, &io->work);
2313 }
2314 
2315 static void crypt_free_tfms_aead(struct crypt_config *cc)
2316 {
2317 	if (!cc->cipher_tfm.tfms_aead)
2318 		return;
2319 
2320 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2321 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2322 		cc->cipher_tfm.tfms_aead[0] = NULL;
2323 	}
2324 
2325 	kfree(cc->cipher_tfm.tfms_aead);
2326 	cc->cipher_tfm.tfms_aead = NULL;
2327 }
2328 
2329 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2330 {
2331 	unsigned int i;
2332 
2333 	if (!cc->cipher_tfm.tfms)
2334 		return;
2335 
2336 	for (i = 0; i < cc->tfms_count; i++)
2337 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2338 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2339 			cc->cipher_tfm.tfms[i] = NULL;
2340 		}
2341 
2342 	kfree(cc->cipher_tfm.tfms);
2343 	cc->cipher_tfm.tfms = NULL;
2344 }
2345 
2346 static void crypt_free_tfms(struct crypt_config *cc)
2347 {
2348 	if (crypt_integrity_aead(cc))
2349 		crypt_free_tfms_aead(cc);
2350 	else
2351 		crypt_free_tfms_skcipher(cc);
2352 }
2353 
2354 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2355 {
2356 	unsigned int i;
2357 	int err;
2358 
2359 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2360 				      sizeof(struct crypto_skcipher *),
2361 				      GFP_KERNEL);
2362 	if (!cc->cipher_tfm.tfms)
2363 		return -ENOMEM;
2364 
2365 	for (i = 0; i < cc->tfms_count; i++) {
2366 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2367 						CRYPTO_ALG_ALLOCATES_MEMORY);
2368 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2369 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2370 			crypt_free_tfms(cc);
2371 			return err;
2372 		}
2373 	}
2374 
2375 	/*
2376 	 * dm-crypt performance can vary greatly depending on which crypto
2377 	 * algorithm implementation is used.  Help people debug performance
2378 	 * problems by logging the ->cra_driver_name.
2379 	 */
2380 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2381 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2382 	return 0;
2383 }
2384 
2385 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2386 {
2387 	int err;
2388 
2389 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2390 	if (!cc->cipher_tfm.tfms)
2391 		return -ENOMEM;
2392 
2393 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2394 						CRYPTO_ALG_ALLOCATES_MEMORY);
2395 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2396 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2397 		crypt_free_tfms(cc);
2398 		return err;
2399 	}
2400 
2401 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2402 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2403 	return 0;
2404 }
2405 
2406 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2407 {
2408 	if (crypt_integrity_aead(cc))
2409 		return crypt_alloc_tfms_aead(cc, ciphermode);
2410 	else
2411 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2412 }
2413 
2414 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2415 {
2416 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2417 }
2418 
2419 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2420 {
2421 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2422 }
2423 
2424 /*
2425  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2426  * the key must be for some reason in special format.
2427  * This funcion converts cc->key to this special format.
2428  */
2429 static void crypt_copy_authenckey(char *p, const void *key,
2430 				  unsigned int enckeylen, unsigned int authkeylen)
2431 {
2432 	struct crypto_authenc_key_param *param;
2433 	struct rtattr *rta;
2434 
2435 	rta = (struct rtattr *)p;
2436 	param = RTA_DATA(rta);
2437 	param->enckeylen = cpu_to_be32(enckeylen);
2438 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2439 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2440 	p += RTA_SPACE(sizeof(*param));
2441 	memcpy(p, key + enckeylen, authkeylen);
2442 	p += authkeylen;
2443 	memcpy(p, key, enckeylen);
2444 }
2445 
2446 static int crypt_setkey(struct crypt_config *cc)
2447 {
2448 	unsigned int subkey_size;
2449 	int err = 0, i, r;
2450 
2451 	/* Ignore extra keys (which are used for IV etc) */
2452 	subkey_size = crypt_subkey_size(cc);
2453 
2454 	if (crypt_integrity_hmac(cc)) {
2455 		if (subkey_size < cc->key_mac_size)
2456 			return -EINVAL;
2457 
2458 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2459 				      subkey_size - cc->key_mac_size,
2460 				      cc->key_mac_size);
2461 	}
2462 
2463 	for (i = 0; i < cc->tfms_count; i++) {
2464 		if (crypt_integrity_hmac(cc))
2465 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2466 				cc->authenc_key, crypt_authenckey_size(cc));
2467 		else if (crypt_integrity_aead(cc))
2468 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2469 					       cc->key + (i * subkey_size),
2470 					       subkey_size);
2471 		else
2472 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2473 						   cc->key + (i * subkey_size),
2474 						   subkey_size);
2475 		if (r)
2476 			err = r;
2477 	}
2478 
2479 	if (crypt_integrity_hmac(cc))
2480 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2481 
2482 	return err;
2483 }
2484 
2485 #ifdef CONFIG_KEYS
2486 
2487 static bool contains_whitespace(const char *str)
2488 {
2489 	while (*str)
2490 		if (isspace(*str++))
2491 			return true;
2492 	return false;
2493 }
2494 
2495 static int set_key_user(struct crypt_config *cc, struct key *key)
2496 {
2497 	const struct user_key_payload *ukp;
2498 
2499 	ukp = user_key_payload_locked(key);
2500 	if (!ukp)
2501 		return -EKEYREVOKED;
2502 
2503 	if (cc->key_size != ukp->datalen)
2504 		return -EINVAL;
2505 
2506 	memcpy(cc->key, ukp->data, cc->key_size);
2507 
2508 	return 0;
2509 }
2510 
2511 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2512 {
2513 	const struct encrypted_key_payload *ekp;
2514 
2515 	ekp = key->payload.data[0];
2516 	if (!ekp)
2517 		return -EKEYREVOKED;
2518 
2519 	if (cc->key_size != ekp->decrypted_datalen)
2520 		return -EINVAL;
2521 
2522 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2523 
2524 	return 0;
2525 }
2526 
2527 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2528 {
2529 	const struct trusted_key_payload *tkp;
2530 
2531 	tkp = key->payload.data[0];
2532 	if (!tkp)
2533 		return -EKEYREVOKED;
2534 
2535 	if (cc->key_size != tkp->key_len)
2536 		return -EINVAL;
2537 
2538 	memcpy(cc->key, tkp->key, cc->key_size);
2539 
2540 	return 0;
2541 }
2542 
2543 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2544 {
2545 	char *new_key_string, *key_desc;
2546 	int ret;
2547 	struct key_type *type;
2548 	struct key *key;
2549 	int (*set_key)(struct crypt_config *cc, struct key *key);
2550 
2551 	/*
2552 	 * Reject key_string with whitespace. dm core currently lacks code for
2553 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2554 	 */
2555 	if (contains_whitespace(key_string)) {
2556 		DMERR("whitespace chars not allowed in key string");
2557 		return -EINVAL;
2558 	}
2559 
2560 	/* look for next ':' separating key_type from key_description */
2561 	key_desc = strchr(key_string, ':');
2562 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2563 		return -EINVAL;
2564 
2565 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2566 		type = &key_type_logon;
2567 		set_key = set_key_user;
2568 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2569 		type = &key_type_user;
2570 		set_key = set_key_user;
2571 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2572 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2573 		type = &key_type_encrypted;
2574 		set_key = set_key_encrypted;
2575 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2576 		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2577 		type = &key_type_trusted;
2578 		set_key = set_key_trusted;
2579 	} else {
2580 		return -EINVAL;
2581 	}
2582 
2583 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2584 	if (!new_key_string)
2585 		return -ENOMEM;
2586 
2587 	key = request_key(type, key_desc + 1, NULL);
2588 	if (IS_ERR(key)) {
2589 		kfree_sensitive(new_key_string);
2590 		return PTR_ERR(key);
2591 	}
2592 
2593 	down_read(&key->sem);
2594 
2595 	ret = set_key(cc, key);
2596 	if (ret < 0) {
2597 		up_read(&key->sem);
2598 		key_put(key);
2599 		kfree_sensitive(new_key_string);
2600 		return ret;
2601 	}
2602 
2603 	up_read(&key->sem);
2604 	key_put(key);
2605 
2606 	/* clear the flag since following operations may invalidate previously valid key */
2607 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2608 
2609 	ret = crypt_setkey(cc);
2610 
2611 	if (!ret) {
2612 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2613 		kfree_sensitive(cc->key_string);
2614 		cc->key_string = new_key_string;
2615 	} else
2616 		kfree_sensitive(new_key_string);
2617 
2618 	return ret;
2619 }
2620 
2621 static int get_key_size(char **key_string)
2622 {
2623 	char *colon, dummy;
2624 	int ret;
2625 
2626 	if (*key_string[0] != ':')
2627 		return strlen(*key_string) >> 1;
2628 
2629 	/* look for next ':' in key string */
2630 	colon = strpbrk(*key_string + 1, ":");
2631 	if (!colon)
2632 		return -EINVAL;
2633 
2634 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2635 		return -EINVAL;
2636 
2637 	*key_string = colon;
2638 
2639 	/* remaining key string should be :<logon|user>:<key_desc> */
2640 
2641 	return ret;
2642 }
2643 
2644 #else
2645 
2646 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2647 {
2648 	return -EINVAL;
2649 }
2650 
2651 static int get_key_size(char **key_string)
2652 {
2653 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2654 }
2655 
2656 #endif /* CONFIG_KEYS */
2657 
2658 static int crypt_set_key(struct crypt_config *cc, char *key)
2659 {
2660 	int r = -EINVAL;
2661 	int key_string_len = strlen(key);
2662 
2663 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2664 	if (!cc->key_size && strcmp(key, "-"))
2665 		goto out;
2666 
2667 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2668 	if (key[0] == ':') {
2669 		r = crypt_set_keyring_key(cc, key + 1);
2670 		goto out;
2671 	}
2672 
2673 	/* clear the flag since following operations may invalidate previously valid key */
2674 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2675 
2676 	/* wipe references to any kernel keyring key */
2677 	kfree_sensitive(cc->key_string);
2678 	cc->key_string = NULL;
2679 
2680 	/* Decode key from its hex representation. */
2681 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2682 		goto out;
2683 
2684 	r = crypt_setkey(cc);
2685 	if (!r)
2686 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2687 
2688 out:
2689 	/* Hex key string not needed after here, so wipe it. */
2690 	memset(key, '0', key_string_len);
2691 
2692 	return r;
2693 }
2694 
2695 static int crypt_wipe_key(struct crypt_config *cc)
2696 {
2697 	int r;
2698 
2699 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2700 	get_random_bytes(&cc->key, cc->key_size);
2701 
2702 	/* Wipe IV private keys */
2703 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2704 		r = cc->iv_gen_ops->wipe(cc);
2705 		if (r)
2706 			return r;
2707 	}
2708 
2709 	kfree_sensitive(cc->key_string);
2710 	cc->key_string = NULL;
2711 	r = crypt_setkey(cc);
2712 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2713 
2714 	return r;
2715 }
2716 
2717 static void crypt_calculate_pages_per_client(void)
2718 {
2719 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2720 
2721 	if (!dm_crypt_clients_n)
2722 		return;
2723 
2724 	pages /= dm_crypt_clients_n;
2725 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2726 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2727 	dm_crypt_pages_per_client = pages;
2728 }
2729 
2730 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2731 {
2732 	struct crypt_config *cc = pool_data;
2733 	struct page *page;
2734 
2735 	/*
2736 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2737 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2738 	 * but avoids potential spinlock contention of an exact result.
2739 	 */
2740 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2741 	    likely(gfp_mask & __GFP_NORETRY))
2742 		return NULL;
2743 
2744 	page = alloc_page(gfp_mask);
2745 	if (likely(page != NULL))
2746 		percpu_counter_add(&cc->n_allocated_pages, 1);
2747 
2748 	return page;
2749 }
2750 
2751 static void crypt_page_free(void *page, void *pool_data)
2752 {
2753 	struct crypt_config *cc = pool_data;
2754 
2755 	__free_page(page);
2756 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2757 }
2758 
2759 static void crypt_dtr(struct dm_target *ti)
2760 {
2761 	struct crypt_config *cc = ti->private;
2762 
2763 	ti->private = NULL;
2764 
2765 	if (!cc)
2766 		return;
2767 
2768 	if (cc->write_thread)
2769 		kthread_stop(cc->write_thread);
2770 
2771 	if (cc->io_queue)
2772 		destroy_workqueue(cc->io_queue);
2773 	if (cc->crypt_queue)
2774 		destroy_workqueue(cc->crypt_queue);
2775 
2776 	crypt_free_tfms(cc);
2777 
2778 	bioset_exit(&cc->bs);
2779 
2780 	mempool_exit(&cc->page_pool);
2781 	mempool_exit(&cc->req_pool);
2782 	mempool_exit(&cc->tag_pool);
2783 
2784 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2785 	percpu_counter_destroy(&cc->n_allocated_pages);
2786 
2787 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2788 		cc->iv_gen_ops->dtr(cc);
2789 
2790 	if (cc->dev)
2791 		dm_put_device(ti, cc->dev);
2792 
2793 	kfree_sensitive(cc->cipher_string);
2794 	kfree_sensitive(cc->key_string);
2795 	kfree_sensitive(cc->cipher_auth);
2796 	kfree_sensitive(cc->authenc_key);
2797 
2798 	mutex_destroy(&cc->bio_alloc_lock);
2799 
2800 	/* Must zero key material before freeing */
2801 	kfree_sensitive(cc);
2802 
2803 	spin_lock(&dm_crypt_clients_lock);
2804 	WARN_ON(!dm_crypt_clients_n);
2805 	dm_crypt_clients_n--;
2806 	crypt_calculate_pages_per_client();
2807 	spin_unlock(&dm_crypt_clients_lock);
2808 
2809 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2810 }
2811 
2812 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2813 {
2814 	struct crypt_config *cc = ti->private;
2815 
2816 	if (crypt_integrity_aead(cc))
2817 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2818 	else
2819 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2820 
2821 	if (cc->iv_size)
2822 		/* at least a 64 bit sector number should fit in our buffer */
2823 		cc->iv_size = max(cc->iv_size,
2824 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2825 	else if (ivmode) {
2826 		DMWARN("Selected cipher does not support IVs");
2827 		ivmode = NULL;
2828 	}
2829 
2830 	/* Choose ivmode, see comments at iv code. */
2831 	if (ivmode == NULL)
2832 		cc->iv_gen_ops = NULL;
2833 	else if (strcmp(ivmode, "plain") == 0)
2834 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2835 	else if (strcmp(ivmode, "plain64") == 0)
2836 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2837 	else if (strcmp(ivmode, "plain64be") == 0)
2838 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2839 	else if (strcmp(ivmode, "essiv") == 0)
2840 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2841 	else if (strcmp(ivmode, "benbi") == 0)
2842 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2843 	else if (strcmp(ivmode, "null") == 0)
2844 		cc->iv_gen_ops = &crypt_iv_null_ops;
2845 	else if (strcmp(ivmode, "eboiv") == 0)
2846 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2847 	else if (strcmp(ivmode, "elephant") == 0) {
2848 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2849 		cc->key_parts = 2;
2850 		cc->key_extra_size = cc->key_size / 2;
2851 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2852 			return -EINVAL;
2853 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2854 	} else if (strcmp(ivmode, "lmk") == 0) {
2855 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2856 		/*
2857 		 * Version 2 and 3 is recognised according
2858 		 * to length of provided multi-key string.
2859 		 * If present (version 3), last key is used as IV seed.
2860 		 * All keys (including IV seed) are always the same size.
2861 		 */
2862 		if (cc->key_size % cc->key_parts) {
2863 			cc->key_parts++;
2864 			cc->key_extra_size = cc->key_size / cc->key_parts;
2865 		}
2866 	} else if (strcmp(ivmode, "tcw") == 0) {
2867 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2868 		cc->key_parts += 2; /* IV + whitening */
2869 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2870 	} else if (strcmp(ivmode, "random") == 0) {
2871 		cc->iv_gen_ops = &crypt_iv_random_ops;
2872 		/* Need storage space in integrity fields. */
2873 		cc->integrity_iv_size = cc->iv_size;
2874 	} else {
2875 		ti->error = "Invalid IV mode";
2876 		return -EINVAL;
2877 	}
2878 
2879 	return 0;
2880 }
2881 
2882 /*
2883  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2884  * The HMAC is needed to calculate tag size (HMAC digest size).
2885  * This should be probably done by crypto-api calls (once available...)
2886  */
2887 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2888 {
2889 	char *start, *end, *mac_alg = NULL;
2890 	struct crypto_ahash *mac;
2891 
2892 	if (!strstarts(cipher_api, "authenc("))
2893 		return 0;
2894 
2895 	start = strchr(cipher_api, '(');
2896 	end = strchr(cipher_api, ',');
2897 	if (!start || !end || ++start > end)
2898 		return -EINVAL;
2899 
2900 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2901 	if (!mac_alg)
2902 		return -ENOMEM;
2903 	strncpy(mac_alg, start, end - start);
2904 
2905 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2906 	kfree(mac_alg);
2907 
2908 	if (IS_ERR(mac))
2909 		return PTR_ERR(mac);
2910 
2911 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2912 	crypto_free_ahash(mac);
2913 
2914 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2915 	if (!cc->authenc_key)
2916 		return -ENOMEM;
2917 
2918 	return 0;
2919 }
2920 
2921 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2922 				char **ivmode, char **ivopts)
2923 {
2924 	struct crypt_config *cc = ti->private;
2925 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2926 	int ret = -EINVAL;
2927 
2928 	cc->tfms_count = 1;
2929 
2930 	/*
2931 	 * New format (capi: prefix)
2932 	 * capi:cipher_api_spec-iv:ivopts
2933 	 */
2934 	tmp = &cipher_in[strlen("capi:")];
2935 
2936 	/* Separate IV options if present, it can contain another '-' in hash name */
2937 	*ivopts = strrchr(tmp, ':');
2938 	if (*ivopts) {
2939 		**ivopts = '\0';
2940 		(*ivopts)++;
2941 	}
2942 	/* Parse IV mode */
2943 	*ivmode = strrchr(tmp, '-');
2944 	if (*ivmode) {
2945 		**ivmode = '\0';
2946 		(*ivmode)++;
2947 	}
2948 	/* The rest is crypto API spec */
2949 	cipher_api = tmp;
2950 
2951 	/* Alloc AEAD, can be used only in new format. */
2952 	if (crypt_integrity_aead(cc)) {
2953 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2954 		if (ret < 0) {
2955 			ti->error = "Invalid AEAD cipher spec";
2956 			return ret;
2957 		}
2958 	}
2959 
2960 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2961 		cc->tfms_count = 64;
2962 
2963 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2964 		if (!*ivopts) {
2965 			ti->error = "Digest algorithm missing for ESSIV mode";
2966 			return -EINVAL;
2967 		}
2968 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2969 			       cipher_api, *ivopts);
2970 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2971 			ti->error = "Cannot allocate cipher string";
2972 			return -ENOMEM;
2973 		}
2974 		cipher_api = buf;
2975 	}
2976 
2977 	cc->key_parts = cc->tfms_count;
2978 
2979 	/* Allocate cipher */
2980 	ret = crypt_alloc_tfms(cc, cipher_api);
2981 	if (ret < 0) {
2982 		ti->error = "Error allocating crypto tfm";
2983 		return ret;
2984 	}
2985 
2986 	if (crypt_integrity_aead(cc))
2987 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2988 	else
2989 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2990 
2991 	return 0;
2992 }
2993 
2994 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2995 				char **ivmode, char **ivopts)
2996 {
2997 	struct crypt_config *cc = ti->private;
2998 	char *tmp, *cipher, *chainmode, *keycount;
2999 	char *cipher_api = NULL;
3000 	int ret = -EINVAL;
3001 	char dummy;
3002 
3003 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
3004 		ti->error = "Bad cipher specification";
3005 		return -EINVAL;
3006 	}
3007 
3008 	/*
3009 	 * Legacy dm-crypt cipher specification
3010 	 * cipher[:keycount]-mode-iv:ivopts
3011 	 */
3012 	tmp = cipher_in;
3013 	keycount = strsep(&tmp, "-");
3014 	cipher = strsep(&keycount, ":");
3015 
3016 	if (!keycount)
3017 		cc->tfms_count = 1;
3018 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3019 		 !is_power_of_2(cc->tfms_count)) {
3020 		ti->error = "Bad cipher key count specification";
3021 		return -EINVAL;
3022 	}
3023 	cc->key_parts = cc->tfms_count;
3024 
3025 	chainmode = strsep(&tmp, "-");
3026 	*ivmode = strsep(&tmp, ":");
3027 	*ivopts = tmp;
3028 
3029 	/*
3030 	 * For compatibility with the original dm-crypt mapping format, if
3031 	 * only the cipher name is supplied, use cbc-plain.
3032 	 */
3033 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3034 		chainmode = "cbc";
3035 		*ivmode = "plain";
3036 	}
3037 
3038 	if (strcmp(chainmode, "ecb") && !*ivmode) {
3039 		ti->error = "IV mechanism required";
3040 		return -EINVAL;
3041 	}
3042 
3043 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3044 	if (!cipher_api)
3045 		goto bad_mem;
3046 
3047 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3048 		if (!*ivopts) {
3049 			ti->error = "Digest algorithm missing for ESSIV mode";
3050 			kfree(cipher_api);
3051 			return -EINVAL;
3052 		}
3053 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3054 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3055 	} else {
3056 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3057 			       "%s(%s)", chainmode, cipher);
3058 	}
3059 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3060 		kfree(cipher_api);
3061 		goto bad_mem;
3062 	}
3063 
3064 	/* Allocate cipher */
3065 	ret = crypt_alloc_tfms(cc, cipher_api);
3066 	if (ret < 0) {
3067 		ti->error = "Error allocating crypto tfm";
3068 		kfree(cipher_api);
3069 		return ret;
3070 	}
3071 	kfree(cipher_api);
3072 
3073 	return 0;
3074 bad_mem:
3075 	ti->error = "Cannot allocate cipher strings";
3076 	return -ENOMEM;
3077 }
3078 
3079 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3080 {
3081 	struct crypt_config *cc = ti->private;
3082 	char *ivmode = NULL, *ivopts = NULL;
3083 	int ret;
3084 
3085 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3086 	if (!cc->cipher_string) {
3087 		ti->error = "Cannot allocate cipher strings";
3088 		return -ENOMEM;
3089 	}
3090 
3091 	if (strstarts(cipher_in, "capi:"))
3092 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3093 	else
3094 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3095 	if (ret)
3096 		return ret;
3097 
3098 	/* Initialize IV */
3099 	ret = crypt_ctr_ivmode(ti, ivmode);
3100 	if (ret < 0)
3101 		return ret;
3102 
3103 	/* Initialize and set key */
3104 	ret = crypt_set_key(cc, key);
3105 	if (ret < 0) {
3106 		ti->error = "Error decoding and setting key";
3107 		return ret;
3108 	}
3109 
3110 	/* Allocate IV */
3111 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3112 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3113 		if (ret < 0) {
3114 			ti->error = "Error creating IV";
3115 			return ret;
3116 		}
3117 	}
3118 
3119 	/* Initialize IV (set keys for ESSIV etc) */
3120 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3121 		ret = cc->iv_gen_ops->init(cc);
3122 		if (ret < 0) {
3123 			ti->error = "Error initialising IV";
3124 			return ret;
3125 		}
3126 	}
3127 
3128 	/* wipe the kernel key payload copy */
3129 	if (cc->key_string)
3130 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3131 
3132 	return ret;
3133 }
3134 
3135 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3136 {
3137 	struct crypt_config *cc = ti->private;
3138 	struct dm_arg_set as;
3139 	static const struct dm_arg _args[] = {
3140 		{0, 8, "Invalid number of feature args"},
3141 	};
3142 	unsigned int opt_params, val;
3143 	const char *opt_string, *sval;
3144 	char dummy;
3145 	int ret;
3146 
3147 	/* Optional parameters */
3148 	as.argc = argc;
3149 	as.argv = argv;
3150 
3151 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3152 	if (ret)
3153 		return ret;
3154 
3155 	while (opt_params--) {
3156 		opt_string = dm_shift_arg(&as);
3157 		if (!opt_string) {
3158 			ti->error = "Not enough feature arguments";
3159 			return -EINVAL;
3160 		}
3161 
3162 		if (!strcasecmp(opt_string, "allow_discards"))
3163 			ti->num_discard_bios = 1;
3164 
3165 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3166 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3167 
3168 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3169 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3170 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3171 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3172 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3173 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3174 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3175 			if (val == 0 || val > MAX_TAG_SIZE) {
3176 				ti->error = "Invalid integrity arguments";
3177 				return -EINVAL;
3178 			}
3179 			cc->on_disk_tag_size = val;
3180 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3181 			if (!strcasecmp(sval, "aead")) {
3182 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3183 			} else if (strcasecmp(sval, "none")) {
3184 				ti->error = "Unknown integrity profile";
3185 				return -EINVAL;
3186 			}
3187 
3188 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3189 			if (!cc->cipher_auth)
3190 				return -ENOMEM;
3191 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3192 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3193 			    cc->sector_size > 4096 ||
3194 			    (cc->sector_size & (cc->sector_size - 1))) {
3195 				ti->error = "Invalid feature value for sector_size";
3196 				return -EINVAL;
3197 			}
3198 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3199 				ti->error = "Device size is not multiple of sector_size feature";
3200 				return -EINVAL;
3201 			}
3202 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3203 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3204 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3205 		else {
3206 			ti->error = "Invalid feature arguments";
3207 			return -EINVAL;
3208 		}
3209 	}
3210 
3211 	return 0;
3212 }
3213 
3214 #ifdef CONFIG_BLK_DEV_ZONED
3215 static int crypt_report_zones(struct dm_target *ti,
3216 		struct dm_report_zones_args *args, unsigned int nr_zones)
3217 {
3218 	struct crypt_config *cc = ti->private;
3219 
3220 	return dm_report_zones(cc->dev->bdev, cc->start,
3221 			cc->start + dm_target_offset(ti, args->next_sector),
3222 			args, nr_zones);
3223 }
3224 #else
3225 #define crypt_report_zones NULL
3226 #endif
3227 
3228 /*
3229  * Construct an encryption mapping:
3230  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3231  */
3232 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3233 {
3234 	struct crypt_config *cc;
3235 	const char *devname = dm_table_device_name(ti->table);
3236 	int key_size;
3237 	unsigned int align_mask;
3238 	unsigned long long tmpll;
3239 	int ret;
3240 	size_t iv_size_padding, additional_req_size;
3241 	char dummy;
3242 
3243 	if (argc < 5) {
3244 		ti->error = "Not enough arguments";
3245 		return -EINVAL;
3246 	}
3247 
3248 	key_size = get_key_size(&argv[1]);
3249 	if (key_size < 0) {
3250 		ti->error = "Cannot parse key size";
3251 		return -EINVAL;
3252 	}
3253 
3254 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3255 	if (!cc) {
3256 		ti->error = "Cannot allocate encryption context";
3257 		return -ENOMEM;
3258 	}
3259 	cc->key_size = key_size;
3260 	cc->sector_size = (1 << SECTOR_SHIFT);
3261 	cc->sector_shift = 0;
3262 
3263 	ti->private = cc;
3264 
3265 	spin_lock(&dm_crypt_clients_lock);
3266 	dm_crypt_clients_n++;
3267 	crypt_calculate_pages_per_client();
3268 	spin_unlock(&dm_crypt_clients_lock);
3269 
3270 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3271 	if (ret < 0)
3272 		goto bad;
3273 
3274 	/* Optional parameters need to be read before cipher constructor */
3275 	if (argc > 5) {
3276 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3277 		if (ret)
3278 			goto bad;
3279 	}
3280 
3281 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3282 	if (ret < 0)
3283 		goto bad;
3284 
3285 	if (crypt_integrity_aead(cc)) {
3286 		cc->dmreq_start = sizeof(struct aead_request);
3287 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3288 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3289 	} else {
3290 		cc->dmreq_start = sizeof(struct skcipher_request);
3291 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3292 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3293 	}
3294 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3295 
3296 	if (align_mask < CRYPTO_MINALIGN) {
3297 		/* Allocate the padding exactly */
3298 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3299 				& align_mask;
3300 	} else {
3301 		/*
3302 		 * If the cipher requires greater alignment than kmalloc
3303 		 * alignment, we don't know the exact position of the
3304 		 * initialization vector. We must assume worst case.
3305 		 */
3306 		iv_size_padding = align_mask;
3307 	}
3308 
3309 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3310 	additional_req_size = sizeof(struct dm_crypt_request) +
3311 		iv_size_padding + cc->iv_size +
3312 		cc->iv_size +
3313 		sizeof(uint64_t) +
3314 		sizeof(unsigned int);
3315 
3316 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3317 	if (ret) {
3318 		ti->error = "Cannot allocate crypt request mempool";
3319 		goto bad;
3320 	}
3321 
3322 	cc->per_bio_data_size = ti->per_io_data_size =
3323 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3324 		      ARCH_DMA_MINALIGN);
3325 
3326 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3327 	if (ret) {
3328 		ti->error = "Cannot allocate page mempool";
3329 		goto bad;
3330 	}
3331 
3332 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3333 	if (ret) {
3334 		ti->error = "Cannot allocate crypt bioset";
3335 		goto bad;
3336 	}
3337 
3338 	mutex_init(&cc->bio_alloc_lock);
3339 
3340 	ret = -EINVAL;
3341 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3342 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3343 		ti->error = "Invalid iv_offset sector";
3344 		goto bad;
3345 	}
3346 	cc->iv_offset = tmpll;
3347 
3348 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3349 	if (ret) {
3350 		ti->error = "Device lookup failed";
3351 		goto bad;
3352 	}
3353 
3354 	ret = -EINVAL;
3355 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3356 		ti->error = "Invalid device sector";
3357 		goto bad;
3358 	}
3359 	cc->start = tmpll;
3360 
3361 	if (bdev_is_zoned(cc->dev->bdev)) {
3362 		/*
3363 		 * For zoned block devices, we need to preserve the issuer write
3364 		 * ordering. To do so, disable write workqueues and force inline
3365 		 * encryption completion.
3366 		 */
3367 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3368 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3369 
3370 		/*
3371 		 * All zone append writes to a zone of a zoned block device will
3372 		 * have the same BIO sector, the start of the zone. When the
3373 		 * cypher IV mode uses sector values, all data targeting a
3374 		 * zone will be encrypted using the first sector numbers of the
3375 		 * zone. This will not result in write errors but will
3376 		 * cause most reads to fail as reads will use the sector values
3377 		 * for the actual data locations, resulting in IV mismatch.
3378 		 * To avoid this problem, ask DM core to emulate zone append
3379 		 * operations with regular writes.
3380 		 */
3381 		DMDEBUG("Zone append operations will be emulated");
3382 		ti->emulate_zone_append = true;
3383 	}
3384 
3385 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3386 		ret = crypt_integrity_ctr(cc, ti);
3387 		if (ret)
3388 			goto bad;
3389 
3390 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3391 		if (!cc->tag_pool_max_sectors)
3392 			cc->tag_pool_max_sectors = 1;
3393 
3394 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3395 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3396 		if (ret) {
3397 			ti->error = "Cannot allocate integrity tags mempool";
3398 			goto bad;
3399 		}
3400 
3401 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3402 	}
3403 
3404 	ret = -ENOMEM;
3405 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3406 	if (!cc->io_queue) {
3407 		ti->error = "Couldn't create kcryptd io queue";
3408 		goto bad;
3409 	}
3410 
3411 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3412 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3413 						  1, devname);
3414 	else
3415 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3416 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3417 						  num_online_cpus(), devname);
3418 	if (!cc->crypt_queue) {
3419 		ti->error = "Couldn't create kcryptd queue";
3420 		goto bad;
3421 	}
3422 
3423 	spin_lock_init(&cc->write_thread_lock);
3424 	cc->write_tree = RB_ROOT;
3425 
3426 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3427 	if (IS_ERR(cc->write_thread)) {
3428 		ret = PTR_ERR(cc->write_thread);
3429 		cc->write_thread = NULL;
3430 		ti->error = "Couldn't spawn write thread";
3431 		goto bad;
3432 	}
3433 
3434 	ti->num_flush_bios = 1;
3435 	ti->limit_swap_bios = true;
3436 	ti->accounts_remapped_io = true;
3437 
3438 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3439 	return 0;
3440 
3441 bad:
3442 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3443 	crypt_dtr(ti);
3444 	return ret;
3445 }
3446 
3447 static int crypt_map(struct dm_target *ti, struct bio *bio)
3448 {
3449 	struct dm_crypt_io *io;
3450 	struct crypt_config *cc = ti->private;
3451 
3452 	/*
3453 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3454 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3455 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3456 	 */
3457 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3458 	    bio_op(bio) == REQ_OP_DISCARD)) {
3459 		bio_set_dev(bio, cc->dev->bdev);
3460 		if (bio_sectors(bio))
3461 			bio->bi_iter.bi_sector = cc->start +
3462 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3463 		return DM_MAPIO_REMAPPED;
3464 	}
3465 
3466 	/*
3467 	 * Check if bio is too large, split as needed.
3468 	 */
3469 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3470 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3471 		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3472 
3473 	/*
3474 	 * Ensure that bio is a multiple of internal sector encryption size
3475 	 * and is aligned to this size as defined in IO hints.
3476 	 */
3477 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3478 		return DM_MAPIO_KILL;
3479 
3480 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3481 		return DM_MAPIO_KILL;
3482 
3483 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3484 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3485 
3486 	if (cc->on_disk_tag_size) {
3487 		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3488 
3489 		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3490 			io->integrity_metadata = NULL;
3491 		else
3492 			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3493 
3494 		if (unlikely(!io->integrity_metadata)) {
3495 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3496 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3497 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3498 			io->integrity_metadata_from_pool = true;
3499 		}
3500 	}
3501 
3502 	if (crypt_integrity_aead(cc))
3503 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3504 	else
3505 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3506 
3507 	if (bio_data_dir(io->base_bio) == READ) {
3508 		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3509 			kcryptd_queue_read(io);
3510 	} else
3511 		kcryptd_queue_crypt(io);
3512 
3513 	return DM_MAPIO_SUBMITTED;
3514 }
3515 
3516 static char hex2asc(unsigned char c)
3517 {
3518 	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3519 }
3520 
3521 static void crypt_status(struct dm_target *ti, status_type_t type,
3522 			 unsigned int status_flags, char *result, unsigned int maxlen)
3523 {
3524 	struct crypt_config *cc = ti->private;
3525 	unsigned int i, sz = 0;
3526 	int num_feature_args = 0;
3527 
3528 	switch (type) {
3529 	case STATUSTYPE_INFO:
3530 		result[0] = '\0';
3531 		break;
3532 
3533 	case STATUSTYPE_TABLE:
3534 		DMEMIT("%s ", cc->cipher_string);
3535 
3536 		if (cc->key_size > 0) {
3537 			if (cc->key_string)
3538 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3539 			else {
3540 				for (i = 0; i < cc->key_size; i++) {
3541 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3542 					       hex2asc(cc->key[i] & 0xf));
3543 				}
3544 			}
3545 		} else
3546 			DMEMIT("-");
3547 
3548 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3549 				cc->dev->name, (unsigned long long)cc->start);
3550 
3551 		num_feature_args += !!ti->num_discard_bios;
3552 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3553 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3554 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3555 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3556 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3557 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3558 		if (cc->on_disk_tag_size)
3559 			num_feature_args++;
3560 		if (num_feature_args) {
3561 			DMEMIT(" %d", num_feature_args);
3562 			if (ti->num_discard_bios)
3563 				DMEMIT(" allow_discards");
3564 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3565 				DMEMIT(" same_cpu_crypt");
3566 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3567 				DMEMIT(" submit_from_crypt_cpus");
3568 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3569 				DMEMIT(" no_read_workqueue");
3570 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3571 				DMEMIT(" no_write_workqueue");
3572 			if (cc->on_disk_tag_size)
3573 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3574 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3575 				DMEMIT(" sector_size:%d", cc->sector_size);
3576 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3577 				DMEMIT(" iv_large_sectors");
3578 		}
3579 		break;
3580 
3581 	case STATUSTYPE_IMA:
3582 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3583 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3584 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3585 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3586 		       'y' : 'n');
3587 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3588 		       'y' : 'n');
3589 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3590 		       'y' : 'n');
3591 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3592 		       'y' : 'n');
3593 
3594 		if (cc->on_disk_tag_size)
3595 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3596 			       cc->on_disk_tag_size, cc->cipher_auth);
3597 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3598 			DMEMIT(",sector_size=%d", cc->sector_size);
3599 		if (cc->cipher_string)
3600 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3601 
3602 		DMEMIT(",key_size=%u", cc->key_size);
3603 		DMEMIT(",key_parts=%u", cc->key_parts);
3604 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3605 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3606 		DMEMIT(";");
3607 		break;
3608 	}
3609 }
3610 
3611 static void crypt_postsuspend(struct dm_target *ti)
3612 {
3613 	struct crypt_config *cc = ti->private;
3614 
3615 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3616 }
3617 
3618 static int crypt_preresume(struct dm_target *ti)
3619 {
3620 	struct crypt_config *cc = ti->private;
3621 
3622 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3623 		DMERR("aborting resume - crypt key is not set.");
3624 		return -EAGAIN;
3625 	}
3626 
3627 	return 0;
3628 }
3629 
3630 static void crypt_resume(struct dm_target *ti)
3631 {
3632 	struct crypt_config *cc = ti->private;
3633 
3634 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3635 }
3636 
3637 /* Message interface
3638  *	key set <key>
3639  *	key wipe
3640  */
3641 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3642 			 char *result, unsigned int maxlen)
3643 {
3644 	struct crypt_config *cc = ti->private;
3645 	int key_size, ret = -EINVAL;
3646 
3647 	if (argc < 2)
3648 		goto error;
3649 
3650 	if (!strcasecmp(argv[0], "key")) {
3651 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3652 			DMWARN("not suspended during key manipulation.");
3653 			return -EINVAL;
3654 		}
3655 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3656 			/* The key size may not be changed. */
3657 			key_size = get_key_size(&argv[2]);
3658 			if (key_size < 0 || cc->key_size != key_size) {
3659 				memset(argv[2], '0', strlen(argv[2]));
3660 				return -EINVAL;
3661 			}
3662 
3663 			ret = crypt_set_key(cc, argv[2]);
3664 			if (ret)
3665 				return ret;
3666 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3667 				ret = cc->iv_gen_ops->init(cc);
3668 			/* wipe the kernel key payload copy */
3669 			if (cc->key_string)
3670 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3671 			return ret;
3672 		}
3673 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3674 			return crypt_wipe_key(cc);
3675 	}
3676 
3677 error:
3678 	DMWARN("unrecognised message received.");
3679 	return -EINVAL;
3680 }
3681 
3682 static int crypt_iterate_devices(struct dm_target *ti,
3683 				 iterate_devices_callout_fn fn, void *data)
3684 {
3685 	struct crypt_config *cc = ti->private;
3686 
3687 	return fn(ti, cc->dev, cc->start, ti->len, data);
3688 }
3689 
3690 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3691 {
3692 	struct crypt_config *cc = ti->private;
3693 
3694 	/*
3695 	 * Unfortunate constraint that is required to avoid the potential
3696 	 * for exceeding underlying device's max_segments limits -- due to
3697 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3698 	 * bio that are not as physically contiguous as the original bio.
3699 	 */
3700 	limits->max_segment_size = PAGE_SIZE;
3701 
3702 	limits->logical_block_size =
3703 		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3704 	limits->physical_block_size =
3705 		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3706 	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3707 	limits->dma_alignment = limits->logical_block_size - 1;
3708 }
3709 
3710 static struct target_type crypt_target = {
3711 	.name   = "crypt",
3712 	.version = {1, 24, 0},
3713 	.module = THIS_MODULE,
3714 	.ctr    = crypt_ctr,
3715 	.dtr    = crypt_dtr,
3716 	.features = DM_TARGET_ZONED_HM,
3717 	.report_zones = crypt_report_zones,
3718 	.map    = crypt_map,
3719 	.status = crypt_status,
3720 	.postsuspend = crypt_postsuspend,
3721 	.preresume = crypt_preresume,
3722 	.resume = crypt_resume,
3723 	.message = crypt_message,
3724 	.iterate_devices = crypt_iterate_devices,
3725 	.io_hints = crypt_io_hints,
3726 };
3727 module_dm(crypt);
3728 
3729 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3730 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3731 MODULE_LICENSE("GPL");
3732