xref: /openbmc/linux/drivers/md/dm-crypt.c (revision cc8bbe1a)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
26 #include <asm/page.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
31 
32 #include <linux/device-mapper.h>
33 
34 #define DM_MSG_PREFIX "crypt"
35 
36 /*
37  * context holding the current state of a multi-part conversion
38  */
39 struct convert_context {
40 	struct completion restart;
41 	struct bio *bio_in;
42 	struct bio *bio_out;
43 	struct bvec_iter iter_in;
44 	struct bvec_iter iter_out;
45 	sector_t cc_sector;
46 	atomic_t cc_pending;
47 	struct ablkcipher_request *req;
48 };
49 
50 /*
51  * per bio private data
52  */
53 struct dm_crypt_io {
54 	struct crypt_config *cc;
55 	struct bio *base_bio;
56 	struct work_struct work;
57 
58 	struct convert_context ctx;
59 
60 	atomic_t io_pending;
61 	int error;
62 	sector_t sector;
63 
64 	struct rb_node rb_node;
65 } CRYPTO_MINALIGN_ATTR;
66 
67 struct dm_crypt_request {
68 	struct convert_context *ctx;
69 	struct scatterlist sg_in;
70 	struct scatterlist sg_out;
71 	sector_t iv_sector;
72 };
73 
74 struct crypt_config;
75 
76 struct crypt_iv_operations {
77 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
78 		   const char *opts);
79 	void (*dtr)(struct crypt_config *cc);
80 	int (*init)(struct crypt_config *cc);
81 	int (*wipe)(struct crypt_config *cc);
82 	int (*generator)(struct crypt_config *cc, u8 *iv,
83 			 struct dm_crypt_request *dmreq);
84 	int (*post)(struct crypt_config *cc, u8 *iv,
85 		    struct dm_crypt_request *dmreq);
86 };
87 
88 struct iv_essiv_private {
89 	struct crypto_hash *hash_tfm;
90 	u8 *salt;
91 };
92 
93 struct iv_benbi_private {
94 	int shift;
95 };
96 
97 #define LMK_SEED_SIZE 64 /* hash + 0 */
98 struct iv_lmk_private {
99 	struct crypto_shash *hash_tfm;
100 	u8 *seed;
101 };
102 
103 #define TCW_WHITENING_SIZE 16
104 struct iv_tcw_private {
105 	struct crypto_shash *crc32_tfm;
106 	u8 *iv_seed;
107 	u8 *whitening;
108 };
109 
110 /*
111  * Crypt: maps a linear range of a block device
112  * and encrypts / decrypts at the same time.
113  */
114 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
115 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
116 	     DM_CRYPT_EXIT_THREAD};
117 
118 /*
119  * The fields in here must be read only after initialization.
120  */
121 struct crypt_config {
122 	struct dm_dev *dev;
123 	sector_t start;
124 
125 	/*
126 	 * pool for per bio private data, crypto requests and
127 	 * encryption requeusts/buffer pages
128 	 */
129 	mempool_t *req_pool;
130 	mempool_t *page_pool;
131 	struct bio_set *bs;
132 	struct mutex bio_alloc_lock;
133 
134 	struct workqueue_struct *io_queue;
135 	struct workqueue_struct *crypt_queue;
136 
137 	struct task_struct *write_thread;
138 	wait_queue_head_t write_thread_wait;
139 	struct rb_root write_tree;
140 
141 	char *cipher;
142 	char *cipher_string;
143 
144 	struct crypt_iv_operations *iv_gen_ops;
145 	union {
146 		struct iv_essiv_private essiv;
147 		struct iv_benbi_private benbi;
148 		struct iv_lmk_private lmk;
149 		struct iv_tcw_private tcw;
150 	} iv_gen_private;
151 	sector_t iv_offset;
152 	unsigned int iv_size;
153 
154 	/* ESSIV: struct crypto_cipher *essiv_tfm */
155 	void *iv_private;
156 	struct crypto_ablkcipher **tfms;
157 	unsigned tfms_count;
158 
159 	/*
160 	 * Layout of each crypto request:
161 	 *
162 	 *   struct ablkcipher_request
163 	 *      context
164 	 *      padding
165 	 *   struct dm_crypt_request
166 	 *      padding
167 	 *   IV
168 	 *
169 	 * The padding is added so that dm_crypt_request and the IV are
170 	 * correctly aligned.
171 	 */
172 	unsigned int dmreq_start;
173 
174 	unsigned int per_bio_data_size;
175 
176 	unsigned long flags;
177 	unsigned int key_size;
178 	unsigned int key_parts;      /* independent parts in key buffer */
179 	unsigned int key_extra_size; /* additional keys length */
180 	u8 key[0];
181 };
182 
183 #define MIN_IOS        16
184 
185 static void clone_init(struct dm_crypt_io *, struct bio *);
186 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
187 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
188 
189 /*
190  * Use this to access cipher attributes that are the same for each CPU.
191  */
192 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
193 {
194 	return cc->tfms[0];
195 }
196 
197 /*
198  * Different IV generation algorithms:
199  *
200  * plain: the initial vector is the 32-bit little-endian version of the sector
201  *        number, padded with zeros if necessary.
202  *
203  * plain64: the initial vector is the 64-bit little-endian version of the sector
204  *        number, padded with zeros if necessary.
205  *
206  * essiv: "encrypted sector|salt initial vector", the sector number is
207  *        encrypted with the bulk cipher using a salt as key. The salt
208  *        should be derived from the bulk cipher's key via hashing.
209  *
210  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
211  *        (needed for LRW-32-AES and possible other narrow block modes)
212  *
213  * null: the initial vector is always zero.  Provides compatibility with
214  *       obsolete loop_fish2 devices.  Do not use for new devices.
215  *
216  * lmk:  Compatible implementation of the block chaining mode used
217  *       by the Loop-AES block device encryption system
218  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
219  *       It operates on full 512 byte sectors and uses CBC
220  *       with an IV derived from the sector number, the data and
221  *       optionally extra IV seed.
222  *       This means that after decryption the first block
223  *       of sector must be tweaked according to decrypted data.
224  *       Loop-AES can use three encryption schemes:
225  *         version 1: is plain aes-cbc mode
226  *         version 2: uses 64 multikey scheme with lmk IV generator
227  *         version 3: the same as version 2 with additional IV seed
228  *                   (it uses 65 keys, last key is used as IV seed)
229  *
230  * tcw:  Compatible implementation of the block chaining mode used
231  *       by the TrueCrypt device encryption system (prior to version 4.1).
232  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
233  *       It operates on full 512 byte sectors and uses CBC
234  *       with an IV derived from initial key and the sector number.
235  *       In addition, whitening value is applied on every sector, whitening
236  *       is calculated from initial key, sector number and mixed using CRC32.
237  *       Note that this encryption scheme is vulnerable to watermarking attacks
238  *       and should be used for old compatible containers access only.
239  *
240  * plumb: unimplemented, see:
241  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
242  */
243 
244 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
245 			      struct dm_crypt_request *dmreq)
246 {
247 	memset(iv, 0, cc->iv_size);
248 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
249 
250 	return 0;
251 }
252 
253 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
254 				struct dm_crypt_request *dmreq)
255 {
256 	memset(iv, 0, cc->iv_size);
257 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
258 
259 	return 0;
260 }
261 
262 /* Initialise ESSIV - compute salt but no local memory allocations */
263 static int crypt_iv_essiv_init(struct crypt_config *cc)
264 {
265 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
266 	struct hash_desc desc;
267 	struct scatterlist sg;
268 	struct crypto_cipher *essiv_tfm;
269 	int err;
270 
271 	sg_init_one(&sg, cc->key, cc->key_size);
272 	desc.tfm = essiv->hash_tfm;
273 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
274 
275 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
276 	if (err)
277 		return err;
278 
279 	essiv_tfm = cc->iv_private;
280 
281 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
282 			    crypto_hash_digestsize(essiv->hash_tfm));
283 	if (err)
284 		return err;
285 
286 	return 0;
287 }
288 
289 /* Wipe salt and reset key derived from volume key */
290 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
291 {
292 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
293 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
294 	struct crypto_cipher *essiv_tfm;
295 	int r, err = 0;
296 
297 	memset(essiv->salt, 0, salt_size);
298 
299 	essiv_tfm = cc->iv_private;
300 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
301 	if (r)
302 		err = r;
303 
304 	return err;
305 }
306 
307 /* Set up per cpu cipher state */
308 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
309 					     struct dm_target *ti,
310 					     u8 *salt, unsigned saltsize)
311 {
312 	struct crypto_cipher *essiv_tfm;
313 	int err;
314 
315 	/* Setup the essiv_tfm with the given salt */
316 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
317 	if (IS_ERR(essiv_tfm)) {
318 		ti->error = "Error allocating crypto tfm for ESSIV";
319 		return essiv_tfm;
320 	}
321 
322 	if (crypto_cipher_blocksize(essiv_tfm) !=
323 	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
324 		ti->error = "Block size of ESSIV cipher does "
325 			    "not match IV size of block cipher";
326 		crypto_free_cipher(essiv_tfm);
327 		return ERR_PTR(-EINVAL);
328 	}
329 
330 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
331 	if (err) {
332 		ti->error = "Failed to set key for ESSIV cipher";
333 		crypto_free_cipher(essiv_tfm);
334 		return ERR_PTR(err);
335 	}
336 
337 	return essiv_tfm;
338 }
339 
340 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
341 {
342 	struct crypto_cipher *essiv_tfm;
343 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
344 
345 	crypto_free_hash(essiv->hash_tfm);
346 	essiv->hash_tfm = NULL;
347 
348 	kzfree(essiv->salt);
349 	essiv->salt = NULL;
350 
351 	essiv_tfm = cc->iv_private;
352 
353 	if (essiv_tfm)
354 		crypto_free_cipher(essiv_tfm);
355 
356 	cc->iv_private = NULL;
357 }
358 
359 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
360 			      const char *opts)
361 {
362 	struct crypto_cipher *essiv_tfm = NULL;
363 	struct crypto_hash *hash_tfm = NULL;
364 	u8 *salt = NULL;
365 	int err;
366 
367 	if (!opts) {
368 		ti->error = "Digest algorithm missing for ESSIV mode";
369 		return -EINVAL;
370 	}
371 
372 	/* Allocate hash algorithm */
373 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
374 	if (IS_ERR(hash_tfm)) {
375 		ti->error = "Error initializing ESSIV hash";
376 		err = PTR_ERR(hash_tfm);
377 		goto bad;
378 	}
379 
380 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
381 	if (!salt) {
382 		ti->error = "Error kmallocing salt storage in ESSIV";
383 		err = -ENOMEM;
384 		goto bad;
385 	}
386 
387 	cc->iv_gen_private.essiv.salt = salt;
388 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
389 
390 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
391 				crypto_hash_digestsize(hash_tfm));
392 	if (IS_ERR(essiv_tfm)) {
393 		crypt_iv_essiv_dtr(cc);
394 		return PTR_ERR(essiv_tfm);
395 	}
396 	cc->iv_private = essiv_tfm;
397 
398 	return 0;
399 
400 bad:
401 	if (hash_tfm && !IS_ERR(hash_tfm))
402 		crypto_free_hash(hash_tfm);
403 	kfree(salt);
404 	return err;
405 }
406 
407 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
408 			      struct dm_crypt_request *dmreq)
409 {
410 	struct crypto_cipher *essiv_tfm = cc->iv_private;
411 
412 	memset(iv, 0, cc->iv_size);
413 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
414 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
415 
416 	return 0;
417 }
418 
419 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
420 			      const char *opts)
421 {
422 	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
423 	int log = ilog2(bs);
424 
425 	/* we need to calculate how far we must shift the sector count
426 	 * to get the cipher block count, we use this shift in _gen */
427 
428 	if (1 << log != bs) {
429 		ti->error = "cypher blocksize is not a power of 2";
430 		return -EINVAL;
431 	}
432 
433 	if (log > 9) {
434 		ti->error = "cypher blocksize is > 512";
435 		return -EINVAL;
436 	}
437 
438 	cc->iv_gen_private.benbi.shift = 9 - log;
439 
440 	return 0;
441 }
442 
443 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
444 {
445 }
446 
447 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
448 			      struct dm_crypt_request *dmreq)
449 {
450 	__be64 val;
451 
452 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
453 
454 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
455 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
456 
457 	return 0;
458 }
459 
460 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
461 			     struct dm_crypt_request *dmreq)
462 {
463 	memset(iv, 0, cc->iv_size);
464 
465 	return 0;
466 }
467 
468 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
469 {
470 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
471 
472 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
473 		crypto_free_shash(lmk->hash_tfm);
474 	lmk->hash_tfm = NULL;
475 
476 	kzfree(lmk->seed);
477 	lmk->seed = NULL;
478 }
479 
480 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
481 			    const char *opts)
482 {
483 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
484 
485 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
486 	if (IS_ERR(lmk->hash_tfm)) {
487 		ti->error = "Error initializing LMK hash";
488 		return PTR_ERR(lmk->hash_tfm);
489 	}
490 
491 	/* No seed in LMK version 2 */
492 	if (cc->key_parts == cc->tfms_count) {
493 		lmk->seed = NULL;
494 		return 0;
495 	}
496 
497 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
498 	if (!lmk->seed) {
499 		crypt_iv_lmk_dtr(cc);
500 		ti->error = "Error kmallocing seed storage in LMK";
501 		return -ENOMEM;
502 	}
503 
504 	return 0;
505 }
506 
507 static int crypt_iv_lmk_init(struct crypt_config *cc)
508 {
509 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
510 	int subkey_size = cc->key_size / cc->key_parts;
511 
512 	/* LMK seed is on the position of LMK_KEYS + 1 key */
513 	if (lmk->seed)
514 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
515 		       crypto_shash_digestsize(lmk->hash_tfm));
516 
517 	return 0;
518 }
519 
520 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
521 {
522 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
523 
524 	if (lmk->seed)
525 		memset(lmk->seed, 0, LMK_SEED_SIZE);
526 
527 	return 0;
528 }
529 
530 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
531 			    struct dm_crypt_request *dmreq,
532 			    u8 *data)
533 {
534 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
535 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
536 	struct md5_state md5state;
537 	__le32 buf[4];
538 	int i, r;
539 
540 	desc->tfm = lmk->hash_tfm;
541 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
542 
543 	r = crypto_shash_init(desc);
544 	if (r)
545 		return r;
546 
547 	if (lmk->seed) {
548 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
549 		if (r)
550 			return r;
551 	}
552 
553 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
554 	r = crypto_shash_update(desc, data + 16, 16 * 31);
555 	if (r)
556 		return r;
557 
558 	/* Sector is cropped to 56 bits here */
559 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
560 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
561 	buf[2] = cpu_to_le32(4024);
562 	buf[3] = 0;
563 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
564 	if (r)
565 		return r;
566 
567 	/* No MD5 padding here */
568 	r = crypto_shash_export(desc, &md5state);
569 	if (r)
570 		return r;
571 
572 	for (i = 0; i < MD5_HASH_WORDS; i++)
573 		__cpu_to_le32s(&md5state.hash[i]);
574 	memcpy(iv, &md5state.hash, cc->iv_size);
575 
576 	return 0;
577 }
578 
579 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
580 			    struct dm_crypt_request *dmreq)
581 {
582 	u8 *src;
583 	int r = 0;
584 
585 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
586 		src = kmap_atomic(sg_page(&dmreq->sg_in));
587 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
588 		kunmap_atomic(src);
589 	} else
590 		memset(iv, 0, cc->iv_size);
591 
592 	return r;
593 }
594 
595 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
596 			     struct dm_crypt_request *dmreq)
597 {
598 	u8 *dst;
599 	int r;
600 
601 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
602 		return 0;
603 
604 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
605 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
606 
607 	/* Tweak the first block of plaintext sector */
608 	if (!r)
609 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
610 
611 	kunmap_atomic(dst);
612 	return r;
613 }
614 
615 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
616 {
617 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
618 
619 	kzfree(tcw->iv_seed);
620 	tcw->iv_seed = NULL;
621 	kzfree(tcw->whitening);
622 	tcw->whitening = NULL;
623 
624 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
625 		crypto_free_shash(tcw->crc32_tfm);
626 	tcw->crc32_tfm = NULL;
627 }
628 
629 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
630 			    const char *opts)
631 {
632 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
633 
634 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
635 		ti->error = "Wrong key size for TCW";
636 		return -EINVAL;
637 	}
638 
639 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
640 	if (IS_ERR(tcw->crc32_tfm)) {
641 		ti->error = "Error initializing CRC32 in TCW";
642 		return PTR_ERR(tcw->crc32_tfm);
643 	}
644 
645 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
646 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
647 	if (!tcw->iv_seed || !tcw->whitening) {
648 		crypt_iv_tcw_dtr(cc);
649 		ti->error = "Error allocating seed storage in TCW";
650 		return -ENOMEM;
651 	}
652 
653 	return 0;
654 }
655 
656 static int crypt_iv_tcw_init(struct crypt_config *cc)
657 {
658 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
659 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
660 
661 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
662 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
663 	       TCW_WHITENING_SIZE);
664 
665 	return 0;
666 }
667 
668 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
669 {
670 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
671 
672 	memset(tcw->iv_seed, 0, cc->iv_size);
673 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
674 
675 	return 0;
676 }
677 
678 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
679 				  struct dm_crypt_request *dmreq,
680 				  u8 *data)
681 {
682 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
683 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
684 	u8 buf[TCW_WHITENING_SIZE];
685 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
686 	int i, r;
687 
688 	/* xor whitening with sector number */
689 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
690 	crypto_xor(buf, (u8 *)&sector, 8);
691 	crypto_xor(&buf[8], (u8 *)&sector, 8);
692 
693 	/* calculate crc32 for every 32bit part and xor it */
694 	desc->tfm = tcw->crc32_tfm;
695 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
696 	for (i = 0; i < 4; i++) {
697 		r = crypto_shash_init(desc);
698 		if (r)
699 			goto out;
700 		r = crypto_shash_update(desc, &buf[i * 4], 4);
701 		if (r)
702 			goto out;
703 		r = crypto_shash_final(desc, &buf[i * 4]);
704 		if (r)
705 			goto out;
706 	}
707 	crypto_xor(&buf[0], &buf[12], 4);
708 	crypto_xor(&buf[4], &buf[8], 4);
709 
710 	/* apply whitening (8 bytes) to whole sector */
711 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
712 		crypto_xor(data + i * 8, buf, 8);
713 out:
714 	memzero_explicit(buf, sizeof(buf));
715 	return r;
716 }
717 
718 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
719 			    struct dm_crypt_request *dmreq)
720 {
721 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
722 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
723 	u8 *src;
724 	int r = 0;
725 
726 	/* Remove whitening from ciphertext */
727 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
728 		src = kmap_atomic(sg_page(&dmreq->sg_in));
729 		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
730 		kunmap_atomic(src);
731 	}
732 
733 	/* Calculate IV */
734 	memcpy(iv, tcw->iv_seed, cc->iv_size);
735 	crypto_xor(iv, (u8 *)&sector, 8);
736 	if (cc->iv_size > 8)
737 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
738 
739 	return r;
740 }
741 
742 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
743 			     struct dm_crypt_request *dmreq)
744 {
745 	u8 *dst;
746 	int r;
747 
748 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
749 		return 0;
750 
751 	/* Apply whitening on ciphertext */
752 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
753 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
754 	kunmap_atomic(dst);
755 
756 	return r;
757 }
758 
759 static struct crypt_iv_operations crypt_iv_plain_ops = {
760 	.generator = crypt_iv_plain_gen
761 };
762 
763 static struct crypt_iv_operations crypt_iv_plain64_ops = {
764 	.generator = crypt_iv_plain64_gen
765 };
766 
767 static struct crypt_iv_operations crypt_iv_essiv_ops = {
768 	.ctr       = crypt_iv_essiv_ctr,
769 	.dtr       = crypt_iv_essiv_dtr,
770 	.init      = crypt_iv_essiv_init,
771 	.wipe      = crypt_iv_essiv_wipe,
772 	.generator = crypt_iv_essiv_gen
773 };
774 
775 static struct crypt_iv_operations crypt_iv_benbi_ops = {
776 	.ctr	   = crypt_iv_benbi_ctr,
777 	.dtr	   = crypt_iv_benbi_dtr,
778 	.generator = crypt_iv_benbi_gen
779 };
780 
781 static struct crypt_iv_operations crypt_iv_null_ops = {
782 	.generator = crypt_iv_null_gen
783 };
784 
785 static struct crypt_iv_operations crypt_iv_lmk_ops = {
786 	.ctr	   = crypt_iv_lmk_ctr,
787 	.dtr	   = crypt_iv_lmk_dtr,
788 	.init	   = crypt_iv_lmk_init,
789 	.wipe	   = crypt_iv_lmk_wipe,
790 	.generator = crypt_iv_lmk_gen,
791 	.post	   = crypt_iv_lmk_post
792 };
793 
794 static struct crypt_iv_operations crypt_iv_tcw_ops = {
795 	.ctr	   = crypt_iv_tcw_ctr,
796 	.dtr	   = crypt_iv_tcw_dtr,
797 	.init	   = crypt_iv_tcw_init,
798 	.wipe	   = crypt_iv_tcw_wipe,
799 	.generator = crypt_iv_tcw_gen,
800 	.post	   = crypt_iv_tcw_post
801 };
802 
803 static void crypt_convert_init(struct crypt_config *cc,
804 			       struct convert_context *ctx,
805 			       struct bio *bio_out, struct bio *bio_in,
806 			       sector_t sector)
807 {
808 	ctx->bio_in = bio_in;
809 	ctx->bio_out = bio_out;
810 	if (bio_in)
811 		ctx->iter_in = bio_in->bi_iter;
812 	if (bio_out)
813 		ctx->iter_out = bio_out->bi_iter;
814 	ctx->cc_sector = sector + cc->iv_offset;
815 	init_completion(&ctx->restart);
816 }
817 
818 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
819 					     struct ablkcipher_request *req)
820 {
821 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
822 }
823 
824 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
825 					       struct dm_crypt_request *dmreq)
826 {
827 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
828 }
829 
830 static u8 *iv_of_dmreq(struct crypt_config *cc,
831 		       struct dm_crypt_request *dmreq)
832 {
833 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
834 		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
835 }
836 
837 static int crypt_convert_block(struct crypt_config *cc,
838 			       struct convert_context *ctx,
839 			       struct ablkcipher_request *req)
840 {
841 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
842 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
843 	struct dm_crypt_request *dmreq;
844 	u8 *iv;
845 	int r;
846 
847 	dmreq = dmreq_of_req(cc, req);
848 	iv = iv_of_dmreq(cc, dmreq);
849 
850 	dmreq->iv_sector = ctx->cc_sector;
851 	dmreq->ctx = ctx;
852 	sg_init_table(&dmreq->sg_in, 1);
853 	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
854 		    bv_in.bv_offset);
855 
856 	sg_init_table(&dmreq->sg_out, 1);
857 	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
858 		    bv_out.bv_offset);
859 
860 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
861 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
862 
863 	if (cc->iv_gen_ops) {
864 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
865 		if (r < 0)
866 			return r;
867 	}
868 
869 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
870 				     1 << SECTOR_SHIFT, iv);
871 
872 	if (bio_data_dir(ctx->bio_in) == WRITE)
873 		r = crypto_ablkcipher_encrypt(req);
874 	else
875 		r = crypto_ablkcipher_decrypt(req);
876 
877 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
878 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
879 
880 	return r;
881 }
882 
883 static void kcryptd_async_done(struct crypto_async_request *async_req,
884 			       int error);
885 
886 static void crypt_alloc_req(struct crypt_config *cc,
887 			    struct convert_context *ctx)
888 {
889 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
890 
891 	if (!ctx->req)
892 		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
893 
894 	ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
895 
896 	/*
897 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
898 	 * requests if driver request queue is full.
899 	 */
900 	ablkcipher_request_set_callback(ctx->req,
901 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
902 	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
903 }
904 
905 static void crypt_free_req(struct crypt_config *cc,
906 			   struct ablkcipher_request *req, struct bio *base_bio)
907 {
908 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
909 
910 	if ((struct ablkcipher_request *)(io + 1) != req)
911 		mempool_free(req, cc->req_pool);
912 }
913 
914 /*
915  * Encrypt / decrypt data from one bio to another one (can be the same one)
916  */
917 static int crypt_convert(struct crypt_config *cc,
918 			 struct convert_context *ctx)
919 {
920 	int r;
921 
922 	atomic_set(&ctx->cc_pending, 1);
923 
924 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
925 
926 		crypt_alloc_req(cc, ctx);
927 
928 		atomic_inc(&ctx->cc_pending);
929 
930 		r = crypt_convert_block(cc, ctx, ctx->req);
931 
932 		switch (r) {
933 		/*
934 		 * The request was queued by a crypto driver
935 		 * but the driver request queue is full, let's wait.
936 		 */
937 		case -EBUSY:
938 			wait_for_completion(&ctx->restart);
939 			reinit_completion(&ctx->restart);
940 			/* fall through */
941 		/*
942 		 * The request is queued and processed asynchronously,
943 		 * completion function kcryptd_async_done() will be called.
944 		 */
945 		case -EINPROGRESS:
946 			ctx->req = NULL;
947 			ctx->cc_sector++;
948 			continue;
949 		/*
950 		 * The request was already processed (synchronously).
951 		 */
952 		case 0:
953 			atomic_dec(&ctx->cc_pending);
954 			ctx->cc_sector++;
955 			cond_resched();
956 			continue;
957 
958 		/* There was an error while processing the request. */
959 		default:
960 			atomic_dec(&ctx->cc_pending);
961 			return r;
962 		}
963 	}
964 
965 	return 0;
966 }
967 
968 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
969 
970 /*
971  * Generate a new unfragmented bio with the given size
972  * This should never violate the device limitations (but only because
973  * max_segment_size is being constrained to PAGE_SIZE).
974  *
975  * This function may be called concurrently. If we allocate from the mempool
976  * concurrently, there is a possibility of deadlock. For example, if we have
977  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
978  * the mempool concurrently, it may deadlock in a situation where both processes
979  * have allocated 128 pages and the mempool is exhausted.
980  *
981  * In order to avoid this scenario we allocate the pages under a mutex.
982  *
983  * In order to not degrade performance with excessive locking, we try
984  * non-blocking allocations without a mutex first but on failure we fallback
985  * to blocking allocations with a mutex.
986  */
987 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
988 {
989 	struct crypt_config *cc = io->cc;
990 	struct bio *clone;
991 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
992 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
993 	unsigned i, len, remaining_size;
994 	struct page *page;
995 	struct bio_vec *bvec;
996 
997 retry:
998 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
999 		mutex_lock(&cc->bio_alloc_lock);
1000 
1001 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1002 	if (!clone)
1003 		goto return_clone;
1004 
1005 	clone_init(io, clone);
1006 
1007 	remaining_size = size;
1008 
1009 	for (i = 0; i < nr_iovecs; i++) {
1010 		page = mempool_alloc(cc->page_pool, gfp_mask);
1011 		if (!page) {
1012 			crypt_free_buffer_pages(cc, clone);
1013 			bio_put(clone);
1014 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1015 			goto retry;
1016 		}
1017 
1018 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1019 
1020 		bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1021 		bvec->bv_page = page;
1022 		bvec->bv_len = len;
1023 		bvec->bv_offset = 0;
1024 
1025 		clone->bi_iter.bi_size += len;
1026 
1027 		remaining_size -= len;
1028 	}
1029 
1030 return_clone:
1031 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1032 		mutex_unlock(&cc->bio_alloc_lock);
1033 
1034 	return clone;
1035 }
1036 
1037 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1038 {
1039 	unsigned int i;
1040 	struct bio_vec *bv;
1041 
1042 	bio_for_each_segment_all(bv, clone, i) {
1043 		BUG_ON(!bv->bv_page);
1044 		mempool_free(bv->bv_page, cc->page_pool);
1045 		bv->bv_page = NULL;
1046 	}
1047 }
1048 
1049 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1050 			  struct bio *bio, sector_t sector)
1051 {
1052 	io->cc = cc;
1053 	io->base_bio = bio;
1054 	io->sector = sector;
1055 	io->error = 0;
1056 	io->ctx.req = NULL;
1057 	atomic_set(&io->io_pending, 0);
1058 }
1059 
1060 static void crypt_inc_pending(struct dm_crypt_io *io)
1061 {
1062 	atomic_inc(&io->io_pending);
1063 }
1064 
1065 /*
1066  * One of the bios was finished. Check for completion of
1067  * the whole request and correctly clean up the buffer.
1068  */
1069 static void crypt_dec_pending(struct dm_crypt_io *io)
1070 {
1071 	struct crypt_config *cc = io->cc;
1072 	struct bio *base_bio = io->base_bio;
1073 	int error = io->error;
1074 
1075 	if (!atomic_dec_and_test(&io->io_pending))
1076 		return;
1077 
1078 	if (io->ctx.req)
1079 		crypt_free_req(cc, io->ctx.req, base_bio);
1080 
1081 	base_bio->bi_error = error;
1082 	bio_endio(base_bio);
1083 }
1084 
1085 /*
1086  * kcryptd/kcryptd_io:
1087  *
1088  * Needed because it would be very unwise to do decryption in an
1089  * interrupt context.
1090  *
1091  * kcryptd performs the actual encryption or decryption.
1092  *
1093  * kcryptd_io performs the IO submission.
1094  *
1095  * They must be separated as otherwise the final stages could be
1096  * starved by new requests which can block in the first stages due
1097  * to memory allocation.
1098  *
1099  * The work is done per CPU global for all dm-crypt instances.
1100  * They should not depend on each other and do not block.
1101  */
1102 static void crypt_endio(struct bio *clone)
1103 {
1104 	struct dm_crypt_io *io = clone->bi_private;
1105 	struct crypt_config *cc = io->cc;
1106 	unsigned rw = bio_data_dir(clone);
1107 	int error;
1108 
1109 	/*
1110 	 * free the processed pages
1111 	 */
1112 	if (rw == WRITE)
1113 		crypt_free_buffer_pages(cc, clone);
1114 
1115 	error = clone->bi_error;
1116 	bio_put(clone);
1117 
1118 	if (rw == READ && !error) {
1119 		kcryptd_queue_crypt(io);
1120 		return;
1121 	}
1122 
1123 	if (unlikely(error))
1124 		io->error = error;
1125 
1126 	crypt_dec_pending(io);
1127 }
1128 
1129 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1130 {
1131 	struct crypt_config *cc = io->cc;
1132 
1133 	clone->bi_private = io;
1134 	clone->bi_end_io  = crypt_endio;
1135 	clone->bi_bdev    = cc->dev->bdev;
1136 	clone->bi_rw      = io->base_bio->bi_rw;
1137 }
1138 
1139 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1140 {
1141 	struct crypt_config *cc = io->cc;
1142 	struct bio *clone;
1143 
1144 	/*
1145 	 * We need the original biovec array in order to decrypt
1146 	 * the whole bio data *afterwards* -- thanks to immutable
1147 	 * biovecs we don't need to worry about the block layer
1148 	 * modifying the biovec array; so leverage bio_clone_fast().
1149 	 */
1150 	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1151 	if (!clone)
1152 		return 1;
1153 
1154 	crypt_inc_pending(io);
1155 
1156 	clone_init(io, clone);
1157 	clone->bi_iter.bi_sector = cc->start + io->sector;
1158 
1159 	generic_make_request(clone);
1160 	return 0;
1161 }
1162 
1163 static void kcryptd_io_read_work(struct work_struct *work)
1164 {
1165 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1166 
1167 	crypt_inc_pending(io);
1168 	if (kcryptd_io_read(io, GFP_NOIO))
1169 		io->error = -ENOMEM;
1170 	crypt_dec_pending(io);
1171 }
1172 
1173 static void kcryptd_queue_read(struct dm_crypt_io *io)
1174 {
1175 	struct crypt_config *cc = io->cc;
1176 
1177 	INIT_WORK(&io->work, kcryptd_io_read_work);
1178 	queue_work(cc->io_queue, &io->work);
1179 }
1180 
1181 static void kcryptd_io_write(struct dm_crypt_io *io)
1182 {
1183 	struct bio *clone = io->ctx.bio_out;
1184 
1185 	generic_make_request(clone);
1186 }
1187 
1188 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1189 
1190 static int dmcrypt_write(void *data)
1191 {
1192 	struct crypt_config *cc = data;
1193 	struct dm_crypt_io *io;
1194 
1195 	while (1) {
1196 		struct rb_root write_tree;
1197 		struct blk_plug plug;
1198 
1199 		DECLARE_WAITQUEUE(wait, current);
1200 
1201 		spin_lock_irq(&cc->write_thread_wait.lock);
1202 continue_locked:
1203 
1204 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1205 			goto pop_from_list;
1206 
1207 		if (unlikely(test_bit(DM_CRYPT_EXIT_THREAD, &cc->flags))) {
1208 			spin_unlock_irq(&cc->write_thread_wait.lock);
1209 			break;
1210 		}
1211 
1212 		__set_current_state(TASK_INTERRUPTIBLE);
1213 		__add_wait_queue(&cc->write_thread_wait, &wait);
1214 
1215 		spin_unlock_irq(&cc->write_thread_wait.lock);
1216 
1217 		schedule();
1218 
1219 		spin_lock_irq(&cc->write_thread_wait.lock);
1220 		__remove_wait_queue(&cc->write_thread_wait, &wait);
1221 		goto continue_locked;
1222 
1223 pop_from_list:
1224 		write_tree = cc->write_tree;
1225 		cc->write_tree = RB_ROOT;
1226 		spin_unlock_irq(&cc->write_thread_wait.lock);
1227 
1228 		BUG_ON(rb_parent(write_tree.rb_node));
1229 
1230 		/*
1231 		 * Note: we cannot walk the tree here with rb_next because
1232 		 * the structures may be freed when kcryptd_io_write is called.
1233 		 */
1234 		blk_start_plug(&plug);
1235 		do {
1236 			io = crypt_io_from_node(rb_first(&write_tree));
1237 			rb_erase(&io->rb_node, &write_tree);
1238 			kcryptd_io_write(io);
1239 		} while (!RB_EMPTY_ROOT(&write_tree));
1240 		blk_finish_plug(&plug);
1241 	}
1242 	return 0;
1243 }
1244 
1245 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1246 {
1247 	struct bio *clone = io->ctx.bio_out;
1248 	struct crypt_config *cc = io->cc;
1249 	unsigned long flags;
1250 	sector_t sector;
1251 	struct rb_node **rbp, *parent;
1252 
1253 	if (unlikely(io->error < 0)) {
1254 		crypt_free_buffer_pages(cc, clone);
1255 		bio_put(clone);
1256 		crypt_dec_pending(io);
1257 		return;
1258 	}
1259 
1260 	/* crypt_convert should have filled the clone bio */
1261 	BUG_ON(io->ctx.iter_out.bi_size);
1262 
1263 	clone->bi_iter.bi_sector = cc->start + io->sector;
1264 
1265 	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1266 		generic_make_request(clone);
1267 		return;
1268 	}
1269 
1270 	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1271 	rbp = &cc->write_tree.rb_node;
1272 	parent = NULL;
1273 	sector = io->sector;
1274 	while (*rbp) {
1275 		parent = *rbp;
1276 		if (sector < crypt_io_from_node(parent)->sector)
1277 			rbp = &(*rbp)->rb_left;
1278 		else
1279 			rbp = &(*rbp)->rb_right;
1280 	}
1281 	rb_link_node(&io->rb_node, parent, rbp);
1282 	rb_insert_color(&io->rb_node, &cc->write_tree);
1283 
1284 	wake_up_locked(&cc->write_thread_wait);
1285 	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1286 }
1287 
1288 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1289 {
1290 	struct crypt_config *cc = io->cc;
1291 	struct bio *clone;
1292 	int crypt_finished;
1293 	sector_t sector = io->sector;
1294 	int r;
1295 
1296 	/*
1297 	 * Prevent io from disappearing until this function completes.
1298 	 */
1299 	crypt_inc_pending(io);
1300 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1301 
1302 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1303 	if (unlikely(!clone)) {
1304 		io->error = -EIO;
1305 		goto dec;
1306 	}
1307 
1308 	io->ctx.bio_out = clone;
1309 	io->ctx.iter_out = clone->bi_iter;
1310 
1311 	sector += bio_sectors(clone);
1312 
1313 	crypt_inc_pending(io);
1314 	r = crypt_convert(cc, &io->ctx);
1315 	if (r)
1316 		io->error = -EIO;
1317 	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1318 
1319 	/* Encryption was already finished, submit io now */
1320 	if (crypt_finished) {
1321 		kcryptd_crypt_write_io_submit(io, 0);
1322 		io->sector = sector;
1323 	}
1324 
1325 dec:
1326 	crypt_dec_pending(io);
1327 }
1328 
1329 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1330 {
1331 	crypt_dec_pending(io);
1332 }
1333 
1334 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1335 {
1336 	struct crypt_config *cc = io->cc;
1337 	int r = 0;
1338 
1339 	crypt_inc_pending(io);
1340 
1341 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1342 			   io->sector);
1343 
1344 	r = crypt_convert(cc, &io->ctx);
1345 	if (r < 0)
1346 		io->error = -EIO;
1347 
1348 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1349 		kcryptd_crypt_read_done(io);
1350 
1351 	crypt_dec_pending(io);
1352 }
1353 
1354 static void kcryptd_async_done(struct crypto_async_request *async_req,
1355 			       int error)
1356 {
1357 	struct dm_crypt_request *dmreq = async_req->data;
1358 	struct convert_context *ctx = dmreq->ctx;
1359 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1360 	struct crypt_config *cc = io->cc;
1361 
1362 	/*
1363 	 * A request from crypto driver backlog is going to be processed now,
1364 	 * finish the completion and continue in crypt_convert().
1365 	 * (Callback will be called for the second time for this request.)
1366 	 */
1367 	if (error == -EINPROGRESS) {
1368 		complete(&ctx->restart);
1369 		return;
1370 	}
1371 
1372 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1373 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1374 
1375 	if (error < 0)
1376 		io->error = -EIO;
1377 
1378 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1379 
1380 	if (!atomic_dec_and_test(&ctx->cc_pending))
1381 		return;
1382 
1383 	if (bio_data_dir(io->base_bio) == READ)
1384 		kcryptd_crypt_read_done(io);
1385 	else
1386 		kcryptd_crypt_write_io_submit(io, 1);
1387 }
1388 
1389 static void kcryptd_crypt(struct work_struct *work)
1390 {
1391 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1392 
1393 	if (bio_data_dir(io->base_bio) == READ)
1394 		kcryptd_crypt_read_convert(io);
1395 	else
1396 		kcryptd_crypt_write_convert(io);
1397 }
1398 
1399 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1400 {
1401 	struct crypt_config *cc = io->cc;
1402 
1403 	INIT_WORK(&io->work, kcryptd_crypt);
1404 	queue_work(cc->crypt_queue, &io->work);
1405 }
1406 
1407 /*
1408  * Decode key from its hex representation
1409  */
1410 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1411 {
1412 	char buffer[3];
1413 	unsigned int i;
1414 
1415 	buffer[2] = '\0';
1416 
1417 	for (i = 0; i < size; i++) {
1418 		buffer[0] = *hex++;
1419 		buffer[1] = *hex++;
1420 
1421 		if (kstrtou8(buffer, 16, &key[i]))
1422 			return -EINVAL;
1423 	}
1424 
1425 	if (*hex != '\0')
1426 		return -EINVAL;
1427 
1428 	return 0;
1429 }
1430 
1431 static void crypt_free_tfms(struct crypt_config *cc)
1432 {
1433 	unsigned i;
1434 
1435 	if (!cc->tfms)
1436 		return;
1437 
1438 	for (i = 0; i < cc->tfms_count; i++)
1439 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1440 			crypto_free_ablkcipher(cc->tfms[i]);
1441 			cc->tfms[i] = NULL;
1442 		}
1443 
1444 	kfree(cc->tfms);
1445 	cc->tfms = NULL;
1446 }
1447 
1448 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1449 {
1450 	unsigned i;
1451 	int err;
1452 
1453 	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1454 			   GFP_KERNEL);
1455 	if (!cc->tfms)
1456 		return -ENOMEM;
1457 
1458 	for (i = 0; i < cc->tfms_count; i++) {
1459 		cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1460 		if (IS_ERR(cc->tfms[i])) {
1461 			err = PTR_ERR(cc->tfms[i]);
1462 			crypt_free_tfms(cc);
1463 			return err;
1464 		}
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 static int crypt_setkey_allcpus(struct crypt_config *cc)
1471 {
1472 	unsigned subkey_size;
1473 	int err = 0, i, r;
1474 
1475 	/* Ignore extra keys (which are used for IV etc) */
1476 	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1477 
1478 	for (i = 0; i < cc->tfms_count; i++) {
1479 		r = crypto_ablkcipher_setkey(cc->tfms[i],
1480 					     cc->key + (i * subkey_size),
1481 					     subkey_size);
1482 		if (r)
1483 			err = r;
1484 	}
1485 
1486 	return err;
1487 }
1488 
1489 static int crypt_set_key(struct crypt_config *cc, char *key)
1490 {
1491 	int r = -EINVAL;
1492 	int key_string_len = strlen(key);
1493 
1494 	/* The key size may not be changed. */
1495 	if (cc->key_size != (key_string_len >> 1))
1496 		goto out;
1497 
1498 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1499 	if (!cc->key_size && strcmp(key, "-"))
1500 		goto out;
1501 
1502 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1503 		goto out;
1504 
1505 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1506 
1507 	r = crypt_setkey_allcpus(cc);
1508 
1509 out:
1510 	/* Hex key string not needed after here, so wipe it. */
1511 	memset(key, '0', key_string_len);
1512 
1513 	return r;
1514 }
1515 
1516 static int crypt_wipe_key(struct crypt_config *cc)
1517 {
1518 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1519 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1520 
1521 	return crypt_setkey_allcpus(cc);
1522 }
1523 
1524 static void crypt_dtr(struct dm_target *ti)
1525 {
1526 	struct crypt_config *cc = ti->private;
1527 
1528 	ti->private = NULL;
1529 
1530 	if (!cc)
1531 		return;
1532 
1533 	if (cc->write_thread) {
1534 		spin_lock_irq(&cc->write_thread_wait.lock);
1535 		set_bit(DM_CRYPT_EXIT_THREAD, &cc->flags);
1536 		wake_up_locked(&cc->write_thread_wait);
1537 		spin_unlock_irq(&cc->write_thread_wait.lock);
1538 		kthread_stop(cc->write_thread);
1539 	}
1540 
1541 	if (cc->io_queue)
1542 		destroy_workqueue(cc->io_queue);
1543 	if (cc->crypt_queue)
1544 		destroy_workqueue(cc->crypt_queue);
1545 
1546 	crypt_free_tfms(cc);
1547 
1548 	if (cc->bs)
1549 		bioset_free(cc->bs);
1550 
1551 	mempool_destroy(cc->page_pool);
1552 	mempool_destroy(cc->req_pool);
1553 
1554 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1555 		cc->iv_gen_ops->dtr(cc);
1556 
1557 	if (cc->dev)
1558 		dm_put_device(ti, cc->dev);
1559 
1560 	kzfree(cc->cipher);
1561 	kzfree(cc->cipher_string);
1562 
1563 	/* Must zero key material before freeing */
1564 	kzfree(cc);
1565 }
1566 
1567 static int crypt_ctr_cipher(struct dm_target *ti,
1568 			    char *cipher_in, char *key)
1569 {
1570 	struct crypt_config *cc = ti->private;
1571 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1572 	char *cipher_api = NULL;
1573 	int ret = -EINVAL;
1574 	char dummy;
1575 
1576 	/* Convert to crypto api definition? */
1577 	if (strchr(cipher_in, '(')) {
1578 		ti->error = "Bad cipher specification";
1579 		return -EINVAL;
1580 	}
1581 
1582 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1583 	if (!cc->cipher_string)
1584 		goto bad_mem;
1585 
1586 	/*
1587 	 * Legacy dm-crypt cipher specification
1588 	 * cipher[:keycount]-mode-iv:ivopts
1589 	 */
1590 	tmp = cipher_in;
1591 	keycount = strsep(&tmp, "-");
1592 	cipher = strsep(&keycount, ":");
1593 
1594 	if (!keycount)
1595 		cc->tfms_count = 1;
1596 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1597 		 !is_power_of_2(cc->tfms_count)) {
1598 		ti->error = "Bad cipher key count specification";
1599 		return -EINVAL;
1600 	}
1601 	cc->key_parts = cc->tfms_count;
1602 	cc->key_extra_size = 0;
1603 
1604 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1605 	if (!cc->cipher)
1606 		goto bad_mem;
1607 
1608 	chainmode = strsep(&tmp, "-");
1609 	ivopts = strsep(&tmp, "-");
1610 	ivmode = strsep(&ivopts, ":");
1611 
1612 	if (tmp)
1613 		DMWARN("Ignoring unexpected additional cipher options");
1614 
1615 	/*
1616 	 * For compatibility with the original dm-crypt mapping format, if
1617 	 * only the cipher name is supplied, use cbc-plain.
1618 	 */
1619 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1620 		chainmode = "cbc";
1621 		ivmode = "plain";
1622 	}
1623 
1624 	if (strcmp(chainmode, "ecb") && !ivmode) {
1625 		ti->error = "IV mechanism required";
1626 		return -EINVAL;
1627 	}
1628 
1629 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1630 	if (!cipher_api)
1631 		goto bad_mem;
1632 
1633 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1634 		       "%s(%s)", chainmode, cipher);
1635 	if (ret < 0) {
1636 		kfree(cipher_api);
1637 		goto bad_mem;
1638 	}
1639 
1640 	/* Allocate cipher */
1641 	ret = crypt_alloc_tfms(cc, cipher_api);
1642 	if (ret < 0) {
1643 		ti->error = "Error allocating crypto tfm";
1644 		goto bad;
1645 	}
1646 
1647 	/* Initialize IV */
1648 	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1649 	if (cc->iv_size)
1650 		/* at least a 64 bit sector number should fit in our buffer */
1651 		cc->iv_size = max(cc->iv_size,
1652 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1653 	else if (ivmode) {
1654 		DMWARN("Selected cipher does not support IVs");
1655 		ivmode = NULL;
1656 	}
1657 
1658 	/* Choose ivmode, see comments at iv code. */
1659 	if (ivmode == NULL)
1660 		cc->iv_gen_ops = NULL;
1661 	else if (strcmp(ivmode, "plain") == 0)
1662 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1663 	else if (strcmp(ivmode, "plain64") == 0)
1664 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1665 	else if (strcmp(ivmode, "essiv") == 0)
1666 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1667 	else if (strcmp(ivmode, "benbi") == 0)
1668 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1669 	else if (strcmp(ivmode, "null") == 0)
1670 		cc->iv_gen_ops = &crypt_iv_null_ops;
1671 	else if (strcmp(ivmode, "lmk") == 0) {
1672 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1673 		/*
1674 		 * Version 2 and 3 is recognised according
1675 		 * to length of provided multi-key string.
1676 		 * If present (version 3), last key is used as IV seed.
1677 		 * All keys (including IV seed) are always the same size.
1678 		 */
1679 		if (cc->key_size % cc->key_parts) {
1680 			cc->key_parts++;
1681 			cc->key_extra_size = cc->key_size / cc->key_parts;
1682 		}
1683 	} else if (strcmp(ivmode, "tcw") == 0) {
1684 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1685 		cc->key_parts += 2; /* IV + whitening */
1686 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1687 	} else {
1688 		ret = -EINVAL;
1689 		ti->error = "Invalid IV mode";
1690 		goto bad;
1691 	}
1692 
1693 	/* Initialize and set key */
1694 	ret = crypt_set_key(cc, key);
1695 	if (ret < 0) {
1696 		ti->error = "Error decoding and setting key";
1697 		goto bad;
1698 	}
1699 
1700 	/* Allocate IV */
1701 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1702 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1703 		if (ret < 0) {
1704 			ti->error = "Error creating IV";
1705 			goto bad;
1706 		}
1707 	}
1708 
1709 	/* Initialize IV (set keys for ESSIV etc) */
1710 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1711 		ret = cc->iv_gen_ops->init(cc);
1712 		if (ret < 0) {
1713 			ti->error = "Error initialising IV";
1714 			goto bad;
1715 		}
1716 	}
1717 
1718 	ret = 0;
1719 bad:
1720 	kfree(cipher_api);
1721 	return ret;
1722 
1723 bad_mem:
1724 	ti->error = "Cannot allocate cipher strings";
1725 	return -ENOMEM;
1726 }
1727 
1728 /*
1729  * Construct an encryption mapping:
1730  * <cipher> <key> <iv_offset> <dev_path> <start>
1731  */
1732 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1733 {
1734 	struct crypt_config *cc;
1735 	unsigned int key_size, opt_params;
1736 	unsigned long long tmpll;
1737 	int ret;
1738 	size_t iv_size_padding;
1739 	struct dm_arg_set as;
1740 	const char *opt_string;
1741 	char dummy;
1742 
1743 	static struct dm_arg _args[] = {
1744 		{0, 3, "Invalid number of feature args"},
1745 	};
1746 
1747 	if (argc < 5) {
1748 		ti->error = "Not enough arguments";
1749 		return -EINVAL;
1750 	}
1751 
1752 	key_size = strlen(argv[1]) >> 1;
1753 
1754 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1755 	if (!cc) {
1756 		ti->error = "Cannot allocate encryption context";
1757 		return -ENOMEM;
1758 	}
1759 	cc->key_size = key_size;
1760 
1761 	ti->private = cc;
1762 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1763 	if (ret < 0)
1764 		goto bad;
1765 
1766 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1767 	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1768 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1769 
1770 	if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1771 		/* Allocate the padding exactly */
1772 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1773 				& crypto_ablkcipher_alignmask(any_tfm(cc));
1774 	} else {
1775 		/*
1776 		 * If the cipher requires greater alignment than kmalloc
1777 		 * alignment, we don't know the exact position of the
1778 		 * initialization vector. We must assume worst case.
1779 		 */
1780 		iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1781 	}
1782 
1783 	ret = -ENOMEM;
1784 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1785 			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1786 	if (!cc->req_pool) {
1787 		ti->error = "Cannot allocate crypt request mempool";
1788 		goto bad;
1789 	}
1790 
1791 	cc->per_bio_data_size = ti->per_bio_data_size =
1792 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1793 		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1794 		      ARCH_KMALLOC_MINALIGN);
1795 
1796 	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1797 	if (!cc->page_pool) {
1798 		ti->error = "Cannot allocate page mempool";
1799 		goto bad;
1800 	}
1801 
1802 	cc->bs = bioset_create(MIN_IOS, 0);
1803 	if (!cc->bs) {
1804 		ti->error = "Cannot allocate crypt bioset";
1805 		goto bad;
1806 	}
1807 
1808 	mutex_init(&cc->bio_alloc_lock);
1809 
1810 	ret = -EINVAL;
1811 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1812 		ti->error = "Invalid iv_offset sector";
1813 		goto bad;
1814 	}
1815 	cc->iv_offset = tmpll;
1816 
1817 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1818 	if (ret) {
1819 		ti->error = "Device lookup failed";
1820 		goto bad;
1821 	}
1822 
1823 	ret = -EINVAL;
1824 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1825 		ti->error = "Invalid device sector";
1826 		goto bad;
1827 	}
1828 	cc->start = tmpll;
1829 
1830 	argv += 5;
1831 	argc -= 5;
1832 
1833 	/* Optional parameters */
1834 	if (argc) {
1835 		as.argc = argc;
1836 		as.argv = argv;
1837 
1838 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1839 		if (ret)
1840 			goto bad;
1841 
1842 		ret = -EINVAL;
1843 		while (opt_params--) {
1844 			opt_string = dm_shift_arg(&as);
1845 			if (!opt_string) {
1846 				ti->error = "Not enough feature arguments";
1847 				goto bad;
1848 			}
1849 
1850 			if (!strcasecmp(opt_string, "allow_discards"))
1851 				ti->num_discard_bios = 1;
1852 
1853 			else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1854 				set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1855 
1856 			else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1857 				set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1858 
1859 			else {
1860 				ti->error = "Invalid feature arguments";
1861 				goto bad;
1862 			}
1863 		}
1864 	}
1865 
1866 	ret = -ENOMEM;
1867 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1868 	if (!cc->io_queue) {
1869 		ti->error = "Couldn't create kcryptd io queue";
1870 		goto bad;
1871 	}
1872 
1873 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1874 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1875 	else
1876 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1877 						  num_online_cpus());
1878 	if (!cc->crypt_queue) {
1879 		ti->error = "Couldn't create kcryptd queue";
1880 		goto bad;
1881 	}
1882 
1883 	init_waitqueue_head(&cc->write_thread_wait);
1884 	cc->write_tree = RB_ROOT;
1885 
1886 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1887 	if (IS_ERR(cc->write_thread)) {
1888 		ret = PTR_ERR(cc->write_thread);
1889 		cc->write_thread = NULL;
1890 		ti->error = "Couldn't spawn write thread";
1891 		goto bad;
1892 	}
1893 	wake_up_process(cc->write_thread);
1894 
1895 	ti->num_flush_bios = 1;
1896 	ti->discard_zeroes_data_unsupported = true;
1897 
1898 	return 0;
1899 
1900 bad:
1901 	crypt_dtr(ti);
1902 	return ret;
1903 }
1904 
1905 static int crypt_map(struct dm_target *ti, struct bio *bio)
1906 {
1907 	struct dm_crypt_io *io;
1908 	struct crypt_config *cc = ti->private;
1909 
1910 	/*
1911 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1912 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1913 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1914 	 */
1915 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1916 		bio->bi_bdev = cc->dev->bdev;
1917 		if (bio_sectors(bio))
1918 			bio->bi_iter.bi_sector = cc->start +
1919 				dm_target_offset(ti, bio->bi_iter.bi_sector);
1920 		return DM_MAPIO_REMAPPED;
1921 	}
1922 
1923 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1924 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1925 	io->ctx.req = (struct ablkcipher_request *)(io + 1);
1926 
1927 	if (bio_data_dir(io->base_bio) == READ) {
1928 		if (kcryptd_io_read(io, GFP_NOWAIT))
1929 			kcryptd_queue_read(io);
1930 	} else
1931 		kcryptd_queue_crypt(io);
1932 
1933 	return DM_MAPIO_SUBMITTED;
1934 }
1935 
1936 static void crypt_status(struct dm_target *ti, status_type_t type,
1937 			 unsigned status_flags, char *result, unsigned maxlen)
1938 {
1939 	struct crypt_config *cc = ti->private;
1940 	unsigned i, sz = 0;
1941 	int num_feature_args = 0;
1942 
1943 	switch (type) {
1944 	case STATUSTYPE_INFO:
1945 		result[0] = '\0';
1946 		break;
1947 
1948 	case STATUSTYPE_TABLE:
1949 		DMEMIT("%s ", cc->cipher_string);
1950 
1951 		if (cc->key_size > 0)
1952 			for (i = 0; i < cc->key_size; i++)
1953 				DMEMIT("%02x", cc->key[i]);
1954 		else
1955 			DMEMIT("-");
1956 
1957 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1958 				cc->dev->name, (unsigned long long)cc->start);
1959 
1960 		num_feature_args += !!ti->num_discard_bios;
1961 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1962 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1963 		if (num_feature_args) {
1964 			DMEMIT(" %d", num_feature_args);
1965 			if (ti->num_discard_bios)
1966 				DMEMIT(" allow_discards");
1967 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1968 				DMEMIT(" same_cpu_crypt");
1969 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1970 				DMEMIT(" submit_from_crypt_cpus");
1971 		}
1972 
1973 		break;
1974 	}
1975 }
1976 
1977 static void crypt_postsuspend(struct dm_target *ti)
1978 {
1979 	struct crypt_config *cc = ti->private;
1980 
1981 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1982 }
1983 
1984 static int crypt_preresume(struct dm_target *ti)
1985 {
1986 	struct crypt_config *cc = ti->private;
1987 
1988 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1989 		DMERR("aborting resume - crypt key is not set.");
1990 		return -EAGAIN;
1991 	}
1992 
1993 	return 0;
1994 }
1995 
1996 static void crypt_resume(struct dm_target *ti)
1997 {
1998 	struct crypt_config *cc = ti->private;
1999 
2000 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2001 }
2002 
2003 /* Message interface
2004  *	key set <key>
2005  *	key wipe
2006  */
2007 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2008 {
2009 	struct crypt_config *cc = ti->private;
2010 	int ret = -EINVAL;
2011 
2012 	if (argc < 2)
2013 		goto error;
2014 
2015 	if (!strcasecmp(argv[0], "key")) {
2016 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2017 			DMWARN("not suspended during key manipulation.");
2018 			return -EINVAL;
2019 		}
2020 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
2021 			ret = crypt_set_key(cc, argv[2]);
2022 			if (ret)
2023 				return ret;
2024 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2025 				ret = cc->iv_gen_ops->init(cc);
2026 			return ret;
2027 		}
2028 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2029 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2030 				ret = cc->iv_gen_ops->wipe(cc);
2031 				if (ret)
2032 					return ret;
2033 			}
2034 			return crypt_wipe_key(cc);
2035 		}
2036 	}
2037 
2038 error:
2039 	DMWARN("unrecognised message received.");
2040 	return -EINVAL;
2041 }
2042 
2043 static int crypt_iterate_devices(struct dm_target *ti,
2044 				 iterate_devices_callout_fn fn, void *data)
2045 {
2046 	struct crypt_config *cc = ti->private;
2047 
2048 	return fn(ti, cc->dev, cc->start, ti->len, data);
2049 }
2050 
2051 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2052 {
2053 	/*
2054 	 * Unfortunate constraint that is required to avoid the potential
2055 	 * for exceeding underlying device's max_segments limits -- due to
2056 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2057 	 * bio that are not as physically contiguous as the original bio.
2058 	 */
2059 	limits->max_segment_size = PAGE_SIZE;
2060 }
2061 
2062 static struct target_type crypt_target = {
2063 	.name   = "crypt",
2064 	.version = {1, 14, 1},
2065 	.module = THIS_MODULE,
2066 	.ctr    = crypt_ctr,
2067 	.dtr    = crypt_dtr,
2068 	.map    = crypt_map,
2069 	.status = crypt_status,
2070 	.postsuspend = crypt_postsuspend,
2071 	.preresume = crypt_preresume,
2072 	.resume = crypt_resume,
2073 	.message = crypt_message,
2074 	.iterate_devices = crypt_iterate_devices,
2075 	.io_hints = crypt_io_hints,
2076 };
2077 
2078 static int __init dm_crypt_init(void)
2079 {
2080 	int r;
2081 
2082 	r = dm_register_target(&crypt_target);
2083 	if (r < 0)
2084 		DMERR("register failed %d", r);
2085 
2086 	return r;
2087 }
2088 
2089 static void __exit dm_crypt_exit(void)
2090 {
2091 	dm_unregister_target(&crypt_target);
2092 }
2093 
2094 module_init(dm_crypt_init);
2095 module_exit(dm_crypt_exit);
2096 
2097 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2098 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2099 MODULE_LICENSE("GPL");
2100