xref: /openbmc/linux/drivers/md/dm-crypt.c (revision b4bc93bd76d4da32600795cd323c971f00a2e788)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-integrity.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/crypto.h>
22 #include <linux/workqueue.h>
23 #include <linux/kthread.h>
24 #include <linux/backing-dev.h>
25 #include <linux/atomic.h>
26 #include <linux/scatterlist.h>
27 #include <linux/rbtree.h>
28 #include <linux/ctype.h>
29 #include <asm/page.h>
30 #include <asm/unaligned.h>
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/algapi.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
38 #include <linux/key-type.h>
39 #include <keys/user-type.h>
40 #include <keys/encrypted-type.h>
41 #include <keys/trusted-type.h>
42 
43 #include <linux/device-mapper.h>
44 
45 #include "dm-audit.h"
46 
47 #define DM_MSG_PREFIX "crypt"
48 
49 /*
50  * context holding the current state of a multi-part conversion
51  */
52 struct convert_context {
53 	struct completion restart;
54 	struct bio *bio_in;
55 	struct bio *bio_out;
56 	struct bvec_iter iter_in;
57 	struct bvec_iter iter_out;
58 	u64 cc_sector;
59 	atomic_t cc_pending;
60 	union {
61 		struct skcipher_request *req;
62 		struct aead_request *req_aead;
63 	} r;
64 
65 };
66 
67 /*
68  * per bio private data
69  */
70 struct dm_crypt_io {
71 	struct crypt_config *cc;
72 	struct bio *base_bio;
73 	u8 *integrity_metadata;
74 	bool integrity_metadata_from_pool;
75 	struct work_struct work;
76 	struct tasklet_struct tasklet;
77 
78 	struct convert_context ctx;
79 
80 	atomic_t io_pending;
81 	blk_status_t error;
82 	sector_t sector;
83 
84 	struct rb_node rb_node;
85 } CRYPTO_MINALIGN_ATTR;
86 
87 struct dm_crypt_request {
88 	struct convert_context *ctx;
89 	struct scatterlist sg_in[4];
90 	struct scatterlist sg_out[4];
91 	u64 iv_sector;
92 };
93 
94 struct crypt_config;
95 
96 struct crypt_iv_operations {
97 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
98 		   const char *opts);
99 	void (*dtr)(struct crypt_config *cc);
100 	int (*init)(struct crypt_config *cc);
101 	int (*wipe)(struct crypt_config *cc);
102 	int (*generator)(struct crypt_config *cc, u8 *iv,
103 			 struct dm_crypt_request *dmreq);
104 	int (*post)(struct crypt_config *cc, u8 *iv,
105 		    struct dm_crypt_request *dmreq);
106 };
107 
108 struct iv_benbi_private {
109 	int shift;
110 };
111 
112 #define LMK_SEED_SIZE 64 /* hash + 0 */
113 struct iv_lmk_private {
114 	struct crypto_shash *hash_tfm;
115 	u8 *seed;
116 };
117 
118 #define TCW_WHITENING_SIZE 16
119 struct iv_tcw_private {
120 	struct crypto_shash *crc32_tfm;
121 	u8 *iv_seed;
122 	u8 *whitening;
123 };
124 
125 #define ELEPHANT_MAX_KEY_SIZE 32
126 struct iv_elephant_private {
127 	struct crypto_skcipher *tfm;
128 };
129 
130 /*
131  * Crypt: maps a linear range of a block device
132  * and encrypts / decrypts at the same time.
133  */
134 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
135 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
136 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
137 	     DM_CRYPT_WRITE_INLINE };
138 
139 enum cipher_flags {
140 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
141 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
142 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
143 };
144 
145 /*
146  * The fields in here must be read only after initialization.
147  */
148 struct crypt_config {
149 	struct dm_dev *dev;
150 	sector_t start;
151 
152 	struct percpu_counter n_allocated_pages;
153 
154 	struct workqueue_struct *io_queue;
155 	struct workqueue_struct *crypt_queue;
156 
157 	spinlock_t write_thread_lock;
158 	struct task_struct *write_thread;
159 	struct rb_root write_tree;
160 
161 	char *cipher_string;
162 	char *cipher_auth;
163 	char *key_string;
164 
165 	const struct crypt_iv_operations *iv_gen_ops;
166 	union {
167 		struct iv_benbi_private benbi;
168 		struct iv_lmk_private lmk;
169 		struct iv_tcw_private tcw;
170 		struct iv_elephant_private elephant;
171 	} iv_gen_private;
172 	u64 iv_offset;
173 	unsigned int iv_size;
174 	unsigned short int sector_size;
175 	unsigned char sector_shift;
176 
177 	union {
178 		struct crypto_skcipher **tfms;
179 		struct crypto_aead **tfms_aead;
180 	} cipher_tfm;
181 	unsigned tfms_count;
182 	unsigned long cipher_flags;
183 
184 	/*
185 	 * Layout of each crypto request:
186 	 *
187 	 *   struct skcipher_request
188 	 *      context
189 	 *      padding
190 	 *   struct dm_crypt_request
191 	 *      padding
192 	 *   IV
193 	 *
194 	 * The padding is added so that dm_crypt_request and the IV are
195 	 * correctly aligned.
196 	 */
197 	unsigned int dmreq_start;
198 
199 	unsigned int per_bio_data_size;
200 
201 	unsigned long flags;
202 	unsigned int key_size;
203 	unsigned int key_parts;      /* independent parts in key buffer */
204 	unsigned int key_extra_size; /* additional keys length */
205 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
206 
207 	unsigned int integrity_tag_size;
208 	unsigned int integrity_iv_size;
209 	unsigned int on_disk_tag_size;
210 
211 	/*
212 	 * pool for per bio private data, crypto requests,
213 	 * encryption requeusts/buffer pages and integrity tags
214 	 */
215 	unsigned tag_pool_max_sectors;
216 	mempool_t tag_pool;
217 	mempool_t req_pool;
218 	mempool_t page_pool;
219 
220 	struct bio_set bs;
221 	struct mutex bio_alloc_lock;
222 
223 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
224 	u8 key[];
225 };
226 
227 #define MIN_IOS		64
228 #define MAX_TAG_SIZE	480
229 #define POOL_ENTRY_SIZE	512
230 
231 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
232 static unsigned dm_crypt_clients_n = 0;
233 static volatile unsigned long dm_crypt_pages_per_client;
234 #define DM_CRYPT_MEMORY_PERCENT			2
235 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
236 
237 static void crypt_endio(struct bio *clone);
238 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
239 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
240 					     struct scatterlist *sg);
241 
242 static bool crypt_integrity_aead(struct crypt_config *cc);
243 
244 /*
245  * Use this to access cipher attributes that are independent of the key.
246  */
247 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
248 {
249 	return cc->cipher_tfm.tfms[0];
250 }
251 
252 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
253 {
254 	return cc->cipher_tfm.tfms_aead[0];
255 }
256 
257 /*
258  * Different IV generation algorithms:
259  *
260  * plain: the initial vector is the 32-bit little-endian version of the sector
261  *        number, padded with zeros if necessary.
262  *
263  * plain64: the initial vector is the 64-bit little-endian version of the sector
264  *        number, padded with zeros if necessary.
265  *
266  * plain64be: the initial vector is the 64-bit big-endian version of the sector
267  *        number, padded with zeros if necessary.
268  *
269  * essiv: "encrypted sector|salt initial vector", the sector number is
270  *        encrypted with the bulk cipher using a salt as key. The salt
271  *        should be derived from the bulk cipher's key via hashing.
272  *
273  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
274  *        (needed for LRW-32-AES and possible other narrow block modes)
275  *
276  * null: the initial vector is always zero.  Provides compatibility with
277  *       obsolete loop_fish2 devices.  Do not use for new devices.
278  *
279  * lmk:  Compatible implementation of the block chaining mode used
280  *       by the Loop-AES block device encryption system
281  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
282  *       It operates on full 512 byte sectors and uses CBC
283  *       with an IV derived from the sector number, the data and
284  *       optionally extra IV seed.
285  *       This means that after decryption the first block
286  *       of sector must be tweaked according to decrypted data.
287  *       Loop-AES can use three encryption schemes:
288  *         version 1: is plain aes-cbc mode
289  *         version 2: uses 64 multikey scheme with lmk IV generator
290  *         version 3: the same as version 2 with additional IV seed
291  *                   (it uses 65 keys, last key is used as IV seed)
292  *
293  * tcw:  Compatible implementation of the block chaining mode used
294  *       by the TrueCrypt device encryption system (prior to version 4.1).
295  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
296  *       It operates on full 512 byte sectors and uses CBC
297  *       with an IV derived from initial key and the sector number.
298  *       In addition, whitening value is applied on every sector, whitening
299  *       is calculated from initial key, sector number and mixed using CRC32.
300  *       Note that this encryption scheme is vulnerable to watermarking attacks
301  *       and should be used for old compatible containers access only.
302  *
303  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
304  *        The IV is encrypted little-endian byte-offset (with the same key
305  *        and cipher as the volume).
306  *
307  * elephant: The extended version of eboiv with additional Elephant diffuser
308  *           used with Bitlocker CBC mode.
309  *           This mode was used in older Windows systems
310  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
311  */
312 
313 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
314 			      struct dm_crypt_request *dmreq)
315 {
316 	memset(iv, 0, cc->iv_size);
317 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
318 
319 	return 0;
320 }
321 
322 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
323 				struct dm_crypt_request *dmreq)
324 {
325 	memset(iv, 0, cc->iv_size);
326 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
327 
328 	return 0;
329 }
330 
331 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
332 				  struct dm_crypt_request *dmreq)
333 {
334 	memset(iv, 0, cc->iv_size);
335 	/* iv_size is at least of size u64; usually it is 16 bytes */
336 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
337 
338 	return 0;
339 }
340 
341 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
342 			      struct dm_crypt_request *dmreq)
343 {
344 	/*
345 	 * ESSIV encryption of the IV is now handled by the crypto API,
346 	 * so just pass the plain sector number here.
347 	 */
348 	memset(iv, 0, cc->iv_size);
349 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
350 
351 	return 0;
352 }
353 
354 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
355 			      const char *opts)
356 {
357 	unsigned bs;
358 	int log;
359 
360 	if (crypt_integrity_aead(cc))
361 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
362 	else
363 		bs = crypto_skcipher_blocksize(any_tfm(cc));
364 	log = ilog2(bs);
365 
366 	/* we need to calculate how far we must shift the sector count
367 	 * to get the cipher block count, we use this shift in _gen */
368 
369 	if (1 << log != bs) {
370 		ti->error = "cypher blocksize is not a power of 2";
371 		return -EINVAL;
372 	}
373 
374 	if (log > 9) {
375 		ti->error = "cypher blocksize is > 512";
376 		return -EINVAL;
377 	}
378 
379 	cc->iv_gen_private.benbi.shift = 9 - log;
380 
381 	return 0;
382 }
383 
384 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
385 {
386 }
387 
388 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
389 			      struct dm_crypt_request *dmreq)
390 {
391 	__be64 val;
392 
393 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
394 
395 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
396 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
397 
398 	return 0;
399 }
400 
401 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
402 			     struct dm_crypt_request *dmreq)
403 {
404 	memset(iv, 0, cc->iv_size);
405 
406 	return 0;
407 }
408 
409 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
410 {
411 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
412 
413 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
414 		crypto_free_shash(lmk->hash_tfm);
415 	lmk->hash_tfm = NULL;
416 
417 	kfree_sensitive(lmk->seed);
418 	lmk->seed = NULL;
419 }
420 
421 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
422 			    const char *opts)
423 {
424 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
425 
426 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
427 		ti->error = "Unsupported sector size for LMK";
428 		return -EINVAL;
429 	}
430 
431 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
432 					   CRYPTO_ALG_ALLOCATES_MEMORY);
433 	if (IS_ERR(lmk->hash_tfm)) {
434 		ti->error = "Error initializing LMK hash";
435 		return PTR_ERR(lmk->hash_tfm);
436 	}
437 
438 	/* No seed in LMK version 2 */
439 	if (cc->key_parts == cc->tfms_count) {
440 		lmk->seed = NULL;
441 		return 0;
442 	}
443 
444 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
445 	if (!lmk->seed) {
446 		crypt_iv_lmk_dtr(cc);
447 		ti->error = "Error kmallocing seed storage in LMK";
448 		return -ENOMEM;
449 	}
450 
451 	return 0;
452 }
453 
454 static int crypt_iv_lmk_init(struct crypt_config *cc)
455 {
456 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
457 	int subkey_size = cc->key_size / cc->key_parts;
458 
459 	/* LMK seed is on the position of LMK_KEYS + 1 key */
460 	if (lmk->seed)
461 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
462 		       crypto_shash_digestsize(lmk->hash_tfm));
463 
464 	return 0;
465 }
466 
467 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
468 {
469 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
470 
471 	if (lmk->seed)
472 		memset(lmk->seed, 0, LMK_SEED_SIZE);
473 
474 	return 0;
475 }
476 
477 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
478 			    struct dm_crypt_request *dmreq,
479 			    u8 *data)
480 {
481 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
482 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
483 	struct md5_state md5state;
484 	__le32 buf[4];
485 	int i, r;
486 
487 	desc->tfm = lmk->hash_tfm;
488 
489 	r = crypto_shash_init(desc);
490 	if (r)
491 		return r;
492 
493 	if (lmk->seed) {
494 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
495 		if (r)
496 			return r;
497 	}
498 
499 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
500 	r = crypto_shash_update(desc, data + 16, 16 * 31);
501 	if (r)
502 		return r;
503 
504 	/* Sector is cropped to 56 bits here */
505 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
506 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
507 	buf[2] = cpu_to_le32(4024);
508 	buf[3] = 0;
509 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
510 	if (r)
511 		return r;
512 
513 	/* No MD5 padding here */
514 	r = crypto_shash_export(desc, &md5state);
515 	if (r)
516 		return r;
517 
518 	for (i = 0; i < MD5_HASH_WORDS; i++)
519 		__cpu_to_le32s(&md5state.hash[i]);
520 	memcpy(iv, &md5state.hash, cc->iv_size);
521 
522 	return 0;
523 }
524 
525 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
526 			    struct dm_crypt_request *dmreq)
527 {
528 	struct scatterlist *sg;
529 	u8 *src;
530 	int r = 0;
531 
532 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
533 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
534 		src = kmap_atomic(sg_page(sg));
535 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
536 		kunmap_atomic(src);
537 	} else
538 		memset(iv, 0, cc->iv_size);
539 
540 	return r;
541 }
542 
543 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
544 			     struct dm_crypt_request *dmreq)
545 {
546 	struct scatterlist *sg;
547 	u8 *dst;
548 	int r;
549 
550 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
551 		return 0;
552 
553 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
554 	dst = kmap_atomic(sg_page(sg));
555 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
556 
557 	/* Tweak the first block of plaintext sector */
558 	if (!r)
559 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
560 
561 	kunmap_atomic(dst);
562 	return r;
563 }
564 
565 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
566 {
567 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
568 
569 	kfree_sensitive(tcw->iv_seed);
570 	tcw->iv_seed = NULL;
571 	kfree_sensitive(tcw->whitening);
572 	tcw->whitening = NULL;
573 
574 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
575 		crypto_free_shash(tcw->crc32_tfm);
576 	tcw->crc32_tfm = NULL;
577 }
578 
579 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
580 			    const char *opts)
581 {
582 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
583 
584 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
585 		ti->error = "Unsupported sector size for TCW";
586 		return -EINVAL;
587 	}
588 
589 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
590 		ti->error = "Wrong key size for TCW";
591 		return -EINVAL;
592 	}
593 
594 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
595 					    CRYPTO_ALG_ALLOCATES_MEMORY);
596 	if (IS_ERR(tcw->crc32_tfm)) {
597 		ti->error = "Error initializing CRC32 in TCW";
598 		return PTR_ERR(tcw->crc32_tfm);
599 	}
600 
601 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
602 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
603 	if (!tcw->iv_seed || !tcw->whitening) {
604 		crypt_iv_tcw_dtr(cc);
605 		ti->error = "Error allocating seed storage in TCW";
606 		return -ENOMEM;
607 	}
608 
609 	return 0;
610 }
611 
612 static int crypt_iv_tcw_init(struct crypt_config *cc)
613 {
614 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
615 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
616 
617 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
618 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
619 	       TCW_WHITENING_SIZE);
620 
621 	return 0;
622 }
623 
624 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
625 {
626 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
627 
628 	memset(tcw->iv_seed, 0, cc->iv_size);
629 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
630 
631 	return 0;
632 }
633 
634 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
635 				  struct dm_crypt_request *dmreq,
636 				  u8 *data)
637 {
638 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
639 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
640 	u8 buf[TCW_WHITENING_SIZE];
641 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
642 	int i, r;
643 
644 	/* xor whitening with sector number */
645 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
646 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
647 
648 	/* calculate crc32 for every 32bit part and xor it */
649 	desc->tfm = tcw->crc32_tfm;
650 	for (i = 0; i < 4; i++) {
651 		r = crypto_shash_init(desc);
652 		if (r)
653 			goto out;
654 		r = crypto_shash_update(desc, &buf[i * 4], 4);
655 		if (r)
656 			goto out;
657 		r = crypto_shash_final(desc, &buf[i * 4]);
658 		if (r)
659 			goto out;
660 	}
661 	crypto_xor(&buf[0], &buf[12], 4);
662 	crypto_xor(&buf[4], &buf[8], 4);
663 
664 	/* apply whitening (8 bytes) to whole sector */
665 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
666 		crypto_xor(data + i * 8, buf, 8);
667 out:
668 	memzero_explicit(buf, sizeof(buf));
669 	return r;
670 }
671 
672 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
673 			    struct dm_crypt_request *dmreq)
674 {
675 	struct scatterlist *sg;
676 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
677 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
678 	u8 *src;
679 	int r = 0;
680 
681 	/* Remove whitening from ciphertext */
682 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
683 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
684 		src = kmap_atomic(sg_page(sg));
685 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
686 		kunmap_atomic(src);
687 	}
688 
689 	/* Calculate IV */
690 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
691 	if (cc->iv_size > 8)
692 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
693 			       cc->iv_size - 8);
694 
695 	return r;
696 }
697 
698 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
699 			     struct dm_crypt_request *dmreq)
700 {
701 	struct scatterlist *sg;
702 	u8 *dst;
703 	int r;
704 
705 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
706 		return 0;
707 
708 	/* Apply whitening on ciphertext */
709 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
710 	dst = kmap_atomic(sg_page(sg));
711 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
712 	kunmap_atomic(dst);
713 
714 	return r;
715 }
716 
717 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
718 				struct dm_crypt_request *dmreq)
719 {
720 	/* Used only for writes, there must be an additional space to store IV */
721 	get_random_bytes(iv, cc->iv_size);
722 	return 0;
723 }
724 
725 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
726 			    const char *opts)
727 {
728 	if (crypt_integrity_aead(cc)) {
729 		ti->error = "AEAD transforms not supported for EBOIV";
730 		return -EINVAL;
731 	}
732 
733 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
734 		ti->error = "Block size of EBOIV cipher does "
735 			    "not match IV size of block cipher";
736 		return -EINVAL;
737 	}
738 
739 	return 0;
740 }
741 
742 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
743 			    struct dm_crypt_request *dmreq)
744 {
745 	u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
746 	struct skcipher_request *req;
747 	struct scatterlist src, dst;
748 	DECLARE_CRYPTO_WAIT(wait);
749 	int err;
750 
751 	req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
752 	if (!req)
753 		return -ENOMEM;
754 
755 	memset(buf, 0, cc->iv_size);
756 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
757 
758 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
759 	sg_init_one(&dst, iv, cc->iv_size);
760 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
761 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
762 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
763 	skcipher_request_free(req);
764 
765 	return err;
766 }
767 
768 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
769 {
770 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
771 
772 	crypto_free_skcipher(elephant->tfm);
773 	elephant->tfm = NULL;
774 }
775 
776 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
777 			    const char *opts)
778 {
779 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
780 	int r;
781 
782 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
783 					      CRYPTO_ALG_ALLOCATES_MEMORY);
784 	if (IS_ERR(elephant->tfm)) {
785 		r = PTR_ERR(elephant->tfm);
786 		elephant->tfm = NULL;
787 		return r;
788 	}
789 
790 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
791 	if (r)
792 		crypt_iv_elephant_dtr(cc);
793 	return r;
794 }
795 
796 static void diffuser_disk_to_cpu(u32 *d, size_t n)
797 {
798 #ifndef __LITTLE_ENDIAN
799 	int i;
800 
801 	for (i = 0; i < n; i++)
802 		d[i] = le32_to_cpu((__le32)d[i]);
803 #endif
804 }
805 
806 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
807 {
808 #ifndef __LITTLE_ENDIAN
809 	int i;
810 
811 	for (i = 0; i < n; i++)
812 		d[i] = cpu_to_le32((u32)d[i]);
813 #endif
814 }
815 
816 static void diffuser_a_decrypt(u32 *d, size_t n)
817 {
818 	int i, i1, i2, i3;
819 
820 	for (i = 0; i < 5; i++) {
821 		i1 = 0;
822 		i2 = n - 2;
823 		i3 = n - 5;
824 
825 		while (i1 < (n - 1)) {
826 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
827 			i1++; i2++; i3++;
828 
829 			if (i3 >= n)
830 				i3 -= n;
831 
832 			d[i1] += d[i2] ^ d[i3];
833 			i1++; i2++; i3++;
834 
835 			if (i2 >= n)
836 				i2 -= n;
837 
838 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
839 			i1++; i2++; i3++;
840 
841 			d[i1] += d[i2] ^ d[i3];
842 			i1++; i2++; i3++;
843 		}
844 	}
845 }
846 
847 static void diffuser_a_encrypt(u32 *d, size_t n)
848 {
849 	int i, i1, i2, i3;
850 
851 	for (i = 0; i < 5; i++) {
852 		i1 = n - 1;
853 		i2 = n - 2 - 1;
854 		i3 = n - 5 - 1;
855 
856 		while (i1 > 0) {
857 			d[i1] -= d[i2] ^ d[i3];
858 			i1--; i2--; i3--;
859 
860 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
861 			i1--; i2--; i3--;
862 
863 			if (i2 < 0)
864 				i2 += n;
865 
866 			d[i1] -= d[i2] ^ d[i3];
867 			i1--; i2--; i3--;
868 
869 			if (i3 < 0)
870 				i3 += n;
871 
872 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
873 			i1--; i2--; i3--;
874 		}
875 	}
876 }
877 
878 static void diffuser_b_decrypt(u32 *d, size_t n)
879 {
880 	int i, i1, i2, i3;
881 
882 	for (i = 0; i < 3; i++) {
883 		i1 = 0;
884 		i2 = 2;
885 		i3 = 5;
886 
887 		while (i1 < (n - 1)) {
888 			d[i1] += d[i2] ^ d[i3];
889 			i1++; i2++; i3++;
890 
891 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
892 			i1++; i2++; i3++;
893 
894 			if (i2 >= n)
895 				i2 -= n;
896 
897 			d[i1] += d[i2] ^ d[i3];
898 			i1++; i2++; i3++;
899 
900 			if (i3 >= n)
901 				i3 -= n;
902 
903 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
904 			i1++; i2++; i3++;
905 		}
906 	}
907 }
908 
909 static void diffuser_b_encrypt(u32 *d, size_t n)
910 {
911 	int i, i1, i2, i3;
912 
913 	for (i = 0; i < 3; i++) {
914 		i1 = n - 1;
915 		i2 = 2 - 1;
916 		i3 = 5 - 1;
917 
918 		while (i1 > 0) {
919 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
920 			i1--; i2--; i3--;
921 
922 			if (i3 < 0)
923 				i3 += n;
924 
925 			d[i1] -= d[i2] ^ d[i3];
926 			i1--; i2--; i3--;
927 
928 			if (i2 < 0)
929 				i2 += n;
930 
931 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
932 			i1--; i2--; i3--;
933 
934 			d[i1] -= d[i2] ^ d[i3];
935 			i1--; i2--; i3--;
936 		}
937 	}
938 }
939 
940 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
941 {
942 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
943 	u8 *es, *ks, *data, *data2, *data_offset;
944 	struct skcipher_request *req;
945 	struct scatterlist *sg, *sg2, src, dst;
946 	DECLARE_CRYPTO_WAIT(wait);
947 	int i, r;
948 
949 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
950 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
951 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
952 
953 	if (!req || !es || !ks) {
954 		r = -ENOMEM;
955 		goto out;
956 	}
957 
958 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
959 
960 	/* E(Ks, e(s)) */
961 	sg_init_one(&src, es, 16);
962 	sg_init_one(&dst, ks, 16);
963 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
964 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
965 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
966 	if (r)
967 		goto out;
968 
969 	/* E(Ks, e'(s)) */
970 	es[15] = 0x80;
971 	sg_init_one(&dst, &ks[16], 16);
972 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
973 	if (r)
974 		goto out;
975 
976 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
977 	data = kmap_atomic(sg_page(sg));
978 	data_offset = data + sg->offset;
979 
980 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
981 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
982 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
983 		data2 = kmap_atomic(sg_page(sg2));
984 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
985 		kunmap_atomic(data2);
986 	}
987 
988 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
989 		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
990 		diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
991 		diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
992 		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
993 	}
994 
995 	for (i = 0; i < (cc->sector_size / 32); i++)
996 		crypto_xor(data_offset + i * 32, ks, 32);
997 
998 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
999 		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
1000 		diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
1001 		diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
1002 		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
1003 	}
1004 
1005 	kunmap_atomic(data);
1006 out:
1007 	kfree_sensitive(ks);
1008 	kfree_sensitive(es);
1009 	skcipher_request_free(req);
1010 	return r;
1011 }
1012 
1013 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1014 			    struct dm_crypt_request *dmreq)
1015 {
1016 	int r;
1017 
1018 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1019 		r = crypt_iv_elephant(cc, dmreq);
1020 		if (r)
1021 			return r;
1022 	}
1023 
1024 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1025 }
1026 
1027 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1028 				  struct dm_crypt_request *dmreq)
1029 {
1030 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1031 		return crypt_iv_elephant(cc, dmreq);
1032 
1033 	return 0;
1034 }
1035 
1036 static int crypt_iv_elephant_init(struct crypt_config *cc)
1037 {
1038 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1039 	int key_offset = cc->key_size - cc->key_extra_size;
1040 
1041 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1042 }
1043 
1044 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1045 {
1046 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1047 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1048 
1049 	memset(key, 0, cc->key_extra_size);
1050 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1051 }
1052 
1053 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1054 	.generator = crypt_iv_plain_gen
1055 };
1056 
1057 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1058 	.generator = crypt_iv_plain64_gen
1059 };
1060 
1061 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1062 	.generator = crypt_iv_plain64be_gen
1063 };
1064 
1065 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1066 	.generator = crypt_iv_essiv_gen
1067 };
1068 
1069 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1070 	.ctr	   = crypt_iv_benbi_ctr,
1071 	.dtr	   = crypt_iv_benbi_dtr,
1072 	.generator = crypt_iv_benbi_gen
1073 };
1074 
1075 static const struct crypt_iv_operations crypt_iv_null_ops = {
1076 	.generator = crypt_iv_null_gen
1077 };
1078 
1079 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1080 	.ctr	   = crypt_iv_lmk_ctr,
1081 	.dtr	   = crypt_iv_lmk_dtr,
1082 	.init	   = crypt_iv_lmk_init,
1083 	.wipe	   = crypt_iv_lmk_wipe,
1084 	.generator = crypt_iv_lmk_gen,
1085 	.post	   = crypt_iv_lmk_post
1086 };
1087 
1088 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1089 	.ctr	   = crypt_iv_tcw_ctr,
1090 	.dtr	   = crypt_iv_tcw_dtr,
1091 	.init	   = crypt_iv_tcw_init,
1092 	.wipe	   = crypt_iv_tcw_wipe,
1093 	.generator = crypt_iv_tcw_gen,
1094 	.post	   = crypt_iv_tcw_post
1095 };
1096 
1097 static const struct crypt_iv_operations crypt_iv_random_ops = {
1098 	.generator = crypt_iv_random_gen
1099 };
1100 
1101 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1102 	.ctr	   = crypt_iv_eboiv_ctr,
1103 	.generator = crypt_iv_eboiv_gen
1104 };
1105 
1106 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1107 	.ctr	   = crypt_iv_elephant_ctr,
1108 	.dtr	   = crypt_iv_elephant_dtr,
1109 	.init	   = crypt_iv_elephant_init,
1110 	.wipe	   = crypt_iv_elephant_wipe,
1111 	.generator = crypt_iv_elephant_gen,
1112 	.post	   = crypt_iv_elephant_post
1113 };
1114 
1115 /*
1116  * Integrity extensions
1117  */
1118 static bool crypt_integrity_aead(struct crypt_config *cc)
1119 {
1120 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1121 }
1122 
1123 static bool crypt_integrity_hmac(struct crypt_config *cc)
1124 {
1125 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1126 }
1127 
1128 /* Get sg containing data */
1129 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1130 					     struct scatterlist *sg)
1131 {
1132 	if (unlikely(crypt_integrity_aead(cc)))
1133 		return &sg[2];
1134 
1135 	return sg;
1136 }
1137 
1138 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1139 {
1140 	struct bio_integrity_payload *bip;
1141 	unsigned int tag_len;
1142 	int ret;
1143 
1144 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1145 		return 0;
1146 
1147 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1148 	if (IS_ERR(bip))
1149 		return PTR_ERR(bip);
1150 
1151 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1152 
1153 	bip->bip_iter.bi_size = tag_len;
1154 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1155 
1156 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1157 				     tag_len, offset_in_page(io->integrity_metadata));
1158 	if (unlikely(ret != tag_len))
1159 		return -ENOMEM;
1160 
1161 	return 0;
1162 }
1163 
1164 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1165 {
1166 #ifdef CONFIG_BLK_DEV_INTEGRITY
1167 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1168 	struct mapped_device *md = dm_table_get_md(ti->table);
1169 
1170 	/* From now we require underlying device with our integrity profile */
1171 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1172 		ti->error = "Integrity profile not supported.";
1173 		return -EINVAL;
1174 	}
1175 
1176 	if (bi->tag_size != cc->on_disk_tag_size ||
1177 	    bi->tuple_size != cc->on_disk_tag_size) {
1178 		ti->error = "Integrity profile tag size mismatch.";
1179 		return -EINVAL;
1180 	}
1181 	if (1 << bi->interval_exp != cc->sector_size) {
1182 		ti->error = "Integrity profile sector size mismatch.";
1183 		return -EINVAL;
1184 	}
1185 
1186 	if (crypt_integrity_aead(cc)) {
1187 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1188 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1189 		       cc->integrity_tag_size, cc->integrity_iv_size);
1190 
1191 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1192 			ti->error = "Integrity AEAD auth tag size is not supported.";
1193 			return -EINVAL;
1194 		}
1195 	} else if (cc->integrity_iv_size)
1196 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1197 		       cc->integrity_iv_size);
1198 
1199 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1200 		ti->error = "Not enough space for integrity tag in the profile.";
1201 		return -EINVAL;
1202 	}
1203 
1204 	return 0;
1205 #else
1206 	ti->error = "Integrity profile not supported.";
1207 	return -EINVAL;
1208 #endif
1209 }
1210 
1211 static void crypt_convert_init(struct crypt_config *cc,
1212 			       struct convert_context *ctx,
1213 			       struct bio *bio_out, struct bio *bio_in,
1214 			       sector_t sector)
1215 {
1216 	ctx->bio_in = bio_in;
1217 	ctx->bio_out = bio_out;
1218 	if (bio_in)
1219 		ctx->iter_in = bio_in->bi_iter;
1220 	if (bio_out)
1221 		ctx->iter_out = bio_out->bi_iter;
1222 	ctx->cc_sector = sector + cc->iv_offset;
1223 	init_completion(&ctx->restart);
1224 }
1225 
1226 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1227 					     void *req)
1228 {
1229 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1230 }
1231 
1232 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1233 {
1234 	return (void *)((char *)dmreq - cc->dmreq_start);
1235 }
1236 
1237 static u8 *iv_of_dmreq(struct crypt_config *cc,
1238 		       struct dm_crypt_request *dmreq)
1239 {
1240 	if (crypt_integrity_aead(cc))
1241 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1242 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1243 	else
1244 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1245 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1246 }
1247 
1248 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1249 		       struct dm_crypt_request *dmreq)
1250 {
1251 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1252 }
1253 
1254 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1255 		       struct dm_crypt_request *dmreq)
1256 {
1257 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1258 	return (__le64 *) ptr;
1259 }
1260 
1261 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1262 		       struct dm_crypt_request *dmreq)
1263 {
1264 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1265 		  cc->iv_size + sizeof(uint64_t);
1266 	return (unsigned int*)ptr;
1267 }
1268 
1269 static void *tag_from_dmreq(struct crypt_config *cc,
1270 				struct dm_crypt_request *dmreq)
1271 {
1272 	struct convert_context *ctx = dmreq->ctx;
1273 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1274 
1275 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1276 		cc->on_disk_tag_size];
1277 }
1278 
1279 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1280 			       struct dm_crypt_request *dmreq)
1281 {
1282 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1283 }
1284 
1285 static int crypt_convert_block_aead(struct crypt_config *cc,
1286 				     struct convert_context *ctx,
1287 				     struct aead_request *req,
1288 				     unsigned int tag_offset)
1289 {
1290 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1291 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1292 	struct dm_crypt_request *dmreq;
1293 	u8 *iv, *org_iv, *tag_iv, *tag;
1294 	__le64 *sector;
1295 	int r = 0;
1296 
1297 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1298 
1299 	/* Reject unexpected unaligned bio. */
1300 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1301 		return -EIO;
1302 
1303 	dmreq = dmreq_of_req(cc, req);
1304 	dmreq->iv_sector = ctx->cc_sector;
1305 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1306 		dmreq->iv_sector >>= cc->sector_shift;
1307 	dmreq->ctx = ctx;
1308 
1309 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1310 
1311 	sector = org_sector_of_dmreq(cc, dmreq);
1312 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1313 
1314 	iv = iv_of_dmreq(cc, dmreq);
1315 	org_iv = org_iv_of_dmreq(cc, dmreq);
1316 	tag = tag_from_dmreq(cc, dmreq);
1317 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1318 
1319 	/* AEAD request:
1320 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1321 	 *  | (authenticated) | (auth+encryption) |              |
1322 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1323 	 */
1324 	sg_init_table(dmreq->sg_in, 4);
1325 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1326 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1327 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1328 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1329 
1330 	sg_init_table(dmreq->sg_out, 4);
1331 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1332 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1333 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1334 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1335 
1336 	if (cc->iv_gen_ops) {
1337 		/* For READs use IV stored in integrity metadata */
1338 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1339 			memcpy(org_iv, tag_iv, cc->iv_size);
1340 		} else {
1341 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1342 			if (r < 0)
1343 				return r;
1344 			/* Store generated IV in integrity metadata */
1345 			if (cc->integrity_iv_size)
1346 				memcpy(tag_iv, org_iv, cc->iv_size);
1347 		}
1348 		/* Working copy of IV, to be modified in crypto API */
1349 		memcpy(iv, org_iv, cc->iv_size);
1350 	}
1351 
1352 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1353 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1354 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1355 				       cc->sector_size, iv);
1356 		r = crypto_aead_encrypt(req);
1357 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1358 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1359 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1360 	} else {
1361 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1362 				       cc->sector_size + cc->integrity_tag_size, iv);
1363 		r = crypto_aead_decrypt(req);
1364 	}
1365 
1366 	if (r == -EBADMSG) {
1367 		sector_t s = le64_to_cpu(*sector);
1368 
1369 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1370 			    ctx->bio_in->bi_bdev, s);
1371 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1372 				 ctx->bio_in, s, 0);
1373 	}
1374 
1375 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1376 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1377 
1378 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1379 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1380 
1381 	return r;
1382 }
1383 
1384 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1385 					struct convert_context *ctx,
1386 					struct skcipher_request *req,
1387 					unsigned int tag_offset)
1388 {
1389 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1390 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1391 	struct scatterlist *sg_in, *sg_out;
1392 	struct dm_crypt_request *dmreq;
1393 	u8 *iv, *org_iv, *tag_iv;
1394 	__le64 *sector;
1395 	int r = 0;
1396 
1397 	/* Reject unexpected unaligned bio. */
1398 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1399 		return -EIO;
1400 
1401 	dmreq = dmreq_of_req(cc, req);
1402 	dmreq->iv_sector = ctx->cc_sector;
1403 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1404 		dmreq->iv_sector >>= cc->sector_shift;
1405 	dmreq->ctx = ctx;
1406 
1407 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1408 
1409 	iv = iv_of_dmreq(cc, dmreq);
1410 	org_iv = org_iv_of_dmreq(cc, dmreq);
1411 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1412 
1413 	sector = org_sector_of_dmreq(cc, dmreq);
1414 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1415 
1416 	/* For skcipher we use only the first sg item */
1417 	sg_in  = &dmreq->sg_in[0];
1418 	sg_out = &dmreq->sg_out[0];
1419 
1420 	sg_init_table(sg_in, 1);
1421 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1422 
1423 	sg_init_table(sg_out, 1);
1424 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1425 
1426 	if (cc->iv_gen_ops) {
1427 		/* For READs use IV stored in integrity metadata */
1428 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1429 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1430 		} else {
1431 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1432 			if (r < 0)
1433 				return r;
1434 			/* Data can be already preprocessed in generator */
1435 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1436 				sg_in = sg_out;
1437 			/* Store generated IV in integrity metadata */
1438 			if (cc->integrity_iv_size)
1439 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1440 		}
1441 		/* Working copy of IV, to be modified in crypto API */
1442 		memcpy(iv, org_iv, cc->iv_size);
1443 	}
1444 
1445 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1446 
1447 	if (bio_data_dir(ctx->bio_in) == WRITE)
1448 		r = crypto_skcipher_encrypt(req);
1449 	else
1450 		r = crypto_skcipher_decrypt(req);
1451 
1452 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1453 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1454 
1455 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1456 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1457 
1458 	return r;
1459 }
1460 
1461 static void kcryptd_async_done(struct crypto_async_request *async_req,
1462 			       int error);
1463 
1464 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1465 				     struct convert_context *ctx)
1466 {
1467 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1468 
1469 	if (!ctx->r.req) {
1470 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1471 		if (!ctx->r.req)
1472 			return -ENOMEM;
1473 	}
1474 
1475 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1476 
1477 	/*
1478 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1479 	 * requests if driver request queue is full.
1480 	 */
1481 	skcipher_request_set_callback(ctx->r.req,
1482 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1483 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1484 
1485 	return 0;
1486 }
1487 
1488 static int crypt_alloc_req_aead(struct crypt_config *cc,
1489 				 struct convert_context *ctx)
1490 {
1491 	if (!ctx->r.req_aead) {
1492 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1493 		if (!ctx->r.req_aead)
1494 			return -ENOMEM;
1495 	}
1496 
1497 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1498 
1499 	/*
1500 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1501 	 * requests if driver request queue is full.
1502 	 */
1503 	aead_request_set_callback(ctx->r.req_aead,
1504 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1505 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1506 
1507 	return 0;
1508 }
1509 
1510 static int crypt_alloc_req(struct crypt_config *cc,
1511 			    struct convert_context *ctx)
1512 {
1513 	if (crypt_integrity_aead(cc))
1514 		return crypt_alloc_req_aead(cc, ctx);
1515 	else
1516 		return crypt_alloc_req_skcipher(cc, ctx);
1517 }
1518 
1519 static void crypt_free_req_skcipher(struct crypt_config *cc,
1520 				    struct skcipher_request *req, struct bio *base_bio)
1521 {
1522 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1523 
1524 	if ((struct skcipher_request *)(io + 1) != req)
1525 		mempool_free(req, &cc->req_pool);
1526 }
1527 
1528 static void crypt_free_req_aead(struct crypt_config *cc,
1529 				struct aead_request *req, struct bio *base_bio)
1530 {
1531 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1532 
1533 	if ((struct aead_request *)(io + 1) != req)
1534 		mempool_free(req, &cc->req_pool);
1535 }
1536 
1537 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1538 {
1539 	if (crypt_integrity_aead(cc))
1540 		crypt_free_req_aead(cc, req, base_bio);
1541 	else
1542 		crypt_free_req_skcipher(cc, req, base_bio);
1543 }
1544 
1545 /*
1546  * Encrypt / decrypt data from one bio to another one (can be the same one)
1547  */
1548 static blk_status_t crypt_convert(struct crypt_config *cc,
1549 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1550 {
1551 	unsigned int tag_offset = 0;
1552 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1553 	int r;
1554 
1555 	/*
1556 	 * if reset_pending is set we are dealing with the bio for the first time,
1557 	 * else we're continuing to work on the previous bio, so don't mess with
1558 	 * the cc_pending counter
1559 	 */
1560 	if (reset_pending)
1561 		atomic_set(&ctx->cc_pending, 1);
1562 
1563 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1564 
1565 		r = crypt_alloc_req(cc, ctx);
1566 		if (r) {
1567 			complete(&ctx->restart);
1568 			return BLK_STS_DEV_RESOURCE;
1569 		}
1570 
1571 		atomic_inc(&ctx->cc_pending);
1572 
1573 		if (crypt_integrity_aead(cc))
1574 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1575 		else
1576 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1577 
1578 		switch (r) {
1579 		/*
1580 		 * The request was queued by a crypto driver
1581 		 * but the driver request queue is full, let's wait.
1582 		 */
1583 		case -EBUSY:
1584 			if (in_interrupt()) {
1585 				if (try_wait_for_completion(&ctx->restart)) {
1586 					/*
1587 					 * we don't have to block to wait for completion,
1588 					 * so proceed
1589 					 */
1590 				} else {
1591 					/*
1592 					 * we can't wait for completion without blocking
1593 					 * exit and continue processing in a workqueue
1594 					 */
1595 					ctx->r.req = NULL;
1596 					ctx->cc_sector += sector_step;
1597 					tag_offset++;
1598 					return BLK_STS_DEV_RESOURCE;
1599 				}
1600 			} else {
1601 				wait_for_completion(&ctx->restart);
1602 			}
1603 			reinit_completion(&ctx->restart);
1604 			fallthrough;
1605 		/*
1606 		 * The request is queued and processed asynchronously,
1607 		 * completion function kcryptd_async_done() will be called.
1608 		 */
1609 		case -EINPROGRESS:
1610 			ctx->r.req = NULL;
1611 			ctx->cc_sector += sector_step;
1612 			tag_offset++;
1613 			continue;
1614 		/*
1615 		 * The request was already processed (synchronously).
1616 		 */
1617 		case 0:
1618 			atomic_dec(&ctx->cc_pending);
1619 			ctx->cc_sector += sector_step;
1620 			tag_offset++;
1621 			if (!atomic)
1622 				cond_resched();
1623 			continue;
1624 		/*
1625 		 * There was a data integrity error.
1626 		 */
1627 		case -EBADMSG:
1628 			atomic_dec(&ctx->cc_pending);
1629 			return BLK_STS_PROTECTION;
1630 		/*
1631 		 * There was an error while processing the request.
1632 		 */
1633 		default:
1634 			atomic_dec(&ctx->cc_pending);
1635 			return BLK_STS_IOERR;
1636 		}
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1643 
1644 /*
1645  * Generate a new unfragmented bio with the given size
1646  * This should never violate the device limitations (but only because
1647  * max_segment_size is being constrained to PAGE_SIZE).
1648  *
1649  * This function may be called concurrently. If we allocate from the mempool
1650  * concurrently, there is a possibility of deadlock. For example, if we have
1651  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1652  * the mempool concurrently, it may deadlock in a situation where both processes
1653  * have allocated 128 pages and the mempool is exhausted.
1654  *
1655  * In order to avoid this scenario we allocate the pages under a mutex.
1656  *
1657  * In order to not degrade performance with excessive locking, we try
1658  * non-blocking allocations without a mutex first but on failure we fallback
1659  * to blocking allocations with a mutex.
1660  */
1661 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1662 {
1663 	struct crypt_config *cc = io->cc;
1664 	struct bio *clone;
1665 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1666 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1667 	unsigned i, len, remaining_size;
1668 	struct page *page;
1669 
1670 retry:
1671 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1672 		mutex_lock(&cc->bio_alloc_lock);
1673 
1674 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1675 				 GFP_NOIO, &cc->bs);
1676 	clone->bi_private = io;
1677 	clone->bi_end_io = crypt_endio;
1678 
1679 	remaining_size = size;
1680 
1681 	for (i = 0; i < nr_iovecs; i++) {
1682 		page = mempool_alloc(&cc->page_pool, gfp_mask);
1683 		if (!page) {
1684 			crypt_free_buffer_pages(cc, clone);
1685 			bio_put(clone);
1686 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1687 			goto retry;
1688 		}
1689 
1690 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1691 
1692 		bio_add_page(clone, page, len, 0);
1693 
1694 		remaining_size -= len;
1695 	}
1696 
1697 	/* Allocate space for integrity tags */
1698 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1699 		crypt_free_buffer_pages(cc, clone);
1700 		bio_put(clone);
1701 		clone = NULL;
1702 	}
1703 
1704 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1705 		mutex_unlock(&cc->bio_alloc_lock);
1706 
1707 	return clone;
1708 }
1709 
1710 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1711 {
1712 	struct bio_vec *bv;
1713 	struct bvec_iter_all iter_all;
1714 
1715 	bio_for_each_segment_all(bv, clone, iter_all) {
1716 		BUG_ON(!bv->bv_page);
1717 		mempool_free(bv->bv_page, &cc->page_pool);
1718 	}
1719 }
1720 
1721 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1722 			  struct bio *bio, sector_t sector)
1723 {
1724 	io->cc = cc;
1725 	io->base_bio = bio;
1726 	io->sector = sector;
1727 	io->error = 0;
1728 	io->ctx.r.req = NULL;
1729 	io->integrity_metadata = NULL;
1730 	io->integrity_metadata_from_pool = false;
1731 	atomic_set(&io->io_pending, 0);
1732 }
1733 
1734 static void crypt_inc_pending(struct dm_crypt_io *io)
1735 {
1736 	atomic_inc(&io->io_pending);
1737 }
1738 
1739 static void kcryptd_io_bio_endio(struct work_struct *work)
1740 {
1741 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1742 	bio_endio(io->base_bio);
1743 }
1744 
1745 /*
1746  * One of the bios was finished. Check for completion of
1747  * the whole request and correctly clean up the buffer.
1748  */
1749 static void crypt_dec_pending(struct dm_crypt_io *io)
1750 {
1751 	struct crypt_config *cc = io->cc;
1752 	struct bio *base_bio = io->base_bio;
1753 	blk_status_t error = io->error;
1754 
1755 	if (!atomic_dec_and_test(&io->io_pending))
1756 		return;
1757 
1758 	if (io->ctx.r.req)
1759 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1760 
1761 	if (unlikely(io->integrity_metadata_from_pool))
1762 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1763 	else
1764 		kfree(io->integrity_metadata);
1765 
1766 	base_bio->bi_status = error;
1767 
1768 	/*
1769 	 * If we are running this function from our tasklet,
1770 	 * we can't call bio_endio() here, because it will call
1771 	 * clone_endio() from dm.c, which in turn will
1772 	 * free the current struct dm_crypt_io structure with
1773 	 * our tasklet. In this case we need to delay bio_endio()
1774 	 * execution to after the tasklet is done and dequeued.
1775 	 */
1776 	if (tasklet_trylock(&io->tasklet)) {
1777 		tasklet_unlock(&io->tasklet);
1778 		bio_endio(base_bio);
1779 		return;
1780 	}
1781 
1782 	INIT_WORK(&io->work, kcryptd_io_bio_endio);
1783 	queue_work(cc->io_queue, &io->work);
1784 }
1785 
1786 /*
1787  * kcryptd/kcryptd_io:
1788  *
1789  * Needed because it would be very unwise to do decryption in an
1790  * interrupt context.
1791  *
1792  * kcryptd performs the actual encryption or decryption.
1793  *
1794  * kcryptd_io performs the IO submission.
1795  *
1796  * They must be separated as otherwise the final stages could be
1797  * starved by new requests which can block in the first stages due
1798  * to memory allocation.
1799  *
1800  * The work is done per CPU global for all dm-crypt instances.
1801  * They should not depend on each other and do not block.
1802  */
1803 static void crypt_endio(struct bio *clone)
1804 {
1805 	struct dm_crypt_io *io = clone->bi_private;
1806 	struct crypt_config *cc = io->cc;
1807 	unsigned rw = bio_data_dir(clone);
1808 	blk_status_t error;
1809 
1810 	/*
1811 	 * free the processed pages
1812 	 */
1813 	if (rw == WRITE)
1814 		crypt_free_buffer_pages(cc, clone);
1815 
1816 	error = clone->bi_status;
1817 	bio_put(clone);
1818 
1819 	if (rw == READ && !error) {
1820 		kcryptd_queue_crypt(io);
1821 		return;
1822 	}
1823 
1824 	if (unlikely(error))
1825 		io->error = error;
1826 
1827 	crypt_dec_pending(io);
1828 }
1829 
1830 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1831 {
1832 	struct crypt_config *cc = io->cc;
1833 	struct bio *clone;
1834 
1835 	/*
1836 	 * We need the original biovec array in order to decrypt the whole bio
1837 	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1838 	 * worry about the block layer modifying the biovec array; so leverage
1839 	 * bio_alloc_clone().
1840 	 */
1841 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1842 	if (!clone)
1843 		return 1;
1844 	clone->bi_private = io;
1845 	clone->bi_end_io = crypt_endio;
1846 
1847 	crypt_inc_pending(io);
1848 
1849 	clone->bi_iter.bi_sector = cc->start + io->sector;
1850 
1851 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1852 		crypt_dec_pending(io);
1853 		bio_put(clone);
1854 		return 1;
1855 	}
1856 
1857 	submit_bio_noacct(clone);
1858 	return 0;
1859 }
1860 
1861 static void kcryptd_io_read_work(struct work_struct *work)
1862 {
1863 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1864 
1865 	crypt_inc_pending(io);
1866 	if (kcryptd_io_read(io, GFP_NOIO))
1867 		io->error = BLK_STS_RESOURCE;
1868 	crypt_dec_pending(io);
1869 }
1870 
1871 static void kcryptd_queue_read(struct dm_crypt_io *io)
1872 {
1873 	struct crypt_config *cc = io->cc;
1874 
1875 	INIT_WORK(&io->work, kcryptd_io_read_work);
1876 	queue_work(cc->io_queue, &io->work);
1877 }
1878 
1879 static void kcryptd_io_write(struct dm_crypt_io *io)
1880 {
1881 	struct bio *clone = io->ctx.bio_out;
1882 
1883 	submit_bio_noacct(clone);
1884 }
1885 
1886 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1887 
1888 static int dmcrypt_write(void *data)
1889 {
1890 	struct crypt_config *cc = data;
1891 	struct dm_crypt_io *io;
1892 
1893 	while (1) {
1894 		struct rb_root write_tree;
1895 		struct blk_plug plug;
1896 
1897 		spin_lock_irq(&cc->write_thread_lock);
1898 continue_locked:
1899 
1900 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1901 			goto pop_from_list;
1902 
1903 		set_current_state(TASK_INTERRUPTIBLE);
1904 
1905 		spin_unlock_irq(&cc->write_thread_lock);
1906 
1907 		if (unlikely(kthread_should_stop())) {
1908 			set_current_state(TASK_RUNNING);
1909 			break;
1910 		}
1911 
1912 		schedule();
1913 
1914 		set_current_state(TASK_RUNNING);
1915 		spin_lock_irq(&cc->write_thread_lock);
1916 		goto continue_locked;
1917 
1918 pop_from_list:
1919 		write_tree = cc->write_tree;
1920 		cc->write_tree = RB_ROOT;
1921 		spin_unlock_irq(&cc->write_thread_lock);
1922 
1923 		BUG_ON(rb_parent(write_tree.rb_node));
1924 
1925 		/*
1926 		 * Note: we cannot walk the tree here with rb_next because
1927 		 * the structures may be freed when kcryptd_io_write is called.
1928 		 */
1929 		blk_start_plug(&plug);
1930 		do {
1931 			io = crypt_io_from_node(rb_first(&write_tree));
1932 			rb_erase(&io->rb_node, &write_tree);
1933 			kcryptd_io_write(io);
1934 		} while (!RB_EMPTY_ROOT(&write_tree));
1935 		blk_finish_plug(&plug);
1936 	}
1937 	return 0;
1938 }
1939 
1940 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1941 {
1942 	struct bio *clone = io->ctx.bio_out;
1943 	struct crypt_config *cc = io->cc;
1944 	unsigned long flags;
1945 	sector_t sector;
1946 	struct rb_node **rbp, *parent;
1947 
1948 	if (unlikely(io->error)) {
1949 		crypt_free_buffer_pages(cc, clone);
1950 		bio_put(clone);
1951 		crypt_dec_pending(io);
1952 		return;
1953 	}
1954 
1955 	/* crypt_convert should have filled the clone bio */
1956 	BUG_ON(io->ctx.iter_out.bi_size);
1957 
1958 	clone->bi_iter.bi_sector = cc->start + io->sector;
1959 
1960 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1961 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1962 		submit_bio_noacct(clone);
1963 		return;
1964 	}
1965 
1966 	spin_lock_irqsave(&cc->write_thread_lock, flags);
1967 	if (RB_EMPTY_ROOT(&cc->write_tree))
1968 		wake_up_process(cc->write_thread);
1969 	rbp = &cc->write_tree.rb_node;
1970 	parent = NULL;
1971 	sector = io->sector;
1972 	while (*rbp) {
1973 		parent = *rbp;
1974 		if (sector < crypt_io_from_node(parent)->sector)
1975 			rbp = &(*rbp)->rb_left;
1976 		else
1977 			rbp = &(*rbp)->rb_right;
1978 	}
1979 	rb_link_node(&io->rb_node, parent, rbp);
1980 	rb_insert_color(&io->rb_node, &cc->write_tree);
1981 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1982 }
1983 
1984 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
1985 				       struct convert_context *ctx)
1986 
1987 {
1988 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
1989 		return false;
1990 
1991 	/*
1992 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
1993 	 * constraints so they do not need to be issued inline by
1994 	 * kcryptd_crypt_write_convert().
1995 	 */
1996 	switch (bio_op(ctx->bio_in)) {
1997 	case REQ_OP_WRITE:
1998 	case REQ_OP_WRITE_SAME:
1999 	case REQ_OP_WRITE_ZEROES:
2000 		return true;
2001 	default:
2002 		return false;
2003 	}
2004 }
2005 
2006 static void kcryptd_crypt_write_continue(struct work_struct *work)
2007 {
2008 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2009 	struct crypt_config *cc = io->cc;
2010 	struct convert_context *ctx = &io->ctx;
2011 	int crypt_finished;
2012 	sector_t sector = io->sector;
2013 	blk_status_t r;
2014 
2015 	wait_for_completion(&ctx->restart);
2016 	reinit_completion(&ctx->restart);
2017 
2018 	r = crypt_convert(cc, &io->ctx, true, false);
2019 	if (r)
2020 		io->error = r;
2021 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2022 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2023 		/* Wait for completion signaled by kcryptd_async_done() */
2024 		wait_for_completion(&ctx->restart);
2025 		crypt_finished = 1;
2026 	}
2027 
2028 	/* Encryption was already finished, submit io now */
2029 	if (crypt_finished) {
2030 		kcryptd_crypt_write_io_submit(io, 0);
2031 		io->sector = sector;
2032 	}
2033 
2034 	crypt_dec_pending(io);
2035 }
2036 
2037 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2038 {
2039 	struct crypt_config *cc = io->cc;
2040 	struct convert_context *ctx = &io->ctx;
2041 	struct bio *clone;
2042 	int crypt_finished;
2043 	sector_t sector = io->sector;
2044 	blk_status_t r;
2045 
2046 	/*
2047 	 * Prevent io from disappearing until this function completes.
2048 	 */
2049 	crypt_inc_pending(io);
2050 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2051 
2052 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2053 	if (unlikely(!clone)) {
2054 		io->error = BLK_STS_IOERR;
2055 		goto dec;
2056 	}
2057 
2058 	io->ctx.bio_out = clone;
2059 	io->ctx.iter_out = clone->bi_iter;
2060 
2061 	sector += bio_sectors(clone);
2062 
2063 	crypt_inc_pending(io);
2064 	r = crypt_convert(cc, ctx,
2065 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2066 	/*
2067 	 * Crypto API backlogged the request, because its queue was full
2068 	 * and we're in softirq context, so continue from a workqueue
2069 	 * (TODO: is it actually possible to be in softirq in the write path?)
2070 	 */
2071 	if (r == BLK_STS_DEV_RESOURCE) {
2072 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2073 		queue_work(cc->crypt_queue, &io->work);
2074 		return;
2075 	}
2076 	if (r)
2077 		io->error = r;
2078 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2079 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2080 		/* Wait for completion signaled by kcryptd_async_done() */
2081 		wait_for_completion(&ctx->restart);
2082 		crypt_finished = 1;
2083 	}
2084 
2085 	/* Encryption was already finished, submit io now */
2086 	if (crypt_finished) {
2087 		kcryptd_crypt_write_io_submit(io, 0);
2088 		io->sector = sector;
2089 	}
2090 
2091 dec:
2092 	crypt_dec_pending(io);
2093 }
2094 
2095 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2096 {
2097 	crypt_dec_pending(io);
2098 }
2099 
2100 static void kcryptd_crypt_read_continue(struct work_struct *work)
2101 {
2102 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2103 	struct crypt_config *cc = io->cc;
2104 	blk_status_t r;
2105 
2106 	wait_for_completion(&io->ctx.restart);
2107 	reinit_completion(&io->ctx.restart);
2108 
2109 	r = crypt_convert(cc, &io->ctx, true, false);
2110 	if (r)
2111 		io->error = r;
2112 
2113 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2114 		kcryptd_crypt_read_done(io);
2115 
2116 	crypt_dec_pending(io);
2117 }
2118 
2119 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2120 {
2121 	struct crypt_config *cc = io->cc;
2122 	blk_status_t r;
2123 
2124 	crypt_inc_pending(io);
2125 
2126 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2127 			   io->sector);
2128 
2129 	r = crypt_convert(cc, &io->ctx,
2130 			  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2131 	/*
2132 	 * Crypto API backlogged the request, because its queue was full
2133 	 * and we're in softirq context, so continue from a workqueue
2134 	 */
2135 	if (r == BLK_STS_DEV_RESOURCE) {
2136 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2137 		queue_work(cc->crypt_queue, &io->work);
2138 		return;
2139 	}
2140 	if (r)
2141 		io->error = r;
2142 
2143 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2144 		kcryptd_crypt_read_done(io);
2145 
2146 	crypt_dec_pending(io);
2147 }
2148 
2149 static void kcryptd_async_done(struct crypto_async_request *async_req,
2150 			       int error)
2151 {
2152 	struct dm_crypt_request *dmreq = async_req->data;
2153 	struct convert_context *ctx = dmreq->ctx;
2154 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2155 	struct crypt_config *cc = io->cc;
2156 
2157 	/*
2158 	 * A request from crypto driver backlog is going to be processed now,
2159 	 * finish the completion and continue in crypt_convert().
2160 	 * (Callback will be called for the second time for this request.)
2161 	 */
2162 	if (error == -EINPROGRESS) {
2163 		complete(&ctx->restart);
2164 		return;
2165 	}
2166 
2167 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2168 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2169 
2170 	if (error == -EBADMSG) {
2171 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2172 
2173 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2174 			    ctx->bio_in->bi_bdev, s);
2175 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2176 				 ctx->bio_in, s, 0);
2177 		io->error = BLK_STS_PROTECTION;
2178 	} else if (error < 0)
2179 		io->error = BLK_STS_IOERR;
2180 
2181 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2182 
2183 	if (!atomic_dec_and_test(&ctx->cc_pending))
2184 		return;
2185 
2186 	/*
2187 	 * The request is fully completed: for inline writes, let
2188 	 * kcryptd_crypt_write_convert() do the IO submission.
2189 	 */
2190 	if (bio_data_dir(io->base_bio) == READ) {
2191 		kcryptd_crypt_read_done(io);
2192 		return;
2193 	}
2194 
2195 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2196 		complete(&ctx->restart);
2197 		return;
2198 	}
2199 
2200 	kcryptd_crypt_write_io_submit(io, 1);
2201 }
2202 
2203 static void kcryptd_crypt(struct work_struct *work)
2204 {
2205 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2206 
2207 	if (bio_data_dir(io->base_bio) == READ)
2208 		kcryptd_crypt_read_convert(io);
2209 	else
2210 		kcryptd_crypt_write_convert(io);
2211 }
2212 
2213 static void kcryptd_crypt_tasklet(unsigned long work)
2214 {
2215 	kcryptd_crypt((struct work_struct *)work);
2216 }
2217 
2218 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2219 {
2220 	struct crypt_config *cc = io->cc;
2221 
2222 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2223 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2224 		/*
2225 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2226 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2227 		 * it is being executed with irqs disabled.
2228 		 */
2229 		if (in_hardirq() || irqs_disabled()) {
2230 			tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2231 			tasklet_schedule(&io->tasklet);
2232 			return;
2233 		}
2234 
2235 		kcryptd_crypt(&io->work);
2236 		return;
2237 	}
2238 
2239 	INIT_WORK(&io->work, kcryptd_crypt);
2240 	queue_work(cc->crypt_queue, &io->work);
2241 }
2242 
2243 static void crypt_free_tfms_aead(struct crypt_config *cc)
2244 {
2245 	if (!cc->cipher_tfm.tfms_aead)
2246 		return;
2247 
2248 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2249 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2250 		cc->cipher_tfm.tfms_aead[0] = NULL;
2251 	}
2252 
2253 	kfree(cc->cipher_tfm.tfms_aead);
2254 	cc->cipher_tfm.tfms_aead = NULL;
2255 }
2256 
2257 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2258 {
2259 	unsigned i;
2260 
2261 	if (!cc->cipher_tfm.tfms)
2262 		return;
2263 
2264 	for (i = 0; i < cc->tfms_count; i++)
2265 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2266 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2267 			cc->cipher_tfm.tfms[i] = NULL;
2268 		}
2269 
2270 	kfree(cc->cipher_tfm.tfms);
2271 	cc->cipher_tfm.tfms = NULL;
2272 }
2273 
2274 static void crypt_free_tfms(struct crypt_config *cc)
2275 {
2276 	if (crypt_integrity_aead(cc))
2277 		crypt_free_tfms_aead(cc);
2278 	else
2279 		crypt_free_tfms_skcipher(cc);
2280 }
2281 
2282 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2283 {
2284 	unsigned i;
2285 	int err;
2286 
2287 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2288 				      sizeof(struct crypto_skcipher *),
2289 				      GFP_KERNEL);
2290 	if (!cc->cipher_tfm.tfms)
2291 		return -ENOMEM;
2292 
2293 	for (i = 0; i < cc->tfms_count; i++) {
2294 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2295 						CRYPTO_ALG_ALLOCATES_MEMORY);
2296 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2297 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2298 			crypt_free_tfms(cc);
2299 			return err;
2300 		}
2301 	}
2302 
2303 	/*
2304 	 * dm-crypt performance can vary greatly depending on which crypto
2305 	 * algorithm implementation is used.  Help people debug performance
2306 	 * problems by logging the ->cra_driver_name.
2307 	 */
2308 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2309 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2310 	return 0;
2311 }
2312 
2313 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2314 {
2315 	int err;
2316 
2317 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2318 	if (!cc->cipher_tfm.tfms)
2319 		return -ENOMEM;
2320 
2321 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2322 						CRYPTO_ALG_ALLOCATES_MEMORY);
2323 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2324 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2325 		crypt_free_tfms(cc);
2326 		return err;
2327 	}
2328 
2329 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2330 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2331 	return 0;
2332 }
2333 
2334 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2335 {
2336 	if (crypt_integrity_aead(cc))
2337 		return crypt_alloc_tfms_aead(cc, ciphermode);
2338 	else
2339 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2340 }
2341 
2342 static unsigned crypt_subkey_size(struct crypt_config *cc)
2343 {
2344 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2345 }
2346 
2347 static unsigned crypt_authenckey_size(struct crypt_config *cc)
2348 {
2349 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2350 }
2351 
2352 /*
2353  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2354  * the key must be for some reason in special format.
2355  * This funcion converts cc->key to this special format.
2356  */
2357 static void crypt_copy_authenckey(char *p, const void *key,
2358 				  unsigned enckeylen, unsigned authkeylen)
2359 {
2360 	struct crypto_authenc_key_param *param;
2361 	struct rtattr *rta;
2362 
2363 	rta = (struct rtattr *)p;
2364 	param = RTA_DATA(rta);
2365 	param->enckeylen = cpu_to_be32(enckeylen);
2366 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2367 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2368 	p += RTA_SPACE(sizeof(*param));
2369 	memcpy(p, key + enckeylen, authkeylen);
2370 	p += authkeylen;
2371 	memcpy(p, key, enckeylen);
2372 }
2373 
2374 static int crypt_setkey(struct crypt_config *cc)
2375 {
2376 	unsigned subkey_size;
2377 	int err = 0, i, r;
2378 
2379 	/* Ignore extra keys (which are used for IV etc) */
2380 	subkey_size = crypt_subkey_size(cc);
2381 
2382 	if (crypt_integrity_hmac(cc)) {
2383 		if (subkey_size < cc->key_mac_size)
2384 			return -EINVAL;
2385 
2386 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2387 				      subkey_size - cc->key_mac_size,
2388 				      cc->key_mac_size);
2389 	}
2390 
2391 	for (i = 0; i < cc->tfms_count; i++) {
2392 		if (crypt_integrity_hmac(cc))
2393 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2394 				cc->authenc_key, crypt_authenckey_size(cc));
2395 		else if (crypt_integrity_aead(cc))
2396 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2397 					       cc->key + (i * subkey_size),
2398 					       subkey_size);
2399 		else
2400 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2401 						   cc->key + (i * subkey_size),
2402 						   subkey_size);
2403 		if (r)
2404 			err = r;
2405 	}
2406 
2407 	if (crypt_integrity_hmac(cc))
2408 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2409 
2410 	return err;
2411 }
2412 
2413 #ifdef CONFIG_KEYS
2414 
2415 static bool contains_whitespace(const char *str)
2416 {
2417 	while (*str)
2418 		if (isspace(*str++))
2419 			return true;
2420 	return false;
2421 }
2422 
2423 static int set_key_user(struct crypt_config *cc, struct key *key)
2424 {
2425 	const struct user_key_payload *ukp;
2426 
2427 	ukp = user_key_payload_locked(key);
2428 	if (!ukp)
2429 		return -EKEYREVOKED;
2430 
2431 	if (cc->key_size != ukp->datalen)
2432 		return -EINVAL;
2433 
2434 	memcpy(cc->key, ukp->data, cc->key_size);
2435 
2436 	return 0;
2437 }
2438 
2439 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2440 {
2441 	const struct encrypted_key_payload *ekp;
2442 
2443 	ekp = key->payload.data[0];
2444 	if (!ekp)
2445 		return -EKEYREVOKED;
2446 
2447 	if (cc->key_size != ekp->decrypted_datalen)
2448 		return -EINVAL;
2449 
2450 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2451 
2452 	return 0;
2453 }
2454 
2455 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2456 {
2457 	const struct trusted_key_payload *tkp;
2458 
2459 	tkp = key->payload.data[0];
2460 	if (!tkp)
2461 		return -EKEYREVOKED;
2462 
2463 	if (cc->key_size != tkp->key_len)
2464 		return -EINVAL;
2465 
2466 	memcpy(cc->key, tkp->key, cc->key_size);
2467 
2468 	return 0;
2469 }
2470 
2471 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2472 {
2473 	char *new_key_string, *key_desc;
2474 	int ret;
2475 	struct key_type *type;
2476 	struct key *key;
2477 	int (*set_key)(struct crypt_config *cc, struct key *key);
2478 
2479 	/*
2480 	 * Reject key_string with whitespace. dm core currently lacks code for
2481 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2482 	 */
2483 	if (contains_whitespace(key_string)) {
2484 		DMERR("whitespace chars not allowed in key string");
2485 		return -EINVAL;
2486 	}
2487 
2488 	/* look for next ':' separating key_type from key_description */
2489 	key_desc = strpbrk(key_string, ":");
2490 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2491 		return -EINVAL;
2492 
2493 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2494 		type = &key_type_logon;
2495 		set_key = set_key_user;
2496 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2497 		type = &key_type_user;
2498 		set_key = set_key_user;
2499 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2500 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2501 		type = &key_type_encrypted;
2502 		set_key = set_key_encrypted;
2503 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2504 	           !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2505 		type = &key_type_trusted;
2506 		set_key = set_key_trusted;
2507 	} else {
2508 		return -EINVAL;
2509 	}
2510 
2511 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2512 	if (!new_key_string)
2513 		return -ENOMEM;
2514 
2515 	key = request_key(type, key_desc + 1, NULL);
2516 	if (IS_ERR(key)) {
2517 		kfree_sensitive(new_key_string);
2518 		return PTR_ERR(key);
2519 	}
2520 
2521 	down_read(&key->sem);
2522 
2523 	ret = set_key(cc, key);
2524 	if (ret < 0) {
2525 		up_read(&key->sem);
2526 		key_put(key);
2527 		kfree_sensitive(new_key_string);
2528 		return ret;
2529 	}
2530 
2531 	up_read(&key->sem);
2532 	key_put(key);
2533 
2534 	/* clear the flag since following operations may invalidate previously valid key */
2535 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2536 
2537 	ret = crypt_setkey(cc);
2538 
2539 	if (!ret) {
2540 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2541 		kfree_sensitive(cc->key_string);
2542 		cc->key_string = new_key_string;
2543 	} else
2544 		kfree_sensitive(new_key_string);
2545 
2546 	return ret;
2547 }
2548 
2549 static int get_key_size(char **key_string)
2550 {
2551 	char *colon, dummy;
2552 	int ret;
2553 
2554 	if (*key_string[0] != ':')
2555 		return strlen(*key_string) >> 1;
2556 
2557 	/* look for next ':' in key string */
2558 	colon = strpbrk(*key_string + 1, ":");
2559 	if (!colon)
2560 		return -EINVAL;
2561 
2562 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2563 		return -EINVAL;
2564 
2565 	*key_string = colon;
2566 
2567 	/* remaining key string should be :<logon|user>:<key_desc> */
2568 
2569 	return ret;
2570 }
2571 
2572 #else
2573 
2574 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2575 {
2576 	return -EINVAL;
2577 }
2578 
2579 static int get_key_size(char **key_string)
2580 {
2581 	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2582 }
2583 
2584 #endif /* CONFIG_KEYS */
2585 
2586 static int crypt_set_key(struct crypt_config *cc, char *key)
2587 {
2588 	int r = -EINVAL;
2589 	int key_string_len = strlen(key);
2590 
2591 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2592 	if (!cc->key_size && strcmp(key, "-"))
2593 		goto out;
2594 
2595 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2596 	if (key[0] == ':') {
2597 		r = crypt_set_keyring_key(cc, key + 1);
2598 		goto out;
2599 	}
2600 
2601 	/* clear the flag since following operations may invalidate previously valid key */
2602 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2603 
2604 	/* wipe references to any kernel keyring key */
2605 	kfree_sensitive(cc->key_string);
2606 	cc->key_string = NULL;
2607 
2608 	/* Decode key from its hex representation. */
2609 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2610 		goto out;
2611 
2612 	r = crypt_setkey(cc);
2613 	if (!r)
2614 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2615 
2616 out:
2617 	/* Hex key string not needed after here, so wipe it. */
2618 	memset(key, '0', key_string_len);
2619 
2620 	return r;
2621 }
2622 
2623 static int crypt_wipe_key(struct crypt_config *cc)
2624 {
2625 	int r;
2626 
2627 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2628 	get_random_bytes(&cc->key, cc->key_size);
2629 
2630 	/* Wipe IV private keys */
2631 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2632 		r = cc->iv_gen_ops->wipe(cc);
2633 		if (r)
2634 			return r;
2635 	}
2636 
2637 	kfree_sensitive(cc->key_string);
2638 	cc->key_string = NULL;
2639 	r = crypt_setkey(cc);
2640 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2641 
2642 	return r;
2643 }
2644 
2645 static void crypt_calculate_pages_per_client(void)
2646 {
2647 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2648 
2649 	if (!dm_crypt_clients_n)
2650 		return;
2651 
2652 	pages /= dm_crypt_clients_n;
2653 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2654 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2655 	dm_crypt_pages_per_client = pages;
2656 }
2657 
2658 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2659 {
2660 	struct crypt_config *cc = pool_data;
2661 	struct page *page;
2662 
2663 	/*
2664 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2665 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2666 	 * but avoids potential spinlock contention of an exact result.
2667 	 */
2668 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2669 	    likely(gfp_mask & __GFP_NORETRY))
2670 		return NULL;
2671 
2672 	page = alloc_page(gfp_mask);
2673 	if (likely(page != NULL))
2674 		percpu_counter_add(&cc->n_allocated_pages, 1);
2675 
2676 	return page;
2677 }
2678 
2679 static void crypt_page_free(void *page, void *pool_data)
2680 {
2681 	struct crypt_config *cc = pool_data;
2682 
2683 	__free_page(page);
2684 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2685 }
2686 
2687 static void crypt_dtr(struct dm_target *ti)
2688 {
2689 	struct crypt_config *cc = ti->private;
2690 
2691 	ti->private = NULL;
2692 
2693 	if (!cc)
2694 		return;
2695 
2696 	if (cc->write_thread)
2697 		kthread_stop(cc->write_thread);
2698 
2699 	if (cc->io_queue)
2700 		destroy_workqueue(cc->io_queue);
2701 	if (cc->crypt_queue)
2702 		destroy_workqueue(cc->crypt_queue);
2703 
2704 	crypt_free_tfms(cc);
2705 
2706 	bioset_exit(&cc->bs);
2707 
2708 	mempool_exit(&cc->page_pool);
2709 	mempool_exit(&cc->req_pool);
2710 	mempool_exit(&cc->tag_pool);
2711 
2712 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2713 	percpu_counter_destroy(&cc->n_allocated_pages);
2714 
2715 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2716 		cc->iv_gen_ops->dtr(cc);
2717 
2718 	if (cc->dev)
2719 		dm_put_device(ti, cc->dev);
2720 
2721 	kfree_sensitive(cc->cipher_string);
2722 	kfree_sensitive(cc->key_string);
2723 	kfree_sensitive(cc->cipher_auth);
2724 	kfree_sensitive(cc->authenc_key);
2725 
2726 	mutex_destroy(&cc->bio_alloc_lock);
2727 
2728 	/* Must zero key material before freeing */
2729 	kfree_sensitive(cc);
2730 
2731 	spin_lock(&dm_crypt_clients_lock);
2732 	WARN_ON(!dm_crypt_clients_n);
2733 	dm_crypt_clients_n--;
2734 	crypt_calculate_pages_per_client();
2735 	spin_unlock(&dm_crypt_clients_lock);
2736 
2737 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2738 }
2739 
2740 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2741 {
2742 	struct crypt_config *cc = ti->private;
2743 
2744 	if (crypt_integrity_aead(cc))
2745 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2746 	else
2747 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2748 
2749 	if (cc->iv_size)
2750 		/* at least a 64 bit sector number should fit in our buffer */
2751 		cc->iv_size = max(cc->iv_size,
2752 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2753 	else if (ivmode) {
2754 		DMWARN("Selected cipher does not support IVs");
2755 		ivmode = NULL;
2756 	}
2757 
2758 	/* Choose ivmode, see comments at iv code. */
2759 	if (ivmode == NULL)
2760 		cc->iv_gen_ops = NULL;
2761 	else if (strcmp(ivmode, "plain") == 0)
2762 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2763 	else if (strcmp(ivmode, "plain64") == 0)
2764 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2765 	else if (strcmp(ivmode, "plain64be") == 0)
2766 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2767 	else if (strcmp(ivmode, "essiv") == 0)
2768 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2769 	else if (strcmp(ivmode, "benbi") == 0)
2770 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2771 	else if (strcmp(ivmode, "null") == 0)
2772 		cc->iv_gen_ops = &crypt_iv_null_ops;
2773 	else if (strcmp(ivmode, "eboiv") == 0)
2774 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2775 	else if (strcmp(ivmode, "elephant") == 0) {
2776 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2777 		cc->key_parts = 2;
2778 		cc->key_extra_size = cc->key_size / 2;
2779 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2780 			return -EINVAL;
2781 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2782 	} else if (strcmp(ivmode, "lmk") == 0) {
2783 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2784 		/*
2785 		 * Version 2 and 3 is recognised according
2786 		 * to length of provided multi-key string.
2787 		 * If present (version 3), last key is used as IV seed.
2788 		 * All keys (including IV seed) are always the same size.
2789 		 */
2790 		if (cc->key_size % cc->key_parts) {
2791 			cc->key_parts++;
2792 			cc->key_extra_size = cc->key_size / cc->key_parts;
2793 		}
2794 	} else if (strcmp(ivmode, "tcw") == 0) {
2795 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2796 		cc->key_parts += 2; /* IV + whitening */
2797 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2798 	} else if (strcmp(ivmode, "random") == 0) {
2799 		cc->iv_gen_ops = &crypt_iv_random_ops;
2800 		/* Need storage space in integrity fields. */
2801 		cc->integrity_iv_size = cc->iv_size;
2802 	} else {
2803 		ti->error = "Invalid IV mode";
2804 		return -EINVAL;
2805 	}
2806 
2807 	return 0;
2808 }
2809 
2810 /*
2811  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2812  * The HMAC is needed to calculate tag size (HMAC digest size).
2813  * This should be probably done by crypto-api calls (once available...)
2814  */
2815 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2816 {
2817 	char *start, *end, *mac_alg = NULL;
2818 	struct crypto_ahash *mac;
2819 
2820 	if (!strstarts(cipher_api, "authenc("))
2821 		return 0;
2822 
2823 	start = strchr(cipher_api, '(');
2824 	end = strchr(cipher_api, ',');
2825 	if (!start || !end || ++start > end)
2826 		return -EINVAL;
2827 
2828 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2829 	if (!mac_alg)
2830 		return -ENOMEM;
2831 	strncpy(mac_alg, start, end - start);
2832 
2833 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2834 	kfree(mac_alg);
2835 
2836 	if (IS_ERR(mac))
2837 		return PTR_ERR(mac);
2838 
2839 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2840 	crypto_free_ahash(mac);
2841 
2842 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2843 	if (!cc->authenc_key)
2844 		return -ENOMEM;
2845 
2846 	return 0;
2847 }
2848 
2849 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2850 				char **ivmode, char **ivopts)
2851 {
2852 	struct crypt_config *cc = ti->private;
2853 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2854 	int ret = -EINVAL;
2855 
2856 	cc->tfms_count = 1;
2857 
2858 	/*
2859 	 * New format (capi: prefix)
2860 	 * capi:cipher_api_spec-iv:ivopts
2861 	 */
2862 	tmp = &cipher_in[strlen("capi:")];
2863 
2864 	/* Separate IV options if present, it can contain another '-' in hash name */
2865 	*ivopts = strrchr(tmp, ':');
2866 	if (*ivopts) {
2867 		**ivopts = '\0';
2868 		(*ivopts)++;
2869 	}
2870 	/* Parse IV mode */
2871 	*ivmode = strrchr(tmp, '-');
2872 	if (*ivmode) {
2873 		**ivmode = '\0';
2874 		(*ivmode)++;
2875 	}
2876 	/* The rest is crypto API spec */
2877 	cipher_api = tmp;
2878 
2879 	/* Alloc AEAD, can be used only in new format. */
2880 	if (crypt_integrity_aead(cc)) {
2881 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2882 		if (ret < 0) {
2883 			ti->error = "Invalid AEAD cipher spec";
2884 			return -ENOMEM;
2885 		}
2886 	}
2887 
2888 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2889 		cc->tfms_count = 64;
2890 
2891 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2892 		if (!*ivopts) {
2893 			ti->error = "Digest algorithm missing for ESSIV mode";
2894 			return -EINVAL;
2895 		}
2896 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2897 			       cipher_api, *ivopts);
2898 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2899 			ti->error = "Cannot allocate cipher string";
2900 			return -ENOMEM;
2901 		}
2902 		cipher_api = buf;
2903 	}
2904 
2905 	cc->key_parts = cc->tfms_count;
2906 
2907 	/* Allocate cipher */
2908 	ret = crypt_alloc_tfms(cc, cipher_api);
2909 	if (ret < 0) {
2910 		ti->error = "Error allocating crypto tfm";
2911 		return ret;
2912 	}
2913 
2914 	if (crypt_integrity_aead(cc))
2915 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2916 	else
2917 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2918 
2919 	return 0;
2920 }
2921 
2922 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2923 				char **ivmode, char **ivopts)
2924 {
2925 	struct crypt_config *cc = ti->private;
2926 	char *tmp, *cipher, *chainmode, *keycount;
2927 	char *cipher_api = NULL;
2928 	int ret = -EINVAL;
2929 	char dummy;
2930 
2931 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2932 		ti->error = "Bad cipher specification";
2933 		return -EINVAL;
2934 	}
2935 
2936 	/*
2937 	 * Legacy dm-crypt cipher specification
2938 	 * cipher[:keycount]-mode-iv:ivopts
2939 	 */
2940 	tmp = cipher_in;
2941 	keycount = strsep(&tmp, "-");
2942 	cipher = strsep(&keycount, ":");
2943 
2944 	if (!keycount)
2945 		cc->tfms_count = 1;
2946 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2947 		 !is_power_of_2(cc->tfms_count)) {
2948 		ti->error = "Bad cipher key count specification";
2949 		return -EINVAL;
2950 	}
2951 	cc->key_parts = cc->tfms_count;
2952 
2953 	chainmode = strsep(&tmp, "-");
2954 	*ivmode = strsep(&tmp, ":");
2955 	*ivopts = tmp;
2956 
2957 	/*
2958 	 * For compatibility with the original dm-crypt mapping format, if
2959 	 * only the cipher name is supplied, use cbc-plain.
2960 	 */
2961 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2962 		chainmode = "cbc";
2963 		*ivmode = "plain";
2964 	}
2965 
2966 	if (strcmp(chainmode, "ecb") && !*ivmode) {
2967 		ti->error = "IV mechanism required";
2968 		return -EINVAL;
2969 	}
2970 
2971 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2972 	if (!cipher_api)
2973 		goto bad_mem;
2974 
2975 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2976 		if (!*ivopts) {
2977 			ti->error = "Digest algorithm missing for ESSIV mode";
2978 			kfree(cipher_api);
2979 			return -EINVAL;
2980 		}
2981 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2982 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2983 	} else {
2984 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2985 			       "%s(%s)", chainmode, cipher);
2986 	}
2987 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2988 		kfree(cipher_api);
2989 		goto bad_mem;
2990 	}
2991 
2992 	/* Allocate cipher */
2993 	ret = crypt_alloc_tfms(cc, cipher_api);
2994 	if (ret < 0) {
2995 		ti->error = "Error allocating crypto tfm";
2996 		kfree(cipher_api);
2997 		return ret;
2998 	}
2999 	kfree(cipher_api);
3000 
3001 	return 0;
3002 bad_mem:
3003 	ti->error = "Cannot allocate cipher strings";
3004 	return -ENOMEM;
3005 }
3006 
3007 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3008 {
3009 	struct crypt_config *cc = ti->private;
3010 	char *ivmode = NULL, *ivopts = NULL;
3011 	int ret;
3012 
3013 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3014 	if (!cc->cipher_string) {
3015 		ti->error = "Cannot allocate cipher strings";
3016 		return -ENOMEM;
3017 	}
3018 
3019 	if (strstarts(cipher_in, "capi:"))
3020 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3021 	else
3022 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3023 	if (ret)
3024 		return ret;
3025 
3026 	/* Initialize IV */
3027 	ret = crypt_ctr_ivmode(ti, ivmode);
3028 	if (ret < 0)
3029 		return ret;
3030 
3031 	/* Initialize and set key */
3032 	ret = crypt_set_key(cc, key);
3033 	if (ret < 0) {
3034 		ti->error = "Error decoding and setting key";
3035 		return ret;
3036 	}
3037 
3038 	/* Allocate IV */
3039 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3040 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3041 		if (ret < 0) {
3042 			ti->error = "Error creating IV";
3043 			return ret;
3044 		}
3045 	}
3046 
3047 	/* Initialize IV (set keys for ESSIV etc) */
3048 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3049 		ret = cc->iv_gen_ops->init(cc);
3050 		if (ret < 0) {
3051 			ti->error = "Error initialising IV";
3052 			return ret;
3053 		}
3054 	}
3055 
3056 	/* wipe the kernel key payload copy */
3057 	if (cc->key_string)
3058 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3059 
3060 	return ret;
3061 }
3062 
3063 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3064 {
3065 	struct crypt_config *cc = ti->private;
3066 	struct dm_arg_set as;
3067 	static const struct dm_arg _args[] = {
3068 		{0, 8, "Invalid number of feature args"},
3069 	};
3070 	unsigned int opt_params, val;
3071 	const char *opt_string, *sval;
3072 	char dummy;
3073 	int ret;
3074 
3075 	/* Optional parameters */
3076 	as.argc = argc;
3077 	as.argv = argv;
3078 
3079 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3080 	if (ret)
3081 		return ret;
3082 
3083 	while (opt_params--) {
3084 		opt_string = dm_shift_arg(&as);
3085 		if (!opt_string) {
3086 			ti->error = "Not enough feature arguments";
3087 			return -EINVAL;
3088 		}
3089 
3090 		if (!strcasecmp(opt_string, "allow_discards"))
3091 			ti->num_discard_bios = 1;
3092 
3093 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3094 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3095 
3096 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3097 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3098 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3099 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3100 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3101 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3102 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3103 			if (val == 0 || val > MAX_TAG_SIZE) {
3104 				ti->error = "Invalid integrity arguments";
3105 				return -EINVAL;
3106 			}
3107 			cc->on_disk_tag_size = val;
3108 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3109 			if (!strcasecmp(sval, "aead")) {
3110 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3111 			} else  if (strcasecmp(sval, "none")) {
3112 				ti->error = "Unknown integrity profile";
3113 				return -EINVAL;
3114 			}
3115 
3116 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3117 			if (!cc->cipher_auth)
3118 				return -ENOMEM;
3119 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3120 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3121 			    cc->sector_size > 4096 ||
3122 			    (cc->sector_size & (cc->sector_size - 1))) {
3123 				ti->error = "Invalid feature value for sector_size";
3124 				return -EINVAL;
3125 			}
3126 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3127 				ti->error = "Device size is not multiple of sector_size feature";
3128 				return -EINVAL;
3129 			}
3130 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3131 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3132 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3133 		else {
3134 			ti->error = "Invalid feature arguments";
3135 			return -EINVAL;
3136 		}
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 #ifdef CONFIG_BLK_DEV_ZONED
3143 static int crypt_report_zones(struct dm_target *ti,
3144 		struct dm_report_zones_args *args, unsigned int nr_zones)
3145 {
3146 	struct crypt_config *cc = ti->private;
3147 
3148 	return dm_report_zones(cc->dev->bdev, cc->start,
3149 			cc->start + dm_target_offset(ti, args->next_sector),
3150 			args, nr_zones);
3151 }
3152 #else
3153 #define crypt_report_zones NULL
3154 #endif
3155 
3156 /*
3157  * Construct an encryption mapping:
3158  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3159  */
3160 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3161 {
3162 	struct crypt_config *cc;
3163 	const char *devname = dm_table_device_name(ti->table);
3164 	int key_size;
3165 	unsigned int align_mask;
3166 	unsigned long long tmpll;
3167 	int ret;
3168 	size_t iv_size_padding, additional_req_size;
3169 	char dummy;
3170 
3171 	if (argc < 5) {
3172 		ti->error = "Not enough arguments";
3173 		return -EINVAL;
3174 	}
3175 
3176 	key_size = get_key_size(&argv[1]);
3177 	if (key_size < 0) {
3178 		ti->error = "Cannot parse key size";
3179 		return -EINVAL;
3180 	}
3181 
3182 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3183 	if (!cc) {
3184 		ti->error = "Cannot allocate encryption context";
3185 		return -ENOMEM;
3186 	}
3187 	cc->key_size = key_size;
3188 	cc->sector_size = (1 << SECTOR_SHIFT);
3189 	cc->sector_shift = 0;
3190 
3191 	ti->private = cc;
3192 
3193 	spin_lock(&dm_crypt_clients_lock);
3194 	dm_crypt_clients_n++;
3195 	crypt_calculate_pages_per_client();
3196 	spin_unlock(&dm_crypt_clients_lock);
3197 
3198 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3199 	if (ret < 0)
3200 		goto bad;
3201 
3202 	/* Optional parameters need to be read before cipher constructor */
3203 	if (argc > 5) {
3204 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3205 		if (ret)
3206 			goto bad;
3207 	}
3208 
3209 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3210 	if (ret < 0)
3211 		goto bad;
3212 
3213 	if (crypt_integrity_aead(cc)) {
3214 		cc->dmreq_start = sizeof(struct aead_request);
3215 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3216 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3217 	} else {
3218 		cc->dmreq_start = sizeof(struct skcipher_request);
3219 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3220 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3221 	}
3222 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3223 
3224 	if (align_mask < CRYPTO_MINALIGN) {
3225 		/* Allocate the padding exactly */
3226 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3227 				& align_mask;
3228 	} else {
3229 		/*
3230 		 * If the cipher requires greater alignment than kmalloc
3231 		 * alignment, we don't know the exact position of the
3232 		 * initialization vector. We must assume worst case.
3233 		 */
3234 		iv_size_padding = align_mask;
3235 	}
3236 
3237 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3238 	additional_req_size = sizeof(struct dm_crypt_request) +
3239 		iv_size_padding + cc->iv_size +
3240 		cc->iv_size +
3241 		sizeof(uint64_t) +
3242 		sizeof(unsigned int);
3243 
3244 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3245 	if (ret) {
3246 		ti->error = "Cannot allocate crypt request mempool";
3247 		goto bad;
3248 	}
3249 
3250 	cc->per_bio_data_size = ti->per_io_data_size =
3251 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3252 		      ARCH_KMALLOC_MINALIGN);
3253 
3254 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3255 	if (ret) {
3256 		ti->error = "Cannot allocate page mempool";
3257 		goto bad;
3258 	}
3259 
3260 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3261 	if (ret) {
3262 		ti->error = "Cannot allocate crypt bioset";
3263 		goto bad;
3264 	}
3265 
3266 	mutex_init(&cc->bio_alloc_lock);
3267 
3268 	ret = -EINVAL;
3269 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3270 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3271 		ti->error = "Invalid iv_offset sector";
3272 		goto bad;
3273 	}
3274 	cc->iv_offset = tmpll;
3275 
3276 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3277 	if (ret) {
3278 		ti->error = "Device lookup failed";
3279 		goto bad;
3280 	}
3281 
3282 	ret = -EINVAL;
3283 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3284 		ti->error = "Invalid device sector";
3285 		goto bad;
3286 	}
3287 	cc->start = tmpll;
3288 
3289 	if (bdev_is_zoned(cc->dev->bdev)) {
3290 		/*
3291 		 * For zoned block devices, we need to preserve the issuer write
3292 		 * ordering. To do so, disable write workqueues and force inline
3293 		 * encryption completion.
3294 		 */
3295 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3296 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3297 
3298 		/*
3299 		 * All zone append writes to a zone of a zoned block device will
3300 		 * have the same BIO sector, the start of the zone. When the
3301 		 * cypher IV mode uses sector values, all data targeting a
3302 		 * zone will be encrypted using the first sector numbers of the
3303 		 * zone. This will not result in write errors but will
3304 		 * cause most reads to fail as reads will use the sector values
3305 		 * for the actual data locations, resulting in IV mismatch.
3306 		 * To avoid this problem, ask DM core to emulate zone append
3307 		 * operations with regular writes.
3308 		 */
3309 		DMDEBUG("Zone append operations will be emulated");
3310 		ti->emulate_zone_append = true;
3311 	}
3312 
3313 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3314 		ret = crypt_integrity_ctr(cc, ti);
3315 		if (ret)
3316 			goto bad;
3317 
3318 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3319 		if (!cc->tag_pool_max_sectors)
3320 			cc->tag_pool_max_sectors = 1;
3321 
3322 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3323 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3324 		if (ret) {
3325 			ti->error = "Cannot allocate integrity tags mempool";
3326 			goto bad;
3327 		}
3328 
3329 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3330 	}
3331 
3332 	ret = -ENOMEM;
3333 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3334 	if (!cc->io_queue) {
3335 		ti->error = "Couldn't create kcryptd io queue";
3336 		goto bad;
3337 	}
3338 
3339 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3340 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3341 						  1, devname);
3342 	else
3343 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3344 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3345 						  num_online_cpus(), devname);
3346 	if (!cc->crypt_queue) {
3347 		ti->error = "Couldn't create kcryptd queue";
3348 		goto bad;
3349 	}
3350 
3351 	spin_lock_init(&cc->write_thread_lock);
3352 	cc->write_tree = RB_ROOT;
3353 
3354 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3355 	if (IS_ERR(cc->write_thread)) {
3356 		ret = PTR_ERR(cc->write_thread);
3357 		cc->write_thread = NULL;
3358 		ti->error = "Couldn't spawn write thread";
3359 		goto bad;
3360 	}
3361 
3362 	ti->num_flush_bios = 1;
3363 	ti->limit_swap_bios = true;
3364 
3365 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3366 	return 0;
3367 
3368 bad:
3369 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3370 	crypt_dtr(ti);
3371 	return ret;
3372 }
3373 
3374 static int crypt_map(struct dm_target *ti, struct bio *bio)
3375 {
3376 	struct dm_crypt_io *io;
3377 	struct crypt_config *cc = ti->private;
3378 
3379 	/*
3380 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3381 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3382 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3383 	 */
3384 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3385 	    bio_op(bio) == REQ_OP_DISCARD)) {
3386 		bio_set_dev(bio, cc->dev->bdev);
3387 		if (bio_sectors(bio))
3388 			bio->bi_iter.bi_sector = cc->start +
3389 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3390 		return DM_MAPIO_REMAPPED;
3391 	}
3392 
3393 	/*
3394 	 * Check if bio is too large, split as needed.
3395 	 */
3396 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3397 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3398 		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3399 
3400 	/*
3401 	 * Ensure that bio is a multiple of internal sector encryption size
3402 	 * and is aligned to this size as defined in IO hints.
3403 	 */
3404 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3405 		return DM_MAPIO_KILL;
3406 
3407 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3408 		return DM_MAPIO_KILL;
3409 
3410 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3411 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3412 
3413 	if (cc->on_disk_tag_size) {
3414 		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3415 
3416 		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
3417 		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3418 				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3419 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3420 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3421 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3422 			io->integrity_metadata_from_pool = true;
3423 		}
3424 	}
3425 
3426 	if (crypt_integrity_aead(cc))
3427 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3428 	else
3429 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3430 
3431 	if (bio_data_dir(io->base_bio) == READ) {
3432 		if (kcryptd_io_read(io, GFP_NOWAIT))
3433 			kcryptd_queue_read(io);
3434 	} else
3435 		kcryptd_queue_crypt(io);
3436 
3437 	return DM_MAPIO_SUBMITTED;
3438 }
3439 
3440 static void crypt_status(struct dm_target *ti, status_type_t type,
3441 			 unsigned status_flags, char *result, unsigned maxlen)
3442 {
3443 	struct crypt_config *cc = ti->private;
3444 	unsigned i, sz = 0;
3445 	int num_feature_args = 0;
3446 
3447 	switch (type) {
3448 	case STATUSTYPE_INFO:
3449 		result[0] = '\0';
3450 		break;
3451 
3452 	case STATUSTYPE_TABLE:
3453 		DMEMIT("%s ", cc->cipher_string);
3454 
3455 		if (cc->key_size > 0) {
3456 			if (cc->key_string)
3457 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3458 			else
3459 				for (i = 0; i < cc->key_size; i++)
3460 					DMEMIT("%02x", cc->key[i]);
3461 		} else
3462 			DMEMIT("-");
3463 
3464 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3465 				cc->dev->name, (unsigned long long)cc->start);
3466 
3467 		num_feature_args += !!ti->num_discard_bios;
3468 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3469 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3470 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3471 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3472 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3473 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3474 		if (cc->on_disk_tag_size)
3475 			num_feature_args++;
3476 		if (num_feature_args) {
3477 			DMEMIT(" %d", num_feature_args);
3478 			if (ti->num_discard_bios)
3479 				DMEMIT(" allow_discards");
3480 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3481 				DMEMIT(" same_cpu_crypt");
3482 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3483 				DMEMIT(" submit_from_crypt_cpus");
3484 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3485 				DMEMIT(" no_read_workqueue");
3486 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3487 				DMEMIT(" no_write_workqueue");
3488 			if (cc->on_disk_tag_size)
3489 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3490 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3491 				DMEMIT(" sector_size:%d", cc->sector_size);
3492 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3493 				DMEMIT(" iv_large_sectors");
3494 		}
3495 		break;
3496 
3497 	case STATUSTYPE_IMA:
3498 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3499 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3500 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3501 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3502 		       'y' : 'n');
3503 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3504 		       'y' : 'n');
3505 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3506 		       'y' : 'n');
3507 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3508 		       'y' : 'n');
3509 
3510 		if (cc->on_disk_tag_size)
3511 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3512 			       cc->on_disk_tag_size, cc->cipher_auth);
3513 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3514 			DMEMIT(",sector_size=%d", cc->sector_size);
3515 		if (cc->cipher_string)
3516 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3517 
3518 		DMEMIT(",key_size=%u", cc->key_size);
3519 		DMEMIT(",key_parts=%u", cc->key_parts);
3520 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3521 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3522 		DMEMIT(";");
3523 		break;
3524 	}
3525 }
3526 
3527 static void crypt_postsuspend(struct dm_target *ti)
3528 {
3529 	struct crypt_config *cc = ti->private;
3530 
3531 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3532 }
3533 
3534 static int crypt_preresume(struct dm_target *ti)
3535 {
3536 	struct crypt_config *cc = ti->private;
3537 
3538 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3539 		DMERR("aborting resume - crypt key is not set.");
3540 		return -EAGAIN;
3541 	}
3542 
3543 	return 0;
3544 }
3545 
3546 static void crypt_resume(struct dm_target *ti)
3547 {
3548 	struct crypt_config *cc = ti->private;
3549 
3550 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3551 }
3552 
3553 /* Message interface
3554  *	key set <key>
3555  *	key wipe
3556  */
3557 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3558 			 char *result, unsigned maxlen)
3559 {
3560 	struct crypt_config *cc = ti->private;
3561 	int key_size, ret = -EINVAL;
3562 
3563 	if (argc < 2)
3564 		goto error;
3565 
3566 	if (!strcasecmp(argv[0], "key")) {
3567 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3568 			DMWARN("not suspended during key manipulation.");
3569 			return -EINVAL;
3570 		}
3571 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3572 			/* The key size may not be changed. */
3573 			key_size = get_key_size(&argv[2]);
3574 			if (key_size < 0 || cc->key_size != key_size) {
3575 				memset(argv[2], '0', strlen(argv[2]));
3576 				return -EINVAL;
3577 			}
3578 
3579 			ret = crypt_set_key(cc, argv[2]);
3580 			if (ret)
3581 				return ret;
3582 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3583 				ret = cc->iv_gen_ops->init(cc);
3584 			/* wipe the kernel key payload copy */
3585 			if (cc->key_string)
3586 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3587 			return ret;
3588 		}
3589 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3590 			return crypt_wipe_key(cc);
3591 	}
3592 
3593 error:
3594 	DMWARN("unrecognised message received.");
3595 	return -EINVAL;
3596 }
3597 
3598 static int crypt_iterate_devices(struct dm_target *ti,
3599 				 iterate_devices_callout_fn fn, void *data)
3600 {
3601 	struct crypt_config *cc = ti->private;
3602 
3603 	return fn(ti, cc->dev, cc->start, ti->len, data);
3604 }
3605 
3606 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3607 {
3608 	struct crypt_config *cc = ti->private;
3609 
3610 	/*
3611 	 * Unfortunate constraint that is required to avoid the potential
3612 	 * for exceeding underlying device's max_segments limits -- due to
3613 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3614 	 * bio that are not as physically contiguous as the original bio.
3615 	 */
3616 	limits->max_segment_size = PAGE_SIZE;
3617 
3618 	limits->logical_block_size =
3619 		max_t(unsigned, limits->logical_block_size, cc->sector_size);
3620 	limits->physical_block_size =
3621 		max_t(unsigned, limits->physical_block_size, cc->sector_size);
3622 	limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3623 }
3624 
3625 static struct target_type crypt_target = {
3626 	.name   = "crypt",
3627 	.version = {1, 23, 0},
3628 	.module = THIS_MODULE,
3629 	.ctr    = crypt_ctr,
3630 	.dtr    = crypt_dtr,
3631 	.features = DM_TARGET_ZONED_HM,
3632 	.report_zones = crypt_report_zones,
3633 	.map    = crypt_map,
3634 	.status = crypt_status,
3635 	.postsuspend = crypt_postsuspend,
3636 	.preresume = crypt_preresume,
3637 	.resume = crypt_resume,
3638 	.message = crypt_message,
3639 	.iterate_devices = crypt_iterate_devices,
3640 	.io_hints = crypt_io_hints,
3641 };
3642 
3643 static int __init dm_crypt_init(void)
3644 {
3645 	int r;
3646 
3647 	r = dm_register_target(&crypt_target);
3648 	if (r < 0)
3649 		DMERR("register failed %d", r);
3650 
3651 	return r;
3652 }
3653 
3654 static void __exit dm_crypt_exit(void)
3655 {
3656 	dm_unregister_target(&crypt_target);
3657 }
3658 
3659 module_init(dm_crypt_init);
3660 module_exit(dm_crypt_exit);
3661 
3662 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3663 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3664 MODULE_LICENSE("GPL");
3665