xref: /openbmc/linux/drivers/md/dm-crypt.c (revision a1e58bbd)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <asm/atomic.h>
22 #include <linux/scatterlist.h>
23 #include <asm/page.h>
24 #include <asm/unaligned.h>
25 
26 #include "dm.h"
27 
28 #define DM_MSG_PREFIX "crypt"
29 #define MESG_STR(x) x, sizeof(x)
30 
31 /*
32  * context holding the current state of a multi-part conversion
33  */
34 struct convert_context {
35 	struct completion restart;
36 	struct bio *bio_in;
37 	struct bio *bio_out;
38 	unsigned int offset_in;
39 	unsigned int offset_out;
40 	unsigned int idx_in;
41 	unsigned int idx_out;
42 	sector_t sector;
43 	atomic_t pending;
44 };
45 
46 /*
47  * per bio private data
48  */
49 struct dm_crypt_io {
50 	struct dm_target *target;
51 	struct bio *base_bio;
52 	struct work_struct work;
53 
54 	struct convert_context ctx;
55 
56 	atomic_t pending;
57 	int error;
58 	sector_t sector;
59 };
60 
61 struct dm_crypt_request {
62 	struct scatterlist sg_in;
63 	struct scatterlist sg_out;
64 };
65 
66 struct crypt_config;
67 
68 struct crypt_iv_operations {
69 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
70 		   const char *opts);
71 	void (*dtr)(struct crypt_config *cc);
72 	const char *(*status)(struct crypt_config *cc);
73 	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
74 };
75 
76 /*
77  * Crypt: maps a linear range of a block device
78  * and encrypts / decrypts at the same time.
79  */
80 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
81 struct crypt_config {
82 	struct dm_dev *dev;
83 	sector_t start;
84 
85 	/*
86 	 * pool for per bio private data, crypto requests and
87 	 * encryption requeusts/buffer pages
88 	 */
89 	mempool_t *io_pool;
90 	mempool_t *req_pool;
91 	mempool_t *page_pool;
92 	struct bio_set *bs;
93 
94 	struct workqueue_struct *io_queue;
95 	struct workqueue_struct *crypt_queue;
96 	wait_queue_head_t writeq;
97 
98 	/*
99 	 * crypto related data
100 	 */
101 	struct crypt_iv_operations *iv_gen_ops;
102 	char *iv_mode;
103 	union {
104 		struct crypto_cipher *essiv_tfm;
105 		int benbi_shift;
106 	} iv_gen_private;
107 	sector_t iv_offset;
108 	unsigned int iv_size;
109 
110 	/*
111 	 * Layout of each crypto request:
112 	 *
113 	 *   struct ablkcipher_request
114 	 *      context
115 	 *      padding
116 	 *   struct dm_crypt_request
117 	 *      padding
118 	 *   IV
119 	 *
120 	 * The padding is added so that dm_crypt_request and the IV are
121 	 * correctly aligned.
122 	 */
123 	unsigned int dmreq_start;
124 	struct ablkcipher_request *req;
125 
126 	char cipher[CRYPTO_MAX_ALG_NAME];
127 	char chainmode[CRYPTO_MAX_ALG_NAME];
128 	struct crypto_ablkcipher *tfm;
129 	unsigned long flags;
130 	unsigned int key_size;
131 	u8 key[0];
132 };
133 
134 #define MIN_IOS        16
135 #define MIN_POOL_PAGES 32
136 #define MIN_BIO_PAGES  8
137 
138 static struct kmem_cache *_crypt_io_pool;
139 
140 static void clone_init(struct dm_crypt_io *, struct bio *);
141 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
142 
143 /*
144  * Different IV generation algorithms:
145  *
146  * plain: the initial vector is the 32-bit little-endian version of the sector
147  *        number, padded with zeros if necessary.
148  *
149  * essiv: "encrypted sector|salt initial vector", the sector number is
150  *        encrypted with the bulk cipher using a salt as key. The salt
151  *        should be derived from the bulk cipher's key via hashing.
152  *
153  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
154  *        (needed for LRW-32-AES and possible other narrow block modes)
155  *
156  * null: the initial vector is always zero.  Provides compatibility with
157  *       obsolete loop_fish2 devices.  Do not use for new devices.
158  *
159  * plumb: unimplemented, see:
160  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
161  */
162 
163 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
164 {
165 	memset(iv, 0, cc->iv_size);
166 	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
167 
168 	return 0;
169 }
170 
171 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
172 			      const char *opts)
173 {
174 	struct crypto_cipher *essiv_tfm;
175 	struct crypto_hash *hash_tfm;
176 	struct hash_desc desc;
177 	struct scatterlist sg;
178 	unsigned int saltsize;
179 	u8 *salt;
180 	int err;
181 
182 	if (opts == NULL) {
183 		ti->error = "Digest algorithm missing for ESSIV mode";
184 		return -EINVAL;
185 	}
186 
187 	/* Hash the cipher key with the given hash algorithm */
188 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
189 	if (IS_ERR(hash_tfm)) {
190 		ti->error = "Error initializing ESSIV hash";
191 		return PTR_ERR(hash_tfm);
192 	}
193 
194 	saltsize = crypto_hash_digestsize(hash_tfm);
195 	salt = kmalloc(saltsize, GFP_KERNEL);
196 	if (salt == NULL) {
197 		ti->error = "Error kmallocing salt storage in ESSIV";
198 		crypto_free_hash(hash_tfm);
199 		return -ENOMEM;
200 	}
201 
202 	sg_init_one(&sg, cc->key, cc->key_size);
203 	desc.tfm = hash_tfm;
204 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
205 	err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
206 	crypto_free_hash(hash_tfm);
207 
208 	if (err) {
209 		ti->error = "Error calculating hash in ESSIV";
210 		kfree(salt);
211 		return err;
212 	}
213 
214 	/* Setup the essiv_tfm with the given salt */
215 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
216 	if (IS_ERR(essiv_tfm)) {
217 		ti->error = "Error allocating crypto tfm for ESSIV";
218 		kfree(salt);
219 		return PTR_ERR(essiv_tfm);
220 	}
221 	if (crypto_cipher_blocksize(essiv_tfm) !=
222 	    crypto_ablkcipher_ivsize(cc->tfm)) {
223 		ti->error = "Block size of ESSIV cipher does "
224 			    "not match IV size of block cipher";
225 		crypto_free_cipher(essiv_tfm);
226 		kfree(salt);
227 		return -EINVAL;
228 	}
229 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
230 	if (err) {
231 		ti->error = "Failed to set key for ESSIV cipher";
232 		crypto_free_cipher(essiv_tfm);
233 		kfree(salt);
234 		return err;
235 	}
236 	kfree(salt);
237 
238 	cc->iv_gen_private.essiv_tfm = essiv_tfm;
239 	return 0;
240 }
241 
242 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
243 {
244 	crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
245 	cc->iv_gen_private.essiv_tfm = NULL;
246 }
247 
248 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
249 {
250 	memset(iv, 0, cc->iv_size);
251 	*(u64 *)iv = cpu_to_le64(sector);
252 	crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
253 	return 0;
254 }
255 
256 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
257 			      const char *opts)
258 {
259 	unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
260 	int log = ilog2(bs);
261 
262 	/* we need to calculate how far we must shift the sector count
263 	 * to get the cipher block count, we use this shift in _gen */
264 
265 	if (1 << log != bs) {
266 		ti->error = "cypher blocksize is not a power of 2";
267 		return -EINVAL;
268 	}
269 
270 	if (log > 9) {
271 		ti->error = "cypher blocksize is > 512";
272 		return -EINVAL;
273 	}
274 
275 	cc->iv_gen_private.benbi_shift = 9 - log;
276 
277 	return 0;
278 }
279 
280 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
281 {
282 }
283 
284 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
285 {
286 	__be64 val;
287 
288 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
289 
290 	val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
291 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
292 
293 	return 0;
294 }
295 
296 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
297 {
298 	memset(iv, 0, cc->iv_size);
299 
300 	return 0;
301 }
302 
303 static struct crypt_iv_operations crypt_iv_plain_ops = {
304 	.generator = crypt_iv_plain_gen
305 };
306 
307 static struct crypt_iv_operations crypt_iv_essiv_ops = {
308 	.ctr       = crypt_iv_essiv_ctr,
309 	.dtr       = crypt_iv_essiv_dtr,
310 	.generator = crypt_iv_essiv_gen
311 };
312 
313 static struct crypt_iv_operations crypt_iv_benbi_ops = {
314 	.ctr	   = crypt_iv_benbi_ctr,
315 	.dtr	   = crypt_iv_benbi_dtr,
316 	.generator = crypt_iv_benbi_gen
317 };
318 
319 static struct crypt_iv_operations crypt_iv_null_ops = {
320 	.generator = crypt_iv_null_gen
321 };
322 
323 static void crypt_convert_init(struct crypt_config *cc,
324 			       struct convert_context *ctx,
325 			       struct bio *bio_out, struct bio *bio_in,
326 			       sector_t sector)
327 {
328 	ctx->bio_in = bio_in;
329 	ctx->bio_out = bio_out;
330 	ctx->offset_in = 0;
331 	ctx->offset_out = 0;
332 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
333 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
334 	ctx->sector = sector + cc->iv_offset;
335 	init_completion(&ctx->restart);
336 	atomic_set(&ctx->pending, 1);
337 }
338 
339 static int crypt_convert_block(struct crypt_config *cc,
340 			       struct convert_context *ctx,
341 			       struct ablkcipher_request *req)
342 {
343 	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
344 	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
345 	struct dm_crypt_request *dmreq;
346 	u8 *iv;
347 	int r = 0;
348 
349 	dmreq = (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
350 	iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
351 			 crypto_ablkcipher_alignmask(cc->tfm) + 1);
352 
353 	sg_init_table(&dmreq->sg_in, 1);
354 	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
355 		    bv_in->bv_offset + ctx->offset_in);
356 
357 	sg_init_table(&dmreq->sg_out, 1);
358 	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
359 		    bv_out->bv_offset + ctx->offset_out);
360 
361 	ctx->offset_in += 1 << SECTOR_SHIFT;
362 	if (ctx->offset_in >= bv_in->bv_len) {
363 		ctx->offset_in = 0;
364 		ctx->idx_in++;
365 	}
366 
367 	ctx->offset_out += 1 << SECTOR_SHIFT;
368 	if (ctx->offset_out >= bv_out->bv_len) {
369 		ctx->offset_out = 0;
370 		ctx->idx_out++;
371 	}
372 
373 	if (cc->iv_gen_ops) {
374 		r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
375 		if (r < 0)
376 			return r;
377 	}
378 
379 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
380 				     1 << SECTOR_SHIFT, iv);
381 
382 	if (bio_data_dir(ctx->bio_in) == WRITE)
383 		r = crypto_ablkcipher_encrypt(req);
384 	else
385 		r = crypto_ablkcipher_decrypt(req);
386 
387 	return r;
388 }
389 
390 static void kcryptd_async_done(struct crypto_async_request *async_req,
391 			       int error);
392 static void crypt_alloc_req(struct crypt_config *cc,
393 			    struct convert_context *ctx)
394 {
395 	if (!cc->req)
396 		cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
397 	ablkcipher_request_set_tfm(cc->req, cc->tfm);
398 	ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
399 					     CRYPTO_TFM_REQ_MAY_SLEEP,
400 					     kcryptd_async_done, ctx);
401 }
402 
403 /*
404  * Encrypt / decrypt data from one bio to another one (can be the same one)
405  */
406 static int crypt_convert(struct crypt_config *cc,
407 			 struct convert_context *ctx)
408 {
409 	int r;
410 
411 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
412 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
413 
414 		crypt_alloc_req(cc, ctx);
415 
416 		atomic_inc(&ctx->pending);
417 
418 		r = crypt_convert_block(cc, ctx, cc->req);
419 
420 		switch (r) {
421 		/* async */
422 		case -EBUSY:
423 			wait_for_completion(&ctx->restart);
424 			INIT_COMPLETION(ctx->restart);
425 			/* fall through*/
426 		case -EINPROGRESS:
427 			cc->req = NULL;
428 			ctx->sector++;
429 			continue;
430 
431 		/* sync */
432 		case 0:
433 			atomic_dec(&ctx->pending);
434 			ctx->sector++;
435 			continue;
436 
437 		/* error */
438 		default:
439 			atomic_dec(&ctx->pending);
440 			return r;
441 		}
442 	}
443 
444 	return 0;
445 }
446 
447 static void dm_crypt_bio_destructor(struct bio *bio)
448 {
449 	struct dm_crypt_io *io = bio->bi_private;
450 	struct crypt_config *cc = io->target->private;
451 
452 	bio_free(bio, cc->bs);
453 }
454 
455 /*
456  * Generate a new unfragmented bio with the given size
457  * This should never violate the device limitations
458  * May return a smaller bio when running out of pages
459  */
460 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
461 {
462 	struct crypt_config *cc = io->target->private;
463 	struct bio *clone;
464 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
465 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
466 	unsigned i, len;
467 	struct page *page;
468 
469 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
470 	if (!clone)
471 		return NULL;
472 
473 	clone_init(io, clone);
474 
475 	for (i = 0; i < nr_iovecs; i++) {
476 		page = mempool_alloc(cc->page_pool, gfp_mask);
477 		if (!page)
478 			break;
479 
480 		/*
481 		 * if additional pages cannot be allocated without waiting,
482 		 * return a partially allocated bio, the caller will then try
483 		 * to allocate additional bios while submitting this partial bio
484 		 */
485 		if (i == (MIN_BIO_PAGES - 1))
486 			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
487 
488 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
489 
490 		if (!bio_add_page(clone, page, len, 0)) {
491 			mempool_free(page, cc->page_pool);
492 			break;
493 		}
494 
495 		size -= len;
496 	}
497 
498 	if (!clone->bi_size) {
499 		bio_put(clone);
500 		return NULL;
501 	}
502 
503 	return clone;
504 }
505 
506 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
507 {
508 	unsigned int i;
509 	struct bio_vec *bv;
510 
511 	for (i = 0; i < clone->bi_vcnt; i++) {
512 		bv = bio_iovec_idx(clone, i);
513 		BUG_ON(!bv->bv_page);
514 		mempool_free(bv->bv_page, cc->page_pool);
515 		bv->bv_page = NULL;
516 	}
517 }
518 
519 /*
520  * One of the bios was finished. Check for completion of
521  * the whole request and correctly clean up the buffer.
522  */
523 static void crypt_dec_pending(struct dm_crypt_io *io)
524 {
525 	struct crypt_config *cc = io->target->private;
526 
527 	if (!atomic_dec_and_test(&io->pending))
528 		return;
529 
530 	bio_endio(io->base_bio, io->error);
531 	mempool_free(io, cc->io_pool);
532 }
533 
534 /*
535  * kcryptd/kcryptd_io:
536  *
537  * Needed because it would be very unwise to do decryption in an
538  * interrupt context.
539  *
540  * kcryptd performs the actual encryption or decryption.
541  *
542  * kcryptd_io performs the IO submission.
543  *
544  * They must be separated as otherwise the final stages could be
545  * starved by new requests which can block in the first stages due
546  * to memory allocation.
547  */
548 static void crypt_endio(struct bio *clone, int error)
549 {
550 	struct dm_crypt_io *io = clone->bi_private;
551 	struct crypt_config *cc = io->target->private;
552 	unsigned rw = bio_data_dir(clone);
553 
554 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
555 		error = -EIO;
556 
557 	/*
558 	 * free the processed pages
559 	 */
560 	if (rw == WRITE)
561 		crypt_free_buffer_pages(cc, clone);
562 
563 	bio_put(clone);
564 
565 	if (rw == READ && !error) {
566 		kcryptd_queue_crypt(io);
567 		return;
568 	}
569 
570 	if (unlikely(error))
571 		io->error = error;
572 
573 	crypt_dec_pending(io);
574 }
575 
576 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
577 {
578 	struct crypt_config *cc = io->target->private;
579 
580 	clone->bi_private = io;
581 	clone->bi_end_io  = crypt_endio;
582 	clone->bi_bdev    = cc->dev->bdev;
583 	clone->bi_rw      = io->base_bio->bi_rw;
584 	clone->bi_destructor = dm_crypt_bio_destructor;
585 }
586 
587 static void kcryptd_io_read(struct dm_crypt_io *io)
588 {
589 	struct crypt_config *cc = io->target->private;
590 	struct bio *base_bio = io->base_bio;
591 	struct bio *clone;
592 
593 	atomic_inc(&io->pending);
594 
595 	/*
596 	 * The block layer might modify the bvec array, so always
597 	 * copy the required bvecs because we need the original
598 	 * one in order to decrypt the whole bio data *afterwards*.
599 	 */
600 	clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
601 	if (unlikely(!clone)) {
602 		io->error = -ENOMEM;
603 		crypt_dec_pending(io);
604 		return;
605 	}
606 
607 	clone_init(io, clone);
608 	clone->bi_idx = 0;
609 	clone->bi_vcnt = bio_segments(base_bio);
610 	clone->bi_size = base_bio->bi_size;
611 	clone->bi_sector = cc->start + io->sector;
612 	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
613 	       sizeof(struct bio_vec) * clone->bi_vcnt);
614 
615 	generic_make_request(clone);
616 }
617 
618 static void kcryptd_io_write(struct dm_crypt_io *io)
619 {
620 	struct bio *clone = io->ctx.bio_out;
621 	struct crypt_config *cc = io->target->private;
622 
623 	generic_make_request(clone);
624 	wake_up(&cc->writeq);
625 }
626 
627 static void kcryptd_io(struct work_struct *work)
628 {
629 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
630 
631 	if (bio_data_dir(io->base_bio) == READ)
632 		kcryptd_io_read(io);
633 	else
634 		kcryptd_io_write(io);
635 }
636 
637 static void kcryptd_queue_io(struct dm_crypt_io *io)
638 {
639 	struct crypt_config *cc = io->target->private;
640 
641 	INIT_WORK(&io->work, kcryptd_io);
642 	queue_work(cc->io_queue, &io->work);
643 }
644 
645 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
646 					  int error, int async)
647 {
648 	struct bio *clone = io->ctx.bio_out;
649 	struct crypt_config *cc = io->target->private;
650 
651 	if (unlikely(error < 0)) {
652 		crypt_free_buffer_pages(cc, clone);
653 		bio_put(clone);
654 		io->error = -EIO;
655 		return;
656 	}
657 
658 	/* crypt_convert should have filled the clone bio */
659 	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
660 
661 	clone->bi_sector = cc->start + io->sector;
662 	io->sector += bio_sectors(clone);
663 
664 	if (async)
665 		kcryptd_queue_io(io);
666 	else {
667 		atomic_inc(&io->pending);
668 		generic_make_request(clone);
669 	}
670 }
671 
672 static void kcryptd_crypt_write_convert_loop(struct dm_crypt_io *io)
673 {
674 	struct crypt_config *cc = io->target->private;
675 	struct bio *clone;
676 	unsigned remaining = io->base_bio->bi_size;
677 	int r;
678 
679 	/*
680 	 * The allocated buffers can be smaller than the whole bio,
681 	 * so repeat the whole process until all the data can be handled.
682 	 */
683 	while (remaining) {
684 		clone = crypt_alloc_buffer(io, remaining);
685 		if (unlikely(!clone)) {
686 			io->error = -ENOMEM;
687 			return;
688 		}
689 
690 		io->ctx.bio_out = clone;
691 		io->ctx.idx_out = 0;
692 
693 		remaining -= clone->bi_size;
694 
695 		r = crypt_convert(cc, &io->ctx);
696 
697 		if (atomic_dec_and_test(&io->ctx.pending)) {
698 			/* processed, no running async crypto  */
699 			kcryptd_crypt_write_io_submit(io, r, 0);
700 			if (unlikely(r < 0))
701 				return;
702 		} else
703 			atomic_inc(&io->pending);
704 
705 		/* out of memory -> run queues */
706 		if (unlikely(remaining)) {
707 			/* wait for async crypto then reinitialize pending */
708 			wait_event(cc->writeq, !atomic_read(&io->ctx.pending));
709 			atomic_set(&io->ctx.pending, 1);
710 			congestion_wait(WRITE, HZ/100);
711 		}
712 	}
713 }
714 
715 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
716 {
717 	struct crypt_config *cc = io->target->private;
718 
719 	/*
720 	 * Prevent io from disappearing until this function completes.
721 	 */
722 	atomic_inc(&io->pending);
723 
724 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, io->sector);
725 	kcryptd_crypt_write_convert_loop(io);
726 
727 	crypt_dec_pending(io);
728 }
729 
730 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
731 {
732 	if (unlikely(error < 0))
733 		io->error = -EIO;
734 
735 	crypt_dec_pending(io);
736 }
737 
738 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
739 {
740 	struct crypt_config *cc = io->target->private;
741 	int r = 0;
742 
743 	atomic_inc(&io->pending);
744 
745 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
746 			   io->sector);
747 
748 	r = crypt_convert(cc, &io->ctx);
749 
750 	if (atomic_dec_and_test(&io->ctx.pending))
751 		kcryptd_crypt_read_done(io, r);
752 
753 	crypt_dec_pending(io);
754 }
755 
756 static void kcryptd_async_done(struct crypto_async_request *async_req,
757 			       int error)
758 {
759 	struct convert_context *ctx = async_req->data;
760 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
761 	struct crypt_config *cc = io->target->private;
762 
763 	if (error == -EINPROGRESS) {
764 		complete(&ctx->restart);
765 		return;
766 	}
767 
768 	mempool_free(ablkcipher_request_cast(async_req), cc->req_pool);
769 
770 	if (!atomic_dec_and_test(&ctx->pending))
771 		return;
772 
773 	if (bio_data_dir(io->base_bio) == READ)
774 		kcryptd_crypt_read_done(io, error);
775 	else
776 		kcryptd_crypt_write_io_submit(io, error, 1);
777 }
778 
779 static void kcryptd_crypt(struct work_struct *work)
780 {
781 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
782 
783 	if (bio_data_dir(io->base_bio) == READ)
784 		kcryptd_crypt_read_convert(io);
785 	else
786 		kcryptd_crypt_write_convert(io);
787 }
788 
789 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
790 {
791 	struct crypt_config *cc = io->target->private;
792 
793 	INIT_WORK(&io->work, kcryptd_crypt);
794 	queue_work(cc->crypt_queue, &io->work);
795 }
796 
797 /*
798  * Decode key from its hex representation
799  */
800 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
801 {
802 	char buffer[3];
803 	char *endp;
804 	unsigned int i;
805 
806 	buffer[2] = '\0';
807 
808 	for (i = 0; i < size; i++) {
809 		buffer[0] = *hex++;
810 		buffer[1] = *hex++;
811 
812 		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
813 
814 		if (endp != &buffer[2])
815 			return -EINVAL;
816 	}
817 
818 	if (*hex != '\0')
819 		return -EINVAL;
820 
821 	return 0;
822 }
823 
824 /*
825  * Encode key into its hex representation
826  */
827 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
828 {
829 	unsigned int i;
830 
831 	for (i = 0; i < size; i++) {
832 		sprintf(hex, "%02x", *key);
833 		hex += 2;
834 		key++;
835 	}
836 }
837 
838 static int crypt_set_key(struct crypt_config *cc, char *key)
839 {
840 	unsigned key_size = strlen(key) >> 1;
841 
842 	if (cc->key_size && cc->key_size != key_size)
843 		return -EINVAL;
844 
845 	cc->key_size = key_size; /* initial settings */
846 
847 	if ((!key_size && strcmp(key, "-")) ||
848 	   (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
849 		return -EINVAL;
850 
851 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
852 
853 	return 0;
854 }
855 
856 static int crypt_wipe_key(struct crypt_config *cc)
857 {
858 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
859 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
860 	return 0;
861 }
862 
863 /*
864  * Construct an encryption mapping:
865  * <cipher> <key> <iv_offset> <dev_path> <start>
866  */
867 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
868 {
869 	struct crypt_config *cc;
870 	struct crypto_ablkcipher *tfm;
871 	char *tmp;
872 	char *cipher;
873 	char *chainmode;
874 	char *ivmode;
875 	char *ivopts;
876 	unsigned int key_size;
877 	unsigned long long tmpll;
878 
879 	if (argc != 5) {
880 		ti->error = "Not enough arguments";
881 		return -EINVAL;
882 	}
883 
884 	tmp = argv[0];
885 	cipher = strsep(&tmp, "-");
886 	chainmode = strsep(&tmp, "-");
887 	ivopts = strsep(&tmp, "-");
888 	ivmode = strsep(&ivopts, ":");
889 
890 	if (tmp)
891 		DMWARN("Unexpected additional cipher options");
892 
893 	key_size = strlen(argv[1]) >> 1;
894 
895  	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
896 	if (cc == NULL) {
897 		ti->error =
898 			"Cannot allocate transparent encryption context";
899 		return -ENOMEM;
900 	}
901 
902  	if (crypt_set_key(cc, argv[1])) {
903 		ti->error = "Error decoding key";
904 		goto bad_cipher;
905 	}
906 
907 	/* Compatiblity mode for old dm-crypt cipher strings */
908 	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
909 		chainmode = "cbc";
910 		ivmode = "plain";
911 	}
912 
913 	if (strcmp(chainmode, "ecb") && !ivmode) {
914 		ti->error = "This chaining mode requires an IV mechanism";
915 		goto bad_cipher;
916 	}
917 
918 	if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
919 		     chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
920 		ti->error = "Chain mode + cipher name is too long";
921 		goto bad_cipher;
922 	}
923 
924 	tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
925 	if (IS_ERR(tfm)) {
926 		ti->error = "Error allocating crypto tfm";
927 		goto bad_cipher;
928 	}
929 
930 	strcpy(cc->cipher, cipher);
931 	strcpy(cc->chainmode, chainmode);
932 	cc->tfm = tfm;
933 
934 	/*
935 	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
936 	 * See comments at iv code
937 	 */
938 
939 	if (ivmode == NULL)
940 		cc->iv_gen_ops = NULL;
941 	else if (strcmp(ivmode, "plain") == 0)
942 		cc->iv_gen_ops = &crypt_iv_plain_ops;
943 	else if (strcmp(ivmode, "essiv") == 0)
944 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
945 	else if (strcmp(ivmode, "benbi") == 0)
946 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
947 	else if (strcmp(ivmode, "null") == 0)
948 		cc->iv_gen_ops = &crypt_iv_null_ops;
949 	else {
950 		ti->error = "Invalid IV mode";
951 		goto bad_ivmode;
952 	}
953 
954 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
955 	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
956 		goto bad_ivmode;
957 
958 	cc->iv_size = crypto_ablkcipher_ivsize(tfm);
959 	if (cc->iv_size)
960 		/* at least a 64 bit sector number should fit in our buffer */
961 		cc->iv_size = max(cc->iv_size,
962 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
963 	else {
964 		if (cc->iv_gen_ops) {
965 			DMWARN("Selected cipher does not support IVs");
966 			if (cc->iv_gen_ops->dtr)
967 				cc->iv_gen_ops->dtr(cc);
968 			cc->iv_gen_ops = NULL;
969 		}
970 	}
971 
972 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
973 	if (!cc->io_pool) {
974 		ti->error = "Cannot allocate crypt io mempool";
975 		goto bad_slab_pool;
976 	}
977 
978 	cc->dmreq_start = sizeof(struct ablkcipher_request);
979 	cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
980 	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
981 	cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
982 			   ~(crypto_tfm_ctx_alignment() - 1);
983 
984 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
985 			sizeof(struct dm_crypt_request) + cc->iv_size);
986 	if (!cc->req_pool) {
987 		ti->error = "Cannot allocate crypt request mempool";
988 		goto bad_req_pool;
989 	}
990 	cc->req = NULL;
991 
992 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
993 	if (!cc->page_pool) {
994 		ti->error = "Cannot allocate page mempool";
995 		goto bad_page_pool;
996 	}
997 
998 	cc->bs = bioset_create(MIN_IOS, MIN_IOS);
999 	if (!cc->bs) {
1000 		ti->error = "Cannot allocate crypt bioset";
1001 		goto bad_bs;
1002 	}
1003 
1004 	if (crypto_ablkcipher_setkey(tfm, cc->key, key_size) < 0) {
1005 		ti->error = "Error setting key";
1006 		goto bad_device;
1007 	}
1008 
1009 	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1010 		ti->error = "Invalid iv_offset sector";
1011 		goto bad_device;
1012 	}
1013 	cc->iv_offset = tmpll;
1014 
1015 	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1016 		ti->error = "Invalid device sector";
1017 		goto bad_device;
1018 	}
1019 	cc->start = tmpll;
1020 
1021 	if (dm_get_device(ti, argv[3], cc->start, ti->len,
1022 			  dm_table_get_mode(ti->table), &cc->dev)) {
1023 		ti->error = "Device lookup failed";
1024 		goto bad_device;
1025 	}
1026 
1027 	if (ivmode && cc->iv_gen_ops) {
1028 		if (ivopts)
1029 			*(ivopts - 1) = ':';
1030 		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
1031 		if (!cc->iv_mode) {
1032 			ti->error = "Error kmallocing iv_mode string";
1033 			goto bad_ivmode_string;
1034 		}
1035 		strcpy(cc->iv_mode, ivmode);
1036 	} else
1037 		cc->iv_mode = NULL;
1038 
1039 	cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1040 	if (!cc->io_queue) {
1041 		ti->error = "Couldn't create kcryptd io queue";
1042 		goto bad_io_queue;
1043 	}
1044 
1045 	cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1046 	if (!cc->crypt_queue) {
1047 		ti->error = "Couldn't create kcryptd queue";
1048 		goto bad_crypt_queue;
1049 	}
1050 
1051 	init_waitqueue_head(&cc->writeq);
1052 	ti->private = cc;
1053 	return 0;
1054 
1055 bad_crypt_queue:
1056 	destroy_workqueue(cc->io_queue);
1057 bad_io_queue:
1058 	kfree(cc->iv_mode);
1059 bad_ivmode_string:
1060 	dm_put_device(ti, cc->dev);
1061 bad_device:
1062 	bioset_free(cc->bs);
1063 bad_bs:
1064 	mempool_destroy(cc->page_pool);
1065 bad_page_pool:
1066 	mempool_destroy(cc->req_pool);
1067 bad_req_pool:
1068 	mempool_destroy(cc->io_pool);
1069 bad_slab_pool:
1070 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1071 		cc->iv_gen_ops->dtr(cc);
1072 bad_ivmode:
1073 	crypto_free_ablkcipher(tfm);
1074 bad_cipher:
1075 	/* Must zero key material before freeing */
1076 	memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
1077 	kfree(cc);
1078 	return -EINVAL;
1079 }
1080 
1081 static void crypt_dtr(struct dm_target *ti)
1082 {
1083 	struct crypt_config *cc = (struct crypt_config *) ti->private;
1084 
1085 	destroy_workqueue(cc->io_queue);
1086 	destroy_workqueue(cc->crypt_queue);
1087 
1088 	if (cc->req)
1089 		mempool_free(cc->req, cc->req_pool);
1090 
1091 	bioset_free(cc->bs);
1092 	mempool_destroy(cc->page_pool);
1093 	mempool_destroy(cc->req_pool);
1094 	mempool_destroy(cc->io_pool);
1095 
1096 	kfree(cc->iv_mode);
1097 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1098 		cc->iv_gen_ops->dtr(cc);
1099 	crypto_free_ablkcipher(cc->tfm);
1100 	dm_put_device(ti, cc->dev);
1101 
1102 	/* Must zero key material before freeing */
1103 	memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
1104 	kfree(cc);
1105 }
1106 
1107 static int crypt_map(struct dm_target *ti, struct bio *bio,
1108 		     union map_info *map_context)
1109 {
1110 	struct crypt_config *cc = ti->private;
1111 	struct dm_crypt_io *io;
1112 
1113 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
1114 	io->target = ti;
1115 	io->base_bio = bio;
1116 	io->sector = bio->bi_sector - ti->begin;
1117 	io->error = 0;
1118 	atomic_set(&io->pending, 0);
1119 
1120 	if (bio_data_dir(io->base_bio) == READ)
1121 		kcryptd_queue_io(io);
1122 	else
1123 		kcryptd_queue_crypt(io);
1124 
1125 	return DM_MAPIO_SUBMITTED;
1126 }
1127 
1128 static int crypt_status(struct dm_target *ti, status_type_t type,
1129 			char *result, unsigned int maxlen)
1130 {
1131 	struct crypt_config *cc = (struct crypt_config *) ti->private;
1132 	unsigned int sz = 0;
1133 
1134 	switch (type) {
1135 	case STATUSTYPE_INFO:
1136 		result[0] = '\0';
1137 		break;
1138 
1139 	case STATUSTYPE_TABLE:
1140 		if (cc->iv_mode)
1141 			DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1142 			       cc->iv_mode);
1143 		else
1144 			DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1145 
1146 		if (cc->key_size > 0) {
1147 			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1148 				return -ENOMEM;
1149 
1150 			crypt_encode_key(result + sz, cc->key, cc->key_size);
1151 			sz += cc->key_size << 1;
1152 		} else {
1153 			if (sz >= maxlen)
1154 				return -ENOMEM;
1155 			result[sz++] = '-';
1156 		}
1157 
1158 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1159 				cc->dev->name, (unsigned long long)cc->start);
1160 		break;
1161 	}
1162 	return 0;
1163 }
1164 
1165 static void crypt_postsuspend(struct dm_target *ti)
1166 {
1167 	struct crypt_config *cc = ti->private;
1168 
1169 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1170 }
1171 
1172 static int crypt_preresume(struct dm_target *ti)
1173 {
1174 	struct crypt_config *cc = ti->private;
1175 
1176 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1177 		DMERR("aborting resume - crypt key is not set.");
1178 		return -EAGAIN;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 static void crypt_resume(struct dm_target *ti)
1185 {
1186 	struct crypt_config *cc = ti->private;
1187 
1188 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1189 }
1190 
1191 /* Message interface
1192  *	key set <key>
1193  *	key wipe
1194  */
1195 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1196 {
1197 	struct crypt_config *cc = ti->private;
1198 
1199 	if (argc < 2)
1200 		goto error;
1201 
1202 	if (!strnicmp(argv[0], MESG_STR("key"))) {
1203 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1204 			DMWARN("not suspended during key manipulation.");
1205 			return -EINVAL;
1206 		}
1207 		if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1208 			return crypt_set_key(cc, argv[2]);
1209 		if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1210 			return crypt_wipe_key(cc);
1211 	}
1212 
1213 error:
1214 	DMWARN("unrecognised message received.");
1215 	return -EINVAL;
1216 }
1217 
1218 static struct target_type crypt_target = {
1219 	.name   = "crypt",
1220 	.version= {1, 5, 0},
1221 	.module = THIS_MODULE,
1222 	.ctr    = crypt_ctr,
1223 	.dtr    = crypt_dtr,
1224 	.map    = crypt_map,
1225 	.status = crypt_status,
1226 	.postsuspend = crypt_postsuspend,
1227 	.preresume = crypt_preresume,
1228 	.resume = crypt_resume,
1229 	.message = crypt_message,
1230 };
1231 
1232 static int __init dm_crypt_init(void)
1233 {
1234 	int r;
1235 
1236 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1237 	if (!_crypt_io_pool)
1238 		return -ENOMEM;
1239 
1240 	r = dm_register_target(&crypt_target);
1241 	if (r < 0) {
1242 		DMERR("register failed %d", r);
1243 		kmem_cache_destroy(_crypt_io_pool);
1244 	}
1245 
1246 	return r;
1247 }
1248 
1249 static void __exit dm_crypt_exit(void)
1250 {
1251 	int r = dm_unregister_target(&crypt_target);
1252 
1253 	if (r < 0)
1254 		DMERR("unregister failed %d", r);
1255 
1256 	kmem_cache_destroy(_crypt_io_pool);
1257 }
1258 
1259 module_init(dm_crypt_init);
1260 module_exit(dm_crypt_exit);
1261 
1262 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1263 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1264 MODULE_LICENSE("GPL");
1265