xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 86a3238c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2003 Jana Saout <jana@saout.de>
4  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7  *
8  * This file is released under the GPL.
9  */
10 
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <asm/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/algapi.h>
35 #include <crypto/skcipher.h>
36 #include <crypto/aead.h>
37 #include <crypto/authenc.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43 
44 #include <linux/device-mapper.h>
45 
46 #include "dm-audit.h"
47 
48 #define DM_MSG_PREFIX "crypt"
49 
50 /*
51  * context holding the current state of a multi-part conversion
52  */
53 struct convert_context {
54 	struct completion restart;
55 	struct bio *bio_in;
56 	struct bio *bio_out;
57 	struct bvec_iter iter_in;
58 	struct bvec_iter iter_out;
59 	u64 cc_sector;
60 	atomic_t cc_pending;
61 	union {
62 		struct skcipher_request *req;
63 		struct aead_request *req_aead;
64 	} r;
65 
66 };
67 
68 /*
69  * per bio private data
70  */
71 struct dm_crypt_io {
72 	struct crypt_config *cc;
73 	struct bio *base_bio;
74 	u8 *integrity_metadata;
75 	bool integrity_metadata_from_pool;
76 	struct work_struct work;
77 	struct tasklet_struct tasklet;
78 
79 	struct convert_context ctx;
80 
81 	atomic_t io_pending;
82 	blk_status_t error;
83 	sector_t sector;
84 
85 	struct rb_node rb_node;
86 } CRYPTO_MINALIGN_ATTR;
87 
88 struct dm_crypt_request {
89 	struct convert_context *ctx;
90 	struct scatterlist sg_in[4];
91 	struct scatterlist sg_out[4];
92 	u64 iv_sector;
93 };
94 
95 struct crypt_config;
96 
97 struct crypt_iv_operations {
98 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
99 		   const char *opts);
100 	void (*dtr)(struct crypt_config *cc);
101 	int (*init)(struct crypt_config *cc);
102 	int (*wipe)(struct crypt_config *cc);
103 	int (*generator)(struct crypt_config *cc, u8 *iv,
104 			 struct dm_crypt_request *dmreq);
105 	int (*post)(struct crypt_config *cc, u8 *iv,
106 		    struct dm_crypt_request *dmreq);
107 };
108 
109 struct iv_benbi_private {
110 	int shift;
111 };
112 
113 #define LMK_SEED_SIZE 64 /* hash + 0 */
114 struct iv_lmk_private {
115 	struct crypto_shash *hash_tfm;
116 	u8 *seed;
117 };
118 
119 #define TCW_WHITENING_SIZE 16
120 struct iv_tcw_private {
121 	struct crypto_shash *crc32_tfm;
122 	u8 *iv_seed;
123 	u8 *whitening;
124 };
125 
126 #define ELEPHANT_MAX_KEY_SIZE 32
127 struct iv_elephant_private {
128 	struct crypto_skcipher *tfm;
129 };
130 
131 /*
132  * Crypt: maps a linear range of a block device
133  * and encrypts / decrypts at the same time.
134  */
135 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
136 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
137 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
138 	     DM_CRYPT_WRITE_INLINE };
139 
140 enum cipher_flags {
141 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
142 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
143 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
144 };
145 
146 /*
147  * The fields in here must be read only after initialization.
148  */
149 struct crypt_config {
150 	struct dm_dev *dev;
151 	sector_t start;
152 
153 	struct percpu_counter n_allocated_pages;
154 
155 	struct workqueue_struct *io_queue;
156 	struct workqueue_struct *crypt_queue;
157 
158 	spinlock_t write_thread_lock;
159 	struct task_struct *write_thread;
160 	struct rb_root write_tree;
161 
162 	char *cipher_string;
163 	char *cipher_auth;
164 	char *key_string;
165 
166 	const struct crypt_iv_operations *iv_gen_ops;
167 	union {
168 		struct iv_benbi_private benbi;
169 		struct iv_lmk_private lmk;
170 		struct iv_tcw_private tcw;
171 		struct iv_elephant_private elephant;
172 	} iv_gen_private;
173 	u64 iv_offset;
174 	unsigned int iv_size;
175 	unsigned short sector_size;
176 	unsigned char sector_shift;
177 
178 	union {
179 		struct crypto_skcipher **tfms;
180 		struct crypto_aead **tfms_aead;
181 	} cipher_tfm;
182 	unsigned int tfms_count;
183 	unsigned long cipher_flags;
184 
185 	/*
186 	 * Layout of each crypto request:
187 	 *
188 	 *   struct skcipher_request
189 	 *      context
190 	 *      padding
191 	 *   struct dm_crypt_request
192 	 *      padding
193 	 *   IV
194 	 *
195 	 * The padding is added so that dm_crypt_request and the IV are
196 	 * correctly aligned.
197 	 */
198 	unsigned int dmreq_start;
199 
200 	unsigned int per_bio_data_size;
201 
202 	unsigned long flags;
203 	unsigned int key_size;
204 	unsigned int key_parts;      /* independent parts in key buffer */
205 	unsigned int key_extra_size; /* additional keys length */
206 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
207 
208 	unsigned int integrity_tag_size;
209 	unsigned int integrity_iv_size;
210 	unsigned int on_disk_tag_size;
211 
212 	/*
213 	 * pool for per bio private data, crypto requests,
214 	 * encryption requeusts/buffer pages and integrity tags
215 	 */
216 	unsigned int tag_pool_max_sectors;
217 	mempool_t tag_pool;
218 	mempool_t req_pool;
219 	mempool_t page_pool;
220 
221 	struct bio_set bs;
222 	struct mutex bio_alloc_lock;
223 
224 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
225 	u8 key[];
226 };
227 
228 #define MIN_IOS		64
229 #define MAX_TAG_SIZE	480
230 #define POOL_ENTRY_SIZE	512
231 
232 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
233 static unsigned int dm_crypt_clients_n = 0;
234 static volatile unsigned long dm_crypt_pages_per_client;
235 #define DM_CRYPT_MEMORY_PERCENT			2
236 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
237 
238 static void crypt_endio(struct bio *clone);
239 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
240 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
241 					     struct scatterlist *sg);
242 
243 static bool crypt_integrity_aead(struct crypt_config *cc);
244 
245 /*
246  * Use this to access cipher attributes that are independent of the key.
247  */
248 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
249 {
250 	return cc->cipher_tfm.tfms[0];
251 }
252 
253 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
254 {
255 	return cc->cipher_tfm.tfms_aead[0];
256 }
257 
258 /*
259  * Different IV generation algorithms:
260  *
261  * plain: the initial vector is the 32-bit little-endian version of the sector
262  *        number, padded with zeros if necessary.
263  *
264  * plain64: the initial vector is the 64-bit little-endian version of the sector
265  *        number, padded with zeros if necessary.
266  *
267  * plain64be: the initial vector is the 64-bit big-endian version of the sector
268  *        number, padded with zeros if necessary.
269  *
270  * essiv: "encrypted sector|salt initial vector", the sector number is
271  *        encrypted with the bulk cipher using a salt as key. The salt
272  *        should be derived from the bulk cipher's key via hashing.
273  *
274  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
275  *        (needed for LRW-32-AES and possible other narrow block modes)
276  *
277  * null: the initial vector is always zero.  Provides compatibility with
278  *       obsolete loop_fish2 devices.  Do not use for new devices.
279  *
280  * lmk:  Compatible implementation of the block chaining mode used
281  *       by the Loop-AES block device encryption system
282  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
283  *       It operates on full 512 byte sectors and uses CBC
284  *       with an IV derived from the sector number, the data and
285  *       optionally extra IV seed.
286  *       This means that after decryption the first block
287  *       of sector must be tweaked according to decrypted data.
288  *       Loop-AES can use three encryption schemes:
289  *         version 1: is plain aes-cbc mode
290  *         version 2: uses 64 multikey scheme with lmk IV generator
291  *         version 3: the same as version 2 with additional IV seed
292  *                   (it uses 65 keys, last key is used as IV seed)
293  *
294  * tcw:  Compatible implementation of the block chaining mode used
295  *       by the TrueCrypt device encryption system (prior to version 4.1).
296  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
297  *       It operates on full 512 byte sectors and uses CBC
298  *       with an IV derived from initial key and the sector number.
299  *       In addition, whitening value is applied on every sector, whitening
300  *       is calculated from initial key, sector number and mixed using CRC32.
301  *       Note that this encryption scheme is vulnerable to watermarking attacks
302  *       and should be used for old compatible containers access only.
303  *
304  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
305  *        The IV is encrypted little-endian byte-offset (with the same key
306  *        and cipher as the volume).
307  *
308  * elephant: The extended version of eboiv with additional Elephant diffuser
309  *           used with Bitlocker CBC mode.
310  *           This mode was used in older Windows systems
311  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
312  */
313 
314 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
315 			      struct dm_crypt_request *dmreq)
316 {
317 	memset(iv, 0, cc->iv_size);
318 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
319 
320 	return 0;
321 }
322 
323 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
324 				struct dm_crypt_request *dmreq)
325 {
326 	memset(iv, 0, cc->iv_size);
327 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
328 
329 	return 0;
330 }
331 
332 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
333 				  struct dm_crypt_request *dmreq)
334 {
335 	memset(iv, 0, cc->iv_size);
336 	/* iv_size is at least of size u64; usually it is 16 bytes */
337 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
338 
339 	return 0;
340 }
341 
342 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
343 			      struct dm_crypt_request *dmreq)
344 {
345 	/*
346 	 * ESSIV encryption of the IV is now handled by the crypto API,
347 	 * so just pass the plain sector number here.
348 	 */
349 	memset(iv, 0, cc->iv_size);
350 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
351 
352 	return 0;
353 }
354 
355 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
356 			      const char *opts)
357 {
358 	unsigned int bs;
359 	int log;
360 
361 	if (crypt_integrity_aead(cc))
362 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
363 	else
364 		bs = crypto_skcipher_blocksize(any_tfm(cc));
365 	log = ilog2(bs);
366 
367 	/* we need to calculate how far we must shift the sector count
368 	 * to get the cipher block count, we use this shift in _gen */
369 
370 	if (1 << log != bs) {
371 		ti->error = "cypher blocksize is not a power of 2";
372 		return -EINVAL;
373 	}
374 
375 	if (log > 9) {
376 		ti->error = "cypher blocksize is > 512";
377 		return -EINVAL;
378 	}
379 
380 	cc->iv_gen_private.benbi.shift = 9 - log;
381 
382 	return 0;
383 }
384 
385 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
386 {
387 }
388 
389 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
390 			      struct dm_crypt_request *dmreq)
391 {
392 	__be64 val;
393 
394 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
395 
396 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
397 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
398 
399 	return 0;
400 }
401 
402 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
403 			     struct dm_crypt_request *dmreq)
404 {
405 	memset(iv, 0, cc->iv_size);
406 
407 	return 0;
408 }
409 
410 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
411 {
412 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
413 
414 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
415 		crypto_free_shash(lmk->hash_tfm);
416 	lmk->hash_tfm = NULL;
417 
418 	kfree_sensitive(lmk->seed);
419 	lmk->seed = NULL;
420 }
421 
422 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
423 			    const char *opts)
424 {
425 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
426 
427 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
428 		ti->error = "Unsupported sector size for LMK";
429 		return -EINVAL;
430 	}
431 
432 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
433 					   CRYPTO_ALG_ALLOCATES_MEMORY);
434 	if (IS_ERR(lmk->hash_tfm)) {
435 		ti->error = "Error initializing LMK hash";
436 		return PTR_ERR(lmk->hash_tfm);
437 	}
438 
439 	/* No seed in LMK version 2 */
440 	if (cc->key_parts == cc->tfms_count) {
441 		lmk->seed = NULL;
442 		return 0;
443 	}
444 
445 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
446 	if (!lmk->seed) {
447 		crypt_iv_lmk_dtr(cc);
448 		ti->error = "Error kmallocing seed storage in LMK";
449 		return -ENOMEM;
450 	}
451 
452 	return 0;
453 }
454 
455 static int crypt_iv_lmk_init(struct crypt_config *cc)
456 {
457 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
458 	int subkey_size = cc->key_size / cc->key_parts;
459 
460 	/* LMK seed is on the position of LMK_KEYS + 1 key */
461 	if (lmk->seed)
462 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
463 		       crypto_shash_digestsize(lmk->hash_tfm));
464 
465 	return 0;
466 }
467 
468 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
469 {
470 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
471 
472 	if (lmk->seed)
473 		memset(lmk->seed, 0, LMK_SEED_SIZE);
474 
475 	return 0;
476 }
477 
478 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
479 			    struct dm_crypt_request *dmreq,
480 			    u8 *data)
481 {
482 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
483 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
484 	struct md5_state md5state;
485 	__le32 buf[4];
486 	int i, r;
487 
488 	desc->tfm = lmk->hash_tfm;
489 
490 	r = crypto_shash_init(desc);
491 	if (r)
492 		return r;
493 
494 	if (lmk->seed) {
495 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
496 		if (r)
497 			return r;
498 	}
499 
500 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
501 	r = crypto_shash_update(desc, data + 16, 16 * 31);
502 	if (r)
503 		return r;
504 
505 	/* Sector is cropped to 56 bits here */
506 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
507 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
508 	buf[2] = cpu_to_le32(4024);
509 	buf[3] = 0;
510 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
511 	if (r)
512 		return r;
513 
514 	/* No MD5 padding here */
515 	r = crypto_shash_export(desc, &md5state);
516 	if (r)
517 		return r;
518 
519 	for (i = 0; i < MD5_HASH_WORDS; i++)
520 		__cpu_to_le32s(&md5state.hash[i]);
521 	memcpy(iv, &md5state.hash, cc->iv_size);
522 
523 	return 0;
524 }
525 
526 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
527 			    struct dm_crypt_request *dmreq)
528 {
529 	struct scatterlist *sg;
530 	u8 *src;
531 	int r = 0;
532 
533 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
534 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
535 		src = kmap_local_page(sg_page(sg));
536 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
537 		kunmap_local(src);
538 	} else
539 		memset(iv, 0, cc->iv_size);
540 
541 	return r;
542 }
543 
544 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
545 			     struct dm_crypt_request *dmreq)
546 {
547 	struct scatterlist *sg;
548 	u8 *dst;
549 	int r;
550 
551 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
552 		return 0;
553 
554 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
555 	dst = kmap_local_page(sg_page(sg));
556 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
557 
558 	/* Tweak the first block of plaintext sector */
559 	if (!r)
560 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
561 
562 	kunmap_local(dst);
563 	return r;
564 }
565 
566 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
567 {
568 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
569 
570 	kfree_sensitive(tcw->iv_seed);
571 	tcw->iv_seed = NULL;
572 	kfree_sensitive(tcw->whitening);
573 	tcw->whitening = NULL;
574 
575 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
576 		crypto_free_shash(tcw->crc32_tfm);
577 	tcw->crc32_tfm = NULL;
578 }
579 
580 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
581 			    const char *opts)
582 {
583 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
584 
585 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
586 		ti->error = "Unsupported sector size for TCW";
587 		return -EINVAL;
588 	}
589 
590 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
591 		ti->error = "Wrong key size for TCW";
592 		return -EINVAL;
593 	}
594 
595 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
596 					    CRYPTO_ALG_ALLOCATES_MEMORY);
597 	if (IS_ERR(tcw->crc32_tfm)) {
598 		ti->error = "Error initializing CRC32 in TCW";
599 		return PTR_ERR(tcw->crc32_tfm);
600 	}
601 
602 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
603 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
604 	if (!tcw->iv_seed || !tcw->whitening) {
605 		crypt_iv_tcw_dtr(cc);
606 		ti->error = "Error allocating seed storage in TCW";
607 		return -ENOMEM;
608 	}
609 
610 	return 0;
611 }
612 
613 static int crypt_iv_tcw_init(struct crypt_config *cc)
614 {
615 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
616 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
617 
618 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
619 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
620 	       TCW_WHITENING_SIZE);
621 
622 	return 0;
623 }
624 
625 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
626 {
627 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
628 
629 	memset(tcw->iv_seed, 0, cc->iv_size);
630 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
631 
632 	return 0;
633 }
634 
635 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
636 				  struct dm_crypt_request *dmreq,
637 				  u8 *data)
638 {
639 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
640 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
641 	u8 buf[TCW_WHITENING_SIZE];
642 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
643 	int i, r;
644 
645 	/* xor whitening with sector number */
646 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
647 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
648 
649 	/* calculate crc32 for every 32bit part and xor it */
650 	desc->tfm = tcw->crc32_tfm;
651 	for (i = 0; i < 4; i++) {
652 		r = crypto_shash_init(desc);
653 		if (r)
654 			goto out;
655 		r = crypto_shash_update(desc, &buf[i * 4], 4);
656 		if (r)
657 			goto out;
658 		r = crypto_shash_final(desc, &buf[i * 4]);
659 		if (r)
660 			goto out;
661 	}
662 	crypto_xor(&buf[0], &buf[12], 4);
663 	crypto_xor(&buf[4], &buf[8], 4);
664 
665 	/* apply whitening (8 bytes) to whole sector */
666 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
667 		crypto_xor(data + i * 8, buf, 8);
668 out:
669 	memzero_explicit(buf, sizeof(buf));
670 	return r;
671 }
672 
673 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
674 			    struct dm_crypt_request *dmreq)
675 {
676 	struct scatterlist *sg;
677 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
678 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
679 	u8 *src;
680 	int r = 0;
681 
682 	/* Remove whitening from ciphertext */
683 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
684 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
685 		src = kmap_local_page(sg_page(sg));
686 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
687 		kunmap_local(src);
688 	}
689 
690 	/* Calculate IV */
691 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
692 	if (cc->iv_size > 8)
693 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
694 			       cc->iv_size - 8);
695 
696 	return r;
697 }
698 
699 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
700 			     struct dm_crypt_request *dmreq)
701 {
702 	struct scatterlist *sg;
703 	u8 *dst;
704 	int r;
705 
706 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
707 		return 0;
708 
709 	/* Apply whitening on ciphertext */
710 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
711 	dst = kmap_local_page(sg_page(sg));
712 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
713 	kunmap_local(dst);
714 
715 	return r;
716 }
717 
718 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
719 				struct dm_crypt_request *dmreq)
720 {
721 	/* Used only for writes, there must be an additional space to store IV */
722 	get_random_bytes(iv, cc->iv_size);
723 	return 0;
724 }
725 
726 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
727 			    const char *opts)
728 {
729 	if (crypt_integrity_aead(cc)) {
730 		ti->error = "AEAD transforms not supported for EBOIV";
731 		return -EINVAL;
732 	}
733 
734 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
735 		ti->error = "Block size of EBOIV cipher does "
736 			    "not match IV size of block cipher";
737 		return -EINVAL;
738 	}
739 
740 	return 0;
741 }
742 
743 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
744 			    struct dm_crypt_request *dmreq)
745 {
746 	u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
747 	struct skcipher_request *req;
748 	struct scatterlist src, dst;
749 	DECLARE_CRYPTO_WAIT(wait);
750 	int err;
751 
752 	req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
753 	if (!req)
754 		return -ENOMEM;
755 
756 	memset(buf, 0, cc->iv_size);
757 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
758 
759 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
760 	sg_init_one(&dst, iv, cc->iv_size);
761 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
762 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
763 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
764 	skcipher_request_free(req);
765 
766 	return err;
767 }
768 
769 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
770 {
771 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
772 
773 	crypto_free_skcipher(elephant->tfm);
774 	elephant->tfm = NULL;
775 }
776 
777 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
778 			    const char *opts)
779 {
780 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
781 	int r;
782 
783 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
784 					      CRYPTO_ALG_ALLOCATES_MEMORY);
785 	if (IS_ERR(elephant->tfm)) {
786 		r = PTR_ERR(elephant->tfm);
787 		elephant->tfm = NULL;
788 		return r;
789 	}
790 
791 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
792 	if (r)
793 		crypt_iv_elephant_dtr(cc);
794 	return r;
795 }
796 
797 static void diffuser_disk_to_cpu(u32 *d, size_t n)
798 {
799 #ifndef __LITTLE_ENDIAN
800 	int i;
801 
802 	for (i = 0; i < n; i++)
803 		d[i] = le32_to_cpu((__le32)d[i]);
804 #endif
805 }
806 
807 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
808 {
809 #ifndef __LITTLE_ENDIAN
810 	int i;
811 
812 	for (i = 0; i < n; i++)
813 		d[i] = cpu_to_le32((u32)d[i]);
814 #endif
815 }
816 
817 static void diffuser_a_decrypt(u32 *d, size_t n)
818 {
819 	int i, i1, i2, i3;
820 
821 	for (i = 0; i < 5; i++) {
822 		i1 = 0;
823 		i2 = n - 2;
824 		i3 = n - 5;
825 
826 		while (i1 < (n - 1)) {
827 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
828 			i1++; i2++; i3++;
829 
830 			if (i3 >= n)
831 				i3 -= n;
832 
833 			d[i1] += d[i2] ^ d[i3];
834 			i1++; i2++; i3++;
835 
836 			if (i2 >= n)
837 				i2 -= n;
838 
839 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
840 			i1++; i2++; i3++;
841 
842 			d[i1] += d[i2] ^ d[i3];
843 			i1++; i2++; i3++;
844 		}
845 	}
846 }
847 
848 static void diffuser_a_encrypt(u32 *d, size_t n)
849 {
850 	int i, i1, i2, i3;
851 
852 	for (i = 0; i < 5; i++) {
853 		i1 = n - 1;
854 		i2 = n - 2 - 1;
855 		i3 = n - 5 - 1;
856 
857 		while (i1 > 0) {
858 			d[i1] -= d[i2] ^ d[i3];
859 			i1--; i2--; i3--;
860 
861 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
862 			i1--; i2--; i3--;
863 
864 			if (i2 < 0)
865 				i2 += n;
866 
867 			d[i1] -= d[i2] ^ d[i3];
868 			i1--; i2--; i3--;
869 
870 			if (i3 < 0)
871 				i3 += n;
872 
873 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
874 			i1--; i2--; i3--;
875 		}
876 	}
877 }
878 
879 static void diffuser_b_decrypt(u32 *d, size_t n)
880 {
881 	int i, i1, i2, i3;
882 
883 	for (i = 0; i < 3; i++) {
884 		i1 = 0;
885 		i2 = 2;
886 		i3 = 5;
887 
888 		while (i1 < (n - 1)) {
889 			d[i1] += d[i2] ^ d[i3];
890 			i1++; i2++; i3++;
891 
892 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
893 			i1++; i2++; i3++;
894 
895 			if (i2 >= n)
896 				i2 -= n;
897 
898 			d[i1] += d[i2] ^ d[i3];
899 			i1++; i2++; i3++;
900 
901 			if (i3 >= n)
902 				i3 -= n;
903 
904 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
905 			i1++; i2++; i3++;
906 		}
907 	}
908 }
909 
910 static void diffuser_b_encrypt(u32 *d, size_t n)
911 {
912 	int i, i1, i2, i3;
913 
914 	for (i = 0; i < 3; i++) {
915 		i1 = n - 1;
916 		i2 = 2 - 1;
917 		i3 = 5 - 1;
918 
919 		while (i1 > 0) {
920 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
921 			i1--; i2--; i3--;
922 
923 			if (i3 < 0)
924 				i3 += n;
925 
926 			d[i1] -= d[i2] ^ d[i3];
927 			i1--; i2--; i3--;
928 
929 			if (i2 < 0)
930 				i2 += n;
931 
932 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
933 			i1--; i2--; i3--;
934 
935 			d[i1] -= d[i2] ^ d[i3];
936 			i1--; i2--; i3--;
937 		}
938 	}
939 }
940 
941 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
942 {
943 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
944 	u8 *es, *ks, *data, *data2, *data_offset;
945 	struct skcipher_request *req;
946 	struct scatterlist *sg, *sg2, src, dst;
947 	DECLARE_CRYPTO_WAIT(wait);
948 	int i, r;
949 
950 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
951 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
952 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
953 
954 	if (!req || !es || !ks) {
955 		r = -ENOMEM;
956 		goto out;
957 	}
958 
959 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
960 
961 	/* E(Ks, e(s)) */
962 	sg_init_one(&src, es, 16);
963 	sg_init_one(&dst, ks, 16);
964 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
965 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
966 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
967 	if (r)
968 		goto out;
969 
970 	/* E(Ks, e'(s)) */
971 	es[15] = 0x80;
972 	sg_init_one(&dst, &ks[16], 16);
973 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
974 	if (r)
975 		goto out;
976 
977 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
978 	data = kmap_local_page(sg_page(sg));
979 	data_offset = data + sg->offset;
980 
981 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
982 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
983 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
984 		data2 = kmap_local_page(sg_page(sg2));
985 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
986 		kunmap_local(data2);
987 	}
988 
989 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
990 		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
991 		diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
992 		diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
993 		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
994 	}
995 
996 	for (i = 0; i < (cc->sector_size / 32); i++)
997 		crypto_xor(data_offset + i * 32, ks, 32);
998 
999 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1000 		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
1001 		diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
1002 		diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
1003 		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
1004 	}
1005 
1006 	kunmap_local(data);
1007 out:
1008 	kfree_sensitive(ks);
1009 	kfree_sensitive(es);
1010 	skcipher_request_free(req);
1011 	return r;
1012 }
1013 
1014 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1015 			    struct dm_crypt_request *dmreq)
1016 {
1017 	int r;
1018 
1019 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1020 		r = crypt_iv_elephant(cc, dmreq);
1021 		if (r)
1022 			return r;
1023 	}
1024 
1025 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1026 }
1027 
1028 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1029 				  struct dm_crypt_request *dmreq)
1030 {
1031 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1032 		return crypt_iv_elephant(cc, dmreq);
1033 
1034 	return 0;
1035 }
1036 
1037 static int crypt_iv_elephant_init(struct crypt_config *cc)
1038 {
1039 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1040 	int key_offset = cc->key_size - cc->key_extra_size;
1041 
1042 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1043 }
1044 
1045 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1046 {
1047 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1048 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1049 
1050 	memset(key, 0, cc->key_extra_size);
1051 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1052 }
1053 
1054 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1055 	.generator = crypt_iv_plain_gen
1056 };
1057 
1058 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1059 	.generator = crypt_iv_plain64_gen
1060 };
1061 
1062 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1063 	.generator = crypt_iv_plain64be_gen
1064 };
1065 
1066 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1067 	.generator = crypt_iv_essiv_gen
1068 };
1069 
1070 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1071 	.ctr	   = crypt_iv_benbi_ctr,
1072 	.dtr	   = crypt_iv_benbi_dtr,
1073 	.generator = crypt_iv_benbi_gen
1074 };
1075 
1076 static const struct crypt_iv_operations crypt_iv_null_ops = {
1077 	.generator = crypt_iv_null_gen
1078 };
1079 
1080 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1081 	.ctr	   = crypt_iv_lmk_ctr,
1082 	.dtr	   = crypt_iv_lmk_dtr,
1083 	.init	   = crypt_iv_lmk_init,
1084 	.wipe	   = crypt_iv_lmk_wipe,
1085 	.generator = crypt_iv_lmk_gen,
1086 	.post	   = crypt_iv_lmk_post
1087 };
1088 
1089 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1090 	.ctr	   = crypt_iv_tcw_ctr,
1091 	.dtr	   = crypt_iv_tcw_dtr,
1092 	.init	   = crypt_iv_tcw_init,
1093 	.wipe	   = crypt_iv_tcw_wipe,
1094 	.generator = crypt_iv_tcw_gen,
1095 	.post	   = crypt_iv_tcw_post
1096 };
1097 
1098 static const struct crypt_iv_operations crypt_iv_random_ops = {
1099 	.generator = crypt_iv_random_gen
1100 };
1101 
1102 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1103 	.ctr	   = crypt_iv_eboiv_ctr,
1104 	.generator = crypt_iv_eboiv_gen
1105 };
1106 
1107 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1108 	.ctr	   = crypt_iv_elephant_ctr,
1109 	.dtr	   = crypt_iv_elephant_dtr,
1110 	.init	   = crypt_iv_elephant_init,
1111 	.wipe	   = crypt_iv_elephant_wipe,
1112 	.generator = crypt_iv_elephant_gen,
1113 	.post	   = crypt_iv_elephant_post
1114 };
1115 
1116 /*
1117  * Integrity extensions
1118  */
1119 static bool crypt_integrity_aead(struct crypt_config *cc)
1120 {
1121 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1122 }
1123 
1124 static bool crypt_integrity_hmac(struct crypt_config *cc)
1125 {
1126 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1127 }
1128 
1129 /* Get sg containing data */
1130 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1131 					     struct scatterlist *sg)
1132 {
1133 	if (unlikely(crypt_integrity_aead(cc)))
1134 		return &sg[2];
1135 
1136 	return sg;
1137 }
1138 
1139 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1140 {
1141 	struct bio_integrity_payload *bip;
1142 	unsigned int tag_len;
1143 	int ret;
1144 
1145 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1146 		return 0;
1147 
1148 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1149 	if (IS_ERR(bip))
1150 		return PTR_ERR(bip);
1151 
1152 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1153 
1154 	bip->bip_iter.bi_size = tag_len;
1155 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1156 
1157 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1158 				     tag_len, offset_in_page(io->integrity_metadata));
1159 	if (unlikely(ret != tag_len))
1160 		return -ENOMEM;
1161 
1162 	return 0;
1163 }
1164 
1165 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1166 {
1167 #ifdef CONFIG_BLK_DEV_INTEGRITY
1168 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1169 	struct mapped_device *md = dm_table_get_md(ti->table);
1170 
1171 	/* From now we require underlying device with our integrity profile */
1172 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1173 		ti->error = "Integrity profile not supported.";
1174 		return -EINVAL;
1175 	}
1176 
1177 	if (bi->tag_size != cc->on_disk_tag_size ||
1178 	    bi->tuple_size != cc->on_disk_tag_size) {
1179 		ti->error = "Integrity profile tag size mismatch.";
1180 		return -EINVAL;
1181 	}
1182 	if (1 << bi->interval_exp != cc->sector_size) {
1183 		ti->error = "Integrity profile sector size mismatch.";
1184 		return -EINVAL;
1185 	}
1186 
1187 	if (crypt_integrity_aead(cc)) {
1188 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1189 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1190 		       cc->integrity_tag_size, cc->integrity_iv_size);
1191 
1192 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1193 			ti->error = "Integrity AEAD auth tag size is not supported.";
1194 			return -EINVAL;
1195 		}
1196 	} else if (cc->integrity_iv_size)
1197 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1198 		       cc->integrity_iv_size);
1199 
1200 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1201 		ti->error = "Not enough space for integrity tag in the profile.";
1202 		return -EINVAL;
1203 	}
1204 
1205 	return 0;
1206 #else
1207 	ti->error = "Integrity profile not supported.";
1208 	return -EINVAL;
1209 #endif
1210 }
1211 
1212 static void crypt_convert_init(struct crypt_config *cc,
1213 			       struct convert_context *ctx,
1214 			       struct bio *bio_out, struct bio *bio_in,
1215 			       sector_t sector)
1216 {
1217 	ctx->bio_in = bio_in;
1218 	ctx->bio_out = bio_out;
1219 	if (bio_in)
1220 		ctx->iter_in = bio_in->bi_iter;
1221 	if (bio_out)
1222 		ctx->iter_out = bio_out->bi_iter;
1223 	ctx->cc_sector = sector + cc->iv_offset;
1224 	init_completion(&ctx->restart);
1225 }
1226 
1227 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1228 					     void *req)
1229 {
1230 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1231 }
1232 
1233 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1234 {
1235 	return (void *)((char *)dmreq - cc->dmreq_start);
1236 }
1237 
1238 static u8 *iv_of_dmreq(struct crypt_config *cc,
1239 		       struct dm_crypt_request *dmreq)
1240 {
1241 	if (crypt_integrity_aead(cc))
1242 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1243 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1244 	else
1245 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1246 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1247 }
1248 
1249 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1250 		       struct dm_crypt_request *dmreq)
1251 {
1252 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1253 }
1254 
1255 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1256 		       struct dm_crypt_request *dmreq)
1257 {
1258 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1259 	return (__le64 *) ptr;
1260 }
1261 
1262 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1263 		       struct dm_crypt_request *dmreq)
1264 {
1265 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1266 		  cc->iv_size + sizeof(uint64_t);
1267 	return (unsigned int*)ptr;
1268 }
1269 
1270 static void *tag_from_dmreq(struct crypt_config *cc,
1271 				struct dm_crypt_request *dmreq)
1272 {
1273 	struct convert_context *ctx = dmreq->ctx;
1274 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1275 
1276 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1277 		cc->on_disk_tag_size];
1278 }
1279 
1280 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1281 			       struct dm_crypt_request *dmreq)
1282 {
1283 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1284 }
1285 
1286 static int crypt_convert_block_aead(struct crypt_config *cc,
1287 				     struct convert_context *ctx,
1288 				     struct aead_request *req,
1289 				     unsigned int tag_offset)
1290 {
1291 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1292 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1293 	struct dm_crypt_request *dmreq;
1294 	u8 *iv, *org_iv, *tag_iv, *tag;
1295 	__le64 *sector;
1296 	int r = 0;
1297 
1298 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1299 
1300 	/* Reject unexpected unaligned bio. */
1301 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1302 		return -EIO;
1303 
1304 	dmreq = dmreq_of_req(cc, req);
1305 	dmreq->iv_sector = ctx->cc_sector;
1306 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1307 		dmreq->iv_sector >>= cc->sector_shift;
1308 	dmreq->ctx = ctx;
1309 
1310 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1311 
1312 	sector = org_sector_of_dmreq(cc, dmreq);
1313 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1314 
1315 	iv = iv_of_dmreq(cc, dmreq);
1316 	org_iv = org_iv_of_dmreq(cc, dmreq);
1317 	tag = tag_from_dmreq(cc, dmreq);
1318 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1319 
1320 	/* AEAD request:
1321 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1322 	 *  | (authenticated) | (auth+encryption) |              |
1323 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1324 	 */
1325 	sg_init_table(dmreq->sg_in, 4);
1326 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1327 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1328 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1329 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1330 
1331 	sg_init_table(dmreq->sg_out, 4);
1332 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1333 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1334 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1335 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1336 
1337 	if (cc->iv_gen_ops) {
1338 		/* For READs use IV stored in integrity metadata */
1339 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1340 			memcpy(org_iv, tag_iv, cc->iv_size);
1341 		} else {
1342 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1343 			if (r < 0)
1344 				return r;
1345 			/* Store generated IV in integrity metadata */
1346 			if (cc->integrity_iv_size)
1347 				memcpy(tag_iv, org_iv, cc->iv_size);
1348 		}
1349 		/* Working copy of IV, to be modified in crypto API */
1350 		memcpy(iv, org_iv, cc->iv_size);
1351 	}
1352 
1353 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1354 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1355 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1356 				       cc->sector_size, iv);
1357 		r = crypto_aead_encrypt(req);
1358 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1359 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1360 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1361 	} else {
1362 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1363 				       cc->sector_size + cc->integrity_tag_size, iv);
1364 		r = crypto_aead_decrypt(req);
1365 	}
1366 
1367 	if (r == -EBADMSG) {
1368 		sector_t s = le64_to_cpu(*sector);
1369 
1370 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1371 			    ctx->bio_in->bi_bdev, s);
1372 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1373 				 ctx->bio_in, s, 0);
1374 	}
1375 
1376 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1377 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1378 
1379 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1380 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1381 
1382 	return r;
1383 }
1384 
1385 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1386 					struct convert_context *ctx,
1387 					struct skcipher_request *req,
1388 					unsigned int tag_offset)
1389 {
1390 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1391 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1392 	struct scatterlist *sg_in, *sg_out;
1393 	struct dm_crypt_request *dmreq;
1394 	u8 *iv, *org_iv, *tag_iv;
1395 	__le64 *sector;
1396 	int r = 0;
1397 
1398 	/* Reject unexpected unaligned bio. */
1399 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1400 		return -EIO;
1401 
1402 	dmreq = dmreq_of_req(cc, req);
1403 	dmreq->iv_sector = ctx->cc_sector;
1404 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1405 		dmreq->iv_sector >>= cc->sector_shift;
1406 	dmreq->ctx = ctx;
1407 
1408 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1409 
1410 	iv = iv_of_dmreq(cc, dmreq);
1411 	org_iv = org_iv_of_dmreq(cc, dmreq);
1412 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1413 
1414 	sector = org_sector_of_dmreq(cc, dmreq);
1415 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1416 
1417 	/* For skcipher we use only the first sg item */
1418 	sg_in  = &dmreq->sg_in[0];
1419 	sg_out = &dmreq->sg_out[0];
1420 
1421 	sg_init_table(sg_in, 1);
1422 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1423 
1424 	sg_init_table(sg_out, 1);
1425 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1426 
1427 	if (cc->iv_gen_ops) {
1428 		/* For READs use IV stored in integrity metadata */
1429 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1430 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1431 		} else {
1432 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1433 			if (r < 0)
1434 				return r;
1435 			/* Data can be already preprocessed in generator */
1436 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1437 				sg_in = sg_out;
1438 			/* Store generated IV in integrity metadata */
1439 			if (cc->integrity_iv_size)
1440 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1441 		}
1442 		/* Working copy of IV, to be modified in crypto API */
1443 		memcpy(iv, org_iv, cc->iv_size);
1444 	}
1445 
1446 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1447 
1448 	if (bio_data_dir(ctx->bio_in) == WRITE)
1449 		r = crypto_skcipher_encrypt(req);
1450 	else
1451 		r = crypto_skcipher_decrypt(req);
1452 
1453 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1454 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1455 
1456 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1457 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1458 
1459 	return r;
1460 }
1461 
1462 static void kcryptd_async_done(struct crypto_async_request *async_req,
1463 			       int error);
1464 
1465 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1466 				     struct convert_context *ctx)
1467 {
1468 	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1469 
1470 	if (!ctx->r.req) {
1471 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1472 		if (!ctx->r.req)
1473 			return -ENOMEM;
1474 	}
1475 
1476 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1477 
1478 	/*
1479 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1480 	 * requests if driver request queue is full.
1481 	 */
1482 	skcipher_request_set_callback(ctx->r.req,
1483 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1484 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1485 
1486 	return 0;
1487 }
1488 
1489 static int crypt_alloc_req_aead(struct crypt_config *cc,
1490 				 struct convert_context *ctx)
1491 {
1492 	if (!ctx->r.req_aead) {
1493 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1494 		if (!ctx->r.req_aead)
1495 			return -ENOMEM;
1496 	}
1497 
1498 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1499 
1500 	/*
1501 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1502 	 * requests if driver request queue is full.
1503 	 */
1504 	aead_request_set_callback(ctx->r.req_aead,
1505 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1506 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1507 
1508 	return 0;
1509 }
1510 
1511 static int crypt_alloc_req(struct crypt_config *cc,
1512 			    struct convert_context *ctx)
1513 {
1514 	if (crypt_integrity_aead(cc))
1515 		return crypt_alloc_req_aead(cc, ctx);
1516 	else
1517 		return crypt_alloc_req_skcipher(cc, ctx);
1518 }
1519 
1520 static void crypt_free_req_skcipher(struct crypt_config *cc,
1521 				    struct skcipher_request *req, struct bio *base_bio)
1522 {
1523 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1524 
1525 	if ((struct skcipher_request *)(io + 1) != req)
1526 		mempool_free(req, &cc->req_pool);
1527 }
1528 
1529 static void crypt_free_req_aead(struct crypt_config *cc,
1530 				struct aead_request *req, struct bio *base_bio)
1531 {
1532 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1533 
1534 	if ((struct aead_request *)(io + 1) != req)
1535 		mempool_free(req, &cc->req_pool);
1536 }
1537 
1538 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1539 {
1540 	if (crypt_integrity_aead(cc))
1541 		crypt_free_req_aead(cc, req, base_bio);
1542 	else
1543 		crypt_free_req_skcipher(cc, req, base_bio);
1544 }
1545 
1546 /*
1547  * Encrypt / decrypt data from one bio to another one (can be the same one)
1548  */
1549 static blk_status_t crypt_convert(struct crypt_config *cc,
1550 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1551 {
1552 	unsigned int tag_offset = 0;
1553 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1554 	int r;
1555 
1556 	/*
1557 	 * if reset_pending is set we are dealing with the bio for the first time,
1558 	 * else we're continuing to work on the previous bio, so don't mess with
1559 	 * the cc_pending counter
1560 	 */
1561 	if (reset_pending)
1562 		atomic_set(&ctx->cc_pending, 1);
1563 
1564 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1565 
1566 		r = crypt_alloc_req(cc, ctx);
1567 		if (r) {
1568 			complete(&ctx->restart);
1569 			return BLK_STS_DEV_RESOURCE;
1570 		}
1571 
1572 		atomic_inc(&ctx->cc_pending);
1573 
1574 		if (crypt_integrity_aead(cc))
1575 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1576 		else
1577 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1578 
1579 		switch (r) {
1580 		/*
1581 		 * The request was queued by a crypto driver
1582 		 * but the driver request queue is full, let's wait.
1583 		 */
1584 		case -EBUSY:
1585 			if (in_interrupt()) {
1586 				if (try_wait_for_completion(&ctx->restart)) {
1587 					/*
1588 					 * we don't have to block to wait for completion,
1589 					 * so proceed
1590 					 */
1591 				} else {
1592 					/*
1593 					 * we can't wait for completion without blocking
1594 					 * exit and continue processing in a workqueue
1595 					 */
1596 					ctx->r.req = NULL;
1597 					ctx->cc_sector += sector_step;
1598 					tag_offset++;
1599 					return BLK_STS_DEV_RESOURCE;
1600 				}
1601 			} else {
1602 				wait_for_completion(&ctx->restart);
1603 			}
1604 			reinit_completion(&ctx->restart);
1605 			fallthrough;
1606 		/*
1607 		 * The request is queued and processed asynchronously,
1608 		 * completion function kcryptd_async_done() will be called.
1609 		 */
1610 		case -EINPROGRESS:
1611 			ctx->r.req = NULL;
1612 			ctx->cc_sector += sector_step;
1613 			tag_offset++;
1614 			continue;
1615 		/*
1616 		 * The request was already processed (synchronously).
1617 		 */
1618 		case 0:
1619 			atomic_dec(&ctx->cc_pending);
1620 			ctx->cc_sector += sector_step;
1621 			tag_offset++;
1622 			if (!atomic)
1623 				cond_resched();
1624 			continue;
1625 		/*
1626 		 * There was a data integrity error.
1627 		 */
1628 		case -EBADMSG:
1629 			atomic_dec(&ctx->cc_pending);
1630 			return BLK_STS_PROTECTION;
1631 		/*
1632 		 * There was an error while processing the request.
1633 		 */
1634 		default:
1635 			atomic_dec(&ctx->cc_pending);
1636 			return BLK_STS_IOERR;
1637 		}
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1644 
1645 /*
1646  * Generate a new unfragmented bio with the given size
1647  * This should never violate the device limitations (but only because
1648  * max_segment_size is being constrained to PAGE_SIZE).
1649  *
1650  * This function may be called concurrently. If we allocate from the mempool
1651  * concurrently, there is a possibility of deadlock. For example, if we have
1652  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1653  * the mempool concurrently, it may deadlock in a situation where both processes
1654  * have allocated 128 pages and the mempool is exhausted.
1655  *
1656  * In order to avoid this scenario we allocate the pages under a mutex.
1657  *
1658  * In order to not degrade performance with excessive locking, we try
1659  * non-blocking allocations without a mutex first but on failure we fallback
1660  * to blocking allocations with a mutex.
1661  */
1662 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1663 {
1664 	struct crypt_config *cc = io->cc;
1665 	struct bio *clone;
1666 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1667 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1668 	unsigned int i, len, remaining_size;
1669 	struct page *page;
1670 
1671 retry:
1672 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1673 		mutex_lock(&cc->bio_alloc_lock);
1674 
1675 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1676 				 GFP_NOIO, &cc->bs);
1677 	clone->bi_private = io;
1678 	clone->bi_end_io = crypt_endio;
1679 
1680 	remaining_size = size;
1681 
1682 	for (i = 0; i < nr_iovecs; i++) {
1683 		page = mempool_alloc(&cc->page_pool, gfp_mask);
1684 		if (!page) {
1685 			crypt_free_buffer_pages(cc, clone);
1686 			bio_put(clone);
1687 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1688 			goto retry;
1689 		}
1690 
1691 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1692 
1693 		bio_add_page(clone, page, len, 0);
1694 
1695 		remaining_size -= len;
1696 	}
1697 
1698 	/* Allocate space for integrity tags */
1699 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1700 		crypt_free_buffer_pages(cc, clone);
1701 		bio_put(clone);
1702 		clone = NULL;
1703 	}
1704 
1705 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1706 		mutex_unlock(&cc->bio_alloc_lock);
1707 
1708 	return clone;
1709 }
1710 
1711 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1712 {
1713 	struct bio_vec *bv;
1714 	struct bvec_iter_all iter_all;
1715 
1716 	bio_for_each_segment_all(bv, clone, iter_all) {
1717 		BUG_ON(!bv->bv_page);
1718 		mempool_free(bv->bv_page, &cc->page_pool);
1719 	}
1720 }
1721 
1722 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1723 			  struct bio *bio, sector_t sector)
1724 {
1725 	io->cc = cc;
1726 	io->base_bio = bio;
1727 	io->sector = sector;
1728 	io->error = 0;
1729 	io->ctx.r.req = NULL;
1730 	io->integrity_metadata = NULL;
1731 	io->integrity_metadata_from_pool = false;
1732 	atomic_set(&io->io_pending, 0);
1733 }
1734 
1735 static void crypt_inc_pending(struct dm_crypt_io *io)
1736 {
1737 	atomic_inc(&io->io_pending);
1738 }
1739 
1740 static void kcryptd_io_bio_endio(struct work_struct *work)
1741 {
1742 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1743 	bio_endio(io->base_bio);
1744 }
1745 
1746 /*
1747  * One of the bios was finished. Check for completion of
1748  * the whole request and correctly clean up the buffer.
1749  */
1750 static void crypt_dec_pending(struct dm_crypt_io *io)
1751 {
1752 	struct crypt_config *cc = io->cc;
1753 	struct bio *base_bio = io->base_bio;
1754 	blk_status_t error = io->error;
1755 
1756 	if (!atomic_dec_and_test(&io->io_pending))
1757 		return;
1758 
1759 	if (io->ctx.r.req)
1760 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1761 
1762 	if (unlikely(io->integrity_metadata_from_pool))
1763 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1764 	else
1765 		kfree(io->integrity_metadata);
1766 
1767 	base_bio->bi_status = error;
1768 
1769 	/*
1770 	 * If we are running this function from our tasklet,
1771 	 * we can't call bio_endio() here, because it will call
1772 	 * clone_endio() from dm.c, which in turn will
1773 	 * free the current struct dm_crypt_io structure with
1774 	 * our tasklet. In this case we need to delay bio_endio()
1775 	 * execution to after the tasklet is done and dequeued.
1776 	 */
1777 	if (tasklet_trylock(&io->tasklet)) {
1778 		tasklet_unlock(&io->tasklet);
1779 		bio_endio(base_bio);
1780 		return;
1781 	}
1782 
1783 	INIT_WORK(&io->work, kcryptd_io_bio_endio);
1784 	queue_work(cc->io_queue, &io->work);
1785 }
1786 
1787 /*
1788  * kcryptd/kcryptd_io:
1789  *
1790  * Needed because it would be very unwise to do decryption in an
1791  * interrupt context.
1792  *
1793  * kcryptd performs the actual encryption or decryption.
1794  *
1795  * kcryptd_io performs the IO submission.
1796  *
1797  * They must be separated as otherwise the final stages could be
1798  * starved by new requests which can block in the first stages due
1799  * to memory allocation.
1800  *
1801  * The work is done per CPU global for all dm-crypt instances.
1802  * They should not depend on each other and do not block.
1803  */
1804 static void crypt_endio(struct bio *clone)
1805 {
1806 	struct dm_crypt_io *io = clone->bi_private;
1807 	struct crypt_config *cc = io->cc;
1808 	unsigned int rw = bio_data_dir(clone);
1809 	blk_status_t error;
1810 
1811 	/*
1812 	 * free the processed pages
1813 	 */
1814 	if (rw == WRITE)
1815 		crypt_free_buffer_pages(cc, clone);
1816 
1817 	error = clone->bi_status;
1818 	bio_put(clone);
1819 
1820 	if (rw == READ && !error) {
1821 		kcryptd_queue_crypt(io);
1822 		return;
1823 	}
1824 
1825 	if (unlikely(error))
1826 		io->error = error;
1827 
1828 	crypt_dec_pending(io);
1829 }
1830 
1831 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1832 
1833 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1834 {
1835 	struct crypt_config *cc = io->cc;
1836 	struct bio *clone;
1837 
1838 	/*
1839 	 * We need the original biovec array in order to decrypt the whole bio
1840 	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1841 	 * worry about the block layer modifying the biovec array; so leverage
1842 	 * bio_alloc_clone().
1843 	 */
1844 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1845 	if (!clone)
1846 		return 1;
1847 	clone->bi_private = io;
1848 	clone->bi_end_io = crypt_endio;
1849 
1850 	crypt_inc_pending(io);
1851 
1852 	clone->bi_iter.bi_sector = cc->start + io->sector;
1853 
1854 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1855 		crypt_dec_pending(io);
1856 		bio_put(clone);
1857 		return 1;
1858 	}
1859 
1860 	dm_submit_bio_remap(io->base_bio, clone);
1861 	return 0;
1862 }
1863 
1864 static void kcryptd_io_read_work(struct work_struct *work)
1865 {
1866 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1867 
1868 	crypt_inc_pending(io);
1869 	if (kcryptd_io_read(io, GFP_NOIO))
1870 		io->error = BLK_STS_RESOURCE;
1871 	crypt_dec_pending(io);
1872 }
1873 
1874 static void kcryptd_queue_read(struct dm_crypt_io *io)
1875 {
1876 	struct crypt_config *cc = io->cc;
1877 
1878 	INIT_WORK(&io->work, kcryptd_io_read_work);
1879 	queue_work(cc->io_queue, &io->work);
1880 }
1881 
1882 static void kcryptd_io_write(struct dm_crypt_io *io)
1883 {
1884 	struct bio *clone = io->ctx.bio_out;
1885 
1886 	dm_submit_bio_remap(io->base_bio, clone);
1887 }
1888 
1889 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1890 
1891 static int dmcrypt_write(void *data)
1892 {
1893 	struct crypt_config *cc = data;
1894 	struct dm_crypt_io *io;
1895 
1896 	while (1) {
1897 		struct rb_root write_tree;
1898 		struct blk_plug plug;
1899 
1900 		spin_lock_irq(&cc->write_thread_lock);
1901 continue_locked:
1902 
1903 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1904 			goto pop_from_list;
1905 
1906 		set_current_state(TASK_INTERRUPTIBLE);
1907 
1908 		spin_unlock_irq(&cc->write_thread_lock);
1909 
1910 		if (unlikely(kthread_should_stop())) {
1911 			set_current_state(TASK_RUNNING);
1912 			break;
1913 		}
1914 
1915 		schedule();
1916 
1917 		set_current_state(TASK_RUNNING);
1918 		spin_lock_irq(&cc->write_thread_lock);
1919 		goto continue_locked;
1920 
1921 pop_from_list:
1922 		write_tree = cc->write_tree;
1923 		cc->write_tree = RB_ROOT;
1924 		spin_unlock_irq(&cc->write_thread_lock);
1925 
1926 		BUG_ON(rb_parent(write_tree.rb_node));
1927 
1928 		/*
1929 		 * Note: we cannot walk the tree here with rb_next because
1930 		 * the structures may be freed when kcryptd_io_write is called.
1931 		 */
1932 		blk_start_plug(&plug);
1933 		do {
1934 			io = crypt_io_from_node(rb_first(&write_tree));
1935 			rb_erase(&io->rb_node, &write_tree);
1936 			kcryptd_io_write(io);
1937 		} while (!RB_EMPTY_ROOT(&write_tree));
1938 		blk_finish_plug(&plug);
1939 	}
1940 	return 0;
1941 }
1942 
1943 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1944 {
1945 	struct bio *clone = io->ctx.bio_out;
1946 	struct crypt_config *cc = io->cc;
1947 	unsigned long flags;
1948 	sector_t sector;
1949 	struct rb_node **rbp, *parent;
1950 
1951 	if (unlikely(io->error)) {
1952 		crypt_free_buffer_pages(cc, clone);
1953 		bio_put(clone);
1954 		crypt_dec_pending(io);
1955 		return;
1956 	}
1957 
1958 	/* crypt_convert should have filled the clone bio */
1959 	BUG_ON(io->ctx.iter_out.bi_size);
1960 
1961 	clone->bi_iter.bi_sector = cc->start + io->sector;
1962 
1963 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1964 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1965 		dm_submit_bio_remap(io->base_bio, clone);
1966 		return;
1967 	}
1968 
1969 	spin_lock_irqsave(&cc->write_thread_lock, flags);
1970 	if (RB_EMPTY_ROOT(&cc->write_tree))
1971 		wake_up_process(cc->write_thread);
1972 	rbp = &cc->write_tree.rb_node;
1973 	parent = NULL;
1974 	sector = io->sector;
1975 	while (*rbp) {
1976 		parent = *rbp;
1977 		if (sector < crypt_io_from_node(parent)->sector)
1978 			rbp = &(*rbp)->rb_left;
1979 		else
1980 			rbp = &(*rbp)->rb_right;
1981 	}
1982 	rb_link_node(&io->rb_node, parent, rbp);
1983 	rb_insert_color(&io->rb_node, &cc->write_tree);
1984 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1985 }
1986 
1987 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
1988 				       struct convert_context *ctx)
1989 
1990 {
1991 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
1992 		return false;
1993 
1994 	/*
1995 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
1996 	 * constraints so they do not need to be issued inline by
1997 	 * kcryptd_crypt_write_convert().
1998 	 */
1999 	switch (bio_op(ctx->bio_in)) {
2000 	case REQ_OP_WRITE:
2001 	case REQ_OP_WRITE_ZEROES:
2002 		return true;
2003 	default:
2004 		return false;
2005 	}
2006 }
2007 
2008 static void kcryptd_crypt_write_continue(struct work_struct *work)
2009 {
2010 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2011 	struct crypt_config *cc = io->cc;
2012 	struct convert_context *ctx = &io->ctx;
2013 	int crypt_finished;
2014 	sector_t sector = io->sector;
2015 	blk_status_t r;
2016 
2017 	wait_for_completion(&ctx->restart);
2018 	reinit_completion(&ctx->restart);
2019 
2020 	r = crypt_convert(cc, &io->ctx, true, false);
2021 	if (r)
2022 		io->error = r;
2023 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2024 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2025 		/* Wait for completion signaled by kcryptd_async_done() */
2026 		wait_for_completion(&ctx->restart);
2027 		crypt_finished = 1;
2028 	}
2029 
2030 	/* Encryption was already finished, submit io now */
2031 	if (crypt_finished) {
2032 		kcryptd_crypt_write_io_submit(io, 0);
2033 		io->sector = sector;
2034 	}
2035 
2036 	crypt_dec_pending(io);
2037 }
2038 
2039 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2040 {
2041 	struct crypt_config *cc = io->cc;
2042 	struct convert_context *ctx = &io->ctx;
2043 	struct bio *clone;
2044 	int crypt_finished;
2045 	sector_t sector = io->sector;
2046 	blk_status_t r;
2047 
2048 	/*
2049 	 * Prevent io from disappearing until this function completes.
2050 	 */
2051 	crypt_inc_pending(io);
2052 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2053 
2054 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2055 	if (unlikely(!clone)) {
2056 		io->error = BLK_STS_IOERR;
2057 		goto dec;
2058 	}
2059 
2060 	io->ctx.bio_out = clone;
2061 	io->ctx.iter_out = clone->bi_iter;
2062 
2063 	sector += bio_sectors(clone);
2064 
2065 	crypt_inc_pending(io);
2066 	r = crypt_convert(cc, ctx,
2067 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2068 	/*
2069 	 * Crypto API backlogged the request, because its queue was full
2070 	 * and we're in softirq context, so continue from a workqueue
2071 	 * (TODO: is it actually possible to be in softirq in the write path?)
2072 	 */
2073 	if (r == BLK_STS_DEV_RESOURCE) {
2074 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2075 		queue_work(cc->crypt_queue, &io->work);
2076 		return;
2077 	}
2078 	if (r)
2079 		io->error = r;
2080 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2081 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2082 		/* Wait for completion signaled by kcryptd_async_done() */
2083 		wait_for_completion(&ctx->restart);
2084 		crypt_finished = 1;
2085 	}
2086 
2087 	/* Encryption was already finished, submit io now */
2088 	if (crypt_finished) {
2089 		kcryptd_crypt_write_io_submit(io, 0);
2090 		io->sector = sector;
2091 	}
2092 
2093 dec:
2094 	crypt_dec_pending(io);
2095 }
2096 
2097 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2098 {
2099 	crypt_dec_pending(io);
2100 }
2101 
2102 static void kcryptd_crypt_read_continue(struct work_struct *work)
2103 {
2104 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2105 	struct crypt_config *cc = io->cc;
2106 	blk_status_t r;
2107 
2108 	wait_for_completion(&io->ctx.restart);
2109 	reinit_completion(&io->ctx.restart);
2110 
2111 	r = crypt_convert(cc, &io->ctx, true, false);
2112 	if (r)
2113 		io->error = r;
2114 
2115 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2116 		kcryptd_crypt_read_done(io);
2117 
2118 	crypt_dec_pending(io);
2119 }
2120 
2121 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2122 {
2123 	struct crypt_config *cc = io->cc;
2124 	blk_status_t r;
2125 
2126 	crypt_inc_pending(io);
2127 
2128 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2129 			   io->sector);
2130 
2131 	r = crypt_convert(cc, &io->ctx,
2132 			  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2133 	/*
2134 	 * Crypto API backlogged the request, because its queue was full
2135 	 * and we're in softirq context, so continue from a workqueue
2136 	 */
2137 	if (r == BLK_STS_DEV_RESOURCE) {
2138 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2139 		queue_work(cc->crypt_queue, &io->work);
2140 		return;
2141 	}
2142 	if (r)
2143 		io->error = r;
2144 
2145 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2146 		kcryptd_crypt_read_done(io);
2147 
2148 	crypt_dec_pending(io);
2149 }
2150 
2151 static void kcryptd_async_done(struct crypto_async_request *async_req,
2152 			       int error)
2153 {
2154 	struct dm_crypt_request *dmreq = async_req->data;
2155 	struct convert_context *ctx = dmreq->ctx;
2156 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2157 	struct crypt_config *cc = io->cc;
2158 
2159 	/*
2160 	 * A request from crypto driver backlog is going to be processed now,
2161 	 * finish the completion and continue in crypt_convert().
2162 	 * (Callback will be called for the second time for this request.)
2163 	 */
2164 	if (error == -EINPROGRESS) {
2165 		complete(&ctx->restart);
2166 		return;
2167 	}
2168 
2169 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2170 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2171 
2172 	if (error == -EBADMSG) {
2173 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2174 
2175 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2176 			    ctx->bio_in->bi_bdev, s);
2177 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2178 				 ctx->bio_in, s, 0);
2179 		io->error = BLK_STS_PROTECTION;
2180 	} else if (error < 0)
2181 		io->error = BLK_STS_IOERR;
2182 
2183 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2184 
2185 	if (!atomic_dec_and_test(&ctx->cc_pending))
2186 		return;
2187 
2188 	/*
2189 	 * The request is fully completed: for inline writes, let
2190 	 * kcryptd_crypt_write_convert() do the IO submission.
2191 	 */
2192 	if (bio_data_dir(io->base_bio) == READ) {
2193 		kcryptd_crypt_read_done(io);
2194 		return;
2195 	}
2196 
2197 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2198 		complete(&ctx->restart);
2199 		return;
2200 	}
2201 
2202 	kcryptd_crypt_write_io_submit(io, 1);
2203 }
2204 
2205 static void kcryptd_crypt(struct work_struct *work)
2206 {
2207 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2208 
2209 	if (bio_data_dir(io->base_bio) == READ)
2210 		kcryptd_crypt_read_convert(io);
2211 	else
2212 		kcryptd_crypt_write_convert(io);
2213 }
2214 
2215 static void kcryptd_crypt_tasklet(unsigned long work)
2216 {
2217 	kcryptd_crypt((struct work_struct *)work);
2218 }
2219 
2220 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2221 {
2222 	struct crypt_config *cc = io->cc;
2223 
2224 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2225 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2226 		/*
2227 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2228 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2229 		 * it is being executed with irqs disabled.
2230 		 */
2231 		if (in_hardirq() || irqs_disabled()) {
2232 			tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2233 			tasklet_schedule(&io->tasklet);
2234 			return;
2235 		}
2236 
2237 		kcryptd_crypt(&io->work);
2238 		return;
2239 	}
2240 
2241 	INIT_WORK(&io->work, kcryptd_crypt);
2242 	queue_work(cc->crypt_queue, &io->work);
2243 }
2244 
2245 static void crypt_free_tfms_aead(struct crypt_config *cc)
2246 {
2247 	if (!cc->cipher_tfm.tfms_aead)
2248 		return;
2249 
2250 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2251 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2252 		cc->cipher_tfm.tfms_aead[0] = NULL;
2253 	}
2254 
2255 	kfree(cc->cipher_tfm.tfms_aead);
2256 	cc->cipher_tfm.tfms_aead = NULL;
2257 }
2258 
2259 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2260 {
2261 	unsigned int i;
2262 
2263 	if (!cc->cipher_tfm.tfms)
2264 		return;
2265 
2266 	for (i = 0; i < cc->tfms_count; i++)
2267 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2268 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2269 			cc->cipher_tfm.tfms[i] = NULL;
2270 		}
2271 
2272 	kfree(cc->cipher_tfm.tfms);
2273 	cc->cipher_tfm.tfms = NULL;
2274 }
2275 
2276 static void crypt_free_tfms(struct crypt_config *cc)
2277 {
2278 	if (crypt_integrity_aead(cc))
2279 		crypt_free_tfms_aead(cc);
2280 	else
2281 		crypt_free_tfms_skcipher(cc);
2282 }
2283 
2284 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2285 {
2286 	unsigned int i;
2287 	int err;
2288 
2289 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2290 				      sizeof(struct crypto_skcipher *),
2291 				      GFP_KERNEL);
2292 	if (!cc->cipher_tfm.tfms)
2293 		return -ENOMEM;
2294 
2295 	for (i = 0; i < cc->tfms_count; i++) {
2296 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2297 						CRYPTO_ALG_ALLOCATES_MEMORY);
2298 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2299 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2300 			crypt_free_tfms(cc);
2301 			return err;
2302 		}
2303 	}
2304 
2305 	/*
2306 	 * dm-crypt performance can vary greatly depending on which crypto
2307 	 * algorithm implementation is used.  Help people debug performance
2308 	 * problems by logging the ->cra_driver_name.
2309 	 */
2310 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2311 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2312 	return 0;
2313 }
2314 
2315 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2316 {
2317 	int err;
2318 
2319 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2320 	if (!cc->cipher_tfm.tfms)
2321 		return -ENOMEM;
2322 
2323 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2324 						CRYPTO_ALG_ALLOCATES_MEMORY);
2325 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2326 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2327 		crypt_free_tfms(cc);
2328 		return err;
2329 	}
2330 
2331 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2332 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2333 	return 0;
2334 }
2335 
2336 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2337 {
2338 	if (crypt_integrity_aead(cc))
2339 		return crypt_alloc_tfms_aead(cc, ciphermode);
2340 	else
2341 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2342 }
2343 
2344 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2345 {
2346 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2347 }
2348 
2349 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2350 {
2351 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2352 }
2353 
2354 /*
2355  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2356  * the key must be for some reason in special format.
2357  * This funcion converts cc->key to this special format.
2358  */
2359 static void crypt_copy_authenckey(char *p, const void *key,
2360 				  unsigned int enckeylen, unsigned int authkeylen)
2361 {
2362 	struct crypto_authenc_key_param *param;
2363 	struct rtattr *rta;
2364 
2365 	rta = (struct rtattr *)p;
2366 	param = RTA_DATA(rta);
2367 	param->enckeylen = cpu_to_be32(enckeylen);
2368 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2369 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2370 	p += RTA_SPACE(sizeof(*param));
2371 	memcpy(p, key + enckeylen, authkeylen);
2372 	p += authkeylen;
2373 	memcpy(p, key, enckeylen);
2374 }
2375 
2376 static int crypt_setkey(struct crypt_config *cc)
2377 {
2378 	unsigned int subkey_size;
2379 	int err = 0, i, r;
2380 
2381 	/* Ignore extra keys (which are used for IV etc) */
2382 	subkey_size = crypt_subkey_size(cc);
2383 
2384 	if (crypt_integrity_hmac(cc)) {
2385 		if (subkey_size < cc->key_mac_size)
2386 			return -EINVAL;
2387 
2388 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2389 				      subkey_size - cc->key_mac_size,
2390 				      cc->key_mac_size);
2391 	}
2392 
2393 	for (i = 0; i < cc->tfms_count; i++) {
2394 		if (crypt_integrity_hmac(cc))
2395 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2396 				cc->authenc_key, crypt_authenckey_size(cc));
2397 		else if (crypt_integrity_aead(cc))
2398 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2399 					       cc->key + (i * subkey_size),
2400 					       subkey_size);
2401 		else
2402 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2403 						   cc->key + (i * subkey_size),
2404 						   subkey_size);
2405 		if (r)
2406 			err = r;
2407 	}
2408 
2409 	if (crypt_integrity_hmac(cc))
2410 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2411 
2412 	return err;
2413 }
2414 
2415 #ifdef CONFIG_KEYS
2416 
2417 static bool contains_whitespace(const char *str)
2418 {
2419 	while (*str)
2420 		if (isspace(*str++))
2421 			return true;
2422 	return false;
2423 }
2424 
2425 static int set_key_user(struct crypt_config *cc, struct key *key)
2426 {
2427 	const struct user_key_payload *ukp;
2428 
2429 	ukp = user_key_payload_locked(key);
2430 	if (!ukp)
2431 		return -EKEYREVOKED;
2432 
2433 	if (cc->key_size != ukp->datalen)
2434 		return -EINVAL;
2435 
2436 	memcpy(cc->key, ukp->data, cc->key_size);
2437 
2438 	return 0;
2439 }
2440 
2441 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2442 {
2443 	const struct encrypted_key_payload *ekp;
2444 
2445 	ekp = key->payload.data[0];
2446 	if (!ekp)
2447 		return -EKEYREVOKED;
2448 
2449 	if (cc->key_size != ekp->decrypted_datalen)
2450 		return -EINVAL;
2451 
2452 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2453 
2454 	return 0;
2455 }
2456 
2457 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2458 {
2459 	const struct trusted_key_payload *tkp;
2460 
2461 	tkp = key->payload.data[0];
2462 	if (!tkp)
2463 		return -EKEYREVOKED;
2464 
2465 	if (cc->key_size != tkp->key_len)
2466 		return -EINVAL;
2467 
2468 	memcpy(cc->key, tkp->key, cc->key_size);
2469 
2470 	return 0;
2471 }
2472 
2473 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2474 {
2475 	char *new_key_string, *key_desc;
2476 	int ret;
2477 	struct key_type *type;
2478 	struct key *key;
2479 	int (*set_key)(struct crypt_config *cc, struct key *key);
2480 
2481 	/*
2482 	 * Reject key_string with whitespace. dm core currently lacks code for
2483 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2484 	 */
2485 	if (contains_whitespace(key_string)) {
2486 		DMERR("whitespace chars not allowed in key string");
2487 		return -EINVAL;
2488 	}
2489 
2490 	/* look for next ':' separating key_type from key_description */
2491 	key_desc = strchr(key_string, ':');
2492 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2493 		return -EINVAL;
2494 
2495 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2496 		type = &key_type_logon;
2497 		set_key = set_key_user;
2498 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2499 		type = &key_type_user;
2500 		set_key = set_key_user;
2501 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2502 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2503 		type = &key_type_encrypted;
2504 		set_key = set_key_encrypted;
2505 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2506 	           !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2507 		type = &key_type_trusted;
2508 		set_key = set_key_trusted;
2509 	} else {
2510 		return -EINVAL;
2511 	}
2512 
2513 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2514 	if (!new_key_string)
2515 		return -ENOMEM;
2516 
2517 	key = request_key(type, key_desc + 1, NULL);
2518 	if (IS_ERR(key)) {
2519 		kfree_sensitive(new_key_string);
2520 		return PTR_ERR(key);
2521 	}
2522 
2523 	down_read(&key->sem);
2524 
2525 	ret = set_key(cc, key);
2526 	if (ret < 0) {
2527 		up_read(&key->sem);
2528 		key_put(key);
2529 		kfree_sensitive(new_key_string);
2530 		return ret;
2531 	}
2532 
2533 	up_read(&key->sem);
2534 	key_put(key);
2535 
2536 	/* clear the flag since following operations may invalidate previously valid key */
2537 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2538 
2539 	ret = crypt_setkey(cc);
2540 
2541 	if (!ret) {
2542 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2543 		kfree_sensitive(cc->key_string);
2544 		cc->key_string = new_key_string;
2545 	} else
2546 		kfree_sensitive(new_key_string);
2547 
2548 	return ret;
2549 }
2550 
2551 static int get_key_size(char **key_string)
2552 {
2553 	char *colon, dummy;
2554 	int ret;
2555 
2556 	if (*key_string[0] != ':')
2557 		return strlen(*key_string) >> 1;
2558 
2559 	/* look for next ':' in key string */
2560 	colon = strpbrk(*key_string + 1, ":");
2561 	if (!colon)
2562 		return -EINVAL;
2563 
2564 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2565 		return -EINVAL;
2566 
2567 	*key_string = colon;
2568 
2569 	/* remaining key string should be :<logon|user>:<key_desc> */
2570 
2571 	return ret;
2572 }
2573 
2574 #else
2575 
2576 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2577 {
2578 	return -EINVAL;
2579 }
2580 
2581 static int get_key_size(char **key_string)
2582 {
2583 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2584 }
2585 
2586 #endif /* CONFIG_KEYS */
2587 
2588 static int crypt_set_key(struct crypt_config *cc, char *key)
2589 {
2590 	int r = -EINVAL;
2591 	int key_string_len = strlen(key);
2592 
2593 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2594 	if (!cc->key_size && strcmp(key, "-"))
2595 		goto out;
2596 
2597 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2598 	if (key[0] == ':') {
2599 		r = crypt_set_keyring_key(cc, key + 1);
2600 		goto out;
2601 	}
2602 
2603 	/* clear the flag since following operations may invalidate previously valid key */
2604 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2605 
2606 	/* wipe references to any kernel keyring key */
2607 	kfree_sensitive(cc->key_string);
2608 	cc->key_string = NULL;
2609 
2610 	/* Decode key from its hex representation. */
2611 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2612 		goto out;
2613 
2614 	r = crypt_setkey(cc);
2615 	if (!r)
2616 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2617 
2618 out:
2619 	/* Hex key string not needed after here, so wipe it. */
2620 	memset(key, '0', key_string_len);
2621 
2622 	return r;
2623 }
2624 
2625 static int crypt_wipe_key(struct crypt_config *cc)
2626 {
2627 	int r;
2628 
2629 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2630 	get_random_bytes(&cc->key, cc->key_size);
2631 
2632 	/* Wipe IV private keys */
2633 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2634 		r = cc->iv_gen_ops->wipe(cc);
2635 		if (r)
2636 			return r;
2637 	}
2638 
2639 	kfree_sensitive(cc->key_string);
2640 	cc->key_string = NULL;
2641 	r = crypt_setkey(cc);
2642 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2643 
2644 	return r;
2645 }
2646 
2647 static void crypt_calculate_pages_per_client(void)
2648 {
2649 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2650 
2651 	if (!dm_crypt_clients_n)
2652 		return;
2653 
2654 	pages /= dm_crypt_clients_n;
2655 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2656 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2657 	dm_crypt_pages_per_client = pages;
2658 }
2659 
2660 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2661 {
2662 	struct crypt_config *cc = pool_data;
2663 	struct page *page;
2664 
2665 	/*
2666 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2667 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2668 	 * but avoids potential spinlock contention of an exact result.
2669 	 */
2670 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2671 	    likely(gfp_mask & __GFP_NORETRY))
2672 		return NULL;
2673 
2674 	page = alloc_page(gfp_mask);
2675 	if (likely(page != NULL))
2676 		percpu_counter_add(&cc->n_allocated_pages, 1);
2677 
2678 	return page;
2679 }
2680 
2681 static void crypt_page_free(void *page, void *pool_data)
2682 {
2683 	struct crypt_config *cc = pool_data;
2684 
2685 	__free_page(page);
2686 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2687 }
2688 
2689 static void crypt_dtr(struct dm_target *ti)
2690 {
2691 	struct crypt_config *cc = ti->private;
2692 
2693 	ti->private = NULL;
2694 
2695 	if (!cc)
2696 		return;
2697 
2698 	if (cc->write_thread)
2699 		kthread_stop(cc->write_thread);
2700 
2701 	if (cc->io_queue)
2702 		destroy_workqueue(cc->io_queue);
2703 	if (cc->crypt_queue)
2704 		destroy_workqueue(cc->crypt_queue);
2705 
2706 	crypt_free_tfms(cc);
2707 
2708 	bioset_exit(&cc->bs);
2709 
2710 	mempool_exit(&cc->page_pool);
2711 	mempool_exit(&cc->req_pool);
2712 	mempool_exit(&cc->tag_pool);
2713 
2714 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2715 	percpu_counter_destroy(&cc->n_allocated_pages);
2716 
2717 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2718 		cc->iv_gen_ops->dtr(cc);
2719 
2720 	if (cc->dev)
2721 		dm_put_device(ti, cc->dev);
2722 
2723 	kfree_sensitive(cc->cipher_string);
2724 	kfree_sensitive(cc->key_string);
2725 	kfree_sensitive(cc->cipher_auth);
2726 	kfree_sensitive(cc->authenc_key);
2727 
2728 	mutex_destroy(&cc->bio_alloc_lock);
2729 
2730 	/* Must zero key material before freeing */
2731 	kfree_sensitive(cc);
2732 
2733 	spin_lock(&dm_crypt_clients_lock);
2734 	WARN_ON(!dm_crypt_clients_n);
2735 	dm_crypt_clients_n--;
2736 	crypt_calculate_pages_per_client();
2737 	spin_unlock(&dm_crypt_clients_lock);
2738 
2739 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2740 }
2741 
2742 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2743 {
2744 	struct crypt_config *cc = ti->private;
2745 
2746 	if (crypt_integrity_aead(cc))
2747 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2748 	else
2749 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2750 
2751 	if (cc->iv_size)
2752 		/* at least a 64 bit sector number should fit in our buffer */
2753 		cc->iv_size = max(cc->iv_size,
2754 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2755 	else if (ivmode) {
2756 		DMWARN("Selected cipher does not support IVs");
2757 		ivmode = NULL;
2758 	}
2759 
2760 	/* Choose ivmode, see comments at iv code. */
2761 	if (ivmode == NULL)
2762 		cc->iv_gen_ops = NULL;
2763 	else if (strcmp(ivmode, "plain") == 0)
2764 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2765 	else if (strcmp(ivmode, "plain64") == 0)
2766 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2767 	else if (strcmp(ivmode, "plain64be") == 0)
2768 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2769 	else if (strcmp(ivmode, "essiv") == 0)
2770 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2771 	else if (strcmp(ivmode, "benbi") == 0)
2772 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2773 	else if (strcmp(ivmode, "null") == 0)
2774 		cc->iv_gen_ops = &crypt_iv_null_ops;
2775 	else if (strcmp(ivmode, "eboiv") == 0)
2776 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2777 	else if (strcmp(ivmode, "elephant") == 0) {
2778 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2779 		cc->key_parts = 2;
2780 		cc->key_extra_size = cc->key_size / 2;
2781 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2782 			return -EINVAL;
2783 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2784 	} else if (strcmp(ivmode, "lmk") == 0) {
2785 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2786 		/*
2787 		 * Version 2 and 3 is recognised according
2788 		 * to length of provided multi-key string.
2789 		 * If present (version 3), last key is used as IV seed.
2790 		 * All keys (including IV seed) are always the same size.
2791 		 */
2792 		if (cc->key_size % cc->key_parts) {
2793 			cc->key_parts++;
2794 			cc->key_extra_size = cc->key_size / cc->key_parts;
2795 		}
2796 	} else if (strcmp(ivmode, "tcw") == 0) {
2797 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2798 		cc->key_parts += 2; /* IV + whitening */
2799 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2800 	} else if (strcmp(ivmode, "random") == 0) {
2801 		cc->iv_gen_ops = &crypt_iv_random_ops;
2802 		/* Need storage space in integrity fields. */
2803 		cc->integrity_iv_size = cc->iv_size;
2804 	} else {
2805 		ti->error = "Invalid IV mode";
2806 		return -EINVAL;
2807 	}
2808 
2809 	return 0;
2810 }
2811 
2812 /*
2813  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2814  * The HMAC is needed to calculate tag size (HMAC digest size).
2815  * This should be probably done by crypto-api calls (once available...)
2816  */
2817 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2818 {
2819 	char *start, *end, *mac_alg = NULL;
2820 	struct crypto_ahash *mac;
2821 
2822 	if (!strstarts(cipher_api, "authenc("))
2823 		return 0;
2824 
2825 	start = strchr(cipher_api, '(');
2826 	end = strchr(cipher_api, ',');
2827 	if (!start || !end || ++start > end)
2828 		return -EINVAL;
2829 
2830 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2831 	if (!mac_alg)
2832 		return -ENOMEM;
2833 	strncpy(mac_alg, start, end - start);
2834 
2835 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2836 	kfree(mac_alg);
2837 
2838 	if (IS_ERR(mac))
2839 		return PTR_ERR(mac);
2840 
2841 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2842 	crypto_free_ahash(mac);
2843 
2844 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2845 	if (!cc->authenc_key)
2846 		return -ENOMEM;
2847 
2848 	return 0;
2849 }
2850 
2851 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2852 				char **ivmode, char **ivopts)
2853 {
2854 	struct crypt_config *cc = ti->private;
2855 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2856 	int ret = -EINVAL;
2857 
2858 	cc->tfms_count = 1;
2859 
2860 	/*
2861 	 * New format (capi: prefix)
2862 	 * capi:cipher_api_spec-iv:ivopts
2863 	 */
2864 	tmp = &cipher_in[strlen("capi:")];
2865 
2866 	/* Separate IV options if present, it can contain another '-' in hash name */
2867 	*ivopts = strrchr(tmp, ':');
2868 	if (*ivopts) {
2869 		**ivopts = '\0';
2870 		(*ivopts)++;
2871 	}
2872 	/* Parse IV mode */
2873 	*ivmode = strrchr(tmp, '-');
2874 	if (*ivmode) {
2875 		**ivmode = '\0';
2876 		(*ivmode)++;
2877 	}
2878 	/* The rest is crypto API spec */
2879 	cipher_api = tmp;
2880 
2881 	/* Alloc AEAD, can be used only in new format. */
2882 	if (crypt_integrity_aead(cc)) {
2883 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2884 		if (ret < 0) {
2885 			ti->error = "Invalid AEAD cipher spec";
2886 			return -ENOMEM;
2887 		}
2888 	}
2889 
2890 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2891 		cc->tfms_count = 64;
2892 
2893 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2894 		if (!*ivopts) {
2895 			ti->error = "Digest algorithm missing for ESSIV mode";
2896 			return -EINVAL;
2897 		}
2898 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2899 			       cipher_api, *ivopts);
2900 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2901 			ti->error = "Cannot allocate cipher string";
2902 			return -ENOMEM;
2903 		}
2904 		cipher_api = buf;
2905 	}
2906 
2907 	cc->key_parts = cc->tfms_count;
2908 
2909 	/* Allocate cipher */
2910 	ret = crypt_alloc_tfms(cc, cipher_api);
2911 	if (ret < 0) {
2912 		ti->error = "Error allocating crypto tfm";
2913 		return ret;
2914 	}
2915 
2916 	if (crypt_integrity_aead(cc))
2917 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2918 	else
2919 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2920 
2921 	return 0;
2922 }
2923 
2924 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2925 				char **ivmode, char **ivopts)
2926 {
2927 	struct crypt_config *cc = ti->private;
2928 	char *tmp, *cipher, *chainmode, *keycount;
2929 	char *cipher_api = NULL;
2930 	int ret = -EINVAL;
2931 	char dummy;
2932 
2933 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2934 		ti->error = "Bad cipher specification";
2935 		return -EINVAL;
2936 	}
2937 
2938 	/*
2939 	 * Legacy dm-crypt cipher specification
2940 	 * cipher[:keycount]-mode-iv:ivopts
2941 	 */
2942 	tmp = cipher_in;
2943 	keycount = strsep(&tmp, "-");
2944 	cipher = strsep(&keycount, ":");
2945 
2946 	if (!keycount)
2947 		cc->tfms_count = 1;
2948 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2949 		 !is_power_of_2(cc->tfms_count)) {
2950 		ti->error = "Bad cipher key count specification";
2951 		return -EINVAL;
2952 	}
2953 	cc->key_parts = cc->tfms_count;
2954 
2955 	chainmode = strsep(&tmp, "-");
2956 	*ivmode = strsep(&tmp, ":");
2957 	*ivopts = tmp;
2958 
2959 	/*
2960 	 * For compatibility with the original dm-crypt mapping format, if
2961 	 * only the cipher name is supplied, use cbc-plain.
2962 	 */
2963 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2964 		chainmode = "cbc";
2965 		*ivmode = "plain";
2966 	}
2967 
2968 	if (strcmp(chainmode, "ecb") && !*ivmode) {
2969 		ti->error = "IV mechanism required";
2970 		return -EINVAL;
2971 	}
2972 
2973 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2974 	if (!cipher_api)
2975 		goto bad_mem;
2976 
2977 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2978 		if (!*ivopts) {
2979 			ti->error = "Digest algorithm missing for ESSIV mode";
2980 			kfree(cipher_api);
2981 			return -EINVAL;
2982 		}
2983 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2984 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2985 	} else {
2986 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2987 			       "%s(%s)", chainmode, cipher);
2988 	}
2989 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2990 		kfree(cipher_api);
2991 		goto bad_mem;
2992 	}
2993 
2994 	/* Allocate cipher */
2995 	ret = crypt_alloc_tfms(cc, cipher_api);
2996 	if (ret < 0) {
2997 		ti->error = "Error allocating crypto tfm";
2998 		kfree(cipher_api);
2999 		return ret;
3000 	}
3001 	kfree(cipher_api);
3002 
3003 	return 0;
3004 bad_mem:
3005 	ti->error = "Cannot allocate cipher strings";
3006 	return -ENOMEM;
3007 }
3008 
3009 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3010 {
3011 	struct crypt_config *cc = ti->private;
3012 	char *ivmode = NULL, *ivopts = NULL;
3013 	int ret;
3014 
3015 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3016 	if (!cc->cipher_string) {
3017 		ti->error = "Cannot allocate cipher strings";
3018 		return -ENOMEM;
3019 	}
3020 
3021 	if (strstarts(cipher_in, "capi:"))
3022 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3023 	else
3024 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3025 	if (ret)
3026 		return ret;
3027 
3028 	/* Initialize IV */
3029 	ret = crypt_ctr_ivmode(ti, ivmode);
3030 	if (ret < 0)
3031 		return ret;
3032 
3033 	/* Initialize and set key */
3034 	ret = crypt_set_key(cc, key);
3035 	if (ret < 0) {
3036 		ti->error = "Error decoding and setting key";
3037 		return ret;
3038 	}
3039 
3040 	/* Allocate IV */
3041 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3042 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3043 		if (ret < 0) {
3044 			ti->error = "Error creating IV";
3045 			return ret;
3046 		}
3047 	}
3048 
3049 	/* Initialize IV (set keys for ESSIV etc) */
3050 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3051 		ret = cc->iv_gen_ops->init(cc);
3052 		if (ret < 0) {
3053 			ti->error = "Error initialising IV";
3054 			return ret;
3055 		}
3056 	}
3057 
3058 	/* wipe the kernel key payload copy */
3059 	if (cc->key_string)
3060 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3061 
3062 	return ret;
3063 }
3064 
3065 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3066 {
3067 	struct crypt_config *cc = ti->private;
3068 	struct dm_arg_set as;
3069 	static const struct dm_arg _args[] = {
3070 		{0, 8, "Invalid number of feature args"},
3071 	};
3072 	unsigned int opt_params, val;
3073 	const char *opt_string, *sval;
3074 	char dummy;
3075 	int ret;
3076 
3077 	/* Optional parameters */
3078 	as.argc = argc;
3079 	as.argv = argv;
3080 
3081 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3082 	if (ret)
3083 		return ret;
3084 
3085 	while (opt_params--) {
3086 		opt_string = dm_shift_arg(&as);
3087 		if (!opt_string) {
3088 			ti->error = "Not enough feature arguments";
3089 			return -EINVAL;
3090 		}
3091 
3092 		if (!strcasecmp(opt_string, "allow_discards"))
3093 			ti->num_discard_bios = 1;
3094 
3095 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3096 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3097 
3098 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3099 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3100 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3101 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3102 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3103 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3104 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3105 			if (val == 0 || val > MAX_TAG_SIZE) {
3106 				ti->error = "Invalid integrity arguments";
3107 				return -EINVAL;
3108 			}
3109 			cc->on_disk_tag_size = val;
3110 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3111 			if (!strcasecmp(sval, "aead")) {
3112 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3113 			} else  if (strcasecmp(sval, "none")) {
3114 				ti->error = "Unknown integrity profile";
3115 				return -EINVAL;
3116 			}
3117 
3118 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3119 			if (!cc->cipher_auth)
3120 				return -ENOMEM;
3121 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3122 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3123 			    cc->sector_size > 4096 ||
3124 			    (cc->sector_size & (cc->sector_size - 1))) {
3125 				ti->error = "Invalid feature value for sector_size";
3126 				return -EINVAL;
3127 			}
3128 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3129 				ti->error = "Device size is not multiple of sector_size feature";
3130 				return -EINVAL;
3131 			}
3132 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3133 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3134 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3135 		else {
3136 			ti->error = "Invalid feature arguments";
3137 			return -EINVAL;
3138 		}
3139 	}
3140 
3141 	return 0;
3142 }
3143 
3144 #ifdef CONFIG_BLK_DEV_ZONED
3145 static int crypt_report_zones(struct dm_target *ti,
3146 		struct dm_report_zones_args *args, unsigned int nr_zones)
3147 {
3148 	struct crypt_config *cc = ti->private;
3149 
3150 	return dm_report_zones(cc->dev->bdev, cc->start,
3151 			cc->start + dm_target_offset(ti, args->next_sector),
3152 			args, nr_zones);
3153 }
3154 #else
3155 #define crypt_report_zones NULL
3156 #endif
3157 
3158 /*
3159  * Construct an encryption mapping:
3160  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3161  */
3162 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3163 {
3164 	struct crypt_config *cc;
3165 	const char *devname = dm_table_device_name(ti->table);
3166 	int key_size;
3167 	unsigned int align_mask;
3168 	unsigned long long tmpll;
3169 	int ret;
3170 	size_t iv_size_padding, additional_req_size;
3171 	char dummy;
3172 
3173 	if (argc < 5) {
3174 		ti->error = "Not enough arguments";
3175 		return -EINVAL;
3176 	}
3177 
3178 	key_size = get_key_size(&argv[1]);
3179 	if (key_size < 0) {
3180 		ti->error = "Cannot parse key size";
3181 		return -EINVAL;
3182 	}
3183 
3184 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3185 	if (!cc) {
3186 		ti->error = "Cannot allocate encryption context";
3187 		return -ENOMEM;
3188 	}
3189 	cc->key_size = key_size;
3190 	cc->sector_size = (1 << SECTOR_SHIFT);
3191 	cc->sector_shift = 0;
3192 
3193 	ti->private = cc;
3194 
3195 	spin_lock(&dm_crypt_clients_lock);
3196 	dm_crypt_clients_n++;
3197 	crypt_calculate_pages_per_client();
3198 	spin_unlock(&dm_crypt_clients_lock);
3199 
3200 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3201 	if (ret < 0)
3202 		goto bad;
3203 
3204 	/* Optional parameters need to be read before cipher constructor */
3205 	if (argc > 5) {
3206 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3207 		if (ret)
3208 			goto bad;
3209 	}
3210 
3211 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3212 	if (ret < 0)
3213 		goto bad;
3214 
3215 	if (crypt_integrity_aead(cc)) {
3216 		cc->dmreq_start = sizeof(struct aead_request);
3217 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3218 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3219 	} else {
3220 		cc->dmreq_start = sizeof(struct skcipher_request);
3221 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3222 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3223 	}
3224 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3225 
3226 	if (align_mask < CRYPTO_MINALIGN) {
3227 		/* Allocate the padding exactly */
3228 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3229 				& align_mask;
3230 	} else {
3231 		/*
3232 		 * If the cipher requires greater alignment than kmalloc
3233 		 * alignment, we don't know the exact position of the
3234 		 * initialization vector. We must assume worst case.
3235 		 */
3236 		iv_size_padding = align_mask;
3237 	}
3238 
3239 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3240 	additional_req_size = sizeof(struct dm_crypt_request) +
3241 		iv_size_padding + cc->iv_size +
3242 		cc->iv_size +
3243 		sizeof(uint64_t) +
3244 		sizeof(unsigned int);
3245 
3246 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3247 	if (ret) {
3248 		ti->error = "Cannot allocate crypt request mempool";
3249 		goto bad;
3250 	}
3251 
3252 	cc->per_bio_data_size = ti->per_io_data_size =
3253 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3254 		      ARCH_KMALLOC_MINALIGN);
3255 
3256 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3257 	if (ret) {
3258 		ti->error = "Cannot allocate page mempool";
3259 		goto bad;
3260 	}
3261 
3262 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3263 	if (ret) {
3264 		ti->error = "Cannot allocate crypt bioset";
3265 		goto bad;
3266 	}
3267 
3268 	mutex_init(&cc->bio_alloc_lock);
3269 
3270 	ret = -EINVAL;
3271 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3272 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3273 		ti->error = "Invalid iv_offset sector";
3274 		goto bad;
3275 	}
3276 	cc->iv_offset = tmpll;
3277 
3278 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3279 	if (ret) {
3280 		ti->error = "Device lookup failed";
3281 		goto bad;
3282 	}
3283 
3284 	ret = -EINVAL;
3285 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3286 		ti->error = "Invalid device sector";
3287 		goto bad;
3288 	}
3289 	cc->start = tmpll;
3290 
3291 	if (bdev_is_zoned(cc->dev->bdev)) {
3292 		/*
3293 		 * For zoned block devices, we need to preserve the issuer write
3294 		 * ordering. To do so, disable write workqueues and force inline
3295 		 * encryption completion.
3296 		 */
3297 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3298 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3299 
3300 		/*
3301 		 * All zone append writes to a zone of a zoned block device will
3302 		 * have the same BIO sector, the start of the zone. When the
3303 		 * cypher IV mode uses sector values, all data targeting a
3304 		 * zone will be encrypted using the first sector numbers of the
3305 		 * zone. This will not result in write errors but will
3306 		 * cause most reads to fail as reads will use the sector values
3307 		 * for the actual data locations, resulting in IV mismatch.
3308 		 * To avoid this problem, ask DM core to emulate zone append
3309 		 * operations with regular writes.
3310 		 */
3311 		DMDEBUG("Zone append operations will be emulated");
3312 		ti->emulate_zone_append = true;
3313 	}
3314 
3315 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3316 		ret = crypt_integrity_ctr(cc, ti);
3317 		if (ret)
3318 			goto bad;
3319 
3320 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3321 		if (!cc->tag_pool_max_sectors)
3322 			cc->tag_pool_max_sectors = 1;
3323 
3324 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3325 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3326 		if (ret) {
3327 			ti->error = "Cannot allocate integrity tags mempool";
3328 			goto bad;
3329 		}
3330 
3331 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3332 	}
3333 
3334 	ret = -ENOMEM;
3335 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3336 	if (!cc->io_queue) {
3337 		ti->error = "Couldn't create kcryptd io queue";
3338 		goto bad;
3339 	}
3340 
3341 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3342 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3343 						  1, devname);
3344 	else
3345 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3346 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3347 						  num_online_cpus(), devname);
3348 	if (!cc->crypt_queue) {
3349 		ti->error = "Couldn't create kcryptd queue";
3350 		goto bad;
3351 	}
3352 
3353 	spin_lock_init(&cc->write_thread_lock);
3354 	cc->write_tree = RB_ROOT;
3355 
3356 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3357 	if (IS_ERR(cc->write_thread)) {
3358 		ret = PTR_ERR(cc->write_thread);
3359 		cc->write_thread = NULL;
3360 		ti->error = "Couldn't spawn write thread";
3361 		goto bad;
3362 	}
3363 
3364 	ti->num_flush_bios = 1;
3365 	ti->limit_swap_bios = true;
3366 	ti->accounts_remapped_io = true;
3367 
3368 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3369 	return 0;
3370 
3371 bad:
3372 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3373 	crypt_dtr(ti);
3374 	return ret;
3375 }
3376 
3377 static int crypt_map(struct dm_target *ti, struct bio *bio)
3378 {
3379 	struct dm_crypt_io *io;
3380 	struct crypt_config *cc = ti->private;
3381 
3382 	/*
3383 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3384 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3385 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3386 	 */
3387 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3388 	    bio_op(bio) == REQ_OP_DISCARD)) {
3389 		bio_set_dev(bio, cc->dev->bdev);
3390 		if (bio_sectors(bio))
3391 			bio->bi_iter.bi_sector = cc->start +
3392 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3393 		return DM_MAPIO_REMAPPED;
3394 	}
3395 
3396 	/*
3397 	 * Check if bio is too large, split as needed.
3398 	 */
3399 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3400 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3401 		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3402 
3403 	/*
3404 	 * Ensure that bio is a multiple of internal sector encryption size
3405 	 * and is aligned to this size as defined in IO hints.
3406 	 */
3407 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3408 		return DM_MAPIO_KILL;
3409 
3410 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3411 		return DM_MAPIO_KILL;
3412 
3413 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3414 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3415 
3416 	if (cc->on_disk_tag_size) {
3417 		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3418 
3419 		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
3420 		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3421 				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3422 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3423 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3424 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3425 			io->integrity_metadata_from_pool = true;
3426 		}
3427 	}
3428 
3429 	if (crypt_integrity_aead(cc))
3430 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3431 	else
3432 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3433 
3434 	if (bio_data_dir(io->base_bio) == READ) {
3435 		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3436 			kcryptd_queue_read(io);
3437 	} else
3438 		kcryptd_queue_crypt(io);
3439 
3440 	return DM_MAPIO_SUBMITTED;
3441 }
3442 
3443 static char hex2asc(unsigned char c)
3444 {
3445 	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3446 }
3447 
3448 static void crypt_status(struct dm_target *ti, status_type_t type,
3449 			 unsigned int status_flags, char *result, unsigned int maxlen)
3450 {
3451 	struct crypt_config *cc = ti->private;
3452 	unsigned int i, sz = 0;
3453 	int num_feature_args = 0;
3454 
3455 	switch (type) {
3456 	case STATUSTYPE_INFO:
3457 		result[0] = '\0';
3458 		break;
3459 
3460 	case STATUSTYPE_TABLE:
3461 		DMEMIT("%s ", cc->cipher_string);
3462 
3463 		if (cc->key_size > 0) {
3464 			if (cc->key_string)
3465 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3466 			else {
3467 				for (i = 0; i < cc->key_size; i++) {
3468 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3469 					       hex2asc(cc->key[i] & 0xf));
3470 				}
3471 			}
3472 		} else
3473 			DMEMIT("-");
3474 
3475 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3476 				cc->dev->name, (unsigned long long)cc->start);
3477 
3478 		num_feature_args += !!ti->num_discard_bios;
3479 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3480 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3481 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3482 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3483 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3484 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3485 		if (cc->on_disk_tag_size)
3486 			num_feature_args++;
3487 		if (num_feature_args) {
3488 			DMEMIT(" %d", num_feature_args);
3489 			if (ti->num_discard_bios)
3490 				DMEMIT(" allow_discards");
3491 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3492 				DMEMIT(" same_cpu_crypt");
3493 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3494 				DMEMIT(" submit_from_crypt_cpus");
3495 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3496 				DMEMIT(" no_read_workqueue");
3497 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3498 				DMEMIT(" no_write_workqueue");
3499 			if (cc->on_disk_tag_size)
3500 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3501 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3502 				DMEMIT(" sector_size:%d", cc->sector_size);
3503 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3504 				DMEMIT(" iv_large_sectors");
3505 		}
3506 		break;
3507 
3508 	case STATUSTYPE_IMA:
3509 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3510 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3511 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3512 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3513 		       'y' : 'n');
3514 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3515 		       'y' : 'n');
3516 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3517 		       'y' : 'n');
3518 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3519 		       'y' : 'n');
3520 
3521 		if (cc->on_disk_tag_size)
3522 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3523 			       cc->on_disk_tag_size, cc->cipher_auth);
3524 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3525 			DMEMIT(",sector_size=%d", cc->sector_size);
3526 		if (cc->cipher_string)
3527 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3528 
3529 		DMEMIT(",key_size=%u", cc->key_size);
3530 		DMEMIT(",key_parts=%u", cc->key_parts);
3531 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3532 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3533 		DMEMIT(";");
3534 		break;
3535 	}
3536 }
3537 
3538 static void crypt_postsuspend(struct dm_target *ti)
3539 {
3540 	struct crypt_config *cc = ti->private;
3541 
3542 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3543 }
3544 
3545 static int crypt_preresume(struct dm_target *ti)
3546 {
3547 	struct crypt_config *cc = ti->private;
3548 
3549 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3550 		DMERR("aborting resume - crypt key is not set.");
3551 		return -EAGAIN;
3552 	}
3553 
3554 	return 0;
3555 }
3556 
3557 static void crypt_resume(struct dm_target *ti)
3558 {
3559 	struct crypt_config *cc = ti->private;
3560 
3561 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3562 }
3563 
3564 /* Message interface
3565  *	key set <key>
3566  *	key wipe
3567  */
3568 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3569 			 char *result, unsigned int maxlen)
3570 {
3571 	struct crypt_config *cc = ti->private;
3572 	int key_size, ret = -EINVAL;
3573 
3574 	if (argc < 2)
3575 		goto error;
3576 
3577 	if (!strcasecmp(argv[0], "key")) {
3578 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3579 			DMWARN("not suspended during key manipulation.");
3580 			return -EINVAL;
3581 		}
3582 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3583 			/* The key size may not be changed. */
3584 			key_size = get_key_size(&argv[2]);
3585 			if (key_size < 0 || cc->key_size != key_size) {
3586 				memset(argv[2], '0', strlen(argv[2]));
3587 				return -EINVAL;
3588 			}
3589 
3590 			ret = crypt_set_key(cc, argv[2]);
3591 			if (ret)
3592 				return ret;
3593 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3594 				ret = cc->iv_gen_ops->init(cc);
3595 			/* wipe the kernel key payload copy */
3596 			if (cc->key_string)
3597 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3598 			return ret;
3599 		}
3600 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3601 			return crypt_wipe_key(cc);
3602 	}
3603 
3604 error:
3605 	DMWARN("unrecognised message received.");
3606 	return -EINVAL;
3607 }
3608 
3609 static int crypt_iterate_devices(struct dm_target *ti,
3610 				 iterate_devices_callout_fn fn, void *data)
3611 {
3612 	struct crypt_config *cc = ti->private;
3613 
3614 	return fn(ti, cc->dev, cc->start, ti->len, data);
3615 }
3616 
3617 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3618 {
3619 	struct crypt_config *cc = ti->private;
3620 
3621 	/*
3622 	 * Unfortunate constraint that is required to avoid the potential
3623 	 * for exceeding underlying device's max_segments limits -- due to
3624 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3625 	 * bio that are not as physically contiguous as the original bio.
3626 	 */
3627 	limits->max_segment_size = PAGE_SIZE;
3628 
3629 	limits->logical_block_size =
3630 		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3631 	limits->physical_block_size =
3632 		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3633 	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3634 	limits->dma_alignment = limits->logical_block_size - 1;
3635 }
3636 
3637 static struct target_type crypt_target = {
3638 	.name   = "crypt",
3639 	.version = {1, 24, 0},
3640 	.module = THIS_MODULE,
3641 	.ctr    = crypt_ctr,
3642 	.dtr    = crypt_dtr,
3643 	.features = DM_TARGET_ZONED_HM,
3644 	.report_zones = crypt_report_zones,
3645 	.map    = crypt_map,
3646 	.status = crypt_status,
3647 	.postsuspend = crypt_postsuspend,
3648 	.preresume = crypt_preresume,
3649 	.resume = crypt_resume,
3650 	.message = crypt_message,
3651 	.iterate_devices = crypt_iterate_devices,
3652 	.io_hints = crypt_io_hints,
3653 };
3654 
3655 static int __init dm_crypt_init(void)
3656 {
3657 	int r;
3658 
3659 	r = dm_register_target(&crypt_target);
3660 	if (r < 0)
3661 		DMERR("register failed %d", r);
3662 
3663 	return r;
3664 }
3665 
3666 static void __exit dm_crypt_exit(void)
3667 {
3668 	dm_unregister_target(&crypt_target);
3669 }
3670 
3671 module_init(dm_crypt_init);
3672 module_exit(dm_crypt_exit);
3673 
3674 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3675 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3676 MODULE_LICENSE("GPL");
3677