xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 8134d27103b35dbdc94d762f82ca0bfb00f349ff)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
38 
39 #include <linux/device-mapper.h>
40 
41 #define DM_MSG_PREFIX "crypt"
42 
43 /*
44  * context holding the current state of a multi-part conversion
45  */
46 struct convert_context {
47 	struct completion restart;
48 	struct bio *bio_in;
49 	struct bio *bio_out;
50 	struct bvec_iter iter_in;
51 	struct bvec_iter iter_out;
52 	sector_t cc_sector;
53 	atomic_t cc_pending;
54 	union {
55 		struct skcipher_request *req;
56 		struct aead_request *req_aead;
57 	} r;
58 
59 };
60 
61 /*
62  * per bio private data
63  */
64 struct dm_crypt_io {
65 	struct crypt_config *cc;
66 	struct bio *base_bio;
67 	u8 *integrity_metadata;
68 	bool integrity_metadata_from_pool;
69 	struct work_struct work;
70 
71 	struct convert_context ctx;
72 
73 	atomic_t io_pending;
74 	blk_status_t error;
75 	sector_t sector;
76 
77 	struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
79 
80 struct dm_crypt_request {
81 	struct convert_context *ctx;
82 	struct scatterlist sg_in[4];
83 	struct scatterlist sg_out[4];
84 	sector_t iv_sector;
85 };
86 
87 struct crypt_config;
88 
89 struct crypt_iv_operations {
90 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 		   const char *opts);
92 	void (*dtr)(struct crypt_config *cc);
93 	int (*init)(struct crypt_config *cc);
94 	int (*wipe)(struct crypt_config *cc);
95 	int (*generator)(struct crypt_config *cc, u8 *iv,
96 			 struct dm_crypt_request *dmreq);
97 	int (*post)(struct crypt_config *cc, u8 *iv,
98 		    struct dm_crypt_request *dmreq);
99 };
100 
101 struct iv_essiv_private {
102 	struct crypto_ahash *hash_tfm;
103 	u8 *salt;
104 };
105 
106 struct iv_benbi_private {
107 	int shift;
108 };
109 
110 #define LMK_SEED_SIZE 64 /* hash + 0 */
111 struct iv_lmk_private {
112 	struct crypto_shash *hash_tfm;
113 	u8 *seed;
114 };
115 
116 #define TCW_WHITENING_SIZE 16
117 struct iv_tcw_private {
118 	struct crypto_shash *crc32_tfm;
119 	u8 *iv_seed;
120 	u8 *whitening;
121 };
122 
123 /*
124  * Crypt: maps a linear range of a block device
125  * and encrypts / decrypts at the same time.
126  */
127 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
128 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
129 
130 enum cipher_flags {
131 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cihper */
132 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
133 };
134 
135 /*
136  * The fields in here must be read only after initialization.
137  */
138 struct crypt_config {
139 	struct dm_dev *dev;
140 	sector_t start;
141 
142 	struct percpu_counter n_allocated_pages;
143 
144 	struct workqueue_struct *io_queue;
145 	struct workqueue_struct *crypt_queue;
146 
147 	wait_queue_head_t write_thread_wait;
148 	struct task_struct *write_thread;
149 	struct rb_root write_tree;
150 
151 	char *cipher;
152 	char *cipher_string;
153 	char *cipher_auth;
154 	char *key_string;
155 
156 	const struct crypt_iv_operations *iv_gen_ops;
157 	union {
158 		struct iv_essiv_private essiv;
159 		struct iv_benbi_private benbi;
160 		struct iv_lmk_private lmk;
161 		struct iv_tcw_private tcw;
162 	} iv_gen_private;
163 	sector_t iv_offset;
164 	unsigned int iv_size;
165 	unsigned short int sector_size;
166 	unsigned char sector_shift;
167 
168 	/* ESSIV: struct crypto_cipher *essiv_tfm */
169 	void *iv_private;
170 	union {
171 		struct crypto_skcipher **tfms;
172 		struct crypto_aead **tfms_aead;
173 	} cipher_tfm;
174 	unsigned tfms_count;
175 	unsigned long cipher_flags;
176 
177 	/*
178 	 * Layout of each crypto request:
179 	 *
180 	 *   struct skcipher_request
181 	 *      context
182 	 *      padding
183 	 *   struct dm_crypt_request
184 	 *      padding
185 	 *   IV
186 	 *
187 	 * The padding is added so that dm_crypt_request and the IV are
188 	 * correctly aligned.
189 	 */
190 	unsigned int dmreq_start;
191 
192 	unsigned int per_bio_data_size;
193 
194 	unsigned long flags;
195 	unsigned int key_size;
196 	unsigned int key_parts;      /* independent parts in key buffer */
197 	unsigned int key_extra_size; /* additional keys length */
198 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
199 
200 	unsigned int integrity_tag_size;
201 	unsigned int integrity_iv_size;
202 	unsigned int on_disk_tag_size;
203 
204 	/*
205 	 * pool for per bio private data, crypto requests,
206 	 * encryption requeusts/buffer pages and integrity tags
207 	 */
208 	unsigned tag_pool_max_sectors;
209 	mempool_t tag_pool;
210 	mempool_t req_pool;
211 	mempool_t page_pool;
212 
213 	struct bio_set bs;
214 	struct mutex bio_alloc_lock;
215 
216 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
217 	u8 key[0];
218 };
219 
220 #define MIN_IOS		64
221 #define MAX_TAG_SIZE	480
222 #define POOL_ENTRY_SIZE	512
223 
224 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
225 static unsigned dm_crypt_clients_n = 0;
226 static volatile unsigned long dm_crypt_pages_per_client;
227 #define DM_CRYPT_MEMORY_PERCENT			2
228 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_PAGES * 16)
229 
230 static void clone_init(struct dm_crypt_io *, struct bio *);
231 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
232 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
233 					     struct scatterlist *sg);
234 
235 /*
236  * Use this to access cipher attributes that are independent of the key.
237  */
238 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
239 {
240 	return cc->cipher_tfm.tfms[0];
241 }
242 
243 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
244 {
245 	return cc->cipher_tfm.tfms_aead[0];
246 }
247 
248 /*
249  * Different IV generation algorithms:
250  *
251  * plain: the initial vector is the 32-bit little-endian version of the sector
252  *        number, padded with zeros if necessary.
253  *
254  * plain64: the initial vector is the 64-bit little-endian version of the sector
255  *        number, padded with zeros if necessary.
256  *
257  * plain64be: the initial vector is the 64-bit big-endian version of the sector
258  *        number, padded with zeros if necessary.
259  *
260  * essiv: "encrypted sector|salt initial vector", the sector number is
261  *        encrypted with the bulk cipher using a salt as key. The salt
262  *        should be derived from the bulk cipher's key via hashing.
263  *
264  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
265  *        (needed for LRW-32-AES and possible other narrow block modes)
266  *
267  * null: the initial vector is always zero.  Provides compatibility with
268  *       obsolete loop_fish2 devices.  Do not use for new devices.
269  *
270  * lmk:  Compatible implementation of the block chaining mode used
271  *       by the Loop-AES block device encryption system
272  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
273  *       It operates on full 512 byte sectors and uses CBC
274  *       with an IV derived from the sector number, the data and
275  *       optionally extra IV seed.
276  *       This means that after decryption the first block
277  *       of sector must be tweaked according to decrypted data.
278  *       Loop-AES can use three encryption schemes:
279  *         version 1: is plain aes-cbc mode
280  *         version 2: uses 64 multikey scheme with lmk IV generator
281  *         version 3: the same as version 2 with additional IV seed
282  *                   (it uses 65 keys, last key is used as IV seed)
283  *
284  * tcw:  Compatible implementation of the block chaining mode used
285  *       by the TrueCrypt device encryption system (prior to version 4.1).
286  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
287  *       It operates on full 512 byte sectors and uses CBC
288  *       with an IV derived from initial key and the sector number.
289  *       In addition, whitening value is applied on every sector, whitening
290  *       is calculated from initial key, sector number and mixed using CRC32.
291  *       Note that this encryption scheme is vulnerable to watermarking attacks
292  *       and should be used for old compatible containers access only.
293  *
294  * plumb: unimplemented, see:
295  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
296  */
297 
298 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
299 			      struct dm_crypt_request *dmreq)
300 {
301 	memset(iv, 0, cc->iv_size);
302 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
303 
304 	return 0;
305 }
306 
307 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
308 				struct dm_crypt_request *dmreq)
309 {
310 	memset(iv, 0, cc->iv_size);
311 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
312 
313 	return 0;
314 }
315 
316 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
317 				  struct dm_crypt_request *dmreq)
318 {
319 	memset(iv, 0, cc->iv_size);
320 	/* iv_size is at least of size u64; usually it is 16 bytes */
321 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
322 
323 	return 0;
324 }
325 
326 /* Initialise ESSIV - compute salt but no local memory allocations */
327 static int crypt_iv_essiv_init(struct crypt_config *cc)
328 {
329 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
330 	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
331 	struct scatterlist sg;
332 	struct crypto_cipher *essiv_tfm;
333 	int err;
334 
335 	sg_init_one(&sg, cc->key, cc->key_size);
336 	ahash_request_set_tfm(req, essiv->hash_tfm);
337 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
338 	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
339 
340 	err = crypto_ahash_digest(req);
341 	ahash_request_zero(req);
342 	if (err)
343 		return err;
344 
345 	essiv_tfm = cc->iv_private;
346 
347 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
348 			    crypto_ahash_digestsize(essiv->hash_tfm));
349 	if (err)
350 		return err;
351 
352 	return 0;
353 }
354 
355 /* Wipe salt and reset key derived from volume key */
356 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
357 {
358 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
359 	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
360 	struct crypto_cipher *essiv_tfm;
361 	int r, err = 0;
362 
363 	memset(essiv->salt, 0, salt_size);
364 
365 	essiv_tfm = cc->iv_private;
366 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
367 	if (r)
368 		err = r;
369 
370 	return err;
371 }
372 
373 /* Allocate the cipher for ESSIV */
374 static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
375 						struct dm_target *ti,
376 						const u8 *salt,
377 						unsigned int saltsize)
378 {
379 	struct crypto_cipher *essiv_tfm;
380 	int err;
381 
382 	/* Setup the essiv_tfm with the given salt */
383 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
384 	if (IS_ERR(essiv_tfm)) {
385 		ti->error = "Error allocating crypto tfm for ESSIV";
386 		return essiv_tfm;
387 	}
388 
389 	if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
390 		ti->error = "Block size of ESSIV cipher does "
391 			    "not match IV size of block cipher";
392 		crypto_free_cipher(essiv_tfm);
393 		return ERR_PTR(-EINVAL);
394 	}
395 
396 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
397 	if (err) {
398 		ti->error = "Failed to set key for ESSIV cipher";
399 		crypto_free_cipher(essiv_tfm);
400 		return ERR_PTR(err);
401 	}
402 
403 	return essiv_tfm;
404 }
405 
406 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
407 {
408 	struct crypto_cipher *essiv_tfm;
409 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
410 
411 	crypto_free_ahash(essiv->hash_tfm);
412 	essiv->hash_tfm = NULL;
413 
414 	kzfree(essiv->salt);
415 	essiv->salt = NULL;
416 
417 	essiv_tfm = cc->iv_private;
418 
419 	if (essiv_tfm)
420 		crypto_free_cipher(essiv_tfm);
421 
422 	cc->iv_private = NULL;
423 }
424 
425 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
426 			      const char *opts)
427 {
428 	struct crypto_cipher *essiv_tfm = NULL;
429 	struct crypto_ahash *hash_tfm = NULL;
430 	u8 *salt = NULL;
431 	int err;
432 
433 	if (!opts) {
434 		ti->error = "Digest algorithm missing for ESSIV mode";
435 		return -EINVAL;
436 	}
437 
438 	/* Allocate hash algorithm */
439 	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
440 	if (IS_ERR(hash_tfm)) {
441 		ti->error = "Error initializing ESSIV hash";
442 		err = PTR_ERR(hash_tfm);
443 		goto bad;
444 	}
445 
446 	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
447 	if (!salt) {
448 		ti->error = "Error kmallocing salt storage in ESSIV";
449 		err = -ENOMEM;
450 		goto bad;
451 	}
452 
453 	cc->iv_gen_private.essiv.salt = salt;
454 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
455 
456 	essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
457 				       crypto_ahash_digestsize(hash_tfm));
458 	if (IS_ERR(essiv_tfm)) {
459 		crypt_iv_essiv_dtr(cc);
460 		return PTR_ERR(essiv_tfm);
461 	}
462 	cc->iv_private = essiv_tfm;
463 
464 	return 0;
465 
466 bad:
467 	if (hash_tfm && !IS_ERR(hash_tfm))
468 		crypto_free_ahash(hash_tfm);
469 	kfree(salt);
470 	return err;
471 }
472 
473 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
474 			      struct dm_crypt_request *dmreq)
475 {
476 	struct crypto_cipher *essiv_tfm = cc->iv_private;
477 
478 	memset(iv, 0, cc->iv_size);
479 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
480 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
481 
482 	return 0;
483 }
484 
485 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
486 			      const char *opts)
487 {
488 	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
489 	int log = ilog2(bs);
490 
491 	/* we need to calculate how far we must shift the sector count
492 	 * to get the cipher block count, we use this shift in _gen */
493 
494 	if (1 << log != bs) {
495 		ti->error = "cypher blocksize is not a power of 2";
496 		return -EINVAL;
497 	}
498 
499 	if (log > 9) {
500 		ti->error = "cypher blocksize is > 512";
501 		return -EINVAL;
502 	}
503 
504 	cc->iv_gen_private.benbi.shift = 9 - log;
505 
506 	return 0;
507 }
508 
509 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
510 {
511 }
512 
513 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
514 			      struct dm_crypt_request *dmreq)
515 {
516 	__be64 val;
517 
518 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
519 
520 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
521 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
522 
523 	return 0;
524 }
525 
526 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
527 			     struct dm_crypt_request *dmreq)
528 {
529 	memset(iv, 0, cc->iv_size);
530 
531 	return 0;
532 }
533 
534 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
535 {
536 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
537 
538 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
539 		crypto_free_shash(lmk->hash_tfm);
540 	lmk->hash_tfm = NULL;
541 
542 	kzfree(lmk->seed);
543 	lmk->seed = NULL;
544 }
545 
546 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
547 			    const char *opts)
548 {
549 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
550 
551 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
552 		ti->error = "Unsupported sector size for LMK";
553 		return -EINVAL;
554 	}
555 
556 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
557 	if (IS_ERR(lmk->hash_tfm)) {
558 		ti->error = "Error initializing LMK hash";
559 		return PTR_ERR(lmk->hash_tfm);
560 	}
561 
562 	/* No seed in LMK version 2 */
563 	if (cc->key_parts == cc->tfms_count) {
564 		lmk->seed = NULL;
565 		return 0;
566 	}
567 
568 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
569 	if (!lmk->seed) {
570 		crypt_iv_lmk_dtr(cc);
571 		ti->error = "Error kmallocing seed storage in LMK";
572 		return -ENOMEM;
573 	}
574 
575 	return 0;
576 }
577 
578 static int crypt_iv_lmk_init(struct crypt_config *cc)
579 {
580 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
581 	int subkey_size = cc->key_size / cc->key_parts;
582 
583 	/* LMK seed is on the position of LMK_KEYS + 1 key */
584 	if (lmk->seed)
585 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
586 		       crypto_shash_digestsize(lmk->hash_tfm));
587 
588 	return 0;
589 }
590 
591 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
592 {
593 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
594 
595 	if (lmk->seed)
596 		memset(lmk->seed, 0, LMK_SEED_SIZE);
597 
598 	return 0;
599 }
600 
601 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
602 			    struct dm_crypt_request *dmreq,
603 			    u8 *data)
604 {
605 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
606 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
607 	struct md5_state md5state;
608 	__le32 buf[4];
609 	int i, r;
610 
611 	desc->tfm = lmk->hash_tfm;
612 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
613 
614 	r = crypto_shash_init(desc);
615 	if (r)
616 		return r;
617 
618 	if (lmk->seed) {
619 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
620 		if (r)
621 			return r;
622 	}
623 
624 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
625 	r = crypto_shash_update(desc, data + 16, 16 * 31);
626 	if (r)
627 		return r;
628 
629 	/* Sector is cropped to 56 bits here */
630 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
631 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
632 	buf[2] = cpu_to_le32(4024);
633 	buf[3] = 0;
634 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
635 	if (r)
636 		return r;
637 
638 	/* No MD5 padding here */
639 	r = crypto_shash_export(desc, &md5state);
640 	if (r)
641 		return r;
642 
643 	for (i = 0; i < MD5_HASH_WORDS; i++)
644 		__cpu_to_le32s(&md5state.hash[i]);
645 	memcpy(iv, &md5state.hash, cc->iv_size);
646 
647 	return 0;
648 }
649 
650 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
651 			    struct dm_crypt_request *dmreq)
652 {
653 	struct scatterlist *sg;
654 	u8 *src;
655 	int r = 0;
656 
657 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
658 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
659 		src = kmap_atomic(sg_page(sg));
660 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
661 		kunmap_atomic(src);
662 	} else
663 		memset(iv, 0, cc->iv_size);
664 
665 	return r;
666 }
667 
668 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
669 			     struct dm_crypt_request *dmreq)
670 {
671 	struct scatterlist *sg;
672 	u8 *dst;
673 	int r;
674 
675 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
676 		return 0;
677 
678 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
679 	dst = kmap_atomic(sg_page(sg));
680 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
681 
682 	/* Tweak the first block of plaintext sector */
683 	if (!r)
684 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
685 
686 	kunmap_atomic(dst);
687 	return r;
688 }
689 
690 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
691 {
692 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
693 
694 	kzfree(tcw->iv_seed);
695 	tcw->iv_seed = NULL;
696 	kzfree(tcw->whitening);
697 	tcw->whitening = NULL;
698 
699 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
700 		crypto_free_shash(tcw->crc32_tfm);
701 	tcw->crc32_tfm = NULL;
702 }
703 
704 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
705 			    const char *opts)
706 {
707 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
708 
709 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
710 		ti->error = "Unsupported sector size for TCW";
711 		return -EINVAL;
712 	}
713 
714 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
715 		ti->error = "Wrong key size for TCW";
716 		return -EINVAL;
717 	}
718 
719 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
720 	if (IS_ERR(tcw->crc32_tfm)) {
721 		ti->error = "Error initializing CRC32 in TCW";
722 		return PTR_ERR(tcw->crc32_tfm);
723 	}
724 
725 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
726 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
727 	if (!tcw->iv_seed || !tcw->whitening) {
728 		crypt_iv_tcw_dtr(cc);
729 		ti->error = "Error allocating seed storage in TCW";
730 		return -ENOMEM;
731 	}
732 
733 	return 0;
734 }
735 
736 static int crypt_iv_tcw_init(struct crypt_config *cc)
737 {
738 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
739 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
740 
741 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
742 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
743 	       TCW_WHITENING_SIZE);
744 
745 	return 0;
746 }
747 
748 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
749 {
750 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
751 
752 	memset(tcw->iv_seed, 0, cc->iv_size);
753 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
754 
755 	return 0;
756 }
757 
758 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
759 				  struct dm_crypt_request *dmreq,
760 				  u8 *data)
761 {
762 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
763 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
764 	u8 buf[TCW_WHITENING_SIZE];
765 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
766 	int i, r;
767 
768 	/* xor whitening with sector number */
769 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
770 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
771 
772 	/* calculate crc32 for every 32bit part and xor it */
773 	desc->tfm = tcw->crc32_tfm;
774 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
775 	for (i = 0; i < 4; i++) {
776 		r = crypto_shash_init(desc);
777 		if (r)
778 			goto out;
779 		r = crypto_shash_update(desc, &buf[i * 4], 4);
780 		if (r)
781 			goto out;
782 		r = crypto_shash_final(desc, &buf[i * 4]);
783 		if (r)
784 			goto out;
785 	}
786 	crypto_xor(&buf[0], &buf[12], 4);
787 	crypto_xor(&buf[4], &buf[8], 4);
788 
789 	/* apply whitening (8 bytes) to whole sector */
790 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
791 		crypto_xor(data + i * 8, buf, 8);
792 out:
793 	memzero_explicit(buf, sizeof(buf));
794 	return r;
795 }
796 
797 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
798 			    struct dm_crypt_request *dmreq)
799 {
800 	struct scatterlist *sg;
801 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
802 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
803 	u8 *src;
804 	int r = 0;
805 
806 	/* Remove whitening from ciphertext */
807 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
808 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
809 		src = kmap_atomic(sg_page(sg));
810 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
811 		kunmap_atomic(src);
812 	}
813 
814 	/* Calculate IV */
815 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
816 	if (cc->iv_size > 8)
817 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
818 			       cc->iv_size - 8);
819 
820 	return r;
821 }
822 
823 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
824 			     struct dm_crypt_request *dmreq)
825 {
826 	struct scatterlist *sg;
827 	u8 *dst;
828 	int r;
829 
830 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
831 		return 0;
832 
833 	/* Apply whitening on ciphertext */
834 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
835 	dst = kmap_atomic(sg_page(sg));
836 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
837 	kunmap_atomic(dst);
838 
839 	return r;
840 }
841 
842 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
843 				struct dm_crypt_request *dmreq)
844 {
845 	/* Used only for writes, there must be an additional space to store IV */
846 	get_random_bytes(iv, cc->iv_size);
847 	return 0;
848 }
849 
850 static const struct crypt_iv_operations crypt_iv_plain_ops = {
851 	.generator = crypt_iv_plain_gen
852 };
853 
854 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
855 	.generator = crypt_iv_plain64_gen
856 };
857 
858 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
859 	.generator = crypt_iv_plain64be_gen
860 };
861 
862 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
863 	.ctr       = crypt_iv_essiv_ctr,
864 	.dtr       = crypt_iv_essiv_dtr,
865 	.init      = crypt_iv_essiv_init,
866 	.wipe      = crypt_iv_essiv_wipe,
867 	.generator = crypt_iv_essiv_gen
868 };
869 
870 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
871 	.ctr	   = crypt_iv_benbi_ctr,
872 	.dtr	   = crypt_iv_benbi_dtr,
873 	.generator = crypt_iv_benbi_gen
874 };
875 
876 static const struct crypt_iv_operations crypt_iv_null_ops = {
877 	.generator = crypt_iv_null_gen
878 };
879 
880 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
881 	.ctr	   = crypt_iv_lmk_ctr,
882 	.dtr	   = crypt_iv_lmk_dtr,
883 	.init	   = crypt_iv_lmk_init,
884 	.wipe	   = crypt_iv_lmk_wipe,
885 	.generator = crypt_iv_lmk_gen,
886 	.post	   = crypt_iv_lmk_post
887 };
888 
889 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
890 	.ctr	   = crypt_iv_tcw_ctr,
891 	.dtr	   = crypt_iv_tcw_dtr,
892 	.init	   = crypt_iv_tcw_init,
893 	.wipe	   = crypt_iv_tcw_wipe,
894 	.generator = crypt_iv_tcw_gen,
895 	.post	   = crypt_iv_tcw_post
896 };
897 
898 static struct crypt_iv_operations crypt_iv_random_ops = {
899 	.generator = crypt_iv_random_gen
900 };
901 
902 /*
903  * Integrity extensions
904  */
905 static bool crypt_integrity_aead(struct crypt_config *cc)
906 {
907 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
908 }
909 
910 static bool crypt_integrity_hmac(struct crypt_config *cc)
911 {
912 	return crypt_integrity_aead(cc) && cc->key_mac_size;
913 }
914 
915 /* Get sg containing data */
916 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
917 					     struct scatterlist *sg)
918 {
919 	if (unlikely(crypt_integrity_aead(cc)))
920 		return &sg[2];
921 
922 	return sg;
923 }
924 
925 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
926 {
927 	struct bio_integrity_payload *bip;
928 	unsigned int tag_len;
929 	int ret;
930 
931 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
932 		return 0;
933 
934 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
935 	if (IS_ERR(bip))
936 		return PTR_ERR(bip);
937 
938 	tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
939 
940 	bip->bip_iter.bi_size = tag_len;
941 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
942 
943 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
944 				     tag_len, offset_in_page(io->integrity_metadata));
945 	if (unlikely(ret != tag_len))
946 		return -ENOMEM;
947 
948 	return 0;
949 }
950 
951 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
952 {
953 #ifdef CONFIG_BLK_DEV_INTEGRITY
954 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
955 
956 	/* From now we require underlying device with our integrity profile */
957 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
958 		ti->error = "Integrity profile not supported.";
959 		return -EINVAL;
960 	}
961 
962 	if (bi->tag_size != cc->on_disk_tag_size ||
963 	    bi->tuple_size != cc->on_disk_tag_size) {
964 		ti->error = "Integrity profile tag size mismatch.";
965 		return -EINVAL;
966 	}
967 	if (1 << bi->interval_exp != cc->sector_size) {
968 		ti->error = "Integrity profile sector size mismatch.";
969 		return -EINVAL;
970 	}
971 
972 	if (crypt_integrity_aead(cc)) {
973 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
974 		DMINFO("Integrity AEAD, tag size %u, IV size %u.",
975 		       cc->integrity_tag_size, cc->integrity_iv_size);
976 
977 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
978 			ti->error = "Integrity AEAD auth tag size is not supported.";
979 			return -EINVAL;
980 		}
981 	} else if (cc->integrity_iv_size)
982 		DMINFO("Additional per-sector space %u bytes for IV.",
983 		       cc->integrity_iv_size);
984 
985 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
986 		ti->error = "Not enough space for integrity tag in the profile.";
987 		return -EINVAL;
988 	}
989 
990 	return 0;
991 #else
992 	ti->error = "Integrity profile not supported.";
993 	return -EINVAL;
994 #endif
995 }
996 
997 static void crypt_convert_init(struct crypt_config *cc,
998 			       struct convert_context *ctx,
999 			       struct bio *bio_out, struct bio *bio_in,
1000 			       sector_t sector)
1001 {
1002 	ctx->bio_in = bio_in;
1003 	ctx->bio_out = bio_out;
1004 	if (bio_in)
1005 		ctx->iter_in = bio_in->bi_iter;
1006 	if (bio_out)
1007 		ctx->iter_out = bio_out->bi_iter;
1008 	ctx->cc_sector = sector + cc->iv_offset;
1009 	init_completion(&ctx->restart);
1010 }
1011 
1012 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1013 					     void *req)
1014 {
1015 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1016 }
1017 
1018 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1019 {
1020 	return (void *)((char *)dmreq - cc->dmreq_start);
1021 }
1022 
1023 static u8 *iv_of_dmreq(struct crypt_config *cc,
1024 		       struct dm_crypt_request *dmreq)
1025 {
1026 	if (crypt_integrity_aead(cc))
1027 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1028 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1029 	else
1030 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1031 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1032 }
1033 
1034 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1035 		       struct dm_crypt_request *dmreq)
1036 {
1037 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1038 }
1039 
1040 static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1041 		       struct dm_crypt_request *dmreq)
1042 {
1043 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1044 	return (uint64_t*) ptr;
1045 }
1046 
1047 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1048 		       struct dm_crypt_request *dmreq)
1049 {
1050 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1051 		  cc->iv_size + sizeof(uint64_t);
1052 	return (unsigned int*)ptr;
1053 }
1054 
1055 static void *tag_from_dmreq(struct crypt_config *cc,
1056 				struct dm_crypt_request *dmreq)
1057 {
1058 	struct convert_context *ctx = dmreq->ctx;
1059 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1060 
1061 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1062 		cc->on_disk_tag_size];
1063 }
1064 
1065 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1066 			       struct dm_crypt_request *dmreq)
1067 {
1068 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1069 }
1070 
1071 static int crypt_convert_block_aead(struct crypt_config *cc,
1072 				     struct convert_context *ctx,
1073 				     struct aead_request *req,
1074 				     unsigned int tag_offset)
1075 {
1076 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1077 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1078 	struct dm_crypt_request *dmreq;
1079 	u8 *iv, *org_iv, *tag_iv, *tag;
1080 	uint64_t *sector;
1081 	int r = 0;
1082 
1083 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1084 
1085 	/* Reject unexpected unaligned bio. */
1086 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1087 		return -EIO;
1088 
1089 	dmreq = dmreq_of_req(cc, req);
1090 	dmreq->iv_sector = ctx->cc_sector;
1091 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1092 		dmreq->iv_sector >>= cc->sector_shift;
1093 	dmreq->ctx = ctx;
1094 
1095 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1096 
1097 	sector = org_sector_of_dmreq(cc, dmreq);
1098 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1099 
1100 	iv = iv_of_dmreq(cc, dmreq);
1101 	org_iv = org_iv_of_dmreq(cc, dmreq);
1102 	tag = tag_from_dmreq(cc, dmreq);
1103 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1104 
1105 	/* AEAD request:
1106 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1107 	 *  | (authenticated) | (auth+encryption) |              |
1108 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1109 	 */
1110 	sg_init_table(dmreq->sg_in, 4);
1111 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1112 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1113 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1114 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1115 
1116 	sg_init_table(dmreq->sg_out, 4);
1117 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1118 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1119 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1120 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1121 
1122 	if (cc->iv_gen_ops) {
1123 		/* For READs use IV stored in integrity metadata */
1124 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1125 			memcpy(org_iv, tag_iv, cc->iv_size);
1126 		} else {
1127 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1128 			if (r < 0)
1129 				return r;
1130 			/* Store generated IV in integrity metadata */
1131 			if (cc->integrity_iv_size)
1132 				memcpy(tag_iv, org_iv, cc->iv_size);
1133 		}
1134 		/* Working copy of IV, to be modified in crypto API */
1135 		memcpy(iv, org_iv, cc->iv_size);
1136 	}
1137 
1138 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1139 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1140 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1141 				       cc->sector_size, iv);
1142 		r = crypto_aead_encrypt(req);
1143 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1144 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1145 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1146 	} else {
1147 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1148 				       cc->sector_size + cc->integrity_tag_size, iv);
1149 		r = crypto_aead_decrypt(req);
1150 	}
1151 
1152 	if (r == -EBADMSG)
1153 		DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1154 			    (unsigned long long)le64_to_cpu(*sector));
1155 
1156 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1157 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1158 
1159 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1160 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1161 
1162 	return r;
1163 }
1164 
1165 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1166 					struct convert_context *ctx,
1167 					struct skcipher_request *req,
1168 					unsigned int tag_offset)
1169 {
1170 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1171 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1172 	struct scatterlist *sg_in, *sg_out;
1173 	struct dm_crypt_request *dmreq;
1174 	u8 *iv, *org_iv, *tag_iv;
1175 	uint64_t *sector;
1176 	int r = 0;
1177 
1178 	/* Reject unexpected unaligned bio. */
1179 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1180 		return -EIO;
1181 
1182 	dmreq = dmreq_of_req(cc, req);
1183 	dmreq->iv_sector = ctx->cc_sector;
1184 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1185 		dmreq->iv_sector >>= cc->sector_shift;
1186 	dmreq->ctx = ctx;
1187 
1188 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1189 
1190 	iv = iv_of_dmreq(cc, dmreq);
1191 	org_iv = org_iv_of_dmreq(cc, dmreq);
1192 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1193 
1194 	sector = org_sector_of_dmreq(cc, dmreq);
1195 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1196 
1197 	/* For skcipher we use only the first sg item */
1198 	sg_in  = &dmreq->sg_in[0];
1199 	sg_out = &dmreq->sg_out[0];
1200 
1201 	sg_init_table(sg_in, 1);
1202 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1203 
1204 	sg_init_table(sg_out, 1);
1205 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1206 
1207 	if (cc->iv_gen_ops) {
1208 		/* For READs use IV stored in integrity metadata */
1209 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1210 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1211 		} else {
1212 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1213 			if (r < 0)
1214 				return r;
1215 			/* Store generated IV in integrity metadata */
1216 			if (cc->integrity_iv_size)
1217 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1218 		}
1219 		/* Working copy of IV, to be modified in crypto API */
1220 		memcpy(iv, org_iv, cc->iv_size);
1221 	}
1222 
1223 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1224 
1225 	if (bio_data_dir(ctx->bio_in) == WRITE)
1226 		r = crypto_skcipher_encrypt(req);
1227 	else
1228 		r = crypto_skcipher_decrypt(req);
1229 
1230 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1231 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1232 
1233 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1234 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1235 
1236 	return r;
1237 }
1238 
1239 static void kcryptd_async_done(struct crypto_async_request *async_req,
1240 			       int error);
1241 
1242 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1243 				     struct convert_context *ctx)
1244 {
1245 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1246 
1247 	if (!ctx->r.req)
1248 		ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
1249 
1250 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1251 
1252 	/*
1253 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1254 	 * requests if driver request queue is full.
1255 	 */
1256 	skcipher_request_set_callback(ctx->r.req,
1257 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1258 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1259 }
1260 
1261 static void crypt_alloc_req_aead(struct crypt_config *cc,
1262 				 struct convert_context *ctx)
1263 {
1264 	if (!ctx->r.req_aead)
1265 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
1266 
1267 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1268 
1269 	/*
1270 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1271 	 * requests if driver request queue is full.
1272 	 */
1273 	aead_request_set_callback(ctx->r.req_aead,
1274 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1275 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1276 }
1277 
1278 static void crypt_alloc_req(struct crypt_config *cc,
1279 			    struct convert_context *ctx)
1280 {
1281 	if (crypt_integrity_aead(cc))
1282 		crypt_alloc_req_aead(cc, ctx);
1283 	else
1284 		crypt_alloc_req_skcipher(cc, ctx);
1285 }
1286 
1287 static void crypt_free_req_skcipher(struct crypt_config *cc,
1288 				    struct skcipher_request *req, struct bio *base_bio)
1289 {
1290 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1291 
1292 	if ((struct skcipher_request *)(io + 1) != req)
1293 		mempool_free(req, &cc->req_pool);
1294 }
1295 
1296 static void crypt_free_req_aead(struct crypt_config *cc,
1297 				struct aead_request *req, struct bio *base_bio)
1298 {
1299 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1300 
1301 	if ((struct aead_request *)(io + 1) != req)
1302 		mempool_free(req, &cc->req_pool);
1303 }
1304 
1305 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1306 {
1307 	if (crypt_integrity_aead(cc))
1308 		crypt_free_req_aead(cc, req, base_bio);
1309 	else
1310 		crypt_free_req_skcipher(cc, req, base_bio);
1311 }
1312 
1313 /*
1314  * Encrypt / decrypt data from one bio to another one (can be the same one)
1315  */
1316 static blk_status_t crypt_convert(struct crypt_config *cc,
1317 			 struct convert_context *ctx)
1318 {
1319 	unsigned int tag_offset = 0;
1320 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1321 	int r;
1322 
1323 	atomic_set(&ctx->cc_pending, 1);
1324 
1325 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1326 
1327 		crypt_alloc_req(cc, ctx);
1328 		atomic_inc(&ctx->cc_pending);
1329 
1330 		if (crypt_integrity_aead(cc))
1331 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1332 		else
1333 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1334 
1335 		switch (r) {
1336 		/*
1337 		 * The request was queued by a crypto driver
1338 		 * but the driver request queue is full, let's wait.
1339 		 */
1340 		case -EBUSY:
1341 			wait_for_completion(&ctx->restart);
1342 			reinit_completion(&ctx->restart);
1343 			/* fall through */
1344 		/*
1345 		 * The request is queued and processed asynchronously,
1346 		 * completion function kcryptd_async_done() will be called.
1347 		 */
1348 		case -EINPROGRESS:
1349 			ctx->r.req = NULL;
1350 			ctx->cc_sector += sector_step;
1351 			tag_offset++;
1352 			continue;
1353 		/*
1354 		 * The request was already processed (synchronously).
1355 		 */
1356 		case 0:
1357 			atomic_dec(&ctx->cc_pending);
1358 			ctx->cc_sector += sector_step;
1359 			tag_offset++;
1360 			cond_resched();
1361 			continue;
1362 		/*
1363 		 * There was a data integrity error.
1364 		 */
1365 		case -EBADMSG:
1366 			atomic_dec(&ctx->cc_pending);
1367 			return BLK_STS_PROTECTION;
1368 		/*
1369 		 * There was an error while processing the request.
1370 		 */
1371 		default:
1372 			atomic_dec(&ctx->cc_pending);
1373 			return BLK_STS_IOERR;
1374 		}
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1381 
1382 /*
1383  * Generate a new unfragmented bio with the given size
1384  * This should never violate the device limitations (but only because
1385  * max_segment_size is being constrained to PAGE_SIZE).
1386  *
1387  * This function may be called concurrently. If we allocate from the mempool
1388  * concurrently, there is a possibility of deadlock. For example, if we have
1389  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1390  * the mempool concurrently, it may deadlock in a situation where both processes
1391  * have allocated 128 pages and the mempool is exhausted.
1392  *
1393  * In order to avoid this scenario we allocate the pages under a mutex.
1394  *
1395  * In order to not degrade performance with excessive locking, we try
1396  * non-blocking allocations without a mutex first but on failure we fallback
1397  * to blocking allocations with a mutex.
1398  */
1399 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1400 {
1401 	struct crypt_config *cc = io->cc;
1402 	struct bio *clone;
1403 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1404 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1405 	unsigned i, len, remaining_size;
1406 	struct page *page;
1407 
1408 retry:
1409 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1410 		mutex_lock(&cc->bio_alloc_lock);
1411 
1412 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1413 	if (!clone)
1414 		goto out;
1415 
1416 	clone_init(io, clone);
1417 
1418 	remaining_size = size;
1419 
1420 	for (i = 0; i < nr_iovecs; i++) {
1421 		page = mempool_alloc(&cc->page_pool, gfp_mask);
1422 		if (!page) {
1423 			crypt_free_buffer_pages(cc, clone);
1424 			bio_put(clone);
1425 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1426 			goto retry;
1427 		}
1428 
1429 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1430 
1431 		bio_add_page(clone, page, len, 0);
1432 
1433 		remaining_size -= len;
1434 	}
1435 
1436 	/* Allocate space for integrity tags */
1437 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1438 		crypt_free_buffer_pages(cc, clone);
1439 		bio_put(clone);
1440 		clone = NULL;
1441 	}
1442 out:
1443 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1444 		mutex_unlock(&cc->bio_alloc_lock);
1445 
1446 	return clone;
1447 }
1448 
1449 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1450 {
1451 	unsigned int i;
1452 	struct bio_vec *bv;
1453 
1454 	bio_for_each_segment_all(bv, clone, i) {
1455 		BUG_ON(!bv->bv_page);
1456 		mempool_free(bv->bv_page, &cc->page_pool);
1457 	}
1458 }
1459 
1460 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1461 			  struct bio *bio, sector_t sector)
1462 {
1463 	io->cc = cc;
1464 	io->base_bio = bio;
1465 	io->sector = sector;
1466 	io->error = 0;
1467 	io->ctx.r.req = NULL;
1468 	io->integrity_metadata = NULL;
1469 	io->integrity_metadata_from_pool = false;
1470 	atomic_set(&io->io_pending, 0);
1471 }
1472 
1473 static void crypt_inc_pending(struct dm_crypt_io *io)
1474 {
1475 	atomic_inc(&io->io_pending);
1476 }
1477 
1478 /*
1479  * One of the bios was finished. Check for completion of
1480  * the whole request and correctly clean up the buffer.
1481  */
1482 static void crypt_dec_pending(struct dm_crypt_io *io)
1483 {
1484 	struct crypt_config *cc = io->cc;
1485 	struct bio *base_bio = io->base_bio;
1486 	blk_status_t error = io->error;
1487 
1488 	if (!atomic_dec_and_test(&io->io_pending))
1489 		return;
1490 
1491 	if (io->ctx.r.req)
1492 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1493 
1494 	if (unlikely(io->integrity_metadata_from_pool))
1495 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1496 	else
1497 		kfree(io->integrity_metadata);
1498 
1499 	base_bio->bi_status = error;
1500 	bio_endio(base_bio);
1501 }
1502 
1503 /*
1504  * kcryptd/kcryptd_io:
1505  *
1506  * Needed because it would be very unwise to do decryption in an
1507  * interrupt context.
1508  *
1509  * kcryptd performs the actual encryption or decryption.
1510  *
1511  * kcryptd_io performs the IO submission.
1512  *
1513  * They must be separated as otherwise the final stages could be
1514  * starved by new requests which can block in the first stages due
1515  * to memory allocation.
1516  *
1517  * The work is done per CPU global for all dm-crypt instances.
1518  * They should not depend on each other and do not block.
1519  */
1520 static void crypt_endio(struct bio *clone)
1521 {
1522 	struct dm_crypt_io *io = clone->bi_private;
1523 	struct crypt_config *cc = io->cc;
1524 	unsigned rw = bio_data_dir(clone);
1525 	blk_status_t error;
1526 
1527 	/*
1528 	 * free the processed pages
1529 	 */
1530 	if (rw == WRITE)
1531 		crypt_free_buffer_pages(cc, clone);
1532 
1533 	error = clone->bi_status;
1534 	bio_put(clone);
1535 
1536 	if (rw == READ && !error) {
1537 		kcryptd_queue_crypt(io);
1538 		return;
1539 	}
1540 
1541 	if (unlikely(error))
1542 		io->error = error;
1543 
1544 	crypt_dec_pending(io);
1545 }
1546 
1547 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1548 {
1549 	struct crypt_config *cc = io->cc;
1550 
1551 	clone->bi_private = io;
1552 	clone->bi_end_io  = crypt_endio;
1553 	bio_set_dev(clone, cc->dev->bdev);
1554 	clone->bi_opf	  = io->base_bio->bi_opf;
1555 }
1556 
1557 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1558 {
1559 	struct crypt_config *cc = io->cc;
1560 	struct bio *clone;
1561 
1562 	/*
1563 	 * We need the original biovec array in order to decrypt
1564 	 * the whole bio data *afterwards* -- thanks to immutable
1565 	 * biovecs we don't need to worry about the block layer
1566 	 * modifying the biovec array; so leverage bio_clone_fast().
1567 	 */
1568 	clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1569 	if (!clone)
1570 		return 1;
1571 
1572 	crypt_inc_pending(io);
1573 
1574 	clone_init(io, clone);
1575 	clone->bi_iter.bi_sector = cc->start + io->sector;
1576 
1577 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1578 		crypt_dec_pending(io);
1579 		bio_put(clone);
1580 		return 1;
1581 	}
1582 
1583 	generic_make_request(clone);
1584 	return 0;
1585 }
1586 
1587 static void kcryptd_io_read_work(struct work_struct *work)
1588 {
1589 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1590 
1591 	crypt_inc_pending(io);
1592 	if (kcryptd_io_read(io, GFP_NOIO))
1593 		io->error = BLK_STS_RESOURCE;
1594 	crypt_dec_pending(io);
1595 }
1596 
1597 static void kcryptd_queue_read(struct dm_crypt_io *io)
1598 {
1599 	struct crypt_config *cc = io->cc;
1600 
1601 	INIT_WORK(&io->work, kcryptd_io_read_work);
1602 	queue_work(cc->io_queue, &io->work);
1603 }
1604 
1605 static void kcryptd_io_write(struct dm_crypt_io *io)
1606 {
1607 	struct bio *clone = io->ctx.bio_out;
1608 
1609 	generic_make_request(clone);
1610 }
1611 
1612 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1613 
1614 static int dmcrypt_write(void *data)
1615 {
1616 	struct crypt_config *cc = data;
1617 	struct dm_crypt_io *io;
1618 
1619 	while (1) {
1620 		struct rb_root write_tree;
1621 		struct blk_plug plug;
1622 
1623 		DECLARE_WAITQUEUE(wait, current);
1624 
1625 		spin_lock_irq(&cc->write_thread_wait.lock);
1626 continue_locked:
1627 
1628 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1629 			goto pop_from_list;
1630 
1631 		set_current_state(TASK_INTERRUPTIBLE);
1632 		__add_wait_queue(&cc->write_thread_wait, &wait);
1633 
1634 		spin_unlock_irq(&cc->write_thread_wait.lock);
1635 
1636 		if (unlikely(kthread_should_stop())) {
1637 			set_current_state(TASK_RUNNING);
1638 			remove_wait_queue(&cc->write_thread_wait, &wait);
1639 			break;
1640 		}
1641 
1642 		schedule();
1643 
1644 		set_current_state(TASK_RUNNING);
1645 		spin_lock_irq(&cc->write_thread_wait.lock);
1646 		__remove_wait_queue(&cc->write_thread_wait, &wait);
1647 		goto continue_locked;
1648 
1649 pop_from_list:
1650 		write_tree = cc->write_tree;
1651 		cc->write_tree = RB_ROOT;
1652 		spin_unlock_irq(&cc->write_thread_wait.lock);
1653 
1654 		BUG_ON(rb_parent(write_tree.rb_node));
1655 
1656 		/*
1657 		 * Note: we cannot walk the tree here with rb_next because
1658 		 * the structures may be freed when kcryptd_io_write is called.
1659 		 */
1660 		blk_start_plug(&plug);
1661 		do {
1662 			io = crypt_io_from_node(rb_first(&write_tree));
1663 			rb_erase(&io->rb_node, &write_tree);
1664 			kcryptd_io_write(io);
1665 		} while (!RB_EMPTY_ROOT(&write_tree));
1666 		blk_finish_plug(&plug);
1667 	}
1668 	return 0;
1669 }
1670 
1671 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1672 {
1673 	struct bio *clone = io->ctx.bio_out;
1674 	struct crypt_config *cc = io->cc;
1675 	unsigned long flags;
1676 	sector_t sector;
1677 	struct rb_node **rbp, *parent;
1678 
1679 	if (unlikely(io->error)) {
1680 		crypt_free_buffer_pages(cc, clone);
1681 		bio_put(clone);
1682 		crypt_dec_pending(io);
1683 		return;
1684 	}
1685 
1686 	/* crypt_convert should have filled the clone bio */
1687 	BUG_ON(io->ctx.iter_out.bi_size);
1688 
1689 	clone->bi_iter.bi_sector = cc->start + io->sector;
1690 
1691 	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1692 		generic_make_request(clone);
1693 		return;
1694 	}
1695 
1696 	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1697 	rbp = &cc->write_tree.rb_node;
1698 	parent = NULL;
1699 	sector = io->sector;
1700 	while (*rbp) {
1701 		parent = *rbp;
1702 		if (sector < crypt_io_from_node(parent)->sector)
1703 			rbp = &(*rbp)->rb_left;
1704 		else
1705 			rbp = &(*rbp)->rb_right;
1706 	}
1707 	rb_link_node(&io->rb_node, parent, rbp);
1708 	rb_insert_color(&io->rb_node, &cc->write_tree);
1709 
1710 	wake_up_locked(&cc->write_thread_wait);
1711 	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1712 }
1713 
1714 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1715 {
1716 	struct crypt_config *cc = io->cc;
1717 	struct bio *clone;
1718 	int crypt_finished;
1719 	sector_t sector = io->sector;
1720 	blk_status_t r;
1721 
1722 	/*
1723 	 * Prevent io from disappearing until this function completes.
1724 	 */
1725 	crypt_inc_pending(io);
1726 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1727 
1728 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1729 	if (unlikely(!clone)) {
1730 		io->error = BLK_STS_IOERR;
1731 		goto dec;
1732 	}
1733 
1734 	io->ctx.bio_out = clone;
1735 	io->ctx.iter_out = clone->bi_iter;
1736 
1737 	sector += bio_sectors(clone);
1738 
1739 	crypt_inc_pending(io);
1740 	r = crypt_convert(cc, &io->ctx);
1741 	if (r)
1742 		io->error = r;
1743 	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1744 
1745 	/* Encryption was already finished, submit io now */
1746 	if (crypt_finished) {
1747 		kcryptd_crypt_write_io_submit(io, 0);
1748 		io->sector = sector;
1749 	}
1750 
1751 dec:
1752 	crypt_dec_pending(io);
1753 }
1754 
1755 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1756 {
1757 	crypt_dec_pending(io);
1758 }
1759 
1760 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1761 {
1762 	struct crypt_config *cc = io->cc;
1763 	blk_status_t r;
1764 
1765 	crypt_inc_pending(io);
1766 
1767 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1768 			   io->sector);
1769 
1770 	r = crypt_convert(cc, &io->ctx);
1771 	if (r)
1772 		io->error = r;
1773 
1774 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1775 		kcryptd_crypt_read_done(io);
1776 
1777 	crypt_dec_pending(io);
1778 }
1779 
1780 static void kcryptd_async_done(struct crypto_async_request *async_req,
1781 			       int error)
1782 {
1783 	struct dm_crypt_request *dmreq = async_req->data;
1784 	struct convert_context *ctx = dmreq->ctx;
1785 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1786 	struct crypt_config *cc = io->cc;
1787 
1788 	/*
1789 	 * A request from crypto driver backlog is going to be processed now,
1790 	 * finish the completion and continue in crypt_convert().
1791 	 * (Callback will be called for the second time for this request.)
1792 	 */
1793 	if (error == -EINPROGRESS) {
1794 		complete(&ctx->restart);
1795 		return;
1796 	}
1797 
1798 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1799 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1800 
1801 	if (error == -EBADMSG) {
1802 		DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1803 			    (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1804 		io->error = BLK_STS_PROTECTION;
1805 	} else if (error < 0)
1806 		io->error = BLK_STS_IOERR;
1807 
1808 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1809 
1810 	if (!atomic_dec_and_test(&ctx->cc_pending))
1811 		return;
1812 
1813 	if (bio_data_dir(io->base_bio) == READ)
1814 		kcryptd_crypt_read_done(io);
1815 	else
1816 		kcryptd_crypt_write_io_submit(io, 1);
1817 }
1818 
1819 static void kcryptd_crypt(struct work_struct *work)
1820 {
1821 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1822 
1823 	if (bio_data_dir(io->base_bio) == READ)
1824 		kcryptd_crypt_read_convert(io);
1825 	else
1826 		kcryptd_crypt_write_convert(io);
1827 }
1828 
1829 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1830 {
1831 	struct crypt_config *cc = io->cc;
1832 
1833 	INIT_WORK(&io->work, kcryptd_crypt);
1834 	queue_work(cc->crypt_queue, &io->work);
1835 }
1836 
1837 static void crypt_free_tfms_aead(struct crypt_config *cc)
1838 {
1839 	if (!cc->cipher_tfm.tfms_aead)
1840 		return;
1841 
1842 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1843 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1844 		cc->cipher_tfm.tfms_aead[0] = NULL;
1845 	}
1846 
1847 	kfree(cc->cipher_tfm.tfms_aead);
1848 	cc->cipher_tfm.tfms_aead = NULL;
1849 }
1850 
1851 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1852 {
1853 	unsigned i;
1854 
1855 	if (!cc->cipher_tfm.tfms)
1856 		return;
1857 
1858 	for (i = 0; i < cc->tfms_count; i++)
1859 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1860 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1861 			cc->cipher_tfm.tfms[i] = NULL;
1862 		}
1863 
1864 	kfree(cc->cipher_tfm.tfms);
1865 	cc->cipher_tfm.tfms = NULL;
1866 }
1867 
1868 static void crypt_free_tfms(struct crypt_config *cc)
1869 {
1870 	if (crypt_integrity_aead(cc))
1871 		crypt_free_tfms_aead(cc);
1872 	else
1873 		crypt_free_tfms_skcipher(cc);
1874 }
1875 
1876 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1877 {
1878 	unsigned i;
1879 	int err;
1880 
1881 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
1882 				      sizeof(struct crypto_skcipher *),
1883 				      GFP_KERNEL);
1884 	if (!cc->cipher_tfm.tfms)
1885 		return -ENOMEM;
1886 
1887 	for (i = 0; i < cc->tfms_count; i++) {
1888 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1889 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1890 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1891 			crypt_free_tfms(cc);
1892 			return err;
1893 		}
1894 	}
1895 
1896 	return 0;
1897 }
1898 
1899 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1900 {
1901 	int err;
1902 
1903 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1904 	if (!cc->cipher_tfm.tfms)
1905 		return -ENOMEM;
1906 
1907 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1908 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1909 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1910 		crypt_free_tfms(cc);
1911 		return err;
1912 	}
1913 
1914 	return 0;
1915 }
1916 
1917 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1918 {
1919 	if (crypt_integrity_aead(cc))
1920 		return crypt_alloc_tfms_aead(cc, ciphermode);
1921 	else
1922 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
1923 }
1924 
1925 static unsigned crypt_subkey_size(struct crypt_config *cc)
1926 {
1927 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1928 }
1929 
1930 static unsigned crypt_authenckey_size(struct crypt_config *cc)
1931 {
1932 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1933 }
1934 
1935 /*
1936  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1937  * the key must be for some reason in special format.
1938  * This funcion converts cc->key to this special format.
1939  */
1940 static void crypt_copy_authenckey(char *p, const void *key,
1941 				  unsigned enckeylen, unsigned authkeylen)
1942 {
1943 	struct crypto_authenc_key_param *param;
1944 	struct rtattr *rta;
1945 
1946 	rta = (struct rtattr *)p;
1947 	param = RTA_DATA(rta);
1948 	param->enckeylen = cpu_to_be32(enckeylen);
1949 	rta->rta_len = RTA_LENGTH(sizeof(*param));
1950 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1951 	p += RTA_SPACE(sizeof(*param));
1952 	memcpy(p, key + enckeylen, authkeylen);
1953 	p += authkeylen;
1954 	memcpy(p, key, enckeylen);
1955 }
1956 
1957 static int crypt_setkey(struct crypt_config *cc)
1958 {
1959 	unsigned subkey_size;
1960 	int err = 0, i, r;
1961 
1962 	/* Ignore extra keys (which are used for IV etc) */
1963 	subkey_size = crypt_subkey_size(cc);
1964 
1965 	if (crypt_integrity_hmac(cc)) {
1966 		if (subkey_size < cc->key_mac_size)
1967 			return -EINVAL;
1968 
1969 		crypt_copy_authenckey(cc->authenc_key, cc->key,
1970 				      subkey_size - cc->key_mac_size,
1971 				      cc->key_mac_size);
1972 	}
1973 
1974 	for (i = 0; i < cc->tfms_count; i++) {
1975 		if (crypt_integrity_hmac(cc))
1976 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1977 				cc->authenc_key, crypt_authenckey_size(cc));
1978 		else if (crypt_integrity_aead(cc))
1979 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1980 					       cc->key + (i * subkey_size),
1981 					       subkey_size);
1982 		else
1983 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1984 						   cc->key + (i * subkey_size),
1985 						   subkey_size);
1986 		if (r)
1987 			err = r;
1988 	}
1989 
1990 	if (crypt_integrity_hmac(cc))
1991 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1992 
1993 	return err;
1994 }
1995 
1996 #ifdef CONFIG_KEYS
1997 
1998 static bool contains_whitespace(const char *str)
1999 {
2000 	while (*str)
2001 		if (isspace(*str++))
2002 			return true;
2003 	return false;
2004 }
2005 
2006 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2007 {
2008 	char *new_key_string, *key_desc;
2009 	int ret;
2010 	struct key *key;
2011 	const struct user_key_payload *ukp;
2012 
2013 	/*
2014 	 * Reject key_string with whitespace. dm core currently lacks code for
2015 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2016 	 */
2017 	if (contains_whitespace(key_string)) {
2018 		DMERR("whitespace chars not allowed in key string");
2019 		return -EINVAL;
2020 	}
2021 
2022 	/* look for next ':' separating key_type from key_description */
2023 	key_desc = strpbrk(key_string, ":");
2024 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2025 		return -EINVAL;
2026 
2027 	if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2028 	    strncmp(key_string, "user:", key_desc - key_string + 1))
2029 		return -EINVAL;
2030 
2031 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2032 	if (!new_key_string)
2033 		return -ENOMEM;
2034 
2035 	key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2036 			  key_desc + 1, NULL);
2037 	if (IS_ERR(key)) {
2038 		kzfree(new_key_string);
2039 		return PTR_ERR(key);
2040 	}
2041 
2042 	down_read(&key->sem);
2043 
2044 	ukp = user_key_payload_locked(key);
2045 	if (!ukp) {
2046 		up_read(&key->sem);
2047 		key_put(key);
2048 		kzfree(new_key_string);
2049 		return -EKEYREVOKED;
2050 	}
2051 
2052 	if (cc->key_size != ukp->datalen) {
2053 		up_read(&key->sem);
2054 		key_put(key);
2055 		kzfree(new_key_string);
2056 		return -EINVAL;
2057 	}
2058 
2059 	memcpy(cc->key, ukp->data, cc->key_size);
2060 
2061 	up_read(&key->sem);
2062 	key_put(key);
2063 
2064 	/* clear the flag since following operations may invalidate previously valid key */
2065 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2066 
2067 	ret = crypt_setkey(cc);
2068 
2069 	if (!ret) {
2070 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2071 		kzfree(cc->key_string);
2072 		cc->key_string = new_key_string;
2073 	} else
2074 		kzfree(new_key_string);
2075 
2076 	return ret;
2077 }
2078 
2079 static int get_key_size(char **key_string)
2080 {
2081 	char *colon, dummy;
2082 	int ret;
2083 
2084 	if (*key_string[0] != ':')
2085 		return strlen(*key_string) >> 1;
2086 
2087 	/* look for next ':' in key string */
2088 	colon = strpbrk(*key_string + 1, ":");
2089 	if (!colon)
2090 		return -EINVAL;
2091 
2092 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2093 		return -EINVAL;
2094 
2095 	*key_string = colon;
2096 
2097 	/* remaining key string should be :<logon|user>:<key_desc> */
2098 
2099 	return ret;
2100 }
2101 
2102 #else
2103 
2104 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2105 {
2106 	return -EINVAL;
2107 }
2108 
2109 static int get_key_size(char **key_string)
2110 {
2111 	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2112 }
2113 
2114 #endif
2115 
2116 static int crypt_set_key(struct crypt_config *cc, char *key)
2117 {
2118 	int r = -EINVAL;
2119 	int key_string_len = strlen(key);
2120 
2121 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2122 	if (!cc->key_size && strcmp(key, "-"))
2123 		goto out;
2124 
2125 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2126 	if (key[0] == ':') {
2127 		r = crypt_set_keyring_key(cc, key + 1);
2128 		goto out;
2129 	}
2130 
2131 	/* clear the flag since following operations may invalidate previously valid key */
2132 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2133 
2134 	/* wipe references to any kernel keyring key */
2135 	kzfree(cc->key_string);
2136 	cc->key_string = NULL;
2137 
2138 	/* Decode key from its hex representation. */
2139 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2140 		goto out;
2141 
2142 	r = crypt_setkey(cc);
2143 	if (!r)
2144 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2145 
2146 out:
2147 	/* Hex key string not needed after here, so wipe it. */
2148 	memset(key, '0', key_string_len);
2149 
2150 	return r;
2151 }
2152 
2153 static int crypt_wipe_key(struct crypt_config *cc)
2154 {
2155 	int r;
2156 
2157 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2158 	get_random_bytes(&cc->key, cc->key_size);
2159 	kzfree(cc->key_string);
2160 	cc->key_string = NULL;
2161 	r = crypt_setkey(cc);
2162 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2163 
2164 	return r;
2165 }
2166 
2167 static void crypt_calculate_pages_per_client(void)
2168 {
2169 	unsigned long pages = (totalram_pages - totalhigh_pages) * DM_CRYPT_MEMORY_PERCENT / 100;
2170 
2171 	if (!dm_crypt_clients_n)
2172 		return;
2173 
2174 	pages /= dm_crypt_clients_n;
2175 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2176 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2177 	dm_crypt_pages_per_client = pages;
2178 }
2179 
2180 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2181 {
2182 	struct crypt_config *cc = pool_data;
2183 	struct page *page;
2184 
2185 	if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2186 	    likely(gfp_mask & __GFP_NORETRY))
2187 		return NULL;
2188 
2189 	page = alloc_page(gfp_mask);
2190 	if (likely(page != NULL))
2191 		percpu_counter_add(&cc->n_allocated_pages, 1);
2192 
2193 	return page;
2194 }
2195 
2196 static void crypt_page_free(void *page, void *pool_data)
2197 {
2198 	struct crypt_config *cc = pool_data;
2199 
2200 	__free_page(page);
2201 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2202 }
2203 
2204 static void crypt_dtr(struct dm_target *ti)
2205 {
2206 	struct crypt_config *cc = ti->private;
2207 
2208 	ti->private = NULL;
2209 
2210 	if (!cc)
2211 		return;
2212 
2213 	if (cc->write_thread)
2214 		kthread_stop(cc->write_thread);
2215 
2216 	if (cc->io_queue)
2217 		destroy_workqueue(cc->io_queue);
2218 	if (cc->crypt_queue)
2219 		destroy_workqueue(cc->crypt_queue);
2220 
2221 	crypt_free_tfms(cc);
2222 
2223 	bioset_exit(&cc->bs);
2224 
2225 	mempool_exit(&cc->page_pool);
2226 	mempool_exit(&cc->req_pool);
2227 	mempool_exit(&cc->tag_pool);
2228 
2229 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2230 	percpu_counter_destroy(&cc->n_allocated_pages);
2231 
2232 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2233 		cc->iv_gen_ops->dtr(cc);
2234 
2235 	if (cc->dev)
2236 		dm_put_device(ti, cc->dev);
2237 
2238 	kzfree(cc->cipher);
2239 	kzfree(cc->cipher_string);
2240 	kzfree(cc->key_string);
2241 	kzfree(cc->cipher_auth);
2242 	kzfree(cc->authenc_key);
2243 
2244 	mutex_destroy(&cc->bio_alloc_lock);
2245 
2246 	/* Must zero key material before freeing */
2247 	kzfree(cc);
2248 
2249 	spin_lock(&dm_crypt_clients_lock);
2250 	WARN_ON(!dm_crypt_clients_n);
2251 	dm_crypt_clients_n--;
2252 	crypt_calculate_pages_per_client();
2253 	spin_unlock(&dm_crypt_clients_lock);
2254 }
2255 
2256 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2257 {
2258 	struct crypt_config *cc = ti->private;
2259 
2260 	if (crypt_integrity_aead(cc))
2261 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2262 	else
2263 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2264 
2265 	if (cc->iv_size)
2266 		/* at least a 64 bit sector number should fit in our buffer */
2267 		cc->iv_size = max(cc->iv_size,
2268 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2269 	else if (ivmode) {
2270 		DMWARN("Selected cipher does not support IVs");
2271 		ivmode = NULL;
2272 	}
2273 
2274 	/* Choose ivmode, see comments at iv code. */
2275 	if (ivmode == NULL)
2276 		cc->iv_gen_ops = NULL;
2277 	else if (strcmp(ivmode, "plain") == 0)
2278 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2279 	else if (strcmp(ivmode, "plain64") == 0)
2280 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2281 	else if (strcmp(ivmode, "plain64be") == 0)
2282 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2283 	else if (strcmp(ivmode, "essiv") == 0)
2284 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2285 	else if (strcmp(ivmode, "benbi") == 0)
2286 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2287 	else if (strcmp(ivmode, "null") == 0)
2288 		cc->iv_gen_ops = &crypt_iv_null_ops;
2289 	else if (strcmp(ivmode, "lmk") == 0) {
2290 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2291 		/*
2292 		 * Version 2 and 3 is recognised according
2293 		 * to length of provided multi-key string.
2294 		 * If present (version 3), last key is used as IV seed.
2295 		 * All keys (including IV seed) are always the same size.
2296 		 */
2297 		if (cc->key_size % cc->key_parts) {
2298 			cc->key_parts++;
2299 			cc->key_extra_size = cc->key_size / cc->key_parts;
2300 		}
2301 	} else if (strcmp(ivmode, "tcw") == 0) {
2302 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2303 		cc->key_parts += 2; /* IV + whitening */
2304 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2305 	} else if (strcmp(ivmode, "random") == 0) {
2306 		cc->iv_gen_ops = &crypt_iv_random_ops;
2307 		/* Need storage space in integrity fields. */
2308 		cc->integrity_iv_size = cc->iv_size;
2309 	} else {
2310 		ti->error = "Invalid IV mode";
2311 		return -EINVAL;
2312 	}
2313 
2314 	return 0;
2315 }
2316 
2317 /*
2318  * Workaround to parse cipher algorithm from crypto API spec.
2319  * The cc->cipher is currently used only in ESSIV.
2320  * This should be probably done by crypto-api calls (once available...)
2321  */
2322 static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2323 {
2324 	const char *alg_name = NULL;
2325 	char *start, *end;
2326 
2327 	if (crypt_integrity_aead(cc)) {
2328 		alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2329 		if (!alg_name)
2330 			return -EINVAL;
2331 		if (crypt_integrity_hmac(cc)) {
2332 			alg_name = strchr(alg_name, ',');
2333 			if (!alg_name)
2334 				return -EINVAL;
2335 		}
2336 		alg_name++;
2337 	} else {
2338 		alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2339 		if (!alg_name)
2340 			return -EINVAL;
2341 	}
2342 
2343 	start = strchr(alg_name, '(');
2344 	end = strchr(alg_name, ')');
2345 
2346 	if (!start && !end) {
2347 		cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2348 		return cc->cipher ? 0 : -ENOMEM;
2349 	}
2350 
2351 	if (!start || !end || ++start >= end)
2352 		return -EINVAL;
2353 
2354 	cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2355 	if (!cc->cipher)
2356 		return -ENOMEM;
2357 
2358 	strncpy(cc->cipher, start, end - start);
2359 
2360 	return 0;
2361 }
2362 
2363 /*
2364  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2365  * The HMAC is needed to calculate tag size (HMAC digest size).
2366  * This should be probably done by crypto-api calls (once available...)
2367  */
2368 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2369 {
2370 	char *start, *end, *mac_alg = NULL;
2371 	struct crypto_ahash *mac;
2372 
2373 	if (!strstarts(cipher_api, "authenc("))
2374 		return 0;
2375 
2376 	start = strchr(cipher_api, '(');
2377 	end = strchr(cipher_api, ',');
2378 	if (!start || !end || ++start > end)
2379 		return -EINVAL;
2380 
2381 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2382 	if (!mac_alg)
2383 		return -ENOMEM;
2384 	strncpy(mac_alg, start, end - start);
2385 
2386 	mac = crypto_alloc_ahash(mac_alg, 0, 0);
2387 	kfree(mac_alg);
2388 
2389 	if (IS_ERR(mac))
2390 		return PTR_ERR(mac);
2391 
2392 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2393 	crypto_free_ahash(mac);
2394 
2395 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2396 	if (!cc->authenc_key)
2397 		return -ENOMEM;
2398 
2399 	return 0;
2400 }
2401 
2402 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2403 				char **ivmode, char **ivopts)
2404 {
2405 	struct crypt_config *cc = ti->private;
2406 	char *tmp, *cipher_api;
2407 	int ret = -EINVAL;
2408 
2409 	cc->tfms_count = 1;
2410 
2411 	/*
2412 	 * New format (capi: prefix)
2413 	 * capi:cipher_api_spec-iv:ivopts
2414 	 */
2415 	tmp = &cipher_in[strlen("capi:")];
2416 	cipher_api = strsep(&tmp, "-");
2417 	*ivmode = strsep(&tmp, ":");
2418 	*ivopts = tmp;
2419 
2420 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2421 		cc->tfms_count = 64;
2422 
2423 	cc->key_parts = cc->tfms_count;
2424 
2425 	/* Allocate cipher */
2426 	ret = crypt_alloc_tfms(cc, cipher_api);
2427 	if (ret < 0) {
2428 		ti->error = "Error allocating crypto tfm";
2429 		return ret;
2430 	}
2431 
2432 	/* Alloc AEAD, can be used only in new format. */
2433 	if (crypt_integrity_aead(cc)) {
2434 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2435 		if (ret < 0) {
2436 			ti->error = "Invalid AEAD cipher spec";
2437 			return -ENOMEM;
2438 		}
2439 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2440 	} else
2441 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2442 
2443 	ret = crypt_ctr_blkdev_cipher(cc);
2444 	if (ret < 0) {
2445 		ti->error = "Cannot allocate cipher string";
2446 		return -ENOMEM;
2447 	}
2448 
2449 	return 0;
2450 }
2451 
2452 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2453 				char **ivmode, char **ivopts)
2454 {
2455 	struct crypt_config *cc = ti->private;
2456 	char *tmp, *cipher, *chainmode, *keycount;
2457 	char *cipher_api = NULL;
2458 	int ret = -EINVAL;
2459 	char dummy;
2460 
2461 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2462 		ti->error = "Bad cipher specification";
2463 		return -EINVAL;
2464 	}
2465 
2466 	/*
2467 	 * Legacy dm-crypt cipher specification
2468 	 * cipher[:keycount]-mode-iv:ivopts
2469 	 */
2470 	tmp = cipher_in;
2471 	keycount = strsep(&tmp, "-");
2472 	cipher = strsep(&keycount, ":");
2473 
2474 	if (!keycount)
2475 		cc->tfms_count = 1;
2476 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2477 		 !is_power_of_2(cc->tfms_count)) {
2478 		ti->error = "Bad cipher key count specification";
2479 		return -EINVAL;
2480 	}
2481 	cc->key_parts = cc->tfms_count;
2482 
2483 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
2484 	if (!cc->cipher)
2485 		goto bad_mem;
2486 
2487 	chainmode = strsep(&tmp, "-");
2488 	*ivopts = strsep(&tmp, "-");
2489 	*ivmode = strsep(&*ivopts, ":");
2490 
2491 	if (tmp)
2492 		DMWARN("Ignoring unexpected additional cipher options");
2493 
2494 	/*
2495 	 * For compatibility with the original dm-crypt mapping format, if
2496 	 * only the cipher name is supplied, use cbc-plain.
2497 	 */
2498 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2499 		chainmode = "cbc";
2500 		*ivmode = "plain";
2501 	}
2502 
2503 	if (strcmp(chainmode, "ecb") && !*ivmode) {
2504 		ti->error = "IV mechanism required";
2505 		return -EINVAL;
2506 	}
2507 
2508 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2509 	if (!cipher_api)
2510 		goto bad_mem;
2511 
2512 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2513 		       "%s(%s)", chainmode, cipher);
2514 	if (ret < 0) {
2515 		kfree(cipher_api);
2516 		goto bad_mem;
2517 	}
2518 
2519 	/* Allocate cipher */
2520 	ret = crypt_alloc_tfms(cc, cipher_api);
2521 	if (ret < 0) {
2522 		ti->error = "Error allocating crypto tfm";
2523 		kfree(cipher_api);
2524 		return ret;
2525 	}
2526 	kfree(cipher_api);
2527 
2528 	return 0;
2529 bad_mem:
2530 	ti->error = "Cannot allocate cipher strings";
2531 	return -ENOMEM;
2532 }
2533 
2534 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2535 {
2536 	struct crypt_config *cc = ti->private;
2537 	char *ivmode = NULL, *ivopts = NULL;
2538 	int ret;
2539 
2540 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2541 	if (!cc->cipher_string) {
2542 		ti->error = "Cannot allocate cipher strings";
2543 		return -ENOMEM;
2544 	}
2545 
2546 	if (strstarts(cipher_in, "capi:"))
2547 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2548 	else
2549 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2550 	if (ret)
2551 		return ret;
2552 
2553 	/* Initialize IV */
2554 	ret = crypt_ctr_ivmode(ti, ivmode);
2555 	if (ret < 0)
2556 		return ret;
2557 
2558 	/* Initialize and set key */
2559 	ret = crypt_set_key(cc, key);
2560 	if (ret < 0) {
2561 		ti->error = "Error decoding and setting key";
2562 		return ret;
2563 	}
2564 
2565 	/* Allocate IV */
2566 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2567 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2568 		if (ret < 0) {
2569 			ti->error = "Error creating IV";
2570 			return ret;
2571 		}
2572 	}
2573 
2574 	/* Initialize IV (set keys for ESSIV etc) */
2575 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2576 		ret = cc->iv_gen_ops->init(cc);
2577 		if (ret < 0) {
2578 			ti->error = "Error initialising IV";
2579 			return ret;
2580 		}
2581 	}
2582 
2583 	/* wipe the kernel key payload copy */
2584 	if (cc->key_string)
2585 		memset(cc->key, 0, cc->key_size * sizeof(u8));
2586 
2587 	return ret;
2588 }
2589 
2590 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2591 {
2592 	struct crypt_config *cc = ti->private;
2593 	struct dm_arg_set as;
2594 	static const struct dm_arg _args[] = {
2595 		{0, 6, "Invalid number of feature args"},
2596 	};
2597 	unsigned int opt_params, val;
2598 	const char *opt_string, *sval;
2599 	char dummy;
2600 	int ret;
2601 
2602 	/* Optional parameters */
2603 	as.argc = argc;
2604 	as.argv = argv;
2605 
2606 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2607 	if (ret)
2608 		return ret;
2609 
2610 	while (opt_params--) {
2611 		opt_string = dm_shift_arg(&as);
2612 		if (!opt_string) {
2613 			ti->error = "Not enough feature arguments";
2614 			return -EINVAL;
2615 		}
2616 
2617 		if (!strcasecmp(opt_string, "allow_discards"))
2618 			ti->num_discard_bios = 1;
2619 
2620 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2621 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2622 
2623 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2624 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2625 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2626 			if (val == 0 || val > MAX_TAG_SIZE) {
2627 				ti->error = "Invalid integrity arguments";
2628 				return -EINVAL;
2629 			}
2630 			cc->on_disk_tag_size = val;
2631 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2632 			if (!strcasecmp(sval, "aead")) {
2633 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2634 			} else  if (strcasecmp(sval, "none")) {
2635 				ti->error = "Unknown integrity profile";
2636 				return -EINVAL;
2637 			}
2638 
2639 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2640 			if (!cc->cipher_auth)
2641 				return -ENOMEM;
2642 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2643 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2644 			    cc->sector_size > 4096 ||
2645 			    (cc->sector_size & (cc->sector_size - 1))) {
2646 				ti->error = "Invalid feature value for sector_size";
2647 				return -EINVAL;
2648 			}
2649 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2650 				ti->error = "Device size is not multiple of sector_size feature";
2651 				return -EINVAL;
2652 			}
2653 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2654 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
2655 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2656 		else {
2657 			ti->error = "Invalid feature arguments";
2658 			return -EINVAL;
2659 		}
2660 	}
2661 
2662 	return 0;
2663 }
2664 
2665 /*
2666  * Construct an encryption mapping:
2667  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2668  */
2669 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2670 {
2671 	struct crypt_config *cc;
2672 	int key_size;
2673 	unsigned int align_mask;
2674 	unsigned long long tmpll;
2675 	int ret;
2676 	size_t iv_size_padding, additional_req_size;
2677 	char dummy;
2678 
2679 	if (argc < 5) {
2680 		ti->error = "Not enough arguments";
2681 		return -EINVAL;
2682 	}
2683 
2684 	key_size = get_key_size(&argv[1]);
2685 	if (key_size < 0) {
2686 		ti->error = "Cannot parse key size";
2687 		return -EINVAL;
2688 	}
2689 
2690 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2691 	if (!cc) {
2692 		ti->error = "Cannot allocate encryption context";
2693 		return -ENOMEM;
2694 	}
2695 	cc->key_size = key_size;
2696 	cc->sector_size = (1 << SECTOR_SHIFT);
2697 	cc->sector_shift = 0;
2698 
2699 	ti->private = cc;
2700 
2701 	spin_lock(&dm_crypt_clients_lock);
2702 	dm_crypt_clients_n++;
2703 	crypt_calculate_pages_per_client();
2704 	spin_unlock(&dm_crypt_clients_lock);
2705 
2706 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2707 	if (ret < 0)
2708 		goto bad;
2709 
2710 	/* Optional parameters need to be read before cipher constructor */
2711 	if (argc > 5) {
2712 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2713 		if (ret)
2714 			goto bad;
2715 	}
2716 
2717 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2718 	if (ret < 0)
2719 		goto bad;
2720 
2721 	if (crypt_integrity_aead(cc)) {
2722 		cc->dmreq_start = sizeof(struct aead_request);
2723 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2724 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2725 	} else {
2726 		cc->dmreq_start = sizeof(struct skcipher_request);
2727 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2728 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2729 	}
2730 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2731 
2732 	if (align_mask < CRYPTO_MINALIGN) {
2733 		/* Allocate the padding exactly */
2734 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2735 				& align_mask;
2736 	} else {
2737 		/*
2738 		 * If the cipher requires greater alignment than kmalloc
2739 		 * alignment, we don't know the exact position of the
2740 		 * initialization vector. We must assume worst case.
2741 		 */
2742 		iv_size_padding = align_mask;
2743 	}
2744 
2745 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
2746 	additional_req_size = sizeof(struct dm_crypt_request) +
2747 		iv_size_padding + cc->iv_size +
2748 		cc->iv_size +
2749 		sizeof(uint64_t) +
2750 		sizeof(unsigned int);
2751 
2752 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
2753 	if (ret) {
2754 		ti->error = "Cannot allocate crypt request mempool";
2755 		goto bad;
2756 	}
2757 
2758 	cc->per_bio_data_size = ti->per_io_data_size =
2759 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2760 		      ARCH_KMALLOC_MINALIGN);
2761 
2762 	ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2763 	if (ret) {
2764 		ti->error = "Cannot allocate page mempool";
2765 		goto bad;
2766 	}
2767 
2768 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
2769 	if (ret) {
2770 		ti->error = "Cannot allocate crypt bioset";
2771 		goto bad;
2772 	}
2773 
2774 	mutex_init(&cc->bio_alloc_lock);
2775 
2776 	ret = -EINVAL;
2777 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2778 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2779 		ti->error = "Invalid iv_offset sector";
2780 		goto bad;
2781 	}
2782 	cc->iv_offset = tmpll;
2783 
2784 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2785 	if (ret) {
2786 		ti->error = "Device lookup failed";
2787 		goto bad;
2788 	}
2789 
2790 	ret = -EINVAL;
2791 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2792 		ti->error = "Invalid device sector";
2793 		goto bad;
2794 	}
2795 	cc->start = tmpll;
2796 
2797 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2798 		ret = crypt_integrity_ctr(cc, ti);
2799 		if (ret)
2800 			goto bad;
2801 
2802 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2803 		if (!cc->tag_pool_max_sectors)
2804 			cc->tag_pool_max_sectors = 1;
2805 
2806 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
2807 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2808 		if (ret) {
2809 			ti->error = "Cannot allocate integrity tags mempool";
2810 			goto bad;
2811 		}
2812 
2813 		cc->tag_pool_max_sectors <<= cc->sector_shift;
2814 	}
2815 
2816 	ret = -ENOMEM;
2817 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2818 	if (!cc->io_queue) {
2819 		ti->error = "Couldn't create kcryptd io queue";
2820 		goto bad;
2821 	}
2822 
2823 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2824 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2825 	else
2826 		cc->crypt_queue = alloc_workqueue("kcryptd",
2827 						  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2828 						  num_online_cpus());
2829 	if (!cc->crypt_queue) {
2830 		ti->error = "Couldn't create kcryptd queue";
2831 		goto bad;
2832 	}
2833 
2834 	init_waitqueue_head(&cc->write_thread_wait);
2835 	cc->write_tree = RB_ROOT;
2836 
2837 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2838 	if (IS_ERR(cc->write_thread)) {
2839 		ret = PTR_ERR(cc->write_thread);
2840 		cc->write_thread = NULL;
2841 		ti->error = "Couldn't spawn write thread";
2842 		goto bad;
2843 	}
2844 	wake_up_process(cc->write_thread);
2845 
2846 	ti->num_flush_bios = 1;
2847 
2848 	return 0;
2849 
2850 bad:
2851 	crypt_dtr(ti);
2852 	return ret;
2853 }
2854 
2855 static int crypt_map(struct dm_target *ti, struct bio *bio)
2856 {
2857 	struct dm_crypt_io *io;
2858 	struct crypt_config *cc = ti->private;
2859 
2860 	/*
2861 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2862 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2863 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2864 	 */
2865 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2866 	    bio_op(bio) == REQ_OP_DISCARD)) {
2867 		bio_set_dev(bio, cc->dev->bdev);
2868 		if (bio_sectors(bio))
2869 			bio->bi_iter.bi_sector = cc->start +
2870 				dm_target_offset(ti, bio->bi_iter.bi_sector);
2871 		return DM_MAPIO_REMAPPED;
2872 	}
2873 
2874 	/*
2875 	 * Check if bio is too large, split as needed.
2876 	 */
2877 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2878 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2879 		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2880 
2881 	/*
2882 	 * Ensure that bio is a multiple of internal sector encryption size
2883 	 * and is aligned to this size as defined in IO hints.
2884 	 */
2885 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2886 		return DM_MAPIO_KILL;
2887 
2888 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2889 		return DM_MAPIO_KILL;
2890 
2891 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
2892 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2893 
2894 	if (cc->on_disk_tag_size) {
2895 		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2896 
2897 		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2898 		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2899 				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2900 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2901 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2902 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
2903 			io->integrity_metadata_from_pool = true;
2904 		}
2905 	}
2906 
2907 	if (crypt_integrity_aead(cc))
2908 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2909 	else
2910 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
2911 
2912 	if (bio_data_dir(io->base_bio) == READ) {
2913 		if (kcryptd_io_read(io, GFP_NOWAIT))
2914 			kcryptd_queue_read(io);
2915 	} else
2916 		kcryptd_queue_crypt(io);
2917 
2918 	return DM_MAPIO_SUBMITTED;
2919 }
2920 
2921 static void crypt_status(struct dm_target *ti, status_type_t type,
2922 			 unsigned status_flags, char *result, unsigned maxlen)
2923 {
2924 	struct crypt_config *cc = ti->private;
2925 	unsigned i, sz = 0;
2926 	int num_feature_args = 0;
2927 
2928 	switch (type) {
2929 	case STATUSTYPE_INFO:
2930 		result[0] = '\0';
2931 		break;
2932 
2933 	case STATUSTYPE_TABLE:
2934 		DMEMIT("%s ", cc->cipher_string);
2935 
2936 		if (cc->key_size > 0) {
2937 			if (cc->key_string)
2938 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2939 			else
2940 				for (i = 0; i < cc->key_size; i++)
2941 					DMEMIT("%02x", cc->key[i]);
2942 		} else
2943 			DMEMIT("-");
2944 
2945 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2946 				cc->dev->name, (unsigned long long)cc->start);
2947 
2948 		num_feature_args += !!ti->num_discard_bios;
2949 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2950 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2951 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2952 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2953 		if (cc->on_disk_tag_size)
2954 			num_feature_args++;
2955 		if (num_feature_args) {
2956 			DMEMIT(" %d", num_feature_args);
2957 			if (ti->num_discard_bios)
2958 				DMEMIT(" allow_discards");
2959 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2960 				DMEMIT(" same_cpu_crypt");
2961 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2962 				DMEMIT(" submit_from_crypt_cpus");
2963 			if (cc->on_disk_tag_size)
2964 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2965 			if (cc->sector_size != (1 << SECTOR_SHIFT))
2966 				DMEMIT(" sector_size:%d", cc->sector_size);
2967 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2968 				DMEMIT(" iv_large_sectors");
2969 		}
2970 
2971 		break;
2972 	}
2973 }
2974 
2975 static void crypt_postsuspend(struct dm_target *ti)
2976 {
2977 	struct crypt_config *cc = ti->private;
2978 
2979 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2980 }
2981 
2982 static int crypt_preresume(struct dm_target *ti)
2983 {
2984 	struct crypt_config *cc = ti->private;
2985 
2986 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2987 		DMERR("aborting resume - crypt key is not set.");
2988 		return -EAGAIN;
2989 	}
2990 
2991 	return 0;
2992 }
2993 
2994 static void crypt_resume(struct dm_target *ti)
2995 {
2996 	struct crypt_config *cc = ti->private;
2997 
2998 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2999 }
3000 
3001 /* Message interface
3002  *	key set <key>
3003  *	key wipe
3004  */
3005 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3006 			 char *result, unsigned maxlen)
3007 {
3008 	struct crypt_config *cc = ti->private;
3009 	int key_size, ret = -EINVAL;
3010 
3011 	if (argc < 2)
3012 		goto error;
3013 
3014 	if (!strcasecmp(argv[0], "key")) {
3015 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3016 			DMWARN("not suspended during key manipulation.");
3017 			return -EINVAL;
3018 		}
3019 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3020 			/* The key size may not be changed. */
3021 			key_size = get_key_size(&argv[2]);
3022 			if (key_size < 0 || cc->key_size != key_size) {
3023 				memset(argv[2], '0', strlen(argv[2]));
3024 				return -EINVAL;
3025 			}
3026 
3027 			ret = crypt_set_key(cc, argv[2]);
3028 			if (ret)
3029 				return ret;
3030 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3031 				ret = cc->iv_gen_ops->init(cc);
3032 			/* wipe the kernel key payload copy */
3033 			if (cc->key_string)
3034 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3035 			return ret;
3036 		}
3037 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
3038 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
3039 				ret = cc->iv_gen_ops->wipe(cc);
3040 				if (ret)
3041 					return ret;
3042 			}
3043 			return crypt_wipe_key(cc);
3044 		}
3045 	}
3046 
3047 error:
3048 	DMWARN("unrecognised message received.");
3049 	return -EINVAL;
3050 }
3051 
3052 static int crypt_iterate_devices(struct dm_target *ti,
3053 				 iterate_devices_callout_fn fn, void *data)
3054 {
3055 	struct crypt_config *cc = ti->private;
3056 
3057 	return fn(ti, cc->dev, cc->start, ti->len, data);
3058 }
3059 
3060 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3061 {
3062 	struct crypt_config *cc = ti->private;
3063 
3064 	/*
3065 	 * Unfortunate constraint that is required to avoid the potential
3066 	 * for exceeding underlying device's max_segments limits -- due to
3067 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3068 	 * bio that are not as physically contiguous as the original bio.
3069 	 */
3070 	limits->max_segment_size = PAGE_SIZE;
3071 
3072 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
3073 		limits->logical_block_size = cc->sector_size;
3074 		limits->physical_block_size = cc->sector_size;
3075 		blk_limits_io_min(limits, cc->sector_size);
3076 	}
3077 }
3078 
3079 static struct target_type crypt_target = {
3080 	.name   = "crypt",
3081 	.version = {1, 18, 1},
3082 	.module = THIS_MODULE,
3083 	.ctr    = crypt_ctr,
3084 	.dtr    = crypt_dtr,
3085 	.map    = crypt_map,
3086 	.status = crypt_status,
3087 	.postsuspend = crypt_postsuspend,
3088 	.preresume = crypt_preresume,
3089 	.resume = crypt_resume,
3090 	.message = crypt_message,
3091 	.iterate_devices = crypt_iterate_devices,
3092 	.io_hints = crypt_io_hints,
3093 };
3094 
3095 static int __init dm_crypt_init(void)
3096 {
3097 	int r;
3098 
3099 	r = dm_register_target(&crypt_target);
3100 	if (r < 0)
3101 		DMERR("register failed %d", r);
3102 
3103 	return r;
3104 }
3105 
3106 static void __exit dm_crypt_exit(void)
3107 {
3108 	dm_unregister_target(&crypt_target);
3109 }
3110 
3111 module_init(dm_crypt_init);
3112 module_exit(dm_crypt_exit);
3113 
3114 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3115 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3116 MODULE_LICENSE("GPL");
3117