xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 79f08d9e)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/backing-dev.h>
22 #include <linux/percpu.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <asm/page.h>
26 #include <asm/unaligned.h>
27 #include <crypto/hash.h>
28 #include <crypto/md5.h>
29 #include <crypto/algapi.h>
30 
31 #include <linux/device-mapper.h>
32 
33 #define DM_MSG_PREFIX "crypt"
34 
35 /*
36  * context holding the current state of a multi-part conversion
37  */
38 struct convert_context {
39 	struct completion restart;
40 	struct bio *bio_in;
41 	struct bio *bio_out;
42 	unsigned int offset_in;
43 	unsigned int offset_out;
44 	unsigned int idx_in;
45 	unsigned int idx_out;
46 	sector_t cc_sector;
47 	atomic_t cc_pending;
48 };
49 
50 /*
51  * per bio private data
52  */
53 struct dm_crypt_io {
54 	struct crypt_config *cc;
55 	struct bio *base_bio;
56 	struct work_struct work;
57 
58 	struct convert_context ctx;
59 
60 	atomic_t io_pending;
61 	int error;
62 	sector_t sector;
63 	struct dm_crypt_io *base_io;
64 };
65 
66 struct dm_crypt_request {
67 	struct convert_context *ctx;
68 	struct scatterlist sg_in;
69 	struct scatterlist sg_out;
70 	sector_t iv_sector;
71 };
72 
73 struct crypt_config;
74 
75 struct crypt_iv_operations {
76 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
77 		   const char *opts);
78 	void (*dtr)(struct crypt_config *cc);
79 	int (*init)(struct crypt_config *cc);
80 	int (*wipe)(struct crypt_config *cc);
81 	int (*generator)(struct crypt_config *cc, u8 *iv,
82 			 struct dm_crypt_request *dmreq);
83 	int (*post)(struct crypt_config *cc, u8 *iv,
84 		    struct dm_crypt_request *dmreq);
85 };
86 
87 struct iv_essiv_private {
88 	struct crypto_hash *hash_tfm;
89 	u8 *salt;
90 };
91 
92 struct iv_benbi_private {
93 	int shift;
94 };
95 
96 #define LMK_SEED_SIZE 64 /* hash + 0 */
97 struct iv_lmk_private {
98 	struct crypto_shash *hash_tfm;
99 	u8 *seed;
100 };
101 
102 #define TCW_WHITENING_SIZE 16
103 struct iv_tcw_private {
104 	struct crypto_shash *crc32_tfm;
105 	u8 *iv_seed;
106 	u8 *whitening;
107 };
108 
109 /*
110  * Crypt: maps a linear range of a block device
111  * and encrypts / decrypts at the same time.
112  */
113 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
114 
115 /*
116  * Duplicated per-CPU state for cipher.
117  */
118 struct crypt_cpu {
119 	struct ablkcipher_request *req;
120 };
121 
122 /*
123  * The fields in here must be read only after initialization,
124  * changing state should be in crypt_cpu.
125  */
126 struct crypt_config {
127 	struct dm_dev *dev;
128 	sector_t start;
129 
130 	/*
131 	 * pool for per bio private data, crypto requests and
132 	 * encryption requeusts/buffer pages
133 	 */
134 	mempool_t *io_pool;
135 	mempool_t *req_pool;
136 	mempool_t *page_pool;
137 	struct bio_set *bs;
138 
139 	struct workqueue_struct *io_queue;
140 	struct workqueue_struct *crypt_queue;
141 
142 	char *cipher;
143 	char *cipher_string;
144 
145 	struct crypt_iv_operations *iv_gen_ops;
146 	union {
147 		struct iv_essiv_private essiv;
148 		struct iv_benbi_private benbi;
149 		struct iv_lmk_private lmk;
150 		struct iv_tcw_private tcw;
151 	} iv_gen_private;
152 	sector_t iv_offset;
153 	unsigned int iv_size;
154 
155 	/*
156 	 * Duplicated per cpu state. Access through
157 	 * per_cpu_ptr() only.
158 	 */
159 	struct crypt_cpu __percpu *cpu;
160 
161 	/* ESSIV: struct crypto_cipher *essiv_tfm */
162 	void *iv_private;
163 	struct crypto_ablkcipher **tfms;
164 	unsigned tfms_count;
165 
166 	/*
167 	 * Layout of each crypto request:
168 	 *
169 	 *   struct ablkcipher_request
170 	 *      context
171 	 *      padding
172 	 *   struct dm_crypt_request
173 	 *      padding
174 	 *   IV
175 	 *
176 	 * The padding is added so that dm_crypt_request and the IV are
177 	 * correctly aligned.
178 	 */
179 	unsigned int dmreq_start;
180 
181 	unsigned long flags;
182 	unsigned int key_size;
183 	unsigned int key_parts;      /* independent parts in key buffer */
184 	unsigned int key_extra_size; /* additional keys length */
185 	u8 key[0];
186 };
187 
188 #define MIN_IOS        16
189 #define MIN_POOL_PAGES 32
190 
191 static struct kmem_cache *_crypt_io_pool;
192 
193 static void clone_init(struct dm_crypt_io *, struct bio *);
194 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
195 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
196 
197 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
198 {
199 	return this_cpu_ptr(cc->cpu);
200 }
201 
202 /*
203  * Use this to access cipher attributes that are the same for each CPU.
204  */
205 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
206 {
207 	return cc->tfms[0];
208 }
209 
210 /*
211  * Different IV generation algorithms:
212  *
213  * plain: the initial vector is the 32-bit little-endian version of the sector
214  *        number, padded with zeros if necessary.
215  *
216  * plain64: the initial vector is the 64-bit little-endian version of the sector
217  *        number, padded with zeros if necessary.
218  *
219  * essiv: "encrypted sector|salt initial vector", the sector number is
220  *        encrypted with the bulk cipher using a salt as key. The salt
221  *        should be derived from the bulk cipher's key via hashing.
222  *
223  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
224  *        (needed for LRW-32-AES and possible other narrow block modes)
225  *
226  * null: the initial vector is always zero.  Provides compatibility with
227  *       obsolete loop_fish2 devices.  Do not use for new devices.
228  *
229  * lmk:  Compatible implementation of the block chaining mode used
230  *       by the Loop-AES block device encryption system
231  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
232  *       It operates on full 512 byte sectors and uses CBC
233  *       with an IV derived from the sector number, the data and
234  *       optionally extra IV seed.
235  *       This means that after decryption the first block
236  *       of sector must be tweaked according to decrypted data.
237  *       Loop-AES can use three encryption schemes:
238  *         version 1: is plain aes-cbc mode
239  *         version 2: uses 64 multikey scheme with lmk IV generator
240  *         version 3: the same as version 2 with additional IV seed
241  *                   (it uses 65 keys, last key is used as IV seed)
242  *
243  * tcw:  Compatible implementation of the block chaining mode used
244  *       by the TrueCrypt device encryption system (prior to version 4.1).
245  *       For more info see: http://www.truecrypt.org
246  *       It operates on full 512 byte sectors and uses CBC
247  *       with an IV derived from initial key and the sector number.
248  *       In addition, whitening value is applied on every sector, whitening
249  *       is calculated from initial key, sector number and mixed using CRC32.
250  *       Note that this encryption scheme is vulnerable to watermarking attacks
251  *       and should be used for old compatible containers access only.
252  *
253  * plumb: unimplemented, see:
254  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
255  */
256 
257 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
258 			      struct dm_crypt_request *dmreq)
259 {
260 	memset(iv, 0, cc->iv_size);
261 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
262 
263 	return 0;
264 }
265 
266 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
267 				struct dm_crypt_request *dmreq)
268 {
269 	memset(iv, 0, cc->iv_size);
270 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
271 
272 	return 0;
273 }
274 
275 /* Initialise ESSIV - compute salt but no local memory allocations */
276 static int crypt_iv_essiv_init(struct crypt_config *cc)
277 {
278 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
279 	struct hash_desc desc;
280 	struct scatterlist sg;
281 	struct crypto_cipher *essiv_tfm;
282 	int err;
283 
284 	sg_init_one(&sg, cc->key, cc->key_size);
285 	desc.tfm = essiv->hash_tfm;
286 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
287 
288 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
289 	if (err)
290 		return err;
291 
292 	essiv_tfm = cc->iv_private;
293 
294 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
295 			    crypto_hash_digestsize(essiv->hash_tfm));
296 	if (err)
297 		return err;
298 
299 	return 0;
300 }
301 
302 /* Wipe salt and reset key derived from volume key */
303 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
304 {
305 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
306 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
307 	struct crypto_cipher *essiv_tfm;
308 	int r, err = 0;
309 
310 	memset(essiv->salt, 0, salt_size);
311 
312 	essiv_tfm = cc->iv_private;
313 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
314 	if (r)
315 		err = r;
316 
317 	return err;
318 }
319 
320 /* Set up per cpu cipher state */
321 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
322 					     struct dm_target *ti,
323 					     u8 *salt, unsigned saltsize)
324 {
325 	struct crypto_cipher *essiv_tfm;
326 	int err;
327 
328 	/* Setup the essiv_tfm with the given salt */
329 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
330 	if (IS_ERR(essiv_tfm)) {
331 		ti->error = "Error allocating crypto tfm for ESSIV";
332 		return essiv_tfm;
333 	}
334 
335 	if (crypto_cipher_blocksize(essiv_tfm) !=
336 	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
337 		ti->error = "Block size of ESSIV cipher does "
338 			    "not match IV size of block cipher";
339 		crypto_free_cipher(essiv_tfm);
340 		return ERR_PTR(-EINVAL);
341 	}
342 
343 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
344 	if (err) {
345 		ti->error = "Failed to set key for ESSIV cipher";
346 		crypto_free_cipher(essiv_tfm);
347 		return ERR_PTR(err);
348 	}
349 
350 	return essiv_tfm;
351 }
352 
353 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
354 {
355 	struct crypto_cipher *essiv_tfm;
356 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
357 
358 	crypto_free_hash(essiv->hash_tfm);
359 	essiv->hash_tfm = NULL;
360 
361 	kzfree(essiv->salt);
362 	essiv->salt = NULL;
363 
364 	essiv_tfm = cc->iv_private;
365 
366 	if (essiv_tfm)
367 		crypto_free_cipher(essiv_tfm);
368 
369 	cc->iv_private = NULL;
370 }
371 
372 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
373 			      const char *opts)
374 {
375 	struct crypto_cipher *essiv_tfm = NULL;
376 	struct crypto_hash *hash_tfm = NULL;
377 	u8 *salt = NULL;
378 	int err;
379 
380 	if (!opts) {
381 		ti->error = "Digest algorithm missing for ESSIV mode";
382 		return -EINVAL;
383 	}
384 
385 	/* Allocate hash algorithm */
386 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
387 	if (IS_ERR(hash_tfm)) {
388 		ti->error = "Error initializing ESSIV hash";
389 		err = PTR_ERR(hash_tfm);
390 		goto bad;
391 	}
392 
393 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
394 	if (!salt) {
395 		ti->error = "Error kmallocing salt storage in ESSIV";
396 		err = -ENOMEM;
397 		goto bad;
398 	}
399 
400 	cc->iv_gen_private.essiv.salt = salt;
401 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
402 
403 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
404 				crypto_hash_digestsize(hash_tfm));
405 	if (IS_ERR(essiv_tfm)) {
406 		crypt_iv_essiv_dtr(cc);
407 		return PTR_ERR(essiv_tfm);
408 	}
409 	cc->iv_private = essiv_tfm;
410 
411 	return 0;
412 
413 bad:
414 	if (hash_tfm && !IS_ERR(hash_tfm))
415 		crypto_free_hash(hash_tfm);
416 	kfree(salt);
417 	return err;
418 }
419 
420 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
421 			      struct dm_crypt_request *dmreq)
422 {
423 	struct crypto_cipher *essiv_tfm = cc->iv_private;
424 
425 	memset(iv, 0, cc->iv_size);
426 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
427 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
428 
429 	return 0;
430 }
431 
432 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
433 			      const char *opts)
434 {
435 	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
436 	int log = ilog2(bs);
437 
438 	/* we need to calculate how far we must shift the sector count
439 	 * to get the cipher block count, we use this shift in _gen */
440 
441 	if (1 << log != bs) {
442 		ti->error = "cypher blocksize is not a power of 2";
443 		return -EINVAL;
444 	}
445 
446 	if (log > 9) {
447 		ti->error = "cypher blocksize is > 512";
448 		return -EINVAL;
449 	}
450 
451 	cc->iv_gen_private.benbi.shift = 9 - log;
452 
453 	return 0;
454 }
455 
456 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
457 {
458 }
459 
460 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
461 			      struct dm_crypt_request *dmreq)
462 {
463 	__be64 val;
464 
465 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
466 
467 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
468 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
469 
470 	return 0;
471 }
472 
473 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
474 			     struct dm_crypt_request *dmreq)
475 {
476 	memset(iv, 0, cc->iv_size);
477 
478 	return 0;
479 }
480 
481 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
482 {
483 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
484 
485 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
486 		crypto_free_shash(lmk->hash_tfm);
487 	lmk->hash_tfm = NULL;
488 
489 	kzfree(lmk->seed);
490 	lmk->seed = NULL;
491 }
492 
493 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
494 			    const char *opts)
495 {
496 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
497 
498 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
499 	if (IS_ERR(lmk->hash_tfm)) {
500 		ti->error = "Error initializing LMK hash";
501 		return PTR_ERR(lmk->hash_tfm);
502 	}
503 
504 	/* No seed in LMK version 2 */
505 	if (cc->key_parts == cc->tfms_count) {
506 		lmk->seed = NULL;
507 		return 0;
508 	}
509 
510 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
511 	if (!lmk->seed) {
512 		crypt_iv_lmk_dtr(cc);
513 		ti->error = "Error kmallocing seed storage in LMK";
514 		return -ENOMEM;
515 	}
516 
517 	return 0;
518 }
519 
520 static int crypt_iv_lmk_init(struct crypt_config *cc)
521 {
522 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
523 	int subkey_size = cc->key_size / cc->key_parts;
524 
525 	/* LMK seed is on the position of LMK_KEYS + 1 key */
526 	if (lmk->seed)
527 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
528 		       crypto_shash_digestsize(lmk->hash_tfm));
529 
530 	return 0;
531 }
532 
533 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
534 {
535 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
536 
537 	if (lmk->seed)
538 		memset(lmk->seed, 0, LMK_SEED_SIZE);
539 
540 	return 0;
541 }
542 
543 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
544 			    struct dm_crypt_request *dmreq,
545 			    u8 *data)
546 {
547 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
548 	struct {
549 		struct shash_desc desc;
550 		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
551 	} sdesc;
552 	struct md5_state md5state;
553 	__le32 buf[4];
554 	int i, r;
555 
556 	sdesc.desc.tfm = lmk->hash_tfm;
557 	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
558 
559 	r = crypto_shash_init(&sdesc.desc);
560 	if (r)
561 		return r;
562 
563 	if (lmk->seed) {
564 		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
565 		if (r)
566 			return r;
567 	}
568 
569 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
570 	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
571 	if (r)
572 		return r;
573 
574 	/* Sector is cropped to 56 bits here */
575 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
576 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
577 	buf[2] = cpu_to_le32(4024);
578 	buf[3] = 0;
579 	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
580 	if (r)
581 		return r;
582 
583 	/* No MD5 padding here */
584 	r = crypto_shash_export(&sdesc.desc, &md5state);
585 	if (r)
586 		return r;
587 
588 	for (i = 0; i < MD5_HASH_WORDS; i++)
589 		__cpu_to_le32s(&md5state.hash[i]);
590 	memcpy(iv, &md5state.hash, cc->iv_size);
591 
592 	return 0;
593 }
594 
595 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
596 			    struct dm_crypt_request *dmreq)
597 {
598 	u8 *src;
599 	int r = 0;
600 
601 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
602 		src = kmap_atomic(sg_page(&dmreq->sg_in));
603 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
604 		kunmap_atomic(src);
605 	} else
606 		memset(iv, 0, cc->iv_size);
607 
608 	return r;
609 }
610 
611 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
612 			     struct dm_crypt_request *dmreq)
613 {
614 	u8 *dst;
615 	int r;
616 
617 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
618 		return 0;
619 
620 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
621 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
622 
623 	/* Tweak the first block of plaintext sector */
624 	if (!r)
625 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
626 
627 	kunmap_atomic(dst);
628 	return r;
629 }
630 
631 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
632 {
633 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
634 
635 	kzfree(tcw->iv_seed);
636 	tcw->iv_seed = NULL;
637 	kzfree(tcw->whitening);
638 	tcw->whitening = NULL;
639 
640 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
641 		crypto_free_shash(tcw->crc32_tfm);
642 	tcw->crc32_tfm = NULL;
643 }
644 
645 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
646 			    const char *opts)
647 {
648 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
649 
650 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
651 		ti->error = "Wrong key size for TCW";
652 		return -EINVAL;
653 	}
654 
655 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
656 	if (IS_ERR(tcw->crc32_tfm)) {
657 		ti->error = "Error initializing CRC32 in TCW";
658 		return PTR_ERR(tcw->crc32_tfm);
659 	}
660 
661 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
662 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
663 	if (!tcw->iv_seed || !tcw->whitening) {
664 		crypt_iv_tcw_dtr(cc);
665 		ti->error = "Error allocating seed storage in TCW";
666 		return -ENOMEM;
667 	}
668 
669 	return 0;
670 }
671 
672 static int crypt_iv_tcw_init(struct crypt_config *cc)
673 {
674 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
675 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
676 
677 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
678 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
679 	       TCW_WHITENING_SIZE);
680 
681 	return 0;
682 }
683 
684 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
685 {
686 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
687 
688 	memset(tcw->iv_seed, 0, cc->iv_size);
689 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
690 
691 	return 0;
692 }
693 
694 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
695 				  struct dm_crypt_request *dmreq,
696 				  u8 *data)
697 {
698 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
699 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
700 	u8 buf[TCW_WHITENING_SIZE];
701 	struct {
702 		struct shash_desc desc;
703 		char ctx[crypto_shash_descsize(tcw->crc32_tfm)];
704 	} sdesc;
705 	int i, r;
706 
707 	/* xor whitening with sector number */
708 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
709 	crypto_xor(buf, (u8 *)&sector, 8);
710 	crypto_xor(&buf[8], (u8 *)&sector, 8);
711 
712 	/* calculate crc32 for every 32bit part and xor it */
713 	sdesc.desc.tfm = tcw->crc32_tfm;
714 	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
715 	for (i = 0; i < 4; i++) {
716 		r = crypto_shash_init(&sdesc.desc);
717 		if (r)
718 			goto out;
719 		r = crypto_shash_update(&sdesc.desc, &buf[i * 4], 4);
720 		if (r)
721 			goto out;
722 		r = crypto_shash_final(&sdesc.desc, &buf[i * 4]);
723 		if (r)
724 			goto out;
725 	}
726 	crypto_xor(&buf[0], &buf[12], 4);
727 	crypto_xor(&buf[4], &buf[8], 4);
728 
729 	/* apply whitening (8 bytes) to whole sector */
730 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
731 		crypto_xor(data + i * 8, buf, 8);
732 out:
733 	memset(buf, 0, sizeof(buf));
734 	return r;
735 }
736 
737 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
738 			    struct dm_crypt_request *dmreq)
739 {
740 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
741 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
742 	u8 *src;
743 	int r = 0;
744 
745 	/* Remove whitening from ciphertext */
746 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
747 		src = kmap_atomic(sg_page(&dmreq->sg_in));
748 		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
749 		kunmap_atomic(src);
750 	}
751 
752 	/* Calculate IV */
753 	memcpy(iv, tcw->iv_seed, cc->iv_size);
754 	crypto_xor(iv, (u8 *)&sector, 8);
755 	if (cc->iv_size > 8)
756 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
757 
758 	return r;
759 }
760 
761 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
762 			     struct dm_crypt_request *dmreq)
763 {
764 	u8 *dst;
765 	int r;
766 
767 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
768 		return 0;
769 
770 	/* Apply whitening on ciphertext */
771 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
772 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
773 	kunmap_atomic(dst);
774 
775 	return r;
776 }
777 
778 static struct crypt_iv_operations crypt_iv_plain_ops = {
779 	.generator = crypt_iv_plain_gen
780 };
781 
782 static struct crypt_iv_operations crypt_iv_plain64_ops = {
783 	.generator = crypt_iv_plain64_gen
784 };
785 
786 static struct crypt_iv_operations crypt_iv_essiv_ops = {
787 	.ctr       = crypt_iv_essiv_ctr,
788 	.dtr       = crypt_iv_essiv_dtr,
789 	.init      = crypt_iv_essiv_init,
790 	.wipe      = crypt_iv_essiv_wipe,
791 	.generator = crypt_iv_essiv_gen
792 };
793 
794 static struct crypt_iv_operations crypt_iv_benbi_ops = {
795 	.ctr	   = crypt_iv_benbi_ctr,
796 	.dtr	   = crypt_iv_benbi_dtr,
797 	.generator = crypt_iv_benbi_gen
798 };
799 
800 static struct crypt_iv_operations crypt_iv_null_ops = {
801 	.generator = crypt_iv_null_gen
802 };
803 
804 static struct crypt_iv_operations crypt_iv_lmk_ops = {
805 	.ctr	   = crypt_iv_lmk_ctr,
806 	.dtr	   = crypt_iv_lmk_dtr,
807 	.init	   = crypt_iv_lmk_init,
808 	.wipe	   = crypt_iv_lmk_wipe,
809 	.generator = crypt_iv_lmk_gen,
810 	.post	   = crypt_iv_lmk_post
811 };
812 
813 static struct crypt_iv_operations crypt_iv_tcw_ops = {
814 	.ctr	   = crypt_iv_tcw_ctr,
815 	.dtr	   = crypt_iv_tcw_dtr,
816 	.init	   = crypt_iv_tcw_init,
817 	.wipe	   = crypt_iv_tcw_wipe,
818 	.generator = crypt_iv_tcw_gen,
819 	.post	   = crypt_iv_tcw_post
820 };
821 
822 static void crypt_convert_init(struct crypt_config *cc,
823 			       struct convert_context *ctx,
824 			       struct bio *bio_out, struct bio *bio_in,
825 			       sector_t sector)
826 {
827 	ctx->bio_in = bio_in;
828 	ctx->bio_out = bio_out;
829 	ctx->offset_in = 0;
830 	ctx->offset_out = 0;
831 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
832 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
833 	ctx->cc_sector = sector + cc->iv_offset;
834 	init_completion(&ctx->restart);
835 }
836 
837 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
838 					     struct ablkcipher_request *req)
839 {
840 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
841 }
842 
843 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
844 					       struct dm_crypt_request *dmreq)
845 {
846 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
847 }
848 
849 static u8 *iv_of_dmreq(struct crypt_config *cc,
850 		       struct dm_crypt_request *dmreq)
851 {
852 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
853 		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
854 }
855 
856 static int crypt_convert_block(struct crypt_config *cc,
857 			       struct convert_context *ctx,
858 			       struct ablkcipher_request *req)
859 {
860 	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
861 	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
862 	struct dm_crypt_request *dmreq;
863 	u8 *iv;
864 	int r;
865 
866 	dmreq = dmreq_of_req(cc, req);
867 	iv = iv_of_dmreq(cc, dmreq);
868 
869 	dmreq->iv_sector = ctx->cc_sector;
870 	dmreq->ctx = ctx;
871 	sg_init_table(&dmreq->sg_in, 1);
872 	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
873 		    bv_in->bv_offset + ctx->offset_in);
874 
875 	sg_init_table(&dmreq->sg_out, 1);
876 	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
877 		    bv_out->bv_offset + ctx->offset_out);
878 
879 	ctx->offset_in += 1 << SECTOR_SHIFT;
880 	if (ctx->offset_in >= bv_in->bv_len) {
881 		ctx->offset_in = 0;
882 		ctx->idx_in++;
883 	}
884 
885 	ctx->offset_out += 1 << SECTOR_SHIFT;
886 	if (ctx->offset_out >= bv_out->bv_len) {
887 		ctx->offset_out = 0;
888 		ctx->idx_out++;
889 	}
890 
891 	if (cc->iv_gen_ops) {
892 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
893 		if (r < 0)
894 			return r;
895 	}
896 
897 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
898 				     1 << SECTOR_SHIFT, iv);
899 
900 	if (bio_data_dir(ctx->bio_in) == WRITE)
901 		r = crypto_ablkcipher_encrypt(req);
902 	else
903 		r = crypto_ablkcipher_decrypt(req);
904 
905 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
906 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
907 
908 	return r;
909 }
910 
911 static void kcryptd_async_done(struct crypto_async_request *async_req,
912 			       int error);
913 
914 static void crypt_alloc_req(struct crypt_config *cc,
915 			    struct convert_context *ctx)
916 {
917 	struct crypt_cpu *this_cc = this_crypt_config(cc);
918 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
919 
920 	if (!this_cc->req)
921 		this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
922 
923 	ablkcipher_request_set_tfm(this_cc->req, cc->tfms[key_index]);
924 	ablkcipher_request_set_callback(this_cc->req,
925 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
926 	    kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
927 }
928 
929 /*
930  * Encrypt / decrypt data from one bio to another one (can be the same one)
931  */
932 static int crypt_convert(struct crypt_config *cc,
933 			 struct convert_context *ctx)
934 {
935 	struct crypt_cpu *this_cc = this_crypt_config(cc);
936 	int r;
937 
938 	atomic_set(&ctx->cc_pending, 1);
939 
940 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
941 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
942 
943 		crypt_alloc_req(cc, ctx);
944 
945 		atomic_inc(&ctx->cc_pending);
946 
947 		r = crypt_convert_block(cc, ctx, this_cc->req);
948 
949 		switch (r) {
950 		/* async */
951 		case -EBUSY:
952 			wait_for_completion(&ctx->restart);
953 			reinit_completion(&ctx->restart);
954 			/* fall through*/
955 		case -EINPROGRESS:
956 			this_cc->req = NULL;
957 			ctx->cc_sector++;
958 			continue;
959 
960 		/* sync */
961 		case 0:
962 			atomic_dec(&ctx->cc_pending);
963 			ctx->cc_sector++;
964 			cond_resched();
965 			continue;
966 
967 		/* error */
968 		default:
969 			atomic_dec(&ctx->cc_pending);
970 			return r;
971 		}
972 	}
973 
974 	return 0;
975 }
976 
977 /*
978  * Generate a new unfragmented bio with the given size
979  * This should never violate the device limitations
980  * May return a smaller bio when running out of pages, indicated by
981  * *out_of_pages set to 1.
982  */
983 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
984 				      unsigned *out_of_pages)
985 {
986 	struct crypt_config *cc = io->cc;
987 	struct bio *clone;
988 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
989 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
990 	unsigned i, len;
991 	struct page *page;
992 
993 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
994 	if (!clone)
995 		return NULL;
996 
997 	clone_init(io, clone);
998 	*out_of_pages = 0;
999 
1000 	for (i = 0; i < nr_iovecs; i++) {
1001 		page = mempool_alloc(cc->page_pool, gfp_mask);
1002 		if (!page) {
1003 			*out_of_pages = 1;
1004 			break;
1005 		}
1006 
1007 		/*
1008 		 * If additional pages cannot be allocated without waiting,
1009 		 * return a partially-allocated bio.  The caller will then try
1010 		 * to allocate more bios while submitting this partial bio.
1011 		 */
1012 		gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
1013 
1014 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
1015 
1016 		if (!bio_add_page(clone, page, len, 0)) {
1017 			mempool_free(page, cc->page_pool);
1018 			break;
1019 		}
1020 
1021 		size -= len;
1022 	}
1023 
1024 	if (!clone->bi_size) {
1025 		bio_put(clone);
1026 		return NULL;
1027 	}
1028 
1029 	return clone;
1030 }
1031 
1032 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1033 {
1034 	unsigned int i;
1035 	struct bio_vec *bv;
1036 
1037 	bio_for_each_segment_all(bv, clone, i) {
1038 		BUG_ON(!bv->bv_page);
1039 		mempool_free(bv->bv_page, cc->page_pool);
1040 		bv->bv_page = NULL;
1041 	}
1042 }
1043 
1044 static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
1045 					  struct bio *bio, sector_t sector)
1046 {
1047 	struct dm_crypt_io *io;
1048 
1049 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
1050 	io->cc = cc;
1051 	io->base_bio = bio;
1052 	io->sector = sector;
1053 	io->error = 0;
1054 	io->base_io = NULL;
1055 	atomic_set(&io->io_pending, 0);
1056 
1057 	return io;
1058 }
1059 
1060 static void crypt_inc_pending(struct dm_crypt_io *io)
1061 {
1062 	atomic_inc(&io->io_pending);
1063 }
1064 
1065 /*
1066  * One of the bios was finished. Check for completion of
1067  * the whole request and correctly clean up the buffer.
1068  * If base_io is set, wait for the last fragment to complete.
1069  */
1070 static void crypt_dec_pending(struct dm_crypt_io *io)
1071 {
1072 	struct crypt_config *cc = io->cc;
1073 	struct bio *base_bio = io->base_bio;
1074 	struct dm_crypt_io *base_io = io->base_io;
1075 	int error = io->error;
1076 
1077 	if (!atomic_dec_and_test(&io->io_pending))
1078 		return;
1079 
1080 	mempool_free(io, cc->io_pool);
1081 
1082 	if (likely(!base_io))
1083 		bio_endio(base_bio, error);
1084 	else {
1085 		if (error && !base_io->error)
1086 			base_io->error = error;
1087 		crypt_dec_pending(base_io);
1088 	}
1089 }
1090 
1091 /*
1092  * kcryptd/kcryptd_io:
1093  *
1094  * Needed because it would be very unwise to do decryption in an
1095  * interrupt context.
1096  *
1097  * kcryptd performs the actual encryption or decryption.
1098  *
1099  * kcryptd_io performs the IO submission.
1100  *
1101  * They must be separated as otherwise the final stages could be
1102  * starved by new requests which can block in the first stages due
1103  * to memory allocation.
1104  *
1105  * The work is done per CPU global for all dm-crypt instances.
1106  * They should not depend on each other and do not block.
1107  */
1108 static void crypt_endio(struct bio *clone, int error)
1109 {
1110 	struct dm_crypt_io *io = clone->bi_private;
1111 	struct crypt_config *cc = io->cc;
1112 	unsigned rw = bio_data_dir(clone);
1113 
1114 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1115 		error = -EIO;
1116 
1117 	/*
1118 	 * free the processed pages
1119 	 */
1120 	if (rw == WRITE)
1121 		crypt_free_buffer_pages(cc, clone);
1122 
1123 	bio_put(clone);
1124 
1125 	if (rw == READ && !error) {
1126 		kcryptd_queue_crypt(io);
1127 		return;
1128 	}
1129 
1130 	if (unlikely(error))
1131 		io->error = error;
1132 
1133 	crypt_dec_pending(io);
1134 }
1135 
1136 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1137 {
1138 	struct crypt_config *cc = io->cc;
1139 
1140 	clone->bi_private = io;
1141 	clone->bi_end_io  = crypt_endio;
1142 	clone->bi_bdev    = cc->dev->bdev;
1143 	clone->bi_rw      = io->base_bio->bi_rw;
1144 }
1145 
1146 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1147 {
1148 	struct crypt_config *cc = io->cc;
1149 	struct bio *base_bio = io->base_bio;
1150 	struct bio *clone;
1151 
1152 	/*
1153 	 * The block layer might modify the bvec array, so always
1154 	 * copy the required bvecs because we need the original
1155 	 * one in order to decrypt the whole bio data *afterwards*.
1156 	 */
1157 	clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1158 	if (!clone)
1159 		return 1;
1160 
1161 	crypt_inc_pending(io);
1162 
1163 	clone_init(io, clone);
1164 	clone->bi_sector = cc->start + io->sector;
1165 
1166 	generic_make_request(clone);
1167 	return 0;
1168 }
1169 
1170 static void kcryptd_io_write(struct dm_crypt_io *io)
1171 {
1172 	struct bio *clone = io->ctx.bio_out;
1173 	generic_make_request(clone);
1174 }
1175 
1176 static void kcryptd_io(struct work_struct *work)
1177 {
1178 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1179 
1180 	if (bio_data_dir(io->base_bio) == READ) {
1181 		crypt_inc_pending(io);
1182 		if (kcryptd_io_read(io, GFP_NOIO))
1183 			io->error = -ENOMEM;
1184 		crypt_dec_pending(io);
1185 	} else
1186 		kcryptd_io_write(io);
1187 }
1188 
1189 static void kcryptd_queue_io(struct dm_crypt_io *io)
1190 {
1191 	struct crypt_config *cc = io->cc;
1192 
1193 	INIT_WORK(&io->work, kcryptd_io);
1194 	queue_work(cc->io_queue, &io->work);
1195 }
1196 
1197 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1198 {
1199 	struct bio *clone = io->ctx.bio_out;
1200 	struct crypt_config *cc = io->cc;
1201 
1202 	if (unlikely(io->error < 0)) {
1203 		crypt_free_buffer_pages(cc, clone);
1204 		bio_put(clone);
1205 		crypt_dec_pending(io);
1206 		return;
1207 	}
1208 
1209 	/* crypt_convert should have filled the clone bio */
1210 	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1211 
1212 	clone->bi_sector = cc->start + io->sector;
1213 
1214 	if (async)
1215 		kcryptd_queue_io(io);
1216 	else
1217 		generic_make_request(clone);
1218 }
1219 
1220 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1221 {
1222 	struct crypt_config *cc = io->cc;
1223 	struct bio *clone;
1224 	struct dm_crypt_io *new_io;
1225 	int crypt_finished;
1226 	unsigned out_of_pages = 0;
1227 	unsigned remaining = io->base_bio->bi_size;
1228 	sector_t sector = io->sector;
1229 	int r;
1230 
1231 	/*
1232 	 * Prevent io from disappearing until this function completes.
1233 	 */
1234 	crypt_inc_pending(io);
1235 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1236 
1237 	/*
1238 	 * The allocated buffers can be smaller than the whole bio,
1239 	 * so repeat the whole process until all the data can be handled.
1240 	 */
1241 	while (remaining) {
1242 		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1243 		if (unlikely(!clone)) {
1244 			io->error = -ENOMEM;
1245 			break;
1246 		}
1247 
1248 		io->ctx.bio_out = clone;
1249 		io->ctx.idx_out = 0;
1250 
1251 		remaining -= clone->bi_size;
1252 		sector += bio_sectors(clone);
1253 
1254 		crypt_inc_pending(io);
1255 
1256 		r = crypt_convert(cc, &io->ctx);
1257 		if (r < 0)
1258 			io->error = -EIO;
1259 
1260 		crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1261 
1262 		/* Encryption was already finished, submit io now */
1263 		if (crypt_finished) {
1264 			kcryptd_crypt_write_io_submit(io, 0);
1265 
1266 			/*
1267 			 * If there was an error, do not try next fragments.
1268 			 * For async, error is processed in async handler.
1269 			 */
1270 			if (unlikely(r < 0))
1271 				break;
1272 
1273 			io->sector = sector;
1274 		}
1275 
1276 		/*
1277 		 * Out of memory -> run queues
1278 		 * But don't wait if split was due to the io size restriction
1279 		 */
1280 		if (unlikely(out_of_pages))
1281 			congestion_wait(BLK_RW_ASYNC, HZ/100);
1282 
1283 		/*
1284 		 * With async crypto it is unsafe to share the crypto context
1285 		 * between fragments, so switch to a new dm_crypt_io structure.
1286 		 */
1287 		if (unlikely(!crypt_finished && remaining)) {
1288 			new_io = crypt_io_alloc(io->cc, io->base_bio,
1289 						sector);
1290 			crypt_inc_pending(new_io);
1291 			crypt_convert_init(cc, &new_io->ctx, NULL,
1292 					   io->base_bio, sector);
1293 			new_io->ctx.idx_in = io->ctx.idx_in;
1294 			new_io->ctx.offset_in = io->ctx.offset_in;
1295 
1296 			/*
1297 			 * Fragments after the first use the base_io
1298 			 * pending count.
1299 			 */
1300 			if (!io->base_io)
1301 				new_io->base_io = io;
1302 			else {
1303 				new_io->base_io = io->base_io;
1304 				crypt_inc_pending(io->base_io);
1305 				crypt_dec_pending(io);
1306 			}
1307 
1308 			io = new_io;
1309 		}
1310 	}
1311 
1312 	crypt_dec_pending(io);
1313 }
1314 
1315 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1316 {
1317 	crypt_dec_pending(io);
1318 }
1319 
1320 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1321 {
1322 	struct crypt_config *cc = io->cc;
1323 	int r = 0;
1324 
1325 	crypt_inc_pending(io);
1326 
1327 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1328 			   io->sector);
1329 
1330 	r = crypt_convert(cc, &io->ctx);
1331 	if (r < 0)
1332 		io->error = -EIO;
1333 
1334 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1335 		kcryptd_crypt_read_done(io);
1336 
1337 	crypt_dec_pending(io);
1338 }
1339 
1340 static void kcryptd_async_done(struct crypto_async_request *async_req,
1341 			       int error)
1342 {
1343 	struct dm_crypt_request *dmreq = async_req->data;
1344 	struct convert_context *ctx = dmreq->ctx;
1345 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1346 	struct crypt_config *cc = io->cc;
1347 
1348 	if (error == -EINPROGRESS) {
1349 		complete(&ctx->restart);
1350 		return;
1351 	}
1352 
1353 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1354 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1355 
1356 	if (error < 0)
1357 		io->error = -EIO;
1358 
1359 	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1360 
1361 	if (!atomic_dec_and_test(&ctx->cc_pending))
1362 		return;
1363 
1364 	if (bio_data_dir(io->base_bio) == READ)
1365 		kcryptd_crypt_read_done(io);
1366 	else
1367 		kcryptd_crypt_write_io_submit(io, 1);
1368 }
1369 
1370 static void kcryptd_crypt(struct work_struct *work)
1371 {
1372 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1373 
1374 	if (bio_data_dir(io->base_bio) == READ)
1375 		kcryptd_crypt_read_convert(io);
1376 	else
1377 		kcryptd_crypt_write_convert(io);
1378 }
1379 
1380 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1381 {
1382 	struct crypt_config *cc = io->cc;
1383 
1384 	INIT_WORK(&io->work, kcryptd_crypt);
1385 	queue_work(cc->crypt_queue, &io->work);
1386 }
1387 
1388 /*
1389  * Decode key from its hex representation
1390  */
1391 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1392 {
1393 	char buffer[3];
1394 	unsigned int i;
1395 
1396 	buffer[2] = '\0';
1397 
1398 	for (i = 0; i < size; i++) {
1399 		buffer[0] = *hex++;
1400 		buffer[1] = *hex++;
1401 
1402 		if (kstrtou8(buffer, 16, &key[i]))
1403 			return -EINVAL;
1404 	}
1405 
1406 	if (*hex != '\0')
1407 		return -EINVAL;
1408 
1409 	return 0;
1410 }
1411 
1412 static void crypt_free_tfms(struct crypt_config *cc)
1413 {
1414 	unsigned i;
1415 
1416 	if (!cc->tfms)
1417 		return;
1418 
1419 	for (i = 0; i < cc->tfms_count; i++)
1420 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1421 			crypto_free_ablkcipher(cc->tfms[i]);
1422 			cc->tfms[i] = NULL;
1423 		}
1424 
1425 	kfree(cc->tfms);
1426 	cc->tfms = NULL;
1427 }
1428 
1429 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1430 {
1431 	unsigned i;
1432 	int err;
1433 
1434 	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1435 			   GFP_KERNEL);
1436 	if (!cc->tfms)
1437 		return -ENOMEM;
1438 
1439 	for (i = 0; i < cc->tfms_count; i++) {
1440 		cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1441 		if (IS_ERR(cc->tfms[i])) {
1442 			err = PTR_ERR(cc->tfms[i]);
1443 			crypt_free_tfms(cc);
1444 			return err;
1445 		}
1446 	}
1447 
1448 	return 0;
1449 }
1450 
1451 static int crypt_setkey_allcpus(struct crypt_config *cc)
1452 {
1453 	unsigned subkey_size;
1454 	int err = 0, i, r;
1455 
1456 	/* Ignore extra keys (which are used for IV etc) */
1457 	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1458 
1459 	for (i = 0; i < cc->tfms_count; i++) {
1460 		r = crypto_ablkcipher_setkey(cc->tfms[i],
1461 					     cc->key + (i * subkey_size),
1462 					     subkey_size);
1463 		if (r)
1464 			err = r;
1465 	}
1466 
1467 	return err;
1468 }
1469 
1470 static int crypt_set_key(struct crypt_config *cc, char *key)
1471 {
1472 	int r = -EINVAL;
1473 	int key_string_len = strlen(key);
1474 
1475 	/* The key size may not be changed. */
1476 	if (cc->key_size != (key_string_len >> 1))
1477 		goto out;
1478 
1479 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1480 	if (!cc->key_size && strcmp(key, "-"))
1481 		goto out;
1482 
1483 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1484 		goto out;
1485 
1486 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1487 
1488 	r = crypt_setkey_allcpus(cc);
1489 
1490 out:
1491 	/* Hex key string not needed after here, so wipe it. */
1492 	memset(key, '0', key_string_len);
1493 
1494 	return r;
1495 }
1496 
1497 static int crypt_wipe_key(struct crypt_config *cc)
1498 {
1499 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1500 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1501 
1502 	return crypt_setkey_allcpus(cc);
1503 }
1504 
1505 static void crypt_dtr(struct dm_target *ti)
1506 {
1507 	struct crypt_config *cc = ti->private;
1508 	struct crypt_cpu *cpu_cc;
1509 	int cpu;
1510 
1511 	ti->private = NULL;
1512 
1513 	if (!cc)
1514 		return;
1515 
1516 	if (cc->io_queue)
1517 		destroy_workqueue(cc->io_queue);
1518 	if (cc->crypt_queue)
1519 		destroy_workqueue(cc->crypt_queue);
1520 
1521 	if (cc->cpu)
1522 		for_each_possible_cpu(cpu) {
1523 			cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1524 			if (cpu_cc->req)
1525 				mempool_free(cpu_cc->req, cc->req_pool);
1526 		}
1527 
1528 	crypt_free_tfms(cc);
1529 
1530 	if (cc->bs)
1531 		bioset_free(cc->bs);
1532 
1533 	if (cc->page_pool)
1534 		mempool_destroy(cc->page_pool);
1535 	if (cc->req_pool)
1536 		mempool_destroy(cc->req_pool);
1537 	if (cc->io_pool)
1538 		mempool_destroy(cc->io_pool);
1539 
1540 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1541 		cc->iv_gen_ops->dtr(cc);
1542 
1543 	if (cc->dev)
1544 		dm_put_device(ti, cc->dev);
1545 
1546 	if (cc->cpu)
1547 		free_percpu(cc->cpu);
1548 
1549 	kzfree(cc->cipher);
1550 	kzfree(cc->cipher_string);
1551 
1552 	/* Must zero key material before freeing */
1553 	kzfree(cc);
1554 }
1555 
1556 static int crypt_ctr_cipher(struct dm_target *ti,
1557 			    char *cipher_in, char *key)
1558 {
1559 	struct crypt_config *cc = ti->private;
1560 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1561 	char *cipher_api = NULL;
1562 	int ret = -EINVAL;
1563 	char dummy;
1564 
1565 	/* Convert to crypto api definition? */
1566 	if (strchr(cipher_in, '(')) {
1567 		ti->error = "Bad cipher specification";
1568 		return -EINVAL;
1569 	}
1570 
1571 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1572 	if (!cc->cipher_string)
1573 		goto bad_mem;
1574 
1575 	/*
1576 	 * Legacy dm-crypt cipher specification
1577 	 * cipher[:keycount]-mode-iv:ivopts
1578 	 */
1579 	tmp = cipher_in;
1580 	keycount = strsep(&tmp, "-");
1581 	cipher = strsep(&keycount, ":");
1582 
1583 	if (!keycount)
1584 		cc->tfms_count = 1;
1585 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1586 		 !is_power_of_2(cc->tfms_count)) {
1587 		ti->error = "Bad cipher key count specification";
1588 		return -EINVAL;
1589 	}
1590 	cc->key_parts = cc->tfms_count;
1591 	cc->key_extra_size = 0;
1592 
1593 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1594 	if (!cc->cipher)
1595 		goto bad_mem;
1596 
1597 	chainmode = strsep(&tmp, "-");
1598 	ivopts = strsep(&tmp, "-");
1599 	ivmode = strsep(&ivopts, ":");
1600 
1601 	if (tmp)
1602 		DMWARN("Ignoring unexpected additional cipher options");
1603 
1604 	cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)),
1605 				 __alignof__(struct crypt_cpu));
1606 	if (!cc->cpu) {
1607 		ti->error = "Cannot allocate per cpu state";
1608 		goto bad_mem;
1609 	}
1610 
1611 	/*
1612 	 * For compatibility with the original dm-crypt mapping format, if
1613 	 * only the cipher name is supplied, use cbc-plain.
1614 	 */
1615 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1616 		chainmode = "cbc";
1617 		ivmode = "plain";
1618 	}
1619 
1620 	if (strcmp(chainmode, "ecb") && !ivmode) {
1621 		ti->error = "IV mechanism required";
1622 		return -EINVAL;
1623 	}
1624 
1625 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1626 	if (!cipher_api)
1627 		goto bad_mem;
1628 
1629 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1630 		       "%s(%s)", chainmode, cipher);
1631 	if (ret < 0) {
1632 		kfree(cipher_api);
1633 		goto bad_mem;
1634 	}
1635 
1636 	/* Allocate cipher */
1637 	ret = crypt_alloc_tfms(cc, cipher_api);
1638 	if (ret < 0) {
1639 		ti->error = "Error allocating crypto tfm";
1640 		goto bad;
1641 	}
1642 
1643 	/* Initialize IV */
1644 	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1645 	if (cc->iv_size)
1646 		/* at least a 64 bit sector number should fit in our buffer */
1647 		cc->iv_size = max(cc->iv_size,
1648 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1649 	else if (ivmode) {
1650 		DMWARN("Selected cipher does not support IVs");
1651 		ivmode = NULL;
1652 	}
1653 
1654 	/* Choose ivmode, see comments at iv code. */
1655 	if (ivmode == NULL)
1656 		cc->iv_gen_ops = NULL;
1657 	else if (strcmp(ivmode, "plain") == 0)
1658 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1659 	else if (strcmp(ivmode, "plain64") == 0)
1660 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1661 	else if (strcmp(ivmode, "essiv") == 0)
1662 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1663 	else if (strcmp(ivmode, "benbi") == 0)
1664 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1665 	else if (strcmp(ivmode, "null") == 0)
1666 		cc->iv_gen_ops = &crypt_iv_null_ops;
1667 	else if (strcmp(ivmode, "lmk") == 0) {
1668 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1669 		/*
1670 		 * Version 2 and 3 is recognised according
1671 		 * to length of provided multi-key string.
1672 		 * If present (version 3), last key is used as IV seed.
1673 		 * All keys (including IV seed) are always the same size.
1674 		 */
1675 		if (cc->key_size % cc->key_parts) {
1676 			cc->key_parts++;
1677 			cc->key_extra_size = cc->key_size / cc->key_parts;
1678 		}
1679 	} else if (strcmp(ivmode, "tcw") == 0) {
1680 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1681 		cc->key_parts += 2; /* IV + whitening */
1682 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1683 	} else {
1684 		ret = -EINVAL;
1685 		ti->error = "Invalid IV mode";
1686 		goto bad;
1687 	}
1688 
1689 	/* Initialize and set key */
1690 	ret = crypt_set_key(cc, key);
1691 	if (ret < 0) {
1692 		ti->error = "Error decoding and setting key";
1693 		goto bad;
1694 	}
1695 
1696 	/* Allocate IV */
1697 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1698 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1699 		if (ret < 0) {
1700 			ti->error = "Error creating IV";
1701 			goto bad;
1702 		}
1703 	}
1704 
1705 	/* Initialize IV (set keys for ESSIV etc) */
1706 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1707 		ret = cc->iv_gen_ops->init(cc);
1708 		if (ret < 0) {
1709 			ti->error = "Error initialising IV";
1710 			goto bad;
1711 		}
1712 	}
1713 
1714 	ret = 0;
1715 bad:
1716 	kfree(cipher_api);
1717 	return ret;
1718 
1719 bad_mem:
1720 	ti->error = "Cannot allocate cipher strings";
1721 	return -ENOMEM;
1722 }
1723 
1724 /*
1725  * Construct an encryption mapping:
1726  * <cipher> <key> <iv_offset> <dev_path> <start>
1727  */
1728 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1729 {
1730 	struct crypt_config *cc;
1731 	unsigned int key_size, opt_params;
1732 	unsigned long long tmpll;
1733 	int ret;
1734 	struct dm_arg_set as;
1735 	const char *opt_string;
1736 	char dummy;
1737 
1738 	static struct dm_arg _args[] = {
1739 		{0, 1, "Invalid number of feature args"},
1740 	};
1741 
1742 	if (argc < 5) {
1743 		ti->error = "Not enough arguments";
1744 		return -EINVAL;
1745 	}
1746 
1747 	key_size = strlen(argv[1]) >> 1;
1748 
1749 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1750 	if (!cc) {
1751 		ti->error = "Cannot allocate encryption context";
1752 		return -ENOMEM;
1753 	}
1754 	cc->key_size = key_size;
1755 
1756 	ti->private = cc;
1757 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1758 	if (ret < 0)
1759 		goto bad;
1760 
1761 	ret = -ENOMEM;
1762 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1763 	if (!cc->io_pool) {
1764 		ti->error = "Cannot allocate crypt io mempool";
1765 		goto bad;
1766 	}
1767 
1768 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1769 	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1770 	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1771 	cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1772 			   ~(crypto_tfm_ctx_alignment() - 1);
1773 
1774 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1775 			sizeof(struct dm_crypt_request) + cc->iv_size);
1776 	if (!cc->req_pool) {
1777 		ti->error = "Cannot allocate crypt request mempool";
1778 		goto bad;
1779 	}
1780 
1781 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1782 	if (!cc->page_pool) {
1783 		ti->error = "Cannot allocate page mempool";
1784 		goto bad;
1785 	}
1786 
1787 	cc->bs = bioset_create(MIN_IOS, 0);
1788 	if (!cc->bs) {
1789 		ti->error = "Cannot allocate crypt bioset";
1790 		goto bad;
1791 	}
1792 
1793 	ret = -EINVAL;
1794 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1795 		ti->error = "Invalid iv_offset sector";
1796 		goto bad;
1797 	}
1798 	cc->iv_offset = tmpll;
1799 
1800 	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1801 		ti->error = "Device lookup failed";
1802 		goto bad;
1803 	}
1804 
1805 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1806 		ti->error = "Invalid device sector";
1807 		goto bad;
1808 	}
1809 	cc->start = tmpll;
1810 
1811 	argv += 5;
1812 	argc -= 5;
1813 
1814 	/* Optional parameters */
1815 	if (argc) {
1816 		as.argc = argc;
1817 		as.argv = argv;
1818 
1819 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1820 		if (ret)
1821 			goto bad;
1822 
1823 		opt_string = dm_shift_arg(&as);
1824 
1825 		if (opt_params == 1 && opt_string &&
1826 		    !strcasecmp(opt_string, "allow_discards"))
1827 			ti->num_discard_bios = 1;
1828 		else if (opt_params) {
1829 			ret = -EINVAL;
1830 			ti->error = "Invalid feature arguments";
1831 			goto bad;
1832 		}
1833 	}
1834 
1835 	ret = -ENOMEM;
1836 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1837 	if (!cc->io_queue) {
1838 		ti->error = "Couldn't create kcryptd io queue";
1839 		goto bad;
1840 	}
1841 
1842 	cc->crypt_queue = alloc_workqueue("kcryptd",
1843 					  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1844 	if (!cc->crypt_queue) {
1845 		ti->error = "Couldn't create kcryptd queue";
1846 		goto bad;
1847 	}
1848 
1849 	ti->num_flush_bios = 1;
1850 	ti->discard_zeroes_data_unsupported = true;
1851 
1852 	return 0;
1853 
1854 bad:
1855 	crypt_dtr(ti);
1856 	return ret;
1857 }
1858 
1859 static int crypt_map(struct dm_target *ti, struct bio *bio)
1860 {
1861 	struct dm_crypt_io *io;
1862 	struct crypt_config *cc = ti->private;
1863 
1864 	/*
1865 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1866 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1867 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1868 	 */
1869 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1870 		bio->bi_bdev = cc->dev->bdev;
1871 		if (bio_sectors(bio))
1872 			bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1873 		return DM_MAPIO_REMAPPED;
1874 	}
1875 
1876 	io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_sector));
1877 
1878 	if (bio_data_dir(io->base_bio) == READ) {
1879 		if (kcryptd_io_read(io, GFP_NOWAIT))
1880 			kcryptd_queue_io(io);
1881 	} else
1882 		kcryptd_queue_crypt(io);
1883 
1884 	return DM_MAPIO_SUBMITTED;
1885 }
1886 
1887 static void crypt_status(struct dm_target *ti, status_type_t type,
1888 			 unsigned status_flags, char *result, unsigned maxlen)
1889 {
1890 	struct crypt_config *cc = ti->private;
1891 	unsigned i, sz = 0;
1892 
1893 	switch (type) {
1894 	case STATUSTYPE_INFO:
1895 		result[0] = '\0';
1896 		break;
1897 
1898 	case STATUSTYPE_TABLE:
1899 		DMEMIT("%s ", cc->cipher_string);
1900 
1901 		if (cc->key_size > 0)
1902 			for (i = 0; i < cc->key_size; i++)
1903 				DMEMIT("%02x", cc->key[i]);
1904 		else
1905 			DMEMIT("-");
1906 
1907 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1908 				cc->dev->name, (unsigned long long)cc->start);
1909 
1910 		if (ti->num_discard_bios)
1911 			DMEMIT(" 1 allow_discards");
1912 
1913 		break;
1914 	}
1915 }
1916 
1917 static void crypt_postsuspend(struct dm_target *ti)
1918 {
1919 	struct crypt_config *cc = ti->private;
1920 
1921 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1922 }
1923 
1924 static int crypt_preresume(struct dm_target *ti)
1925 {
1926 	struct crypt_config *cc = ti->private;
1927 
1928 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1929 		DMERR("aborting resume - crypt key is not set.");
1930 		return -EAGAIN;
1931 	}
1932 
1933 	return 0;
1934 }
1935 
1936 static void crypt_resume(struct dm_target *ti)
1937 {
1938 	struct crypt_config *cc = ti->private;
1939 
1940 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1941 }
1942 
1943 /* Message interface
1944  *	key set <key>
1945  *	key wipe
1946  */
1947 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1948 {
1949 	struct crypt_config *cc = ti->private;
1950 	int ret = -EINVAL;
1951 
1952 	if (argc < 2)
1953 		goto error;
1954 
1955 	if (!strcasecmp(argv[0], "key")) {
1956 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1957 			DMWARN("not suspended during key manipulation.");
1958 			return -EINVAL;
1959 		}
1960 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1961 			ret = crypt_set_key(cc, argv[2]);
1962 			if (ret)
1963 				return ret;
1964 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1965 				ret = cc->iv_gen_ops->init(cc);
1966 			return ret;
1967 		}
1968 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1969 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1970 				ret = cc->iv_gen_ops->wipe(cc);
1971 				if (ret)
1972 					return ret;
1973 			}
1974 			return crypt_wipe_key(cc);
1975 		}
1976 	}
1977 
1978 error:
1979 	DMWARN("unrecognised message received.");
1980 	return -EINVAL;
1981 }
1982 
1983 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1984 		       struct bio_vec *biovec, int max_size)
1985 {
1986 	struct crypt_config *cc = ti->private;
1987 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1988 
1989 	if (!q->merge_bvec_fn)
1990 		return max_size;
1991 
1992 	bvm->bi_bdev = cc->dev->bdev;
1993 	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1994 
1995 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1996 }
1997 
1998 static int crypt_iterate_devices(struct dm_target *ti,
1999 				 iterate_devices_callout_fn fn, void *data)
2000 {
2001 	struct crypt_config *cc = ti->private;
2002 
2003 	return fn(ti, cc->dev, cc->start, ti->len, data);
2004 }
2005 
2006 static struct target_type crypt_target = {
2007 	.name   = "crypt",
2008 	.version = {1, 13, 0},
2009 	.module = THIS_MODULE,
2010 	.ctr    = crypt_ctr,
2011 	.dtr    = crypt_dtr,
2012 	.map    = crypt_map,
2013 	.status = crypt_status,
2014 	.postsuspend = crypt_postsuspend,
2015 	.preresume = crypt_preresume,
2016 	.resume = crypt_resume,
2017 	.message = crypt_message,
2018 	.merge  = crypt_merge,
2019 	.iterate_devices = crypt_iterate_devices,
2020 };
2021 
2022 static int __init dm_crypt_init(void)
2023 {
2024 	int r;
2025 
2026 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
2027 	if (!_crypt_io_pool)
2028 		return -ENOMEM;
2029 
2030 	r = dm_register_target(&crypt_target);
2031 	if (r < 0) {
2032 		DMERR("register failed %d", r);
2033 		kmem_cache_destroy(_crypt_io_pool);
2034 	}
2035 
2036 	return r;
2037 }
2038 
2039 static void __exit dm_crypt_exit(void)
2040 {
2041 	dm_unregister_target(&crypt_target);
2042 	kmem_cache_destroy(_crypt_io_pool);
2043 }
2044 
2045 module_init(dm_crypt_init);
2046 module_exit(dm_crypt_exit);
2047 
2048 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
2049 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2050 MODULE_LICENSE("GPL");
2051