xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 6ee73861)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <asm/atomic.h>
22 #include <linux/scatterlist.h>
23 #include <asm/page.h>
24 #include <asm/unaligned.h>
25 
26 #include <linux/device-mapper.h>
27 
28 #define DM_MSG_PREFIX "crypt"
29 #define MESG_STR(x) x, sizeof(x)
30 
31 /*
32  * context holding the current state of a multi-part conversion
33  */
34 struct convert_context {
35 	struct completion restart;
36 	struct bio *bio_in;
37 	struct bio *bio_out;
38 	unsigned int offset_in;
39 	unsigned int offset_out;
40 	unsigned int idx_in;
41 	unsigned int idx_out;
42 	sector_t sector;
43 	atomic_t pending;
44 };
45 
46 /*
47  * per bio private data
48  */
49 struct dm_crypt_io {
50 	struct dm_target *target;
51 	struct bio *base_bio;
52 	struct work_struct work;
53 
54 	struct convert_context ctx;
55 
56 	atomic_t pending;
57 	int error;
58 	sector_t sector;
59 	struct dm_crypt_io *base_io;
60 };
61 
62 struct dm_crypt_request {
63 	struct convert_context *ctx;
64 	struct scatterlist sg_in;
65 	struct scatterlist sg_out;
66 };
67 
68 struct crypt_config;
69 
70 struct crypt_iv_operations {
71 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
72 		   const char *opts);
73 	void (*dtr)(struct crypt_config *cc);
74 	const char *(*status)(struct crypt_config *cc);
75 	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
76 };
77 
78 /*
79  * Crypt: maps a linear range of a block device
80  * and encrypts / decrypts at the same time.
81  */
82 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
83 struct crypt_config {
84 	struct dm_dev *dev;
85 	sector_t start;
86 
87 	/*
88 	 * pool for per bio private data, crypto requests and
89 	 * encryption requeusts/buffer pages
90 	 */
91 	mempool_t *io_pool;
92 	mempool_t *req_pool;
93 	mempool_t *page_pool;
94 	struct bio_set *bs;
95 
96 	struct workqueue_struct *io_queue;
97 	struct workqueue_struct *crypt_queue;
98 
99 	/*
100 	 * crypto related data
101 	 */
102 	struct crypt_iv_operations *iv_gen_ops;
103 	char *iv_mode;
104 	union {
105 		struct crypto_cipher *essiv_tfm;
106 		int benbi_shift;
107 	} iv_gen_private;
108 	sector_t iv_offset;
109 	unsigned int iv_size;
110 
111 	/*
112 	 * Layout of each crypto request:
113 	 *
114 	 *   struct ablkcipher_request
115 	 *      context
116 	 *      padding
117 	 *   struct dm_crypt_request
118 	 *      padding
119 	 *   IV
120 	 *
121 	 * The padding is added so that dm_crypt_request and the IV are
122 	 * correctly aligned.
123 	 */
124 	unsigned int dmreq_start;
125 	struct ablkcipher_request *req;
126 
127 	char cipher[CRYPTO_MAX_ALG_NAME];
128 	char chainmode[CRYPTO_MAX_ALG_NAME];
129 	struct crypto_ablkcipher *tfm;
130 	unsigned long flags;
131 	unsigned int key_size;
132 	u8 key[0];
133 };
134 
135 #define MIN_IOS        16
136 #define MIN_POOL_PAGES 32
137 #define MIN_BIO_PAGES  8
138 
139 static struct kmem_cache *_crypt_io_pool;
140 
141 static void clone_init(struct dm_crypt_io *, struct bio *);
142 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
143 
144 /*
145  * Different IV generation algorithms:
146  *
147  * plain: the initial vector is the 32-bit little-endian version of the sector
148  *        number, padded with zeros if necessary.
149  *
150  * essiv: "encrypted sector|salt initial vector", the sector number is
151  *        encrypted with the bulk cipher using a salt as key. The salt
152  *        should be derived from the bulk cipher's key via hashing.
153  *
154  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
155  *        (needed for LRW-32-AES and possible other narrow block modes)
156  *
157  * null: the initial vector is always zero.  Provides compatibility with
158  *       obsolete loop_fish2 devices.  Do not use for new devices.
159  *
160  * plumb: unimplemented, see:
161  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
162  */
163 
164 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
165 {
166 	memset(iv, 0, cc->iv_size);
167 	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
168 
169 	return 0;
170 }
171 
172 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
173 			      const char *opts)
174 {
175 	struct crypto_cipher *essiv_tfm;
176 	struct crypto_hash *hash_tfm;
177 	struct hash_desc desc;
178 	struct scatterlist sg;
179 	unsigned int saltsize;
180 	u8 *salt;
181 	int err;
182 
183 	if (opts == NULL) {
184 		ti->error = "Digest algorithm missing for ESSIV mode";
185 		return -EINVAL;
186 	}
187 
188 	/* Hash the cipher key with the given hash algorithm */
189 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
190 	if (IS_ERR(hash_tfm)) {
191 		ti->error = "Error initializing ESSIV hash";
192 		return PTR_ERR(hash_tfm);
193 	}
194 
195 	saltsize = crypto_hash_digestsize(hash_tfm);
196 	salt = kmalloc(saltsize, GFP_KERNEL);
197 	if (salt == NULL) {
198 		ti->error = "Error kmallocing salt storage in ESSIV";
199 		crypto_free_hash(hash_tfm);
200 		return -ENOMEM;
201 	}
202 
203 	sg_init_one(&sg, cc->key, cc->key_size);
204 	desc.tfm = hash_tfm;
205 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
206 	err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
207 	crypto_free_hash(hash_tfm);
208 
209 	if (err) {
210 		ti->error = "Error calculating hash in ESSIV";
211 		kfree(salt);
212 		return err;
213 	}
214 
215 	/* Setup the essiv_tfm with the given salt */
216 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
217 	if (IS_ERR(essiv_tfm)) {
218 		ti->error = "Error allocating crypto tfm for ESSIV";
219 		kfree(salt);
220 		return PTR_ERR(essiv_tfm);
221 	}
222 	if (crypto_cipher_blocksize(essiv_tfm) !=
223 	    crypto_ablkcipher_ivsize(cc->tfm)) {
224 		ti->error = "Block size of ESSIV cipher does "
225 			    "not match IV size of block cipher";
226 		crypto_free_cipher(essiv_tfm);
227 		kfree(salt);
228 		return -EINVAL;
229 	}
230 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
231 	if (err) {
232 		ti->error = "Failed to set key for ESSIV cipher";
233 		crypto_free_cipher(essiv_tfm);
234 		kfree(salt);
235 		return err;
236 	}
237 	kfree(salt);
238 
239 	cc->iv_gen_private.essiv_tfm = essiv_tfm;
240 	return 0;
241 }
242 
243 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
244 {
245 	crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
246 	cc->iv_gen_private.essiv_tfm = NULL;
247 }
248 
249 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
250 {
251 	memset(iv, 0, cc->iv_size);
252 	*(u64 *)iv = cpu_to_le64(sector);
253 	crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
254 	return 0;
255 }
256 
257 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
258 			      const char *opts)
259 {
260 	unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
261 	int log = ilog2(bs);
262 
263 	/* we need to calculate how far we must shift the sector count
264 	 * to get the cipher block count, we use this shift in _gen */
265 
266 	if (1 << log != bs) {
267 		ti->error = "cypher blocksize is not a power of 2";
268 		return -EINVAL;
269 	}
270 
271 	if (log > 9) {
272 		ti->error = "cypher blocksize is > 512";
273 		return -EINVAL;
274 	}
275 
276 	cc->iv_gen_private.benbi_shift = 9 - log;
277 
278 	return 0;
279 }
280 
281 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
282 {
283 }
284 
285 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
286 {
287 	__be64 val;
288 
289 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
290 
291 	val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
292 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
293 
294 	return 0;
295 }
296 
297 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
298 {
299 	memset(iv, 0, cc->iv_size);
300 
301 	return 0;
302 }
303 
304 static struct crypt_iv_operations crypt_iv_plain_ops = {
305 	.generator = crypt_iv_plain_gen
306 };
307 
308 static struct crypt_iv_operations crypt_iv_essiv_ops = {
309 	.ctr       = crypt_iv_essiv_ctr,
310 	.dtr       = crypt_iv_essiv_dtr,
311 	.generator = crypt_iv_essiv_gen
312 };
313 
314 static struct crypt_iv_operations crypt_iv_benbi_ops = {
315 	.ctr	   = crypt_iv_benbi_ctr,
316 	.dtr	   = crypt_iv_benbi_dtr,
317 	.generator = crypt_iv_benbi_gen
318 };
319 
320 static struct crypt_iv_operations crypt_iv_null_ops = {
321 	.generator = crypt_iv_null_gen
322 };
323 
324 static void crypt_convert_init(struct crypt_config *cc,
325 			       struct convert_context *ctx,
326 			       struct bio *bio_out, struct bio *bio_in,
327 			       sector_t sector)
328 {
329 	ctx->bio_in = bio_in;
330 	ctx->bio_out = bio_out;
331 	ctx->offset_in = 0;
332 	ctx->offset_out = 0;
333 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
334 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
335 	ctx->sector = sector + cc->iv_offset;
336 	init_completion(&ctx->restart);
337 }
338 
339 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
340 					     struct ablkcipher_request *req)
341 {
342 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
343 }
344 
345 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
346 					       struct dm_crypt_request *dmreq)
347 {
348 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
349 }
350 
351 static int crypt_convert_block(struct crypt_config *cc,
352 			       struct convert_context *ctx,
353 			       struct ablkcipher_request *req)
354 {
355 	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
356 	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
357 	struct dm_crypt_request *dmreq;
358 	u8 *iv;
359 	int r = 0;
360 
361 	dmreq = dmreq_of_req(cc, req);
362 	iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
363 			 crypto_ablkcipher_alignmask(cc->tfm) + 1);
364 
365 	dmreq->ctx = ctx;
366 	sg_init_table(&dmreq->sg_in, 1);
367 	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
368 		    bv_in->bv_offset + ctx->offset_in);
369 
370 	sg_init_table(&dmreq->sg_out, 1);
371 	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
372 		    bv_out->bv_offset + ctx->offset_out);
373 
374 	ctx->offset_in += 1 << SECTOR_SHIFT;
375 	if (ctx->offset_in >= bv_in->bv_len) {
376 		ctx->offset_in = 0;
377 		ctx->idx_in++;
378 	}
379 
380 	ctx->offset_out += 1 << SECTOR_SHIFT;
381 	if (ctx->offset_out >= bv_out->bv_len) {
382 		ctx->offset_out = 0;
383 		ctx->idx_out++;
384 	}
385 
386 	if (cc->iv_gen_ops) {
387 		r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
388 		if (r < 0)
389 			return r;
390 	}
391 
392 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
393 				     1 << SECTOR_SHIFT, iv);
394 
395 	if (bio_data_dir(ctx->bio_in) == WRITE)
396 		r = crypto_ablkcipher_encrypt(req);
397 	else
398 		r = crypto_ablkcipher_decrypt(req);
399 
400 	return r;
401 }
402 
403 static void kcryptd_async_done(struct crypto_async_request *async_req,
404 			       int error);
405 static void crypt_alloc_req(struct crypt_config *cc,
406 			    struct convert_context *ctx)
407 {
408 	if (!cc->req)
409 		cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
410 	ablkcipher_request_set_tfm(cc->req, cc->tfm);
411 	ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
412 					CRYPTO_TFM_REQ_MAY_SLEEP,
413 					kcryptd_async_done,
414 					dmreq_of_req(cc, cc->req));
415 }
416 
417 /*
418  * Encrypt / decrypt data from one bio to another one (can be the same one)
419  */
420 static int crypt_convert(struct crypt_config *cc,
421 			 struct convert_context *ctx)
422 {
423 	int r;
424 
425 	atomic_set(&ctx->pending, 1);
426 
427 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
428 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
429 
430 		crypt_alloc_req(cc, ctx);
431 
432 		atomic_inc(&ctx->pending);
433 
434 		r = crypt_convert_block(cc, ctx, cc->req);
435 
436 		switch (r) {
437 		/* async */
438 		case -EBUSY:
439 			wait_for_completion(&ctx->restart);
440 			INIT_COMPLETION(ctx->restart);
441 			/* fall through*/
442 		case -EINPROGRESS:
443 			cc->req = NULL;
444 			ctx->sector++;
445 			continue;
446 
447 		/* sync */
448 		case 0:
449 			atomic_dec(&ctx->pending);
450 			ctx->sector++;
451 			cond_resched();
452 			continue;
453 
454 		/* error */
455 		default:
456 			atomic_dec(&ctx->pending);
457 			return r;
458 		}
459 	}
460 
461 	return 0;
462 }
463 
464 static void dm_crypt_bio_destructor(struct bio *bio)
465 {
466 	struct dm_crypt_io *io = bio->bi_private;
467 	struct crypt_config *cc = io->target->private;
468 
469 	bio_free(bio, cc->bs);
470 }
471 
472 /*
473  * Generate a new unfragmented bio with the given size
474  * This should never violate the device limitations
475  * May return a smaller bio when running out of pages, indicated by
476  * *out_of_pages set to 1.
477  */
478 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
479 				      unsigned *out_of_pages)
480 {
481 	struct crypt_config *cc = io->target->private;
482 	struct bio *clone;
483 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
484 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
485 	unsigned i, len;
486 	struct page *page;
487 
488 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
489 	if (!clone)
490 		return NULL;
491 
492 	clone_init(io, clone);
493 	*out_of_pages = 0;
494 
495 	for (i = 0; i < nr_iovecs; i++) {
496 		page = mempool_alloc(cc->page_pool, gfp_mask);
497 		if (!page) {
498 			*out_of_pages = 1;
499 			break;
500 		}
501 
502 		/*
503 		 * if additional pages cannot be allocated without waiting,
504 		 * return a partially allocated bio, the caller will then try
505 		 * to allocate additional bios while submitting this partial bio
506 		 */
507 		if (i == (MIN_BIO_PAGES - 1))
508 			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
509 
510 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
511 
512 		if (!bio_add_page(clone, page, len, 0)) {
513 			mempool_free(page, cc->page_pool);
514 			break;
515 		}
516 
517 		size -= len;
518 	}
519 
520 	if (!clone->bi_size) {
521 		bio_put(clone);
522 		return NULL;
523 	}
524 
525 	return clone;
526 }
527 
528 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
529 {
530 	unsigned int i;
531 	struct bio_vec *bv;
532 
533 	for (i = 0; i < clone->bi_vcnt; i++) {
534 		bv = bio_iovec_idx(clone, i);
535 		BUG_ON(!bv->bv_page);
536 		mempool_free(bv->bv_page, cc->page_pool);
537 		bv->bv_page = NULL;
538 	}
539 }
540 
541 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
542 					  struct bio *bio, sector_t sector)
543 {
544 	struct crypt_config *cc = ti->private;
545 	struct dm_crypt_io *io;
546 
547 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
548 	io->target = ti;
549 	io->base_bio = bio;
550 	io->sector = sector;
551 	io->error = 0;
552 	io->base_io = NULL;
553 	atomic_set(&io->pending, 0);
554 
555 	return io;
556 }
557 
558 static void crypt_inc_pending(struct dm_crypt_io *io)
559 {
560 	atomic_inc(&io->pending);
561 }
562 
563 /*
564  * One of the bios was finished. Check for completion of
565  * the whole request and correctly clean up the buffer.
566  * If base_io is set, wait for the last fragment to complete.
567  */
568 static void crypt_dec_pending(struct dm_crypt_io *io)
569 {
570 	struct crypt_config *cc = io->target->private;
571 	struct bio *base_bio = io->base_bio;
572 	struct dm_crypt_io *base_io = io->base_io;
573 	int error = io->error;
574 
575 	if (!atomic_dec_and_test(&io->pending))
576 		return;
577 
578 	mempool_free(io, cc->io_pool);
579 
580 	if (likely(!base_io))
581 		bio_endio(base_bio, error);
582 	else {
583 		if (error && !base_io->error)
584 			base_io->error = error;
585 		crypt_dec_pending(base_io);
586 	}
587 }
588 
589 /*
590  * kcryptd/kcryptd_io:
591  *
592  * Needed because it would be very unwise to do decryption in an
593  * interrupt context.
594  *
595  * kcryptd performs the actual encryption or decryption.
596  *
597  * kcryptd_io performs the IO submission.
598  *
599  * They must be separated as otherwise the final stages could be
600  * starved by new requests which can block in the first stages due
601  * to memory allocation.
602  */
603 static void crypt_endio(struct bio *clone, int error)
604 {
605 	struct dm_crypt_io *io = clone->bi_private;
606 	struct crypt_config *cc = io->target->private;
607 	unsigned rw = bio_data_dir(clone);
608 
609 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
610 		error = -EIO;
611 
612 	/*
613 	 * free the processed pages
614 	 */
615 	if (rw == WRITE)
616 		crypt_free_buffer_pages(cc, clone);
617 
618 	bio_put(clone);
619 
620 	if (rw == READ && !error) {
621 		kcryptd_queue_crypt(io);
622 		return;
623 	}
624 
625 	if (unlikely(error))
626 		io->error = error;
627 
628 	crypt_dec_pending(io);
629 }
630 
631 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
632 {
633 	struct crypt_config *cc = io->target->private;
634 
635 	clone->bi_private = io;
636 	clone->bi_end_io  = crypt_endio;
637 	clone->bi_bdev    = cc->dev->bdev;
638 	clone->bi_rw      = io->base_bio->bi_rw;
639 	clone->bi_destructor = dm_crypt_bio_destructor;
640 }
641 
642 static void kcryptd_io_read(struct dm_crypt_io *io)
643 {
644 	struct crypt_config *cc = io->target->private;
645 	struct bio *base_bio = io->base_bio;
646 	struct bio *clone;
647 
648 	crypt_inc_pending(io);
649 
650 	/*
651 	 * The block layer might modify the bvec array, so always
652 	 * copy the required bvecs because we need the original
653 	 * one in order to decrypt the whole bio data *afterwards*.
654 	 */
655 	clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
656 	if (unlikely(!clone)) {
657 		io->error = -ENOMEM;
658 		crypt_dec_pending(io);
659 		return;
660 	}
661 
662 	clone_init(io, clone);
663 	clone->bi_idx = 0;
664 	clone->bi_vcnt = bio_segments(base_bio);
665 	clone->bi_size = base_bio->bi_size;
666 	clone->bi_sector = cc->start + io->sector;
667 	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
668 	       sizeof(struct bio_vec) * clone->bi_vcnt);
669 
670 	generic_make_request(clone);
671 }
672 
673 static void kcryptd_io_write(struct dm_crypt_io *io)
674 {
675 	struct bio *clone = io->ctx.bio_out;
676 	generic_make_request(clone);
677 }
678 
679 static void kcryptd_io(struct work_struct *work)
680 {
681 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
682 
683 	if (bio_data_dir(io->base_bio) == READ)
684 		kcryptd_io_read(io);
685 	else
686 		kcryptd_io_write(io);
687 }
688 
689 static void kcryptd_queue_io(struct dm_crypt_io *io)
690 {
691 	struct crypt_config *cc = io->target->private;
692 
693 	INIT_WORK(&io->work, kcryptd_io);
694 	queue_work(cc->io_queue, &io->work);
695 }
696 
697 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
698 					  int error, int async)
699 {
700 	struct bio *clone = io->ctx.bio_out;
701 	struct crypt_config *cc = io->target->private;
702 
703 	if (unlikely(error < 0)) {
704 		crypt_free_buffer_pages(cc, clone);
705 		bio_put(clone);
706 		io->error = -EIO;
707 		crypt_dec_pending(io);
708 		return;
709 	}
710 
711 	/* crypt_convert should have filled the clone bio */
712 	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
713 
714 	clone->bi_sector = cc->start + io->sector;
715 
716 	if (async)
717 		kcryptd_queue_io(io);
718 	else
719 		generic_make_request(clone);
720 }
721 
722 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
723 {
724 	struct crypt_config *cc = io->target->private;
725 	struct bio *clone;
726 	struct dm_crypt_io *new_io;
727 	int crypt_finished;
728 	unsigned out_of_pages = 0;
729 	unsigned remaining = io->base_bio->bi_size;
730 	sector_t sector = io->sector;
731 	int r;
732 
733 	/*
734 	 * Prevent io from disappearing until this function completes.
735 	 */
736 	crypt_inc_pending(io);
737 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
738 
739 	/*
740 	 * The allocated buffers can be smaller than the whole bio,
741 	 * so repeat the whole process until all the data can be handled.
742 	 */
743 	while (remaining) {
744 		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
745 		if (unlikely(!clone)) {
746 			io->error = -ENOMEM;
747 			break;
748 		}
749 
750 		io->ctx.bio_out = clone;
751 		io->ctx.idx_out = 0;
752 
753 		remaining -= clone->bi_size;
754 		sector += bio_sectors(clone);
755 
756 		crypt_inc_pending(io);
757 		r = crypt_convert(cc, &io->ctx);
758 		crypt_finished = atomic_dec_and_test(&io->ctx.pending);
759 
760 		/* Encryption was already finished, submit io now */
761 		if (crypt_finished) {
762 			kcryptd_crypt_write_io_submit(io, r, 0);
763 
764 			/*
765 			 * If there was an error, do not try next fragments.
766 			 * For async, error is processed in async handler.
767 			 */
768 			if (unlikely(r < 0))
769 				break;
770 
771 			io->sector = sector;
772 		}
773 
774 		/*
775 		 * Out of memory -> run queues
776 		 * But don't wait if split was due to the io size restriction
777 		 */
778 		if (unlikely(out_of_pages))
779 			congestion_wait(BLK_RW_ASYNC, HZ/100);
780 
781 		/*
782 		 * With async crypto it is unsafe to share the crypto context
783 		 * between fragments, so switch to a new dm_crypt_io structure.
784 		 */
785 		if (unlikely(!crypt_finished && remaining)) {
786 			new_io = crypt_io_alloc(io->target, io->base_bio,
787 						sector);
788 			crypt_inc_pending(new_io);
789 			crypt_convert_init(cc, &new_io->ctx, NULL,
790 					   io->base_bio, sector);
791 			new_io->ctx.idx_in = io->ctx.idx_in;
792 			new_io->ctx.offset_in = io->ctx.offset_in;
793 
794 			/*
795 			 * Fragments after the first use the base_io
796 			 * pending count.
797 			 */
798 			if (!io->base_io)
799 				new_io->base_io = io;
800 			else {
801 				new_io->base_io = io->base_io;
802 				crypt_inc_pending(io->base_io);
803 				crypt_dec_pending(io);
804 			}
805 
806 			io = new_io;
807 		}
808 	}
809 
810 	crypt_dec_pending(io);
811 }
812 
813 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
814 {
815 	if (unlikely(error < 0))
816 		io->error = -EIO;
817 
818 	crypt_dec_pending(io);
819 }
820 
821 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
822 {
823 	struct crypt_config *cc = io->target->private;
824 	int r = 0;
825 
826 	crypt_inc_pending(io);
827 
828 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
829 			   io->sector);
830 
831 	r = crypt_convert(cc, &io->ctx);
832 
833 	if (atomic_dec_and_test(&io->ctx.pending))
834 		kcryptd_crypt_read_done(io, r);
835 
836 	crypt_dec_pending(io);
837 }
838 
839 static void kcryptd_async_done(struct crypto_async_request *async_req,
840 			       int error)
841 {
842 	struct dm_crypt_request *dmreq = async_req->data;
843 	struct convert_context *ctx = dmreq->ctx;
844 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
845 	struct crypt_config *cc = io->target->private;
846 
847 	if (error == -EINPROGRESS) {
848 		complete(&ctx->restart);
849 		return;
850 	}
851 
852 	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
853 
854 	if (!atomic_dec_and_test(&ctx->pending))
855 		return;
856 
857 	if (bio_data_dir(io->base_bio) == READ)
858 		kcryptd_crypt_read_done(io, error);
859 	else
860 		kcryptd_crypt_write_io_submit(io, error, 1);
861 }
862 
863 static void kcryptd_crypt(struct work_struct *work)
864 {
865 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
866 
867 	if (bio_data_dir(io->base_bio) == READ)
868 		kcryptd_crypt_read_convert(io);
869 	else
870 		kcryptd_crypt_write_convert(io);
871 }
872 
873 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
874 {
875 	struct crypt_config *cc = io->target->private;
876 
877 	INIT_WORK(&io->work, kcryptd_crypt);
878 	queue_work(cc->crypt_queue, &io->work);
879 }
880 
881 /*
882  * Decode key from its hex representation
883  */
884 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
885 {
886 	char buffer[3];
887 	char *endp;
888 	unsigned int i;
889 
890 	buffer[2] = '\0';
891 
892 	for (i = 0; i < size; i++) {
893 		buffer[0] = *hex++;
894 		buffer[1] = *hex++;
895 
896 		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
897 
898 		if (endp != &buffer[2])
899 			return -EINVAL;
900 	}
901 
902 	if (*hex != '\0')
903 		return -EINVAL;
904 
905 	return 0;
906 }
907 
908 /*
909  * Encode key into its hex representation
910  */
911 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
912 {
913 	unsigned int i;
914 
915 	for (i = 0; i < size; i++) {
916 		sprintf(hex, "%02x", *key);
917 		hex += 2;
918 		key++;
919 	}
920 }
921 
922 static int crypt_set_key(struct crypt_config *cc, char *key)
923 {
924 	unsigned key_size = strlen(key) >> 1;
925 
926 	if (cc->key_size && cc->key_size != key_size)
927 		return -EINVAL;
928 
929 	cc->key_size = key_size; /* initial settings */
930 
931 	if ((!key_size && strcmp(key, "-")) ||
932 	   (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
933 		return -EINVAL;
934 
935 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
936 
937 	return 0;
938 }
939 
940 static int crypt_wipe_key(struct crypt_config *cc)
941 {
942 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
943 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
944 	return 0;
945 }
946 
947 /*
948  * Construct an encryption mapping:
949  * <cipher> <key> <iv_offset> <dev_path> <start>
950  */
951 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
952 {
953 	struct crypt_config *cc;
954 	struct crypto_ablkcipher *tfm;
955 	char *tmp;
956 	char *cipher;
957 	char *chainmode;
958 	char *ivmode;
959 	char *ivopts;
960 	unsigned int key_size;
961 	unsigned long long tmpll;
962 
963 	if (argc != 5) {
964 		ti->error = "Not enough arguments";
965 		return -EINVAL;
966 	}
967 
968 	tmp = argv[0];
969 	cipher = strsep(&tmp, "-");
970 	chainmode = strsep(&tmp, "-");
971 	ivopts = strsep(&tmp, "-");
972 	ivmode = strsep(&ivopts, ":");
973 
974 	if (tmp)
975 		DMWARN("Unexpected additional cipher options");
976 
977 	key_size = strlen(argv[1]) >> 1;
978 
979  	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
980 	if (cc == NULL) {
981 		ti->error =
982 			"Cannot allocate transparent encryption context";
983 		return -ENOMEM;
984 	}
985 
986  	if (crypt_set_key(cc, argv[1])) {
987 		ti->error = "Error decoding key";
988 		goto bad_cipher;
989 	}
990 
991 	/* Compatiblity mode for old dm-crypt cipher strings */
992 	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
993 		chainmode = "cbc";
994 		ivmode = "plain";
995 	}
996 
997 	if (strcmp(chainmode, "ecb") && !ivmode) {
998 		ti->error = "This chaining mode requires an IV mechanism";
999 		goto bad_cipher;
1000 	}
1001 
1002 	if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
1003 		     chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
1004 		ti->error = "Chain mode + cipher name is too long";
1005 		goto bad_cipher;
1006 	}
1007 
1008 	tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
1009 	if (IS_ERR(tfm)) {
1010 		ti->error = "Error allocating crypto tfm";
1011 		goto bad_cipher;
1012 	}
1013 
1014 	strcpy(cc->cipher, cipher);
1015 	strcpy(cc->chainmode, chainmode);
1016 	cc->tfm = tfm;
1017 
1018 	/*
1019 	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
1020 	 * See comments at iv code
1021 	 */
1022 
1023 	if (ivmode == NULL)
1024 		cc->iv_gen_ops = NULL;
1025 	else if (strcmp(ivmode, "plain") == 0)
1026 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1027 	else if (strcmp(ivmode, "essiv") == 0)
1028 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1029 	else if (strcmp(ivmode, "benbi") == 0)
1030 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1031 	else if (strcmp(ivmode, "null") == 0)
1032 		cc->iv_gen_ops = &crypt_iv_null_ops;
1033 	else {
1034 		ti->error = "Invalid IV mode";
1035 		goto bad_ivmode;
1036 	}
1037 
1038 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
1039 	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
1040 		goto bad_ivmode;
1041 
1042 	cc->iv_size = crypto_ablkcipher_ivsize(tfm);
1043 	if (cc->iv_size)
1044 		/* at least a 64 bit sector number should fit in our buffer */
1045 		cc->iv_size = max(cc->iv_size,
1046 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1047 	else {
1048 		if (cc->iv_gen_ops) {
1049 			DMWARN("Selected cipher does not support IVs");
1050 			if (cc->iv_gen_ops->dtr)
1051 				cc->iv_gen_ops->dtr(cc);
1052 			cc->iv_gen_ops = NULL;
1053 		}
1054 	}
1055 
1056 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1057 	if (!cc->io_pool) {
1058 		ti->error = "Cannot allocate crypt io mempool";
1059 		goto bad_slab_pool;
1060 	}
1061 
1062 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1063 	cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
1064 	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1065 	cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
1066 			   ~(crypto_tfm_ctx_alignment() - 1);
1067 
1068 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1069 			sizeof(struct dm_crypt_request) + cc->iv_size);
1070 	if (!cc->req_pool) {
1071 		ti->error = "Cannot allocate crypt request mempool";
1072 		goto bad_req_pool;
1073 	}
1074 	cc->req = NULL;
1075 
1076 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1077 	if (!cc->page_pool) {
1078 		ti->error = "Cannot allocate page mempool";
1079 		goto bad_page_pool;
1080 	}
1081 
1082 	cc->bs = bioset_create(MIN_IOS, 0);
1083 	if (!cc->bs) {
1084 		ti->error = "Cannot allocate crypt bioset";
1085 		goto bad_bs;
1086 	}
1087 
1088 	if (crypto_ablkcipher_setkey(tfm, cc->key, key_size) < 0) {
1089 		ti->error = "Error setting key";
1090 		goto bad_device;
1091 	}
1092 
1093 	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1094 		ti->error = "Invalid iv_offset sector";
1095 		goto bad_device;
1096 	}
1097 	cc->iv_offset = tmpll;
1098 
1099 	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1100 		ti->error = "Invalid device sector";
1101 		goto bad_device;
1102 	}
1103 	cc->start = tmpll;
1104 
1105 	if (dm_get_device(ti, argv[3], cc->start, ti->len,
1106 			  dm_table_get_mode(ti->table), &cc->dev)) {
1107 		ti->error = "Device lookup failed";
1108 		goto bad_device;
1109 	}
1110 
1111 	if (ivmode && cc->iv_gen_ops) {
1112 		if (ivopts)
1113 			*(ivopts - 1) = ':';
1114 		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
1115 		if (!cc->iv_mode) {
1116 			ti->error = "Error kmallocing iv_mode string";
1117 			goto bad_ivmode_string;
1118 		}
1119 		strcpy(cc->iv_mode, ivmode);
1120 	} else
1121 		cc->iv_mode = NULL;
1122 
1123 	cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1124 	if (!cc->io_queue) {
1125 		ti->error = "Couldn't create kcryptd io queue";
1126 		goto bad_io_queue;
1127 	}
1128 
1129 	cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1130 	if (!cc->crypt_queue) {
1131 		ti->error = "Couldn't create kcryptd queue";
1132 		goto bad_crypt_queue;
1133 	}
1134 
1135 	ti->num_flush_requests = 1;
1136 	ti->private = cc;
1137 	return 0;
1138 
1139 bad_crypt_queue:
1140 	destroy_workqueue(cc->io_queue);
1141 bad_io_queue:
1142 	kfree(cc->iv_mode);
1143 bad_ivmode_string:
1144 	dm_put_device(ti, cc->dev);
1145 bad_device:
1146 	bioset_free(cc->bs);
1147 bad_bs:
1148 	mempool_destroy(cc->page_pool);
1149 bad_page_pool:
1150 	mempool_destroy(cc->req_pool);
1151 bad_req_pool:
1152 	mempool_destroy(cc->io_pool);
1153 bad_slab_pool:
1154 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1155 		cc->iv_gen_ops->dtr(cc);
1156 bad_ivmode:
1157 	crypto_free_ablkcipher(tfm);
1158 bad_cipher:
1159 	/* Must zero key material before freeing */
1160 	kzfree(cc);
1161 	return -EINVAL;
1162 }
1163 
1164 static void crypt_dtr(struct dm_target *ti)
1165 {
1166 	struct crypt_config *cc = (struct crypt_config *) ti->private;
1167 
1168 	destroy_workqueue(cc->io_queue);
1169 	destroy_workqueue(cc->crypt_queue);
1170 
1171 	if (cc->req)
1172 		mempool_free(cc->req, cc->req_pool);
1173 
1174 	bioset_free(cc->bs);
1175 	mempool_destroy(cc->page_pool);
1176 	mempool_destroy(cc->req_pool);
1177 	mempool_destroy(cc->io_pool);
1178 
1179 	kfree(cc->iv_mode);
1180 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1181 		cc->iv_gen_ops->dtr(cc);
1182 	crypto_free_ablkcipher(cc->tfm);
1183 	dm_put_device(ti, cc->dev);
1184 
1185 	/* Must zero key material before freeing */
1186 	kzfree(cc);
1187 }
1188 
1189 static int crypt_map(struct dm_target *ti, struct bio *bio,
1190 		     union map_info *map_context)
1191 {
1192 	struct dm_crypt_io *io;
1193 	struct crypt_config *cc;
1194 
1195 	if (unlikely(bio_empty_barrier(bio))) {
1196 		cc = ti->private;
1197 		bio->bi_bdev = cc->dev->bdev;
1198 		return DM_MAPIO_REMAPPED;
1199 	}
1200 
1201 	io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin);
1202 
1203 	if (bio_data_dir(io->base_bio) == READ)
1204 		kcryptd_queue_io(io);
1205 	else
1206 		kcryptd_queue_crypt(io);
1207 
1208 	return DM_MAPIO_SUBMITTED;
1209 }
1210 
1211 static int crypt_status(struct dm_target *ti, status_type_t type,
1212 			char *result, unsigned int maxlen)
1213 {
1214 	struct crypt_config *cc = (struct crypt_config *) ti->private;
1215 	unsigned int sz = 0;
1216 
1217 	switch (type) {
1218 	case STATUSTYPE_INFO:
1219 		result[0] = '\0';
1220 		break;
1221 
1222 	case STATUSTYPE_TABLE:
1223 		if (cc->iv_mode)
1224 			DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1225 			       cc->iv_mode);
1226 		else
1227 			DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1228 
1229 		if (cc->key_size > 0) {
1230 			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1231 				return -ENOMEM;
1232 
1233 			crypt_encode_key(result + sz, cc->key, cc->key_size);
1234 			sz += cc->key_size << 1;
1235 		} else {
1236 			if (sz >= maxlen)
1237 				return -ENOMEM;
1238 			result[sz++] = '-';
1239 		}
1240 
1241 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1242 				cc->dev->name, (unsigned long long)cc->start);
1243 		break;
1244 	}
1245 	return 0;
1246 }
1247 
1248 static void crypt_postsuspend(struct dm_target *ti)
1249 {
1250 	struct crypt_config *cc = ti->private;
1251 
1252 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1253 }
1254 
1255 static int crypt_preresume(struct dm_target *ti)
1256 {
1257 	struct crypt_config *cc = ti->private;
1258 
1259 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1260 		DMERR("aborting resume - crypt key is not set.");
1261 		return -EAGAIN;
1262 	}
1263 
1264 	return 0;
1265 }
1266 
1267 static void crypt_resume(struct dm_target *ti)
1268 {
1269 	struct crypt_config *cc = ti->private;
1270 
1271 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1272 }
1273 
1274 /* Message interface
1275  *	key set <key>
1276  *	key wipe
1277  */
1278 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1279 {
1280 	struct crypt_config *cc = ti->private;
1281 
1282 	if (argc < 2)
1283 		goto error;
1284 
1285 	if (!strnicmp(argv[0], MESG_STR("key"))) {
1286 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1287 			DMWARN("not suspended during key manipulation.");
1288 			return -EINVAL;
1289 		}
1290 		if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1291 			return crypt_set_key(cc, argv[2]);
1292 		if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1293 			return crypt_wipe_key(cc);
1294 	}
1295 
1296 error:
1297 	DMWARN("unrecognised message received.");
1298 	return -EINVAL;
1299 }
1300 
1301 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1302 		       struct bio_vec *biovec, int max_size)
1303 {
1304 	struct crypt_config *cc = ti->private;
1305 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1306 
1307 	if (!q->merge_bvec_fn)
1308 		return max_size;
1309 
1310 	bvm->bi_bdev = cc->dev->bdev;
1311 	bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin;
1312 
1313 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1314 }
1315 
1316 static int crypt_iterate_devices(struct dm_target *ti,
1317 				 iterate_devices_callout_fn fn, void *data)
1318 {
1319 	struct crypt_config *cc = ti->private;
1320 
1321 	return fn(ti, cc->dev, cc->start, ti->len, data);
1322 }
1323 
1324 static struct target_type crypt_target = {
1325 	.name   = "crypt",
1326 	.version = {1, 7, 0},
1327 	.module = THIS_MODULE,
1328 	.ctr    = crypt_ctr,
1329 	.dtr    = crypt_dtr,
1330 	.map    = crypt_map,
1331 	.status = crypt_status,
1332 	.postsuspend = crypt_postsuspend,
1333 	.preresume = crypt_preresume,
1334 	.resume = crypt_resume,
1335 	.message = crypt_message,
1336 	.merge  = crypt_merge,
1337 	.iterate_devices = crypt_iterate_devices,
1338 };
1339 
1340 static int __init dm_crypt_init(void)
1341 {
1342 	int r;
1343 
1344 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1345 	if (!_crypt_io_pool)
1346 		return -ENOMEM;
1347 
1348 	r = dm_register_target(&crypt_target);
1349 	if (r < 0) {
1350 		DMERR("register failed %d", r);
1351 		kmem_cache_destroy(_crypt_io_pool);
1352 	}
1353 
1354 	return r;
1355 }
1356 
1357 static void __exit dm_crypt_exit(void)
1358 {
1359 	dm_unregister_target(&crypt_target);
1360 	kmem_cache_destroy(_crypt_io_pool);
1361 }
1362 
1363 module_init(dm_crypt_init);
1364 module_exit(dm_crypt_exit);
1365 
1366 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1367 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1368 MODULE_LICENSE("GPL");
1369