xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 643d1f7f)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
24 
25 #include "dm.h"
26 
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
29 
30 /*
31  * per bio private data
32  */
33 struct dm_crypt_io {
34 	struct dm_target *target;
35 	struct bio *base_bio;
36 	struct work_struct work;
37 	atomic_t pending;
38 	int error;
39 };
40 
41 /*
42  * context holding the current state of a multi-part conversion
43  */
44 struct convert_context {
45 	struct bio *bio_in;
46 	struct bio *bio_out;
47 	unsigned int offset_in;
48 	unsigned int offset_out;
49 	unsigned int idx_in;
50 	unsigned int idx_out;
51 	sector_t sector;
52 	int write;
53 };
54 
55 struct crypt_config;
56 
57 struct crypt_iv_operations {
58 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
59 		   const char *opts);
60 	void (*dtr)(struct crypt_config *cc);
61 	const char *(*status)(struct crypt_config *cc);
62 	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
63 };
64 
65 /*
66  * Crypt: maps a linear range of a block device
67  * and encrypts / decrypts at the same time.
68  */
69 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
70 struct crypt_config {
71 	struct dm_dev *dev;
72 	sector_t start;
73 
74 	/*
75 	 * pool for per bio private data and
76 	 * for encryption buffer pages
77 	 */
78 	mempool_t *io_pool;
79 	mempool_t *page_pool;
80 	struct bio_set *bs;
81 
82 	struct workqueue_struct *io_queue;
83 	struct workqueue_struct *crypt_queue;
84 	/*
85 	 * crypto related data
86 	 */
87 	struct crypt_iv_operations *iv_gen_ops;
88 	char *iv_mode;
89 	union {
90 		struct crypto_cipher *essiv_tfm;
91 		int benbi_shift;
92 	} iv_gen_private;
93 	sector_t iv_offset;
94 	unsigned int iv_size;
95 
96 	char cipher[CRYPTO_MAX_ALG_NAME];
97 	char chainmode[CRYPTO_MAX_ALG_NAME];
98 	struct crypto_blkcipher *tfm;
99 	unsigned long flags;
100 	unsigned int key_size;
101 	u8 key[0];
102 };
103 
104 #define MIN_IOS        16
105 #define MIN_POOL_PAGES 32
106 #define MIN_BIO_PAGES  8
107 
108 static struct kmem_cache *_crypt_io_pool;
109 
110 static void clone_init(struct dm_crypt_io *, struct bio *);
111 
112 /*
113  * Different IV generation algorithms:
114  *
115  * plain: the initial vector is the 32-bit little-endian version of the sector
116  *        number, padded with zeros if necessary.
117  *
118  * essiv: "encrypted sector|salt initial vector", the sector number is
119  *        encrypted with the bulk cipher using a salt as key. The salt
120  *        should be derived from the bulk cipher's key via hashing.
121  *
122  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
123  *        (needed for LRW-32-AES and possible other narrow block modes)
124  *
125  * null: the initial vector is always zero.  Provides compatibility with
126  *       obsolete loop_fish2 devices.  Do not use for new devices.
127  *
128  * plumb: unimplemented, see:
129  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
130  */
131 
132 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
133 {
134 	memset(iv, 0, cc->iv_size);
135 	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
136 
137 	return 0;
138 }
139 
140 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
141 			      const char *opts)
142 {
143 	struct crypto_cipher *essiv_tfm;
144 	struct crypto_hash *hash_tfm;
145 	struct hash_desc desc;
146 	struct scatterlist sg;
147 	unsigned int saltsize;
148 	u8 *salt;
149 	int err;
150 
151 	if (opts == NULL) {
152 		ti->error = "Digest algorithm missing for ESSIV mode";
153 		return -EINVAL;
154 	}
155 
156 	/* Hash the cipher key with the given hash algorithm */
157 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
158 	if (IS_ERR(hash_tfm)) {
159 		ti->error = "Error initializing ESSIV hash";
160 		return PTR_ERR(hash_tfm);
161 	}
162 
163 	saltsize = crypto_hash_digestsize(hash_tfm);
164 	salt = kmalloc(saltsize, GFP_KERNEL);
165 	if (salt == NULL) {
166 		ti->error = "Error kmallocing salt storage in ESSIV";
167 		crypto_free_hash(hash_tfm);
168 		return -ENOMEM;
169 	}
170 
171 	sg_init_one(&sg, cc->key, cc->key_size);
172 	desc.tfm = hash_tfm;
173 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
174 	err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
175 	crypto_free_hash(hash_tfm);
176 
177 	if (err) {
178 		ti->error = "Error calculating hash in ESSIV";
179 		kfree(salt);
180 		return err;
181 	}
182 
183 	/* Setup the essiv_tfm with the given salt */
184 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
185 	if (IS_ERR(essiv_tfm)) {
186 		ti->error = "Error allocating crypto tfm for ESSIV";
187 		kfree(salt);
188 		return PTR_ERR(essiv_tfm);
189 	}
190 	if (crypto_cipher_blocksize(essiv_tfm) !=
191 	    crypto_blkcipher_ivsize(cc->tfm)) {
192 		ti->error = "Block size of ESSIV cipher does "
193 			    "not match IV size of block cipher";
194 		crypto_free_cipher(essiv_tfm);
195 		kfree(salt);
196 		return -EINVAL;
197 	}
198 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
199 	if (err) {
200 		ti->error = "Failed to set key for ESSIV cipher";
201 		crypto_free_cipher(essiv_tfm);
202 		kfree(salt);
203 		return err;
204 	}
205 	kfree(salt);
206 
207 	cc->iv_gen_private.essiv_tfm = essiv_tfm;
208 	return 0;
209 }
210 
211 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
212 {
213 	crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
214 	cc->iv_gen_private.essiv_tfm = NULL;
215 }
216 
217 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
218 {
219 	memset(iv, 0, cc->iv_size);
220 	*(u64 *)iv = cpu_to_le64(sector);
221 	crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
222 	return 0;
223 }
224 
225 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
226 			      const char *opts)
227 {
228 	unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
229 	int log = ilog2(bs);
230 
231 	/* we need to calculate how far we must shift the sector count
232 	 * to get the cipher block count, we use this shift in _gen */
233 
234 	if (1 << log != bs) {
235 		ti->error = "cypher blocksize is not a power of 2";
236 		return -EINVAL;
237 	}
238 
239 	if (log > 9) {
240 		ti->error = "cypher blocksize is > 512";
241 		return -EINVAL;
242 	}
243 
244 	cc->iv_gen_private.benbi_shift = 9 - log;
245 
246 	return 0;
247 }
248 
249 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
250 {
251 }
252 
253 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
254 {
255 	__be64 val;
256 
257 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
258 
259 	val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
260 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
261 
262 	return 0;
263 }
264 
265 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
266 {
267 	memset(iv, 0, cc->iv_size);
268 
269 	return 0;
270 }
271 
272 static struct crypt_iv_operations crypt_iv_plain_ops = {
273 	.generator = crypt_iv_plain_gen
274 };
275 
276 static struct crypt_iv_operations crypt_iv_essiv_ops = {
277 	.ctr       = crypt_iv_essiv_ctr,
278 	.dtr       = crypt_iv_essiv_dtr,
279 	.generator = crypt_iv_essiv_gen
280 };
281 
282 static struct crypt_iv_operations crypt_iv_benbi_ops = {
283 	.ctr	   = crypt_iv_benbi_ctr,
284 	.dtr	   = crypt_iv_benbi_dtr,
285 	.generator = crypt_iv_benbi_gen
286 };
287 
288 static struct crypt_iv_operations crypt_iv_null_ops = {
289 	.generator = crypt_iv_null_gen
290 };
291 
292 static int
293 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
294                           struct scatterlist *in, unsigned int length,
295                           int write, sector_t sector)
296 {
297 	u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
298 	struct blkcipher_desc desc = {
299 		.tfm = cc->tfm,
300 		.info = iv,
301 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP,
302 	};
303 	int r;
304 
305 	if (cc->iv_gen_ops) {
306 		r = cc->iv_gen_ops->generator(cc, iv, sector);
307 		if (r < 0)
308 			return r;
309 
310 		if (write)
311 			r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
312 		else
313 			r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
314 	} else {
315 		if (write)
316 			r = crypto_blkcipher_encrypt(&desc, out, in, length);
317 		else
318 			r = crypto_blkcipher_decrypt(&desc, out, in, length);
319 	}
320 
321 	return r;
322 }
323 
324 static void crypt_convert_init(struct crypt_config *cc,
325 			       struct convert_context *ctx,
326 			       struct bio *bio_out, struct bio *bio_in,
327 			       sector_t sector, int write)
328 {
329 	ctx->bio_in = bio_in;
330 	ctx->bio_out = bio_out;
331 	ctx->offset_in = 0;
332 	ctx->offset_out = 0;
333 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
334 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
335 	ctx->sector = sector + cc->iv_offset;
336 	ctx->write = write;
337 }
338 
339 /*
340  * Encrypt / decrypt data from one bio to another one (can be the same one)
341  */
342 static int crypt_convert(struct crypt_config *cc,
343 			 struct convert_context *ctx)
344 {
345 	int r = 0;
346 
347 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
348 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
349 		struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
350 		struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
351 		struct scatterlist sg_in, sg_out;
352 
353 		sg_init_table(&sg_in, 1);
354 		sg_set_page(&sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT, bv_in->bv_offset + ctx->offset_in);
355 
356 		sg_init_table(&sg_out, 1);
357 		sg_set_page(&sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT, bv_out->bv_offset + ctx->offset_out);
358 
359 		ctx->offset_in += sg_in.length;
360 		if (ctx->offset_in >= bv_in->bv_len) {
361 			ctx->offset_in = 0;
362 			ctx->idx_in++;
363 		}
364 
365 		ctx->offset_out += sg_out.length;
366 		if (ctx->offset_out >= bv_out->bv_len) {
367 			ctx->offset_out = 0;
368 			ctx->idx_out++;
369 		}
370 
371 		r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
372 					      ctx->write, ctx->sector);
373 		if (r < 0)
374 			break;
375 
376 		ctx->sector++;
377 	}
378 
379 	return r;
380 }
381 
382 static void dm_crypt_bio_destructor(struct bio *bio)
383 {
384 	struct dm_crypt_io *io = bio->bi_private;
385 	struct crypt_config *cc = io->target->private;
386 
387 	bio_free(bio, cc->bs);
388 }
389 
390 /*
391  * Generate a new unfragmented bio with the given size
392  * This should never violate the device limitations
393  * May return a smaller bio when running out of pages
394  */
395 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
396 {
397 	struct crypt_config *cc = io->target->private;
398 	struct bio *clone;
399 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
400 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
401 	unsigned i, len;
402 	struct page *page;
403 
404 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
405 	if (!clone)
406 		return NULL;
407 
408 	clone_init(io, clone);
409 
410 	for (i = 0; i < nr_iovecs; i++) {
411 		page = mempool_alloc(cc->page_pool, gfp_mask);
412 		if (!page)
413 			break;
414 
415 		/*
416 		 * if additional pages cannot be allocated without waiting,
417 		 * return a partially allocated bio, the caller will then try
418 		 * to allocate additional bios while submitting this partial bio
419 		 */
420 		if (i == (MIN_BIO_PAGES - 1))
421 			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
422 
423 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
424 
425 		if (!bio_add_page(clone, page, len, 0)) {
426 			mempool_free(page, cc->page_pool);
427 			break;
428 		}
429 
430 		size -= len;
431 	}
432 
433 	if (!clone->bi_size) {
434 		bio_put(clone);
435 		return NULL;
436 	}
437 
438 	return clone;
439 }
440 
441 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
442 {
443 	unsigned int i;
444 	struct bio_vec *bv;
445 
446 	for (i = 0; i < clone->bi_vcnt; i++) {
447 		bv = bio_iovec_idx(clone, i);
448 		BUG_ON(!bv->bv_page);
449 		mempool_free(bv->bv_page, cc->page_pool);
450 		bv->bv_page = NULL;
451 	}
452 }
453 
454 /*
455  * One of the bios was finished. Check for completion of
456  * the whole request and correctly clean up the buffer.
457  */
458 static void crypt_dec_pending(struct dm_crypt_io *io, int error)
459 {
460 	struct crypt_config *cc = (struct crypt_config *) io->target->private;
461 
462 	if (error < 0)
463 		io->error = error;
464 
465 	if (!atomic_dec_and_test(&io->pending))
466 		return;
467 
468 	bio_endio(io->base_bio, io->error);
469 
470 	mempool_free(io, cc->io_pool);
471 }
472 
473 /*
474  * kcryptd/kcryptd_io:
475  *
476  * Needed because it would be very unwise to do decryption in an
477  * interrupt context.
478  *
479  * kcryptd performs the actual encryption or decryption.
480  *
481  * kcryptd_io performs the IO submission.
482  *
483  * They must be separated as otherwise the final stages could be
484  * starved by new requests which can block in the first stages due
485  * to memory allocation.
486  */
487 static void kcryptd_do_work(struct work_struct *work);
488 static void kcryptd_do_crypt(struct work_struct *work);
489 
490 static void kcryptd_queue_io(struct dm_crypt_io *io)
491 {
492 	struct crypt_config *cc = io->target->private;
493 
494 	INIT_WORK(&io->work, kcryptd_do_work);
495 	queue_work(cc->io_queue, &io->work);
496 }
497 
498 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
499 {
500 	struct crypt_config *cc = io->target->private;
501 
502 	INIT_WORK(&io->work, kcryptd_do_crypt);
503 	queue_work(cc->crypt_queue, &io->work);
504 }
505 
506 static void crypt_endio(struct bio *clone, int error)
507 {
508 	struct dm_crypt_io *io = clone->bi_private;
509 	struct crypt_config *cc = io->target->private;
510 	unsigned read_io = bio_data_dir(clone) == READ;
511 
512 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
513 		error = -EIO;
514 
515 	/*
516 	 * free the processed pages
517 	 */
518 	if (!read_io) {
519 		crypt_free_buffer_pages(cc, clone);
520 		goto out;
521 	}
522 
523 	if (unlikely(error))
524 		goto out;
525 
526 	bio_put(clone);
527 	kcryptd_queue_crypt(io);
528 	return;
529 
530 out:
531 	bio_put(clone);
532 	crypt_dec_pending(io, error);
533 }
534 
535 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
536 {
537 	struct crypt_config *cc = io->target->private;
538 
539 	clone->bi_private = io;
540 	clone->bi_end_io  = crypt_endio;
541 	clone->bi_bdev    = cc->dev->bdev;
542 	clone->bi_rw      = io->base_bio->bi_rw;
543 	clone->bi_destructor = dm_crypt_bio_destructor;
544 }
545 
546 static void process_read(struct dm_crypt_io *io)
547 {
548 	struct crypt_config *cc = io->target->private;
549 	struct bio *base_bio = io->base_bio;
550 	struct bio *clone;
551 	sector_t sector = base_bio->bi_sector - io->target->begin;
552 
553 	atomic_inc(&io->pending);
554 
555 	/*
556 	 * The block layer might modify the bvec array, so always
557 	 * copy the required bvecs because we need the original
558 	 * one in order to decrypt the whole bio data *afterwards*.
559 	 */
560 	clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
561 	if (unlikely(!clone)) {
562 		crypt_dec_pending(io, -ENOMEM);
563 		return;
564 	}
565 
566 	clone_init(io, clone);
567 	clone->bi_idx = 0;
568 	clone->bi_vcnt = bio_segments(base_bio);
569 	clone->bi_size = base_bio->bi_size;
570 	clone->bi_sector = cc->start + sector;
571 	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
572 	       sizeof(struct bio_vec) * clone->bi_vcnt);
573 
574 	generic_make_request(clone);
575 }
576 
577 static void process_write(struct dm_crypt_io *io)
578 {
579 	struct crypt_config *cc = io->target->private;
580 	struct bio *base_bio = io->base_bio;
581 	struct bio *clone;
582 	struct convert_context ctx;
583 	unsigned remaining = base_bio->bi_size;
584 	sector_t sector = base_bio->bi_sector - io->target->begin;
585 
586 	atomic_inc(&io->pending);
587 
588 	crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
589 
590 	/*
591 	 * The allocated buffers can be smaller than the whole bio,
592 	 * so repeat the whole process until all the data can be handled.
593 	 */
594 	while (remaining) {
595 		clone = crypt_alloc_buffer(io, remaining);
596 		if (unlikely(!clone)) {
597 			crypt_dec_pending(io, -ENOMEM);
598 			return;
599 		}
600 
601 		ctx.bio_out = clone;
602 		ctx.idx_out = 0;
603 
604 		if (unlikely(crypt_convert(cc, &ctx) < 0)) {
605 			crypt_free_buffer_pages(cc, clone);
606 			bio_put(clone);
607 			crypt_dec_pending(io, -EIO);
608 			return;
609 		}
610 
611 		/* crypt_convert should have filled the clone bio */
612 		BUG_ON(ctx.idx_out < clone->bi_vcnt);
613 
614 		clone->bi_sector = cc->start + sector;
615 		remaining -= clone->bi_size;
616 		sector += bio_sectors(clone);
617 
618 		/* Grab another reference to the io struct
619 		 * before we kick off the request */
620 		if (remaining)
621 			atomic_inc(&io->pending);
622 
623 		generic_make_request(clone);
624 
625 		/* Do not reference clone after this - it
626 		 * may be gone already. */
627 
628 		/* out of memory -> run queues */
629 		if (remaining)
630 			congestion_wait(WRITE, HZ/100);
631 	}
632 }
633 
634 static void process_read_endio(struct dm_crypt_io *io)
635 {
636 	struct crypt_config *cc = io->target->private;
637 	struct convert_context ctx;
638 
639 	crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
640 			   io->base_bio->bi_sector - io->target->begin, 0);
641 
642 	crypt_dec_pending(io, crypt_convert(cc, &ctx));
643 }
644 
645 static void kcryptd_do_work(struct work_struct *work)
646 {
647 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
648 
649 	if (bio_data_dir(io->base_bio) == READ)
650 		process_read(io);
651 }
652 
653 static void kcryptd_do_crypt(struct work_struct *work)
654 {
655 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
656 
657 	if (bio_data_dir(io->base_bio) == READ)
658 		process_read_endio(io);
659 	else
660 		process_write(io);
661 }
662 
663 /*
664  * Decode key from its hex representation
665  */
666 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
667 {
668 	char buffer[3];
669 	char *endp;
670 	unsigned int i;
671 
672 	buffer[2] = '\0';
673 
674 	for (i = 0; i < size; i++) {
675 		buffer[0] = *hex++;
676 		buffer[1] = *hex++;
677 
678 		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
679 
680 		if (endp != &buffer[2])
681 			return -EINVAL;
682 	}
683 
684 	if (*hex != '\0')
685 		return -EINVAL;
686 
687 	return 0;
688 }
689 
690 /*
691  * Encode key into its hex representation
692  */
693 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
694 {
695 	unsigned int i;
696 
697 	for (i = 0; i < size; i++) {
698 		sprintf(hex, "%02x", *key);
699 		hex += 2;
700 		key++;
701 	}
702 }
703 
704 static int crypt_set_key(struct crypt_config *cc, char *key)
705 {
706 	unsigned key_size = strlen(key) >> 1;
707 
708 	if (cc->key_size && cc->key_size != key_size)
709 		return -EINVAL;
710 
711 	cc->key_size = key_size; /* initial settings */
712 
713 	if ((!key_size && strcmp(key, "-")) ||
714 	   (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
715 		return -EINVAL;
716 
717 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
718 
719 	return 0;
720 }
721 
722 static int crypt_wipe_key(struct crypt_config *cc)
723 {
724 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
725 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
726 	return 0;
727 }
728 
729 /*
730  * Construct an encryption mapping:
731  * <cipher> <key> <iv_offset> <dev_path> <start>
732  */
733 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
734 {
735 	struct crypt_config *cc;
736 	struct crypto_blkcipher *tfm;
737 	char *tmp;
738 	char *cipher;
739 	char *chainmode;
740 	char *ivmode;
741 	char *ivopts;
742 	unsigned int key_size;
743 	unsigned long long tmpll;
744 
745 	if (argc != 5) {
746 		ti->error = "Not enough arguments";
747 		return -EINVAL;
748 	}
749 
750 	tmp = argv[0];
751 	cipher = strsep(&tmp, "-");
752 	chainmode = strsep(&tmp, "-");
753 	ivopts = strsep(&tmp, "-");
754 	ivmode = strsep(&ivopts, ":");
755 
756 	if (tmp)
757 		DMWARN("Unexpected additional cipher options");
758 
759 	key_size = strlen(argv[1]) >> 1;
760 
761  	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
762 	if (cc == NULL) {
763 		ti->error =
764 			"Cannot allocate transparent encryption context";
765 		return -ENOMEM;
766 	}
767 
768  	if (crypt_set_key(cc, argv[1])) {
769 		ti->error = "Error decoding key";
770 		goto bad_cipher;
771 	}
772 
773 	/* Compatiblity mode for old dm-crypt cipher strings */
774 	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
775 		chainmode = "cbc";
776 		ivmode = "plain";
777 	}
778 
779 	if (strcmp(chainmode, "ecb") && !ivmode) {
780 		ti->error = "This chaining mode requires an IV mechanism";
781 		goto bad_cipher;
782 	}
783 
784 	if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
785 		     chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
786 		ti->error = "Chain mode + cipher name is too long";
787 		goto bad_cipher;
788 	}
789 
790 	tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
791 	if (IS_ERR(tfm)) {
792 		ti->error = "Error allocating crypto tfm";
793 		goto bad_cipher;
794 	}
795 
796 	strcpy(cc->cipher, cipher);
797 	strcpy(cc->chainmode, chainmode);
798 	cc->tfm = tfm;
799 
800 	/*
801 	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
802 	 * See comments at iv code
803 	 */
804 
805 	if (ivmode == NULL)
806 		cc->iv_gen_ops = NULL;
807 	else if (strcmp(ivmode, "plain") == 0)
808 		cc->iv_gen_ops = &crypt_iv_plain_ops;
809 	else if (strcmp(ivmode, "essiv") == 0)
810 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
811 	else if (strcmp(ivmode, "benbi") == 0)
812 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
813 	else if (strcmp(ivmode, "null") == 0)
814 		cc->iv_gen_ops = &crypt_iv_null_ops;
815 	else {
816 		ti->error = "Invalid IV mode";
817 		goto bad_ivmode;
818 	}
819 
820 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
821 	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
822 		goto bad_ivmode;
823 
824 	cc->iv_size = crypto_blkcipher_ivsize(tfm);
825 	if (cc->iv_size)
826 		/* at least a 64 bit sector number should fit in our buffer */
827 		cc->iv_size = max(cc->iv_size,
828 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
829 	else {
830 		if (cc->iv_gen_ops) {
831 			DMWARN("Selected cipher does not support IVs");
832 			if (cc->iv_gen_ops->dtr)
833 				cc->iv_gen_ops->dtr(cc);
834 			cc->iv_gen_ops = NULL;
835 		}
836 	}
837 
838 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
839 	if (!cc->io_pool) {
840 		ti->error = "Cannot allocate crypt io mempool";
841 		goto bad_slab_pool;
842 	}
843 
844 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
845 	if (!cc->page_pool) {
846 		ti->error = "Cannot allocate page mempool";
847 		goto bad_page_pool;
848 	}
849 
850 	cc->bs = bioset_create(MIN_IOS, MIN_IOS);
851 	if (!cc->bs) {
852 		ti->error = "Cannot allocate crypt bioset";
853 		goto bad_bs;
854 	}
855 
856 	if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
857 		ti->error = "Error setting key";
858 		goto bad_device;
859 	}
860 
861 	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
862 		ti->error = "Invalid iv_offset sector";
863 		goto bad_device;
864 	}
865 	cc->iv_offset = tmpll;
866 
867 	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
868 		ti->error = "Invalid device sector";
869 		goto bad_device;
870 	}
871 	cc->start = tmpll;
872 
873 	if (dm_get_device(ti, argv[3], cc->start, ti->len,
874 			  dm_table_get_mode(ti->table), &cc->dev)) {
875 		ti->error = "Device lookup failed";
876 		goto bad_device;
877 	}
878 
879 	if (ivmode && cc->iv_gen_ops) {
880 		if (ivopts)
881 			*(ivopts - 1) = ':';
882 		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
883 		if (!cc->iv_mode) {
884 			ti->error = "Error kmallocing iv_mode string";
885 			goto bad_ivmode_string;
886 		}
887 		strcpy(cc->iv_mode, ivmode);
888 	} else
889 		cc->iv_mode = NULL;
890 
891 	cc->io_queue = create_singlethread_workqueue("kcryptd_io");
892 	if (!cc->io_queue) {
893 		ti->error = "Couldn't create kcryptd io queue";
894 		goto bad_io_queue;
895 	}
896 
897 	cc->crypt_queue = create_singlethread_workqueue("kcryptd");
898 	if (!cc->crypt_queue) {
899 		ti->error = "Couldn't create kcryptd queue";
900 		goto bad_crypt_queue;
901 	}
902 
903 	ti->private = cc;
904 	return 0;
905 
906 bad_crypt_queue:
907 	destroy_workqueue(cc->io_queue);
908 bad_io_queue:
909 	kfree(cc->iv_mode);
910 bad_ivmode_string:
911 	dm_put_device(ti, cc->dev);
912 bad_device:
913 	bioset_free(cc->bs);
914 bad_bs:
915 	mempool_destroy(cc->page_pool);
916 bad_page_pool:
917 	mempool_destroy(cc->io_pool);
918 bad_slab_pool:
919 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
920 		cc->iv_gen_ops->dtr(cc);
921 bad_ivmode:
922 	crypto_free_blkcipher(tfm);
923 bad_cipher:
924 	/* Must zero key material before freeing */
925 	memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
926 	kfree(cc);
927 	return -EINVAL;
928 }
929 
930 static void crypt_dtr(struct dm_target *ti)
931 {
932 	struct crypt_config *cc = (struct crypt_config *) ti->private;
933 
934 	destroy_workqueue(cc->io_queue);
935 	destroy_workqueue(cc->crypt_queue);
936 
937 	bioset_free(cc->bs);
938 	mempool_destroy(cc->page_pool);
939 	mempool_destroy(cc->io_pool);
940 
941 	kfree(cc->iv_mode);
942 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
943 		cc->iv_gen_ops->dtr(cc);
944 	crypto_free_blkcipher(cc->tfm);
945 	dm_put_device(ti, cc->dev);
946 
947 	/* Must zero key material before freeing */
948 	memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
949 	kfree(cc);
950 }
951 
952 static int crypt_map(struct dm_target *ti, struct bio *bio,
953 		     union map_info *map_context)
954 {
955 	struct crypt_config *cc = ti->private;
956 	struct dm_crypt_io *io;
957 
958 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
959 	io->target = ti;
960 	io->base_bio = bio;
961 	io->error = 0;
962 	atomic_set(&io->pending, 0);
963 
964 	if (bio_data_dir(io->base_bio) == READ)
965 		kcryptd_queue_io(io);
966 	else
967 		kcryptd_queue_crypt(io);
968 
969 	return DM_MAPIO_SUBMITTED;
970 }
971 
972 static int crypt_status(struct dm_target *ti, status_type_t type,
973 			char *result, unsigned int maxlen)
974 {
975 	struct crypt_config *cc = (struct crypt_config *) ti->private;
976 	unsigned int sz = 0;
977 
978 	switch (type) {
979 	case STATUSTYPE_INFO:
980 		result[0] = '\0';
981 		break;
982 
983 	case STATUSTYPE_TABLE:
984 		if (cc->iv_mode)
985 			DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
986 			       cc->iv_mode);
987 		else
988 			DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
989 
990 		if (cc->key_size > 0) {
991 			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
992 				return -ENOMEM;
993 
994 			crypt_encode_key(result + sz, cc->key, cc->key_size);
995 			sz += cc->key_size << 1;
996 		} else {
997 			if (sz >= maxlen)
998 				return -ENOMEM;
999 			result[sz++] = '-';
1000 		}
1001 
1002 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1003 				cc->dev->name, (unsigned long long)cc->start);
1004 		break;
1005 	}
1006 	return 0;
1007 }
1008 
1009 static void crypt_postsuspend(struct dm_target *ti)
1010 {
1011 	struct crypt_config *cc = ti->private;
1012 
1013 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1014 }
1015 
1016 static int crypt_preresume(struct dm_target *ti)
1017 {
1018 	struct crypt_config *cc = ti->private;
1019 
1020 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1021 		DMERR("aborting resume - crypt key is not set.");
1022 		return -EAGAIN;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static void crypt_resume(struct dm_target *ti)
1029 {
1030 	struct crypt_config *cc = ti->private;
1031 
1032 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1033 }
1034 
1035 /* Message interface
1036  *	key set <key>
1037  *	key wipe
1038  */
1039 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1040 {
1041 	struct crypt_config *cc = ti->private;
1042 
1043 	if (argc < 2)
1044 		goto error;
1045 
1046 	if (!strnicmp(argv[0], MESG_STR("key"))) {
1047 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1048 			DMWARN("not suspended during key manipulation.");
1049 			return -EINVAL;
1050 		}
1051 		if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1052 			return crypt_set_key(cc, argv[2]);
1053 		if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1054 			return crypt_wipe_key(cc);
1055 	}
1056 
1057 error:
1058 	DMWARN("unrecognised message received.");
1059 	return -EINVAL;
1060 }
1061 
1062 static struct target_type crypt_target = {
1063 	.name   = "crypt",
1064 	.version= {1, 5, 0},
1065 	.module = THIS_MODULE,
1066 	.ctr    = crypt_ctr,
1067 	.dtr    = crypt_dtr,
1068 	.map    = crypt_map,
1069 	.status = crypt_status,
1070 	.postsuspend = crypt_postsuspend,
1071 	.preresume = crypt_preresume,
1072 	.resume = crypt_resume,
1073 	.message = crypt_message,
1074 };
1075 
1076 static int __init dm_crypt_init(void)
1077 {
1078 	int r;
1079 
1080 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1081 	if (!_crypt_io_pool)
1082 		return -ENOMEM;
1083 
1084 	r = dm_register_target(&crypt_target);
1085 	if (r < 0) {
1086 		DMERR("register failed %d", r);
1087 		kmem_cache_destroy(_crypt_io_pool);
1088 	}
1089 
1090 	return r;
1091 }
1092 
1093 static void __exit dm_crypt_exit(void)
1094 {
1095 	int r = dm_unregister_target(&crypt_target);
1096 
1097 	if (r < 0)
1098 		DMERR("unregister failed %d", r);
1099 
1100 	kmem_cache_destroy(_crypt_io_pool);
1101 }
1102 
1103 module_init(dm_crypt_init);
1104 module_exit(dm_crypt_exit);
1105 
1106 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1107 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1108 MODULE_LICENSE("GPL");
1109