1 /* 2 * Copyright (C) 2003 Jana Saout <jana@saout.de> 3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved. 5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com> 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/completion.h> 11 #include <linux/err.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/key.h> 16 #include <linux/bio.h> 17 #include <linux/blkdev.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/crypto.h> 21 #include <linux/workqueue.h> 22 #include <linux/kthread.h> 23 #include <linux/backing-dev.h> 24 #include <linux/atomic.h> 25 #include <linux/scatterlist.h> 26 #include <linux/rbtree.h> 27 #include <linux/ctype.h> 28 #include <asm/page.h> 29 #include <asm/unaligned.h> 30 #include <crypto/hash.h> 31 #include <crypto/md5.h> 32 #include <crypto/algapi.h> 33 #include <crypto/skcipher.h> 34 #include <keys/user-type.h> 35 36 #include <linux/device-mapper.h> 37 38 #define DM_MSG_PREFIX "crypt" 39 40 /* 41 * context holding the current state of a multi-part conversion 42 */ 43 struct convert_context { 44 struct completion restart; 45 struct bio *bio_in; 46 struct bio *bio_out; 47 struct bvec_iter iter_in; 48 struct bvec_iter iter_out; 49 sector_t cc_sector; 50 atomic_t cc_pending; 51 struct skcipher_request *req; 52 }; 53 54 /* 55 * per bio private data 56 */ 57 struct dm_crypt_io { 58 struct crypt_config *cc; 59 struct bio *base_bio; 60 struct work_struct work; 61 62 struct convert_context ctx; 63 64 atomic_t io_pending; 65 int error; 66 sector_t sector; 67 68 struct rb_node rb_node; 69 } CRYPTO_MINALIGN_ATTR; 70 71 struct dm_crypt_request { 72 struct convert_context *ctx; 73 struct scatterlist sg_in; 74 struct scatterlist sg_out; 75 sector_t iv_sector; 76 }; 77 78 struct crypt_config; 79 80 struct crypt_iv_operations { 81 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 82 const char *opts); 83 void (*dtr)(struct crypt_config *cc); 84 int (*init)(struct crypt_config *cc); 85 int (*wipe)(struct crypt_config *cc); 86 int (*generator)(struct crypt_config *cc, u8 *iv, 87 struct dm_crypt_request *dmreq); 88 int (*post)(struct crypt_config *cc, u8 *iv, 89 struct dm_crypt_request *dmreq); 90 }; 91 92 struct iv_essiv_private { 93 struct crypto_ahash *hash_tfm; 94 u8 *salt; 95 }; 96 97 struct iv_benbi_private { 98 int shift; 99 }; 100 101 #define LMK_SEED_SIZE 64 /* hash + 0 */ 102 struct iv_lmk_private { 103 struct crypto_shash *hash_tfm; 104 u8 *seed; 105 }; 106 107 #define TCW_WHITENING_SIZE 16 108 struct iv_tcw_private { 109 struct crypto_shash *crc32_tfm; 110 u8 *iv_seed; 111 u8 *whitening; 112 }; 113 114 /* 115 * Crypt: maps a linear range of a block device 116 * and encrypts / decrypts at the same time. 117 */ 118 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, 119 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD }; 120 121 /* 122 * The fields in here must be read only after initialization. 123 */ 124 struct crypt_config { 125 struct dm_dev *dev; 126 sector_t start; 127 128 /* 129 * pool for per bio private data, crypto requests and 130 * encryption requeusts/buffer pages 131 */ 132 mempool_t *req_pool; 133 mempool_t *page_pool; 134 struct bio_set *bs; 135 struct mutex bio_alloc_lock; 136 137 struct workqueue_struct *io_queue; 138 struct workqueue_struct *crypt_queue; 139 140 struct task_struct *write_thread; 141 wait_queue_head_t write_thread_wait; 142 struct rb_root write_tree; 143 144 char *cipher; 145 char *cipher_string; 146 char *key_string; 147 148 const struct crypt_iv_operations *iv_gen_ops; 149 union { 150 struct iv_essiv_private essiv; 151 struct iv_benbi_private benbi; 152 struct iv_lmk_private lmk; 153 struct iv_tcw_private tcw; 154 } iv_gen_private; 155 sector_t iv_offset; 156 unsigned int iv_size; 157 158 /* ESSIV: struct crypto_cipher *essiv_tfm */ 159 void *iv_private; 160 struct crypto_skcipher **tfms; 161 unsigned tfms_count; 162 163 /* 164 * Layout of each crypto request: 165 * 166 * struct skcipher_request 167 * context 168 * padding 169 * struct dm_crypt_request 170 * padding 171 * IV 172 * 173 * The padding is added so that dm_crypt_request and the IV are 174 * correctly aligned. 175 */ 176 unsigned int dmreq_start; 177 178 unsigned int per_bio_data_size; 179 180 unsigned long flags; 181 unsigned int key_size; 182 unsigned int key_parts; /* independent parts in key buffer */ 183 unsigned int key_extra_size; /* additional keys length */ 184 u8 key[0]; 185 }; 186 187 #define MIN_IOS 64 188 189 static void clone_init(struct dm_crypt_io *, struct bio *); 190 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 191 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq); 192 193 /* 194 * Use this to access cipher attributes that are the same for each CPU. 195 */ 196 static struct crypto_skcipher *any_tfm(struct crypt_config *cc) 197 { 198 return cc->tfms[0]; 199 } 200 201 /* 202 * Different IV generation algorithms: 203 * 204 * plain: the initial vector is the 32-bit little-endian version of the sector 205 * number, padded with zeros if necessary. 206 * 207 * plain64: the initial vector is the 64-bit little-endian version of the sector 208 * number, padded with zeros if necessary. 209 * 210 * essiv: "encrypted sector|salt initial vector", the sector number is 211 * encrypted with the bulk cipher using a salt as key. The salt 212 * should be derived from the bulk cipher's key via hashing. 213 * 214 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 215 * (needed for LRW-32-AES and possible other narrow block modes) 216 * 217 * null: the initial vector is always zero. Provides compatibility with 218 * obsolete loop_fish2 devices. Do not use for new devices. 219 * 220 * lmk: Compatible implementation of the block chaining mode used 221 * by the Loop-AES block device encryption system 222 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 223 * It operates on full 512 byte sectors and uses CBC 224 * with an IV derived from the sector number, the data and 225 * optionally extra IV seed. 226 * This means that after decryption the first block 227 * of sector must be tweaked according to decrypted data. 228 * Loop-AES can use three encryption schemes: 229 * version 1: is plain aes-cbc mode 230 * version 2: uses 64 multikey scheme with lmk IV generator 231 * version 3: the same as version 2 with additional IV seed 232 * (it uses 65 keys, last key is used as IV seed) 233 * 234 * tcw: Compatible implementation of the block chaining mode used 235 * by the TrueCrypt device encryption system (prior to version 4.1). 236 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat 237 * It operates on full 512 byte sectors and uses CBC 238 * with an IV derived from initial key and the sector number. 239 * In addition, whitening value is applied on every sector, whitening 240 * is calculated from initial key, sector number and mixed using CRC32. 241 * Note that this encryption scheme is vulnerable to watermarking attacks 242 * and should be used for old compatible containers access only. 243 * 244 * plumb: unimplemented, see: 245 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 246 */ 247 248 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 249 struct dm_crypt_request *dmreq) 250 { 251 memset(iv, 0, cc->iv_size); 252 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 253 254 return 0; 255 } 256 257 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 258 struct dm_crypt_request *dmreq) 259 { 260 memset(iv, 0, cc->iv_size); 261 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 262 263 return 0; 264 } 265 266 /* Initialise ESSIV - compute salt but no local memory allocations */ 267 static int crypt_iv_essiv_init(struct crypt_config *cc) 268 { 269 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 270 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm); 271 struct scatterlist sg; 272 struct crypto_cipher *essiv_tfm; 273 int err; 274 275 sg_init_one(&sg, cc->key, cc->key_size); 276 ahash_request_set_tfm(req, essiv->hash_tfm); 277 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); 278 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size); 279 280 err = crypto_ahash_digest(req); 281 ahash_request_zero(req); 282 if (err) 283 return err; 284 285 essiv_tfm = cc->iv_private; 286 287 err = crypto_cipher_setkey(essiv_tfm, essiv->salt, 288 crypto_ahash_digestsize(essiv->hash_tfm)); 289 if (err) 290 return err; 291 292 return 0; 293 } 294 295 /* Wipe salt and reset key derived from volume key */ 296 static int crypt_iv_essiv_wipe(struct crypt_config *cc) 297 { 298 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 299 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm); 300 struct crypto_cipher *essiv_tfm; 301 int r, err = 0; 302 303 memset(essiv->salt, 0, salt_size); 304 305 essiv_tfm = cc->iv_private; 306 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size); 307 if (r) 308 err = r; 309 310 return err; 311 } 312 313 /* Set up per cpu cipher state */ 314 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc, 315 struct dm_target *ti, 316 u8 *salt, unsigned saltsize) 317 { 318 struct crypto_cipher *essiv_tfm; 319 int err; 320 321 /* Setup the essiv_tfm with the given salt */ 322 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC); 323 if (IS_ERR(essiv_tfm)) { 324 ti->error = "Error allocating crypto tfm for ESSIV"; 325 return essiv_tfm; 326 } 327 328 if (crypto_cipher_blocksize(essiv_tfm) != 329 crypto_skcipher_ivsize(any_tfm(cc))) { 330 ti->error = "Block size of ESSIV cipher does " 331 "not match IV size of block cipher"; 332 crypto_free_cipher(essiv_tfm); 333 return ERR_PTR(-EINVAL); 334 } 335 336 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize); 337 if (err) { 338 ti->error = "Failed to set key for ESSIV cipher"; 339 crypto_free_cipher(essiv_tfm); 340 return ERR_PTR(err); 341 } 342 343 return essiv_tfm; 344 } 345 346 static void crypt_iv_essiv_dtr(struct crypt_config *cc) 347 { 348 struct crypto_cipher *essiv_tfm; 349 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 350 351 crypto_free_ahash(essiv->hash_tfm); 352 essiv->hash_tfm = NULL; 353 354 kzfree(essiv->salt); 355 essiv->salt = NULL; 356 357 essiv_tfm = cc->iv_private; 358 359 if (essiv_tfm) 360 crypto_free_cipher(essiv_tfm); 361 362 cc->iv_private = NULL; 363 } 364 365 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, 366 const char *opts) 367 { 368 struct crypto_cipher *essiv_tfm = NULL; 369 struct crypto_ahash *hash_tfm = NULL; 370 u8 *salt = NULL; 371 int err; 372 373 if (!opts) { 374 ti->error = "Digest algorithm missing for ESSIV mode"; 375 return -EINVAL; 376 } 377 378 /* Allocate hash algorithm */ 379 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC); 380 if (IS_ERR(hash_tfm)) { 381 ti->error = "Error initializing ESSIV hash"; 382 err = PTR_ERR(hash_tfm); 383 goto bad; 384 } 385 386 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL); 387 if (!salt) { 388 ti->error = "Error kmallocing salt storage in ESSIV"; 389 err = -ENOMEM; 390 goto bad; 391 } 392 393 cc->iv_gen_private.essiv.salt = salt; 394 cc->iv_gen_private.essiv.hash_tfm = hash_tfm; 395 396 essiv_tfm = setup_essiv_cpu(cc, ti, salt, 397 crypto_ahash_digestsize(hash_tfm)); 398 if (IS_ERR(essiv_tfm)) { 399 crypt_iv_essiv_dtr(cc); 400 return PTR_ERR(essiv_tfm); 401 } 402 cc->iv_private = essiv_tfm; 403 404 return 0; 405 406 bad: 407 if (hash_tfm && !IS_ERR(hash_tfm)) 408 crypto_free_ahash(hash_tfm); 409 kfree(salt); 410 return err; 411 } 412 413 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 414 struct dm_crypt_request *dmreq) 415 { 416 struct crypto_cipher *essiv_tfm = cc->iv_private; 417 418 memset(iv, 0, cc->iv_size); 419 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 420 crypto_cipher_encrypt_one(essiv_tfm, iv, iv); 421 422 return 0; 423 } 424 425 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 426 const char *opts) 427 { 428 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc)); 429 int log = ilog2(bs); 430 431 /* we need to calculate how far we must shift the sector count 432 * to get the cipher block count, we use this shift in _gen */ 433 434 if (1 << log != bs) { 435 ti->error = "cypher blocksize is not a power of 2"; 436 return -EINVAL; 437 } 438 439 if (log > 9) { 440 ti->error = "cypher blocksize is > 512"; 441 return -EINVAL; 442 } 443 444 cc->iv_gen_private.benbi.shift = 9 - log; 445 446 return 0; 447 } 448 449 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 450 { 451 } 452 453 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 454 struct dm_crypt_request *dmreq) 455 { 456 __be64 val; 457 458 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 459 460 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 461 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 462 463 return 0; 464 } 465 466 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 467 struct dm_crypt_request *dmreq) 468 { 469 memset(iv, 0, cc->iv_size); 470 471 return 0; 472 } 473 474 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 475 { 476 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 477 478 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) 479 crypto_free_shash(lmk->hash_tfm); 480 lmk->hash_tfm = NULL; 481 482 kzfree(lmk->seed); 483 lmk->seed = NULL; 484 } 485 486 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 487 const char *opts) 488 { 489 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 490 491 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0); 492 if (IS_ERR(lmk->hash_tfm)) { 493 ti->error = "Error initializing LMK hash"; 494 return PTR_ERR(lmk->hash_tfm); 495 } 496 497 /* No seed in LMK version 2 */ 498 if (cc->key_parts == cc->tfms_count) { 499 lmk->seed = NULL; 500 return 0; 501 } 502 503 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 504 if (!lmk->seed) { 505 crypt_iv_lmk_dtr(cc); 506 ti->error = "Error kmallocing seed storage in LMK"; 507 return -ENOMEM; 508 } 509 510 return 0; 511 } 512 513 static int crypt_iv_lmk_init(struct crypt_config *cc) 514 { 515 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 516 int subkey_size = cc->key_size / cc->key_parts; 517 518 /* LMK seed is on the position of LMK_KEYS + 1 key */ 519 if (lmk->seed) 520 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 521 crypto_shash_digestsize(lmk->hash_tfm)); 522 523 return 0; 524 } 525 526 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 527 { 528 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 529 530 if (lmk->seed) 531 memset(lmk->seed, 0, LMK_SEED_SIZE); 532 533 return 0; 534 } 535 536 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 537 struct dm_crypt_request *dmreq, 538 u8 *data) 539 { 540 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 541 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); 542 struct md5_state md5state; 543 __le32 buf[4]; 544 int i, r; 545 546 desc->tfm = lmk->hash_tfm; 547 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 548 549 r = crypto_shash_init(desc); 550 if (r) 551 return r; 552 553 if (lmk->seed) { 554 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); 555 if (r) 556 return r; 557 } 558 559 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 560 r = crypto_shash_update(desc, data + 16, 16 * 31); 561 if (r) 562 return r; 563 564 /* Sector is cropped to 56 bits here */ 565 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 566 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 567 buf[2] = cpu_to_le32(4024); 568 buf[3] = 0; 569 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); 570 if (r) 571 return r; 572 573 /* No MD5 padding here */ 574 r = crypto_shash_export(desc, &md5state); 575 if (r) 576 return r; 577 578 for (i = 0; i < MD5_HASH_WORDS; i++) 579 __cpu_to_le32s(&md5state.hash[i]); 580 memcpy(iv, &md5state.hash, cc->iv_size); 581 582 return 0; 583 } 584 585 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 586 struct dm_crypt_request *dmreq) 587 { 588 u8 *src; 589 int r = 0; 590 591 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 592 src = kmap_atomic(sg_page(&dmreq->sg_in)); 593 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset); 594 kunmap_atomic(src); 595 } else 596 memset(iv, 0, cc->iv_size); 597 598 return r; 599 } 600 601 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 602 struct dm_crypt_request *dmreq) 603 { 604 u8 *dst; 605 int r; 606 607 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 608 return 0; 609 610 dst = kmap_atomic(sg_page(&dmreq->sg_out)); 611 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset); 612 613 /* Tweak the first block of plaintext sector */ 614 if (!r) 615 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size); 616 617 kunmap_atomic(dst); 618 return r; 619 } 620 621 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 622 { 623 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 624 625 kzfree(tcw->iv_seed); 626 tcw->iv_seed = NULL; 627 kzfree(tcw->whitening); 628 tcw->whitening = NULL; 629 630 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) 631 crypto_free_shash(tcw->crc32_tfm); 632 tcw->crc32_tfm = NULL; 633 } 634 635 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 636 const char *opts) 637 { 638 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 639 640 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 641 ti->error = "Wrong key size for TCW"; 642 return -EINVAL; 643 } 644 645 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0); 646 if (IS_ERR(tcw->crc32_tfm)) { 647 ti->error = "Error initializing CRC32 in TCW"; 648 return PTR_ERR(tcw->crc32_tfm); 649 } 650 651 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 652 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 653 if (!tcw->iv_seed || !tcw->whitening) { 654 crypt_iv_tcw_dtr(cc); 655 ti->error = "Error allocating seed storage in TCW"; 656 return -ENOMEM; 657 } 658 659 return 0; 660 } 661 662 static int crypt_iv_tcw_init(struct crypt_config *cc) 663 { 664 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 665 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 666 667 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 668 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 669 TCW_WHITENING_SIZE); 670 671 return 0; 672 } 673 674 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 675 { 676 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 677 678 memset(tcw->iv_seed, 0, cc->iv_size); 679 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 680 681 return 0; 682 } 683 684 static int crypt_iv_tcw_whitening(struct crypt_config *cc, 685 struct dm_crypt_request *dmreq, 686 u8 *data) 687 { 688 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 689 __le64 sector = cpu_to_le64(dmreq->iv_sector); 690 u8 buf[TCW_WHITENING_SIZE]; 691 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm); 692 int i, r; 693 694 /* xor whitening with sector number */ 695 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE); 696 crypto_xor(buf, (u8 *)§or, 8); 697 crypto_xor(&buf[8], (u8 *)§or, 8); 698 699 /* calculate crc32 for every 32bit part and xor it */ 700 desc->tfm = tcw->crc32_tfm; 701 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 702 for (i = 0; i < 4; i++) { 703 r = crypto_shash_init(desc); 704 if (r) 705 goto out; 706 r = crypto_shash_update(desc, &buf[i * 4], 4); 707 if (r) 708 goto out; 709 r = crypto_shash_final(desc, &buf[i * 4]); 710 if (r) 711 goto out; 712 } 713 crypto_xor(&buf[0], &buf[12], 4); 714 crypto_xor(&buf[4], &buf[8], 4); 715 716 /* apply whitening (8 bytes) to whole sector */ 717 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 718 crypto_xor(data + i * 8, buf, 8); 719 out: 720 memzero_explicit(buf, sizeof(buf)); 721 return r; 722 } 723 724 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 725 struct dm_crypt_request *dmreq) 726 { 727 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 728 __le64 sector = cpu_to_le64(dmreq->iv_sector); 729 u8 *src; 730 int r = 0; 731 732 /* Remove whitening from ciphertext */ 733 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 734 src = kmap_atomic(sg_page(&dmreq->sg_in)); 735 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset); 736 kunmap_atomic(src); 737 } 738 739 /* Calculate IV */ 740 memcpy(iv, tcw->iv_seed, cc->iv_size); 741 crypto_xor(iv, (u8 *)§or, 8); 742 if (cc->iv_size > 8) 743 crypto_xor(&iv[8], (u8 *)§or, cc->iv_size - 8); 744 745 return r; 746 } 747 748 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 749 struct dm_crypt_request *dmreq) 750 { 751 u8 *dst; 752 int r; 753 754 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 755 return 0; 756 757 /* Apply whitening on ciphertext */ 758 dst = kmap_atomic(sg_page(&dmreq->sg_out)); 759 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset); 760 kunmap_atomic(dst); 761 762 return r; 763 } 764 765 static const struct crypt_iv_operations crypt_iv_plain_ops = { 766 .generator = crypt_iv_plain_gen 767 }; 768 769 static const struct crypt_iv_operations crypt_iv_plain64_ops = { 770 .generator = crypt_iv_plain64_gen 771 }; 772 773 static const struct crypt_iv_operations crypt_iv_essiv_ops = { 774 .ctr = crypt_iv_essiv_ctr, 775 .dtr = crypt_iv_essiv_dtr, 776 .init = crypt_iv_essiv_init, 777 .wipe = crypt_iv_essiv_wipe, 778 .generator = crypt_iv_essiv_gen 779 }; 780 781 static const struct crypt_iv_operations crypt_iv_benbi_ops = { 782 .ctr = crypt_iv_benbi_ctr, 783 .dtr = crypt_iv_benbi_dtr, 784 .generator = crypt_iv_benbi_gen 785 }; 786 787 static const struct crypt_iv_operations crypt_iv_null_ops = { 788 .generator = crypt_iv_null_gen 789 }; 790 791 static const struct crypt_iv_operations crypt_iv_lmk_ops = { 792 .ctr = crypt_iv_lmk_ctr, 793 .dtr = crypt_iv_lmk_dtr, 794 .init = crypt_iv_lmk_init, 795 .wipe = crypt_iv_lmk_wipe, 796 .generator = crypt_iv_lmk_gen, 797 .post = crypt_iv_lmk_post 798 }; 799 800 static const struct crypt_iv_operations crypt_iv_tcw_ops = { 801 .ctr = crypt_iv_tcw_ctr, 802 .dtr = crypt_iv_tcw_dtr, 803 .init = crypt_iv_tcw_init, 804 .wipe = crypt_iv_tcw_wipe, 805 .generator = crypt_iv_tcw_gen, 806 .post = crypt_iv_tcw_post 807 }; 808 809 static void crypt_convert_init(struct crypt_config *cc, 810 struct convert_context *ctx, 811 struct bio *bio_out, struct bio *bio_in, 812 sector_t sector) 813 { 814 ctx->bio_in = bio_in; 815 ctx->bio_out = bio_out; 816 if (bio_in) 817 ctx->iter_in = bio_in->bi_iter; 818 if (bio_out) 819 ctx->iter_out = bio_out->bi_iter; 820 ctx->cc_sector = sector + cc->iv_offset; 821 init_completion(&ctx->restart); 822 } 823 824 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 825 struct skcipher_request *req) 826 { 827 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 828 } 829 830 static struct skcipher_request *req_of_dmreq(struct crypt_config *cc, 831 struct dm_crypt_request *dmreq) 832 { 833 return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start); 834 } 835 836 static u8 *iv_of_dmreq(struct crypt_config *cc, 837 struct dm_crypt_request *dmreq) 838 { 839 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 840 crypto_skcipher_alignmask(any_tfm(cc)) + 1); 841 } 842 843 static int crypt_convert_block(struct crypt_config *cc, 844 struct convert_context *ctx, 845 struct skcipher_request *req) 846 { 847 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 848 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 849 struct dm_crypt_request *dmreq; 850 u8 *iv; 851 int r; 852 853 dmreq = dmreq_of_req(cc, req); 854 iv = iv_of_dmreq(cc, dmreq); 855 856 dmreq->iv_sector = ctx->cc_sector; 857 dmreq->ctx = ctx; 858 sg_init_table(&dmreq->sg_in, 1); 859 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT, 860 bv_in.bv_offset); 861 862 sg_init_table(&dmreq->sg_out, 1); 863 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT, 864 bv_out.bv_offset); 865 866 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT); 867 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT); 868 869 if (cc->iv_gen_ops) { 870 r = cc->iv_gen_ops->generator(cc, iv, dmreq); 871 if (r < 0) 872 return r; 873 } 874 875 skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out, 876 1 << SECTOR_SHIFT, iv); 877 878 if (bio_data_dir(ctx->bio_in) == WRITE) 879 r = crypto_skcipher_encrypt(req); 880 else 881 r = crypto_skcipher_decrypt(req); 882 883 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 884 r = cc->iv_gen_ops->post(cc, iv, dmreq); 885 886 return r; 887 } 888 889 static void kcryptd_async_done(struct crypto_async_request *async_req, 890 int error); 891 892 static void crypt_alloc_req(struct crypt_config *cc, 893 struct convert_context *ctx) 894 { 895 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1); 896 897 if (!ctx->req) 898 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO); 899 900 skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]); 901 902 /* 903 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 904 * requests if driver request queue is full. 905 */ 906 skcipher_request_set_callback(ctx->req, 907 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 908 kcryptd_async_done, dmreq_of_req(cc, ctx->req)); 909 } 910 911 static void crypt_free_req(struct crypt_config *cc, 912 struct skcipher_request *req, struct bio *base_bio) 913 { 914 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 915 916 if ((struct skcipher_request *)(io + 1) != req) 917 mempool_free(req, cc->req_pool); 918 } 919 920 /* 921 * Encrypt / decrypt data from one bio to another one (can be the same one) 922 */ 923 static int crypt_convert(struct crypt_config *cc, 924 struct convert_context *ctx) 925 { 926 int r; 927 928 atomic_set(&ctx->cc_pending, 1); 929 930 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 931 932 crypt_alloc_req(cc, ctx); 933 934 atomic_inc(&ctx->cc_pending); 935 936 r = crypt_convert_block(cc, ctx, ctx->req); 937 938 switch (r) { 939 /* 940 * The request was queued by a crypto driver 941 * but the driver request queue is full, let's wait. 942 */ 943 case -EBUSY: 944 wait_for_completion(&ctx->restart); 945 reinit_completion(&ctx->restart); 946 /* fall through */ 947 /* 948 * The request is queued and processed asynchronously, 949 * completion function kcryptd_async_done() will be called. 950 */ 951 case -EINPROGRESS: 952 ctx->req = NULL; 953 ctx->cc_sector++; 954 continue; 955 /* 956 * The request was already processed (synchronously). 957 */ 958 case 0: 959 atomic_dec(&ctx->cc_pending); 960 ctx->cc_sector++; 961 cond_resched(); 962 continue; 963 964 /* There was an error while processing the request. */ 965 default: 966 atomic_dec(&ctx->cc_pending); 967 return r; 968 } 969 } 970 971 return 0; 972 } 973 974 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); 975 976 /* 977 * Generate a new unfragmented bio with the given size 978 * This should never violate the device limitations (but only because 979 * max_segment_size is being constrained to PAGE_SIZE). 980 * 981 * This function may be called concurrently. If we allocate from the mempool 982 * concurrently, there is a possibility of deadlock. For example, if we have 983 * mempool of 256 pages, two processes, each wanting 256, pages allocate from 984 * the mempool concurrently, it may deadlock in a situation where both processes 985 * have allocated 128 pages and the mempool is exhausted. 986 * 987 * In order to avoid this scenario we allocate the pages under a mutex. 988 * 989 * In order to not degrade performance with excessive locking, we try 990 * non-blocking allocations without a mutex first but on failure we fallback 991 * to blocking allocations with a mutex. 992 */ 993 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size) 994 { 995 struct crypt_config *cc = io->cc; 996 struct bio *clone; 997 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 998 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; 999 unsigned i, len, remaining_size; 1000 struct page *page; 1001 1002 retry: 1003 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1004 mutex_lock(&cc->bio_alloc_lock); 1005 1006 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs); 1007 if (!clone) 1008 goto return_clone; 1009 1010 clone_init(io, clone); 1011 1012 remaining_size = size; 1013 1014 for (i = 0; i < nr_iovecs; i++) { 1015 page = mempool_alloc(cc->page_pool, gfp_mask); 1016 if (!page) { 1017 crypt_free_buffer_pages(cc, clone); 1018 bio_put(clone); 1019 gfp_mask |= __GFP_DIRECT_RECLAIM; 1020 goto retry; 1021 } 1022 1023 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size; 1024 1025 bio_add_page(clone, page, len, 0); 1026 1027 remaining_size -= len; 1028 } 1029 1030 return_clone: 1031 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1032 mutex_unlock(&cc->bio_alloc_lock); 1033 1034 return clone; 1035 } 1036 1037 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1038 { 1039 unsigned int i; 1040 struct bio_vec *bv; 1041 1042 bio_for_each_segment_all(bv, clone, i) { 1043 BUG_ON(!bv->bv_page); 1044 mempool_free(bv->bv_page, cc->page_pool); 1045 bv->bv_page = NULL; 1046 } 1047 } 1048 1049 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, 1050 struct bio *bio, sector_t sector) 1051 { 1052 io->cc = cc; 1053 io->base_bio = bio; 1054 io->sector = sector; 1055 io->error = 0; 1056 io->ctx.req = NULL; 1057 atomic_set(&io->io_pending, 0); 1058 } 1059 1060 static void crypt_inc_pending(struct dm_crypt_io *io) 1061 { 1062 atomic_inc(&io->io_pending); 1063 } 1064 1065 /* 1066 * One of the bios was finished. Check for completion of 1067 * the whole request and correctly clean up the buffer. 1068 */ 1069 static void crypt_dec_pending(struct dm_crypt_io *io) 1070 { 1071 struct crypt_config *cc = io->cc; 1072 struct bio *base_bio = io->base_bio; 1073 int error = io->error; 1074 1075 if (!atomic_dec_and_test(&io->io_pending)) 1076 return; 1077 1078 if (io->ctx.req) 1079 crypt_free_req(cc, io->ctx.req, base_bio); 1080 1081 base_bio->bi_error = error; 1082 bio_endio(base_bio); 1083 } 1084 1085 /* 1086 * kcryptd/kcryptd_io: 1087 * 1088 * Needed because it would be very unwise to do decryption in an 1089 * interrupt context. 1090 * 1091 * kcryptd performs the actual encryption or decryption. 1092 * 1093 * kcryptd_io performs the IO submission. 1094 * 1095 * They must be separated as otherwise the final stages could be 1096 * starved by new requests which can block in the first stages due 1097 * to memory allocation. 1098 * 1099 * The work is done per CPU global for all dm-crypt instances. 1100 * They should not depend on each other and do not block. 1101 */ 1102 static void crypt_endio(struct bio *clone) 1103 { 1104 struct dm_crypt_io *io = clone->bi_private; 1105 struct crypt_config *cc = io->cc; 1106 unsigned rw = bio_data_dir(clone); 1107 int error; 1108 1109 /* 1110 * free the processed pages 1111 */ 1112 if (rw == WRITE) 1113 crypt_free_buffer_pages(cc, clone); 1114 1115 error = clone->bi_error; 1116 bio_put(clone); 1117 1118 if (rw == READ && !error) { 1119 kcryptd_queue_crypt(io); 1120 return; 1121 } 1122 1123 if (unlikely(error)) 1124 io->error = error; 1125 1126 crypt_dec_pending(io); 1127 } 1128 1129 static void clone_init(struct dm_crypt_io *io, struct bio *clone) 1130 { 1131 struct crypt_config *cc = io->cc; 1132 1133 clone->bi_private = io; 1134 clone->bi_end_io = crypt_endio; 1135 clone->bi_bdev = cc->dev->bdev; 1136 clone->bi_opf = io->base_bio->bi_opf; 1137 } 1138 1139 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1140 { 1141 struct crypt_config *cc = io->cc; 1142 struct bio *clone; 1143 1144 /* 1145 * We need the original biovec array in order to decrypt 1146 * the whole bio data *afterwards* -- thanks to immutable 1147 * biovecs we don't need to worry about the block layer 1148 * modifying the biovec array; so leverage bio_clone_fast(). 1149 */ 1150 clone = bio_clone_fast(io->base_bio, gfp, cc->bs); 1151 if (!clone) 1152 return 1; 1153 1154 crypt_inc_pending(io); 1155 1156 clone_init(io, clone); 1157 clone->bi_iter.bi_sector = cc->start + io->sector; 1158 1159 generic_make_request(clone); 1160 return 0; 1161 } 1162 1163 static void kcryptd_io_read_work(struct work_struct *work) 1164 { 1165 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1166 1167 crypt_inc_pending(io); 1168 if (kcryptd_io_read(io, GFP_NOIO)) 1169 io->error = -ENOMEM; 1170 crypt_dec_pending(io); 1171 } 1172 1173 static void kcryptd_queue_read(struct dm_crypt_io *io) 1174 { 1175 struct crypt_config *cc = io->cc; 1176 1177 INIT_WORK(&io->work, kcryptd_io_read_work); 1178 queue_work(cc->io_queue, &io->work); 1179 } 1180 1181 static void kcryptd_io_write(struct dm_crypt_io *io) 1182 { 1183 struct bio *clone = io->ctx.bio_out; 1184 1185 generic_make_request(clone); 1186 } 1187 1188 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) 1189 1190 static int dmcrypt_write(void *data) 1191 { 1192 struct crypt_config *cc = data; 1193 struct dm_crypt_io *io; 1194 1195 while (1) { 1196 struct rb_root write_tree; 1197 struct blk_plug plug; 1198 1199 DECLARE_WAITQUEUE(wait, current); 1200 1201 spin_lock_irq(&cc->write_thread_wait.lock); 1202 continue_locked: 1203 1204 if (!RB_EMPTY_ROOT(&cc->write_tree)) 1205 goto pop_from_list; 1206 1207 set_current_state(TASK_INTERRUPTIBLE); 1208 __add_wait_queue(&cc->write_thread_wait, &wait); 1209 1210 spin_unlock_irq(&cc->write_thread_wait.lock); 1211 1212 if (unlikely(kthread_should_stop())) { 1213 set_current_state(TASK_RUNNING); 1214 remove_wait_queue(&cc->write_thread_wait, &wait); 1215 break; 1216 } 1217 1218 schedule(); 1219 1220 set_current_state(TASK_RUNNING); 1221 spin_lock_irq(&cc->write_thread_wait.lock); 1222 __remove_wait_queue(&cc->write_thread_wait, &wait); 1223 goto continue_locked; 1224 1225 pop_from_list: 1226 write_tree = cc->write_tree; 1227 cc->write_tree = RB_ROOT; 1228 spin_unlock_irq(&cc->write_thread_wait.lock); 1229 1230 BUG_ON(rb_parent(write_tree.rb_node)); 1231 1232 /* 1233 * Note: we cannot walk the tree here with rb_next because 1234 * the structures may be freed when kcryptd_io_write is called. 1235 */ 1236 blk_start_plug(&plug); 1237 do { 1238 io = crypt_io_from_node(rb_first(&write_tree)); 1239 rb_erase(&io->rb_node, &write_tree); 1240 kcryptd_io_write(io); 1241 } while (!RB_EMPTY_ROOT(&write_tree)); 1242 blk_finish_plug(&plug); 1243 } 1244 return 0; 1245 } 1246 1247 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 1248 { 1249 struct bio *clone = io->ctx.bio_out; 1250 struct crypt_config *cc = io->cc; 1251 unsigned long flags; 1252 sector_t sector; 1253 struct rb_node **rbp, *parent; 1254 1255 if (unlikely(io->error < 0)) { 1256 crypt_free_buffer_pages(cc, clone); 1257 bio_put(clone); 1258 crypt_dec_pending(io); 1259 return; 1260 } 1261 1262 /* crypt_convert should have filled the clone bio */ 1263 BUG_ON(io->ctx.iter_out.bi_size); 1264 1265 clone->bi_iter.bi_sector = cc->start + io->sector; 1266 1267 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) { 1268 generic_make_request(clone); 1269 return; 1270 } 1271 1272 spin_lock_irqsave(&cc->write_thread_wait.lock, flags); 1273 rbp = &cc->write_tree.rb_node; 1274 parent = NULL; 1275 sector = io->sector; 1276 while (*rbp) { 1277 parent = *rbp; 1278 if (sector < crypt_io_from_node(parent)->sector) 1279 rbp = &(*rbp)->rb_left; 1280 else 1281 rbp = &(*rbp)->rb_right; 1282 } 1283 rb_link_node(&io->rb_node, parent, rbp); 1284 rb_insert_color(&io->rb_node, &cc->write_tree); 1285 1286 wake_up_locked(&cc->write_thread_wait); 1287 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags); 1288 } 1289 1290 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 1291 { 1292 struct crypt_config *cc = io->cc; 1293 struct bio *clone; 1294 int crypt_finished; 1295 sector_t sector = io->sector; 1296 int r; 1297 1298 /* 1299 * Prevent io from disappearing until this function completes. 1300 */ 1301 crypt_inc_pending(io); 1302 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector); 1303 1304 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 1305 if (unlikely(!clone)) { 1306 io->error = -EIO; 1307 goto dec; 1308 } 1309 1310 io->ctx.bio_out = clone; 1311 io->ctx.iter_out = clone->bi_iter; 1312 1313 sector += bio_sectors(clone); 1314 1315 crypt_inc_pending(io); 1316 r = crypt_convert(cc, &io->ctx); 1317 if (r) 1318 io->error = -EIO; 1319 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending); 1320 1321 /* Encryption was already finished, submit io now */ 1322 if (crypt_finished) { 1323 kcryptd_crypt_write_io_submit(io, 0); 1324 io->sector = sector; 1325 } 1326 1327 dec: 1328 crypt_dec_pending(io); 1329 } 1330 1331 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 1332 { 1333 crypt_dec_pending(io); 1334 } 1335 1336 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 1337 { 1338 struct crypt_config *cc = io->cc; 1339 int r = 0; 1340 1341 crypt_inc_pending(io); 1342 1343 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 1344 io->sector); 1345 1346 r = crypt_convert(cc, &io->ctx); 1347 if (r < 0) 1348 io->error = -EIO; 1349 1350 if (atomic_dec_and_test(&io->ctx.cc_pending)) 1351 kcryptd_crypt_read_done(io); 1352 1353 crypt_dec_pending(io); 1354 } 1355 1356 static void kcryptd_async_done(struct crypto_async_request *async_req, 1357 int error) 1358 { 1359 struct dm_crypt_request *dmreq = async_req->data; 1360 struct convert_context *ctx = dmreq->ctx; 1361 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1362 struct crypt_config *cc = io->cc; 1363 1364 /* 1365 * A request from crypto driver backlog is going to be processed now, 1366 * finish the completion and continue in crypt_convert(). 1367 * (Callback will be called for the second time for this request.) 1368 */ 1369 if (error == -EINPROGRESS) { 1370 complete(&ctx->restart); 1371 return; 1372 } 1373 1374 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 1375 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq); 1376 1377 if (error < 0) 1378 io->error = -EIO; 1379 1380 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); 1381 1382 if (!atomic_dec_and_test(&ctx->cc_pending)) 1383 return; 1384 1385 if (bio_data_dir(io->base_bio) == READ) 1386 kcryptd_crypt_read_done(io); 1387 else 1388 kcryptd_crypt_write_io_submit(io, 1); 1389 } 1390 1391 static void kcryptd_crypt(struct work_struct *work) 1392 { 1393 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1394 1395 if (bio_data_dir(io->base_bio) == READ) 1396 kcryptd_crypt_read_convert(io); 1397 else 1398 kcryptd_crypt_write_convert(io); 1399 } 1400 1401 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 1402 { 1403 struct crypt_config *cc = io->cc; 1404 1405 INIT_WORK(&io->work, kcryptd_crypt); 1406 queue_work(cc->crypt_queue, &io->work); 1407 } 1408 1409 /* 1410 * Decode key from its hex representation 1411 */ 1412 static int crypt_decode_key(u8 *key, char *hex, unsigned int size) 1413 { 1414 char buffer[3]; 1415 unsigned int i; 1416 1417 buffer[2] = '\0'; 1418 1419 for (i = 0; i < size; i++) { 1420 buffer[0] = *hex++; 1421 buffer[1] = *hex++; 1422 1423 if (kstrtou8(buffer, 16, &key[i])) 1424 return -EINVAL; 1425 } 1426 1427 if (*hex != '\0') 1428 return -EINVAL; 1429 1430 return 0; 1431 } 1432 1433 static void crypt_free_tfms(struct crypt_config *cc) 1434 { 1435 unsigned i; 1436 1437 if (!cc->tfms) 1438 return; 1439 1440 for (i = 0; i < cc->tfms_count; i++) 1441 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) { 1442 crypto_free_skcipher(cc->tfms[i]); 1443 cc->tfms[i] = NULL; 1444 } 1445 1446 kfree(cc->tfms); 1447 cc->tfms = NULL; 1448 } 1449 1450 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 1451 { 1452 unsigned i; 1453 int err; 1454 1455 cc->tfms = kzalloc(cc->tfms_count * sizeof(struct crypto_skcipher *), 1456 GFP_KERNEL); 1457 if (!cc->tfms) 1458 return -ENOMEM; 1459 1460 for (i = 0; i < cc->tfms_count; i++) { 1461 cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0); 1462 if (IS_ERR(cc->tfms[i])) { 1463 err = PTR_ERR(cc->tfms[i]); 1464 crypt_free_tfms(cc); 1465 return err; 1466 } 1467 } 1468 1469 return 0; 1470 } 1471 1472 static int crypt_setkey(struct crypt_config *cc) 1473 { 1474 unsigned subkey_size; 1475 int err = 0, i, r; 1476 1477 /* Ignore extra keys (which are used for IV etc) */ 1478 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 1479 1480 for (i = 0; i < cc->tfms_count; i++) { 1481 r = crypto_skcipher_setkey(cc->tfms[i], 1482 cc->key + (i * subkey_size), 1483 subkey_size); 1484 if (r) 1485 err = r; 1486 } 1487 1488 return err; 1489 } 1490 1491 #ifdef CONFIG_KEYS 1492 1493 static bool contains_whitespace(const char *str) 1494 { 1495 while (*str) 1496 if (isspace(*str++)) 1497 return true; 1498 return false; 1499 } 1500 1501 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 1502 { 1503 char *new_key_string, *key_desc; 1504 int ret; 1505 struct key *key; 1506 const struct user_key_payload *ukp; 1507 1508 /* 1509 * Reject key_string with whitespace. dm core currently lacks code for 1510 * proper whitespace escaping in arguments on DM_TABLE_STATUS path. 1511 */ 1512 if (contains_whitespace(key_string)) { 1513 DMERR("whitespace chars not allowed in key string"); 1514 return -EINVAL; 1515 } 1516 1517 /* look for next ':' separating key_type from key_description */ 1518 key_desc = strpbrk(key_string, ":"); 1519 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) 1520 return -EINVAL; 1521 1522 if (strncmp(key_string, "logon:", key_desc - key_string + 1) && 1523 strncmp(key_string, "user:", key_desc - key_string + 1)) 1524 return -EINVAL; 1525 1526 new_key_string = kstrdup(key_string, GFP_KERNEL); 1527 if (!new_key_string) 1528 return -ENOMEM; 1529 1530 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user, 1531 key_desc + 1, NULL); 1532 if (IS_ERR(key)) { 1533 kzfree(new_key_string); 1534 return PTR_ERR(key); 1535 } 1536 1537 rcu_read_lock(); 1538 1539 ukp = user_key_payload(key); 1540 if (!ukp) { 1541 rcu_read_unlock(); 1542 key_put(key); 1543 kzfree(new_key_string); 1544 return -EKEYREVOKED; 1545 } 1546 1547 if (cc->key_size != ukp->datalen) { 1548 rcu_read_unlock(); 1549 key_put(key); 1550 kzfree(new_key_string); 1551 return -EINVAL; 1552 } 1553 1554 memcpy(cc->key, ukp->data, cc->key_size); 1555 1556 rcu_read_unlock(); 1557 key_put(key); 1558 1559 /* clear the flag since following operations may invalidate previously valid key */ 1560 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1561 1562 ret = crypt_setkey(cc); 1563 1564 /* wipe the kernel key payload copy in each case */ 1565 memset(cc->key, 0, cc->key_size * sizeof(u8)); 1566 1567 if (!ret) { 1568 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1569 kzfree(cc->key_string); 1570 cc->key_string = new_key_string; 1571 } else 1572 kzfree(new_key_string); 1573 1574 return ret; 1575 } 1576 1577 static int get_key_size(char **key_string) 1578 { 1579 char *colon, dummy; 1580 int ret; 1581 1582 if (*key_string[0] != ':') 1583 return strlen(*key_string) >> 1; 1584 1585 /* look for next ':' in key string */ 1586 colon = strpbrk(*key_string + 1, ":"); 1587 if (!colon) 1588 return -EINVAL; 1589 1590 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') 1591 return -EINVAL; 1592 1593 *key_string = colon; 1594 1595 /* remaining key string should be :<logon|user>:<key_desc> */ 1596 1597 return ret; 1598 } 1599 1600 #else 1601 1602 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 1603 { 1604 return -EINVAL; 1605 } 1606 1607 static int get_key_size(char **key_string) 1608 { 1609 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1; 1610 } 1611 1612 #endif 1613 1614 static int crypt_set_key(struct crypt_config *cc, char *key) 1615 { 1616 int r = -EINVAL; 1617 int key_string_len = strlen(key); 1618 1619 /* Hyphen (which gives a key_size of zero) means there is no key. */ 1620 if (!cc->key_size && strcmp(key, "-")) 1621 goto out; 1622 1623 /* ':' means the key is in kernel keyring, short-circuit normal key processing */ 1624 if (key[0] == ':') { 1625 r = crypt_set_keyring_key(cc, key + 1); 1626 goto out; 1627 } 1628 1629 /* clear the flag since following operations may invalidate previously valid key */ 1630 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1631 1632 /* wipe references to any kernel keyring key */ 1633 kzfree(cc->key_string); 1634 cc->key_string = NULL; 1635 1636 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0) 1637 goto out; 1638 1639 r = crypt_setkey(cc); 1640 if (!r) 1641 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1642 1643 out: 1644 /* Hex key string not needed after here, so wipe it. */ 1645 memset(key, '0', key_string_len); 1646 1647 return r; 1648 } 1649 1650 static int crypt_wipe_key(struct crypt_config *cc) 1651 { 1652 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1653 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 1654 kzfree(cc->key_string); 1655 cc->key_string = NULL; 1656 1657 return crypt_setkey(cc); 1658 } 1659 1660 static void crypt_dtr(struct dm_target *ti) 1661 { 1662 struct crypt_config *cc = ti->private; 1663 1664 ti->private = NULL; 1665 1666 if (!cc) 1667 return; 1668 1669 if (cc->write_thread) 1670 kthread_stop(cc->write_thread); 1671 1672 if (cc->io_queue) 1673 destroy_workqueue(cc->io_queue); 1674 if (cc->crypt_queue) 1675 destroy_workqueue(cc->crypt_queue); 1676 1677 crypt_free_tfms(cc); 1678 1679 if (cc->bs) 1680 bioset_free(cc->bs); 1681 1682 mempool_destroy(cc->page_pool); 1683 mempool_destroy(cc->req_pool); 1684 1685 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 1686 cc->iv_gen_ops->dtr(cc); 1687 1688 if (cc->dev) 1689 dm_put_device(ti, cc->dev); 1690 1691 kzfree(cc->cipher); 1692 kzfree(cc->cipher_string); 1693 kzfree(cc->key_string); 1694 1695 /* Must zero key material before freeing */ 1696 kzfree(cc); 1697 } 1698 1699 static int crypt_ctr_cipher(struct dm_target *ti, 1700 char *cipher_in, char *key) 1701 { 1702 struct crypt_config *cc = ti->private; 1703 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount; 1704 char *cipher_api = NULL; 1705 int ret = -EINVAL; 1706 char dummy; 1707 1708 /* Convert to crypto api definition? */ 1709 if (strchr(cipher_in, '(')) { 1710 ti->error = "Bad cipher specification"; 1711 return -EINVAL; 1712 } 1713 1714 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 1715 if (!cc->cipher_string) 1716 goto bad_mem; 1717 1718 /* 1719 * Legacy dm-crypt cipher specification 1720 * cipher[:keycount]-mode-iv:ivopts 1721 */ 1722 tmp = cipher_in; 1723 keycount = strsep(&tmp, "-"); 1724 cipher = strsep(&keycount, ":"); 1725 1726 if (!keycount) 1727 cc->tfms_count = 1; 1728 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 1729 !is_power_of_2(cc->tfms_count)) { 1730 ti->error = "Bad cipher key count specification"; 1731 return -EINVAL; 1732 } 1733 cc->key_parts = cc->tfms_count; 1734 cc->key_extra_size = 0; 1735 1736 cc->cipher = kstrdup(cipher, GFP_KERNEL); 1737 if (!cc->cipher) 1738 goto bad_mem; 1739 1740 chainmode = strsep(&tmp, "-"); 1741 ivopts = strsep(&tmp, "-"); 1742 ivmode = strsep(&ivopts, ":"); 1743 1744 if (tmp) 1745 DMWARN("Ignoring unexpected additional cipher options"); 1746 1747 /* 1748 * For compatibility with the original dm-crypt mapping format, if 1749 * only the cipher name is supplied, use cbc-plain. 1750 */ 1751 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) { 1752 chainmode = "cbc"; 1753 ivmode = "plain"; 1754 } 1755 1756 if (strcmp(chainmode, "ecb") && !ivmode) { 1757 ti->error = "IV mechanism required"; 1758 return -EINVAL; 1759 } 1760 1761 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 1762 if (!cipher_api) 1763 goto bad_mem; 1764 1765 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 1766 "%s(%s)", chainmode, cipher); 1767 if (ret < 0) { 1768 kfree(cipher_api); 1769 goto bad_mem; 1770 } 1771 1772 /* Allocate cipher */ 1773 ret = crypt_alloc_tfms(cc, cipher_api); 1774 if (ret < 0) { 1775 ti->error = "Error allocating crypto tfm"; 1776 goto bad; 1777 } 1778 1779 /* Initialize IV */ 1780 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 1781 if (cc->iv_size) 1782 /* at least a 64 bit sector number should fit in our buffer */ 1783 cc->iv_size = max(cc->iv_size, 1784 (unsigned int)(sizeof(u64) / sizeof(u8))); 1785 else if (ivmode) { 1786 DMWARN("Selected cipher does not support IVs"); 1787 ivmode = NULL; 1788 } 1789 1790 /* Choose ivmode, see comments at iv code. */ 1791 if (ivmode == NULL) 1792 cc->iv_gen_ops = NULL; 1793 else if (strcmp(ivmode, "plain") == 0) 1794 cc->iv_gen_ops = &crypt_iv_plain_ops; 1795 else if (strcmp(ivmode, "plain64") == 0) 1796 cc->iv_gen_ops = &crypt_iv_plain64_ops; 1797 else if (strcmp(ivmode, "essiv") == 0) 1798 cc->iv_gen_ops = &crypt_iv_essiv_ops; 1799 else if (strcmp(ivmode, "benbi") == 0) 1800 cc->iv_gen_ops = &crypt_iv_benbi_ops; 1801 else if (strcmp(ivmode, "null") == 0) 1802 cc->iv_gen_ops = &crypt_iv_null_ops; 1803 else if (strcmp(ivmode, "lmk") == 0) { 1804 cc->iv_gen_ops = &crypt_iv_lmk_ops; 1805 /* 1806 * Version 2 and 3 is recognised according 1807 * to length of provided multi-key string. 1808 * If present (version 3), last key is used as IV seed. 1809 * All keys (including IV seed) are always the same size. 1810 */ 1811 if (cc->key_size % cc->key_parts) { 1812 cc->key_parts++; 1813 cc->key_extra_size = cc->key_size / cc->key_parts; 1814 } 1815 } else if (strcmp(ivmode, "tcw") == 0) { 1816 cc->iv_gen_ops = &crypt_iv_tcw_ops; 1817 cc->key_parts += 2; /* IV + whitening */ 1818 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 1819 } else { 1820 ret = -EINVAL; 1821 ti->error = "Invalid IV mode"; 1822 goto bad; 1823 } 1824 1825 /* Initialize and set key */ 1826 ret = crypt_set_key(cc, key); 1827 if (ret < 0) { 1828 ti->error = "Error decoding and setting key"; 1829 goto bad; 1830 } 1831 1832 /* Allocate IV */ 1833 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 1834 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 1835 if (ret < 0) { 1836 ti->error = "Error creating IV"; 1837 goto bad; 1838 } 1839 } 1840 1841 /* Initialize IV (set keys for ESSIV etc) */ 1842 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 1843 ret = cc->iv_gen_ops->init(cc); 1844 if (ret < 0) { 1845 ti->error = "Error initialising IV"; 1846 goto bad; 1847 } 1848 } 1849 1850 ret = 0; 1851 bad: 1852 kfree(cipher_api); 1853 return ret; 1854 1855 bad_mem: 1856 ti->error = "Cannot allocate cipher strings"; 1857 return -ENOMEM; 1858 } 1859 1860 /* 1861 * Construct an encryption mapping: 1862 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> 1863 */ 1864 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1865 { 1866 struct crypt_config *cc; 1867 int key_size; 1868 unsigned int opt_params; 1869 unsigned long long tmpll; 1870 int ret; 1871 size_t iv_size_padding; 1872 struct dm_arg_set as; 1873 const char *opt_string; 1874 char dummy; 1875 1876 static struct dm_arg _args[] = { 1877 {0, 3, "Invalid number of feature args"}, 1878 }; 1879 1880 if (argc < 5) { 1881 ti->error = "Not enough arguments"; 1882 return -EINVAL; 1883 } 1884 1885 key_size = get_key_size(&argv[1]); 1886 if (key_size < 0) { 1887 ti->error = "Cannot parse key size"; 1888 return -EINVAL; 1889 } 1890 1891 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); 1892 if (!cc) { 1893 ti->error = "Cannot allocate encryption context"; 1894 return -ENOMEM; 1895 } 1896 cc->key_size = key_size; 1897 1898 ti->private = cc; 1899 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 1900 if (ret < 0) 1901 goto bad; 1902 1903 cc->dmreq_start = sizeof(struct skcipher_request); 1904 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); 1905 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); 1906 1907 if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) { 1908 /* Allocate the padding exactly */ 1909 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) 1910 & crypto_skcipher_alignmask(any_tfm(cc)); 1911 } else { 1912 /* 1913 * If the cipher requires greater alignment than kmalloc 1914 * alignment, we don't know the exact position of the 1915 * initialization vector. We must assume worst case. 1916 */ 1917 iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc)); 1918 } 1919 1920 ret = -ENOMEM; 1921 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + 1922 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size); 1923 if (!cc->req_pool) { 1924 ti->error = "Cannot allocate crypt request mempool"; 1925 goto bad; 1926 } 1927 1928 cc->per_bio_data_size = ti->per_io_data_size = 1929 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + 1930 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size, 1931 ARCH_KMALLOC_MINALIGN); 1932 1933 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0); 1934 if (!cc->page_pool) { 1935 ti->error = "Cannot allocate page mempool"; 1936 goto bad; 1937 } 1938 1939 cc->bs = bioset_create(MIN_IOS, 0); 1940 if (!cc->bs) { 1941 ti->error = "Cannot allocate crypt bioset"; 1942 goto bad; 1943 } 1944 1945 mutex_init(&cc->bio_alloc_lock); 1946 1947 ret = -EINVAL; 1948 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) { 1949 ti->error = "Invalid iv_offset sector"; 1950 goto bad; 1951 } 1952 cc->iv_offset = tmpll; 1953 1954 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); 1955 if (ret) { 1956 ti->error = "Device lookup failed"; 1957 goto bad; 1958 } 1959 1960 ret = -EINVAL; 1961 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) { 1962 ti->error = "Invalid device sector"; 1963 goto bad; 1964 } 1965 cc->start = tmpll; 1966 1967 argv += 5; 1968 argc -= 5; 1969 1970 /* Optional parameters */ 1971 if (argc) { 1972 as.argc = argc; 1973 as.argv = argv; 1974 1975 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 1976 if (ret) 1977 goto bad; 1978 1979 ret = -EINVAL; 1980 while (opt_params--) { 1981 opt_string = dm_shift_arg(&as); 1982 if (!opt_string) { 1983 ti->error = "Not enough feature arguments"; 1984 goto bad; 1985 } 1986 1987 if (!strcasecmp(opt_string, "allow_discards")) 1988 ti->num_discard_bios = 1; 1989 1990 else if (!strcasecmp(opt_string, "same_cpu_crypt")) 1991 set_bit(DM_CRYPT_SAME_CPU, &cc->flags); 1992 1993 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) 1994 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 1995 1996 else { 1997 ti->error = "Invalid feature arguments"; 1998 goto bad; 1999 } 2000 } 2001 } 2002 2003 ret = -ENOMEM; 2004 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1); 2005 if (!cc->io_queue) { 2006 ti->error = "Couldn't create kcryptd io queue"; 2007 goto bad; 2008 } 2009 2010 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 2011 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1); 2012 else 2013 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, 2014 num_online_cpus()); 2015 if (!cc->crypt_queue) { 2016 ti->error = "Couldn't create kcryptd queue"; 2017 goto bad; 2018 } 2019 2020 init_waitqueue_head(&cc->write_thread_wait); 2021 cc->write_tree = RB_ROOT; 2022 2023 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write"); 2024 if (IS_ERR(cc->write_thread)) { 2025 ret = PTR_ERR(cc->write_thread); 2026 cc->write_thread = NULL; 2027 ti->error = "Couldn't spawn write thread"; 2028 goto bad; 2029 } 2030 wake_up_process(cc->write_thread); 2031 2032 ti->num_flush_bios = 1; 2033 ti->discard_zeroes_data_unsupported = true; 2034 2035 return 0; 2036 2037 bad: 2038 crypt_dtr(ti); 2039 return ret; 2040 } 2041 2042 static int crypt_map(struct dm_target *ti, struct bio *bio) 2043 { 2044 struct dm_crypt_io *io; 2045 struct crypt_config *cc = ti->private; 2046 2047 /* 2048 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. 2049 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight 2050 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters 2051 */ 2052 if (unlikely(bio->bi_opf & REQ_PREFLUSH || 2053 bio_op(bio) == REQ_OP_DISCARD)) { 2054 bio->bi_bdev = cc->dev->bdev; 2055 if (bio_sectors(bio)) 2056 bio->bi_iter.bi_sector = cc->start + 2057 dm_target_offset(ti, bio->bi_iter.bi_sector); 2058 return DM_MAPIO_REMAPPED; 2059 } 2060 2061 /* 2062 * Check if bio is too large, split as needed. 2063 */ 2064 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) && 2065 bio_data_dir(bio) == WRITE) 2066 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT)); 2067 2068 io = dm_per_bio_data(bio, cc->per_bio_data_size); 2069 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 2070 io->ctx.req = (struct skcipher_request *)(io + 1); 2071 2072 if (bio_data_dir(io->base_bio) == READ) { 2073 if (kcryptd_io_read(io, GFP_NOWAIT)) 2074 kcryptd_queue_read(io); 2075 } else 2076 kcryptd_queue_crypt(io); 2077 2078 return DM_MAPIO_SUBMITTED; 2079 } 2080 2081 static void crypt_status(struct dm_target *ti, status_type_t type, 2082 unsigned status_flags, char *result, unsigned maxlen) 2083 { 2084 struct crypt_config *cc = ti->private; 2085 unsigned i, sz = 0; 2086 int num_feature_args = 0; 2087 2088 switch (type) { 2089 case STATUSTYPE_INFO: 2090 result[0] = '\0'; 2091 break; 2092 2093 case STATUSTYPE_TABLE: 2094 DMEMIT("%s ", cc->cipher_string); 2095 2096 if (cc->key_size > 0) { 2097 if (cc->key_string) 2098 DMEMIT(":%u:%s", cc->key_size, cc->key_string); 2099 else 2100 for (i = 0; i < cc->key_size; i++) 2101 DMEMIT("%02x", cc->key[i]); 2102 } else 2103 DMEMIT("-"); 2104 2105 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 2106 cc->dev->name, (unsigned long long)cc->start); 2107 2108 num_feature_args += !!ti->num_discard_bios; 2109 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); 2110 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 2111 if (num_feature_args) { 2112 DMEMIT(" %d", num_feature_args); 2113 if (ti->num_discard_bios) 2114 DMEMIT(" allow_discards"); 2115 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 2116 DMEMIT(" same_cpu_crypt"); 2117 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) 2118 DMEMIT(" submit_from_crypt_cpus"); 2119 } 2120 2121 break; 2122 } 2123 } 2124 2125 static void crypt_postsuspend(struct dm_target *ti) 2126 { 2127 struct crypt_config *cc = ti->private; 2128 2129 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 2130 } 2131 2132 static int crypt_preresume(struct dm_target *ti) 2133 { 2134 struct crypt_config *cc = ti->private; 2135 2136 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 2137 DMERR("aborting resume - crypt key is not set."); 2138 return -EAGAIN; 2139 } 2140 2141 return 0; 2142 } 2143 2144 static void crypt_resume(struct dm_target *ti) 2145 { 2146 struct crypt_config *cc = ti->private; 2147 2148 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 2149 } 2150 2151 /* Message interface 2152 * key set <key> 2153 * key wipe 2154 */ 2155 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv) 2156 { 2157 struct crypt_config *cc = ti->private; 2158 int key_size, ret = -EINVAL; 2159 2160 if (argc < 2) 2161 goto error; 2162 2163 if (!strcasecmp(argv[0], "key")) { 2164 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 2165 DMWARN("not suspended during key manipulation."); 2166 return -EINVAL; 2167 } 2168 if (argc == 3 && !strcasecmp(argv[1], "set")) { 2169 /* The key size may not be changed. */ 2170 key_size = get_key_size(&argv[2]); 2171 if (key_size < 0 || cc->key_size != key_size) { 2172 memset(argv[2], '0', strlen(argv[2])); 2173 return -EINVAL; 2174 } 2175 2176 ret = crypt_set_key(cc, argv[2]); 2177 if (ret) 2178 return ret; 2179 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 2180 ret = cc->iv_gen_ops->init(cc); 2181 return ret; 2182 } 2183 if (argc == 2 && !strcasecmp(argv[1], "wipe")) { 2184 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 2185 ret = cc->iv_gen_ops->wipe(cc); 2186 if (ret) 2187 return ret; 2188 } 2189 return crypt_wipe_key(cc); 2190 } 2191 } 2192 2193 error: 2194 DMWARN("unrecognised message received."); 2195 return -EINVAL; 2196 } 2197 2198 static int crypt_iterate_devices(struct dm_target *ti, 2199 iterate_devices_callout_fn fn, void *data) 2200 { 2201 struct crypt_config *cc = ti->private; 2202 2203 return fn(ti, cc->dev, cc->start, ti->len, data); 2204 } 2205 2206 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) 2207 { 2208 /* 2209 * Unfortunate constraint that is required to avoid the potential 2210 * for exceeding underlying device's max_segments limits -- due to 2211 * crypt_alloc_buffer() possibly allocating pages for the encryption 2212 * bio that are not as physically contiguous as the original bio. 2213 */ 2214 limits->max_segment_size = PAGE_SIZE; 2215 } 2216 2217 static struct target_type crypt_target = { 2218 .name = "crypt", 2219 .version = {1, 15, 0}, 2220 .module = THIS_MODULE, 2221 .ctr = crypt_ctr, 2222 .dtr = crypt_dtr, 2223 .map = crypt_map, 2224 .status = crypt_status, 2225 .postsuspend = crypt_postsuspend, 2226 .preresume = crypt_preresume, 2227 .resume = crypt_resume, 2228 .message = crypt_message, 2229 .iterate_devices = crypt_iterate_devices, 2230 .io_hints = crypt_io_hints, 2231 }; 2232 2233 static int __init dm_crypt_init(void) 2234 { 2235 int r; 2236 2237 r = dm_register_target(&crypt_target); 2238 if (r < 0) 2239 DMERR("register failed %d", r); 2240 2241 return r; 2242 } 2243 2244 static void __exit dm_crypt_exit(void) 2245 { 2246 dm_unregister_target(&crypt_target); 2247 } 2248 2249 module_init(dm_crypt_init); 2250 module_exit(dm_crypt_exit); 2251 2252 MODULE_AUTHOR("Jana Saout <jana@saout.de>"); 2253 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 2254 MODULE_LICENSE("GPL"); 2255