xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 5f32c314)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/backing-dev.h>
22 #include <linux/percpu.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <asm/page.h>
26 #include <asm/unaligned.h>
27 #include <crypto/hash.h>
28 #include <crypto/md5.h>
29 #include <crypto/algapi.h>
30 
31 #include <linux/device-mapper.h>
32 
33 #define DM_MSG_PREFIX "crypt"
34 
35 /*
36  * context holding the current state of a multi-part conversion
37  */
38 struct convert_context {
39 	struct completion restart;
40 	struct bio *bio_in;
41 	struct bio *bio_out;
42 	struct bvec_iter iter_in;
43 	struct bvec_iter iter_out;
44 	sector_t cc_sector;
45 	atomic_t cc_pending;
46 };
47 
48 /*
49  * per bio private data
50  */
51 struct dm_crypt_io {
52 	struct crypt_config *cc;
53 	struct bio *base_bio;
54 	struct work_struct work;
55 
56 	struct convert_context ctx;
57 
58 	atomic_t io_pending;
59 	int error;
60 	sector_t sector;
61 	struct dm_crypt_io *base_io;
62 };
63 
64 struct dm_crypt_request {
65 	struct convert_context *ctx;
66 	struct scatterlist sg_in;
67 	struct scatterlist sg_out;
68 	sector_t iv_sector;
69 };
70 
71 struct crypt_config;
72 
73 struct crypt_iv_operations {
74 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
75 		   const char *opts);
76 	void (*dtr)(struct crypt_config *cc);
77 	int (*init)(struct crypt_config *cc);
78 	int (*wipe)(struct crypt_config *cc);
79 	int (*generator)(struct crypt_config *cc, u8 *iv,
80 			 struct dm_crypt_request *dmreq);
81 	int (*post)(struct crypt_config *cc, u8 *iv,
82 		    struct dm_crypt_request *dmreq);
83 };
84 
85 struct iv_essiv_private {
86 	struct crypto_hash *hash_tfm;
87 	u8 *salt;
88 };
89 
90 struct iv_benbi_private {
91 	int shift;
92 };
93 
94 #define LMK_SEED_SIZE 64 /* hash + 0 */
95 struct iv_lmk_private {
96 	struct crypto_shash *hash_tfm;
97 	u8 *seed;
98 };
99 
100 #define TCW_WHITENING_SIZE 16
101 struct iv_tcw_private {
102 	struct crypto_shash *crc32_tfm;
103 	u8 *iv_seed;
104 	u8 *whitening;
105 };
106 
107 /*
108  * Crypt: maps a linear range of a block device
109  * and encrypts / decrypts at the same time.
110  */
111 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
112 
113 /*
114  * Duplicated per-CPU state for cipher.
115  */
116 struct crypt_cpu {
117 	struct ablkcipher_request *req;
118 };
119 
120 /*
121  * The fields in here must be read only after initialization,
122  * changing state should be in crypt_cpu.
123  */
124 struct crypt_config {
125 	struct dm_dev *dev;
126 	sector_t start;
127 
128 	/*
129 	 * pool for per bio private data, crypto requests and
130 	 * encryption requeusts/buffer pages
131 	 */
132 	mempool_t *io_pool;
133 	mempool_t *req_pool;
134 	mempool_t *page_pool;
135 	struct bio_set *bs;
136 
137 	struct workqueue_struct *io_queue;
138 	struct workqueue_struct *crypt_queue;
139 
140 	char *cipher;
141 	char *cipher_string;
142 
143 	struct crypt_iv_operations *iv_gen_ops;
144 	union {
145 		struct iv_essiv_private essiv;
146 		struct iv_benbi_private benbi;
147 		struct iv_lmk_private lmk;
148 		struct iv_tcw_private tcw;
149 	} iv_gen_private;
150 	sector_t iv_offset;
151 	unsigned int iv_size;
152 
153 	/*
154 	 * Duplicated per cpu state. Access through
155 	 * per_cpu_ptr() only.
156 	 */
157 	struct crypt_cpu __percpu *cpu;
158 
159 	/* ESSIV: struct crypto_cipher *essiv_tfm */
160 	void *iv_private;
161 	struct crypto_ablkcipher **tfms;
162 	unsigned tfms_count;
163 
164 	/*
165 	 * Layout of each crypto request:
166 	 *
167 	 *   struct ablkcipher_request
168 	 *      context
169 	 *      padding
170 	 *   struct dm_crypt_request
171 	 *      padding
172 	 *   IV
173 	 *
174 	 * The padding is added so that dm_crypt_request and the IV are
175 	 * correctly aligned.
176 	 */
177 	unsigned int dmreq_start;
178 
179 	unsigned long flags;
180 	unsigned int key_size;
181 	unsigned int key_parts;      /* independent parts in key buffer */
182 	unsigned int key_extra_size; /* additional keys length */
183 	u8 key[0];
184 };
185 
186 #define MIN_IOS        16
187 #define MIN_POOL_PAGES 32
188 
189 static struct kmem_cache *_crypt_io_pool;
190 
191 static void clone_init(struct dm_crypt_io *, struct bio *);
192 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
193 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
194 
195 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
196 {
197 	return this_cpu_ptr(cc->cpu);
198 }
199 
200 /*
201  * Use this to access cipher attributes that are the same for each CPU.
202  */
203 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
204 {
205 	return cc->tfms[0];
206 }
207 
208 /*
209  * Different IV generation algorithms:
210  *
211  * plain: the initial vector is the 32-bit little-endian version of the sector
212  *        number, padded with zeros if necessary.
213  *
214  * plain64: the initial vector is the 64-bit little-endian version of the sector
215  *        number, padded with zeros if necessary.
216  *
217  * essiv: "encrypted sector|salt initial vector", the sector number is
218  *        encrypted with the bulk cipher using a salt as key. The salt
219  *        should be derived from the bulk cipher's key via hashing.
220  *
221  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
222  *        (needed for LRW-32-AES and possible other narrow block modes)
223  *
224  * null: the initial vector is always zero.  Provides compatibility with
225  *       obsolete loop_fish2 devices.  Do not use for new devices.
226  *
227  * lmk:  Compatible implementation of the block chaining mode used
228  *       by the Loop-AES block device encryption system
229  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
230  *       It operates on full 512 byte sectors and uses CBC
231  *       with an IV derived from the sector number, the data and
232  *       optionally extra IV seed.
233  *       This means that after decryption the first block
234  *       of sector must be tweaked according to decrypted data.
235  *       Loop-AES can use three encryption schemes:
236  *         version 1: is plain aes-cbc mode
237  *         version 2: uses 64 multikey scheme with lmk IV generator
238  *         version 3: the same as version 2 with additional IV seed
239  *                   (it uses 65 keys, last key is used as IV seed)
240  *
241  * tcw:  Compatible implementation of the block chaining mode used
242  *       by the TrueCrypt device encryption system (prior to version 4.1).
243  *       For more info see: http://www.truecrypt.org
244  *       It operates on full 512 byte sectors and uses CBC
245  *       with an IV derived from initial key and the sector number.
246  *       In addition, whitening value is applied on every sector, whitening
247  *       is calculated from initial key, sector number and mixed using CRC32.
248  *       Note that this encryption scheme is vulnerable to watermarking attacks
249  *       and should be used for old compatible containers access only.
250  *
251  * plumb: unimplemented, see:
252  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
253  */
254 
255 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
256 			      struct dm_crypt_request *dmreq)
257 {
258 	memset(iv, 0, cc->iv_size);
259 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
260 
261 	return 0;
262 }
263 
264 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
265 				struct dm_crypt_request *dmreq)
266 {
267 	memset(iv, 0, cc->iv_size);
268 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
269 
270 	return 0;
271 }
272 
273 /* Initialise ESSIV - compute salt but no local memory allocations */
274 static int crypt_iv_essiv_init(struct crypt_config *cc)
275 {
276 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
277 	struct hash_desc desc;
278 	struct scatterlist sg;
279 	struct crypto_cipher *essiv_tfm;
280 	int err;
281 
282 	sg_init_one(&sg, cc->key, cc->key_size);
283 	desc.tfm = essiv->hash_tfm;
284 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
285 
286 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
287 	if (err)
288 		return err;
289 
290 	essiv_tfm = cc->iv_private;
291 
292 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
293 			    crypto_hash_digestsize(essiv->hash_tfm));
294 	if (err)
295 		return err;
296 
297 	return 0;
298 }
299 
300 /* Wipe salt and reset key derived from volume key */
301 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
302 {
303 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
304 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
305 	struct crypto_cipher *essiv_tfm;
306 	int r, err = 0;
307 
308 	memset(essiv->salt, 0, salt_size);
309 
310 	essiv_tfm = cc->iv_private;
311 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
312 	if (r)
313 		err = r;
314 
315 	return err;
316 }
317 
318 /* Set up per cpu cipher state */
319 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
320 					     struct dm_target *ti,
321 					     u8 *salt, unsigned saltsize)
322 {
323 	struct crypto_cipher *essiv_tfm;
324 	int err;
325 
326 	/* Setup the essiv_tfm with the given salt */
327 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
328 	if (IS_ERR(essiv_tfm)) {
329 		ti->error = "Error allocating crypto tfm for ESSIV";
330 		return essiv_tfm;
331 	}
332 
333 	if (crypto_cipher_blocksize(essiv_tfm) !=
334 	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
335 		ti->error = "Block size of ESSIV cipher does "
336 			    "not match IV size of block cipher";
337 		crypto_free_cipher(essiv_tfm);
338 		return ERR_PTR(-EINVAL);
339 	}
340 
341 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
342 	if (err) {
343 		ti->error = "Failed to set key for ESSIV cipher";
344 		crypto_free_cipher(essiv_tfm);
345 		return ERR_PTR(err);
346 	}
347 
348 	return essiv_tfm;
349 }
350 
351 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
352 {
353 	struct crypto_cipher *essiv_tfm;
354 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
355 
356 	crypto_free_hash(essiv->hash_tfm);
357 	essiv->hash_tfm = NULL;
358 
359 	kzfree(essiv->salt);
360 	essiv->salt = NULL;
361 
362 	essiv_tfm = cc->iv_private;
363 
364 	if (essiv_tfm)
365 		crypto_free_cipher(essiv_tfm);
366 
367 	cc->iv_private = NULL;
368 }
369 
370 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
371 			      const char *opts)
372 {
373 	struct crypto_cipher *essiv_tfm = NULL;
374 	struct crypto_hash *hash_tfm = NULL;
375 	u8 *salt = NULL;
376 	int err;
377 
378 	if (!opts) {
379 		ti->error = "Digest algorithm missing for ESSIV mode";
380 		return -EINVAL;
381 	}
382 
383 	/* Allocate hash algorithm */
384 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
385 	if (IS_ERR(hash_tfm)) {
386 		ti->error = "Error initializing ESSIV hash";
387 		err = PTR_ERR(hash_tfm);
388 		goto bad;
389 	}
390 
391 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
392 	if (!salt) {
393 		ti->error = "Error kmallocing salt storage in ESSIV";
394 		err = -ENOMEM;
395 		goto bad;
396 	}
397 
398 	cc->iv_gen_private.essiv.salt = salt;
399 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
400 
401 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
402 				crypto_hash_digestsize(hash_tfm));
403 	if (IS_ERR(essiv_tfm)) {
404 		crypt_iv_essiv_dtr(cc);
405 		return PTR_ERR(essiv_tfm);
406 	}
407 	cc->iv_private = essiv_tfm;
408 
409 	return 0;
410 
411 bad:
412 	if (hash_tfm && !IS_ERR(hash_tfm))
413 		crypto_free_hash(hash_tfm);
414 	kfree(salt);
415 	return err;
416 }
417 
418 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
419 			      struct dm_crypt_request *dmreq)
420 {
421 	struct crypto_cipher *essiv_tfm = cc->iv_private;
422 
423 	memset(iv, 0, cc->iv_size);
424 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
425 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
426 
427 	return 0;
428 }
429 
430 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
431 			      const char *opts)
432 {
433 	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
434 	int log = ilog2(bs);
435 
436 	/* we need to calculate how far we must shift the sector count
437 	 * to get the cipher block count, we use this shift in _gen */
438 
439 	if (1 << log != bs) {
440 		ti->error = "cypher blocksize is not a power of 2";
441 		return -EINVAL;
442 	}
443 
444 	if (log > 9) {
445 		ti->error = "cypher blocksize is > 512";
446 		return -EINVAL;
447 	}
448 
449 	cc->iv_gen_private.benbi.shift = 9 - log;
450 
451 	return 0;
452 }
453 
454 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
455 {
456 }
457 
458 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
459 			      struct dm_crypt_request *dmreq)
460 {
461 	__be64 val;
462 
463 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
464 
465 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
466 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
467 
468 	return 0;
469 }
470 
471 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
472 			     struct dm_crypt_request *dmreq)
473 {
474 	memset(iv, 0, cc->iv_size);
475 
476 	return 0;
477 }
478 
479 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
480 {
481 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
482 
483 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
484 		crypto_free_shash(lmk->hash_tfm);
485 	lmk->hash_tfm = NULL;
486 
487 	kzfree(lmk->seed);
488 	lmk->seed = NULL;
489 }
490 
491 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
492 			    const char *opts)
493 {
494 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
495 
496 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
497 	if (IS_ERR(lmk->hash_tfm)) {
498 		ti->error = "Error initializing LMK hash";
499 		return PTR_ERR(lmk->hash_tfm);
500 	}
501 
502 	/* No seed in LMK version 2 */
503 	if (cc->key_parts == cc->tfms_count) {
504 		lmk->seed = NULL;
505 		return 0;
506 	}
507 
508 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
509 	if (!lmk->seed) {
510 		crypt_iv_lmk_dtr(cc);
511 		ti->error = "Error kmallocing seed storage in LMK";
512 		return -ENOMEM;
513 	}
514 
515 	return 0;
516 }
517 
518 static int crypt_iv_lmk_init(struct crypt_config *cc)
519 {
520 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
521 	int subkey_size = cc->key_size / cc->key_parts;
522 
523 	/* LMK seed is on the position of LMK_KEYS + 1 key */
524 	if (lmk->seed)
525 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
526 		       crypto_shash_digestsize(lmk->hash_tfm));
527 
528 	return 0;
529 }
530 
531 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
532 {
533 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
534 
535 	if (lmk->seed)
536 		memset(lmk->seed, 0, LMK_SEED_SIZE);
537 
538 	return 0;
539 }
540 
541 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
542 			    struct dm_crypt_request *dmreq,
543 			    u8 *data)
544 {
545 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
546 	struct {
547 		struct shash_desc desc;
548 		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
549 	} sdesc;
550 	struct md5_state md5state;
551 	__le32 buf[4];
552 	int i, r;
553 
554 	sdesc.desc.tfm = lmk->hash_tfm;
555 	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
556 
557 	r = crypto_shash_init(&sdesc.desc);
558 	if (r)
559 		return r;
560 
561 	if (lmk->seed) {
562 		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
563 		if (r)
564 			return r;
565 	}
566 
567 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
568 	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
569 	if (r)
570 		return r;
571 
572 	/* Sector is cropped to 56 bits here */
573 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
574 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
575 	buf[2] = cpu_to_le32(4024);
576 	buf[3] = 0;
577 	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
578 	if (r)
579 		return r;
580 
581 	/* No MD5 padding here */
582 	r = crypto_shash_export(&sdesc.desc, &md5state);
583 	if (r)
584 		return r;
585 
586 	for (i = 0; i < MD5_HASH_WORDS; i++)
587 		__cpu_to_le32s(&md5state.hash[i]);
588 	memcpy(iv, &md5state.hash, cc->iv_size);
589 
590 	return 0;
591 }
592 
593 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
594 			    struct dm_crypt_request *dmreq)
595 {
596 	u8 *src;
597 	int r = 0;
598 
599 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
600 		src = kmap_atomic(sg_page(&dmreq->sg_in));
601 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
602 		kunmap_atomic(src);
603 	} else
604 		memset(iv, 0, cc->iv_size);
605 
606 	return r;
607 }
608 
609 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
610 			     struct dm_crypt_request *dmreq)
611 {
612 	u8 *dst;
613 	int r;
614 
615 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
616 		return 0;
617 
618 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
619 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
620 
621 	/* Tweak the first block of plaintext sector */
622 	if (!r)
623 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
624 
625 	kunmap_atomic(dst);
626 	return r;
627 }
628 
629 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
630 {
631 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
632 
633 	kzfree(tcw->iv_seed);
634 	tcw->iv_seed = NULL;
635 	kzfree(tcw->whitening);
636 	tcw->whitening = NULL;
637 
638 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
639 		crypto_free_shash(tcw->crc32_tfm);
640 	tcw->crc32_tfm = NULL;
641 }
642 
643 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
644 			    const char *opts)
645 {
646 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
647 
648 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
649 		ti->error = "Wrong key size for TCW";
650 		return -EINVAL;
651 	}
652 
653 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
654 	if (IS_ERR(tcw->crc32_tfm)) {
655 		ti->error = "Error initializing CRC32 in TCW";
656 		return PTR_ERR(tcw->crc32_tfm);
657 	}
658 
659 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
660 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
661 	if (!tcw->iv_seed || !tcw->whitening) {
662 		crypt_iv_tcw_dtr(cc);
663 		ti->error = "Error allocating seed storage in TCW";
664 		return -ENOMEM;
665 	}
666 
667 	return 0;
668 }
669 
670 static int crypt_iv_tcw_init(struct crypt_config *cc)
671 {
672 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
673 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
674 
675 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
676 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
677 	       TCW_WHITENING_SIZE);
678 
679 	return 0;
680 }
681 
682 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
683 {
684 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
685 
686 	memset(tcw->iv_seed, 0, cc->iv_size);
687 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
688 
689 	return 0;
690 }
691 
692 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
693 				  struct dm_crypt_request *dmreq,
694 				  u8 *data)
695 {
696 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
697 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
698 	u8 buf[TCW_WHITENING_SIZE];
699 	struct {
700 		struct shash_desc desc;
701 		char ctx[crypto_shash_descsize(tcw->crc32_tfm)];
702 	} sdesc;
703 	int i, r;
704 
705 	/* xor whitening with sector number */
706 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
707 	crypto_xor(buf, (u8 *)&sector, 8);
708 	crypto_xor(&buf[8], (u8 *)&sector, 8);
709 
710 	/* calculate crc32 for every 32bit part and xor it */
711 	sdesc.desc.tfm = tcw->crc32_tfm;
712 	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
713 	for (i = 0; i < 4; i++) {
714 		r = crypto_shash_init(&sdesc.desc);
715 		if (r)
716 			goto out;
717 		r = crypto_shash_update(&sdesc.desc, &buf[i * 4], 4);
718 		if (r)
719 			goto out;
720 		r = crypto_shash_final(&sdesc.desc, &buf[i * 4]);
721 		if (r)
722 			goto out;
723 	}
724 	crypto_xor(&buf[0], &buf[12], 4);
725 	crypto_xor(&buf[4], &buf[8], 4);
726 
727 	/* apply whitening (8 bytes) to whole sector */
728 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
729 		crypto_xor(data + i * 8, buf, 8);
730 out:
731 	memset(buf, 0, sizeof(buf));
732 	return r;
733 }
734 
735 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
736 			    struct dm_crypt_request *dmreq)
737 {
738 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
739 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
740 	u8 *src;
741 	int r = 0;
742 
743 	/* Remove whitening from ciphertext */
744 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
745 		src = kmap_atomic(sg_page(&dmreq->sg_in));
746 		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
747 		kunmap_atomic(src);
748 	}
749 
750 	/* Calculate IV */
751 	memcpy(iv, tcw->iv_seed, cc->iv_size);
752 	crypto_xor(iv, (u8 *)&sector, 8);
753 	if (cc->iv_size > 8)
754 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
755 
756 	return r;
757 }
758 
759 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
760 			     struct dm_crypt_request *dmreq)
761 {
762 	u8 *dst;
763 	int r;
764 
765 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
766 		return 0;
767 
768 	/* Apply whitening on ciphertext */
769 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
770 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
771 	kunmap_atomic(dst);
772 
773 	return r;
774 }
775 
776 static struct crypt_iv_operations crypt_iv_plain_ops = {
777 	.generator = crypt_iv_plain_gen
778 };
779 
780 static struct crypt_iv_operations crypt_iv_plain64_ops = {
781 	.generator = crypt_iv_plain64_gen
782 };
783 
784 static struct crypt_iv_operations crypt_iv_essiv_ops = {
785 	.ctr       = crypt_iv_essiv_ctr,
786 	.dtr       = crypt_iv_essiv_dtr,
787 	.init      = crypt_iv_essiv_init,
788 	.wipe      = crypt_iv_essiv_wipe,
789 	.generator = crypt_iv_essiv_gen
790 };
791 
792 static struct crypt_iv_operations crypt_iv_benbi_ops = {
793 	.ctr	   = crypt_iv_benbi_ctr,
794 	.dtr	   = crypt_iv_benbi_dtr,
795 	.generator = crypt_iv_benbi_gen
796 };
797 
798 static struct crypt_iv_operations crypt_iv_null_ops = {
799 	.generator = crypt_iv_null_gen
800 };
801 
802 static struct crypt_iv_operations crypt_iv_lmk_ops = {
803 	.ctr	   = crypt_iv_lmk_ctr,
804 	.dtr	   = crypt_iv_lmk_dtr,
805 	.init	   = crypt_iv_lmk_init,
806 	.wipe	   = crypt_iv_lmk_wipe,
807 	.generator = crypt_iv_lmk_gen,
808 	.post	   = crypt_iv_lmk_post
809 };
810 
811 static struct crypt_iv_operations crypt_iv_tcw_ops = {
812 	.ctr	   = crypt_iv_tcw_ctr,
813 	.dtr	   = crypt_iv_tcw_dtr,
814 	.init	   = crypt_iv_tcw_init,
815 	.wipe	   = crypt_iv_tcw_wipe,
816 	.generator = crypt_iv_tcw_gen,
817 	.post	   = crypt_iv_tcw_post
818 };
819 
820 static void crypt_convert_init(struct crypt_config *cc,
821 			       struct convert_context *ctx,
822 			       struct bio *bio_out, struct bio *bio_in,
823 			       sector_t sector)
824 {
825 	ctx->bio_in = bio_in;
826 	ctx->bio_out = bio_out;
827 	if (bio_in)
828 		ctx->iter_in = bio_in->bi_iter;
829 	if (bio_out)
830 		ctx->iter_out = bio_out->bi_iter;
831 	ctx->cc_sector = sector + cc->iv_offset;
832 	init_completion(&ctx->restart);
833 }
834 
835 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
836 					     struct ablkcipher_request *req)
837 {
838 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
839 }
840 
841 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
842 					       struct dm_crypt_request *dmreq)
843 {
844 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
845 }
846 
847 static u8 *iv_of_dmreq(struct crypt_config *cc,
848 		       struct dm_crypt_request *dmreq)
849 {
850 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
851 		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
852 }
853 
854 static int crypt_convert_block(struct crypt_config *cc,
855 			       struct convert_context *ctx,
856 			       struct ablkcipher_request *req)
857 {
858 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
859 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
860 	struct dm_crypt_request *dmreq;
861 	u8 *iv;
862 	int r;
863 
864 	dmreq = dmreq_of_req(cc, req);
865 	iv = iv_of_dmreq(cc, dmreq);
866 
867 	dmreq->iv_sector = ctx->cc_sector;
868 	dmreq->ctx = ctx;
869 	sg_init_table(&dmreq->sg_in, 1);
870 	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
871 		    bv_in.bv_offset);
872 
873 	sg_init_table(&dmreq->sg_out, 1);
874 	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
875 		    bv_out.bv_offset);
876 
877 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
878 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
879 
880 	if (cc->iv_gen_ops) {
881 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
882 		if (r < 0)
883 			return r;
884 	}
885 
886 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
887 				     1 << SECTOR_SHIFT, iv);
888 
889 	if (bio_data_dir(ctx->bio_in) == WRITE)
890 		r = crypto_ablkcipher_encrypt(req);
891 	else
892 		r = crypto_ablkcipher_decrypt(req);
893 
894 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
895 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
896 
897 	return r;
898 }
899 
900 static void kcryptd_async_done(struct crypto_async_request *async_req,
901 			       int error);
902 
903 static void crypt_alloc_req(struct crypt_config *cc,
904 			    struct convert_context *ctx)
905 {
906 	struct crypt_cpu *this_cc = this_crypt_config(cc);
907 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
908 
909 	if (!this_cc->req)
910 		this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
911 
912 	ablkcipher_request_set_tfm(this_cc->req, cc->tfms[key_index]);
913 	ablkcipher_request_set_callback(this_cc->req,
914 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
915 	    kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
916 }
917 
918 /*
919  * Encrypt / decrypt data from one bio to another one (can be the same one)
920  */
921 static int crypt_convert(struct crypt_config *cc,
922 			 struct convert_context *ctx)
923 {
924 	struct crypt_cpu *this_cc = this_crypt_config(cc);
925 	int r;
926 
927 	atomic_set(&ctx->cc_pending, 1);
928 
929 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
930 
931 		crypt_alloc_req(cc, ctx);
932 
933 		atomic_inc(&ctx->cc_pending);
934 
935 		r = crypt_convert_block(cc, ctx, this_cc->req);
936 
937 		switch (r) {
938 		/* async */
939 		case -EBUSY:
940 			wait_for_completion(&ctx->restart);
941 			reinit_completion(&ctx->restart);
942 			/* fall through*/
943 		case -EINPROGRESS:
944 			this_cc->req = NULL;
945 			ctx->cc_sector++;
946 			continue;
947 
948 		/* sync */
949 		case 0:
950 			atomic_dec(&ctx->cc_pending);
951 			ctx->cc_sector++;
952 			cond_resched();
953 			continue;
954 
955 		/* error */
956 		default:
957 			atomic_dec(&ctx->cc_pending);
958 			return r;
959 		}
960 	}
961 
962 	return 0;
963 }
964 
965 /*
966  * Generate a new unfragmented bio with the given size
967  * This should never violate the device limitations
968  * May return a smaller bio when running out of pages, indicated by
969  * *out_of_pages set to 1.
970  */
971 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
972 				      unsigned *out_of_pages)
973 {
974 	struct crypt_config *cc = io->cc;
975 	struct bio *clone;
976 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
977 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
978 	unsigned i, len;
979 	struct page *page;
980 
981 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
982 	if (!clone)
983 		return NULL;
984 
985 	clone_init(io, clone);
986 	*out_of_pages = 0;
987 
988 	for (i = 0; i < nr_iovecs; i++) {
989 		page = mempool_alloc(cc->page_pool, gfp_mask);
990 		if (!page) {
991 			*out_of_pages = 1;
992 			break;
993 		}
994 
995 		/*
996 		 * If additional pages cannot be allocated without waiting,
997 		 * return a partially-allocated bio.  The caller will then try
998 		 * to allocate more bios while submitting this partial bio.
999 		 */
1000 		gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
1001 
1002 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
1003 
1004 		if (!bio_add_page(clone, page, len, 0)) {
1005 			mempool_free(page, cc->page_pool);
1006 			break;
1007 		}
1008 
1009 		size -= len;
1010 	}
1011 
1012 	if (!clone->bi_iter.bi_size) {
1013 		bio_put(clone);
1014 		return NULL;
1015 	}
1016 
1017 	return clone;
1018 }
1019 
1020 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1021 {
1022 	unsigned int i;
1023 	struct bio_vec *bv;
1024 
1025 	bio_for_each_segment_all(bv, clone, i) {
1026 		BUG_ON(!bv->bv_page);
1027 		mempool_free(bv->bv_page, cc->page_pool);
1028 		bv->bv_page = NULL;
1029 	}
1030 }
1031 
1032 static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
1033 					  struct bio *bio, sector_t sector)
1034 {
1035 	struct dm_crypt_io *io;
1036 
1037 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
1038 	io->cc = cc;
1039 	io->base_bio = bio;
1040 	io->sector = sector;
1041 	io->error = 0;
1042 	io->base_io = NULL;
1043 	atomic_set(&io->io_pending, 0);
1044 
1045 	return io;
1046 }
1047 
1048 static void crypt_inc_pending(struct dm_crypt_io *io)
1049 {
1050 	atomic_inc(&io->io_pending);
1051 }
1052 
1053 /*
1054  * One of the bios was finished. Check for completion of
1055  * the whole request and correctly clean up the buffer.
1056  * If base_io is set, wait for the last fragment to complete.
1057  */
1058 static void crypt_dec_pending(struct dm_crypt_io *io)
1059 {
1060 	struct crypt_config *cc = io->cc;
1061 	struct bio *base_bio = io->base_bio;
1062 	struct dm_crypt_io *base_io = io->base_io;
1063 	int error = io->error;
1064 
1065 	if (!atomic_dec_and_test(&io->io_pending))
1066 		return;
1067 
1068 	mempool_free(io, cc->io_pool);
1069 
1070 	if (likely(!base_io))
1071 		bio_endio(base_bio, error);
1072 	else {
1073 		if (error && !base_io->error)
1074 			base_io->error = error;
1075 		crypt_dec_pending(base_io);
1076 	}
1077 }
1078 
1079 /*
1080  * kcryptd/kcryptd_io:
1081  *
1082  * Needed because it would be very unwise to do decryption in an
1083  * interrupt context.
1084  *
1085  * kcryptd performs the actual encryption or decryption.
1086  *
1087  * kcryptd_io performs the IO submission.
1088  *
1089  * They must be separated as otherwise the final stages could be
1090  * starved by new requests which can block in the first stages due
1091  * to memory allocation.
1092  *
1093  * The work is done per CPU global for all dm-crypt instances.
1094  * They should not depend on each other and do not block.
1095  */
1096 static void crypt_endio(struct bio *clone, int error)
1097 {
1098 	struct dm_crypt_io *io = clone->bi_private;
1099 	struct crypt_config *cc = io->cc;
1100 	unsigned rw = bio_data_dir(clone);
1101 
1102 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1103 		error = -EIO;
1104 
1105 	/*
1106 	 * free the processed pages
1107 	 */
1108 	if (rw == WRITE)
1109 		crypt_free_buffer_pages(cc, clone);
1110 
1111 	bio_put(clone);
1112 
1113 	if (rw == READ && !error) {
1114 		kcryptd_queue_crypt(io);
1115 		return;
1116 	}
1117 
1118 	if (unlikely(error))
1119 		io->error = error;
1120 
1121 	crypt_dec_pending(io);
1122 }
1123 
1124 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1125 {
1126 	struct crypt_config *cc = io->cc;
1127 
1128 	clone->bi_private = io;
1129 	clone->bi_end_io  = crypt_endio;
1130 	clone->bi_bdev    = cc->dev->bdev;
1131 	clone->bi_rw      = io->base_bio->bi_rw;
1132 }
1133 
1134 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1135 {
1136 	struct crypt_config *cc = io->cc;
1137 	struct bio *base_bio = io->base_bio;
1138 	struct bio *clone;
1139 
1140 	/*
1141 	 * The block layer might modify the bvec array, so always
1142 	 * copy the required bvecs because we need the original
1143 	 * one in order to decrypt the whole bio data *afterwards*.
1144 	 */
1145 	clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1146 	if (!clone)
1147 		return 1;
1148 
1149 	crypt_inc_pending(io);
1150 
1151 	clone_init(io, clone);
1152 	clone->bi_iter.bi_sector = cc->start + io->sector;
1153 
1154 	generic_make_request(clone);
1155 	return 0;
1156 }
1157 
1158 static void kcryptd_io_write(struct dm_crypt_io *io)
1159 {
1160 	struct bio *clone = io->ctx.bio_out;
1161 	generic_make_request(clone);
1162 }
1163 
1164 static void kcryptd_io(struct work_struct *work)
1165 {
1166 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1167 
1168 	if (bio_data_dir(io->base_bio) == READ) {
1169 		crypt_inc_pending(io);
1170 		if (kcryptd_io_read(io, GFP_NOIO))
1171 			io->error = -ENOMEM;
1172 		crypt_dec_pending(io);
1173 	} else
1174 		kcryptd_io_write(io);
1175 }
1176 
1177 static void kcryptd_queue_io(struct dm_crypt_io *io)
1178 {
1179 	struct crypt_config *cc = io->cc;
1180 
1181 	INIT_WORK(&io->work, kcryptd_io);
1182 	queue_work(cc->io_queue, &io->work);
1183 }
1184 
1185 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1186 {
1187 	struct bio *clone = io->ctx.bio_out;
1188 	struct crypt_config *cc = io->cc;
1189 
1190 	if (unlikely(io->error < 0)) {
1191 		crypt_free_buffer_pages(cc, clone);
1192 		bio_put(clone);
1193 		crypt_dec_pending(io);
1194 		return;
1195 	}
1196 
1197 	/* crypt_convert should have filled the clone bio */
1198 	BUG_ON(io->ctx.iter_out.bi_size);
1199 
1200 	clone->bi_iter.bi_sector = cc->start + io->sector;
1201 
1202 	if (async)
1203 		kcryptd_queue_io(io);
1204 	else
1205 		generic_make_request(clone);
1206 }
1207 
1208 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1209 {
1210 	struct crypt_config *cc = io->cc;
1211 	struct bio *clone;
1212 	struct dm_crypt_io *new_io;
1213 	int crypt_finished;
1214 	unsigned out_of_pages = 0;
1215 	unsigned remaining = io->base_bio->bi_iter.bi_size;
1216 	sector_t sector = io->sector;
1217 	int r;
1218 
1219 	/*
1220 	 * Prevent io from disappearing until this function completes.
1221 	 */
1222 	crypt_inc_pending(io);
1223 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1224 
1225 	/*
1226 	 * The allocated buffers can be smaller than the whole bio,
1227 	 * so repeat the whole process until all the data can be handled.
1228 	 */
1229 	while (remaining) {
1230 		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1231 		if (unlikely(!clone)) {
1232 			io->error = -ENOMEM;
1233 			break;
1234 		}
1235 
1236 		io->ctx.bio_out = clone;
1237 		io->ctx.iter_out = clone->bi_iter;
1238 
1239 		remaining -= clone->bi_iter.bi_size;
1240 		sector += bio_sectors(clone);
1241 
1242 		crypt_inc_pending(io);
1243 
1244 		r = crypt_convert(cc, &io->ctx);
1245 		if (r < 0)
1246 			io->error = -EIO;
1247 
1248 		crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1249 
1250 		/* Encryption was already finished, submit io now */
1251 		if (crypt_finished) {
1252 			kcryptd_crypt_write_io_submit(io, 0);
1253 
1254 			/*
1255 			 * If there was an error, do not try next fragments.
1256 			 * For async, error is processed in async handler.
1257 			 */
1258 			if (unlikely(r < 0))
1259 				break;
1260 
1261 			io->sector = sector;
1262 		}
1263 
1264 		/*
1265 		 * Out of memory -> run queues
1266 		 * But don't wait if split was due to the io size restriction
1267 		 */
1268 		if (unlikely(out_of_pages))
1269 			congestion_wait(BLK_RW_ASYNC, HZ/100);
1270 
1271 		/*
1272 		 * With async crypto it is unsafe to share the crypto context
1273 		 * between fragments, so switch to a new dm_crypt_io structure.
1274 		 */
1275 		if (unlikely(!crypt_finished && remaining)) {
1276 			new_io = crypt_io_alloc(io->cc, io->base_bio,
1277 						sector);
1278 			crypt_inc_pending(new_io);
1279 			crypt_convert_init(cc, &new_io->ctx, NULL,
1280 					   io->base_bio, sector);
1281 			new_io->ctx.iter_in = io->ctx.iter_in;
1282 
1283 			/*
1284 			 * Fragments after the first use the base_io
1285 			 * pending count.
1286 			 */
1287 			if (!io->base_io)
1288 				new_io->base_io = io;
1289 			else {
1290 				new_io->base_io = io->base_io;
1291 				crypt_inc_pending(io->base_io);
1292 				crypt_dec_pending(io);
1293 			}
1294 
1295 			io = new_io;
1296 		}
1297 	}
1298 
1299 	crypt_dec_pending(io);
1300 }
1301 
1302 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1303 {
1304 	crypt_dec_pending(io);
1305 }
1306 
1307 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1308 {
1309 	struct crypt_config *cc = io->cc;
1310 	int r = 0;
1311 
1312 	crypt_inc_pending(io);
1313 
1314 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1315 			   io->sector);
1316 
1317 	r = crypt_convert(cc, &io->ctx);
1318 	if (r < 0)
1319 		io->error = -EIO;
1320 
1321 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1322 		kcryptd_crypt_read_done(io);
1323 
1324 	crypt_dec_pending(io);
1325 }
1326 
1327 static void kcryptd_async_done(struct crypto_async_request *async_req,
1328 			       int error)
1329 {
1330 	struct dm_crypt_request *dmreq = async_req->data;
1331 	struct convert_context *ctx = dmreq->ctx;
1332 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1333 	struct crypt_config *cc = io->cc;
1334 
1335 	if (error == -EINPROGRESS) {
1336 		complete(&ctx->restart);
1337 		return;
1338 	}
1339 
1340 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1341 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1342 
1343 	if (error < 0)
1344 		io->error = -EIO;
1345 
1346 	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1347 
1348 	if (!atomic_dec_and_test(&ctx->cc_pending))
1349 		return;
1350 
1351 	if (bio_data_dir(io->base_bio) == READ)
1352 		kcryptd_crypt_read_done(io);
1353 	else
1354 		kcryptd_crypt_write_io_submit(io, 1);
1355 }
1356 
1357 static void kcryptd_crypt(struct work_struct *work)
1358 {
1359 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1360 
1361 	if (bio_data_dir(io->base_bio) == READ)
1362 		kcryptd_crypt_read_convert(io);
1363 	else
1364 		kcryptd_crypt_write_convert(io);
1365 }
1366 
1367 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1368 {
1369 	struct crypt_config *cc = io->cc;
1370 
1371 	INIT_WORK(&io->work, kcryptd_crypt);
1372 	queue_work(cc->crypt_queue, &io->work);
1373 }
1374 
1375 /*
1376  * Decode key from its hex representation
1377  */
1378 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1379 {
1380 	char buffer[3];
1381 	unsigned int i;
1382 
1383 	buffer[2] = '\0';
1384 
1385 	for (i = 0; i < size; i++) {
1386 		buffer[0] = *hex++;
1387 		buffer[1] = *hex++;
1388 
1389 		if (kstrtou8(buffer, 16, &key[i]))
1390 			return -EINVAL;
1391 	}
1392 
1393 	if (*hex != '\0')
1394 		return -EINVAL;
1395 
1396 	return 0;
1397 }
1398 
1399 static void crypt_free_tfms(struct crypt_config *cc)
1400 {
1401 	unsigned i;
1402 
1403 	if (!cc->tfms)
1404 		return;
1405 
1406 	for (i = 0; i < cc->tfms_count; i++)
1407 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1408 			crypto_free_ablkcipher(cc->tfms[i]);
1409 			cc->tfms[i] = NULL;
1410 		}
1411 
1412 	kfree(cc->tfms);
1413 	cc->tfms = NULL;
1414 }
1415 
1416 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1417 {
1418 	unsigned i;
1419 	int err;
1420 
1421 	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1422 			   GFP_KERNEL);
1423 	if (!cc->tfms)
1424 		return -ENOMEM;
1425 
1426 	for (i = 0; i < cc->tfms_count; i++) {
1427 		cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1428 		if (IS_ERR(cc->tfms[i])) {
1429 			err = PTR_ERR(cc->tfms[i]);
1430 			crypt_free_tfms(cc);
1431 			return err;
1432 		}
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 static int crypt_setkey_allcpus(struct crypt_config *cc)
1439 {
1440 	unsigned subkey_size;
1441 	int err = 0, i, r;
1442 
1443 	/* Ignore extra keys (which are used for IV etc) */
1444 	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1445 
1446 	for (i = 0; i < cc->tfms_count; i++) {
1447 		r = crypto_ablkcipher_setkey(cc->tfms[i],
1448 					     cc->key + (i * subkey_size),
1449 					     subkey_size);
1450 		if (r)
1451 			err = r;
1452 	}
1453 
1454 	return err;
1455 }
1456 
1457 static int crypt_set_key(struct crypt_config *cc, char *key)
1458 {
1459 	int r = -EINVAL;
1460 	int key_string_len = strlen(key);
1461 
1462 	/* The key size may not be changed. */
1463 	if (cc->key_size != (key_string_len >> 1))
1464 		goto out;
1465 
1466 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1467 	if (!cc->key_size && strcmp(key, "-"))
1468 		goto out;
1469 
1470 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1471 		goto out;
1472 
1473 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1474 
1475 	r = crypt_setkey_allcpus(cc);
1476 
1477 out:
1478 	/* Hex key string not needed after here, so wipe it. */
1479 	memset(key, '0', key_string_len);
1480 
1481 	return r;
1482 }
1483 
1484 static int crypt_wipe_key(struct crypt_config *cc)
1485 {
1486 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1487 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1488 
1489 	return crypt_setkey_allcpus(cc);
1490 }
1491 
1492 static void crypt_dtr(struct dm_target *ti)
1493 {
1494 	struct crypt_config *cc = ti->private;
1495 	struct crypt_cpu *cpu_cc;
1496 	int cpu;
1497 
1498 	ti->private = NULL;
1499 
1500 	if (!cc)
1501 		return;
1502 
1503 	if (cc->io_queue)
1504 		destroy_workqueue(cc->io_queue);
1505 	if (cc->crypt_queue)
1506 		destroy_workqueue(cc->crypt_queue);
1507 
1508 	if (cc->cpu)
1509 		for_each_possible_cpu(cpu) {
1510 			cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1511 			if (cpu_cc->req)
1512 				mempool_free(cpu_cc->req, cc->req_pool);
1513 		}
1514 
1515 	crypt_free_tfms(cc);
1516 
1517 	if (cc->bs)
1518 		bioset_free(cc->bs);
1519 
1520 	if (cc->page_pool)
1521 		mempool_destroy(cc->page_pool);
1522 	if (cc->req_pool)
1523 		mempool_destroy(cc->req_pool);
1524 	if (cc->io_pool)
1525 		mempool_destroy(cc->io_pool);
1526 
1527 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1528 		cc->iv_gen_ops->dtr(cc);
1529 
1530 	if (cc->dev)
1531 		dm_put_device(ti, cc->dev);
1532 
1533 	if (cc->cpu)
1534 		free_percpu(cc->cpu);
1535 
1536 	kzfree(cc->cipher);
1537 	kzfree(cc->cipher_string);
1538 
1539 	/* Must zero key material before freeing */
1540 	kzfree(cc);
1541 }
1542 
1543 static int crypt_ctr_cipher(struct dm_target *ti,
1544 			    char *cipher_in, char *key)
1545 {
1546 	struct crypt_config *cc = ti->private;
1547 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1548 	char *cipher_api = NULL;
1549 	int ret = -EINVAL;
1550 	char dummy;
1551 
1552 	/* Convert to crypto api definition? */
1553 	if (strchr(cipher_in, '(')) {
1554 		ti->error = "Bad cipher specification";
1555 		return -EINVAL;
1556 	}
1557 
1558 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1559 	if (!cc->cipher_string)
1560 		goto bad_mem;
1561 
1562 	/*
1563 	 * Legacy dm-crypt cipher specification
1564 	 * cipher[:keycount]-mode-iv:ivopts
1565 	 */
1566 	tmp = cipher_in;
1567 	keycount = strsep(&tmp, "-");
1568 	cipher = strsep(&keycount, ":");
1569 
1570 	if (!keycount)
1571 		cc->tfms_count = 1;
1572 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1573 		 !is_power_of_2(cc->tfms_count)) {
1574 		ti->error = "Bad cipher key count specification";
1575 		return -EINVAL;
1576 	}
1577 	cc->key_parts = cc->tfms_count;
1578 	cc->key_extra_size = 0;
1579 
1580 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1581 	if (!cc->cipher)
1582 		goto bad_mem;
1583 
1584 	chainmode = strsep(&tmp, "-");
1585 	ivopts = strsep(&tmp, "-");
1586 	ivmode = strsep(&ivopts, ":");
1587 
1588 	if (tmp)
1589 		DMWARN("Ignoring unexpected additional cipher options");
1590 
1591 	cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)),
1592 				 __alignof__(struct crypt_cpu));
1593 	if (!cc->cpu) {
1594 		ti->error = "Cannot allocate per cpu state";
1595 		goto bad_mem;
1596 	}
1597 
1598 	/*
1599 	 * For compatibility with the original dm-crypt mapping format, if
1600 	 * only the cipher name is supplied, use cbc-plain.
1601 	 */
1602 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1603 		chainmode = "cbc";
1604 		ivmode = "plain";
1605 	}
1606 
1607 	if (strcmp(chainmode, "ecb") && !ivmode) {
1608 		ti->error = "IV mechanism required";
1609 		return -EINVAL;
1610 	}
1611 
1612 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1613 	if (!cipher_api)
1614 		goto bad_mem;
1615 
1616 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1617 		       "%s(%s)", chainmode, cipher);
1618 	if (ret < 0) {
1619 		kfree(cipher_api);
1620 		goto bad_mem;
1621 	}
1622 
1623 	/* Allocate cipher */
1624 	ret = crypt_alloc_tfms(cc, cipher_api);
1625 	if (ret < 0) {
1626 		ti->error = "Error allocating crypto tfm";
1627 		goto bad;
1628 	}
1629 
1630 	/* Initialize IV */
1631 	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1632 	if (cc->iv_size)
1633 		/* at least a 64 bit sector number should fit in our buffer */
1634 		cc->iv_size = max(cc->iv_size,
1635 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1636 	else if (ivmode) {
1637 		DMWARN("Selected cipher does not support IVs");
1638 		ivmode = NULL;
1639 	}
1640 
1641 	/* Choose ivmode, see comments at iv code. */
1642 	if (ivmode == NULL)
1643 		cc->iv_gen_ops = NULL;
1644 	else if (strcmp(ivmode, "plain") == 0)
1645 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1646 	else if (strcmp(ivmode, "plain64") == 0)
1647 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1648 	else if (strcmp(ivmode, "essiv") == 0)
1649 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1650 	else if (strcmp(ivmode, "benbi") == 0)
1651 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1652 	else if (strcmp(ivmode, "null") == 0)
1653 		cc->iv_gen_ops = &crypt_iv_null_ops;
1654 	else if (strcmp(ivmode, "lmk") == 0) {
1655 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1656 		/*
1657 		 * Version 2 and 3 is recognised according
1658 		 * to length of provided multi-key string.
1659 		 * If present (version 3), last key is used as IV seed.
1660 		 * All keys (including IV seed) are always the same size.
1661 		 */
1662 		if (cc->key_size % cc->key_parts) {
1663 			cc->key_parts++;
1664 			cc->key_extra_size = cc->key_size / cc->key_parts;
1665 		}
1666 	} else if (strcmp(ivmode, "tcw") == 0) {
1667 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1668 		cc->key_parts += 2; /* IV + whitening */
1669 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1670 	} else {
1671 		ret = -EINVAL;
1672 		ti->error = "Invalid IV mode";
1673 		goto bad;
1674 	}
1675 
1676 	/* Initialize and set key */
1677 	ret = crypt_set_key(cc, key);
1678 	if (ret < 0) {
1679 		ti->error = "Error decoding and setting key";
1680 		goto bad;
1681 	}
1682 
1683 	/* Allocate IV */
1684 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1685 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1686 		if (ret < 0) {
1687 			ti->error = "Error creating IV";
1688 			goto bad;
1689 		}
1690 	}
1691 
1692 	/* Initialize IV (set keys for ESSIV etc) */
1693 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1694 		ret = cc->iv_gen_ops->init(cc);
1695 		if (ret < 0) {
1696 			ti->error = "Error initialising IV";
1697 			goto bad;
1698 		}
1699 	}
1700 
1701 	ret = 0;
1702 bad:
1703 	kfree(cipher_api);
1704 	return ret;
1705 
1706 bad_mem:
1707 	ti->error = "Cannot allocate cipher strings";
1708 	return -ENOMEM;
1709 }
1710 
1711 /*
1712  * Construct an encryption mapping:
1713  * <cipher> <key> <iv_offset> <dev_path> <start>
1714  */
1715 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1716 {
1717 	struct crypt_config *cc;
1718 	unsigned int key_size, opt_params;
1719 	unsigned long long tmpll;
1720 	int ret;
1721 	struct dm_arg_set as;
1722 	const char *opt_string;
1723 	char dummy;
1724 
1725 	static struct dm_arg _args[] = {
1726 		{0, 1, "Invalid number of feature args"},
1727 	};
1728 
1729 	if (argc < 5) {
1730 		ti->error = "Not enough arguments";
1731 		return -EINVAL;
1732 	}
1733 
1734 	key_size = strlen(argv[1]) >> 1;
1735 
1736 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1737 	if (!cc) {
1738 		ti->error = "Cannot allocate encryption context";
1739 		return -ENOMEM;
1740 	}
1741 	cc->key_size = key_size;
1742 
1743 	ti->private = cc;
1744 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1745 	if (ret < 0)
1746 		goto bad;
1747 
1748 	ret = -ENOMEM;
1749 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1750 	if (!cc->io_pool) {
1751 		ti->error = "Cannot allocate crypt io mempool";
1752 		goto bad;
1753 	}
1754 
1755 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1756 	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1757 	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1758 	cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1759 			   ~(crypto_tfm_ctx_alignment() - 1);
1760 
1761 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1762 			sizeof(struct dm_crypt_request) + cc->iv_size);
1763 	if (!cc->req_pool) {
1764 		ti->error = "Cannot allocate crypt request mempool";
1765 		goto bad;
1766 	}
1767 
1768 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1769 	if (!cc->page_pool) {
1770 		ti->error = "Cannot allocate page mempool";
1771 		goto bad;
1772 	}
1773 
1774 	cc->bs = bioset_create(MIN_IOS, 0);
1775 	if (!cc->bs) {
1776 		ti->error = "Cannot allocate crypt bioset";
1777 		goto bad;
1778 	}
1779 
1780 	ret = -EINVAL;
1781 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1782 		ti->error = "Invalid iv_offset sector";
1783 		goto bad;
1784 	}
1785 	cc->iv_offset = tmpll;
1786 
1787 	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1788 		ti->error = "Device lookup failed";
1789 		goto bad;
1790 	}
1791 
1792 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1793 		ti->error = "Invalid device sector";
1794 		goto bad;
1795 	}
1796 	cc->start = tmpll;
1797 
1798 	argv += 5;
1799 	argc -= 5;
1800 
1801 	/* Optional parameters */
1802 	if (argc) {
1803 		as.argc = argc;
1804 		as.argv = argv;
1805 
1806 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1807 		if (ret)
1808 			goto bad;
1809 
1810 		opt_string = dm_shift_arg(&as);
1811 
1812 		if (opt_params == 1 && opt_string &&
1813 		    !strcasecmp(opt_string, "allow_discards"))
1814 			ti->num_discard_bios = 1;
1815 		else if (opt_params) {
1816 			ret = -EINVAL;
1817 			ti->error = "Invalid feature arguments";
1818 			goto bad;
1819 		}
1820 	}
1821 
1822 	ret = -ENOMEM;
1823 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1824 	if (!cc->io_queue) {
1825 		ti->error = "Couldn't create kcryptd io queue";
1826 		goto bad;
1827 	}
1828 
1829 	cc->crypt_queue = alloc_workqueue("kcryptd",
1830 					  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1831 	if (!cc->crypt_queue) {
1832 		ti->error = "Couldn't create kcryptd queue";
1833 		goto bad;
1834 	}
1835 
1836 	ti->num_flush_bios = 1;
1837 	ti->discard_zeroes_data_unsupported = true;
1838 
1839 	return 0;
1840 
1841 bad:
1842 	crypt_dtr(ti);
1843 	return ret;
1844 }
1845 
1846 static int crypt_map(struct dm_target *ti, struct bio *bio)
1847 {
1848 	struct dm_crypt_io *io;
1849 	struct crypt_config *cc = ti->private;
1850 
1851 	/*
1852 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1853 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1854 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1855 	 */
1856 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1857 		bio->bi_bdev = cc->dev->bdev;
1858 		if (bio_sectors(bio))
1859 			bio->bi_iter.bi_sector = cc->start +
1860 				dm_target_offset(ti, bio->bi_iter.bi_sector);
1861 		return DM_MAPIO_REMAPPED;
1862 	}
1863 
1864 	io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1865 
1866 	if (bio_data_dir(io->base_bio) == READ) {
1867 		if (kcryptd_io_read(io, GFP_NOWAIT))
1868 			kcryptd_queue_io(io);
1869 	} else
1870 		kcryptd_queue_crypt(io);
1871 
1872 	return DM_MAPIO_SUBMITTED;
1873 }
1874 
1875 static void crypt_status(struct dm_target *ti, status_type_t type,
1876 			 unsigned status_flags, char *result, unsigned maxlen)
1877 {
1878 	struct crypt_config *cc = ti->private;
1879 	unsigned i, sz = 0;
1880 
1881 	switch (type) {
1882 	case STATUSTYPE_INFO:
1883 		result[0] = '\0';
1884 		break;
1885 
1886 	case STATUSTYPE_TABLE:
1887 		DMEMIT("%s ", cc->cipher_string);
1888 
1889 		if (cc->key_size > 0)
1890 			for (i = 0; i < cc->key_size; i++)
1891 				DMEMIT("%02x", cc->key[i]);
1892 		else
1893 			DMEMIT("-");
1894 
1895 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1896 				cc->dev->name, (unsigned long long)cc->start);
1897 
1898 		if (ti->num_discard_bios)
1899 			DMEMIT(" 1 allow_discards");
1900 
1901 		break;
1902 	}
1903 }
1904 
1905 static void crypt_postsuspend(struct dm_target *ti)
1906 {
1907 	struct crypt_config *cc = ti->private;
1908 
1909 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1910 }
1911 
1912 static int crypt_preresume(struct dm_target *ti)
1913 {
1914 	struct crypt_config *cc = ti->private;
1915 
1916 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1917 		DMERR("aborting resume - crypt key is not set.");
1918 		return -EAGAIN;
1919 	}
1920 
1921 	return 0;
1922 }
1923 
1924 static void crypt_resume(struct dm_target *ti)
1925 {
1926 	struct crypt_config *cc = ti->private;
1927 
1928 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1929 }
1930 
1931 /* Message interface
1932  *	key set <key>
1933  *	key wipe
1934  */
1935 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1936 {
1937 	struct crypt_config *cc = ti->private;
1938 	int ret = -EINVAL;
1939 
1940 	if (argc < 2)
1941 		goto error;
1942 
1943 	if (!strcasecmp(argv[0], "key")) {
1944 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1945 			DMWARN("not suspended during key manipulation.");
1946 			return -EINVAL;
1947 		}
1948 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1949 			ret = crypt_set_key(cc, argv[2]);
1950 			if (ret)
1951 				return ret;
1952 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1953 				ret = cc->iv_gen_ops->init(cc);
1954 			return ret;
1955 		}
1956 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1957 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1958 				ret = cc->iv_gen_ops->wipe(cc);
1959 				if (ret)
1960 					return ret;
1961 			}
1962 			return crypt_wipe_key(cc);
1963 		}
1964 	}
1965 
1966 error:
1967 	DMWARN("unrecognised message received.");
1968 	return -EINVAL;
1969 }
1970 
1971 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1972 		       struct bio_vec *biovec, int max_size)
1973 {
1974 	struct crypt_config *cc = ti->private;
1975 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1976 
1977 	if (!q->merge_bvec_fn)
1978 		return max_size;
1979 
1980 	bvm->bi_bdev = cc->dev->bdev;
1981 	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1982 
1983 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1984 }
1985 
1986 static int crypt_iterate_devices(struct dm_target *ti,
1987 				 iterate_devices_callout_fn fn, void *data)
1988 {
1989 	struct crypt_config *cc = ti->private;
1990 
1991 	return fn(ti, cc->dev, cc->start, ti->len, data);
1992 }
1993 
1994 static struct target_type crypt_target = {
1995 	.name   = "crypt",
1996 	.version = {1, 13, 0},
1997 	.module = THIS_MODULE,
1998 	.ctr    = crypt_ctr,
1999 	.dtr    = crypt_dtr,
2000 	.map    = crypt_map,
2001 	.status = crypt_status,
2002 	.postsuspend = crypt_postsuspend,
2003 	.preresume = crypt_preresume,
2004 	.resume = crypt_resume,
2005 	.message = crypt_message,
2006 	.merge  = crypt_merge,
2007 	.iterate_devices = crypt_iterate_devices,
2008 };
2009 
2010 static int __init dm_crypt_init(void)
2011 {
2012 	int r;
2013 
2014 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
2015 	if (!_crypt_io_pool)
2016 		return -ENOMEM;
2017 
2018 	r = dm_register_target(&crypt_target);
2019 	if (r < 0) {
2020 		DMERR("register failed %d", r);
2021 		kmem_cache_destroy(_crypt_io_pool);
2022 	}
2023 
2024 	return r;
2025 }
2026 
2027 static void __exit dm_crypt_exit(void)
2028 {
2029 	dm_unregister_target(&crypt_target);
2030 	kmem_cache_destroy(_crypt_io_pool);
2031 }
2032 
2033 module_init(dm_crypt_init);
2034 module_exit(dm_crypt_exit);
2035 
2036 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
2037 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2038 MODULE_LICENSE("GPL");
2039