1 /* 2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de> 3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved. 5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com> 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/completion.h> 11 #include <linux/err.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/bio.h> 16 #include <linux/blkdev.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/crypto.h> 20 #include <linux/workqueue.h> 21 #include <linux/backing-dev.h> 22 #include <linux/percpu.h> 23 #include <linux/atomic.h> 24 #include <linux/scatterlist.h> 25 #include <asm/page.h> 26 #include <asm/unaligned.h> 27 #include <crypto/hash.h> 28 #include <crypto/md5.h> 29 #include <crypto/algapi.h> 30 31 #include <linux/device-mapper.h> 32 33 #define DM_MSG_PREFIX "crypt" 34 35 /* 36 * context holding the current state of a multi-part conversion 37 */ 38 struct convert_context { 39 struct completion restart; 40 struct bio *bio_in; 41 struct bio *bio_out; 42 struct bvec_iter iter_in; 43 struct bvec_iter iter_out; 44 sector_t cc_sector; 45 atomic_t cc_pending; 46 }; 47 48 /* 49 * per bio private data 50 */ 51 struct dm_crypt_io { 52 struct crypt_config *cc; 53 struct bio *base_bio; 54 struct work_struct work; 55 56 struct convert_context ctx; 57 58 atomic_t io_pending; 59 int error; 60 sector_t sector; 61 struct dm_crypt_io *base_io; 62 }; 63 64 struct dm_crypt_request { 65 struct convert_context *ctx; 66 struct scatterlist sg_in; 67 struct scatterlist sg_out; 68 sector_t iv_sector; 69 }; 70 71 struct crypt_config; 72 73 struct crypt_iv_operations { 74 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 75 const char *opts); 76 void (*dtr)(struct crypt_config *cc); 77 int (*init)(struct crypt_config *cc); 78 int (*wipe)(struct crypt_config *cc); 79 int (*generator)(struct crypt_config *cc, u8 *iv, 80 struct dm_crypt_request *dmreq); 81 int (*post)(struct crypt_config *cc, u8 *iv, 82 struct dm_crypt_request *dmreq); 83 }; 84 85 struct iv_essiv_private { 86 struct crypto_hash *hash_tfm; 87 u8 *salt; 88 }; 89 90 struct iv_benbi_private { 91 int shift; 92 }; 93 94 #define LMK_SEED_SIZE 64 /* hash + 0 */ 95 struct iv_lmk_private { 96 struct crypto_shash *hash_tfm; 97 u8 *seed; 98 }; 99 100 #define TCW_WHITENING_SIZE 16 101 struct iv_tcw_private { 102 struct crypto_shash *crc32_tfm; 103 u8 *iv_seed; 104 u8 *whitening; 105 }; 106 107 /* 108 * Crypt: maps a linear range of a block device 109 * and encrypts / decrypts at the same time. 110 */ 111 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID }; 112 113 /* 114 * Duplicated per-CPU state for cipher. 115 */ 116 struct crypt_cpu { 117 struct ablkcipher_request *req; 118 }; 119 120 /* 121 * The fields in here must be read only after initialization, 122 * changing state should be in crypt_cpu. 123 */ 124 struct crypt_config { 125 struct dm_dev *dev; 126 sector_t start; 127 128 /* 129 * pool for per bio private data, crypto requests and 130 * encryption requeusts/buffer pages 131 */ 132 mempool_t *io_pool; 133 mempool_t *req_pool; 134 mempool_t *page_pool; 135 struct bio_set *bs; 136 137 struct workqueue_struct *io_queue; 138 struct workqueue_struct *crypt_queue; 139 140 char *cipher; 141 char *cipher_string; 142 143 struct crypt_iv_operations *iv_gen_ops; 144 union { 145 struct iv_essiv_private essiv; 146 struct iv_benbi_private benbi; 147 struct iv_lmk_private lmk; 148 struct iv_tcw_private tcw; 149 } iv_gen_private; 150 sector_t iv_offset; 151 unsigned int iv_size; 152 153 /* 154 * Duplicated per cpu state. Access through 155 * per_cpu_ptr() only. 156 */ 157 struct crypt_cpu __percpu *cpu; 158 159 /* ESSIV: struct crypto_cipher *essiv_tfm */ 160 void *iv_private; 161 struct crypto_ablkcipher **tfms; 162 unsigned tfms_count; 163 164 /* 165 * Layout of each crypto request: 166 * 167 * struct ablkcipher_request 168 * context 169 * padding 170 * struct dm_crypt_request 171 * padding 172 * IV 173 * 174 * The padding is added so that dm_crypt_request and the IV are 175 * correctly aligned. 176 */ 177 unsigned int dmreq_start; 178 179 unsigned long flags; 180 unsigned int key_size; 181 unsigned int key_parts; /* independent parts in key buffer */ 182 unsigned int key_extra_size; /* additional keys length */ 183 u8 key[0]; 184 }; 185 186 #define MIN_IOS 16 187 #define MIN_POOL_PAGES 32 188 189 static struct kmem_cache *_crypt_io_pool; 190 191 static void clone_init(struct dm_crypt_io *, struct bio *); 192 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 193 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq); 194 195 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc) 196 { 197 return this_cpu_ptr(cc->cpu); 198 } 199 200 /* 201 * Use this to access cipher attributes that are the same for each CPU. 202 */ 203 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc) 204 { 205 return cc->tfms[0]; 206 } 207 208 /* 209 * Different IV generation algorithms: 210 * 211 * plain: the initial vector is the 32-bit little-endian version of the sector 212 * number, padded with zeros if necessary. 213 * 214 * plain64: the initial vector is the 64-bit little-endian version of the sector 215 * number, padded with zeros if necessary. 216 * 217 * essiv: "encrypted sector|salt initial vector", the sector number is 218 * encrypted with the bulk cipher using a salt as key. The salt 219 * should be derived from the bulk cipher's key via hashing. 220 * 221 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 222 * (needed for LRW-32-AES and possible other narrow block modes) 223 * 224 * null: the initial vector is always zero. Provides compatibility with 225 * obsolete loop_fish2 devices. Do not use for new devices. 226 * 227 * lmk: Compatible implementation of the block chaining mode used 228 * by the Loop-AES block device encryption system 229 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 230 * It operates on full 512 byte sectors and uses CBC 231 * with an IV derived from the sector number, the data and 232 * optionally extra IV seed. 233 * This means that after decryption the first block 234 * of sector must be tweaked according to decrypted data. 235 * Loop-AES can use three encryption schemes: 236 * version 1: is plain aes-cbc mode 237 * version 2: uses 64 multikey scheme with lmk IV generator 238 * version 3: the same as version 2 with additional IV seed 239 * (it uses 65 keys, last key is used as IV seed) 240 * 241 * tcw: Compatible implementation of the block chaining mode used 242 * by the TrueCrypt device encryption system (prior to version 4.1). 243 * For more info see: http://www.truecrypt.org 244 * It operates on full 512 byte sectors and uses CBC 245 * with an IV derived from initial key and the sector number. 246 * In addition, whitening value is applied on every sector, whitening 247 * is calculated from initial key, sector number and mixed using CRC32. 248 * Note that this encryption scheme is vulnerable to watermarking attacks 249 * and should be used for old compatible containers access only. 250 * 251 * plumb: unimplemented, see: 252 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 253 */ 254 255 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 256 struct dm_crypt_request *dmreq) 257 { 258 memset(iv, 0, cc->iv_size); 259 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 260 261 return 0; 262 } 263 264 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 265 struct dm_crypt_request *dmreq) 266 { 267 memset(iv, 0, cc->iv_size); 268 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 269 270 return 0; 271 } 272 273 /* Initialise ESSIV - compute salt but no local memory allocations */ 274 static int crypt_iv_essiv_init(struct crypt_config *cc) 275 { 276 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 277 struct hash_desc desc; 278 struct scatterlist sg; 279 struct crypto_cipher *essiv_tfm; 280 int err; 281 282 sg_init_one(&sg, cc->key, cc->key_size); 283 desc.tfm = essiv->hash_tfm; 284 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; 285 286 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt); 287 if (err) 288 return err; 289 290 essiv_tfm = cc->iv_private; 291 292 err = crypto_cipher_setkey(essiv_tfm, essiv->salt, 293 crypto_hash_digestsize(essiv->hash_tfm)); 294 if (err) 295 return err; 296 297 return 0; 298 } 299 300 /* Wipe salt and reset key derived from volume key */ 301 static int crypt_iv_essiv_wipe(struct crypt_config *cc) 302 { 303 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 304 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm); 305 struct crypto_cipher *essiv_tfm; 306 int r, err = 0; 307 308 memset(essiv->salt, 0, salt_size); 309 310 essiv_tfm = cc->iv_private; 311 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size); 312 if (r) 313 err = r; 314 315 return err; 316 } 317 318 /* Set up per cpu cipher state */ 319 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc, 320 struct dm_target *ti, 321 u8 *salt, unsigned saltsize) 322 { 323 struct crypto_cipher *essiv_tfm; 324 int err; 325 326 /* Setup the essiv_tfm with the given salt */ 327 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC); 328 if (IS_ERR(essiv_tfm)) { 329 ti->error = "Error allocating crypto tfm for ESSIV"; 330 return essiv_tfm; 331 } 332 333 if (crypto_cipher_blocksize(essiv_tfm) != 334 crypto_ablkcipher_ivsize(any_tfm(cc))) { 335 ti->error = "Block size of ESSIV cipher does " 336 "not match IV size of block cipher"; 337 crypto_free_cipher(essiv_tfm); 338 return ERR_PTR(-EINVAL); 339 } 340 341 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize); 342 if (err) { 343 ti->error = "Failed to set key for ESSIV cipher"; 344 crypto_free_cipher(essiv_tfm); 345 return ERR_PTR(err); 346 } 347 348 return essiv_tfm; 349 } 350 351 static void crypt_iv_essiv_dtr(struct crypt_config *cc) 352 { 353 struct crypto_cipher *essiv_tfm; 354 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 355 356 crypto_free_hash(essiv->hash_tfm); 357 essiv->hash_tfm = NULL; 358 359 kzfree(essiv->salt); 360 essiv->salt = NULL; 361 362 essiv_tfm = cc->iv_private; 363 364 if (essiv_tfm) 365 crypto_free_cipher(essiv_tfm); 366 367 cc->iv_private = NULL; 368 } 369 370 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, 371 const char *opts) 372 { 373 struct crypto_cipher *essiv_tfm = NULL; 374 struct crypto_hash *hash_tfm = NULL; 375 u8 *salt = NULL; 376 int err; 377 378 if (!opts) { 379 ti->error = "Digest algorithm missing for ESSIV mode"; 380 return -EINVAL; 381 } 382 383 /* Allocate hash algorithm */ 384 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC); 385 if (IS_ERR(hash_tfm)) { 386 ti->error = "Error initializing ESSIV hash"; 387 err = PTR_ERR(hash_tfm); 388 goto bad; 389 } 390 391 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL); 392 if (!salt) { 393 ti->error = "Error kmallocing salt storage in ESSIV"; 394 err = -ENOMEM; 395 goto bad; 396 } 397 398 cc->iv_gen_private.essiv.salt = salt; 399 cc->iv_gen_private.essiv.hash_tfm = hash_tfm; 400 401 essiv_tfm = setup_essiv_cpu(cc, ti, salt, 402 crypto_hash_digestsize(hash_tfm)); 403 if (IS_ERR(essiv_tfm)) { 404 crypt_iv_essiv_dtr(cc); 405 return PTR_ERR(essiv_tfm); 406 } 407 cc->iv_private = essiv_tfm; 408 409 return 0; 410 411 bad: 412 if (hash_tfm && !IS_ERR(hash_tfm)) 413 crypto_free_hash(hash_tfm); 414 kfree(salt); 415 return err; 416 } 417 418 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 419 struct dm_crypt_request *dmreq) 420 { 421 struct crypto_cipher *essiv_tfm = cc->iv_private; 422 423 memset(iv, 0, cc->iv_size); 424 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 425 crypto_cipher_encrypt_one(essiv_tfm, iv, iv); 426 427 return 0; 428 } 429 430 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 431 const char *opts) 432 { 433 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc)); 434 int log = ilog2(bs); 435 436 /* we need to calculate how far we must shift the sector count 437 * to get the cipher block count, we use this shift in _gen */ 438 439 if (1 << log != bs) { 440 ti->error = "cypher blocksize is not a power of 2"; 441 return -EINVAL; 442 } 443 444 if (log > 9) { 445 ti->error = "cypher blocksize is > 512"; 446 return -EINVAL; 447 } 448 449 cc->iv_gen_private.benbi.shift = 9 - log; 450 451 return 0; 452 } 453 454 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 455 { 456 } 457 458 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 459 struct dm_crypt_request *dmreq) 460 { 461 __be64 val; 462 463 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 464 465 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 466 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 467 468 return 0; 469 } 470 471 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 472 struct dm_crypt_request *dmreq) 473 { 474 memset(iv, 0, cc->iv_size); 475 476 return 0; 477 } 478 479 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 480 { 481 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 482 483 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) 484 crypto_free_shash(lmk->hash_tfm); 485 lmk->hash_tfm = NULL; 486 487 kzfree(lmk->seed); 488 lmk->seed = NULL; 489 } 490 491 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 492 const char *opts) 493 { 494 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 495 496 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0); 497 if (IS_ERR(lmk->hash_tfm)) { 498 ti->error = "Error initializing LMK hash"; 499 return PTR_ERR(lmk->hash_tfm); 500 } 501 502 /* No seed in LMK version 2 */ 503 if (cc->key_parts == cc->tfms_count) { 504 lmk->seed = NULL; 505 return 0; 506 } 507 508 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 509 if (!lmk->seed) { 510 crypt_iv_lmk_dtr(cc); 511 ti->error = "Error kmallocing seed storage in LMK"; 512 return -ENOMEM; 513 } 514 515 return 0; 516 } 517 518 static int crypt_iv_lmk_init(struct crypt_config *cc) 519 { 520 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 521 int subkey_size = cc->key_size / cc->key_parts; 522 523 /* LMK seed is on the position of LMK_KEYS + 1 key */ 524 if (lmk->seed) 525 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 526 crypto_shash_digestsize(lmk->hash_tfm)); 527 528 return 0; 529 } 530 531 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 532 { 533 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 534 535 if (lmk->seed) 536 memset(lmk->seed, 0, LMK_SEED_SIZE); 537 538 return 0; 539 } 540 541 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 542 struct dm_crypt_request *dmreq, 543 u8 *data) 544 { 545 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 546 struct { 547 struct shash_desc desc; 548 char ctx[crypto_shash_descsize(lmk->hash_tfm)]; 549 } sdesc; 550 struct md5_state md5state; 551 __le32 buf[4]; 552 int i, r; 553 554 sdesc.desc.tfm = lmk->hash_tfm; 555 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; 556 557 r = crypto_shash_init(&sdesc.desc); 558 if (r) 559 return r; 560 561 if (lmk->seed) { 562 r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE); 563 if (r) 564 return r; 565 } 566 567 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 568 r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31); 569 if (r) 570 return r; 571 572 /* Sector is cropped to 56 bits here */ 573 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 574 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 575 buf[2] = cpu_to_le32(4024); 576 buf[3] = 0; 577 r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf)); 578 if (r) 579 return r; 580 581 /* No MD5 padding here */ 582 r = crypto_shash_export(&sdesc.desc, &md5state); 583 if (r) 584 return r; 585 586 for (i = 0; i < MD5_HASH_WORDS; i++) 587 __cpu_to_le32s(&md5state.hash[i]); 588 memcpy(iv, &md5state.hash, cc->iv_size); 589 590 return 0; 591 } 592 593 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 594 struct dm_crypt_request *dmreq) 595 { 596 u8 *src; 597 int r = 0; 598 599 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 600 src = kmap_atomic(sg_page(&dmreq->sg_in)); 601 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset); 602 kunmap_atomic(src); 603 } else 604 memset(iv, 0, cc->iv_size); 605 606 return r; 607 } 608 609 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 610 struct dm_crypt_request *dmreq) 611 { 612 u8 *dst; 613 int r; 614 615 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 616 return 0; 617 618 dst = kmap_atomic(sg_page(&dmreq->sg_out)); 619 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset); 620 621 /* Tweak the first block of plaintext sector */ 622 if (!r) 623 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size); 624 625 kunmap_atomic(dst); 626 return r; 627 } 628 629 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 630 { 631 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 632 633 kzfree(tcw->iv_seed); 634 tcw->iv_seed = NULL; 635 kzfree(tcw->whitening); 636 tcw->whitening = NULL; 637 638 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) 639 crypto_free_shash(tcw->crc32_tfm); 640 tcw->crc32_tfm = NULL; 641 } 642 643 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 644 const char *opts) 645 { 646 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 647 648 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 649 ti->error = "Wrong key size for TCW"; 650 return -EINVAL; 651 } 652 653 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0); 654 if (IS_ERR(tcw->crc32_tfm)) { 655 ti->error = "Error initializing CRC32 in TCW"; 656 return PTR_ERR(tcw->crc32_tfm); 657 } 658 659 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 660 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 661 if (!tcw->iv_seed || !tcw->whitening) { 662 crypt_iv_tcw_dtr(cc); 663 ti->error = "Error allocating seed storage in TCW"; 664 return -ENOMEM; 665 } 666 667 return 0; 668 } 669 670 static int crypt_iv_tcw_init(struct crypt_config *cc) 671 { 672 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 673 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 674 675 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 676 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 677 TCW_WHITENING_SIZE); 678 679 return 0; 680 } 681 682 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 683 { 684 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 685 686 memset(tcw->iv_seed, 0, cc->iv_size); 687 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 688 689 return 0; 690 } 691 692 static int crypt_iv_tcw_whitening(struct crypt_config *cc, 693 struct dm_crypt_request *dmreq, 694 u8 *data) 695 { 696 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 697 u64 sector = cpu_to_le64((u64)dmreq->iv_sector); 698 u8 buf[TCW_WHITENING_SIZE]; 699 struct { 700 struct shash_desc desc; 701 char ctx[crypto_shash_descsize(tcw->crc32_tfm)]; 702 } sdesc; 703 int i, r; 704 705 /* xor whitening with sector number */ 706 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE); 707 crypto_xor(buf, (u8 *)§or, 8); 708 crypto_xor(&buf[8], (u8 *)§or, 8); 709 710 /* calculate crc32 for every 32bit part and xor it */ 711 sdesc.desc.tfm = tcw->crc32_tfm; 712 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; 713 for (i = 0; i < 4; i++) { 714 r = crypto_shash_init(&sdesc.desc); 715 if (r) 716 goto out; 717 r = crypto_shash_update(&sdesc.desc, &buf[i * 4], 4); 718 if (r) 719 goto out; 720 r = crypto_shash_final(&sdesc.desc, &buf[i * 4]); 721 if (r) 722 goto out; 723 } 724 crypto_xor(&buf[0], &buf[12], 4); 725 crypto_xor(&buf[4], &buf[8], 4); 726 727 /* apply whitening (8 bytes) to whole sector */ 728 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 729 crypto_xor(data + i * 8, buf, 8); 730 out: 731 memset(buf, 0, sizeof(buf)); 732 return r; 733 } 734 735 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 736 struct dm_crypt_request *dmreq) 737 { 738 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 739 u64 sector = cpu_to_le64((u64)dmreq->iv_sector); 740 u8 *src; 741 int r = 0; 742 743 /* Remove whitening from ciphertext */ 744 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 745 src = kmap_atomic(sg_page(&dmreq->sg_in)); 746 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset); 747 kunmap_atomic(src); 748 } 749 750 /* Calculate IV */ 751 memcpy(iv, tcw->iv_seed, cc->iv_size); 752 crypto_xor(iv, (u8 *)§or, 8); 753 if (cc->iv_size > 8) 754 crypto_xor(&iv[8], (u8 *)§or, cc->iv_size - 8); 755 756 return r; 757 } 758 759 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 760 struct dm_crypt_request *dmreq) 761 { 762 u8 *dst; 763 int r; 764 765 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 766 return 0; 767 768 /* Apply whitening on ciphertext */ 769 dst = kmap_atomic(sg_page(&dmreq->sg_out)); 770 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset); 771 kunmap_atomic(dst); 772 773 return r; 774 } 775 776 static struct crypt_iv_operations crypt_iv_plain_ops = { 777 .generator = crypt_iv_plain_gen 778 }; 779 780 static struct crypt_iv_operations crypt_iv_plain64_ops = { 781 .generator = crypt_iv_plain64_gen 782 }; 783 784 static struct crypt_iv_operations crypt_iv_essiv_ops = { 785 .ctr = crypt_iv_essiv_ctr, 786 .dtr = crypt_iv_essiv_dtr, 787 .init = crypt_iv_essiv_init, 788 .wipe = crypt_iv_essiv_wipe, 789 .generator = crypt_iv_essiv_gen 790 }; 791 792 static struct crypt_iv_operations crypt_iv_benbi_ops = { 793 .ctr = crypt_iv_benbi_ctr, 794 .dtr = crypt_iv_benbi_dtr, 795 .generator = crypt_iv_benbi_gen 796 }; 797 798 static struct crypt_iv_operations crypt_iv_null_ops = { 799 .generator = crypt_iv_null_gen 800 }; 801 802 static struct crypt_iv_operations crypt_iv_lmk_ops = { 803 .ctr = crypt_iv_lmk_ctr, 804 .dtr = crypt_iv_lmk_dtr, 805 .init = crypt_iv_lmk_init, 806 .wipe = crypt_iv_lmk_wipe, 807 .generator = crypt_iv_lmk_gen, 808 .post = crypt_iv_lmk_post 809 }; 810 811 static struct crypt_iv_operations crypt_iv_tcw_ops = { 812 .ctr = crypt_iv_tcw_ctr, 813 .dtr = crypt_iv_tcw_dtr, 814 .init = crypt_iv_tcw_init, 815 .wipe = crypt_iv_tcw_wipe, 816 .generator = crypt_iv_tcw_gen, 817 .post = crypt_iv_tcw_post 818 }; 819 820 static void crypt_convert_init(struct crypt_config *cc, 821 struct convert_context *ctx, 822 struct bio *bio_out, struct bio *bio_in, 823 sector_t sector) 824 { 825 ctx->bio_in = bio_in; 826 ctx->bio_out = bio_out; 827 if (bio_in) 828 ctx->iter_in = bio_in->bi_iter; 829 if (bio_out) 830 ctx->iter_out = bio_out->bi_iter; 831 ctx->cc_sector = sector + cc->iv_offset; 832 init_completion(&ctx->restart); 833 } 834 835 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 836 struct ablkcipher_request *req) 837 { 838 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 839 } 840 841 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc, 842 struct dm_crypt_request *dmreq) 843 { 844 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start); 845 } 846 847 static u8 *iv_of_dmreq(struct crypt_config *cc, 848 struct dm_crypt_request *dmreq) 849 { 850 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 851 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1); 852 } 853 854 static int crypt_convert_block(struct crypt_config *cc, 855 struct convert_context *ctx, 856 struct ablkcipher_request *req) 857 { 858 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 859 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 860 struct dm_crypt_request *dmreq; 861 u8 *iv; 862 int r; 863 864 dmreq = dmreq_of_req(cc, req); 865 iv = iv_of_dmreq(cc, dmreq); 866 867 dmreq->iv_sector = ctx->cc_sector; 868 dmreq->ctx = ctx; 869 sg_init_table(&dmreq->sg_in, 1); 870 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT, 871 bv_in.bv_offset); 872 873 sg_init_table(&dmreq->sg_out, 1); 874 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT, 875 bv_out.bv_offset); 876 877 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT); 878 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT); 879 880 if (cc->iv_gen_ops) { 881 r = cc->iv_gen_ops->generator(cc, iv, dmreq); 882 if (r < 0) 883 return r; 884 } 885 886 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out, 887 1 << SECTOR_SHIFT, iv); 888 889 if (bio_data_dir(ctx->bio_in) == WRITE) 890 r = crypto_ablkcipher_encrypt(req); 891 else 892 r = crypto_ablkcipher_decrypt(req); 893 894 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 895 r = cc->iv_gen_ops->post(cc, iv, dmreq); 896 897 return r; 898 } 899 900 static void kcryptd_async_done(struct crypto_async_request *async_req, 901 int error); 902 903 static void crypt_alloc_req(struct crypt_config *cc, 904 struct convert_context *ctx) 905 { 906 struct crypt_cpu *this_cc = this_crypt_config(cc); 907 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1); 908 909 if (!this_cc->req) 910 this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO); 911 912 ablkcipher_request_set_tfm(this_cc->req, cc->tfms[key_index]); 913 ablkcipher_request_set_callback(this_cc->req, 914 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 915 kcryptd_async_done, dmreq_of_req(cc, this_cc->req)); 916 } 917 918 /* 919 * Encrypt / decrypt data from one bio to another one (can be the same one) 920 */ 921 static int crypt_convert(struct crypt_config *cc, 922 struct convert_context *ctx) 923 { 924 struct crypt_cpu *this_cc = this_crypt_config(cc); 925 int r; 926 927 atomic_set(&ctx->cc_pending, 1); 928 929 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 930 931 crypt_alloc_req(cc, ctx); 932 933 atomic_inc(&ctx->cc_pending); 934 935 r = crypt_convert_block(cc, ctx, this_cc->req); 936 937 switch (r) { 938 /* async */ 939 case -EBUSY: 940 wait_for_completion(&ctx->restart); 941 reinit_completion(&ctx->restart); 942 /* fall through*/ 943 case -EINPROGRESS: 944 this_cc->req = NULL; 945 ctx->cc_sector++; 946 continue; 947 948 /* sync */ 949 case 0: 950 atomic_dec(&ctx->cc_pending); 951 ctx->cc_sector++; 952 cond_resched(); 953 continue; 954 955 /* error */ 956 default: 957 atomic_dec(&ctx->cc_pending); 958 return r; 959 } 960 } 961 962 return 0; 963 } 964 965 /* 966 * Generate a new unfragmented bio with the given size 967 * This should never violate the device limitations 968 * May return a smaller bio when running out of pages, indicated by 969 * *out_of_pages set to 1. 970 */ 971 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size, 972 unsigned *out_of_pages) 973 { 974 struct crypt_config *cc = io->cc; 975 struct bio *clone; 976 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 977 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM; 978 unsigned i, len; 979 struct page *page; 980 981 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs); 982 if (!clone) 983 return NULL; 984 985 clone_init(io, clone); 986 *out_of_pages = 0; 987 988 for (i = 0; i < nr_iovecs; i++) { 989 page = mempool_alloc(cc->page_pool, gfp_mask); 990 if (!page) { 991 *out_of_pages = 1; 992 break; 993 } 994 995 /* 996 * If additional pages cannot be allocated without waiting, 997 * return a partially-allocated bio. The caller will then try 998 * to allocate more bios while submitting this partial bio. 999 */ 1000 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT; 1001 1002 len = (size > PAGE_SIZE) ? PAGE_SIZE : size; 1003 1004 if (!bio_add_page(clone, page, len, 0)) { 1005 mempool_free(page, cc->page_pool); 1006 break; 1007 } 1008 1009 size -= len; 1010 } 1011 1012 if (!clone->bi_iter.bi_size) { 1013 bio_put(clone); 1014 return NULL; 1015 } 1016 1017 return clone; 1018 } 1019 1020 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1021 { 1022 unsigned int i; 1023 struct bio_vec *bv; 1024 1025 bio_for_each_segment_all(bv, clone, i) { 1026 BUG_ON(!bv->bv_page); 1027 mempool_free(bv->bv_page, cc->page_pool); 1028 bv->bv_page = NULL; 1029 } 1030 } 1031 1032 static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc, 1033 struct bio *bio, sector_t sector) 1034 { 1035 struct dm_crypt_io *io; 1036 1037 io = mempool_alloc(cc->io_pool, GFP_NOIO); 1038 io->cc = cc; 1039 io->base_bio = bio; 1040 io->sector = sector; 1041 io->error = 0; 1042 io->base_io = NULL; 1043 atomic_set(&io->io_pending, 0); 1044 1045 return io; 1046 } 1047 1048 static void crypt_inc_pending(struct dm_crypt_io *io) 1049 { 1050 atomic_inc(&io->io_pending); 1051 } 1052 1053 /* 1054 * One of the bios was finished. Check for completion of 1055 * the whole request and correctly clean up the buffer. 1056 * If base_io is set, wait for the last fragment to complete. 1057 */ 1058 static void crypt_dec_pending(struct dm_crypt_io *io) 1059 { 1060 struct crypt_config *cc = io->cc; 1061 struct bio *base_bio = io->base_bio; 1062 struct dm_crypt_io *base_io = io->base_io; 1063 int error = io->error; 1064 1065 if (!atomic_dec_and_test(&io->io_pending)) 1066 return; 1067 1068 mempool_free(io, cc->io_pool); 1069 1070 if (likely(!base_io)) 1071 bio_endio(base_bio, error); 1072 else { 1073 if (error && !base_io->error) 1074 base_io->error = error; 1075 crypt_dec_pending(base_io); 1076 } 1077 } 1078 1079 /* 1080 * kcryptd/kcryptd_io: 1081 * 1082 * Needed because it would be very unwise to do decryption in an 1083 * interrupt context. 1084 * 1085 * kcryptd performs the actual encryption or decryption. 1086 * 1087 * kcryptd_io performs the IO submission. 1088 * 1089 * They must be separated as otherwise the final stages could be 1090 * starved by new requests which can block in the first stages due 1091 * to memory allocation. 1092 * 1093 * The work is done per CPU global for all dm-crypt instances. 1094 * They should not depend on each other and do not block. 1095 */ 1096 static void crypt_endio(struct bio *clone, int error) 1097 { 1098 struct dm_crypt_io *io = clone->bi_private; 1099 struct crypt_config *cc = io->cc; 1100 unsigned rw = bio_data_dir(clone); 1101 1102 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error)) 1103 error = -EIO; 1104 1105 /* 1106 * free the processed pages 1107 */ 1108 if (rw == WRITE) 1109 crypt_free_buffer_pages(cc, clone); 1110 1111 bio_put(clone); 1112 1113 if (rw == READ && !error) { 1114 kcryptd_queue_crypt(io); 1115 return; 1116 } 1117 1118 if (unlikely(error)) 1119 io->error = error; 1120 1121 crypt_dec_pending(io); 1122 } 1123 1124 static void clone_init(struct dm_crypt_io *io, struct bio *clone) 1125 { 1126 struct crypt_config *cc = io->cc; 1127 1128 clone->bi_private = io; 1129 clone->bi_end_io = crypt_endio; 1130 clone->bi_bdev = cc->dev->bdev; 1131 clone->bi_rw = io->base_bio->bi_rw; 1132 } 1133 1134 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1135 { 1136 struct crypt_config *cc = io->cc; 1137 struct bio *base_bio = io->base_bio; 1138 struct bio *clone; 1139 1140 /* 1141 * The block layer might modify the bvec array, so always 1142 * copy the required bvecs because we need the original 1143 * one in order to decrypt the whole bio data *afterwards*. 1144 */ 1145 clone = bio_clone_bioset(base_bio, gfp, cc->bs); 1146 if (!clone) 1147 return 1; 1148 1149 crypt_inc_pending(io); 1150 1151 clone_init(io, clone); 1152 clone->bi_iter.bi_sector = cc->start + io->sector; 1153 1154 generic_make_request(clone); 1155 return 0; 1156 } 1157 1158 static void kcryptd_io_write(struct dm_crypt_io *io) 1159 { 1160 struct bio *clone = io->ctx.bio_out; 1161 generic_make_request(clone); 1162 } 1163 1164 static void kcryptd_io(struct work_struct *work) 1165 { 1166 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1167 1168 if (bio_data_dir(io->base_bio) == READ) { 1169 crypt_inc_pending(io); 1170 if (kcryptd_io_read(io, GFP_NOIO)) 1171 io->error = -ENOMEM; 1172 crypt_dec_pending(io); 1173 } else 1174 kcryptd_io_write(io); 1175 } 1176 1177 static void kcryptd_queue_io(struct dm_crypt_io *io) 1178 { 1179 struct crypt_config *cc = io->cc; 1180 1181 INIT_WORK(&io->work, kcryptd_io); 1182 queue_work(cc->io_queue, &io->work); 1183 } 1184 1185 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 1186 { 1187 struct bio *clone = io->ctx.bio_out; 1188 struct crypt_config *cc = io->cc; 1189 1190 if (unlikely(io->error < 0)) { 1191 crypt_free_buffer_pages(cc, clone); 1192 bio_put(clone); 1193 crypt_dec_pending(io); 1194 return; 1195 } 1196 1197 /* crypt_convert should have filled the clone bio */ 1198 BUG_ON(io->ctx.iter_out.bi_size); 1199 1200 clone->bi_iter.bi_sector = cc->start + io->sector; 1201 1202 if (async) 1203 kcryptd_queue_io(io); 1204 else 1205 generic_make_request(clone); 1206 } 1207 1208 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 1209 { 1210 struct crypt_config *cc = io->cc; 1211 struct bio *clone; 1212 struct dm_crypt_io *new_io; 1213 int crypt_finished; 1214 unsigned out_of_pages = 0; 1215 unsigned remaining = io->base_bio->bi_iter.bi_size; 1216 sector_t sector = io->sector; 1217 int r; 1218 1219 /* 1220 * Prevent io from disappearing until this function completes. 1221 */ 1222 crypt_inc_pending(io); 1223 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector); 1224 1225 /* 1226 * The allocated buffers can be smaller than the whole bio, 1227 * so repeat the whole process until all the data can be handled. 1228 */ 1229 while (remaining) { 1230 clone = crypt_alloc_buffer(io, remaining, &out_of_pages); 1231 if (unlikely(!clone)) { 1232 io->error = -ENOMEM; 1233 break; 1234 } 1235 1236 io->ctx.bio_out = clone; 1237 io->ctx.iter_out = clone->bi_iter; 1238 1239 remaining -= clone->bi_iter.bi_size; 1240 sector += bio_sectors(clone); 1241 1242 crypt_inc_pending(io); 1243 1244 r = crypt_convert(cc, &io->ctx); 1245 if (r < 0) 1246 io->error = -EIO; 1247 1248 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending); 1249 1250 /* Encryption was already finished, submit io now */ 1251 if (crypt_finished) { 1252 kcryptd_crypt_write_io_submit(io, 0); 1253 1254 /* 1255 * If there was an error, do not try next fragments. 1256 * For async, error is processed in async handler. 1257 */ 1258 if (unlikely(r < 0)) 1259 break; 1260 1261 io->sector = sector; 1262 } 1263 1264 /* 1265 * Out of memory -> run queues 1266 * But don't wait if split was due to the io size restriction 1267 */ 1268 if (unlikely(out_of_pages)) 1269 congestion_wait(BLK_RW_ASYNC, HZ/100); 1270 1271 /* 1272 * With async crypto it is unsafe to share the crypto context 1273 * between fragments, so switch to a new dm_crypt_io structure. 1274 */ 1275 if (unlikely(!crypt_finished && remaining)) { 1276 new_io = crypt_io_alloc(io->cc, io->base_bio, 1277 sector); 1278 crypt_inc_pending(new_io); 1279 crypt_convert_init(cc, &new_io->ctx, NULL, 1280 io->base_bio, sector); 1281 new_io->ctx.iter_in = io->ctx.iter_in; 1282 1283 /* 1284 * Fragments after the first use the base_io 1285 * pending count. 1286 */ 1287 if (!io->base_io) 1288 new_io->base_io = io; 1289 else { 1290 new_io->base_io = io->base_io; 1291 crypt_inc_pending(io->base_io); 1292 crypt_dec_pending(io); 1293 } 1294 1295 io = new_io; 1296 } 1297 } 1298 1299 crypt_dec_pending(io); 1300 } 1301 1302 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 1303 { 1304 crypt_dec_pending(io); 1305 } 1306 1307 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 1308 { 1309 struct crypt_config *cc = io->cc; 1310 int r = 0; 1311 1312 crypt_inc_pending(io); 1313 1314 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 1315 io->sector); 1316 1317 r = crypt_convert(cc, &io->ctx); 1318 if (r < 0) 1319 io->error = -EIO; 1320 1321 if (atomic_dec_and_test(&io->ctx.cc_pending)) 1322 kcryptd_crypt_read_done(io); 1323 1324 crypt_dec_pending(io); 1325 } 1326 1327 static void kcryptd_async_done(struct crypto_async_request *async_req, 1328 int error) 1329 { 1330 struct dm_crypt_request *dmreq = async_req->data; 1331 struct convert_context *ctx = dmreq->ctx; 1332 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1333 struct crypt_config *cc = io->cc; 1334 1335 if (error == -EINPROGRESS) { 1336 complete(&ctx->restart); 1337 return; 1338 } 1339 1340 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 1341 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq); 1342 1343 if (error < 0) 1344 io->error = -EIO; 1345 1346 mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool); 1347 1348 if (!atomic_dec_and_test(&ctx->cc_pending)) 1349 return; 1350 1351 if (bio_data_dir(io->base_bio) == READ) 1352 kcryptd_crypt_read_done(io); 1353 else 1354 kcryptd_crypt_write_io_submit(io, 1); 1355 } 1356 1357 static void kcryptd_crypt(struct work_struct *work) 1358 { 1359 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1360 1361 if (bio_data_dir(io->base_bio) == READ) 1362 kcryptd_crypt_read_convert(io); 1363 else 1364 kcryptd_crypt_write_convert(io); 1365 } 1366 1367 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 1368 { 1369 struct crypt_config *cc = io->cc; 1370 1371 INIT_WORK(&io->work, kcryptd_crypt); 1372 queue_work(cc->crypt_queue, &io->work); 1373 } 1374 1375 /* 1376 * Decode key from its hex representation 1377 */ 1378 static int crypt_decode_key(u8 *key, char *hex, unsigned int size) 1379 { 1380 char buffer[3]; 1381 unsigned int i; 1382 1383 buffer[2] = '\0'; 1384 1385 for (i = 0; i < size; i++) { 1386 buffer[0] = *hex++; 1387 buffer[1] = *hex++; 1388 1389 if (kstrtou8(buffer, 16, &key[i])) 1390 return -EINVAL; 1391 } 1392 1393 if (*hex != '\0') 1394 return -EINVAL; 1395 1396 return 0; 1397 } 1398 1399 static void crypt_free_tfms(struct crypt_config *cc) 1400 { 1401 unsigned i; 1402 1403 if (!cc->tfms) 1404 return; 1405 1406 for (i = 0; i < cc->tfms_count; i++) 1407 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) { 1408 crypto_free_ablkcipher(cc->tfms[i]); 1409 cc->tfms[i] = NULL; 1410 } 1411 1412 kfree(cc->tfms); 1413 cc->tfms = NULL; 1414 } 1415 1416 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 1417 { 1418 unsigned i; 1419 int err; 1420 1421 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *), 1422 GFP_KERNEL); 1423 if (!cc->tfms) 1424 return -ENOMEM; 1425 1426 for (i = 0; i < cc->tfms_count; i++) { 1427 cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0); 1428 if (IS_ERR(cc->tfms[i])) { 1429 err = PTR_ERR(cc->tfms[i]); 1430 crypt_free_tfms(cc); 1431 return err; 1432 } 1433 } 1434 1435 return 0; 1436 } 1437 1438 static int crypt_setkey_allcpus(struct crypt_config *cc) 1439 { 1440 unsigned subkey_size; 1441 int err = 0, i, r; 1442 1443 /* Ignore extra keys (which are used for IV etc) */ 1444 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 1445 1446 for (i = 0; i < cc->tfms_count; i++) { 1447 r = crypto_ablkcipher_setkey(cc->tfms[i], 1448 cc->key + (i * subkey_size), 1449 subkey_size); 1450 if (r) 1451 err = r; 1452 } 1453 1454 return err; 1455 } 1456 1457 static int crypt_set_key(struct crypt_config *cc, char *key) 1458 { 1459 int r = -EINVAL; 1460 int key_string_len = strlen(key); 1461 1462 /* The key size may not be changed. */ 1463 if (cc->key_size != (key_string_len >> 1)) 1464 goto out; 1465 1466 /* Hyphen (which gives a key_size of zero) means there is no key. */ 1467 if (!cc->key_size && strcmp(key, "-")) 1468 goto out; 1469 1470 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0) 1471 goto out; 1472 1473 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1474 1475 r = crypt_setkey_allcpus(cc); 1476 1477 out: 1478 /* Hex key string not needed after here, so wipe it. */ 1479 memset(key, '0', key_string_len); 1480 1481 return r; 1482 } 1483 1484 static int crypt_wipe_key(struct crypt_config *cc) 1485 { 1486 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1487 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 1488 1489 return crypt_setkey_allcpus(cc); 1490 } 1491 1492 static void crypt_dtr(struct dm_target *ti) 1493 { 1494 struct crypt_config *cc = ti->private; 1495 struct crypt_cpu *cpu_cc; 1496 int cpu; 1497 1498 ti->private = NULL; 1499 1500 if (!cc) 1501 return; 1502 1503 if (cc->io_queue) 1504 destroy_workqueue(cc->io_queue); 1505 if (cc->crypt_queue) 1506 destroy_workqueue(cc->crypt_queue); 1507 1508 if (cc->cpu) 1509 for_each_possible_cpu(cpu) { 1510 cpu_cc = per_cpu_ptr(cc->cpu, cpu); 1511 if (cpu_cc->req) 1512 mempool_free(cpu_cc->req, cc->req_pool); 1513 } 1514 1515 crypt_free_tfms(cc); 1516 1517 if (cc->bs) 1518 bioset_free(cc->bs); 1519 1520 if (cc->page_pool) 1521 mempool_destroy(cc->page_pool); 1522 if (cc->req_pool) 1523 mempool_destroy(cc->req_pool); 1524 if (cc->io_pool) 1525 mempool_destroy(cc->io_pool); 1526 1527 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 1528 cc->iv_gen_ops->dtr(cc); 1529 1530 if (cc->dev) 1531 dm_put_device(ti, cc->dev); 1532 1533 if (cc->cpu) 1534 free_percpu(cc->cpu); 1535 1536 kzfree(cc->cipher); 1537 kzfree(cc->cipher_string); 1538 1539 /* Must zero key material before freeing */ 1540 kzfree(cc); 1541 } 1542 1543 static int crypt_ctr_cipher(struct dm_target *ti, 1544 char *cipher_in, char *key) 1545 { 1546 struct crypt_config *cc = ti->private; 1547 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount; 1548 char *cipher_api = NULL; 1549 int ret = -EINVAL; 1550 char dummy; 1551 1552 /* Convert to crypto api definition? */ 1553 if (strchr(cipher_in, '(')) { 1554 ti->error = "Bad cipher specification"; 1555 return -EINVAL; 1556 } 1557 1558 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 1559 if (!cc->cipher_string) 1560 goto bad_mem; 1561 1562 /* 1563 * Legacy dm-crypt cipher specification 1564 * cipher[:keycount]-mode-iv:ivopts 1565 */ 1566 tmp = cipher_in; 1567 keycount = strsep(&tmp, "-"); 1568 cipher = strsep(&keycount, ":"); 1569 1570 if (!keycount) 1571 cc->tfms_count = 1; 1572 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 1573 !is_power_of_2(cc->tfms_count)) { 1574 ti->error = "Bad cipher key count specification"; 1575 return -EINVAL; 1576 } 1577 cc->key_parts = cc->tfms_count; 1578 cc->key_extra_size = 0; 1579 1580 cc->cipher = kstrdup(cipher, GFP_KERNEL); 1581 if (!cc->cipher) 1582 goto bad_mem; 1583 1584 chainmode = strsep(&tmp, "-"); 1585 ivopts = strsep(&tmp, "-"); 1586 ivmode = strsep(&ivopts, ":"); 1587 1588 if (tmp) 1589 DMWARN("Ignoring unexpected additional cipher options"); 1590 1591 cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)), 1592 __alignof__(struct crypt_cpu)); 1593 if (!cc->cpu) { 1594 ti->error = "Cannot allocate per cpu state"; 1595 goto bad_mem; 1596 } 1597 1598 /* 1599 * For compatibility with the original dm-crypt mapping format, if 1600 * only the cipher name is supplied, use cbc-plain. 1601 */ 1602 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) { 1603 chainmode = "cbc"; 1604 ivmode = "plain"; 1605 } 1606 1607 if (strcmp(chainmode, "ecb") && !ivmode) { 1608 ti->error = "IV mechanism required"; 1609 return -EINVAL; 1610 } 1611 1612 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 1613 if (!cipher_api) 1614 goto bad_mem; 1615 1616 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 1617 "%s(%s)", chainmode, cipher); 1618 if (ret < 0) { 1619 kfree(cipher_api); 1620 goto bad_mem; 1621 } 1622 1623 /* Allocate cipher */ 1624 ret = crypt_alloc_tfms(cc, cipher_api); 1625 if (ret < 0) { 1626 ti->error = "Error allocating crypto tfm"; 1627 goto bad; 1628 } 1629 1630 /* Initialize IV */ 1631 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc)); 1632 if (cc->iv_size) 1633 /* at least a 64 bit sector number should fit in our buffer */ 1634 cc->iv_size = max(cc->iv_size, 1635 (unsigned int)(sizeof(u64) / sizeof(u8))); 1636 else if (ivmode) { 1637 DMWARN("Selected cipher does not support IVs"); 1638 ivmode = NULL; 1639 } 1640 1641 /* Choose ivmode, see comments at iv code. */ 1642 if (ivmode == NULL) 1643 cc->iv_gen_ops = NULL; 1644 else if (strcmp(ivmode, "plain") == 0) 1645 cc->iv_gen_ops = &crypt_iv_plain_ops; 1646 else if (strcmp(ivmode, "plain64") == 0) 1647 cc->iv_gen_ops = &crypt_iv_plain64_ops; 1648 else if (strcmp(ivmode, "essiv") == 0) 1649 cc->iv_gen_ops = &crypt_iv_essiv_ops; 1650 else if (strcmp(ivmode, "benbi") == 0) 1651 cc->iv_gen_ops = &crypt_iv_benbi_ops; 1652 else if (strcmp(ivmode, "null") == 0) 1653 cc->iv_gen_ops = &crypt_iv_null_ops; 1654 else if (strcmp(ivmode, "lmk") == 0) { 1655 cc->iv_gen_ops = &crypt_iv_lmk_ops; 1656 /* 1657 * Version 2 and 3 is recognised according 1658 * to length of provided multi-key string. 1659 * If present (version 3), last key is used as IV seed. 1660 * All keys (including IV seed) are always the same size. 1661 */ 1662 if (cc->key_size % cc->key_parts) { 1663 cc->key_parts++; 1664 cc->key_extra_size = cc->key_size / cc->key_parts; 1665 } 1666 } else if (strcmp(ivmode, "tcw") == 0) { 1667 cc->iv_gen_ops = &crypt_iv_tcw_ops; 1668 cc->key_parts += 2; /* IV + whitening */ 1669 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 1670 } else { 1671 ret = -EINVAL; 1672 ti->error = "Invalid IV mode"; 1673 goto bad; 1674 } 1675 1676 /* Initialize and set key */ 1677 ret = crypt_set_key(cc, key); 1678 if (ret < 0) { 1679 ti->error = "Error decoding and setting key"; 1680 goto bad; 1681 } 1682 1683 /* Allocate IV */ 1684 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 1685 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 1686 if (ret < 0) { 1687 ti->error = "Error creating IV"; 1688 goto bad; 1689 } 1690 } 1691 1692 /* Initialize IV (set keys for ESSIV etc) */ 1693 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 1694 ret = cc->iv_gen_ops->init(cc); 1695 if (ret < 0) { 1696 ti->error = "Error initialising IV"; 1697 goto bad; 1698 } 1699 } 1700 1701 ret = 0; 1702 bad: 1703 kfree(cipher_api); 1704 return ret; 1705 1706 bad_mem: 1707 ti->error = "Cannot allocate cipher strings"; 1708 return -ENOMEM; 1709 } 1710 1711 /* 1712 * Construct an encryption mapping: 1713 * <cipher> <key> <iv_offset> <dev_path> <start> 1714 */ 1715 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1716 { 1717 struct crypt_config *cc; 1718 unsigned int key_size, opt_params; 1719 unsigned long long tmpll; 1720 int ret; 1721 struct dm_arg_set as; 1722 const char *opt_string; 1723 char dummy; 1724 1725 static struct dm_arg _args[] = { 1726 {0, 1, "Invalid number of feature args"}, 1727 }; 1728 1729 if (argc < 5) { 1730 ti->error = "Not enough arguments"; 1731 return -EINVAL; 1732 } 1733 1734 key_size = strlen(argv[1]) >> 1; 1735 1736 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); 1737 if (!cc) { 1738 ti->error = "Cannot allocate encryption context"; 1739 return -ENOMEM; 1740 } 1741 cc->key_size = key_size; 1742 1743 ti->private = cc; 1744 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 1745 if (ret < 0) 1746 goto bad; 1747 1748 ret = -ENOMEM; 1749 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool); 1750 if (!cc->io_pool) { 1751 ti->error = "Cannot allocate crypt io mempool"; 1752 goto bad; 1753 } 1754 1755 cc->dmreq_start = sizeof(struct ablkcipher_request); 1756 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc)); 1757 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment()); 1758 cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) & 1759 ~(crypto_tfm_ctx_alignment() - 1); 1760 1761 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + 1762 sizeof(struct dm_crypt_request) + cc->iv_size); 1763 if (!cc->req_pool) { 1764 ti->error = "Cannot allocate crypt request mempool"; 1765 goto bad; 1766 } 1767 1768 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0); 1769 if (!cc->page_pool) { 1770 ti->error = "Cannot allocate page mempool"; 1771 goto bad; 1772 } 1773 1774 cc->bs = bioset_create(MIN_IOS, 0); 1775 if (!cc->bs) { 1776 ti->error = "Cannot allocate crypt bioset"; 1777 goto bad; 1778 } 1779 1780 ret = -EINVAL; 1781 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) { 1782 ti->error = "Invalid iv_offset sector"; 1783 goto bad; 1784 } 1785 cc->iv_offset = tmpll; 1786 1787 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) { 1788 ti->error = "Device lookup failed"; 1789 goto bad; 1790 } 1791 1792 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) { 1793 ti->error = "Invalid device sector"; 1794 goto bad; 1795 } 1796 cc->start = tmpll; 1797 1798 argv += 5; 1799 argc -= 5; 1800 1801 /* Optional parameters */ 1802 if (argc) { 1803 as.argc = argc; 1804 as.argv = argv; 1805 1806 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 1807 if (ret) 1808 goto bad; 1809 1810 opt_string = dm_shift_arg(&as); 1811 1812 if (opt_params == 1 && opt_string && 1813 !strcasecmp(opt_string, "allow_discards")) 1814 ti->num_discard_bios = 1; 1815 else if (opt_params) { 1816 ret = -EINVAL; 1817 ti->error = "Invalid feature arguments"; 1818 goto bad; 1819 } 1820 } 1821 1822 ret = -ENOMEM; 1823 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1); 1824 if (!cc->io_queue) { 1825 ti->error = "Couldn't create kcryptd io queue"; 1826 goto bad; 1827 } 1828 1829 cc->crypt_queue = alloc_workqueue("kcryptd", 1830 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1); 1831 if (!cc->crypt_queue) { 1832 ti->error = "Couldn't create kcryptd queue"; 1833 goto bad; 1834 } 1835 1836 ti->num_flush_bios = 1; 1837 ti->discard_zeroes_data_unsupported = true; 1838 1839 return 0; 1840 1841 bad: 1842 crypt_dtr(ti); 1843 return ret; 1844 } 1845 1846 static int crypt_map(struct dm_target *ti, struct bio *bio) 1847 { 1848 struct dm_crypt_io *io; 1849 struct crypt_config *cc = ti->private; 1850 1851 /* 1852 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues. 1853 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight 1854 * - for REQ_DISCARD caller must use flush if IO ordering matters 1855 */ 1856 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) { 1857 bio->bi_bdev = cc->dev->bdev; 1858 if (bio_sectors(bio)) 1859 bio->bi_iter.bi_sector = cc->start + 1860 dm_target_offset(ti, bio->bi_iter.bi_sector); 1861 return DM_MAPIO_REMAPPED; 1862 } 1863 1864 io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 1865 1866 if (bio_data_dir(io->base_bio) == READ) { 1867 if (kcryptd_io_read(io, GFP_NOWAIT)) 1868 kcryptd_queue_io(io); 1869 } else 1870 kcryptd_queue_crypt(io); 1871 1872 return DM_MAPIO_SUBMITTED; 1873 } 1874 1875 static void crypt_status(struct dm_target *ti, status_type_t type, 1876 unsigned status_flags, char *result, unsigned maxlen) 1877 { 1878 struct crypt_config *cc = ti->private; 1879 unsigned i, sz = 0; 1880 1881 switch (type) { 1882 case STATUSTYPE_INFO: 1883 result[0] = '\0'; 1884 break; 1885 1886 case STATUSTYPE_TABLE: 1887 DMEMIT("%s ", cc->cipher_string); 1888 1889 if (cc->key_size > 0) 1890 for (i = 0; i < cc->key_size; i++) 1891 DMEMIT("%02x", cc->key[i]); 1892 else 1893 DMEMIT("-"); 1894 1895 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 1896 cc->dev->name, (unsigned long long)cc->start); 1897 1898 if (ti->num_discard_bios) 1899 DMEMIT(" 1 allow_discards"); 1900 1901 break; 1902 } 1903 } 1904 1905 static void crypt_postsuspend(struct dm_target *ti) 1906 { 1907 struct crypt_config *cc = ti->private; 1908 1909 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 1910 } 1911 1912 static int crypt_preresume(struct dm_target *ti) 1913 { 1914 struct crypt_config *cc = ti->private; 1915 1916 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 1917 DMERR("aborting resume - crypt key is not set."); 1918 return -EAGAIN; 1919 } 1920 1921 return 0; 1922 } 1923 1924 static void crypt_resume(struct dm_target *ti) 1925 { 1926 struct crypt_config *cc = ti->private; 1927 1928 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 1929 } 1930 1931 /* Message interface 1932 * key set <key> 1933 * key wipe 1934 */ 1935 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv) 1936 { 1937 struct crypt_config *cc = ti->private; 1938 int ret = -EINVAL; 1939 1940 if (argc < 2) 1941 goto error; 1942 1943 if (!strcasecmp(argv[0], "key")) { 1944 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 1945 DMWARN("not suspended during key manipulation."); 1946 return -EINVAL; 1947 } 1948 if (argc == 3 && !strcasecmp(argv[1], "set")) { 1949 ret = crypt_set_key(cc, argv[2]); 1950 if (ret) 1951 return ret; 1952 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 1953 ret = cc->iv_gen_ops->init(cc); 1954 return ret; 1955 } 1956 if (argc == 2 && !strcasecmp(argv[1], "wipe")) { 1957 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 1958 ret = cc->iv_gen_ops->wipe(cc); 1959 if (ret) 1960 return ret; 1961 } 1962 return crypt_wipe_key(cc); 1963 } 1964 } 1965 1966 error: 1967 DMWARN("unrecognised message received."); 1968 return -EINVAL; 1969 } 1970 1971 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 1972 struct bio_vec *biovec, int max_size) 1973 { 1974 struct crypt_config *cc = ti->private; 1975 struct request_queue *q = bdev_get_queue(cc->dev->bdev); 1976 1977 if (!q->merge_bvec_fn) 1978 return max_size; 1979 1980 bvm->bi_bdev = cc->dev->bdev; 1981 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector); 1982 1983 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 1984 } 1985 1986 static int crypt_iterate_devices(struct dm_target *ti, 1987 iterate_devices_callout_fn fn, void *data) 1988 { 1989 struct crypt_config *cc = ti->private; 1990 1991 return fn(ti, cc->dev, cc->start, ti->len, data); 1992 } 1993 1994 static struct target_type crypt_target = { 1995 .name = "crypt", 1996 .version = {1, 13, 0}, 1997 .module = THIS_MODULE, 1998 .ctr = crypt_ctr, 1999 .dtr = crypt_dtr, 2000 .map = crypt_map, 2001 .status = crypt_status, 2002 .postsuspend = crypt_postsuspend, 2003 .preresume = crypt_preresume, 2004 .resume = crypt_resume, 2005 .message = crypt_message, 2006 .merge = crypt_merge, 2007 .iterate_devices = crypt_iterate_devices, 2008 }; 2009 2010 static int __init dm_crypt_init(void) 2011 { 2012 int r; 2013 2014 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0); 2015 if (!_crypt_io_pool) 2016 return -ENOMEM; 2017 2018 r = dm_register_target(&crypt_target); 2019 if (r < 0) { 2020 DMERR("register failed %d", r); 2021 kmem_cache_destroy(_crypt_io_pool); 2022 } 2023 2024 return r; 2025 } 2026 2027 static void __exit dm_crypt_exit(void) 2028 { 2029 dm_unregister_target(&crypt_target); 2030 kmem_cache_destroy(_crypt_io_pool); 2031 } 2032 2033 module_init(dm_crypt_init); 2034 module_exit(dm_crypt_exit); 2035 2036 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>"); 2037 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 2038 MODULE_LICENSE("GPL"); 2039