xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 545e4006)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <asm/atomic.h>
22 #include <linux/scatterlist.h>
23 #include <asm/page.h>
24 #include <asm/unaligned.h>
25 
26 #include "dm.h"
27 
28 #define DM_MSG_PREFIX "crypt"
29 #define MESG_STR(x) x, sizeof(x)
30 
31 /*
32  * context holding the current state of a multi-part conversion
33  */
34 struct convert_context {
35 	struct completion restart;
36 	struct bio *bio_in;
37 	struct bio *bio_out;
38 	unsigned int offset_in;
39 	unsigned int offset_out;
40 	unsigned int idx_in;
41 	unsigned int idx_out;
42 	sector_t sector;
43 	atomic_t pending;
44 };
45 
46 /*
47  * per bio private data
48  */
49 struct dm_crypt_io {
50 	struct dm_target *target;
51 	struct bio *base_bio;
52 	struct work_struct work;
53 
54 	struct convert_context ctx;
55 
56 	atomic_t pending;
57 	int error;
58 	sector_t sector;
59 };
60 
61 struct dm_crypt_request {
62 	struct scatterlist sg_in;
63 	struct scatterlist sg_out;
64 };
65 
66 struct crypt_config;
67 
68 struct crypt_iv_operations {
69 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
70 		   const char *opts);
71 	void (*dtr)(struct crypt_config *cc);
72 	const char *(*status)(struct crypt_config *cc);
73 	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
74 };
75 
76 /*
77  * Crypt: maps a linear range of a block device
78  * and encrypts / decrypts at the same time.
79  */
80 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
81 struct crypt_config {
82 	struct dm_dev *dev;
83 	sector_t start;
84 
85 	/*
86 	 * pool for per bio private data, crypto requests and
87 	 * encryption requeusts/buffer pages
88 	 */
89 	mempool_t *io_pool;
90 	mempool_t *req_pool;
91 	mempool_t *page_pool;
92 	struct bio_set *bs;
93 
94 	struct workqueue_struct *io_queue;
95 	struct workqueue_struct *crypt_queue;
96 	wait_queue_head_t writeq;
97 
98 	/*
99 	 * crypto related data
100 	 */
101 	struct crypt_iv_operations *iv_gen_ops;
102 	char *iv_mode;
103 	union {
104 		struct crypto_cipher *essiv_tfm;
105 		int benbi_shift;
106 	} iv_gen_private;
107 	sector_t iv_offset;
108 	unsigned int iv_size;
109 
110 	/*
111 	 * Layout of each crypto request:
112 	 *
113 	 *   struct ablkcipher_request
114 	 *      context
115 	 *      padding
116 	 *   struct dm_crypt_request
117 	 *      padding
118 	 *   IV
119 	 *
120 	 * The padding is added so that dm_crypt_request and the IV are
121 	 * correctly aligned.
122 	 */
123 	unsigned int dmreq_start;
124 	struct ablkcipher_request *req;
125 
126 	char cipher[CRYPTO_MAX_ALG_NAME];
127 	char chainmode[CRYPTO_MAX_ALG_NAME];
128 	struct crypto_ablkcipher *tfm;
129 	unsigned long flags;
130 	unsigned int key_size;
131 	u8 key[0];
132 };
133 
134 #define MIN_IOS        16
135 #define MIN_POOL_PAGES 32
136 #define MIN_BIO_PAGES  8
137 
138 static struct kmem_cache *_crypt_io_pool;
139 
140 static void clone_init(struct dm_crypt_io *, struct bio *);
141 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
142 
143 /*
144  * Different IV generation algorithms:
145  *
146  * plain: the initial vector is the 32-bit little-endian version of the sector
147  *        number, padded with zeros if necessary.
148  *
149  * essiv: "encrypted sector|salt initial vector", the sector number is
150  *        encrypted with the bulk cipher using a salt as key. The salt
151  *        should be derived from the bulk cipher's key via hashing.
152  *
153  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
154  *        (needed for LRW-32-AES and possible other narrow block modes)
155  *
156  * null: the initial vector is always zero.  Provides compatibility with
157  *       obsolete loop_fish2 devices.  Do not use for new devices.
158  *
159  * plumb: unimplemented, see:
160  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
161  */
162 
163 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
164 {
165 	memset(iv, 0, cc->iv_size);
166 	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
167 
168 	return 0;
169 }
170 
171 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
172 			      const char *opts)
173 {
174 	struct crypto_cipher *essiv_tfm;
175 	struct crypto_hash *hash_tfm;
176 	struct hash_desc desc;
177 	struct scatterlist sg;
178 	unsigned int saltsize;
179 	u8 *salt;
180 	int err;
181 
182 	if (opts == NULL) {
183 		ti->error = "Digest algorithm missing for ESSIV mode";
184 		return -EINVAL;
185 	}
186 
187 	/* Hash the cipher key with the given hash algorithm */
188 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
189 	if (IS_ERR(hash_tfm)) {
190 		ti->error = "Error initializing ESSIV hash";
191 		return PTR_ERR(hash_tfm);
192 	}
193 
194 	saltsize = crypto_hash_digestsize(hash_tfm);
195 	salt = kmalloc(saltsize, GFP_KERNEL);
196 	if (salt == NULL) {
197 		ti->error = "Error kmallocing salt storage in ESSIV";
198 		crypto_free_hash(hash_tfm);
199 		return -ENOMEM;
200 	}
201 
202 	sg_init_one(&sg, cc->key, cc->key_size);
203 	desc.tfm = hash_tfm;
204 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
205 	err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
206 	crypto_free_hash(hash_tfm);
207 
208 	if (err) {
209 		ti->error = "Error calculating hash in ESSIV";
210 		kfree(salt);
211 		return err;
212 	}
213 
214 	/* Setup the essiv_tfm with the given salt */
215 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
216 	if (IS_ERR(essiv_tfm)) {
217 		ti->error = "Error allocating crypto tfm for ESSIV";
218 		kfree(salt);
219 		return PTR_ERR(essiv_tfm);
220 	}
221 	if (crypto_cipher_blocksize(essiv_tfm) !=
222 	    crypto_ablkcipher_ivsize(cc->tfm)) {
223 		ti->error = "Block size of ESSIV cipher does "
224 			    "not match IV size of block cipher";
225 		crypto_free_cipher(essiv_tfm);
226 		kfree(salt);
227 		return -EINVAL;
228 	}
229 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
230 	if (err) {
231 		ti->error = "Failed to set key for ESSIV cipher";
232 		crypto_free_cipher(essiv_tfm);
233 		kfree(salt);
234 		return err;
235 	}
236 	kfree(salt);
237 
238 	cc->iv_gen_private.essiv_tfm = essiv_tfm;
239 	return 0;
240 }
241 
242 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
243 {
244 	crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
245 	cc->iv_gen_private.essiv_tfm = NULL;
246 }
247 
248 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
249 {
250 	memset(iv, 0, cc->iv_size);
251 	*(u64 *)iv = cpu_to_le64(sector);
252 	crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
253 	return 0;
254 }
255 
256 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
257 			      const char *opts)
258 {
259 	unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
260 	int log = ilog2(bs);
261 
262 	/* we need to calculate how far we must shift the sector count
263 	 * to get the cipher block count, we use this shift in _gen */
264 
265 	if (1 << log != bs) {
266 		ti->error = "cypher blocksize is not a power of 2";
267 		return -EINVAL;
268 	}
269 
270 	if (log > 9) {
271 		ti->error = "cypher blocksize is > 512";
272 		return -EINVAL;
273 	}
274 
275 	cc->iv_gen_private.benbi_shift = 9 - log;
276 
277 	return 0;
278 }
279 
280 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
281 {
282 }
283 
284 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
285 {
286 	__be64 val;
287 
288 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
289 
290 	val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
291 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
292 
293 	return 0;
294 }
295 
296 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
297 {
298 	memset(iv, 0, cc->iv_size);
299 
300 	return 0;
301 }
302 
303 static struct crypt_iv_operations crypt_iv_plain_ops = {
304 	.generator = crypt_iv_plain_gen
305 };
306 
307 static struct crypt_iv_operations crypt_iv_essiv_ops = {
308 	.ctr       = crypt_iv_essiv_ctr,
309 	.dtr       = crypt_iv_essiv_dtr,
310 	.generator = crypt_iv_essiv_gen
311 };
312 
313 static struct crypt_iv_operations crypt_iv_benbi_ops = {
314 	.ctr	   = crypt_iv_benbi_ctr,
315 	.dtr	   = crypt_iv_benbi_dtr,
316 	.generator = crypt_iv_benbi_gen
317 };
318 
319 static struct crypt_iv_operations crypt_iv_null_ops = {
320 	.generator = crypt_iv_null_gen
321 };
322 
323 static void crypt_convert_init(struct crypt_config *cc,
324 			       struct convert_context *ctx,
325 			       struct bio *bio_out, struct bio *bio_in,
326 			       sector_t sector)
327 {
328 	ctx->bio_in = bio_in;
329 	ctx->bio_out = bio_out;
330 	ctx->offset_in = 0;
331 	ctx->offset_out = 0;
332 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
333 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
334 	ctx->sector = sector + cc->iv_offset;
335 	init_completion(&ctx->restart);
336 	atomic_set(&ctx->pending, 1);
337 }
338 
339 static int crypt_convert_block(struct crypt_config *cc,
340 			       struct convert_context *ctx,
341 			       struct ablkcipher_request *req)
342 {
343 	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
344 	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
345 	struct dm_crypt_request *dmreq;
346 	u8 *iv;
347 	int r = 0;
348 
349 	dmreq = (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
350 	iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
351 			 crypto_ablkcipher_alignmask(cc->tfm) + 1);
352 
353 	sg_init_table(&dmreq->sg_in, 1);
354 	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
355 		    bv_in->bv_offset + ctx->offset_in);
356 
357 	sg_init_table(&dmreq->sg_out, 1);
358 	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
359 		    bv_out->bv_offset + ctx->offset_out);
360 
361 	ctx->offset_in += 1 << SECTOR_SHIFT;
362 	if (ctx->offset_in >= bv_in->bv_len) {
363 		ctx->offset_in = 0;
364 		ctx->idx_in++;
365 	}
366 
367 	ctx->offset_out += 1 << SECTOR_SHIFT;
368 	if (ctx->offset_out >= bv_out->bv_len) {
369 		ctx->offset_out = 0;
370 		ctx->idx_out++;
371 	}
372 
373 	if (cc->iv_gen_ops) {
374 		r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
375 		if (r < 0)
376 			return r;
377 	}
378 
379 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
380 				     1 << SECTOR_SHIFT, iv);
381 
382 	if (bio_data_dir(ctx->bio_in) == WRITE)
383 		r = crypto_ablkcipher_encrypt(req);
384 	else
385 		r = crypto_ablkcipher_decrypt(req);
386 
387 	return r;
388 }
389 
390 static void kcryptd_async_done(struct crypto_async_request *async_req,
391 			       int error);
392 static void crypt_alloc_req(struct crypt_config *cc,
393 			    struct convert_context *ctx)
394 {
395 	if (!cc->req)
396 		cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
397 	ablkcipher_request_set_tfm(cc->req, cc->tfm);
398 	ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
399 					     CRYPTO_TFM_REQ_MAY_SLEEP,
400 					     kcryptd_async_done, ctx);
401 }
402 
403 /*
404  * Encrypt / decrypt data from one bio to another one (can be the same one)
405  */
406 static int crypt_convert(struct crypt_config *cc,
407 			 struct convert_context *ctx)
408 {
409 	int r;
410 
411 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
412 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
413 
414 		crypt_alloc_req(cc, ctx);
415 
416 		atomic_inc(&ctx->pending);
417 
418 		r = crypt_convert_block(cc, ctx, cc->req);
419 
420 		switch (r) {
421 		/* async */
422 		case -EBUSY:
423 			wait_for_completion(&ctx->restart);
424 			INIT_COMPLETION(ctx->restart);
425 			/* fall through*/
426 		case -EINPROGRESS:
427 			cc->req = NULL;
428 			ctx->sector++;
429 			continue;
430 
431 		/* sync */
432 		case 0:
433 			atomic_dec(&ctx->pending);
434 			ctx->sector++;
435 			cond_resched();
436 			continue;
437 
438 		/* error */
439 		default:
440 			atomic_dec(&ctx->pending);
441 			return r;
442 		}
443 	}
444 
445 	return 0;
446 }
447 
448 static void dm_crypt_bio_destructor(struct bio *bio)
449 {
450 	struct dm_crypt_io *io = bio->bi_private;
451 	struct crypt_config *cc = io->target->private;
452 
453 	bio_free(bio, cc->bs);
454 }
455 
456 /*
457  * Generate a new unfragmented bio with the given size
458  * This should never violate the device limitations
459  * May return a smaller bio when running out of pages
460  */
461 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
462 {
463 	struct crypt_config *cc = io->target->private;
464 	struct bio *clone;
465 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
466 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
467 	unsigned i, len;
468 	struct page *page;
469 
470 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
471 	if (!clone)
472 		return NULL;
473 
474 	clone_init(io, clone);
475 
476 	for (i = 0; i < nr_iovecs; i++) {
477 		page = mempool_alloc(cc->page_pool, gfp_mask);
478 		if (!page)
479 			break;
480 
481 		/*
482 		 * if additional pages cannot be allocated without waiting,
483 		 * return a partially allocated bio, the caller will then try
484 		 * to allocate additional bios while submitting this partial bio
485 		 */
486 		if (i == (MIN_BIO_PAGES - 1))
487 			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
488 
489 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
490 
491 		if (!bio_add_page(clone, page, len, 0)) {
492 			mempool_free(page, cc->page_pool);
493 			break;
494 		}
495 
496 		size -= len;
497 	}
498 
499 	if (!clone->bi_size) {
500 		bio_put(clone);
501 		return NULL;
502 	}
503 
504 	return clone;
505 }
506 
507 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
508 {
509 	unsigned int i;
510 	struct bio_vec *bv;
511 
512 	for (i = 0; i < clone->bi_vcnt; i++) {
513 		bv = bio_iovec_idx(clone, i);
514 		BUG_ON(!bv->bv_page);
515 		mempool_free(bv->bv_page, cc->page_pool);
516 		bv->bv_page = NULL;
517 	}
518 }
519 
520 /*
521  * One of the bios was finished. Check for completion of
522  * the whole request and correctly clean up the buffer.
523  */
524 static void crypt_dec_pending(struct dm_crypt_io *io)
525 {
526 	struct crypt_config *cc = io->target->private;
527 
528 	if (!atomic_dec_and_test(&io->pending))
529 		return;
530 
531 	bio_endio(io->base_bio, io->error);
532 	mempool_free(io, cc->io_pool);
533 }
534 
535 /*
536  * kcryptd/kcryptd_io:
537  *
538  * Needed because it would be very unwise to do decryption in an
539  * interrupt context.
540  *
541  * kcryptd performs the actual encryption or decryption.
542  *
543  * kcryptd_io performs the IO submission.
544  *
545  * They must be separated as otherwise the final stages could be
546  * starved by new requests which can block in the first stages due
547  * to memory allocation.
548  */
549 static void crypt_endio(struct bio *clone, int error)
550 {
551 	struct dm_crypt_io *io = clone->bi_private;
552 	struct crypt_config *cc = io->target->private;
553 	unsigned rw = bio_data_dir(clone);
554 
555 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
556 		error = -EIO;
557 
558 	/*
559 	 * free the processed pages
560 	 */
561 	if (rw == WRITE)
562 		crypt_free_buffer_pages(cc, clone);
563 
564 	bio_put(clone);
565 
566 	if (rw == READ && !error) {
567 		kcryptd_queue_crypt(io);
568 		return;
569 	}
570 
571 	if (unlikely(error))
572 		io->error = error;
573 
574 	crypt_dec_pending(io);
575 }
576 
577 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
578 {
579 	struct crypt_config *cc = io->target->private;
580 
581 	clone->bi_private = io;
582 	clone->bi_end_io  = crypt_endio;
583 	clone->bi_bdev    = cc->dev->bdev;
584 	clone->bi_rw      = io->base_bio->bi_rw;
585 	clone->bi_destructor = dm_crypt_bio_destructor;
586 }
587 
588 static void kcryptd_io_read(struct dm_crypt_io *io)
589 {
590 	struct crypt_config *cc = io->target->private;
591 	struct bio *base_bio = io->base_bio;
592 	struct bio *clone;
593 
594 	atomic_inc(&io->pending);
595 
596 	/*
597 	 * The block layer might modify the bvec array, so always
598 	 * copy the required bvecs because we need the original
599 	 * one in order to decrypt the whole bio data *afterwards*.
600 	 */
601 	clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
602 	if (unlikely(!clone)) {
603 		io->error = -ENOMEM;
604 		crypt_dec_pending(io);
605 		return;
606 	}
607 
608 	clone_init(io, clone);
609 	clone->bi_idx = 0;
610 	clone->bi_vcnt = bio_segments(base_bio);
611 	clone->bi_size = base_bio->bi_size;
612 	clone->bi_sector = cc->start + io->sector;
613 	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
614 	       sizeof(struct bio_vec) * clone->bi_vcnt);
615 
616 	generic_make_request(clone);
617 }
618 
619 static void kcryptd_io_write(struct dm_crypt_io *io)
620 {
621 	struct bio *clone = io->ctx.bio_out;
622 	struct crypt_config *cc = io->target->private;
623 
624 	generic_make_request(clone);
625 	wake_up(&cc->writeq);
626 }
627 
628 static void kcryptd_io(struct work_struct *work)
629 {
630 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
631 
632 	if (bio_data_dir(io->base_bio) == READ)
633 		kcryptd_io_read(io);
634 	else
635 		kcryptd_io_write(io);
636 }
637 
638 static void kcryptd_queue_io(struct dm_crypt_io *io)
639 {
640 	struct crypt_config *cc = io->target->private;
641 
642 	INIT_WORK(&io->work, kcryptd_io);
643 	queue_work(cc->io_queue, &io->work);
644 }
645 
646 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
647 					  int error, int async)
648 {
649 	struct bio *clone = io->ctx.bio_out;
650 	struct crypt_config *cc = io->target->private;
651 
652 	if (unlikely(error < 0)) {
653 		crypt_free_buffer_pages(cc, clone);
654 		bio_put(clone);
655 		io->error = -EIO;
656 		return;
657 	}
658 
659 	/* crypt_convert should have filled the clone bio */
660 	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
661 
662 	clone->bi_sector = cc->start + io->sector;
663 	io->sector += bio_sectors(clone);
664 
665 	if (async)
666 		kcryptd_queue_io(io);
667 	else {
668 		atomic_inc(&io->pending);
669 		generic_make_request(clone);
670 	}
671 }
672 
673 static void kcryptd_crypt_write_convert_loop(struct dm_crypt_io *io)
674 {
675 	struct crypt_config *cc = io->target->private;
676 	struct bio *clone;
677 	unsigned remaining = io->base_bio->bi_size;
678 	int r;
679 
680 	/*
681 	 * The allocated buffers can be smaller than the whole bio,
682 	 * so repeat the whole process until all the data can be handled.
683 	 */
684 	while (remaining) {
685 		clone = crypt_alloc_buffer(io, remaining);
686 		if (unlikely(!clone)) {
687 			io->error = -ENOMEM;
688 			return;
689 		}
690 
691 		io->ctx.bio_out = clone;
692 		io->ctx.idx_out = 0;
693 
694 		remaining -= clone->bi_size;
695 
696 		r = crypt_convert(cc, &io->ctx);
697 
698 		if (atomic_dec_and_test(&io->ctx.pending)) {
699 			/* processed, no running async crypto  */
700 			kcryptd_crypt_write_io_submit(io, r, 0);
701 			if (unlikely(r < 0))
702 				return;
703 		} else
704 			atomic_inc(&io->pending);
705 
706 		/* out of memory -> run queues */
707 		if (unlikely(remaining)) {
708 			/* wait for async crypto then reinitialize pending */
709 			wait_event(cc->writeq, !atomic_read(&io->ctx.pending));
710 			atomic_set(&io->ctx.pending, 1);
711 			congestion_wait(WRITE, HZ/100);
712 		}
713 	}
714 }
715 
716 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
717 {
718 	struct crypt_config *cc = io->target->private;
719 
720 	/*
721 	 * Prevent io from disappearing until this function completes.
722 	 */
723 	atomic_inc(&io->pending);
724 
725 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, io->sector);
726 	kcryptd_crypt_write_convert_loop(io);
727 
728 	crypt_dec_pending(io);
729 }
730 
731 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
732 {
733 	if (unlikely(error < 0))
734 		io->error = -EIO;
735 
736 	crypt_dec_pending(io);
737 }
738 
739 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
740 {
741 	struct crypt_config *cc = io->target->private;
742 	int r = 0;
743 
744 	atomic_inc(&io->pending);
745 
746 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
747 			   io->sector);
748 
749 	r = crypt_convert(cc, &io->ctx);
750 
751 	if (atomic_dec_and_test(&io->ctx.pending))
752 		kcryptd_crypt_read_done(io, r);
753 
754 	crypt_dec_pending(io);
755 }
756 
757 static void kcryptd_async_done(struct crypto_async_request *async_req,
758 			       int error)
759 {
760 	struct convert_context *ctx = async_req->data;
761 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
762 	struct crypt_config *cc = io->target->private;
763 
764 	if (error == -EINPROGRESS) {
765 		complete(&ctx->restart);
766 		return;
767 	}
768 
769 	mempool_free(ablkcipher_request_cast(async_req), cc->req_pool);
770 
771 	if (!atomic_dec_and_test(&ctx->pending))
772 		return;
773 
774 	if (bio_data_dir(io->base_bio) == READ)
775 		kcryptd_crypt_read_done(io, error);
776 	else
777 		kcryptd_crypt_write_io_submit(io, error, 1);
778 }
779 
780 static void kcryptd_crypt(struct work_struct *work)
781 {
782 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
783 
784 	if (bio_data_dir(io->base_bio) == READ)
785 		kcryptd_crypt_read_convert(io);
786 	else
787 		kcryptd_crypt_write_convert(io);
788 }
789 
790 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
791 {
792 	struct crypt_config *cc = io->target->private;
793 
794 	INIT_WORK(&io->work, kcryptd_crypt);
795 	queue_work(cc->crypt_queue, &io->work);
796 }
797 
798 /*
799  * Decode key from its hex representation
800  */
801 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
802 {
803 	char buffer[3];
804 	char *endp;
805 	unsigned int i;
806 
807 	buffer[2] = '\0';
808 
809 	for (i = 0; i < size; i++) {
810 		buffer[0] = *hex++;
811 		buffer[1] = *hex++;
812 
813 		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
814 
815 		if (endp != &buffer[2])
816 			return -EINVAL;
817 	}
818 
819 	if (*hex != '\0')
820 		return -EINVAL;
821 
822 	return 0;
823 }
824 
825 /*
826  * Encode key into its hex representation
827  */
828 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
829 {
830 	unsigned int i;
831 
832 	for (i = 0; i < size; i++) {
833 		sprintf(hex, "%02x", *key);
834 		hex += 2;
835 		key++;
836 	}
837 }
838 
839 static int crypt_set_key(struct crypt_config *cc, char *key)
840 {
841 	unsigned key_size = strlen(key) >> 1;
842 
843 	if (cc->key_size && cc->key_size != key_size)
844 		return -EINVAL;
845 
846 	cc->key_size = key_size; /* initial settings */
847 
848 	if ((!key_size && strcmp(key, "-")) ||
849 	   (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
850 		return -EINVAL;
851 
852 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
853 
854 	return 0;
855 }
856 
857 static int crypt_wipe_key(struct crypt_config *cc)
858 {
859 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
860 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
861 	return 0;
862 }
863 
864 /*
865  * Construct an encryption mapping:
866  * <cipher> <key> <iv_offset> <dev_path> <start>
867  */
868 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
869 {
870 	struct crypt_config *cc;
871 	struct crypto_ablkcipher *tfm;
872 	char *tmp;
873 	char *cipher;
874 	char *chainmode;
875 	char *ivmode;
876 	char *ivopts;
877 	unsigned int key_size;
878 	unsigned long long tmpll;
879 
880 	if (argc != 5) {
881 		ti->error = "Not enough arguments";
882 		return -EINVAL;
883 	}
884 
885 	tmp = argv[0];
886 	cipher = strsep(&tmp, "-");
887 	chainmode = strsep(&tmp, "-");
888 	ivopts = strsep(&tmp, "-");
889 	ivmode = strsep(&ivopts, ":");
890 
891 	if (tmp)
892 		DMWARN("Unexpected additional cipher options");
893 
894 	key_size = strlen(argv[1]) >> 1;
895 
896  	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
897 	if (cc == NULL) {
898 		ti->error =
899 			"Cannot allocate transparent encryption context";
900 		return -ENOMEM;
901 	}
902 
903  	if (crypt_set_key(cc, argv[1])) {
904 		ti->error = "Error decoding key";
905 		goto bad_cipher;
906 	}
907 
908 	/* Compatiblity mode for old dm-crypt cipher strings */
909 	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
910 		chainmode = "cbc";
911 		ivmode = "plain";
912 	}
913 
914 	if (strcmp(chainmode, "ecb") && !ivmode) {
915 		ti->error = "This chaining mode requires an IV mechanism";
916 		goto bad_cipher;
917 	}
918 
919 	if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
920 		     chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
921 		ti->error = "Chain mode + cipher name is too long";
922 		goto bad_cipher;
923 	}
924 
925 	tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
926 	if (IS_ERR(tfm)) {
927 		ti->error = "Error allocating crypto tfm";
928 		goto bad_cipher;
929 	}
930 
931 	strcpy(cc->cipher, cipher);
932 	strcpy(cc->chainmode, chainmode);
933 	cc->tfm = tfm;
934 
935 	/*
936 	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
937 	 * See comments at iv code
938 	 */
939 
940 	if (ivmode == NULL)
941 		cc->iv_gen_ops = NULL;
942 	else if (strcmp(ivmode, "plain") == 0)
943 		cc->iv_gen_ops = &crypt_iv_plain_ops;
944 	else if (strcmp(ivmode, "essiv") == 0)
945 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
946 	else if (strcmp(ivmode, "benbi") == 0)
947 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
948 	else if (strcmp(ivmode, "null") == 0)
949 		cc->iv_gen_ops = &crypt_iv_null_ops;
950 	else {
951 		ti->error = "Invalid IV mode";
952 		goto bad_ivmode;
953 	}
954 
955 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
956 	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
957 		goto bad_ivmode;
958 
959 	cc->iv_size = crypto_ablkcipher_ivsize(tfm);
960 	if (cc->iv_size)
961 		/* at least a 64 bit sector number should fit in our buffer */
962 		cc->iv_size = max(cc->iv_size,
963 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
964 	else {
965 		if (cc->iv_gen_ops) {
966 			DMWARN("Selected cipher does not support IVs");
967 			if (cc->iv_gen_ops->dtr)
968 				cc->iv_gen_ops->dtr(cc);
969 			cc->iv_gen_ops = NULL;
970 		}
971 	}
972 
973 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
974 	if (!cc->io_pool) {
975 		ti->error = "Cannot allocate crypt io mempool";
976 		goto bad_slab_pool;
977 	}
978 
979 	cc->dmreq_start = sizeof(struct ablkcipher_request);
980 	cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
981 	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
982 	cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
983 			   ~(crypto_tfm_ctx_alignment() - 1);
984 
985 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
986 			sizeof(struct dm_crypt_request) + cc->iv_size);
987 	if (!cc->req_pool) {
988 		ti->error = "Cannot allocate crypt request mempool";
989 		goto bad_req_pool;
990 	}
991 	cc->req = NULL;
992 
993 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
994 	if (!cc->page_pool) {
995 		ti->error = "Cannot allocate page mempool";
996 		goto bad_page_pool;
997 	}
998 
999 	cc->bs = bioset_create(MIN_IOS, MIN_IOS);
1000 	if (!cc->bs) {
1001 		ti->error = "Cannot allocate crypt bioset";
1002 		goto bad_bs;
1003 	}
1004 
1005 	if (crypto_ablkcipher_setkey(tfm, cc->key, key_size) < 0) {
1006 		ti->error = "Error setting key";
1007 		goto bad_device;
1008 	}
1009 
1010 	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1011 		ti->error = "Invalid iv_offset sector";
1012 		goto bad_device;
1013 	}
1014 	cc->iv_offset = tmpll;
1015 
1016 	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1017 		ti->error = "Invalid device sector";
1018 		goto bad_device;
1019 	}
1020 	cc->start = tmpll;
1021 
1022 	if (dm_get_device(ti, argv[3], cc->start, ti->len,
1023 			  dm_table_get_mode(ti->table), &cc->dev)) {
1024 		ti->error = "Device lookup failed";
1025 		goto bad_device;
1026 	}
1027 
1028 	if (ivmode && cc->iv_gen_ops) {
1029 		if (ivopts)
1030 			*(ivopts - 1) = ':';
1031 		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
1032 		if (!cc->iv_mode) {
1033 			ti->error = "Error kmallocing iv_mode string";
1034 			goto bad_ivmode_string;
1035 		}
1036 		strcpy(cc->iv_mode, ivmode);
1037 	} else
1038 		cc->iv_mode = NULL;
1039 
1040 	cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1041 	if (!cc->io_queue) {
1042 		ti->error = "Couldn't create kcryptd io queue";
1043 		goto bad_io_queue;
1044 	}
1045 
1046 	cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1047 	if (!cc->crypt_queue) {
1048 		ti->error = "Couldn't create kcryptd queue";
1049 		goto bad_crypt_queue;
1050 	}
1051 
1052 	init_waitqueue_head(&cc->writeq);
1053 	ti->private = cc;
1054 	return 0;
1055 
1056 bad_crypt_queue:
1057 	destroy_workqueue(cc->io_queue);
1058 bad_io_queue:
1059 	kfree(cc->iv_mode);
1060 bad_ivmode_string:
1061 	dm_put_device(ti, cc->dev);
1062 bad_device:
1063 	bioset_free(cc->bs);
1064 bad_bs:
1065 	mempool_destroy(cc->page_pool);
1066 bad_page_pool:
1067 	mempool_destroy(cc->req_pool);
1068 bad_req_pool:
1069 	mempool_destroy(cc->io_pool);
1070 bad_slab_pool:
1071 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1072 		cc->iv_gen_ops->dtr(cc);
1073 bad_ivmode:
1074 	crypto_free_ablkcipher(tfm);
1075 bad_cipher:
1076 	/* Must zero key material before freeing */
1077 	memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
1078 	kfree(cc);
1079 	return -EINVAL;
1080 }
1081 
1082 static void crypt_dtr(struct dm_target *ti)
1083 {
1084 	struct crypt_config *cc = (struct crypt_config *) ti->private;
1085 
1086 	destroy_workqueue(cc->io_queue);
1087 	destroy_workqueue(cc->crypt_queue);
1088 
1089 	if (cc->req)
1090 		mempool_free(cc->req, cc->req_pool);
1091 
1092 	bioset_free(cc->bs);
1093 	mempool_destroy(cc->page_pool);
1094 	mempool_destroy(cc->req_pool);
1095 	mempool_destroy(cc->io_pool);
1096 
1097 	kfree(cc->iv_mode);
1098 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1099 		cc->iv_gen_ops->dtr(cc);
1100 	crypto_free_ablkcipher(cc->tfm);
1101 	dm_put_device(ti, cc->dev);
1102 
1103 	/* Must zero key material before freeing */
1104 	memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
1105 	kfree(cc);
1106 }
1107 
1108 static int crypt_map(struct dm_target *ti, struct bio *bio,
1109 		     union map_info *map_context)
1110 {
1111 	struct crypt_config *cc = ti->private;
1112 	struct dm_crypt_io *io;
1113 
1114 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
1115 	io->target = ti;
1116 	io->base_bio = bio;
1117 	io->sector = bio->bi_sector - ti->begin;
1118 	io->error = 0;
1119 	atomic_set(&io->pending, 0);
1120 
1121 	if (bio_data_dir(io->base_bio) == READ)
1122 		kcryptd_queue_io(io);
1123 	else
1124 		kcryptd_queue_crypt(io);
1125 
1126 	return DM_MAPIO_SUBMITTED;
1127 }
1128 
1129 static int crypt_status(struct dm_target *ti, status_type_t type,
1130 			char *result, unsigned int maxlen)
1131 {
1132 	struct crypt_config *cc = (struct crypt_config *) ti->private;
1133 	unsigned int sz = 0;
1134 
1135 	switch (type) {
1136 	case STATUSTYPE_INFO:
1137 		result[0] = '\0';
1138 		break;
1139 
1140 	case STATUSTYPE_TABLE:
1141 		if (cc->iv_mode)
1142 			DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1143 			       cc->iv_mode);
1144 		else
1145 			DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1146 
1147 		if (cc->key_size > 0) {
1148 			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1149 				return -ENOMEM;
1150 
1151 			crypt_encode_key(result + sz, cc->key, cc->key_size);
1152 			sz += cc->key_size << 1;
1153 		} else {
1154 			if (sz >= maxlen)
1155 				return -ENOMEM;
1156 			result[sz++] = '-';
1157 		}
1158 
1159 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1160 				cc->dev->name, (unsigned long long)cc->start);
1161 		break;
1162 	}
1163 	return 0;
1164 }
1165 
1166 static void crypt_postsuspend(struct dm_target *ti)
1167 {
1168 	struct crypt_config *cc = ti->private;
1169 
1170 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1171 }
1172 
1173 static int crypt_preresume(struct dm_target *ti)
1174 {
1175 	struct crypt_config *cc = ti->private;
1176 
1177 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1178 		DMERR("aborting resume - crypt key is not set.");
1179 		return -EAGAIN;
1180 	}
1181 
1182 	return 0;
1183 }
1184 
1185 static void crypt_resume(struct dm_target *ti)
1186 {
1187 	struct crypt_config *cc = ti->private;
1188 
1189 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1190 }
1191 
1192 /* Message interface
1193  *	key set <key>
1194  *	key wipe
1195  */
1196 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1197 {
1198 	struct crypt_config *cc = ti->private;
1199 
1200 	if (argc < 2)
1201 		goto error;
1202 
1203 	if (!strnicmp(argv[0], MESG_STR("key"))) {
1204 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1205 			DMWARN("not suspended during key manipulation.");
1206 			return -EINVAL;
1207 		}
1208 		if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1209 			return crypt_set_key(cc, argv[2]);
1210 		if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1211 			return crypt_wipe_key(cc);
1212 	}
1213 
1214 error:
1215 	DMWARN("unrecognised message received.");
1216 	return -EINVAL;
1217 }
1218 
1219 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1220 		       struct bio_vec *biovec, int max_size)
1221 {
1222 	struct crypt_config *cc = ti->private;
1223 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1224 
1225 	if (!q->merge_bvec_fn)
1226 		return max_size;
1227 
1228 	bvm->bi_bdev = cc->dev->bdev;
1229 	bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin;
1230 
1231 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1232 }
1233 
1234 static struct target_type crypt_target = {
1235 	.name   = "crypt",
1236 	.version= {1, 6, 0},
1237 	.module = THIS_MODULE,
1238 	.ctr    = crypt_ctr,
1239 	.dtr    = crypt_dtr,
1240 	.map    = crypt_map,
1241 	.status = crypt_status,
1242 	.postsuspend = crypt_postsuspend,
1243 	.preresume = crypt_preresume,
1244 	.resume = crypt_resume,
1245 	.message = crypt_message,
1246 	.merge  = crypt_merge,
1247 };
1248 
1249 static int __init dm_crypt_init(void)
1250 {
1251 	int r;
1252 
1253 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1254 	if (!_crypt_io_pool)
1255 		return -ENOMEM;
1256 
1257 	r = dm_register_target(&crypt_target);
1258 	if (r < 0) {
1259 		DMERR("register failed %d", r);
1260 		kmem_cache_destroy(_crypt_io_pool);
1261 	}
1262 
1263 	return r;
1264 }
1265 
1266 static void __exit dm_crypt_exit(void)
1267 {
1268 	int r = dm_unregister_target(&crypt_target);
1269 
1270 	if (r < 0)
1271 		DMERR("unregister failed %d", r);
1272 
1273 	kmem_cache_destroy(_crypt_io_pool);
1274 }
1275 
1276 module_init(dm_crypt_init);
1277 module_exit(dm_crypt_exit);
1278 
1279 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1280 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1281 MODULE_LICENSE("GPL");
1282