1 /* 2 * Copyright (C) 2003 Jana Saout <jana@saout.de> 3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved. 5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com> 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/completion.h> 11 #include <linux/err.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/bio.h> 16 #include <linux/blkdev.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/crypto.h> 20 #include <linux/workqueue.h> 21 #include <linux/kthread.h> 22 #include <linux/backing-dev.h> 23 #include <linux/atomic.h> 24 #include <linux/scatterlist.h> 25 #include <linux/rbtree.h> 26 #include <asm/page.h> 27 #include <asm/unaligned.h> 28 #include <crypto/hash.h> 29 #include <crypto/md5.h> 30 #include <crypto/algapi.h> 31 32 #include <linux/device-mapper.h> 33 34 #define DM_MSG_PREFIX "crypt" 35 36 /* 37 * context holding the current state of a multi-part conversion 38 */ 39 struct convert_context { 40 struct completion restart; 41 struct bio *bio_in; 42 struct bio *bio_out; 43 struct bvec_iter iter_in; 44 struct bvec_iter iter_out; 45 sector_t cc_sector; 46 atomic_t cc_pending; 47 struct ablkcipher_request *req; 48 }; 49 50 /* 51 * per bio private data 52 */ 53 struct dm_crypt_io { 54 struct crypt_config *cc; 55 struct bio *base_bio; 56 struct work_struct work; 57 58 struct convert_context ctx; 59 60 atomic_t io_pending; 61 int error; 62 sector_t sector; 63 64 struct rb_node rb_node; 65 } CRYPTO_MINALIGN_ATTR; 66 67 struct dm_crypt_request { 68 struct convert_context *ctx; 69 struct scatterlist sg_in; 70 struct scatterlist sg_out; 71 sector_t iv_sector; 72 }; 73 74 struct crypt_config; 75 76 struct crypt_iv_operations { 77 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 78 const char *opts); 79 void (*dtr)(struct crypt_config *cc); 80 int (*init)(struct crypt_config *cc); 81 int (*wipe)(struct crypt_config *cc); 82 int (*generator)(struct crypt_config *cc, u8 *iv, 83 struct dm_crypt_request *dmreq); 84 int (*post)(struct crypt_config *cc, u8 *iv, 85 struct dm_crypt_request *dmreq); 86 }; 87 88 struct iv_essiv_private { 89 struct crypto_hash *hash_tfm; 90 u8 *salt; 91 }; 92 93 struct iv_benbi_private { 94 int shift; 95 }; 96 97 #define LMK_SEED_SIZE 64 /* hash + 0 */ 98 struct iv_lmk_private { 99 struct crypto_shash *hash_tfm; 100 u8 *seed; 101 }; 102 103 #define TCW_WHITENING_SIZE 16 104 struct iv_tcw_private { 105 struct crypto_shash *crc32_tfm; 106 u8 *iv_seed; 107 u8 *whitening; 108 }; 109 110 /* 111 * Crypt: maps a linear range of a block device 112 * and encrypts / decrypts at the same time. 113 */ 114 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, 115 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD }; 116 117 /* 118 * The fields in here must be read only after initialization. 119 */ 120 struct crypt_config { 121 struct dm_dev *dev; 122 sector_t start; 123 124 /* 125 * pool for per bio private data, crypto requests and 126 * encryption requeusts/buffer pages 127 */ 128 mempool_t *req_pool; 129 mempool_t *page_pool; 130 struct bio_set *bs; 131 struct mutex bio_alloc_lock; 132 133 struct workqueue_struct *io_queue; 134 struct workqueue_struct *crypt_queue; 135 136 struct task_struct *write_thread; 137 wait_queue_head_t write_thread_wait; 138 struct rb_root write_tree; 139 140 char *cipher; 141 char *cipher_string; 142 143 struct crypt_iv_operations *iv_gen_ops; 144 union { 145 struct iv_essiv_private essiv; 146 struct iv_benbi_private benbi; 147 struct iv_lmk_private lmk; 148 struct iv_tcw_private tcw; 149 } iv_gen_private; 150 sector_t iv_offset; 151 unsigned int iv_size; 152 153 /* ESSIV: struct crypto_cipher *essiv_tfm */ 154 void *iv_private; 155 struct crypto_ablkcipher **tfms; 156 unsigned tfms_count; 157 158 /* 159 * Layout of each crypto request: 160 * 161 * struct ablkcipher_request 162 * context 163 * padding 164 * struct dm_crypt_request 165 * padding 166 * IV 167 * 168 * The padding is added so that dm_crypt_request and the IV are 169 * correctly aligned. 170 */ 171 unsigned int dmreq_start; 172 173 unsigned int per_bio_data_size; 174 175 unsigned long flags; 176 unsigned int key_size; 177 unsigned int key_parts; /* independent parts in key buffer */ 178 unsigned int key_extra_size; /* additional keys length */ 179 u8 key[0]; 180 }; 181 182 #define MIN_IOS 16 183 184 static void clone_init(struct dm_crypt_io *, struct bio *); 185 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 186 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq); 187 188 /* 189 * Use this to access cipher attributes that are the same for each CPU. 190 */ 191 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc) 192 { 193 return cc->tfms[0]; 194 } 195 196 /* 197 * Different IV generation algorithms: 198 * 199 * plain: the initial vector is the 32-bit little-endian version of the sector 200 * number, padded with zeros if necessary. 201 * 202 * plain64: the initial vector is the 64-bit little-endian version of the sector 203 * number, padded with zeros if necessary. 204 * 205 * essiv: "encrypted sector|salt initial vector", the sector number is 206 * encrypted with the bulk cipher using a salt as key. The salt 207 * should be derived from the bulk cipher's key via hashing. 208 * 209 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 210 * (needed for LRW-32-AES and possible other narrow block modes) 211 * 212 * null: the initial vector is always zero. Provides compatibility with 213 * obsolete loop_fish2 devices. Do not use for new devices. 214 * 215 * lmk: Compatible implementation of the block chaining mode used 216 * by the Loop-AES block device encryption system 217 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 218 * It operates on full 512 byte sectors and uses CBC 219 * with an IV derived from the sector number, the data and 220 * optionally extra IV seed. 221 * This means that after decryption the first block 222 * of sector must be tweaked according to decrypted data. 223 * Loop-AES can use three encryption schemes: 224 * version 1: is plain aes-cbc mode 225 * version 2: uses 64 multikey scheme with lmk IV generator 226 * version 3: the same as version 2 with additional IV seed 227 * (it uses 65 keys, last key is used as IV seed) 228 * 229 * tcw: Compatible implementation of the block chaining mode used 230 * by the TrueCrypt device encryption system (prior to version 4.1). 231 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat 232 * It operates on full 512 byte sectors and uses CBC 233 * with an IV derived from initial key and the sector number. 234 * In addition, whitening value is applied on every sector, whitening 235 * is calculated from initial key, sector number and mixed using CRC32. 236 * Note that this encryption scheme is vulnerable to watermarking attacks 237 * and should be used for old compatible containers access only. 238 * 239 * plumb: unimplemented, see: 240 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 241 */ 242 243 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 244 struct dm_crypt_request *dmreq) 245 { 246 memset(iv, 0, cc->iv_size); 247 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 248 249 return 0; 250 } 251 252 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 253 struct dm_crypt_request *dmreq) 254 { 255 memset(iv, 0, cc->iv_size); 256 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 257 258 return 0; 259 } 260 261 /* Initialise ESSIV - compute salt but no local memory allocations */ 262 static int crypt_iv_essiv_init(struct crypt_config *cc) 263 { 264 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 265 struct hash_desc desc; 266 struct scatterlist sg; 267 struct crypto_cipher *essiv_tfm; 268 int err; 269 270 sg_init_one(&sg, cc->key, cc->key_size); 271 desc.tfm = essiv->hash_tfm; 272 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; 273 274 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt); 275 if (err) 276 return err; 277 278 essiv_tfm = cc->iv_private; 279 280 err = crypto_cipher_setkey(essiv_tfm, essiv->salt, 281 crypto_hash_digestsize(essiv->hash_tfm)); 282 if (err) 283 return err; 284 285 return 0; 286 } 287 288 /* Wipe salt and reset key derived from volume key */ 289 static int crypt_iv_essiv_wipe(struct crypt_config *cc) 290 { 291 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 292 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm); 293 struct crypto_cipher *essiv_tfm; 294 int r, err = 0; 295 296 memset(essiv->salt, 0, salt_size); 297 298 essiv_tfm = cc->iv_private; 299 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size); 300 if (r) 301 err = r; 302 303 return err; 304 } 305 306 /* Set up per cpu cipher state */ 307 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc, 308 struct dm_target *ti, 309 u8 *salt, unsigned saltsize) 310 { 311 struct crypto_cipher *essiv_tfm; 312 int err; 313 314 /* Setup the essiv_tfm with the given salt */ 315 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC); 316 if (IS_ERR(essiv_tfm)) { 317 ti->error = "Error allocating crypto tfm for ESSIV"; 318 return essiv_tfm; 319 } 320 321 if (crypto_cipher_blocksize(essiv_tfm) != 322 crypto_ablkcipher_ivsize(any_tfm(cc))) { 323 ti->error = "Block size of ESSIV cipher does " 324 "not match IV size of block cipher"; 325 crypto_free_cipher(essiv_tfm); 326 return ERR_PTR(-EINVAL); 327 } 328 329 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize); 330 if (err) { 331 ti->error = "Failed to set key for ESSIV cipher"; 332 crypto_free_cipher(essiv_tfm); 333 return ERR_PTR(err); 334 } 335 336 return essiv_tfm; 337 } 338 339 static void crypt_iv_essiv_dtr(struct crypt_config *cc) 340 { 341 struct crypto_cipher *essiv_tfm; 342 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 343 344 crypto_free_hash(essiv->hash_tfm); 345 essiv->hash_tfm = NULL; 346 347 kzfree(essiv->salt); 348 essiv->salt = NULL; 349 350 essiv_tfm = cc->iv_private; 351 352 if (essiv_tfm) 353 crypto_free_cipher(essiv_tfm); 354 355 cc->iv_private = NULL; 356 } 357 358 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, 359 const char *opts) 360 { 361 struct crypto_cipher *essiv_tfm = NULL; 362 struct crypto_hash *hash_tfm = NULL; 363 u8 *salt = NULL; 364 int err; 365 366 if (!opts) { 367 ti->error = "Digest algorithm missing for ESSIV mode"; 368 return -EINVAL; 369 } 370 371 /* Allocate hash algorithm */ 372 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC); 373 if (IS_ERR(hash_tfm)) { 374 ti->error = "Error initializing ESSIV hash"; 375 err = PTR_ERR(hash_tfm); 376 goto bad; 377 } 378 379 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL); 380 if (!salt) { 381 ti->error = "Error kmallocing salt storage in ESSIV"; 382 err = -ENOMEM; 383 goto bad; 384 } 385 386 cc->iv_gen_private.essiv.salt = salt; 387 cc->iv_gen_private.essiv.hash_tfm = hash_tfm; 388 389 essiv_tfm = setup_essiv_cpu(cc, ti, salt, 390 crypto_hash_digestsize(hash_tfm)); 391 if (IS_ERR(essiv_tfm)) { 392 crypt_iv_essiv_dtr(cc); 393 return PTR_ERR(essiv_tfm); 394 } 395 cc->iv_private = essiv_tfm; 396 397 return 0; 398 399 bad: 400 if (hash_tfm && !IS_ERR(hash_tfm)) 401 crypto_free_hash(hash_tfm); 402 kfree(salt); 403 return err; 404 } 405 406 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 407 struct dm_crypt_request *dmreq) 408 { 409 struct crypto_cipher *essiv_tfm = cc->iv_private; 410 411 memset(iv, 0, cc->iv_size); 412 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 413 crypto_cipher_encrypt_one(essiv_tfm, iv, iv); 414 415 return 0; 416 } 417 418 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 419 const char *opts) 420 { 421 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc)); 422 int log = ilog2(bs); 423 424 /* we need to calculate how far we must shift the sector count 425 * to get the cipher block count, we use this shift in _gen */ 426 427 if (1 << log != bs) { 428 ti->error = "cypher blocksize is not a power of 2"; 429 return -EINVAL; 430 } 431 432 if (log > 9) { 433 ti->error = "cypher blocksize is > 512"; 434 return -EINVAL; 435 } 436 437 cc->iv_gen_private.benbi.shift = 9 - log; 438 439 return 0; 440 } 441 442 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 443 { 444 } 445 446 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 447 struct dm_crypt_request *dmreq) 448 { 449 __be64 val; 450 451 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 452 453 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 454 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 455 456 return 0; 457 } 458 459 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 460 struct dm_crypt_request *dmreq) 461 { 462 memset(iv, 0, cc->iv_size); 463 464 return 0; 465 } 466 467 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 468 { 469 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 470 471 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) 472 crypto_free_shash(lmk->hash_tfm); 473 lmk->hash_tfm = NULL; 474 475 kzfree(lmk->seed); 476 lmk->seed = NULL; 477 } 478 479 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 480 const char *opts) 481 { 482 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 483 484 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0); 485 if (IS_ERR(lmk->hash_tfm)) { 486 ti->error = "Error initializing LMK hash"; 487 return PTR_ERR(lmk->hash_tfm); 488 } 489 490 /* No seed in LMK version 2 */ 491 if (cc->key_parts == cc->tfms_count) { 492 lmk->seed = NULL; 493 return 0; 494 } 495 496 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 497 if (!lmk->seed) { 498 crypt_iv_lmk_dtr(cc); 499 ti->error = "Error kmallocing seed storage in LMK"; 500 return -ENOMEM; 501 } 502 503 return 0; 504 } 505 506 static int crypt_iv_lmk_init(struct crypt_config *cc) 507 { 508 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 509 int subkey_size = cc->key_size / cc->key_parts; 510 511 /* LMK seed is on the position of LMK_KEYS + 1 key */ 512 if (lmk->seed) 513 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 514 crypto_shash_digestsize(lmk->hash_tfm)); 515 516 return 0; 517 } 518 519 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 520 { 521 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 522 523 if (lmk->seed) 524 memset(lmk->seed, 0, LMK_SEED_SIZE); 525 526 return 0; 527 } 528 529 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 530 struct dm_crypt_request *dmreq, 531 u8 *data) 532 { 533 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 534 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); 535 struct md5_state md5state; 536 __le32 buf[4]; 537 int i, r; 538 539 desc->tfm = lmk->hash_tfm; 540 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 541 542 r = crypto_shash_init(desc); 543 if (r) 544 return r; 545 546 if (lmk->seed) { 547 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); 548 if (r) 549 return r; 550 } 551 552 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 553 r = crypto_shash_update(desc, data + 16, 16 * 31); 554 if (r) 555 return r; 556 557 /* Sector is cropped to 56 bits here */ 558 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 559 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 560 buf[2] = cpu_to_le32(4024); 561 buf[3] = 0; 562 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); 563 if (r) 564 return r; 565 566 /* No MD5 padding here */ 567 r = crypto_shash_export(desc, &md5state); 568 if (r) 569 return r; 570 571 for (i = 0; i < MD5_HASH_WORDS; i++) 572 __cpu_to_le32s(&md5state.hash[i]); 573 memcpy(iv, &md5state.hash, cc->iv_size); 574 575 return 0; 576 } 577 578 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 579 struct dm_crypt_request *dmreq) 580 { 581 u8 *src; 582 int r = 0; 583 584 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 585 src = kmap_atomic(sg_page(&dmreq->sg_in)); 586 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset); 587 kunmap_atomic(src); 588 } else 589 memset(iv, 0, cc->iv_size); 590 591 return r; 592 } 593 594 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 595 struct dm_crypt_request *dmreq) 596 { 597 u8 *dst; 598 int r; 599 600 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 601 return 0; 602 603 dst = kmap_atomic(sg_page(&dmreq->sg_out)); 604 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset); 605 606 /* Tweak the first block of plaintext sector */ 607 if (!r) 608 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size); 609 610 kunmap_atomic(dst); 611 return r; 612 } 613 614 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 615 { 616 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 617 618 kzfree(tcw->iv_seed); 619 tcw->iv_seed = NULL; 620 kzfree(tcw->whitening); 621 tcw->whitening = NULL; 622 623 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) 624 crypto_free_shash(tcw->crc32_tfm); 625 tcw->crc32_tfm = NULL; 626 } 627 628 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 629 const char *opts) 630 { 631 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 632 633 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 634 ti->error = "Wrong key size for TCW"; 635 return -EINVAL; 636 } 637 638 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0); 639 if (IS_ERR(tcw->crc32_tfm)) { 640 ti->error = "Error initializing CRC32 in TCW"; 641 return PTR_ERR(tcw->crc32_tfm); 642 } 643 644 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 645 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 646 if (!tcw->iv_seed || !tcw->whitening) { 647 crypt_iv_tcw_dtr(cc); 648 ti->error = "Error allocating seed storage in TCW"; 649 return -ENOMEM; 650 } 651 652 return 0; 653 } 654 655 static int crypt_iv_tcw_init(struct crypt_config *cc) 656 { 657 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 658 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 659 660 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 661 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 662 TCW_WHITENING_SIZE); 663 664 return 0; 665 } 666 667 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 668 { 669 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 670 671 memset(tcw->iv_seed, 0, cc->iv_size); 672 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 673 674 return 0; 675 } 676 677 static int crypt_iv_tcw_whitening(struct crypt_config *cc, 678 struct dm_crypt_request *dmreq, 679 u8 *data) 680 { 681 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 682 u64 sector = cpu_to_le64((u64)dmreq->iv_sector); 683 u8 buf[TCW_WHITENING_SIZE]; 684 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm); 685 int i, r; 686 687 /* xor whitening with sector number */ 688 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE); 689 crypto_xor(buf, (u8 *)§or, 8); 690 crypto_xor(&buf[8], (u8 *)§or, 8); 691 692 /* calculate crc32 for every 32bit part and xor it */ 693 desc->tfm = tcw->crc32_tfm; 694 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 695 for (i = 0; i < 4; i++) { 696 r = crypto_shash_init(desc); 697 if (r) 698 goto out; 699 r = crypto_shash_update(desc, &buf[i * 4], 4); 700 if (r) 701 goto out; 702 r = crypto_shash_final(desc, &buf[i * 4]); 703 if (r) 704 goto out; 705 } 706 crypto_xor(&buf[0], &buf[12], 4); 707 crypto_xor(&buf[4], &buf[8], 4); 708 709 /* apply whitening (8 bytes) to whole sector */ 710 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 711 crypto_xor(data + i * 8, buf, 8); 712 out: 713 memzero_explicit(buf, sizeof(buf)); 714 return r; 715 } 716 717 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 718 struct dm_crypt_request *dmreq) 719 { 720 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 721 u64 sector = cpu_to_le64((u64)dmreq->iv_sector); 722 u8 *src; 723 int r = 0; 724 725 /* Remove whitening from ciphertext */ 726 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 727 src = kmap_atomic(sg_page(&dmreq->sg_in)); 728 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset); 729 kunmap_atomic(src); 730 } 731 732 /* Calculate IV */ 733 memcpy(iv, tcw->iv_seed, cc->iv_size); 734 crypto_xor(iv, (u8 *)§or, 8); 735 if (cc->iv_size > 8) 736 crypto_xor(&iv[8], (u8 *)§or, cc->iv_size - 8); 737 738 return r; 739 } 740 741 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 742 struct dm_crypt_request *dmreq) 743 { 744 u8 *dst; 745 int r; 746 747 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 748 return 0; 749 750 /* Apply whitening on ciphertext */ 751 dst = kmap_atomic(sg_page(&dmreq->sg_out)); 752 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset); 753 kunmap_atomic(dst); 754 755 return r; 756 } 757 758 static struct crypt_iv_operations crypt_iv_plain_ops = { 759 .generator = crypt_iv_plain_gen 760 }; 761 762 static struct crypt_iv_operations crypt_iv_plain64_ops = { 763 .generator = crypt_iv_plain64_gen 764 }; 765 766 static struct crypt_iv_operations crypt_iv_essiv_ops = { 767 .ctr = crypt_iv_essiv_ctr, 768 .dtr = crypt_iv_essiv_dtr, 769 .init = crypt_iv_essiv_init, 770 .wipe = crypt_iv_essiv_wipe, 771 .generator = crypt_iv_essiv_gen 772 }; 773 774 static struct crypt_iv_operations crypt_iv_benbi_ops = { 775 .ctr = crypt_iv_benbi_ctr, 776 .dtr = crypt_iv_benbi_dtr, 777 .generator = crypt_iv_benbi_gen 778 }; 779 780 static struct crypt_iv_operations crypt_iv_null_ops = { 781 .generator = crypt_iv_null_gen 782 }; 783 784 static struct crypt_iv_operations crypt_iv_lmk_ops = { 785 .ctr = crypt_iv_lmk_ctr, 786 .dtr = crypt_iv_lmk_dtr, 787 .init = crypt_iv_lmk_init, 788 .wipe = crypt_iv_lmk_wipe, 789 .generator = crypt_iv_lmk_gen, 790 .post = crypt_iv_lmk_post 791 }; 792 793 static struct crypt_iv_operations crypt_iv_tcw_ops = { 794 .ctr = crypt_iv_tcw_ctr, 795 .dtr = crypt_iv_tcw_dtr, 796 .init = crypt_iv_tcw_init, 797 .wipe = crypt_iv_tcw_wipe, 798 .generator = crypt_iv_tcw_gen, 799 .post = crypt_iv_tcw_post 800 }; 801 802 static void crypt_convert_init(struct crypt_config *cc, 803 struct convert_context *ctx, 804 struct bio *bio_out, struct bio *bio_in, 805 sector_t sector) 806 { 807 ctx->bio_in = bio_in; 808 ctx->bio_out = bio_out; 809 if (bio_in) 810 ctx->iter_in = bio_in->bi_iter; 811 if (bio_out) 812 ctx->iter_out = bio_out->bi_iter; 813 ctx->cc_sector = sector + cc->iv_offset; 814 init_completion(&ctx->restart); 815 } 816 817 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 818 struct ablkcipher_request *req) 819 { 820 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 821 } 822 823 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc, 824 struct dm_crypt_request *dmreq) 825 { 826 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start); 827 } 828 829 static u8 *iv_of_dmreq(struct crypt_config *cc, 830 struct dm_crypt_request *dmreq) 831 { 832 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 833 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1); 834 } 835 836 static int crypt_convert_block(struct crypt_config *cc, 837 struct convert_context *ctx, 838 struct ablkcipher_request *req) 839 { 840 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 841 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 842 struct dm_crypt_request *dmreq; 843 u8 *iv; 844 int r; 845 846 dmreq = dmreq_of_req(cc, req); 847 iv = iv_of_dmreq(cc, dmreq); 848 849 dmreq->iv_sector = ctx->cc_sector; 850 dmreq->ctx = ctx; 851 sg_init_table(&dmreq->sg_in, 1); 852 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT, 853 bv_in.bv_offset); 854 855 sg_init_table(&dmreq->sg_out, 1); 856 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT, 857 bv_out.bv_offset); 858 859 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT); 860 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT); 861 862 if (cc->iv_gen_ops) { 863 r = cc->iv_gen_ops->generator(cc, iv, dmreq); 864 if (r < 0) 865 return r; 866 } 867 868 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out, 869 1 << SECTOR_SHIFT, iv); 870 871 if (bio_data_dir(ctx->bio_in) == WRITE) 872 r = crypto_ablkcipher_encrypt(req); 873 else 874 r = crypto_ablkcipher_decrypt(req); 875 876 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 877 r = cc->iv_gen_ops->post(cc, iv, dmreq); 878 879 return r; 880 } 881 882 static void kcryptd_async_done(struct crypto_async_request *async_req, 883 int error); 884 885 static void crypt_alloc_req(struct crypt_config *cc, 886 struct convert_context *ctx) 887 { 888 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1); 889 890 if (!ctx->req) 891 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO); 892 893 ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]); 894 ablkcipher_request_set_callback(ctx->req, 895 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 896 kcryptd_async_done, dmreq_of_req(cc, ctx->req)); 897 } 898 899 static void crypt_free_req(struct crypt_config *cc, 900 struct ablkcipher_request *req, struct bio *base_bio) 901 { 902 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 903 904 if ((struct ablkcipher_request *)(io + 1) != req) 905 mempool_free(req, cc->req_pool); 906 } 907 908 /* 909 * Encrypt / decrypt data from one bio to another one (can be the same one) 910 */ 911 static int crypt_convert(struct crypt_config *cc, 912 struct convert_context *ctx) 913 { 914 int r; 915 916 atomic_set(&ctx->cc_pending, 1); 917 918 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 919 920 crypt_alloc_req(cc, ctx); 921 922 atomic_inc(&ctx->cc_pending); 923 924 r = crypt_convert_block(cc, ctx, ctx->req); 925 926 switch (r) { 927 /* async */ 928 case -EINPROGRESS: 929 case -EBUSY: 930 wait_for_completion(&ctx->restart); 931 reinit_completion(&ctx->restart); 932 ctx->req = NULL; 933 ctx->cc_sector++; 934 continue; 935 936 /* sync */ 937 case 0: 938 atomic_dec(&ctx->cc_pending); 939 ctx->cc_sector++; 940 cond_resched(); 941 continue; 942 943 /* error */ 944 default: 945 atomic_dec(&ctx->cc_pending); 946 return r; 947 } 948 } 949 950 return 0; 951 } 952 953 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); 954 955 /* 956 * Generate a new unfragmented bio with the given size 957 * This should never violate the device limitations 958 * 959 * This function may be called concurrently. If we allocate from the mempool 960 * concurrently, there is a possibility of deadlock. For example, if we have 961 * mempool of 256 pages, two processes, each wanting 256, pages allocate from 962 * the mempool concurrently, it may deadlock in a situation where both processes 963 * have allocated 128 pages and the mempool is exhausted. 964 * 965 * In order to avoid this scenario we allocate the pages under a mutex. 966 * 967 * In order to not degrade performance with excessive locking, we try 968 * non-blocking allocations without a mutex first but on failure we fallback 969 * to blocking allocations with a mutex. 970 */ 971 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size) 972 { 973 struct crypt_config *cc = io->cc; 974 struct bio *clone; 975 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 976 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; 977 unsigned i, len, remaining_size; 978 struct page *page; 979 struct bio_vec *bvec; 980 981 retry: 982 if (unlikely(gfp_mask & __GFP_WAIT)) 983 mutex_lock(&cc->bio_alloc_lock); 984 985 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs); 986 if (!clone) 987 goto return_clone; 988 989 clone_init(io, clone); 990 991 remaining_size = size; 992 993 for (i = 0; i < nr_iovecs; i++) { 994 page = mempool_alloc(cc->page_pool, gfp_mask); 995 if (!page) { 996 crypt_free_buffer_pages(cc, clone); 997 bio_put(clone); 998 gfp_mask |= __GFP_WAIT; 999 goto retry; 1000 } 1001 1002 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size; 1003 1004 bvec = &clone->bi_io_vec[clone->bi_vcnt++]; 1005 bvec->bv_page = page; 1006 bvec->bv_len = len; 1007 bvec->bv_offset = 0; 1008 1009 clone->bi_iter.bi_size += len; 1010 1011 remaining_size -= len; 1012 } 1013 1014 return_clone: 1015 if (unlikely(gfp_mask & __GFP_WAIT)) 1016 mutex_unlock(&cc->bio_alloc_lock); 1017 1018 return clone; 1019 } 1020 1021 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1022 { 1023 unsigned int i; 1024 struct bio_vec *bv; 1025 1026 bio_for_each_segment_all(bv, clone, i) { 1027 BUG_ON(!bv->bv_page); 1028 mempool_free(bv->bv_page, cc->page_pool); 1029 bv->bv_page = NULL; 1030 } 1031 } 1032 1033 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, 1034 struct bio *bio, sector_t sector) 1035 { 1036 io->cc = cc; 1037 io->base_bio = bio; 1038 io->sector = sector; 1039 io->error = 0; 1040 io->ctx.req = NULL; 1041 atomic_set(&io->io_pending, 0); 1042 } 1043 1044 static void crypt_inc_pending(struct dm_crypt_io *io) 1045 { 1046 atomic_inc(&io->io_pending); 1047 } 1048 1049 /* 1050 * One of the bios was finished. Check for completion of 1051 * the whole request and correctly clean up the buffer. 1052 */ 1053 static void crypt_dec_pending(struct dm_crypt_io *io) 1054 { 1055 struct crypt_config *cc = io->cc; 1056 struct bio *base_bio = io->base_bio; 1057 int error = io->error; 1058 1059 if (!atomic_dec_and_test(&io->io_pending)) 1060 return; 1061 1062 if (io->ctx.req) 1063 crypt_free_req(cc, io->ctx.req, base_bio); 1064 1065 bio_endio(base_bio, error); 1066 } 1067 1068 /* 1069 * kcryptd/kcryptd_io: 1070 * 1071 * Needed because it would be very unwise to do decryption in an 1072 * interrupt context. 1073 * 1074 * kcryptd performs the actual encryption or decryption. 1075 * 1076 * kcryptd_io performs the IO submission. 1077 * 1078 * They must be separated as otherwise the final stages could be 1079 * starved by new requests which can block in the first stages due 1080 * to memory allocation. 1081 * 1082 * The work is done per CPU global for all dm-crypt instances. 1083 * They should not depend on each other and do not block. 1084 */ 1085 static void crypt_endio(struct bio *clone, int error) 1086 { 1087 struct dm_crypt_io *io = clone->bi_private; 1088 struct crypt_config *cc = io->cc; 1089 unsigned rw = bio_data_dir(clone); 1090 1091 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error)) 1092 error = -EIO; 1093 1094 /* 1095 * free the processed pages 1096 */ 1097 if (rw == WRITE) 1098 crypt_free_buffer_pages(cc, clone); 1099 1100 bio_put(clone); 1101 1102 if (rw == READ && !error) { 1103 kcryptd_queue_crypt(io); 1104 return; 1105 } 1106 1107 if (unlikely(error)) 1108 io->error = error; 1109 1110 crypt_dec_pending(io); 1111 } 1112 1113 static void clone_init(struct dm_crypt_io *io, struct bio *clone) 1114 { 1115 struct crypt_config *cc = io->cc; 1116 1117 clone->bi_private = io; 1118 clone->bi_end_io = crypt_endio; 1119 clone->bi_bdev = cc->dev->bdev; 1120 clone->bi_rw = io->base_bio->bi_rw; 1121 } 1122 1123 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1124 { 1125 struct crypt_config *cc = io->cc; 1126 struct bio *clone; 1127 1128 /* 1129 * We need the original biovec array in order to decrypt 1130 * the whole bio data *afterwards* -- thanks to immutable 1131 * biovecs we don't need to worry about the block layer 1132 * modifying the biovec array; so leverage bio_clone_fast(). 1133 */ 1134 clone = bio_clone_fast(io->base_bio, gfp, cc->bs); 1135 if (!clone) 1136 return 1; 1137 1138 crypt_inc_pending(io); 1139 1140 clone_init(io, clone); 1141 clone->bi_iter.bi_sector = cc->start + io->sector; 1142 1143 generic_make_request(clone); 1144 return 0; 1145 } 1146 1147 static void kcryptd_io_read_work(struct work_struct *work) 1148 { 1149 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1150 1151 crypt_inc_pending(io); 1152 if (kcryptd_io_read(io, GFP_NOIO)) 1153 io->error = -ENOMEM; 1154 crypt_dec_pending(io); 1155 } 1156 1157 static void kcryptd_queue_read(struct dm_crypt_io *io) 1158 { 1159 struct crypt_config *cc = io->cc; 1160 1161 INIT_WORK(&io->work, kcryptd_io_read_work); 1162 queue_work(cc->io_queue, &io->work); 1163 } 1164 1165 static void kcryptd_io_write(struct dm_crypt_io *io) 1166 { 1167 struct bio *clone = io->ctx.bio_out; 1168 1169 generic_make_request(clone); 1170 } 1171 1172 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) 1173 1174 static int dmcrypt_write(void *data) 1175 { 1176 struct crypt_config *cc = data; 1177 struct dm_crypt_io *io; 1178 1179 while (1) { 1180 struct rb_root write_tree; 1181 struct blk_plug plug; 1182 1183 DECLARE_WAITQUEUE(wait, current); 1184 1185 spin_lock_irq(&cc->write_thread_wait.lock); 1186 continue_locked: 1187 1188 if (!RB_EMPTY_ROOT(&cc->write_tree)) 1189 goto pop_from_list; 1190 1191 __set_current_state(TASK_INTERRUPTIBLE); 1192 __add_wait_queue(&cc->write_thread_wait, &wait); 1193 1194 spin_unlock_irq(&cc->write_thread_wait.lock); 1195 1196 if (unlikely(kthread_should_stop())) { 1197 set_task_state(current, TASK_RUNNING); 1198 remove_wait_queue(&cc->write_thread_wait, &wait); 1199 break; 1200 } 1201 1202 schedule(); 1203 1204 set_task_state(current, TASK_RUNNING); 1205 spin_lock_irq(&cc->write_thread_wait.lock); 1206 __remove_wait_queue(&cc->write_thread_wait, &wait); 1207 goto continue_locked; 1208 1209 pop_from_list: 1210 write_tree = cc->write_tree; 1211 cc->write_tree = RB_ROOT; 1212 spin_unlock_irq(&cc->write_thread_wait.lock); 1213 1214 BUG_ON(rb_parent(write_tree.rb_node)); 1215 1216 /* 1217 * Note: we cannot walk the tree here with rb_next because 1218 * the structures may be freed when kcryptd_io_write is called. 1219 */ 1220 blk_start_plug(&plug); 1221 do { 1222 io = crypt_io_from_node(rb_first(&write_tree)); 1223 rb_erase(&io->rb_node, &write_tree); 1224 kcryptd_io_write(io); 1225 } while (!RB_EMPTY_ROOT(&write_tree)); 1226 blk_finish_plug(&plug); 1227 } 1228 return 0; 1229 } 1230 1231 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 1232 { 1233 struct bio *clone = io->ctx.bio_out; 1234 struct crypt_config *cc = io->cc; 1235 unsigned long flags; 1236 sector_t sector; 1237 struct rb_node **rbp, *parent; 1238 1239 if (unlikely(io->error < 0)) { 1240 crypt_free_buffer_pages(cc, clone); 1241 bio_put(clone); 1242 crypt_dec_pending(io); 1243 return; 1244 } 1245 1246 /* crypt_convert should have filled the clone bio */ 1247 BUG_ON(io->ctx.iter_out.bi_size); 1248 1249 clone->bi_iter.bi_sector = cc->start + io->sector; 1250 1251 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) { 1252 generic_make_request(clone); 1253 return; 1254 } 1255 1256 spin_lock_irqsave(&cc->write_thread_wait.lock, flags); 1257 rbp = &cc->write_tree.rb_node; 1258 parent = NULL; 1259 sector = io->sector; 1260 while (*rbp) { 1261 parent = *rbp; 1262 if (sector < crypt_io_from_node(parent)->sector) 1263 rbp = &(*rbp)->rb_left; 1264 else 1265 rbp = &(*rbp)->rb_right; 1266 } 1267 rb_link_node(&io->rb_node, parent, rbp); 1268 rb_insert_color(&io->rb_node, &cc->write_tree); 1269 1270 wake_up_locked(&cc->write_thread_wait); 1271 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags); 1272 } 1273 1274 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 1275 { 1276 struct crypt_config *cc = io->cc; 1277 struct bio *clone; 1278 int crypt_finished; 1279 sector_t sector = io->sector; 1280 int r; 1281 1282 /* 1283 * Prevent io from disappearing until this function completes. 1284 */ 1285 crypt_inc_pending(io); 1286 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector); 1287 1288 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 1289 if (unlikely(!clone)) { 1290 io->error = -EIO; 1291 goto dec; 1292 } 1293 1294 io->ctx.bio_out = clone; 1295 io->ctx.iter_out = clone->bi_iter; 1296 1297 sector += bio_sectors(clone); 1298 1299 crypt_inc_pending(io); 1300 r = crypt_convert(cc, &io->ctx); 1301 if (r) 1302 io->error = -EIO; 1303 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending); 1304 1305 /* Encryption was already finished, submit io now */ 1306 if (crypt_finished) { 1307 kcryptd_crypt_write_io_submit(io, 0); 1308 io->sector = sector; 1309 } 1310 1311 dec: 1312 crypt_dec_pending(io); 1313 } 1314 1315 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 1316 { 1317 crypt_dec_pending(io); 1318 } 1319 1320 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 1321 { 1322 struct crypt_config *cc = io->cc; 1323 int r = 0; 1324 1325 crypt_inc_pending(io); 1326 1327 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 1328 io->sector); 1329 1330 r = crypt_convert(cc, &io->ctx); 1331 if (r < 0) 1332 io->error = -EIO; 1333 1334 if (atomic_dec_and_test(&io->ctx.cc_pending)) 1335 kcryptd_crypt_read_done(io); 1336 1337 crypt_dec_pending(io); 1338 } 1339 1340 static void kcryptd_async_done(struct crypto_async_request *async_req, 1341 int error) 1342 { 1343 struct dm_crypt_request *dmreq = async_req->data; 1344 struct convert_context *ctx = dmreq->ctx; 1345 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1346 struct crypt_config *cc = io->cc; 1347 1348 if (error == -EINPROGRESS) 1349 return; 1350 1351 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 1352 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq); 1353 1354 if (error < 0) 1355 io->error = -EIO; 1356 1357 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); 1358 1359 if (!atomic_dec_and_test(&ctx->cc_pending)) 1360 goto done; 1361 1362 if (bio_data_dir(io->base_bio) == READ) 1363 kcryptd_crypt_read_done(io); 1364 else 1365 kcryptd_crypt_write_io_submit(io, 1); 1366 done: 1367 if (!completion_done(&ctx->restart)) 1368 complete(&ctx->restart); 1369 } 1370 1371 static void kcryptd_crypt(struct work_struct *work) 1372 { 1373 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1374 1375 if (bio_data_dir(io->base_bio) == READ) 1376 kcryptd_crypt_read_convert(io); 1377 else 1378 kcryptd_crypt_write_convert(io); 1379 } 1380 1381 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 1382 { 1383 struct crypt_config *cc = io->cc; 1384 1385 INIT_WORK(&io->work, kcryptd_crypt); 1386 queue_work(cc->crypt_queue, &io->work); 1387 } 1388 1389 /* 1390 * Decode key from its hex representation 1391 */ 1392 static int crypt_decode_key(u8 *key, char *hex, unsigned int size) 1393 { 1394 char buffer[3]; 1395 unsigned int i; 1396 1397 buffer[2] = '\0'; 1398 1399 for (i = 0; i < size; i++) { 1400 buffer[0] = *hex++; 1401 buffer[1] = *hex++; 1402 1403 if (kstrtou8(buffer, 16, &key[i])) 1404 return -EINVAL; 1405 } 1406 1407 if (*hex != '\0') 1408 return -EINVAL; 1409 1410 return 0; 1411 } 1412 1413 static void crypt_free_tfms(struct crypt_config *cc) 1414 { 1415 unsigned i; 1416 1417 if (!cc->tfms) 1418 return; 1419 1420 for (i = 0; i < cc->tfms_count; i++) 1421 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) { 1422 crypto_free_ablkcipher(cc->tfms[i]); 1423 cc->tfms[i] = NULL; 1424 } 1425 1426 kfree(cc->tfms); 1427 cc->tfms = NULL; 1428 } 1429 1430 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 1431 { 1432 unsigned i; 1433 int err; 1434 1435 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *), 1436 GFP_KERNEL); 1437 if (!cc->tfms) 1438 return -ENOMEM; 1439 1440 for (i = 0; i < cc->tfms_count; i++) { 1441 cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0); 1442 if (IS_ERR(cc->tfms[i])) { 1443 err = PTR_ERR(cc->tfms[i]); 1444 crypt_free_tfms(cc); 1445 return err; 1446 } 1447 } 1448 1449 return 0; 1450 } 1451 1452 static int crypt_setkey_allcpus(struct crypt_config *cc) 1453 { 1454 unsigned subkey_size; 1455 int err = 0, i, r; 1456 1457 /* Ignore extra keys (which are used for IV etc) */ 1458 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 1459 1460 for (i = 0; i < cc->tfms_count; i++) { 1461 r = crypto_ablkcipher_setkey(cc->tfms[i], 1462 cc->key + (i * subkey_size), 1463 subkey_size); 1464 if (r) 1465 err = r; 1466 } 1467 1468 return err; 1469 } 1470 1471 static int crypt_set_key(struct crypt_config *cc, char *key) 1472 { 1473 int r = -EINVAL; 1474 int key_string_len = strlen(key); 1475 1476 /* The key size may not be changed. */ 1477 if (cc->key_size != (key_string_len >> 1)) 1478 goto out; 1479 1480 /* Hyphen (which gives a key_size of zero) means there is no key. */ 1481 if (!cc->key_size && strcmp(key, "-")) 1482 goto out; 1483 1484 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0) 1485 goto out; 1486 1487 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1488 1489 r = crypt_setkey_allcpus(cc); 1490 1491 out: 1492 /* Hex key string not needed after here, so wipe it. */ 1493 memset(key, '0', key_string_len); 1494 1495 return r; 1496 } 1497 1498 static int crypt_wipe_key(struct crypt_config *cc) 1499 { 1500 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1501 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 1502 1503 return crypt_setkey_allcpus(cc); 1504 } 1505 1506 static void crypt_dtr(struct dm_target *ti) 1507 { 1508 struct crypt_config *cc = ti->private; 1509 1510 ti->private = NULL; 1511 1512 if (!cc) 1513 return; 1514 1515 if (cc->write_thread) 1516 kthread_stop(cc->write_thread); 1517 1518 if (cc->io_queue) 1519 destroy_workqueue(cc->io_queue); 1520 if (cc->crypt_queue) 1521 destroy_workqueue(cc->crypt_queue); 1522 1523 crypt_free_tfms(cc); 1524 1525 if (cc->bs) 1526 bioset_free(cc->bs); 1527 1528 if (cc->page_pool) 1529 mempool_destroy(cc->page_pool); 1530 if (cc->req_pool) 1531 mempool_destroy(cc->req_pool); 1532 1533 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 1534 cc->iv_gen_ops->dtr(cc); 1535 1536 if (cc->dev) 1537 dm_put_device(ti, cc->dev); 1538 1539 kzfree(cc->cipher); 1540 kzfree(cc->cipher_string); 1541 1542 /* Must zero key material before freeing */ 1543 kzfree(cc); 1544 } 1545 1546 static int crypt_ctr_cipher(struct dm_target *ti, 1547 char *cipher_in, char *key) 1548 { 1549 struct crypt_config *cc = ti->private; 1550 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount; 1551 char *cipher_api = NULL; 1552 int ret = -EINVAL; 1553 char dummy; 1554 1555 /* Convert to crypto api definition? */ 1556 if (strchr(cipher_in, '(')) { 1557 ti->error = "Bad cipher specification"; 1558 return -EINVAL; 1559 } 1560 1561 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 1562 if (!cc->cipher_string) 1563 goto bad_mem; 1564 1565 /* 1566 * Legacy dm-crypt cipher specification 1567 * cipher[:keycount]-mode-iv:ivopts 1568 */ 1569 tmp = cipher_in; 1570 keycount = strsep(&tmp, "-"); 1571 cipher = strsep(&keycount, ":"); 1572 1573 if (!keycount) 1574 cc->tfms_count = 1; 1575 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 1576 !is_power_of_2(cc->tfms_count)) { 1577 ti->error = "Bad cipher key count specification"; 1578 return -EINVAL; 1579 } 1580 cc->key_parts = cc->tfms_count; 1581 cc->key_extra_size = 0; 1582 1583 cc->cipher = kstrdup(cipher, GFP_KERNEL); 1584 if (!cc->cipher) 1585 goto bad_mem; 1586 1587 chainmode = strsep(&tmp, "-"); 1588 ivopts = strsep(&tmp, "-"); 1589 ivmode = strsep(&ivopts, ":"); 1590 1591 if (tmp) 1592 DMWARN("Ignoring unexpected additional cipher options"); 1593 1594 /* 1595 * For compatibility with the original dm-crypt mapping format, if 1596 * only the cipher name is supplied, use cbc-plain. 1597 */ 1598 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) { 1599 chainmode = "cbc"; 1600 ivmode = "plain"; 1601 } 1602 1603 if (strcmp(chainmode, "ecb") && !ivmode) { 1604 ti->error = "IV mechanism required"; 1605 return -EINVAL; 1606 } 1607 1608 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 1609 if (!cipher_api) 1610 goto bad_mem; 1611 1612 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 1613 "%s(%s)", chainmode, cipher); 1614 if (ret < 0) { 1615 kfree(cipher_api); 1616 goto bad_mem; 1617 } 1618 1619 /* Allocate cipher */ 1620 ret = crypt_alloc_tfms(cc, cipher_api); 1621 if (ret < 0) { 1622 ti->error = "Error allocating crypto tfm"; 1623 goto bad; 1624 } 1625 1626 /* Initialize IV */ 1627 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc)); 1628 if (cc->iv_size) 1629 /* at least a 64 bit sector number should fit in our buffer */ 1630 cc->iv_size = max(cc->iv_size, 1631 (unsigned int)(sizeof(u64) / sizeof(u8))); 1632 else if (ivmode) { 1633 DMWARN("Selected cipher does not support IVs"); 1634 ivmode = NULL; 1635 } 1636 1637 /* Choose ivmode, see comments at iv code. */ 1638 if (ivmode == NULL) 1639 cc->iv_gen_ops = NULL; 1640 else if (strcmp(ivmode, "plain") == 0) 1641 cc->iv_gen_ops = &crypt_iv_plain_ops; 1642 else if (strcmp(ivmode, "plain64") == 0) 1643 cc->iv_gen_ops = &crypt_iv_plain64_ops; 1644 else if (strcmp(ivmode, "essiv") == 0) 1645 cc->iv_gen_ops = &crypt_iv_essiv_ops; 1646 else if (strcmp(ivmode, "benbi") == 0) 1647 cc->iv_gen_ops = &crypt_iv_benbi_ops; 1648 else if (strcmp(ivmode, "null") == 0) 1649 cc->iv_gen_ops = &crypt_iv_null_ops; 1650 else if (strcmp(ivmode, "lmk") == 0) { 1651 cc->iv_gen_ops = &crypt_iv_lmk_ops; 1652 /* 1653 * Version 2 and 3 is recognised according 1654 * to length of provided multi-key string. 1655 * If present (version 3), last key is used as IV seed. 1656 * All keys (including IV seed) are always the same size. 1657 */ 1658 if (cc->key_size % cc->key_parts) { 1659 cc->key_parts++; 1660 cc->key_extra_size = cc->key_size / cc->key_parts; 1661 } 1662 } else if (strcmp(ivmode, "tcw") == 0) { 1663 cc->iv_gen_ops = &crypt_iv_tcw_ops; 1664 cc->key_parts += 2; /* IV + whitening */ 1665 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 1666 } else { 1667 ret = -EINVAL; 1668 ti->error = "Invalid IV mode"; 1669 goto bad; 1670 } 1671 1672 /* Initialize and set key */ 1673 ret = crypt_set_key(cc, key); 1674 if (ret < 0) { 1675 ti->error = "Error decoding and setting key"; 1676 goto bad; 1677 } 1678 1679 /* Allocate IV */ 1680 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 1681 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 1682 if (ret < 0) { 1683 ti->error = "Error creating IV"; 1684 goto bad; 1685 } 1686 } 1687 1688 /* Initialize IV (set keys for ESSIV etc) */ 1689 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 1690 ret = cc->iv_gen_ops->init(cc); 1691 if (ret < 0) { 1692 ti->error = "Error initialising IV"; 1693 goto bad; 1694 } 1695 } 1696 1697 ret = 0; 1698 bad: 1699 kfree(cipher_api); 1700 return ret; 1701 1702 bad_mem: 1703 ti->error = "Cannot allocate cipher strings"; 1704 return -ENOMEM; 1705 } 1706 1707 /* 1708 * Construct an encryption mapping: 1709 * <cipher> <key> <iv_offset> <dev_path> <start> 1710 */ 1711 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1712 { 1713 struct crypt_config *cc; 1714 unsigned int key_size, opt_params; 1715 unsigned long long tmpll; 1716 int ret; 1717 size_t iv_size_padding; 1718 struct dm_arg_set as; 1719 const char *opt_string; 1720 char dummy; 1721 1722 static struct dm_arg _args[] = { 1723 {0, 3, "Invalid number of feature args"}, 1724 }; 1725 1726 if (argc < 5) { 1727 ti->error = "Not enough arguments"; 1728 return -EINVAL; 1729 } 1730 1731 key_size = strlen(argv[1]) >> 1; 1732 1733 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); 1734 if (!cc) { 1735 ti->error = "Cannot allocate encryption context"; 1736 return -ENOMEM; 1737 } 1738 cc->key_size = key_size; 1739 1740 ti->private = cc; 1741 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 1742 if (ret < 0) 1743 goto bad; 1744 1745 cc->dmreq_start = sizeof(struct ablkcipher_request); 1746 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc)); 1747 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); 1748 1749 if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) { 1750 /* Allocate the padding exactly */ 1751 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) 1752 & crypto_ablkcipher_alignmask(any_tfm(cc)); 1753 } else { 1754 /* 1755 * If the cipher requires greater alignment than kmalloc 1756 * alignment, we don't know the exact position of the 1757 * initialization vector. We must assume worst case. 1758 */ 1759 iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc)); 1760 } 1761 1762 ret = -ENOMEM; 1763 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + 1764 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size); 1765 if (!cc->req_pool) { 1766 ti->error = "Cannot allocate crypt request mempool"; 1767 goto bad; 1768 } 1769 1770 cc->per_bio_data_size = ti->per_bio_data_size = 1771 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + 1772 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size, 1773 ARCH_KMALLOC_MINALIGN); 1774 1775 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0); 1776 if (!cc->page_pool) { 1777 ti->error = "Cannot allocate page mempool"; 1778 goto bad; 1779 } 1780 1781 cc->bs = bioset_create(MIN_IOS, 0); 1782 if (!cc->bs) { 1783 ti->error = "Cannot allocate crypt bioset"; 1784 goto bad; 1785 } 1786 1787 mutex_init(&cc->bio_alloc_lock); 1788 1789 ret = -EINVAL; 1790 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) { 1791 ti->error = "Invalid iv_offset sector"; 1792 goto bad; 1793 } 1794 cc->iv_offset = tmpll; 1795 1796 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) { 1797 ti->error = "Device lookup failed"; 1798 goto bad; 1799 } 1800 1801 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) { 1802 ti->error = "Invalid device sector"; 1803 goto bad; 1804 } 1805 cc->start = tmpll; 1806 1807 argv += 5; 1808 argc -= 5; 1809 1810 /* Optional parameters */ 1811 if (argc) { 1812 as.argc = argc; 1813 as.argv = argv; 1814 1815 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 1816 if (ret) 1817 goto bad; 1818 1819 ret = -EINVAL; 1820 while (opt_params--) { 1821 opt_string = dm_shift_arg(&as); 1822 if (!opt_string) { 1823 ti->error = "Not enough feature arguments"; 1824 goto bad; 1825 } 1826 1827 if (!strcasecmp(opt_string, "allow_discards")) 1828 ti->num_discard_bios = 1; 1829 1830 else if (!strcasecmp(opt_string, "same_cpu_crypt")) 1831 set_bit(DM_CRYPT_SAME_CPU, &cc->flags); 1832 1833 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) 1834 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 1835 1836 else { 1837 ti->error = "Invalid feature arguments"; 1838 goto bad; 1839 } 1840 } 1841 } 1842 1843 ret = -ENOMEM; 1844 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1); 1845 if (!cc->io_queue) { 1846 ti->error = "Couldn't create kcryptd io queue"; 1847 goto bad; 1848 } 1849 1850 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 1851 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1); 1852 else 1853 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, 1854 num_online_cpus()); 1855 if (!cc->crypt_queue) { 1856 ti->error = "Couldn't create kcryptd queue"; 1857 goto bad; 1858 } 1859 1860 init_waitqueue_head(&cc->write_thread_wait); 1861 cc->write_tree = RB_ROOT; 1862 1863 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write"); 1864 if (IS_ERR(cc->write_thread)) { 1865 ret = PTR_ERR(cc->write_thread); 1866 cc->write_thread = NULL; 1867 ti->error = "Couldn't spawn write thread"; 1868 goto bad; 1869 } 1870 wake_up_process(cc->write_thread); 1871 1872 ti->num_flush_bios = 1; 1873 ti->discard_zeroes_data_unsupported = true; 1874 1875 return 0; 1876 1877 bad: 1878 crypt_dtr(ti); 1879 return ret; 1880 } 1881 1882 static int crypt_map(struct dm_target *ti, struct bio *bio) 1883 { 1884 struct dm_crypt_io *io; 1885 struct crypt_config *cc = ti->private; 1886 1887 /* 1888 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues. 1889 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight 1890 * - for REQ_DISCARD caller must use flush if IO ordering matters 1891 */ 1892 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) { 1893 bio->bi_bdev = cc->dev->bdev; 1894 if (bio_sectors(bio)) 1895 bio->bi_iter.bi_sector = cc->start + 1896 dm_target_offset(ti, bio->bi_iter.bi_sector); 1897 return DM_MAPIO_REMAPPED; 1898 } 1899 1900 io = dm_per_bio_data(bio, cc->per_bio_data_size); 1901 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 1902 io->ctx.req = (struct ablkcipher_request *)(io + 1); 1903 1904 if (bio_data_dir(io->base_bio) == READ) { 1905 if (kcryptd_io_read(io, GFP_NOWAIT)) 1906 kcryptd_queue_read(io); 1907 } else 1908 kcryptd_queue_crypt(io); 1909 1910 return DM_MAPIO_SUBMITTED; 1911 } 1912 1913 static void crypt_status(struct dm_target *ti, status_type_t type, 1914 unsigned status_flags, char *result, unsigned maxlen) 1915 { 1916 struct crypt_config *cc = ti->private; 1917 unsigned i, sz = 0; 1918 int num_feature_args = 0; 1919 1920 switch (type) { 1921 case STATUSTYPE_INFO: 1922 result[0] = '\0'; 1923 break; 1924 1925 case STATUSTYPE_TABLE: 1926 DMEMIT("%s ", cc->cipher_string); 1927 1928 if (cc->key_size > 0) 1929 for (i = 0; i < cc->key_size; i++) 1930 DMEMIT("%02x", cc->key[i]); 1931 else 1932 DMEMIT("-"); 1933 1934 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 1935 cc->dev->name, (unsigned long long)cc->start); 1936 1937 num_feature_args += !!ti->num_discard_bios; 1938 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); 1939 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 1940 if (num_feature_args) { 1941 DMEMIT(" %d", num_feature_args); 1942 if (ti->num_discard_bios) 1943 DMEMIT(" allow_discards"); 1944 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 1945 DMEMIT(" same_cpu_crypt"); 1946 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) 1947 DMEMIT(" submit_from_crypt_cpus"); 1948 } 1949 1950 break; 1951 } 1952 } 1953 1954 static void crypt_postsuspend(struct dm_target *ti) 1955 { 1956 struct crypt_config *cc = ti->private; 1957 1958 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 1959 } 1960 1961 static int crypt_preresume(struct dm_target *ti) 1962 { 1963 struct crypt_config *cc = ti->private; 1964 1965 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 1966 DMERR("aborting resume - crypt key is not set."); 1967 return -EAGAIN; 1968 } 1969 1970 return 0; 1971 } 1972 1973 static void crypt_resume(struct dm_target *ti) 1974 { 1975 struct crypt_config *cc = ti->private; 1976 1977 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 1978 } 1979 1980 /* Message interface 1981 * key set <key> 1982 * key wipe 1983 */ 1984 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv) 1985 { 1986 struct crypt_config *cc = ti->private; 1987 int ret = -EINVAL; 1988 1989 if (argc < 2) 1990 goto error; 1991 1992 if (!strcasecmp(argv[0], "key")) { 1993 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 1994 DMWARN("not suspended during key manipulation."); 1995 return -EINVAL; 1996 } 1997 if (argc == 3 && !strcasecmp(argv[1], "set")) { 1998 ret = crypt_set_key(cc, argv[2]); 1999 if (ret) 2000 return ret; 2001 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 2002 ret = cc->iv_gen_ops->init(cc); 2003 return ret; 2004 } 2005 if (argc == 2 && !strcasecmp(argv[1], "wipe")) { 2006 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 2007 ret = cc->iv_gen_ops->wipe(cc); 2008 if (ret) 2009 return ret; 2010 } 2011 return crypt_wipe_key(cc); 2012 } 2013 } 2014 2015 error: 2016 DMWARN("unrecognised message received."); 2017 return -EINVAL; 2018 } 2019 2020 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 2021 struct bio_vec *biovec, int max_size) 2022 { 2023 struct crypt_config *cc = ti->private; 2024 struct request_queue *q = bdev_get_queue(cc->dev->bdev); 2025 2026 if (!q->merge_bvec_fn) 2027 return max_size; 2028 2029 bvm->bi_bdev = cc->dev->bdev; 2030 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector); 2031 2032 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 2033 } 2034 2035 static int crypt_iterate_devices(struct dm_target *ti, 2036 iterate_devices_callout_fn fn, void *data) 2037 { 2038 struct crypt_config *cc = ti->private; 2039 2040 return fn(ti, cc->dev, cc->start, ti->len, data); 2041 } 2042 2043 static struct target_type crypt_target = { 2044 .name = "crypt", 2045 .version = {1, 14, 0}, 2046 .module = THIS_MODULE, 2047 .ctr = crypt_ctr, 2048 .dtr = crypt_dtr, 2049 .map = crypt_map, 2050 .status = crypt_status, 2051 .postsuspend = crypt_postsuspend, 2052 .preresume = crypt_preresume, 2053 .resume = crypt_resume, 2054 .message = crypt_message, 2055 .merge = crypt_merge, 2056 .iterate_devices = crypt_iterate_devices, 2057 }; 2058 2059 static int __init dm_crypt_init(void) 2060 { 2061 int r; 2062 2063 r = dm_register_target(&crypt_target); 2064 if (r < 0) 2065 DMERR("register failed %d", r); 2066 2067 return r; 2068 } 2069 2070 static void __exit dm_crypt_exit(void) 2071 { 2072 dm_unregister_target(&crypt_target); 2073 } 2074 2075 module_init(dm_crypt_init); 2076 module_exit(dm_crypt_exit); 2077 2078 MODULE_AUTHOR("Jana Saout <jana@saout.de>"); 2079 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 2080 MODULE_LICENSE("GPL"); 2081