xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 3d9b448b)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
26 #include <asm/page.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
31 
32 #include <linux/device-mapper.h>
33 
34 #define DM_MSG_PREFIX "crypt"
35 
36 /*
37  * context holding the current state of a multi-part conversion
38  */
39 struct convert_context {
40 	struct completion restart;
41 	struct bio *bio_in;
42 	struct bio *bio_out;
43 	struct bvec_iter iter_in;
44 	struct bvec_iter iter_out;
45 	sector_t cc_sector;
46 	atomic_t cc_pending;
47 	struct ablkcipher_request *req;
48 };
49 
50 /*
51  * per bio private data
52  */
53 struct dm_crypt_io {
54 	struct crypt_config *cc;
55 	struct bio *base_bio;
56 	struct work_struct work;
57 
58 	struct convert_context ctx;
59 
60 	atomic_t io_pending;
61 	int error;
62 	sector_t sector;
63 
64 	struct rb_node rb_node;
65 } CRYPTO_MINALIGN_ATTR;
66 
67 struct dm_crypt_request {
68 	struct convert_context *ctx;
69 	struct scatterlist sg_in;
70 	struct scatterlist sg_out;
71 	sector_t iv_sector;
72 };
73 
74 struct crypt_config;
75 
76 struct crypt_iv_operations {
77 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
78 		   const char *opts);
79 	void (*dtr)(struct crypt_config *cc);
80 	int (*init)(struct crypt_config *cc);
81 	int (*wipe)(struct crypt_config *cc);
82 	int (*generator)(struct crypt_config *cc, u8 *iv,
83 			 struct dm_crypt_request *dmreq);
84 	int (*post)(struct crypt_config *cc, u8 *iv,
85 		    struct dm_crypt_request *dmreq);
86 };
87 
88 struct iv_essiv_private {
89 	struct crypto_hash *hash_tfm;
90 	u8 *salt;
91 };
92 
93 struct iv_benbi_private {
94 	int shift;
95 };
96 
97 #define LMK_SEED_SIZE 64 /* hash + 0 */
98 struct iv_lmk_private {
99 	struct crypto_shash *hash_tfm;
100 	u8 *seed;
101 };
102 
103 #define TCW_WHITENING_SIZE 16
104 struct iv_tcw_private {
105 	struct crypto_shash *crc32_tfm;
106 	u8 *iv_seed;
107 	u8 *whitening;
108 };
109 
110 /*
111  * Crypt: maps a linear range of a block device
112  * and encrypts / decrypts at the same time.
113  */
114 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
115 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
116 
117 /*
118  * The fields in here must be read only after initialization.
119  */
120 struct crypt_config {
121 	struct dm_dev *dev;
122 	sector_t start;
123 
124 	/*
125 	 * pool for per bio private data, crypto requests and
126 	 * encryption requeusts/buffer pages
127 	 */
128 	mempool_t *req_pool;
129 	mempool_t *page_pool;
130 	struct bio_set *bs;
131 	struct mutex bio_alloc_lock;
132 
133 	struct workqueue_struct *io_queue;
134 	struct workqueue_struct *crypt_queue;
135 
136 	struct task_struct *write_thread;
137 	wait_queue_head_t write_thread_wait;
138 	struct rb_root write_tree;
139 
140 	char *cipher;
141 	char *cipher_string;
142 
143 	struct crypt_iv_operations *iv_gen_ops;
144 	union {
145 		struct iv_essiv_private essiv;
146 		struct iv_benbi_private benbi;
147 		struct iv_lmk_private lmk;
148 		struct iv_tcw_private tcw;
149 	} iv_gen_private;
150 	sector_t iv_offset;
151 	unsigned int iv_size;
152 
153 	/* ESSIV: struct crypto_cipher *essiv_tfm */
154 	void *iv_private;
155 	struct crypto_ablkcipher **tfms;
156 	unsigned tfms_count;
157 
158 	/*
159 	 * Layout of each crypto request:
160 	 *
161 	 *   struct ablkcipher_request
162 	 *      context
163 	 *      padding
164 	 *   struct dm_crypt_request
165 	 *      padding
166 	 *   IV
167 	 *
168 	 * The padding is added so that dm_crypt_request and the IV are
169 	 * correctly aligned.
170 	 */
171 	unsigned int dmreq_start;
172 
173 	unsigned int per_bio_data_size;
174 
175 	unsigned long flags;
176 	unsigned int key_size;
177 	unsigned int key_parts;      /* independent parts in key buffer */
178 	unsigned int key_extra_size; /* additional keys length */
179 	u8 key[0];
180 };
181 
182 #define MIN_IOS        16
183 
184 static void clone_init(struct dm_crypt_io *, struct bio *);
185 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
186 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
187 
188 /*
189  * Use this to access cipher attributes that are the same for each CPU.
190  */
191 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
192 {
193 	return cc->tfms[0];
194 }
195 
196 /*
197  * Different IV generation algorithms:
198  *
199  * plain: the initial vector is the 32-bit little-endian version of the sector
200  *        number, padded with zeros if necessary.
201  *
202  * plain64: the initial vector is the 64-bit little-endian version of the sector
203  *        number, padded with zeros if necessary.
204  *
205  * essiv: "encrypted sector|salt initial vector", the sector number is
206  *        encrypted with the bulk cipher using a salt as key. The salt
207  *        should be derived from the bulk cipher's key via hashing.
208  *
209  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
210  *        (needed for LRW-32-AES and possible other narrow block modes)
211  *
212  * null: the initial vector is always zero.  Provides compatibility with
213  *       obsolete loop_fish2 devices.  Do not use for new devices.
214  *
215  * lmk:  Compatible implementation of the block chaining mode used
216  *       by the Loop-AES block device encryption system
217  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
218  *       It operates on full 512 byte sectors and uses CBC
219  *       with an IV derived from the sector number, the data and
220  *       optionally extra IV seed.
221  *       This means that after decryption the first block
222  *       of sector must be tweaked according to decrypted data.
223  *       Loop-AES can use three encryption schemes:
224  *         version 1: is plain aes-cbc mode
225  *         version 2: uses 64 multikey scheme with lmk IV generator
226  *         version 3: the same as version 2 with additional IV seed
227  *                   (it uses 65 keys, last key is used as IV seed)
228  *
229  * tcw:  Compatible implementation of the block chaining mode used
230  *       by the TrueCrypt device encryption system (prior to version 4.1).
231  *       For more info see: http://www.truecrypt.org
232  *       It operates on full 512 byte sectors and uses CBC
233  *       with an IV derived from initial key and the sector number.
234  *       In addition, whitening value is applied on every sector, whitening
235  *       is calculated from initial key, sector number and mixed using CRC32.
236  *       Note that this encryption scheme is vulnerable to watermarking attacks
237  *       and should be used for old compatible containers access only.
238  *
239  * plumb: unimplemented, see:
240  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
241  */
242 
243 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
244 			      struct dm_crypt_request *dmreq)
245 {
246 	memset(iv, 0, cc->iv_size);
247 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
248 
249 	return 0;
250 }
251 
252 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
253 				struct dm_crypt_request *dmreq)
254 {
255 	memset(iv, 0, cc->iv_size);
256 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
257 
258 	return 0;
259 }
260 
261 /* Initialise ESSIV - compute salt but no local memory allocations */
262 static int crypt_iv_essiv_init(struct crypt_config *cc)
263 {
264 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
265 	struct hash_desc desc;
266 	struct scatterlist sg;
267 	struct crypto_cipher *essiv_tfm;
268 	int err;
269 
270 	sg_init_one(&sg, cc->key, cc->key_size);
271 	desc.tfm = essiv->hash_tfm;
272 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
273 
274 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
275 	if (err)
276 		return err;
277 
278 	essiv_tfm = cc->iv_private;
279 
280 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
281 			    crypto_hash_digestsize(essiv->hash_tfm));
282 	if (err)
283 		return err;
284 
285 	return 0;
286 }
287 
288 /* Wipe salt and reset key derived from volume key */
289 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
290 {
291 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
292 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
293 	struct crypto_cipher *essiv_tfm;
294 	int r, err = 0;
295 
296 	memset(essiv->salt, 0, salt_size);
297 
298 	essiv_tfm = cc->iv_private;
299 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
300 	if (r)
301 		err = r;
302 
303 	return err;
304 }
305 
306 /* Set up per cpu cipher state */
307 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
308 					     struct dm_target *ti,
309 					     u8 *salt, unsigned saltsize)
310 {
311 	struct crypto_cipher *essiv_tfm;
312 	int err;
313 
314 	/* Setup the essiv_tfm with the given salt */
315 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
316 	if (IS_ERR(essiv_tfm)) {
317 		ti->error = "Error allocating crypto tfm for ESSIV";
318 		return essiv_tfm;
319 	}
320 
321 	if (crypto_cipher_blocksize(essiv_tfm) !=
322 	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
323 		ti->error = "Block size of ESSIV cipher does "
324 			    "not match IV size of block cipher";
325 		crypto_free_cipher(essiv_tfm);
326 		return ERR_PTR(-EINVAL);
327 	}
328 
329 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
330 	if (err) {
331 		ti->error = "Failed to set key for ESSIV cipher";
332 		crypto_free_cipher(essiv_tfm);
333 		return ERR_PTR(err);
334 	}
335 
336 	return essiv_tfm;
337 }
338 
339 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
340 {
341 	struct crypto_cipher *essiv_tfm;
342 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
343 
344 	crypto_free_hash(essiv->hash_tfm);
345 	essiv->hash_tfm = NULL;
346 
347 	kzfree(essiv->salt);
348 	essiv->salt = NULL;
349 
350 	essiv_tfm = cc->iv_private;
351 
352 	if (essiv_tfm)
353 		crypto_free_cipher(essiv_tfm);
354 
355 	cc->iv_private = NULL;
356 }
357 
358 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
359 			      const char *opts)
360 {
361 	struct crypto_cipher *essiv_tfm = NULL;
362 	struct crypto_hash *hash_tfm = NULL;
363 	u8 *salt = NULL;
364 	int err;
365 
366 	if (!opts) {
367 		ti->error = "Digest algorithm missing for ESSIV mode";
368 		return -EINVAL;
369 	}
370 
371 	/* Allocate hash algorithm */
372 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
373 	if (IS_ERR(hash_tfm)) {
374 		ti->error = "Error initializing ESSIV hash";
375 		err = PTR_ERR(hash_tfm);
376 		goto bad;
377 	}
378 
379 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
380 	if (!salt) {
381 		ti->error = "Error kmallocing salt storage in ESSIV";
382 		err = -ENOMEM;
383 		goto bad;
384 	}
385 
386 	cc->iv_gen_private.essiv.salt = salt;
387 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
388 
389 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
390 				crypto_hash_digestsize(hash_tfm));
391 	if (IS_ERR(essiv_tfm)) {
392 		crypt_iv_essiv_dtr(cc);
393 		return PTR_ERR(essiv_tfm);
394 	}
395 	cc->iv_private = essiv_tfm;
396 
397 	return 0;
398 
399 bad:
400 	if (hash_tfm && !IS_ERR(hash_tfm))
401 		crypto_free_hash(hash_tfm);
402 	kfree(salt);
403 	return err;
404 }
405 
406 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
407 			      struct dm_crypt_request *dmreq)
408 {
409 	struct crypto_cipher *essiv_tfm = cc->iv_private;
410 
411 	memset(iv, 0, cc->iv_size);
412 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
413 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
414 
415 	return 0;
416 }
417 
418 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
419 			      const char *opts)
420 {
421 	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
422 	int log = ilog2(bs);
423 
424 	/* we need to calculate how far we must shift the sector count
425 	 * to get the cipher block count, we use this shift in _gen */
426 
427 	if (1 << log != bs) {
428 		ti->error = "cypher blocksize is not a power of 2";
429 		return -EINVAL;
430 	}
431 
432 	if (log > 9) {
433 		ti->error = "cypher blocksize is > 512";
434 		return -EINVAL;
435 	}
436 
437 	cc->iv_gen_private.benbi.shift = 9 - log;
438 
439 	return 0;
440 }
441 
442 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
443 {
444 }
445 
446 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
447 			      struct dm_crypt_request *dmreq)
448 {
449 	__be64 val;
450 
451 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
452 
453 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
454 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
455 
456 	return 0;
457 }
458 
459 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
460 			     struct dm_crypt_request *dmreq)
461 {
462 	memset(iv, 0, cc->iv_size);
463 
464 	return 0;
465 }
466 
467 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
468 {
469 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
470 
471 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
472 		crypto_free_shash(lmk->hash_tfm);
473 	lmk->hash_tfm = NULL;
474 
475 	kzfree(lmk->seed);
476 	lmk->seed = NULL;
477 }
478 
479 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
480 			    const char *opts)
481 {
482 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
483 
484 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
485 	if (IS_ERR(lmk->hash_tfm)) {
486 		ti->error = "Error initializing LMK hash";
487 		return PTR_ERR(lmk->hash_tfm);
488 	}
489 
490 	/* No seed in LMK version 2 */
491 	if (cc->key_parts == cc->tfms_count) {
492 		lmk->seed = NULL;
493 		return 0;
494 	}
495 
496 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
497 	if (!lmk->seed) {
498 		crypt_iv_lmk_dtr(cc);
499 		ti->error = "Error kmallocing seed storage in LMK";
500 		return -ENOMEM;
501 	}
502 
503 	return 0;
504 }
505 
506 static int crypt_iv_lmk_init(struct crypt_config *cc)
507 {
508 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
509 	int subkey_size = cc->key_size / cc->key_parts;
510 
511 	/* LMK seed is on the position of LMK_KEYS + 1 key */
512 	if (lmk->seed)
513 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
514 		       crypto_shash_digestsize(lmk->hash_tfm));
515 
516 	return 0;
517 }
518 
519 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
520 {
521 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
522 
523 	if (lmk->seed)
524 		memset(lmk->seed, 0, LMK_SEED_SIZE);
525 
526 	return 0;
527 }
528 
529 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
530 			    struct dm_crypt_request *dmreq,
531 			    u8 *data)
532 {
533 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
534 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
535 	struct md5_state md5state;
536 	__le32 buf[4];
537 	int i, r;
538 
539 	desc->tfm = lmk->hash_tfm;
540 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
541 
542 	r = crypto_shash_init(desc);
543 	if (r)
544 		return r;
545 
546 	if (lmk->seed) {
547 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
548 		if (r)
549 			return r;
550 	}
551 
552 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
553 	r = crypto_shash_update(desc, data + 16, 16 * 31);
554 	if (r)
555 		return r;
556 
557 	/* Sector is cropped to 56 bits here */
558 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
559 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
560 	buf[2] = cpu_to_le32(4024);
561 	buf[3] = 0;
562 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
563 	if (r)
564 		return r;
565 
566 	/* No MD5 padding here */
567 	r = crypto_shash_export(desc, &md5state);
568 	if (r)
569 		return r;
570 
571 	for (i = 0; i < MD5_HASH_WORDS; i++)
572 		__cpu_to_le32s(&md5state.hash[i]);
573 	memcpy(iv, &md5state.hash, cc->iv_size);
574 
575 	return 0;
576 }
577 
578 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
579 			    struct dm_crypt_request *dmreq)
580 {
581 	u8 *src;
582 	int r = 0;
583 
584 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
585 		src = kmap_atomic(sg_page(&dmreq->sg_in));
586 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
587 		kunmap_atomic(src);
588 	} else
589 		memset(iv, 0, cc->iv_size);
590 
591 	return r;
592 }
593 
594 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
595 			     struct dm_crypt_request *dmreq)
596 {
597 	u8 *dst;
598 	int r;
599 
600 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
601 		return 0;
602 
603 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
604 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
605 
606 	/* Tweak the first block of plaintext sector */
607 	if (!r)
608 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
609 
610 	kunmap_atomic(dst);
611 	return r;
612 }
613 
614 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
615 {
616 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
617 
618 	kzfree(tcw->iv_seed);
619 	tcw->iv_seed = NULL;
620 	kzfree(tcw->whitening);
621 	tcw->whitening = NULL;
622 
623 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
624 		crypto_free_shash(tcw->crc32_tfm);
625 	tcw->crc32_tfm = NULL;
626 }
627 
628 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
629 			    const char *opts)
630 {
631 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
632 
633 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
634 		ti->error = "Wrong key size for TCW";
635 		return -EINVAL;
636 	}
637 
638 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
639 	if (IS_ERR(tcw->crc32_tfm)) {
640 		ti->error = "Error initializing CRC32 in TCW";
641 		return PTR_ERR(tcw->crc32_tfm);
642 	}
643 
644 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
645 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
646 	if (!tcw->iv_seed || !tcw->whitening) {
647 		crypt_iv_tcw_dtr(cc);
648 		ti->error = "Error allocating seed storage in TCW";
649 		return -ENOMEM;
650 	}
651 
652 	return 0;
653 }
654 
655 static int crypt_iv_tcw_init(struct crypt_config *cc)
656 {
657 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
658 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
659 
660 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
661 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
662 	       TCW_WHITENING_SIZE);
663 
664 	return 0;
665 }
666 
667 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
668 {
669 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
670 
671 	memset(tcw->iv_seed, 0, cc->iv_size);
672 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
673 
674 	return 0;
675 }
676 
677 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
678 				  struct dm_crypt_request *dmreq,
679 				  u8 *data)
680 {
681 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
682 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
683 	u8 buf[TCW_WHITENING_SIZE];
684 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
685 	int i, r;
686 
687 	/* xor whitening with sector number */
688 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
689 	crypto_xor(buf, (u8 *)&sector, 8);
690 	crypto_xor(&buf[8], (u8 *)&sector, 8);
691 
692 	/* calculate crc32 for every 32bit part and xor it */
693 	desc->tfm = tcw->crc32_tfm;
694 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
695 	for (i = 0; i < 4; i++) {
696 		r = crypto_shash_init(desc);
697 		if (r)
698 			goto out;
699 		r = crypto_shash_update(desc, &buf[i * 4], 4);
700 		if (r)
701 			goto out;
702 		r = crypto_shash_final(desc, &buf[i * 4]);
703 		if (r)
704 			goto out;
705 	}
706 	crypto_xor(&buf[0], &buf[12], 4);
707 	crypto_xor(&buf[4], &buf[8], 4);
708 
709 	/* apply whitening (8 bytes) to whole sector */
710 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
711 		crypto_xor(data + i * 8, buf, 8);
712 out:
713 	memzero_explicit(buf, sizeof(buf));
714 	return r;
715 }
716 
717 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
718 			    struct dm_crypt_request *dmreq)
719 {
720 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
721 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
722 	u8 *src;
723 	int r = 0;
724 
725 	/* Remove whitening from ciphertext */
726 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
727 		src = kmap_atomic(sg_page(&dmreq->sg_in));
728 		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
729 		kunmap_atomic(src);
730 	}
731 
732 	/* Calculate IV */
733 	memcpy(iv, tcw->iv_seed, cc->iv_size);
734 	crypto_xor(iv, (u8 *)&sector, 8);
735 	if (cc->iv_size > 8)
736 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
737 
738 	return r;
739 }
740 
741 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
742 			     struct dm_crypt_request *dmreq)
743 {
744 	u8 *dst;
745 	int r;
746 
747 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
748 		return 0;
749 
750 	/* Apply whitening on ciphertext */
751 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
752 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
753 	kunmap_atomic(dst);
754 
755 	return r;
756 }
757 
758 static struct crypt_iv_operations crypt_iv_plain_ops = {
759 	.generator = crypt_iv_plain_gen
760 };
761 
762 static struct crypt_iv_operations crypt_iv_plain64_ops = {
763 	.generator = crypt_iv_plain64_gen
764 };
765 
766 static struct crypt_iv_operations crypt_iv_essiv_ops = {
767 	.ctr       = crypt_iv_essiv_ctr,
768 	.dtr       = crypt_iv_essiv_dtr,
769 	.init      = crypt_iv_essiv_init,
770 	.wipe      = crypt_iv_essiv_wipe,
771 	.generator = crypt_iv_essiv_gen
772 };
773 
774 static struct crypt_iv_operations crypt_iv_benbi_ops = {
775 	.ctr	   = crypt_iv_benbi_ctr,
776 	.dtr	   = crypt_iv_benbi_dtr,
777 	.generator = crypt_iv_benbi_gen
778 };
779 
780 static struct crypt_iv_operations crypt_iv_null_ops = {
781 	.generator = crypt_iv_null_gen
782 };
783 
784 static struct crypt_iv_operations crypt_iv_lmk_ops = {
785 	.ctr	   = crypt_iv_lmk_ctr,
786 	.dtr	   = crypt_iv_lmk_dtr,
787 	.init	   = crypt_iv_lmk_init,
788 	.wipe	   = crypt_iv_lmk_wipe,
789 	.generator = crypt_iv_lmk_gen,
790 	.post	   = crypt_iv_lmk_post
791 };
792 
793 static struct crypt_iv_operations crypt_iv_tcw_ops = {
794 	.ctr	   = crypt_iv_tcw_ctr,
795 	.dtr	   = crypt_iv_tcw_dtr,
796 	.init	   = crypt_iv_tcw_init,
797 	.wipe	   = crypt_iv_tcw_wipe,
798 	.generator = crypt_iv_tcw_gen,
799 	.post	   = crypt_iv_tcw_post
800 };
801 
802 static void crypt_convert_init(struct crypt_config *cc,
803 			       struct convert_context *ctx,
804 			       struct bio *bio_out, struct bio *bio_in,
805 			       sector_t sector)
806 {
807 	ctx->bio_in = bio_in;
808 	ctx->bio_out = bio_out;
809 	if (bio_in)
810 		ctx->iter_in = bio_in->bi_iter;
811 	if (bio_out)
812 		ctx->iter_out = bio_out->bi_iter;
813 	ctx->cc_sector = sector + cc->iv_offset;
814 	init_completion(&ctx->restart);
815 }
816 
817 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
818 					     struct ablkcipher_request *req)
819 {
820 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
821 }
822 
823 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
824 					       struct dm_crypt_request *dmreq)
825 {
826 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
827 }
828 
829 static u8 *iv_of_dmreq(struct crypt_config *cc,
830 		       struct dm_crypt_request *dmreq)
831 {
832 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
833 		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
834 }
835 
836 static int crypt_convert_block(struct crypt_config *cc,
837 			       struct convert_context *ctx,
838 			       struct ablkcipher_request *req)
839 {
840 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
841 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
842 	struct dm_crypt_request *dmreq;
843 	u8 *iv;
844 	int r;
845 
846 	dmreq = dmreq_of_req(cc, req);
847 	iv = iv_of_dmreq(cc, dmreq);
848 
849 	dmreq->iv_sector = ctx->cc_sector;
850 	dmreq->ctx = ctx;
851 	sg_init_table(&dmreq->sg_in, 1);
852 	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
853 		    bv_in.bv_offset);
854 
855 	sg_init_table(&dmreq->sg_out, 1);
856 	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
857 		    bv_out.bv_offset);
858 
859 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
860 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
861 
862 	if (cc->iv_gen_ops) {
863 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
864 		if (r < 0)
865 			return r;
866 	}
867 
868 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
869 				     1 << SECTOR_SHIFT, iv);
870 
871 	if (bio_data_dir(ctx->bio_in) == WRITE)
872 		r = crypto_ablkcipher_encrypt(req);
873 	else
874 		r = crypto_ablkcipher_decrypt(req);
875 
876 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
877 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
878 
879 	return r;
880 }
881 
882 static void kcryptd_async_done(struct crypto_async_request *async_req,
883 			       int error);
884 
885 static void crypt_alloc_req(struct crypt_config *cc,
886 			    struct convert_context *ctx)
887 {
888 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
889 
890 	if (!ctx->req)
891 		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
892 
893 	ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
894 	ablkcipher_request_set_callback(ctx->req,
895 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
896 	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
897 }
898 
899 static void crypt_free_req(struct crypt_config *cc,
900 			   struct ablkcipher_request *req, struct bio *base_bio)
901 {
902 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
903 
904 	if ((struct ablkcipher_request *)(io + 1) != req)
905 		mempool_free(req, cc->req_pool);
906 }
907 
908 /*
909  * Encrypt / decrypt data from one bio to another one (can be the same one)
910  */
911 static int crypt_convert(struct crypt_config *cc,
912 			 struct convert_context *ctx)
913 {
914 	int r;
915 
916 	atomic_set(&ctx->cc_pending, 1);
917 
918 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
919 
920 		crypt_alloc_req(cc, ctx);
921 
922 		atomic_inc(&ctx->cc_pending);
923 
924 		r = crypt_convert_block(cc, ctx, ctx->req);
925 
926 		switch (r) {
927 		/* async */
928 		case -EBUSY:
929 			wait_for_completion(&ctx->restart);
930 			reinit_completion(&ctx->restart);
931 			/* fall through*/
932 		case -EINPROGRESS:
933 			ctx->req = NULL;
934 			ctx->cc_sector++;
935 			continue;
936 
937 		/* sync */
938 		case 0:
939 			atomic_dec(&ctx->cc_pending);
940 			ctx->cc_sector++;
941 			cond_resched();
942 			continue;
943 
944 		/* error */
945 		default:
946 			atomic_dec(&ctx->cc_pending);
947 			return r;
948 		}
949 	}
950 
951 	return 0;
952 }
953 
954 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
955 
956 /*
957  * Generate a new unfragmented bio with the given size
958  * This should never violate the device limitations
959  *
960  * This function may be called concurrently. If we allocate from the mempool
961  * concurrently, there is a possibility of deadlock. For example, if we have
962  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
963  * the mempool concurrently, it may deadlock in a situation where both processes
964  * have allocated 128 pages and the mempool is exhausted.
965  *
966  * In order to avoid this scenario we allocate the pages under a mutex.
967  *
968  * In order to not degrade performance with excessive locking, we try
969  * non-blocking allocations without a mutex first but on failure we fallback
970  * to blocking allocations with a mutex.
971  */
972 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
973 {
974 	struct crypt_config *cc = io->cc;
975 	struct bio *clone;
976 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
977 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
978 	unsigned i, len, remaining_size;
979 	struct page *page;
980 	struct bio_vec *bvec;
981 
982 retry:
983 	if (unlikely(gfp_mask & __GFP_WAIT))
984 		mutex_lock(&cc->bio_alloc_lock);
985 
986 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
987 	if (!clone)
988 		goto return_clone;
989 
990 	clone_init(io, clone);
991 
992 	remaining_size = size;
993 
994 	for (i = 0; i < nr_iovecs; i++) {
995 		page = mempool_alloc(cc->page_pool, gfp_mask);
996 		if (!page) {
997 			crypt_free_buffer_pages(cc, clone);
998 			bio_put(clone);
999 			gfp_mask |= __GFP_WAIT;
1000 			goto retry;
1001 		}
1002 
1003 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1004 
1005 		bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1006 		bvec->bv_page = page;
1007 		bvec->bv_len = len;
1008 		bvec->bv_offset = 0;
1009 
1010 		clone->bi_iter.bi_size += len;
1011 
1012 		remaining_size -= len;
1013 	}
1014 
1015 return_clone:
1016 	if (unlikely(gfp_mask & __GFP_WAIT))
1017 		mutex_unlock(&cc->bio_alloc_lock);
1018 
1019 	return clone;
1020 }
1021 
1022 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1023 {
1024 	unsigned int i;
1025 	struct bio_vec *bv;
1026 
1027 	bio_for_each_segment_all(bv, clone, i) {
1028 		BUG_ON(!bv->bv_page);
1029 		mempool_free(bv->bv_page, cc->page_pool);
1030 		bv->bv_page = NULL;
1031 	}
1032 }
1033 
1034 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1035 			  struct bio *bio, sector_t sector)
1036 {
1037 	io->cc = cc;
1038 	io->base_bio = bio;
1039 	io->sector = sector;
1040 	io->error = 0;
1041 	io->ctx.req = NULL;
1042 	atomic_set(&io->io_pending, 0);
1043 }
1044 
1045 static void crypt_inc_pending(struct dm_crypt_io *io)
1046 {
1047 	atomic_inc(&io->io_pending);
1048 }
1049 
1050 /*
1051  * One of the bios was finished. Check for completion of
1052  * the whole request and correctly clean up the buffer.
1053  */
1054 static void crypt_dec_pending(struct dm_crypt_io *io)
1055 {
1056 	struct crypt_config *cc = io->cc;
1057 	struct bio *base_bio = io->base_bio;
1058 	int error = io->error;
1059 
1060 	if (!atomic_dec_and_test(&io->io_pending))
1061 		return;
1062 
1063 	if (io->ctx.req)
1064 		crypt_free_req(cc, io->ctx.req, base_bio);
1065 
1066 	bio_endio(base_bio, error);
1067 }
1068 
1069 /*
1070  * kcryptd/kcryptd_io:
1071  *
1072  * Needed because it would be very unwise to do decryption in an
1073  * interrupt context.
1074  *
1075  * kcryptd performs the actual encryption or decryption.
1076  *
1077  * kcryptd_io performs the IO submission.
1078  *
1079  * They must be separated as otherwise the final stages could be
1080  * starved by new requests which can block in the first stages due
1081  * to memory allocation.
1082  *
1083  * The work is done per CPU global for all dm-crypt instances.
1084  * They should not depend on each other and do not block.
1085  */
1086 static void crypt_endio(struct bio *clone, int error)
1087 {
1088 	struct dm_crypt_io *io = clone->bi_private;
1089 	struct crypt_config *cc = io->cc;
1090 	unsigned rw = bio_data_dir(clone);
1091 
1092 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1093 		error = -EIO;
1094 
1095 	/*
1096 	 * free the processed pages
1097 	 */
1098 	if (rw == WRITE)
1099 		crypt_free_buffer_pages(cc, clone);
1100 
1101 	bio_put(clone);
1102 
1103 	if (rw == READ && !error) {
1104 		kcryptd_queue_crypt(io);
1105 		return;
1106 	}
1107 
1108 	if (unlikely(error))
1109 		io->error = error;
1110 
1111 	crypt_dec_pending(io);
1112 }
1113 
1114 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1115 {
1116 	struct crypt_config *cc = io->cc;
1117 
1118 	clone->bi_private = io;
1119 	clone->bi_end_io  = crypt_endio;
1120 	clone->bi_bdev    = cc->dev->bdev;
1121 	clone->bi_rw      = io->base_bio->bi_rw;
1122 }
1123 
1124 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1125 {
1126 	struct crypt_config *cc = io->cc;
1127 	struct bio *base_bio = io->base_bio;
1128 	struct bio *clone;
1129 
1130 	/*
1131 	 * The block layer might modify the bvec array, so always
1132 	 * copy the required bvecs because we need the original
1133 	 * one in order to decrypt the whole bio data *afterwards*.
1134 	 */
1135 	clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1136 	if (!clone)
1137 		return 1;
1138 
1139 	crypt_inc_pending(io);
1140 
1141 	clone_init(io, clone);
1142 	clone->bi_iter.bi_sector = cc->start + io->sector;
1143 
1144 	generic_make_request(clone);
1145 	return 0;
1146 }
1147 
1148 static void kcryptd_io_read_work(struct work_struct *work)
1149 {
1150 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1151 
1152 	crypt_inc_pending(io);
1153 	if (kcryptd_io_read(io, GFP_NOIO))
1154 		io->error = -ENOMEM;
1155 	crypt_dec_pending(io);
1156 }
1157 
1158 static void kcryptd_queue_read(struct dm_crypt_io *io)
1159 {
1160 	struct crypt_config *cc = io->cc;
1161 
1162 	INIT_WORK(&io->work, kcryptd_io_read_work);
1163 	queue_work(cc->io_queue, &io->work);
1164 }
1165 
1166 static void kcryptd_io_write(struct dm_crypt_io *io)
1167 {
1168 	struct bio *clone = io->ctx.bio_out;
1169 
1170 	generic_make_request(clone);
1171 }
1172 
1173 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1174 
1175 static int dmcrypt_write(void *data)
1176 {
1177 	struct crypt_config *cc = data;
1178 	struct dm_crypt_io *io;
1179 
1180 	while (1) {
1181 		struct rb_root write_tree;
1182 		struct blk_plug plug;
1183 
1184 		DECLARE_WAITQUEUE(wait, current);
1185 
1186 		spin_lock_irq(&cc->write_thread_wait.lock);
1187 continue_locked:
1188 
1189 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1190 			goto pop_from_list;
1191 
1192 		__set_current_state(TASK_INTERRUPTIBLE);
1193 		__add_wait_queue(&cc->write_thread_wait, &wait);
1194 
1195 		spin_unlock_irq(&cc->write_thread_wait.lock);
1196 
1197 		if (unlikely(kthread_should_stop())) {
1198 			set_task_state(current, TASK_RUNNING);
1199 			remove_wait_queue(&cc->write_thread_wait, &wait);
1200 			break;
1201 		}
1202 
1203 		schedule();
1204 
1205 		set_task_state(current, TASK_RUNNING);
1206 		spin_lock_irq(&cc->write_thread_wait.lock);
1207 		__remove_wait_queue(&cc->write_thread_wait, &wait);
1208 		goto continue_locked;
1209 
1210 pop_from_list:
1211 		write_tree = cc->write_tree;
1212 		cc->write_tree = RB_ROOT;
1213 		spin_unlock_irq(&cc->write_thread_wait.lock);
1214 
1215 		BUG_ON(rb_parent(write_tree.rb_node));
1216 
1217 		/*
1218 		 * Note: we cannot walk the tree here with rb_next because
1219 		 * the structures may be freed when kcryptd_io_write is called.
1220 		 */
1221 		blk_start_plug(&plug);
1222 		do {
1223 			io = crypt_io_from_node(rb_first(&write_tree));
1224 			rb_erase(&io->rb_node, &write_tree);
1225 			kcryptd_io_write(io);
1226 		} while (!RB_EMPTY_ROOT(&write_tree));
1227 		blk_finish_plug(&plug);
1228 	}
1229 	return 0;
1230 }
1231 
1232 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1233 {
1234 	struct bio *clone = io->ctx.bio_out;
1235 	struct crypt_config *cc = io->cc;
1236 	unsigned long flags;
1237 	sector_t sector;
1238 	struct rb_node **rbp, *parent;
1239 
1240 	if (unlikely(io->error < 0)) {
1241 		crypt_free_buffer_pages(cc, clone);
1242 		bio_put(clone);
1243 		crypt_dec_pending(io);
1244 		return;
1245 	}
1246 
1247 	/* crypt_convert should have filled the clone bio */
1248 	BUG_ON(io->ctx.iter_out.bi_size);
1249 
1250 	clone->bi_iter.bi_sector = cc->start + io->sector;
1251 
1252 	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1253 		generic_make_request(clone);
1254 		return;
1255 	}
1256 
1257 	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1258 	rbp = &cc->write_tree.rb_node;
1259 	parent = NULL;
1260 	sector = io->sector;
1261 	while (*rbp) {
1262 		parent = *rbp;
1263 		if (sector < crypt_io_from_node(parent)->sector)
1264 			rbp = &(*rbp)->rb_left;
1265 		else
1266 			rbp = &(*rbp)->rb_right;
1267 	}
1268 	rb_link_node(&io->rb_node, parent, rbp);
1269 	rb_insert_color(&io->rb_node, &cc->write_tree);
1270 
1271 	wake_up_locked(&cc->write_thread_wait);
1272 	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1273 }
1274 
1275 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1276 {
1277 	struct crypt_config *cc = io->cc;
1278 	struct bio *clone;
1279 	int crypt_finished;
1280 	sector_t sector = io->sector;
1281 	int r;
1282 
1283 	/*
1284 	 * Prevent io from disappearing until this function completes.
1285 	 */
1286 	crypt_inc_pending(io);
1287 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1288 
1289 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1290 	if (unlikely(!clone)) {
1291 		io->error = -EIO;
1292 		goto dec;
1293 	}
1294 
1295 	io->ctx.bio_out = clone;
1296 	io->ctx.iter_out = clone->bi_iter;
1297 
1298 	sector += bio_sectors(clone);
1299 
1300 	crypt_inc_pending(io);
1301 	r = crypt_convert(cc, &io->ctx);
1302 	if (r)
1303 		io->error = -EIO;
1304 	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1305 
1306 	/* Encryption was already finished, submit io now */
1307 	if (crypt_finished) {
1308 		kcryptd_crypt_write_io_submit(io, 0);
1309 		io->sector = sector;
1310 	}
1311 
1312 dec:
1313 	crypt_dec_pending(io);
1314 }
1315 
1316 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1317 {
1318 	crypt_dec_pending(io);
1319 }
1320 
1321 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1322 {
1323 	struct crypt_config *cc = io->cc;
1324 	int r = 0;
1325 
1326 	crypt_inc_pending(io);
1327 
1328 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1329 			   io->sector);
1330 
1331 	r = crypt_convert(cc, &io->ctx);
1332 	if (r < 0)
1333 		io->error = -EIO;
1334 
1335 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1336 		kcryptd_crypt_read_done(io);
1337 
1338 	crypt_dec_pending(io);
1339 }
1340 
1341 static void kcryptd_async_done(struct crypto_async_request *async_req,
1342 			       int error)
1343 {
1344 	struct dm_crypt_request *dmreq = async_req->data;
1345 	struct convert_context *ctx = dmreq->ctx;
1346 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1347 	struct crypt_config *cc = io->cc;
1348 
1349 	if (error == -EINPROGRESS) {
1350 		complete(&ctx->restart);
1351 		return;
1352 	}
1353 
1354 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1355 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1356 
1357 	if (error < 0)
1358 		io->error = -EIO;
1359 
1360 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1361 
1362 	if (!atomic_dec_and_test(&ctx->cc_pending))
1363 		return;
1364 
1365 	if (bio_data_dir(io->base_bio) == READ)
1366 		kcryptd_crypt_read_done(io);
1367 	else
1368 		kcryptd_crypt_write_io_submit(io, 1);
1369 }
1370 
1371 static void kcryptd_crypt(struct work_struct *work)
1372 {
1373 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1374 
1375 	if (bio_data_dir(io->base_bio) == READ)
1376 		kcryptd_crypt_read_convert(io);
1377 	else
1378 		kcryptd_crypt_write_convert(io);
1379 }
1380 
1381 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1382 {
1383 	struct crypt_config *cc = io->cc;
1384 
1385 	INIT_WORK(&io->work, kcryptd_crypt);
1386 	queue_work(cc->crypt_queue, &io->work);
1387 }
1388 
1389 /*
1390  * Decode key from its hex representation
1391  */
1392 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1393 {
1394 	char buffer[3];
1395 	unsigned int i;
1396 
1397 	buffer[2] = '\0';
1398 
1399 	for (i = 0; i < size; i++) {
1400 		buffer[0] = *hex++;
1401 		buffer[1] = *hex++;
1402 
1403 		if (kstrtou8(buffer, 16, &key[i]))
1404 			return -EINVAL;
1405 	}
1406 
1407 	if (*hex != '\0')
1408 		return -EINVAL;
1409 
1410 	return 0;
1411 }
1412 
1413 static void crypt_free_tfms(struct crypt_config *cc)
1414 {
1415 	unsigned i;
1416 
1417 	if (!cc->tfms)
1418 		return;
1419 
1420 	for (i = 0; i < cc->tfms_count; i++)
1421 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1422 			crypto_free_ablkcipher(cc->tfms[i]);
1423 			cc->tfms[i] = NULL;
1424 		}
1425 
1426 	kfree(cc->tfms);
1427 	cc->tfms = NULL;
1428 }
1429 
1430 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1431 {
1432 	unsigned i;
1433 	int err;
1434 
1435 	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1436 			   GFP_KERNEL);
1437 	if (!cc->tfms)
1438 		return -ENOMEM;
1439 
1440 	for (i = 0; i < cc->tfms_count; i++) {
1441 		cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1442 		if (IS_ERR(cc->tfms[i])) {
1443 			err = PTR_ERR(cc->tfms[i]);
1444 			crypt_free_tfms(cc);
1445 			return err;
1446 		}
1447 	}
1448 
1449 	return 0;
1450 }
1451 
1452 static int crypt_setkey_allcpus(struct crypt_config *cc)
1453 {
1454 	unsigned subkey_size;
1455 	int err = 0, i, r;
1456 
1457 	/* Ignore extra keys (which are used for IV etc) */
1458 	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1459 
1460 	for (i = 0; i < cc->tfms_count; i++) {
1461 		r = crypto_ablkcipher_setkey(cc->tfms[i],
1462 					     cc->key + (i * subkey_size),
1463 					     subkey_size);
1464 		if (r)
1465 			err = r;
1466 	}
1467 
1468 	return err;
1469 }
1470 
1471 static int crypt_set_key(struct crypt_config *cc, char *key)
1472 {
1473 	int r = -EINVAL;
1474 	int key_string_len = strlen(key);
1475 
1476 	/* The key size may not be changed. */
1477 	if (cc->key_size != (key_string_len >> 1))
1478 		goto out;
1479 
1480 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1481 	if (!cc->key_size && strcmp(key, "-"))
1482 		goto out;
1483 
1484 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1485 		goto out;
1486 
1487 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1488 
1489 	r = crypt_setkey_allcpus(cc);
1490 
1491 out:
1492 	/* Hex key string not needed after here, so wipe it. */
1493 	memset(key, '0', key_string_len);
1494 
1495 	return r;
1496 }
1497 
1498 static int crypt_wipe_key(struct crypt_config *cc)
1499 {
1500 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1501 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1502 
1503 	return crypt_setkey_allcpus(cc);
1504 }
1505 
1506 static void crypt_dtr(struct dm_target *ti)
1507 {
1508 	struct crypt_config *cc = ti->private;
1509 
1510 	ti->private = NULL;
1511 
1512 	if (!cc)
1513 		return;
1514 
1515 	if (cc->write_thread)
1516 		kthread_stop(cc->write_thread);
1517 
1518 	if (cc->io_queue)
1519 		destroy_workqueue(cc->io_queue);
1520 	if (cc->crypt_queue)
1521 		destroy_workqueue(cc->crypt_queue);
1522 
1523 	crypt_free_tfms(cc);
1524 
1525 	if (cc->bs)
1526 		bioset_free(cc->bs);
1527 
1528 	if (cc->page_pool)
1529 		mempool_destroy(cc->page_pool);
1530 	if (cc->req_pool)
1531 		mempool_destroy(cc->req_pool);
1532 
1533 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1534 		cc->iv_gen_ops->dtr(cc);
1535 
1536 	if (cc->dev)
1537 		dm_put_device(ti, cc->dev);
1538 
1539 	kzfree(cc->cipher);
1540 	kzfree(cc->cipher_string);
1541 
1542 	/* Must zero key material before freeing */
1543 	kzfree(cc);
1544 }
1545 
1546 static int crypt_ctr_cipher(struct dm_target *ti,
1547 			    char *cipher_in, char *key)
1548 {
1549 	struct crypt_config *cc = ti->private;
1550 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1551 	char *cipher_api = NULL;
1552 	int ret = -EINVAL;
1553 	char dummy;
1554 
1555 	/* Convert to crypto api definition? */
1556 	if (strchr(cipher_in, '(')) {
1557 		ti->error = "Bad cipher specification";
1558 		return -EINVAL;
1559 	}
1560 
1561 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1562 	if (!cc->cipher_string)
1563 		goto bad_mem;
1564 
1565 	/*
1566 	 * Legacy dm-crypt cipher specification
1567 	 * cipher[:keycount]-mode-iv:ivopts
1568 	 */
1569 	tmp = cipher_in;
1570 	keycount = strsep(&tmp, "-");
1571 	cipher = strsep(&keycount, ":");
1572 
1573 	if (!keycount)
1574 		cc->tfms_count = 1;
1575 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1576 		 !is_power_of_2(cc->tfms_count)) {
1577 		ti->error = "Bad cipher key count specification";
1578 		return -EINVAL;
1579 	}
1580 	cc->key_parts = cc->tfms_count;
1581 	cc->key_extra_size = 0;
1582 
1583 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1584 	if (!cc->cipher)
1585 		goto bad_mem;
1586 
1587 	chainmode = strsep(&tmp, "-");
1588 	ivopts = strsep(&tmp, "-");
1589 	ivmode = strsep(&ivopts, ":");
1590 
1591 	if (tmp)
1592 		DMWARN("Ignoring unexpected additional cipher options");
1593 
1594 	/*
1595 	 * For compatibility with the original dm-crypt mapping format, if
1596 	 * only the cipher name is supplied, use cbc-plain.
1597 	 */
1598 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1599 		chainmode = "cbc";
1600 		ivmode = "plain";
1601 	}
1602 
1603 	if (strcmp(chainmode, "ecb") && !ivmode) {
1604 		ti->error = "IV mechanism required";
1605 		return -EINVAL;
1606 	}
1607 
1608 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1609 	if (!cipher_api)
1610 		goto bad_mem;
1611 
1612 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1613 		       "%s(%s)", chainmode, cipher);
1614 	if (ret < 0) {
1615 		kfree(cipher_api);
1616 		goto bad_mem;
1617 	}
1618 
1619 	/* Allocate cipher */
1620 	ret = crypt_alloc_tfms(cc, cipher_api);
1621 	if (ret < 0) {
1622 		ti->error = "Error allocating crypto tfm";
1623 		goto bad;
1624 	}
1625 
1626 	/* Initialize IV */
1627 	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1628 	if (cc->iv_size)
1629 		/* at least a 64 bit sector number should fit in our buffer */
1630 		cc->iv_size = max(cc->iv_size,
1631 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1632 	else if (ivmode) {
1633 		DMWARN("Selected cipher does not support IVs");
1634 		ivmode = NULL;
1635 	}
1636 
1637 	/* Choose ivmode, see comments at iv code. */
1638 	if (ivmode == NULL)
1639 		cc->iv_gen_ops = NULL;
1640 	else if (strcmp(ivmode, "plain") == 0)
1641 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1642 	else if (strcmp(ivmode, "plain64") == 0)
1643 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1644 	else if (strcmp(ivmode, "essiv") == 0)
1645 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1646 	else if (strcmp(ivmode, "benbi") == 0)
1647 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1648 	else if (strcmp(ivmode, "null") == 0)
1649 		cc->iv_gen_ops = &crypt_iv_null_ops;
1650 	else if (strcmp(ivmode, "lmk") == 0) {
1651 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1652 		/*
1653 		 * Version 2 and 3 is recognised according
1654 		 * to length of provided multi-key string.
1655 		 * If present (version 3), last key is used as IV seed.
1656 		 * All keys (including IV seed) are always the same size.
1657 		 */
1658 		if (cc->key_size % cc->key_parts) {
1659 			cc->key_parts++;
1660 			cc->key_extra_size = cc->key_size / cc->key_parts;
1661 		}
1662 	} else if (strcmp(ivmode, "tcw") == 0) {
1663 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1664 		cc->key_parts += 2; /* IV + whitening */
1665 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1666 	} else {
1667 		ret = -EINVAL;
1668 		ti->error = "Invalid IV mode";
1669 		goto bad;
1670 	}
1671 
1672 	/* Initialize and set key */
1673 	ret = crypt_set_key(cc, key);
1674 	if (ret < 0) {
1675 		ti->error = "Error decoding and setting key";
1676 		goto bad;
1677 	}
1678 
1679 	/* Allocate IV */
1680 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1681 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1682 		if (ret < 0) {
1683 			ti->error = "Error creating IV";
1684 			goto bad;
1685 		}
1686 	}
1687 
1688 	/* Initialize IV (set keys for ESSIV etc) */
1689 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1690 		ret = cc->iv_gen_ops->init(cc);
1691 		if (ret < 0) {
1692 			ti->error = "Error initialising IV";
1693 			goto bad;
1694 		}
1695 	}
1696 
1697 	ret = 0;
1698 bad:
1699 	kfree(cipher_api);
1700 	return ret;
1701 
1702 bad_mem:
1703 	ti->error = "Cannot allocate cipher strings";
1704 	return -ENOMEM;
1705 }
1706 
1707 /*
1708  * Construct an encryption mapping:
1709  * <cipher> <key> <iv_offset> <dev_path> <start>
1710  */
1711 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1712 {
1713 	struct crypt_config *cc;
1714 	unsigned int key_size, opt_params;
1715 	unsigned long long tmpll;
1716 	int ret;
1717 	size_t iv_size_padding;
1718 	struct dm_arg_set as;
1719 	const char *opt_string;
1720 	char dummy;
1721 
1722 	static struct dm_arg _args[] = {
1723 		{0, 3, "Invalid number of feature args"},
1724 	};
1725 
1726 	if (argc < 5) {
1727 		ti->error = "Not enough arguments";
1728 		return -EINVAL;
1729 	}
1730 
1731 	key_size = strlen(argv[1]) >> 1;
1732 
1733 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1734 	if (!cc) {
1735 		ti->error = "Cannot allocate encryption context";
1736 		return -ENOMEM;
1737 	}
1738 	cc->key_size = key_size;
1739 
1740 	ti->private = cc;
1741 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1742 	if (ret < 0)
1743 		goto bad;
1744 
1745 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1746 	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1747 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1748 
1749 	if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1750 		/* Allocate the padding exactly */
1751 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1752 				& crypto_ablkcipher_alignmask(any_tfm(cc));
1753 	} else {
1754 		/*
1755 		 * If the cipher requires greater alignment than kmalloc
1756 		 * alignment, we don't know the exact position of the
1757 		 * initialization vector. We must assume worst case.
1758 		 */
1759 		iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1760 	}
1761 
1762 	ret = -ENOMEM;
1763 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1764 			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1765 	if (!cc->req_pool) {
1766 		ti->error = "Cannot allocate crypt request mempool";
1767 		goto bad;
1768 	}
1769 
1770 	cc->per_bio_data_size = ti->per_bio_data_size =
1771 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1772 		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1773 		      ARCH_KMALLOC_MINALIGN);
1774 
1775 	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1776 	if (!cc->page_pool) {
1777 		ti->error = "Cannot allocate page mempool";
1778 		goto bad;
1779 	}
1780 
1781 	cc->bs = bioset_create(MIN_IOS, 0);
1782 	if (!cc->bs) {
1783 		ti->error = "Cannot allocate crypt bioset";
1784 		goto bad;
1785 	}
1786 
1787 	mutex_init(&cc->bio_alloc_lock);
1788 
1789 	ret = -EINVAL;
1790 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1791 		ti->error = "Invalid iv_offset sector";
1792 		goto bad;
1793 	}
1794 	cc->iv_offset = tmpll;
1795 
1796 	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1797 		ti->error = "Device lookup failed";
1798 		goto bad;
1799 	}
1800 
1801 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1802 		ti->error = "Invalid device sector";
1803 		goto bad;
1804 	}
1805 	cc->start = tmpll;
1806 
1807 	argv += 5;
1808 	argc -= 5;
1809 
1810 	/* Optional parameters */
1811 	if (argc) {
1812 		as.argc = argc;
1813 		as.argv = argv;
1814 
1815 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1816 		if (ret)
1817 			goto bad;
1818 
1819 		while (opt_params--) {
1820 			opt_string = dm_shift_arg(&as);
1821 			if (!opt_string) {
1822 				ti->error = "Not enough feature arguments";
1823 				goto bad;
1824 			}
1825 
1826 			if (!strcasecmp(opt_string, "allow_discards"))
1827 				ti->num_discard_bios = 1;
1828 
1829 			else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1830 				set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1831 
1832 			else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1833 				set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1834 
1835 			else {
1836 				ti->error = "Invalid feature arguments";
1837 				goto bad;
1838 			}
1839 		}
1840 	}
1841 
1842 	ret = -ENOMEM;
1843 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1844 	if (!cc->io_queue) {
1845 		ti->error = "Couldn't create kcryptd io queue";
1846 		goto bad;
1847 	}
1848 
1849 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1850 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1851 	else
1852 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1853 						  num_online_cpus());
1854 	if (!cc->crypt_queue) {
1855 		ti->error = "Couldn't create kcryptd queue";
1856 		goto bad;
1857 	}
1858 
1859 	init_waitqueue_head(&cc->write_thread_wait);
1860 	cc->write_tree = RB_ROOT;
1861 
1862 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1863 	if (IS_ERR(cc->write_thread)) {
1864 		ret = PTR_ERR(cc->write_thread);
1865 		cc->write_thread = NULL;
1866 		ti->error = "Couldn't spawn write thread";
1867 		goto bad;
1868 	}
1869 	wake_up_process(cc->write_thread);
1870 
1871 	ti->num_flush_bios = 1;
1872 	ti->discard_zeroes_data_unsupported = true;
1873 
1874 	return 0;
1875 
1876 bad:
1877 	crypt_dtr(ti);
1878 	return ret;
1879 }
1880 
1881 static int crypt_map(struct dm_target *ti, struct bio *bio)
1882 {
1883 	struct dm_crypt_io *io;
1884 	struct crypt_config *cc = ti->private;
1885 
1886 	/*
1887 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1888 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1889 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1890 	 */
1891 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1892 		bio->bi_bdev = cc->dev->bdev;
1893 		if (bio_sectors(bio))
1894 			bio->bi_iter.bi_sector = cc->start +
1895 				dm_target_offset(ti, bio->bi_iter.bi_sector);
1896 		return DM_MAPIO_REMAPPED;
1897 	}
1898 
1899 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1900 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1901 	io->ctx.req = (struct ablkcipher_request *)(io + 1);
1902 
1903 	if (bio_data_dir(io->base_bio) == READ) {
1904 		if (kcryptd_io_read(io, GFP_NOWAIT))
1905 			kcryptd_queue_read(io);
1906 	} else
1907 		kcryptd_queue_crypt(io);
1908 
1909 	return DM_MAPIO_SUBMITTED;
1910 }
1911 
1912 static void crypt_status(struct dm_target *ti, status_type_t type,
1913 			 unsigned status_flags, char *result, unsigned maxlen)
1914 {
1915 	struct crypt_config *cc = ti->private;
1916 	unsigned i, sz = 0;
1917 	int num_feature_args = 0;
1918 
1919 	switch (type) {
1920 	case STATUSTYPE_INFO:
1921 		result[0] = '\0';
1922 		break;
1923 
1924 	case STATUSTYPE_TABLE:
1925 		DMEMIT("%s ", cc->cipher_string);
1926 
1927 		if (cc->key_size > 0)
1928 			for (i = 0; i < cc->key_size; i++)
1929 				DMEMIT("%02x", cc->key[i]);
1930 		else
1931 			DMEMIT("-");
1932 
1933 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1934 				cc->dev->name, (unsigned long long)cc->start);
1935 
1936 		num_feature_args += !!ti->num_discard_bios;
1937 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1938 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1939 		if (num_feature_args) {
1940 			DMEMIT(" %d", num_feature_args);
1941 			if (ti->num_discard_bios)
1942 				DMEMIT(" allow_discards");
1943 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1944 				DMEMIT(" same_cpu_crypt");
1945 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1946 				DMEMIT(" submit_from_crypt_cpus");
1947 		}
1948 
1949 		break;
1950 	}
1951 }
1952 
1953 static void crypt_postsuspend(struct dm_target *ti)
1954 {
1955 	struct crypt_config *cc = ti->private;
1956 
1957 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1958 }
1959 
1960 static int crypt_preresume(struct dm_target *ti)
1961 {
1962 	struct crypt_config *cc = ti->private;
1963 
1964 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1965 		DMERR("aborting resume - crypt key is not set.");
1966 		return -EAGAIN;
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 static void crypt_resume(struct dm_target *ti)
1973 {
1974 	struct crypt_config *cc = ti->private;
1975 
1976 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1977 }
1978 
1979 /* Message interface
1980  *	key set <key>
1981  *	key wipe
1982  */
1983 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1984 {
1985 	struct crypt_config *cc = ti->private;
1986 	int ret = -EINVAL;
1987 
1988 	if (argc < 2)
1989 		goto error;
1990 
1991 	if (!strcasecmp(argv[0], "key")) {
1992 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1993 			DMWARN("not suspended during key manipulation.");
1994 			return -EINVAL;
1995 		}
1996 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1997 			ret = crypt_set_key(cc, argv[2]);
1998 			if (ret)
1999 				return ret;
2000 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2001 				ret = cc->iv_gen_ops->init(cc);
2002 			return ret;
2003 		}
2004 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2005 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2006 				ret = cc->iv_gen_ops->wipe(cc);
2007 				if (ret)
2008 					return ret;
2009 			}
2010 			return crypt_wipe_key(cc);
2011 		}
2012 	}
2013 
2014 error:
2015 	DMWARN("unrecognised message received.");
2016 	return -EINVAL;
2017 }
2018 
2019 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2020 		       struct bio_vec *biovec, int max_size)
2021 {
2022 	struct crypt_config *cc = ti->private;
2023 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
2024 
2025 	if (!q->merge_bvec_fn)
2026 		return max_size;
2027 
2028 	bvm->bi_bdev = cc->dev->bdev;
2029 	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
2030 
2031 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2032 }
2033 
2034 static int crypt_iterate_devices(struct dm_target *ti,
2035 				 iterate_devices_callout_fn fn, void *data)
2036 {
2037 	struct crypt_config *cc = ti->private;
2038 
2039 	return fn(ti, cc->dev, cc->start, ti->len, data);
2040 }
2041 
2042 static struct target_type crypt_target = {
2043 	.name   = "crypt",
2044 	.version = {1, 14, 0},
2045 	.module = THIS_MODULE,
2046 	.ctr    = crypt_ctr,
2047 	.dtr    = crypt_dtr,
2048 	.map    = crypt_map,
2049 	.status = crypt_status,
2050 	.postsuspend = crypt_postsuspend,
2051 	.preresume = crypt_preresume,
2052 	.resume = crypt_resume,
2053 	.message = crypt_message,
2054 	.merge  = crypt_merge,
2055 	.iterate_devices = crypt_iterate_devices,
2056 };
2057 
2058 static int __init dm_crypt_init(void)
2059 {
2060 	int r;
2061 
2062 	r = dm_register_target(&crypt_target);
2063 	if (r < 0)
2064 		DMERR("register failed %d", r);
2065 
2066 	return r;
2067 }
2068 
2069 static void __exit dm_crypt_exit(void)
2070 {
2071 	dm_unregister_target(&crypt_target);
2072 }
2073 
2074 module_init(dm_crypt_init);
2075 module_exit(dm_crypt_exit);
2076 
2077 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2078 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2079 MODULE_LICENSE("GPL");
2080