xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 3932b9ca)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/backing-dev.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
29 
30 #include <linux/device-mapper.h>
31 
32 #define DM_MSG_PREFIX "crypt"
33 
34 /*
35  * context holding the current state of a multi-part conversion
36  */
37 struct convert_context {
38 	struct completion restart;
39 	struct bio *bio_in;
40 	struct bio *bio_out;
41 	struct bvec_iter iter_in;
42 	struct bvec_iter iter_out;
43 	sector_t cc_sector;
44 	atomic_t cc_pending;
45 	struct ablkcipher_request *req;
46 };
47 
48 /*
49  * per bio private data
50  */
51 struct dm_crypt_io {
52 	struct crypt_config *cc;
53 	struct bio *base_bio;
54 	struct work_struct work;
55 
56 	struct convert_context ctx;
57 
58 	atomic_t io_pending;
59 	int error;
60 	sector_t sector;
61 	struct dm_crypt_io *base_io;
62 } CRYPTO_MINALIGN_ATTR;
63 
64 struct dm_crypt_request {
65 	struct convert_context *ctx;
66 	struct scatterlist sg_in;
67 	struct scatterlist sg_out;
68 	sector_t iv_sector;
69 };
70 
71 struct crypt_config;
72 
73 struct crypt_iv_operations {
74 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
75 		   const char *opts);
76 	void (*dtr)(struct crypt_config *cc);
77 	int (*init)(struct crypt_config *cc);
78 	int (*wipe)(struct crypt_config *cc);
79 	int (*generator)(struct crypt_config *cc, u8 *iv,
80 			 struct dm_crypt_request *dmreq);
81 	int (*post)(struct crypt_config *cc, u8 *iv,
82 		    struct dm_crypt_request *dmreq);
83 };
84 
85 struct iv_essiv_private {
86 	struct crypto_hash *hash_tfm;
87 	u8 *salt;
88 };
89 
90 struct iv_benbi_private {
91 	int shift;
92 };
93 
94 #define LMK_SEED_SIZE 64 /* hash + 0 */
95 struct iv_lmk_private {
96 	struct crypto_shash *hash_tfm;
97 	u8 *seed;
98 };
99 
100 #define TCW_WHITENING_SIZE 16
101 struct iv_tcw_private {
102 	struct crypto_shash *crc32_tfm;
103 	u8 *iv_seed;
104 	u8 *whitening;
105 };
106 
107 /*
108  * Crypt: maps a linear range of a block device
109  * and encrypts / decrypts at the same time.
110  */
111 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
112 
113 /*
114  * The fields in here must be read only after initialization.
115  */
116 struct crypt_config {
117 	struct dm_dev *dev;
118 	sector_t start;
119 
120 	/*
121 	 * pool for per bio private data, crypto requests and
122 	 * encryption requeusts/buffer pages
123 	 */
124 	mempool_t *io_pool;
125 	mempool_t *req_pool;
126 	mempool_t *page_pool;
127 	struct bio_set *bs;
128 
129 	struct workqueue_struct *io_queue;
130 	struct workqueue_struct *crypt_queue;
131 
132 	char *cipher;
133 	char *cipher_string;
134 
135 	struct crypt_iv_operations *iv_gen_ops;
136 	union {
137 		struct iv_essiv_private essiv;
138 		struct iv_benbi_private benbi;
139 		struct iv_lmk_private lmk;
140 		struct iv_tcw_private tcw;
141 	} iv_gen_private;
142 	sector_t iv_offset;
143 	unsigned int iv_size;
144 
145 	/* ESSIV: struct crypto_cipher *essiv_tfm */
146 	void *iv_private;
147 	struct crypto_ablkcipher **tfms;
148 	unsigned tfms_count;
149 
150 	/*
151 	 * Layout of each crypto request:
152 	 *
153 	 *   struct ablkcipher_request
154 	 *      context
155 	 *      padding
156 	 *   struct dm_crypt_request
157 	 *      padding
158 	 *   IV
159 	 *
160 	 * The padding is added so that dm_crypt_request and the IV are
161 	 * correctly aligned.
162 	 */
163 	unsigned int dmreq_start;
164 
165 	unsigned int per_bio_data_size;
166 
167 	unsigned long flags;
168 	unsigned int key_size;
169 	unsigned int key_parts;      /* independent parts in key buffer */
170 	unsigned int key_extra_size; /* additional keys length */
171 	u8 key[0];
172 };
173 
174 #define MIN_IOS        16
175 #define MIN_POOL_PAGES 32
176 
177 static struct kmem_cache *_crypt_io_pool;
178 
179 static void clone_init(struct dm_crypt_io *, struct bio *);
180 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
181 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
182 
183 /*
184  * Use this to access cipher attributes that are the same for each CPU.
185  */
186 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
187 {
188 	return cc->tfms[0];
189 }
190 
191 /*
192  * Different IV generation algorithms:
193  *
194  * plain: the initial vector is the 32-bit little-endian version of the sector
195  *        number, padded with zeros if necessary.
196  *
197  * plain64: the initial vector is the 64-bit little-endian version of the sector
198  *        number, padded with zeros if necessary.
199  *
200  * essiv: "encrypted sector|salt initial vector", the sector number is
201  *        encrypted with the bulk cipher using a salt as key. The salt
202  *        should be derived from the bulk cipher's key via hashing.
203  *
204  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
205  *        (needed for LRW-32-AES and possible other narrow block modes)
206  *
207  * null: the initial vector is always zero.  Provides compatibility with
208  *       obsolete loop_fish2 devices.  Do not use for new devices.
209  *
210  * lmk:  Compatible implementation of the block chaining mode used
211  *       by the Loop-AES block device encryption system
212  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
213  *       It operates on full 512 byte sectors and uses CBC
214  *       with an IV derived from the sector number, the data and
215  *       optionally extra IV seed.
216  *       This means that after decryption the first block
217  *       of sector must be tweaked according to decrypted data.
218  *       Loop-AES can use three encryption schemes:
219  *         version 1: is plain aes-cbc mode
220  *         version 2: uses 64 multikey scheme with lmk IV generator
221  *         version 3: the same as version 2 with additional IV seed
222  *                   (it uses 65 keys, last key is used as IV seed)
223  *
224  * tcw:  Compatible implementation of the block chaining mode used
225  *       by the TrueCrypt device encryption system (prior to version 4.1).
226  *       For more info see: http://www.truecrypt.org
227  *       It operates on full 512 byte sectors and uses CBC
228  *       with an IV derived from initial key and the sector number.
229  *       In addition, whitening value is applied on every sector, whitening
230  *       is calculated from initial key, sector number and mixed using CRC32.
231  *       Note that this encryption scheme is vulnerable to watermarking attacks
232  *       and should be used for old compatible containers access only.
233  *
234  * plumb: unimplemented, see:
235  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
236  */
237 
238 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
239 			      struct dm_crypt_request *dmreq)
240 {
241 	memset(iv, 0, cc->iv_size);
242 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
243 
244 	return 0;
245 }
246 
247 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
248 				struct dm_crypt_request *dmreq)
249 {
250 	memset(iv, 0, cc->iv_size);
251 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
252 
253 	return 0;
254 }
255 
256 /* Initialise ESSIV - compute salt but no local memory allocations */
257 static int crypt_iv_essiv_init(struct crypt_config *cc)
258 {
259 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
260 	struct hash_desc desc;
261 	struct scatterlist sg;
262 	struct crypto_cipher *essiv_tfm;
263 	int err;
264 
265 	sg_init_one(&sg, cc->key, cc->key_size);
266 	desc.tfm = essiv->hash_tfm;
267 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
268 
269 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
270 	if (err)
271 		return err;
272 
273 	essiv_tfm = cc->iv_private;
274 
275 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
276 			    crypto_hash_digestsize(essiv->hash_tfm));
277 	if (err)
278 		return err;
279 
280 	return 0;
281 }
282 
283 /* Wipe salt and reset key derived from volume key */
284 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
285 {
286 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
287 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
288 	struct crypto_cipher *essiv_tfm;
289 	int r, err = 0;
290 
291 	memset(essiv->salt, 0, salt_size);
292 
293 	essiv_tfm = cc->iv_private;
294 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
295 	if (r)
296 		err = r;
297 
298 	return err;
299 }
300 
301 /* Set up per cpu cipher state */
302 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
303 					     struct dm_target *ti,
304 					     u8 *salt, unsigned saltsize)
305 {
306 	struct crypto_cipher *essiv_tfm;
307 	int err;
308 
309 	/* Setup the essiv_tfm with the given salt */
310 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
311 	if (IS_ERR(essiv_tfm)) {
312 		ti->error = "Error allocating crypto tfm for ESSIV";
313 		return essiv_tfm;
314 	}
315 
316 	if (crypto_cipher_blocksize(essiv_tfm) !=
317 	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
318 		ti->error = "Block size of ESSIV cipher does "
319 			    "not match IV size of block cipher";
320 		crypto_free_cipher(essiv_tfm);
321 		return ERR_PTR(-EINVAL);
322 	}
323 
324 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
325 	if (err) {
326 		ti->error = "Failed to set key for ESSIV cipher";
327 		crypto_free_cipher(essiv_tfm);
328 		return ERR_PTR(err);
329 	}
330 
331 	return essiv_tfm;
332 }
333 
334 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
335 {
336 	struct crypto_cipher *essiv_tfm;
337 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
338 
339 	crypto_free_hash(essiv->hash_tfm);
340 	essiv->hash_tfm = NULL;
341 
342 	kzfree(essiv->salt);
343 	essiv->salt = NULL;
344 
345 	essiv_tfm = cc->iv_private;
346 
347 	if (essiv_tfm)
348 		crypto_free_cipher(essiv_tfm);
349 
350 	cc->iv_private = NULL;
351 }
352 
353 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
354 			      const char *opts)
355 {
356 	struct crypto_cipher *essiv_tfm = NULL;
357 	struct crypto_hash *hash_tfm = NULL;
358 	u8 *salt = NULL;
359 	int err;
360 
361 	if (!opts) {
362 		ti->error = "Digest algorithm missing for ESSIV mode";
363 		return -EINVAL;
364 	}
365 
366 	/* Allocate hash algorithm */
367 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
368 	if (IS_ERR(hash_tfm)) {
369 		ti->error = "Error initializing ESSIV hash";
370 		err = PTR_ERR(hash_tfm);
371 		goto bad;
372 	}
373 
374 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
375 	if (!salt) {
376 		ti->error = "Error kmallocing salt storage in ESSIV";
377 		err = -ENOMEM;
378 		goto bad;
379 	}
380 
381 	cc->iv_gen_private.essiv.salt = salt;
382 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
383 
384 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
385 				crypto_hash_digestsize(hash_tfm));
386 	if (IS_ERR(essiv_tfm)) {
387 		crypt_iv_essiv_dtr(cc);
388 		return PTR_ERR(essiv_tfm);
389 	}
390 	cc->iv_private = essiv_tfm;
391 
392 	return 0;
393 
394 bad:
395 	if (hash_tfm && !IS_ERR(hash_tfm))
396 		crypto_free_hash(hash_tfm);
397 	kfree(salt);
398 	return err;
399 }
400 
401 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
402 			      struct dm_crypt_request *dmreq)
403 {
404 	struct crypto_cipher *essiv_tfm = cc->iv_private;
405 
406 	memset(iv, 0, cc->iv_size);
407 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
408 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
409 
410 	return 0;
411 }
412 
413 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
414 			      const char *opts)
415 {
416 	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
417 	int log = ilog2(bs);
418 
419 	/* we need to calculate how far we must shift the sector count
420 	 * to get the cipher block count, we use this shift in _gen */
421 
422 	if (1 << log != bs) {
423 		ti->error = "cypher blocksize is not a power of 2";
424 		return -EINVAL;
425 	}
426 
427 	if (log > 9) {
428 		ti->error = "cypher blocksize is > 512";
429 		return -EINVAL;
430 	}
431 
432 	cc->iv_gen_private.benbi.shift = 9 - log;
433 
434 	return 0;
435 }
436 
437 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
438 {
439 }
440 
441 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
442 			      struct dm_crypt_request *dmreq)
443 {
444 	__be64 val;
445 
446 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
447 
448 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
449 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
450 
451 	return 0;
452 }
453 
454 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
455 			     struct dm_crypt_request *dmreq)
456 {
457 	memset(iv, 0, cc->iv_size);
458 
459 	return 0;
460 }
461 
462 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
463 {
464 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
465 
466 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
467 		crypto_free_shash(lmk->hash_tfm);
468 	lmk->hash_tfm = NULL;
469 
470 	kzfree(lmk->seed);
471 	lmk->seed = NULL;
472 }
473 
474 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
475 			    const char *opts)
476 {
477 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
478 
479 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
480 	if (IS_ERR(lmk->hash_tfm)) {
481 		ti->error = "Error initializing LMK hash";
482 		return PTR_ERR(lmk->hash_tfm);
483 	}
484 
485 	/* No seed in LMK version 2 */
486 	if (cc->key_parts == cc->tfms_count) {
487 		lmk->seed = NULL;
488 		return 0;
489 	}
490 
491 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
492 	if (!lmk->seed) {
493 		crypt_iv_lmk_dtr(cc);
494 		ti->error = "Error kmallocing seed storage in LMK";
495 		return -ENOMEM;
496 	}
497 
498 	return 0;
499 }
500 
501 static int crypt_iv_lmk_init(struct crypt_config *cc)
502 {
503 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
504 	int subkey_size = cc->key_size / cc->key_parts;
505 
506 	/* LMK seed is on the position of LMK_KEYS + 1 key */
507 	if (lmk->seed)
508 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
509 		       crypto_shash_digestsize(lmk->hash_tfm));
510 
511 	return 0;
512 }
513 
514 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
515 {
516 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
517 
518 	if (lmk->seed)
519 		memset(lmk->seed, 0, LMK_SEED_SIZE);
520 
521 	return 0;
522 }
523 
524 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
525 			    struct dm_crypt_request *dmreq,
526 			    u8 *data)
527 {
528 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529 	struct {
530 		struct shash_desc desc;
531 		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
532 	} sdesc;
533 	struct md5_state md5state;
534 	__le32 buf[4];
535 	int i, r;
536 
537 	sdesc.desc.tfm = lmk->hash_tfm;
538 	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
539 
540 	r = crypto_shash_init(&sdesc.desc);
541 	if (r)
542 		return r;
543 
544 	if (lmk->seed) {
545 		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
546 		if (r)
547 			return r;
548 	}
549 
550 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
551 	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
552 	if (r)
553 		return r;
554 
555 	/* Sector is cropped to 56 bits here */
556 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
557 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
558 	buf[2] = cpu_to_le32(4024);
559 	buf[3] = 0;
560 	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
561 	if (r)
562 		return r;
563 
564 	/* No MD5 padding here */
565 	r = crypto_shash_export(&sdesc.desc, &md5state);
566 	if (r)
567 		return r;
568 
569 	for (i = 0; i < MD5_HASH_WORDS; i++)
570 		__cpu_to_le32s(&md5state.hash[i]);
571 	memcpy(iv, &md5state.hash, cc->iv_size);
572 
573 	return 0;
574 }
575 
576 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
577 			    struct dm_crypt_request *dmreq)
578 {
579 	u8 *src;
580 	int r = 0;
581 
582 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
583 		src = kmap_atomic(sg_page(&dmreq->sg_in));
584 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
585 		kunmap_atomic(src);
586 	} else
587 		memset(iv, 0, cc->iv_size);
588 
589 	return r;
590 }
591 
592 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
593 			     struct dm_crypt_request *dmreq)
594 {
595 	u8 *dst;
596 	int r;
597 
598 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
599 		return 0;
600 
601 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
602 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
603 
604 	/* Tweak the first block of plaintext sector */
605 	if (!r)
606 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
607 
608 	kunmap_atomic(dst);
609 	return r;
610 }
611 
612 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
613 {
614 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
615 
616 	kzfree(tcw->iv_seed);
617 	tcw->iv_seed = NULL;
618 	kzfree(tcw->whitening);
619 	tcw->whitening = NULL;
620 
621 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
622 		crypto_free_shash(tcw->crc32_tfm);
623 	tcw->crc32_tfm = NULL;
624 }
625 
626 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
627 			    const char *opts)
628 {
629 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
630 
631 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
632 		ti->error = "Wrong key size for TCW";
633 		return -EINVAL;
634 	}
635 
636 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
637 	if (IS_ERR(tcw->crc32_tfm)) {
638 		ti->error = "Error initializing CRC32 in TCW";
639 		return PTR_ERR(tcw->crc32_tfm);
640 	}
641 
642 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
643 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
644 	if (!tcw->iv_seed || !tcw->whitening) {
645 		crypt_iv_tcw_dtr(cc);
646 		ti->error = "Error allocating seed storage in TCW";
647 		return -ENOMEM;
648 	}
649 
650 	return 0;
651 }
652 
653 static int crypt_iv_tcw_init(struct crypt_config *cc)
654 {
655 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
656 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
657 
658 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
659 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
660 	       TCW_WHITENING_SIZE);
661 
662 	return 0;
663 }
664 
665 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
666 {
667 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
668 
669 	memset(tcw->iv_seed, 0, cc->iv_size);
670 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
671 
672 	return 0;
673 }
674 
675 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
676 				  struct dm_crypt_request *dmreq,
677 				  u8 *data)
678 {
679 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
680 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
681 	u8 buf[TCW_WHITENING_SIZE];
682 	struct {
683 		struct shash_desc desc;
684 		char ctx[crypto_shash_descsize(tcw->crc32_tfm)];
685 	} sdesc;
686 	int i, r;
687 
688 	/* xor whitening with sector number */
689 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
690 	crypto_xor(buf, (u8 *)&sector, 8);
691 	crypto_xor(&buf[8], (u8 *)&sector, 8);
692 
693 	/* calculate crc32 for every 32bit part and xor it */
694 	sdesc.desc.tfm = tcw->crc32_tfm;
695 	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
696 	for (i = 0; i < 4; i++) {
697 		r = crypto_shash_init(&sdesc.desc);
698 		if (r)
699 			goto out;
700 		r = crypto_shash_update(&sdesc.desc, &buf[i * 4], 4);
701 		if (r)
702 			goto out;
703 		r = crypto_shash_final(&sdesc.desc, &buf[i * 4]);
704 		if (r)
705 			goto out;
706 	}
707 	crypto_xor(&buf[0], &buf[12], 4);
708 	crypto_xor(&buf[4], &buf[8], 4);
709 
710 	/* apply whitening (8 bytes) to whole sector */
711 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
712 		crypto_xor(data + i * 8, buf, 8);
713 out:
714 	memset(buf, 0, sizeof(buf));
715 	return r;
716 }
717 
718 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
719 			    struct dm_crypt_request *dmreq)
720 {
721 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
722 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
723 	u8 *src;
724 	int r = 0;
725 
726 	/* Remove whitening from ciphertext */
727 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
728 		src = kmap_atomic(sg_page(&dmreq->sg_in));
729 		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
730 		kunmap_atomic(src);
731 	}
732 
733 	/* Calculate IV */
734 	memcpy(iv, tcw->iv_seed, cc->iv_size);
735 	crypto_xor(iv, (u8 *)&sector, 8);
736 	if (cc->iv_size > 8)
737 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
738 
739 	return r;
740 }
741 
742 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
743 			     struct dm_crypt_request *dmreq)
744 {
745 	u8 *dst;
746 	int r;
747 
748 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
749 		return 0;
750 
751 	/* Apply whitening on ciphertext */
752 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
753 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
754 	kunmap_atomic(dst);
755 
756 	return r;
757 }
758 
759 static struct crypt_iv_operations crypt_iv_plain_ops = {
760 	.generator = crypt_iv_plain_gen
761 };
762 
763 static struct crypt_iv_operations crypt_iv_plain64_ops = {
764 	.generator = crypt_iv_plain64_gen
765 };
766 
767 static struct crypt_iv_operations crypt_iv_essiv_ops = {
768 	.ctr       = crypt_iv_essiv_ctr,
769 	.dtr       = crypt_iv_essiv_dtr,
770 	.init      = crypt_iv_essiv_init,
771 	.wipe      = crypt_iv_essiv_wipe,
772 	.generator = crypt_iv_essiv_gen
773 };
774 
775 static struct crypt_iv_operations crypt_iv_benbi_ops = {
776 	.ctr	   = crypt_iv_benbi_ctr,
777 	.dtr	   = crypt_iv_benbi_dtr,
778 	.generator = crypt_iv_benbi_gen
779 };
780 
781 static struct crypt_iv_operations crypt_iv_null_ops = {
782 	.generator = crypt_iv_null_gen
783 };
784 
785 static struct crypt_iv_operations crypt_iv_lmk_ops = {
786 	.ctr	   = crypt_iv_lmk_ctr,
787 	.dtr	   = crypt_iv_lmk_dtr,
788 	.init	   = crypt_iv_lmk_init,
789 	.wipe	   = crypt_iv_lmk_wipe,
790 	.generator = crypt_iv_lmk_gen,
791 	.post	   = crypt_iv_lmk_post
792 };
793 
794 static struct crypt_iv_operations crypt_iv_tcw_ops = {
795 	.ctr	   = crypt_iv_tcw_ctr,
796 	.dtr	   = crypt_iv_tcw_dtr,
797 	.init	   = crypt_iv_tcw_init,
798 	.wipe	   = crypt_iv_tcw_wipe,
799 	.generator = crypt_iv_tcw_gen,
800 	.post	   = crypt_iv_tcw_post
801 };
802 
803 static void crypt_convert_init(struct crypt_config *cc,
804 			       struct convert_context *ctx,
805 			       struct bio *bio_out, struct bio *bio_in,
806 			       sector_t sector)
807 {
808 	ctx->bio_in = bio_in;
809 	ctx->bio_out = bio_out;
810 	if (bio_in)
811 		ctx->iter_in = bio_in->bi_iter;
812 	if (bio_out)
813 		ctx->iter_out = bio_out->bi_iter;
814 	ctx->cc_sector = sector + cc->iv_offset;
815 	init_completion(&ctx->restart);
816 }
817 
818 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
819 					     struct ablkcipher_request *req)
820 {
821 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
822 }
823 
824 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
825 					       struct dm_crypt_request *dmreq)
826 {
827 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
828 }
829 
830 static u8 *iv_of_dmreq(struct crypt_config *cc,
831 		       struct dm_crypt_request *dmreq)
832 {
833 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
834 		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
835 }
836 
837 static int crypt_convert_block(struct crypt_config *cc,
838 			       struct convert_context *ctx,
839 			       struct ablkcipher_request *req)
840 {
841 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
842 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
843 	struct dm_crypt_request *dmreq;
844 	u8 *iv;
845 	int r;
846 
847 	dmreq = dmreq_of_req(cc, req);
848 	iv = iv_of_dmreq(cc, dmreq);
849 
850 	dmreq->iv_sector = ctx->cc_sector;
851 	dmreq->ctx = ctx;
852 	sg_init_table(&dmreq->sg_in, 1);
853 	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
854 		    bv_in.bv_offset);
855 
856 	sg_init_table(&dmreq->sg_out, 1);
857 	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
858 		    bv_out.bv_offset);
859 
860 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
861 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
862 
863 	if (cc->iv_gen_ops) {
864 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
865 		if (r < 0)
866 			return r;
867 	}
868 
869 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
870 				     1 << SECTOR_SHIFT, iv);
871 
872 	if (bio_data_dir(ctx->bio_in) == WRITE)
873 		r = crypto_ablkcipher_encrypt(req);
874 	else
875 		r = crypto_ablkcipher_decrypt(req);
876 
877 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
878 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
879 
880 	return r;
881 }
882 
883 static void kcryptd_async_done(struct crypto_async_request *async_req,
884 			       int error);
885 
886 static void crypt_alloc_req(struct crypt_config *cc,
887 			    struct convert_context *ctx)
888 {
889 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
890 
891 	if (!ctx->req)
892 		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
893 
894 	ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
895 	ablkcipher_request_set_callback(ctx->req,
896 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
897 	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
898 }
899 
900 static void crypt_free_req(struct crypt_config *cc,
901 			   struct ablkcipher_request *req, struct bio *base_bio)
902 {
903 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
904 
905 	if ((struct ablkcipher_request *)(io + 1) != req)
906 		mempool_free(req, cc->req_pool);
907 }
908 
909 /*
910  * Encrypt / decrypt data from one bio to another one (can be the same one)
911  */
912 static int crypt_convert(struct crypt_config *cc,
913 			 struct convert_context *ctx)
914 {
915 	int r;
916 
917 	atomic_set(&ctx->cc_pending, 1);
918 
919 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
920 
921 		crypt_alloc_req(cc, ctx);
922 
923 		atomic_inc(&ctx->cc_pending);
924 
925 		r = crypt_convert_block(cc, ctx, ctx->req);
926 
927 		switch (r) {
928 		/* async */
929 		case -EBUSY:
930 			wait_for_completion(&ctx->restart);
931 			reinit_completion(&ctx->restart);
932 			/* fall through*/
933 		case -EINPROGRESS:
934 			ctx->req = NULL;
935 			ctx->cc_sector++;
936 			continue;
937 
938 		/* sync */
939 		case 0:
940 			atomic_dec(&ctx->cc_pending);
941 			ctx->cc_sector++;
942 			cond_resched();
943 			continue;
944 
945 		/* error */
946 		default:
947 			atomic_dec(&ctx->cc_pending);
948 			return r;
949 		}
950 	}
951 
952 	return 0;
953 }
954 
955 /*
956  * Generate a new unfragmented bio with the given size
957  * This should never violate the device limitations
958  * May return a smaller bio when running out of pages, indicated by
959  * *out_of_pages set to 1.
960  */
961 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
962 				      unsigned *out_of_pages)
963 {
964 	struct crypt_config *cc = io->cc;
965 	struct bio *clone;
966 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
967 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
968 	unsigned i, len;
969 	struct page *page;
970 
971 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
972 	if (!clone)
973 		return NULL;
974 
975 	clone_init(io, clone);
976 	*out_of_pages = 0;
977 
978 	for (i = 0; i < nr_iovecs; i++) {
979 		page = mempool_alloc(cc->page_pool, gfp_mask);
980 		if (!page) {
981 			*out_of_pages = 1;
982 			break;
983 		}
984 
985 		/*
986 		 * If additional pages cannot be allocated without waiting,
987 		 * return a partially-allocated bio.  The caller will then try
988 		 * to allocate more bios while submitting this partial bio.
989 		 */
990 		gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
991 
992 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
993 
994 		if (!bio_add_page(clone, page, len, 0)) {
995 			mempool_free(page, cc->page_pool);
996 			break;
997 		}
998 
999 		size -= len;
1000 	}
1001 
1002 	if (!clone->bi_iter.bi_size) {
1003 		bio_put(clone);
1004 		return NULL;
1005 	}
1006 
1007 	return clone;
1008 }
1009 
1010 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1011 {
1012 	unsigned int i;
1013 	struct bio_vec *bv;
1014 
1015 	bio_for_each_segment_all(bv, clone, i) {
1016 		BUG_ON(!bv->bv_page);
1017 		mempool_free(bv->bv_page, cc->page_pool);
1018 		bv->bv_page = NULL;
1019 	}
1020 }
1021 
1022 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1023 			  struct bio *bio, sector_t sector)
1024 {
1025 	io->cc = cc;
1026 	io->base_bio = bio;
1027 	io->sector = sector;
1028 	io->error = 0;
1029 	io->base_io = NULL;
1030 	io->ctx.req = NULL;
1031 	atomic_set(&io->io_pending, 0);
1032 }
1033 
1034 static void crypt_inc_pending(struct dm_crypt_io *io)
1035 {
1036 	atomic_inc(&io->io_pending);
1037 }
1038 
1039 /*
1040  * One of the bios was finished. Check for completion of
1041  * the whole request and correctly clean up the buffer.
1042  * If base_io is set, wait for the last fragment to complete.
1043  */
1044 static void crypt_dec_pending(struct dm_crypt_io *io)
1045 {
1046 	struct crypt_config *cc = io->cc;
1047 	struct bio *base_bio = io->base_bio;
1048 	struct dm_crypt_io *base_io = io->base_io;
1049 	int error = io->error;
1050 
1051 	if (!atomic_dec_and_test(&io->io_pending))
1052 		return;
1053 
1054 	if (io->ctx.req)
1055 		crypt_free_req(cc, io->ctx.req, base_bio);
1056 	if (io != dm_per_bio_data(base_bio, cc->per_bio_data_size))
1057 		mempool_free(io, cc->io_pool);
1058 
1059 	if (likely(!base_io))
1060 		bio_endio(base_bio, error);
1061 	else {
1062 		if (error && !base_io->error)
1063 			base_io->error = error;
1064 		crypt_dec_pending(base_io);
1065 	}
1066 }
1067 
1068 /*
1069  * kcryptd/kcryptd_io:
1070  *
1071  * Needed because it would be very unwise to do decryption in an
1072  * interrupt context.
1073  *
1074  * kcryptd performs the actual encryption or decryption.
1075  *
1076  * kcryptd_io performs the IO submission.
1077  *
1078  * They must be separated as otherwise the final stages could be
1079  * starved by new requests which can block in the first stages due
1080  * to memory allocation.
1081  *
1082  * The work is done per CPU global for all dm-crypt instances.
1083  * They should not depend on each other and do not block.
1084  */
1085 static void crypt_endio(struct bio *clone, int error)
1086 {
1087 	struct dm_crypt_io *io = clone->bi_private;
1088 	struct crypt_config *cc = io->cc;
1089 	unsigned rw = bio_data_dir(clone);
1090 
1091 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1092 		error = -EIO;
1093 
1094 	/*
1095 	 * free the processed pages
1096 	 */
1097 	if (rw == WRITE)
1098 		crypt_free_buffer_pages(cc, clone);
1099 
1100 	bio_put(clone);
1101 
1102 	if (rw == READ && !error) {
1103 		kcryptd_queue_crypt(io);
1104 		return;
1105 	}
1106 
1107 	if (unlikely(error))
1108 		io->error = error;
1109 
1110 	crypt_dec_pending(io);
1111 }
1112 
1113 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1114 {
1115 	struct crypt_config *cc = io->cc;
1116 
1117 	clone->bi_private = io;
1118 	clone->bi_end_io  = crypt_endio;
1119 	clone->bi_bdev    = cc->dev->bdev;
1120 	clone->bi_rw      = io->base_bio->bi_rw;
1121 }
1122 
1123 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1124 {
1125 	struct crypt_config *cc = io->cc;
1126 	struct bio *base_bio = io->base_bio;
1127 	struct bio *clone;
1128 
1129 	/*
1130 	 * The block layer might modify the bvec array, so always
1131 	 * copy the required bvecs because we need the original
1132 	 * one in order to decrypt the whole bio data *afterwards*.
1133 	 */
1134 	clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1135 	if (!clone)
1136 		return 1;
1137 
1138 	crypt_inc_pending(io);
1139 
1140 	clone_init(io, clone);
1141 	clone->bi_iter.bi_sector = cc->start + io->sector;
1142 
1143 	generic_make_request(clone);
1144 	return 0;
1145 }
1146 
1147 static void kcryptd_io_write(struct dm_crypt_io *io)
1148 {
1149 	struct bio *clone = io->ctx.bio_out;
1150 	generic_make_request(clone);
1151 }
1152 
1153 static void kcryptd_io(struct work_struct *work)
1154 {
1155 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1156 
1157 	if (bio_data_dir(io->base_bio) == READ) {
1158 		crypt_inc_pending(io);
1159 		if (kcryptd_io_read(io, GFP_NOIO))
1160 			io->error = -ENOMEM;
1161 		crypt_dec_pending(io);
1162 	} else
1163 		kcryptd_io_write(io);
1164 }
1165 
1166 static void kcryptd_queue_io(struct dm_crypt_io *io)
1167 {
1168 	struct crypt_config *cc = io->cc;
1169 
1170 	INIT_WORK(&io->work, kcryptd_io);
1171 	queue_work(cc->io_queue, &io->work);
1172 }
1173 
1174 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1175 {
1176 	struct bio *clone = io->ctx.bio_out;
1177 	struct crypt_config *cc = io->cc;
1178 
1179 	if (unlikely(io->error < 0)) {
1180 		crypt_free_buffer_pages(cc, clone);
1181 		bio_put(clone);
1182 		crypt_dec_pending(io);
1183 		return;
1184 	}
1185 
1186 	/* crypt_convert should have filled the clone bio */
1187 	BUG_ON(io->ctx.iter_out.bi_size);
1188 
1189 	clone->bi_iter.bi_sector = cc->start + io->sector;
1190 
1191 	if (async)
1192 		kcryptd_queue_io(io);
1193 	else
1194 		generic_make_request(clone);
1195 }
1196 
1197 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1198 {
1199 	struct crypt_config *cc = io->cc;
1200 	struct bio *clone;
1201 	struct dm_crypt_io *new_io;
1202 	int crypt_finished;
1203 	unsigned out_of_pages = 0;
1204 	unsigned remaining = io->base_bio->bi_iter.bi_size;
1205 	sector_t sector = io->sector;
1206 	int r;
1207 
1208 	/*
1209 	 * Prevent io from disappearing until this function completes.
1210 	 */
1211 	crypt_inc_pending(io);
1212 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1213 
1214 	/*
1215 	 * The allocated buffers can be smaller than the whole bio,
1216 	 * so repeat the whole process until all the data can be handled.
1217 	 */
1218 	while (remaining) {
1219 		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1220 		if (unlikely(!clone)) {
1221 			io->error = -ENOMEM;
1222 			break;
1223 		}
1224 
1225 		io->ctx.bio_out = clone;
1226 		io->ctx.iter_out = clone->bi_iter;
1227 
1228 		remaining -= clone->bi_iter.bi_size;
1229 		sector += bio_sectors(clone);
1230 
1231 		crypt_inc_pending(io);
1232 
1233 		r = crypt_convert(cc, &io->ctx);
1234 		if (r < 0)
1235 			io->error = -EIO;
1236 
1237 		crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1238 
1239 		/* Encryption was already finished, submit io now */
1240 		if (crypt_finished) {
1241 			kcryptd_crypt_write_io_submit(io, 0);
1242 
1243 			/*
1244 			 * If there was an error, do not try next fragments.
1245 			 * For async, error is processed in async handler.
1246 			 */
1247 			if (unlikely(r < 0))
1248 				break;
1249 
1250 			io->sector = sector;
1251 		}
1252 
1253 		/*
1254 		 * Out of memory -> run queues
1255 		 * But don't wait if split was due to the io size restriction
1256 		 */
1257 		if (unlikely(out_of_pages))
1258 			congestion_wait(BLK_RW_ASYNC, HZ/100);
1259 
1260 		/*
1261 		 * With async crypto it is unsafe to share the crypto context
1262 		 * between fragments, so switch to a new dm_crypt_io structure.
1263 		 */
1264 		if (unlikely(!crypt_finished && remaining)) {
1265 			new_io = mempool_alloc(cc->io_pool, GFP_NOIO);
1266 			crypt_io_init(new_io, io->cc, io->base_bio, sector);
1267 			crypt_inc_pending(new_io);
1268 			crypt_convert_init(cc, &new_io->ctx, NULL,
1269 					   io->base_bio, sector);
1270 			new_io->ctx.iter_in = io->ctx.iter_in;
1271 
1272 			/*
1273 			 * Fragments after the first use the base_io
1274 			 * pending count.
1275 			 */
1276 			if (!io->base_io)
1277 				new_io->base_io = io;
1278 			else {
1279 				new_io->base_io = io->base_io;
1280 				crypt_inc_pending(io->base_io);
1281 				crypt_dec_pending(io);
1282 			}
1283 
1284 			io = new_io;
1285 		}
1286 	}
1287 
1288 	crypt_dec_pending(io);
1289 }
1290 
1291 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1292 {
1293 	crypt_dec_pending(io);
1294 }
1295 
1296 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1297 {
1298 	struct crypt_config *cc = io->cc;
1299 	int r = 0;
1300 
1301 	crypt_inc_pending(io);
1302 
1303 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1304 			   io->sector);
1305 
1306 	r = crypt_convert(cc, &io->ctx);
1307 	if (r < 0)
1308 		io->error = -EIO;
1309 
1310 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1311 		kcryptd_crypt_read_done(io);
1312 
1313 	crypt_dec_pending(io);
1314 }
1315 
1316 static void kcryptd_async_done(struct crypto_async_request *async_req,
1317 			       int error)
1318 {
1319 	struct dm_crypt_request *dmreq = async_req->data;
1320 	struct convert_context *ctx = dmreq->ctx;
1321 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1322 	struct crypt_config *cc = io->cc;
1323 
1324 	if (error == -EINPROGRESS) {
1325 		complete(&ctx->restart);
1326 		return;
1327 	}
1328 
1329 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1330 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1331 
1332 	if (error < 0)
1333 		io->error = -EIO;
1334 
1335 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1336 
1337 	if (!atomic_dec_and_test(&ctx->cc_pending))
1338 		return;
1339 
1340 	if (bio_data_dir(io->base_bio) == READ)
1341 		kcryptd_crypt_read_done(io);
1342 	else
1343 		kcryptd_crypt_write_io_submit(io, 1);
1344 }
1345 
1346 static void kcryptd_crypt(struct work_struct *work)
1347 {
1348 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1349 
1350 	if (bio_data_dir(io->base_bio) == READ)
1351 		kcryptd_crypt_read_convert(io);
1352 	else
1353 		kcryptd_crypt_write_convert(io);
1354 }
1355 
1356 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1357 {
1358 	struct crypt_config *cc = io->cc;
1359 
1360 	INIT_WORK(&io->work, kcryptd_crypt);
1361 	queue_work(cc->crypt_queue, &io->work);
1362 }
1363 
1364 /*
1365  * Decode key from its hex representation
1366  */
1367 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1368 {
1369 	char buffer[3];
1370 	unsigned int i;
1371 
1372 	buffer[2] = '\0';
1373 
1374 	for (i = 0; i < size; i++) {
1375 		buffer[0] = *hex++;
1376 		buffer[1] = *hex++;
1377 
1378 		if (kstrtou8(buffer, 16, &key[i]))
1379 			return -EINVAL;
1380 	}
1381 
1382 	if (*hex != '\0')
1383 		return -EINVAL;
1384 
1385 	return 0;
1386 }
1387 
1388 static void crypt_free_tfms(struct crypt_config *cc)
1389 {
1390 	unsigned i;
1391 
1392 	if (!cc->tfms)
1393 		return;
1394 
1395 	for (i = 0; i < cc->tfms_count; i++)
1396 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1397 			crypto_free_ablkcipher(cc->tfms[i]);
1398 			cc->tfms[i] = NULL;
1399 		}
1400 
1401 	kfree(cc->tfms);
1402 	cc->tfms = NULL;
1403 }
1404 
1405 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1406 {
1407 	unsigned i;
1408 	int err;
1409 
1410 	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1411 			   GFP_KERNEL);
1412 	if (!cc->tfms)
1413 		return -ENOMEM;
1414 
1415 	for (i = 0; i < cc->tfms_count; i++) {
1416 		cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1417 		if (IS_ERR(cc->tfms[i])) {
1418 			err = PTR_ERR(cc->tfms[i]);
1419 			crypt_free_tfms(cc);
1420 			return err;
1421 		}
1422 	}
1423 
1424 	return 0;
1425 }
1426 
1427 static int crypt_setkey_allcpus(struct crypt_config *cc)
1428 {
1429 	unsigned subkey_size;
1430 	int err = 0, i, r;
1431 
1432 	/* Ignore extra keys (which are used for IV etc) */
1433 	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1434 
1435 	for (i = 0; i < cc->tfms_count; i++) {
1436 		r = crypto_ablkcipher_setkey(cc->tfms[i],
1437 					     cc->key + (i * subkey_size),
1438 					     subkey_size);
1439 		if (r)
1440 			err = r;
1441 	}
1442 
1443 	return err;
1444 }
1445 
1446 static int crypt_set_key(struct crypt_config *cc, char *key)
1447 {
1448 	int r = -EINVAL;
1449 	int key_string_len = strlen(key);
1450 
1451 	/* The key size may not be changed. */
1452 	if (cc->key_size != (key_string_len >> 1))
1453 		goto out;
1454 
1455 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1456 	if (!cc->key_size && strcmp(key, "-"))
1457 		goto out;
1458 
1459 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1460 		goto out;
1461 
1462 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1463 
1464 	r = crypt_setkey_allcpus(cc);
1465 
1466 out:
1467 	/* Hex key string not needed after here, so wipe it. */
1468 	memset(key, '0', key_string_len);
1469 
1470 	return r;
1471 }
1472 
1473 static int crypt_wipe_key(struct crypt_config *cc)
1474 {
1475 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1476 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1477 
1478 	return crypt_setkey_allcpus(cc);
1479 }
1480 
1481 static void crypt_dtr(struct dm_target *ti)
1482 {
1483 	struct crypt_config *cc = ti->private;
1484 
1485 	ti->private = NULL;
1486 
1487 	if (!cc)
1488 		return;
1489 
1490 	if (cc->io_queue)
1491 		destroy_workqueue(cc->io_queue);
1492 	if (cc->crypt_queue)
1493 		destroy_workqueue(cc->crypt_queue);
1494 
1495 	crypt_free_tfms(cc);
1496 
1497 	if (cc->bs)
1498 		bioset_free(cc->bs);
1499 
1500 	if (cc->page_pool)
1501 		mempool_destroy(cc->page_pool);
1502 	if (cc->req_pool)
1503 		mempool_destroy(cc->req_pool);
1504 	if (cc->io_pool)
1505 		mempool_destroy(cc->io_pool);
1506 
1507 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1508 		cc->iv_gen_ops->dtr(cc);
1509 
1510 	if (cc->dev)
1511 		dm_put_device(ti, cc->dev);
1512 
1513 	kzfree(cc->cipher);
1514 	kzfree(cc->cipher_string);
1515 
1516 	/* Must zero key material before freeing */
1517 	kzfree(cc);
1518 }
1519 
1520 static int crypt_ctr_cipher(struct dm_target *ti,
1521 			    char *cipher_in, char *key)
1522 {
1523 	struct crypt_config *cc = ti->private;
1524 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1525 	char *cipher_api = NULL;
1526 	int ret = -EINVAL;
1527 	char dummy;
1528 
1529 	/* Convert to crypto api definition? */
1530 	if (strchr(cipher_in, '(')) {
1531 		ti->error = "Bad cipher specification";
1532 		return -EINVAL;
1533 	}
1534 
1535 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1536 	if (!cc->cipher_string)
1537 		goto bad_mem;
1538 
1539 	/*
1540 	 * Legacy dm-crypt cipher specification
1541 	 * cipher[:keycount]-mode-iv:ivopts
1542 	 */
1543 	tmp = cipher_in;
1544 	keycount = strsep(&tmp, "-");
1545 	cipher = strsep(&keycount, ":");
1546 
1547 	if (!keycount)
1548 		cc->tfms_count = 1;
1549 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1550 		 !is_power_of_2(cc->tfms_count)) {
1551 		ti->error = "Bad cipher key count specification";
1552 		return -EINVAL;
1553 	}
1554 	cc->key_parts = cc->tfms_count;
1555 	cc->key_extra_size = 0;
1556 
1557 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1558 	if (!cc->cipher)
1559 		goto bad_mem;
1560 
1561 	chainmode = strsep(&tmp, "-");
1562 	ivopts = strsep(&tmp, "-");
1563 	ivmode = strsep(&ivopts, ":");
1564 
1565 	if (tmp)
1566 		DMWARN("Ignoring unexpected additional cipher options");
1567 
1568 	/*
1569 	 * For compatibility with the original dm-crypt mapping format, if
1570 	 * only the cipher name is supplied, use cbc-plain.
1571 	 */
1572 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1573 		chainmode = "cbc";
1574 		ivmode = "plain";
1575 	}
1576 
1577 	if (strcmp(chainmode, "ecb") && !ivmode) {
1578 		ti->error = "IV mechanism required";
1579 		return -EINVAL;
1580 	}
1581 
1582 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1583 	if (!cipher_api)
1584 		goto bad_mem;
1585 
1586 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1587 		       "%s(%s)", chainmode, cipher);
1588 	if (ret < 0) {
1589 		kfree(cipher_api);
1590 		goto bad_mem;
1591 	}
1592 
1593 	/* Allocate cipher */
1594 	ret = crypt_alloc_tfms(cc, cipher_api);
1595 	if (ret < 0) {
1596 		ti->error = "Error allocating crypto tfm";
1597 		goto bad;
1598 	}
1599 
1600 	/* Initialize IV */
1601 	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1602 	if (cc->iv_size)
1603 		/* at least a 64 bit sector number should fit in our buffer */
1604 		cc->iv_size = max(cc->iv_size,
1605 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1606 	else if (ivmode) {
1607 		DMWARN("Selected cipher does not support IVs");
1608 		ivmode = NULL;
1609 	}
1610 
1611 	/* Choose ivmode, see comments at iv code. */
1612 	if (ivmode == NULL)
1613 		cc->iv_gen_ops = NULL;
1614 	else if (strcmp(ivmode, "plain") == 0)
1615 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1616 	else if (strcmp(ivmode, "plain64") == 0)
1617 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1618 	else if (strcmp(ivmode, "essiv") == 0)
1619 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1620 	else if (strcmp(ivmode, "benbi") == 0)
1621 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1622 	else if (strcmp(ivmode, "null") == 0)
1623 		cc->iv_gen_ops = &crypt_iv_null_ops;
1624 	else if (strcmp(ivmode, "lmk") == 0) {
1625 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1626 		/*
1627 		 * Version 2 and 3 is recognised according
1628 		 * to length of provided multi-key string.
1629 		 * If present (version 3), last key is used as IV seed.
1630 		 * All keys (including IV seed) are always the same size.
1631 		 */
1632 		if (cc->key_size % cc->key_parts) {
1633 			cc->key_parts++;
1634 			cc->key_extra_size = cc->key_size / cc->key_parts;
1635 		}
1636 	} else if (strcmp(ivmode, "tcw") == 0) {
1637 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1638 		cc->key_parts += 2; /* IV + whitening */
1639 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1640 	} else {
1641 		ret = -EINVAL;
1642 		ti->error = "Invalid IV mode";
1643 		goto bad;
1644 	}
1645 
1646 	/* Initialize and set key */
1647 	ret = crypt_set_key(cc, key);
1648 	if (ret < 0) {
1649 		ti->error = "Error decoding and setting key";
1650 		goto bad;
1651 	}
1652 
1653 	/* Allocate IV */
1654 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1655 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1656 		if (ret < 0) {
1657 			ti->error = "Error creating IV";
1658 			goto bad;
1659 		}
1660 	}
1661 
1662 	/* Initialize IV (set keys for ESSIV etc) */
1663 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1664 		ret = cc->iv_gen_ops->init(cc);
1665 		if (ret < 0) {
1666 			ti->error = "Error initialising IV";
1667 			goto bad;
1668 		}
1669 	}
1670 
1671 	ret = 0;
1672 bad:
1673 	kfree(cipher_api);
1674 	return ret;
1675 
1676 bad_mem:
1677 	ti->error = "Cannot allocate cipher strings";
1678 	return -ENOMEM;
1679 }
1680 
1681 /*
1682  * Construct an encryption mapping:
1683  * <cipher> <key> <iv_offset> <dev_path> <start>
1684  */
1685 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1686 {
1687 	struct crypt_config *cc;
1688 	unsigned int key_size, opt_params;
1689 	unsigned long long tmpll;
1690 	int ret;
1691 	size_t iv_size_padding;
1692 	struct dm_arg_set as;
1693 	const char *opt_string;
1694 	char dummy;
1695 
1696 	static struct dm_arg _args[] = {
1697 		{0, 1, "Invalid number of feature args"},
1698 	};
1699 
1700 	if (argc < 5) {
1701 		ti->error = "Not enough arguments";
1702 		return -EINVAL;
1703 	}
1704 
1705 	key_size = strlen(argv[1]) >> 1;
1706 
1707 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1708 	if (!cc) {
1709 		ti->error = "Cannot allocate encryption context";
1710 		return -ENOMEM;
1711 	}
1712 	cc->key_size = key_size;
1713 
1714 	ti->private = cc;
1715 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1716 	if (ret < 0)
1717 		goto bad;
1718 
1719 	ret = -ENOMEM;
1720 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1721 	if (!cc->io_pool) {
1722 		ti->error = "Cannot allocate crypt io mempool";
1723 		goto bad;
1724 	}
1725 
1726 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1727 	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1728 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1729 
1730 	if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1731 		/* Allocate the padding exactly */
1732 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1733 				& crypto_ablkcipher_alignmask(any_tfm(cc));
1734 	} else {
1735 		/*
1736 		 * If the cipher requires greater alignment than kmalloc
1737 		 * alignment, we don't know the exact position of the
1738 		 * initialization vector. We must assume worst case.
1739 		 */
1740 		iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1741 	}
1742 
1743 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1744 			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1745 	if (!cc->req_pool) {
1746 		ti->error = "Cannot allocate crypt request mempool";
1747 		goto bad;
1748 	}
1749 
1750 	cc->per_bio_data_size = ti->per_bio_data_size =
1751 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1752 		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1753 		      ARCH_KMALLOC_MINALIGN);
1754 
1755 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1756 	if (!cc->page_pool) {
1757 		ti->error = "Cannot allocate page mempool";
1758 		goto bad;
1759 	}
1760 
1761 	cc->bs = bioset_create(MIN_IOS, 0);
1762 	if (!cc->bs) {
1763 		ti->error = "Cannot allocate crypt bioset";
1764 		goto bad;
1765 	}
1766 
1767 	ret = -EINVAL;
1768 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1769 		ti->error = "Invalid iv_offset sector";
1770 		goto bad;
1771 	}
1772 	cc->iv_offset = tmpll;
1773 
1774 	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1775 		ti->error = "Device lookup failed";
1776 		goto bad;
1777 	}
1778 
1779 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1780 		ti->error = "Invalid device sector";
1781 		goto bad;
1782 	}
1783 	cc->start = tmpll;
1784 
1785 	argv += 5;
1786 	argc -= 5;
1787 
1788 	/* Optional parameters */
1789 	if (argc) {
1790 		as.argc = argc;
1791 		as.argv = argv;
1792 
1793 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1794 		if (ret)
1795 			goto bad;
1796 
1797 		opt_string = dm_shift_arg(&as);
1798 
1799 		if (opt_params == 1 && opt_string &&
1800 		    !strcasecmp(opt_string, "allow_discards"))
1801 			ti->num_discard_bios = 1;
1802 		else if (opt_params) {
1803 			ret = -EINVAL;
1804 			ti->error = "Invalid feature arguments";
1805 			goto bad;
1806 		}
1807 	}
1808 
1809 	ret = -ENOMEM;
1810 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1811 	if (!cc->io_queue) {
1812 		ti->error = "Couldn't create kcryptd io queue";
1813 		goto bad;
1814 	}
1815 
1816 	cc->crypt_queue = alloc_workqueue("kcryptd",
1817 					  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1818 	if (!cc->crypt_queue) {
1819 		ti->error = "Couldn't create kcryptd queue";
1820 		goto bad;
1821 	}
1822 
1823 	ti->num_flush_bios = 1;
1824 	ti->discard_zeroes_data_unsupported = true;
1825 
1826 	return 0;
1827 
1828 bad:
1829 	crypt_dtr(ti);
1830 	return ret;
1831 }
1832 
1833 static int crypt_map(struct dm_target *ti, struct bio *bio)
1834 {
1835 	struct dm_crypt_io *io;
1836 	struct crypt_config *cc = ti->private;
1837 
1838 	/*
1839 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1840 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1841 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1842 	 */
1843 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1844 		bio->bi_bdev = cc->dev->bdev;
1845 		if (bio_sectors(bio))
1846 			bio->bi_iter.bi_sector = cc->start +
1847 				dm_target_offset(ti, bio->bi_iter.bi_sector);
1848 		return DM_MAPIO_REMAPPED;
1849 	}
1850 
1851 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1852 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1853 	io->ctx.req = (struct ablkcipher_request *)(io + 1);
1854 
1855 	if (bio_data_dir(io->base_bio) == READ) {
1856 		if (kcryptd_io_read(io, GFP_NOWAIT))
1857 			kcryptd_queue_io(io);
1858 	} else
1859 		kcryptd_queue_crypt(io);
1860 
1861 	return DM_MAPIO_SUBMITTED;
1862 }
1863 
1864 static void crypt_status(struct dm_target *ti, status_type_t type,
1865 			 unsigned status_flags, char *result, unsigned maxlen)
1866 {
1867 	struct crypt_config *cc = ti->private;
1868 	unsigned i, sz = 0;
1869 
1870 	switch (type) {
1871 	case STATUSTYPE_INFO:
1872 		result[0] = '\0';
1873 		break;
1874 
1875 	case STATUSTYPE_TABLE:
1876 		DMEMIT("%s ", cc->cipher_string);
1877 
1878 		if (cc->key_size > 0)
1879 			for (i = 0; i < cc->key_size; i++)
1880 				DMEMIT("%02x", cc->key[i]);
1881 		else
1882 			DMEMIT("-");
1883 
1884 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1885 				cc->dev->name, (unsigned long long)cc->start);
1886 
1887 		if (ti->num_discard_bios)
1888 			DMEMIT(" 1 allow_discards");
1889 
1890 		break;
1891 	}
1892 }
1893 
1894 static void crypt_postsuspend(struct dm_target *ti)
1895 {
1896 	struct crypt_config *cc = ti->private;
1897 
1898 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1899 }
1900 
1901 static int crypt_preresume(struct dm_target *ti)
1902 {
1903 	struct crypt_config *cc = ti->private;
1904 
1905 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1906 		DMERR("aborting resume - crypt key is not set.");
1907 		return -EAGAIN;
1908 	}
1909 
1910 	return 0;
1911 }
1912 
1913 static void crypt_resume(struct dm_target *ti)
1914 {
1915 	struct crypt_config *cc = ti->private;
1916 
1917 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1918 }
1919 
1920 /* Message interface
1921  *	key set <key>
1922  *	key wipe
1923  */
1924 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1925 {
1926 	struct crypt_config *cc = ti->private;
1927 	int ret = -EINVAL;
1928 
1929 	if (argc < 2)
1930 		goto error;
1931 
1932 	if (!strcasecmp(argv[0], "key")) {
1933 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1934 			DMWARN("not suspended during key manipulation.");
1935 			return -EINVAL;
1936 		}
1937 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1938 			ret = crypt_set_key(cc, argv[2]);
1939 			if (ret)
1940 				return ret;
1941 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1942 				ret = cc->iv_gen_ops->init(cc);
1943 			return ret;
1944 		}
1945 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1946 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1947 				ret = cc->iv_gen_ops->wipe(cc);
1948 				if (ret)
1949 					return ret;
1950 			}
1951 			return crypt_wipe_key(cc);
1952 		}
1953 	}
1954 
1955 error:
1956 	DMWARN("unrecognised message received.");
1957 	return -EINVAL;
1958 }
1959 
1960 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1961 		       struct bio_vec *biovec, int max_size)
1962 {
1963 	struct crypt_config *cc = ti->private;
1964 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1965 
1966 	if (!q->merge_bvec_fn)
1967 		return max_size;
1968 
1969 	bvm->bi_bdev = cc->dev->bdev;
1970 	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1971 
1972 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1973 }
1974 
1975 static int crypt_iterate_devices(struct dm_target *ti,
1976 				 iterate_devices_callout_fn fn, void *data)
1977 {
1978 	struct crypt_config *cc = ti->private;
1979 
1980 	return fn(ti, cc->dev, cc->start, ti->len, data);
1981 }
1982 
1983 static struct target_type crypt_target = {
1984 	.name   = "crypt",
1985 	.version = {1, 13, 0},
1986 	.module = THIS_MODULE,
1987 	.ctr    = crypt_ctr,
1988 	.dtr    = crypt_dtr,
1989 	.map    = crypt_map,
1990 	.status = crypt_status,
1991 	.postsuspend = crypt_postsuspend,
1992 	.preresume = crypt_preresume,
1993 	.resume = crypt_resume,
1994 	.message = crypt_message,
1995 	.merge  = crypt_merge,
1996 	.iterate_devices = crypt_iterate_devices,
1997 };
1998 
1999 static int __init dm_crypt_init(void)
2000 {
2001 	int r;
2002 
2003 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
2004 	if (!_crypt_io_pool)
2005 		return -ENOMEM;
2006 
2007 	r = dm_register_target(&crypt_target);
2008 	if (r < 0) {
2009 		DMERR("register failed %d", r);
2010 		kmem_cache_destroy(_crypt_io_pool);
2011 	}
2012 
2013 	return r;
2014 }
2015 
2016 static void __exit dm_crypt_exit(void)
2017 {
2018 	dm_unregister_target(&crypt_target);
2019 	kmem_cache_destroy(_crypt_io_pool);
2020 }
2021 
2022 module_init(dm_crypt_init);
2023 module_exit(dm_crypt_exit);
2024 
2025 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2026 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2027 MODULE_LICENSE("GPL");
2028