1 /* 2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de> 3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 4 * Copyright (C) 2006-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/err.h> 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/bio.h> 15 #include <linux/blkdev.h> 16 #include <linux/mempool.h> 17 #include <linux/slab.h> 18 #include <linux/crypto.h> 19 #include <linux/workqueue.h> 20 #include <linux/backing-dev.h> 21 #include <asm/atomic.h> 22 #include <linux/scatterlist.h> 23 #include <asm/page.h> 24 #include <asm/unaligned.h> 25 26 #include "dm.h" 27 28 #define DM_MSG_PREFIX "crypt" 29 #define MESG_STR(x) x, sizeof(x) 30 31 /* 32 * context holding the current state of a multi-part conversion 33 */ 34 struct convert_context { 35 struct completion restart; 36 struct bio *bio_in; 37 struct bio *bio_out; 38 unsigned int offset_in; 39 unsigned int offset_out; 40 unsigned int idx_in; 41 unsigned int idx_out; 42 sector_t sector; 43 atomic_t pending; 44 }; 45 46 /* 47 * per bio private data 48 */ 49 struct dm_crypt_io { 50 struct dm_target *target; 51 struct bio *base_bio; 52 struct work_struct work; 53 54 struct convert_context ctx; 55 56 atomic_t pending; 57 int error; 58 sector_t sector; 59 }; 60 61 struct dm_crypt_request { 62 struct scatterlist sg_in; 63 struct scatterlist sg_out; 64 }; 65 66 struct crypt_config; 67 68 struct crypt_iv_operations { 69 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 70 const char *opts); 71 void (*dtr)(struct crypt_config *cc); 72 const char *(*status)(struct crypt_config *cc); 73 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector); 74 }; 75 76 /* 77 * Crypt: maps a linear range of a block device 78 * and encrypts / decrypts at the same time. 79 */ 80 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID }; 81 struct crypt_config { 82 struct dm_dev *dev; 83 sector_t start; 84 85 /* 86 * pool for per bio private data, crypto requests and 87 * encryption requeusts/buffer pages 88 */ 89 mempool_t *io_pool; 90 mempool_t *req_pool; 91 mempool_t *page_pool; 92 struct bio_set *bs; 93 94 struct workqueue_struct *io_queue; 95 struct workqueue_struct *crypt_queue; 96 wait_queue_head_t writeq; 97 98 /* 99 * crypto related data 100 */ 101 struct crypt_iv_operations *iv_gen_ops; 102 char *iv_mode; 103 union { 104 struct crypto_cipher *essiv_tfm; 105 int benbi_shift; 106 } iv_gen_private; 107 sector_t iv_offset; 108 unsigned int iv_size; 109 110 /* 111 * Layout of each crypto request: 112 * 113 * struct ablkcipher_request 114 * context 115 * padding 116 * struct dm_crypt_request 117 * padding 118 * IV 119 * 120 * The padding is added so that dm_crypt_request and the IV are 121 * correctly aligned. 122 */ 123 unsigned int dmreq_start; 124 struct ablkcipher_request *req; 125 126 char cipher[CRYPTO_MAX_ALG_NAME]; 127 char chainmode[CRYPTO_MAX_ALG_NAME]; 128 struct crypto_ablkcipher *tfm; 129 unsigned long flags; 130 unsigned int key_size; 131 u8 key[0]; 132 }; 133 134 #define MIN_IOS 16 135 #define MIN_POOL_PAGES 32 136 #define MIN_BIO_PAGES 8 137 138 static struct kmem_cache *_crypt_io_pool; 139 140 static void clone_init(struct dm_crypt_io *, struct bio *); 141 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 142 143 /* 144 * Different IV generation algorithms: 145 * 146 * plain: the initial vector is the 32-bit little-endian version of the sector 147 * number, padded with zeros if necessary. 148 * 149 * essiv: "encrypted sector|salt initial vector", the sector number is 150 * encrypted with the bulk cipher using a salt as key. The salt 151 * should be derived from the bulk cipher's key via hashing. 152 * 153 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 154 * (needed for LRW-32-AES and possible other narrow block modes) 155 * 156 * null: the initial vector is always zero. Provides compatibility with 157 * obsolete loop_fish2 devices. Do not use for new devices. 158 * 159 * plumb: unimplemented, see: 160 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 161 */ 162 163 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector) 164 { 165 memset(iv, 0, cc->iv_size); 166 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff); 167 168 return 0; 169 } 170 171 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, 172 const char *opts) 173 { 174 struct crypto_cipher *essiv_tfm; 175 struct crypto_hash *hash_tfm; 176 struct hash_desc desc; 177 struct scatterlist sg; 178 unsigned int saltsize; 179 u8 *salt; 180 int err; 181 182 if (opts == NULL) { 183 ti->error = "Digest algorithm missing for ESSIV mode"; 184 return -EINVAL; 185 } 186 187 /* Hash the cipher key with the given hash algorithm */ 188 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC); 189 if (IS_ERR(hash_tfm)) { 190 ti->error = "Error initializing ESSIV hash"; 191 return PTR_ERR(hash_tfm); 192 } 193 194 saltsize = crypto_hash_digestsize(hash_tfm); 195 salt = kmalloc(saltsize, GFP_KERNEL); 196 if (salt == NULL) { 197 ti->error = "Error kmallocing salt storage in ESSIV"; 198 crypto_free_hash(hash_tfm); 199 return -ENOMEM; 200 } 201 202 sg_init_one(&sg, cc->key, cc->key_size); 203 desc.tfm = hash_tfm; 204 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; 205 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt); 206 crypto_free_hash(hash_tfm); 207 208 if (err) { 209 ti->error = "Error calculating hash in ESSIV"; 210 kfree(salt); 211 return err; 212 } 213 214 /* Setup the essiv_tfm with the given salt */ 215 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC); 216 if (IS_ERR(essiv_tfm)) { 217 ti->error = "Error allocating crypto tfm for ESSIV"; 218 kfree(salt); 219 return PTR_ERR(essiv_tfm); 220 } 221 if (crypto_cipher_blocksize(essiv_tfm) != 222 crypto_ablkcipher_ivsize(cc->tfm)) { 223 ti->error = "Block size of ESSIV cipher does " 224 "not match IV size of block cipher"; 225 crypto_free_cipher(essiv_tfm); 226 kfree(salt); 227 return -EINVAL; 228 } 229 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize); 230 if (err) { 231 ti->error = "Failed to set key for ESSIV cipher"; 232 crypto_free_cipher(essiv_tfm); 233 kfree(salt); 234 return err; 235 } 236 kfree(salt); 237 238 cc->iv_gen_private.essiv_tfm = essiv_tfm; 239 return 0; 240 } 241 242 static void crypt_iv_essiv_dtr(struct crypt_config *cc) 243 { 244 crypto_free_cipher(cc->iv_gen_private.essiv_tfm); 245 cc->iv_gen_private.essiv_tfm = NULL; 246 } 247 248 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector) 249 { 250 memset(iv, 0, cc->iv_size); 251 *(u64 *)iv = cpu_to_le64(sector); 252 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv); 253 return 0; 254 } 255 256 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 257 const char *opts) 258 { 259 unsigned bs = crypto_ablkcipher_blocksize(cc->tfm); 260 int log = ilog2(bs); 261 262 /* we need to calculate how far we must shift the sector count 263 * to get the cipher block count, we use this shift in _gen */ 264 265 if (1 << log != bs) { 266 ti->error = "cypher blocksize is not a power of 2"; 267 return -EINVAL; 268 } 269 270 if (log > 9) { 271 ti->error = "cypher blocksize is > 512"; 272 return -EINVAL; 273 } 274 275 cc->iv_gen_private.benbi_shift = 9 - log; 276 277 return 0; 278 } 279 280 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 281 { 282 } 283 284 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector) 285 { 286 __be64 val; 287 288 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 289 290 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1); 291 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 292 293 return 0; 294 } 295 296 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector) 297 { 298 memset(iv, 0, cc->iv_size); 299 300 return 0; 301 } 302 303 static struct crypt_iv_operations crypt_iv_plain_ops = { 304 .generator = crypt_iv_plain_gen 305 }; 306 307 static struct crypt_iv_operations crypt_iv_essiv_ops = { 308 .ctr = crypt_iv_essiv_ctr, 309 .dtr = crypt_iv_essiv_dtr, 310 .generator = crypt_iv_essiv_gen 311 }; 312 313 static struct crypt_iv_operations crypt_iv_benbi_ops = { 314 .ctr = crypt_iv_benbi_ctr, 315 .dtr = crypt_iv_benbi_dtr, 316 .generator = crypt_iv_benbi_gen 317 }; 318 319 static struct crypt_iv_operations crypt_iv_null_ops = { 320 .generator = crypt_iv_null_gen 321 }; 322 323 static void crypt_convert_init(struct crypt_config *cc, 324 struct convert_context *ctx, 325 struct bio *bio_out, struct bio *bio_in, 326 sector_t sector) 327 { 328 ctx->bio_in = bio_in; 329 ctx->bio_out = bio_out; 330 ctx->offset_in = 0; 331 ctx->offset_out = 0; 332 ctx->idx_in = bio_in ? bio_in->bi_idx : 0; 333 ctx->idx_out = bio_out ? bio_out->bi_idx : 0; 334 ctx->sector = sector + cc->iv_offset; 335 init_completion(&ctx->restart); 336 } 337 338 static int crypt_convert_block(struct crypt_config *cc, 339 struct convert_context *ctx, 340 struct ablkcipher_request *req) 341 { 342 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in); 343 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out); 344 struct dm_crypt_request *dmreq; 345 u8 *iv; 346 int r = 0; 347 348 dmreq = (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 349 iv = (u8 *)ALIGN((unsigned long)(dmreq + 1), 350 crypto_ablkcipher_alignmask(cc->tfm) + 1); 351 352 sg_init_table(&dmreq->sg_in, 1); 353 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT, 354 bv_in->bv_offset + ctx->offset_in); 355 356 sg_init_table(&dmreq->sg_out, 1); 357 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT, 358 bv_out->bv_offset + ctx->offset_out); 359 360 ctx->offset_in += 1 << SECTOR_SHIFT; 361 if (ctx->offset_in >= bv_in->bv_len) { 362 ctx->offset_in = 0; 363 ctx->idx_in++; 364 } 365 366 ctx->offset_out += 1 << SECTOR_SHIFT; 367 if (ctx->offset_out >= bv_out->bv_len) { 368 ctx->offset_out = 0; 369 ctx->idx_out++; 370 } 371 372 if (cc->iv_gen_ops) { 373 r = cc->iv_gen_ops->generator(cc, iv, ctx->sector); 374 if (r < 0) 375 return r; 376 } 377 378 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out, 379 1 << SECTOR_SHIFT, iv); 380 381 if (bio_data_dir(ctx->bio_in) == WRITE) 382 r = crypto_ablkcipher_encrypt(req); 383 else 384 r = crypto_ablkcipher_decrypt(req); 385 386 return r; 387 } 388 389 static void kcryptd_async_done(struct crypto_async_request *async_req, 390 int error); 391 static void crypt_alloc_req(struct crypt_config *cc, 392 struct convert_context *ctx) 393 { 394 if (!cc->req) 395 cc->req = mempool_alloc(cc->req_pool, GFP_NOIO); 396 ablkcipher_request_set_tfm(cc->req, cc->tfm); 397 ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG | 398 CRYPTO_TFM_REQ_MAY_SLEEP, 399 kcryptd_async_done, ctx); 400 } 401 402 /* 403 * Encrypt / decrypt data from one bio to another one (can be the same one) 404 */ 405 static int crypt_convert(struct crypt_config *cc, 406 struct convert_context *ctx) 407 { 408 int r; 409 410 atomic_set(&ctx->pending, 1); 411 412 while(ctx->idx_in < ctx->bio_in->bi_vcnt && 413 ctx->idx_out < ctx->bio_out->bi_vcnt) { 414 415 crypt_alloc_req(cc, ctx); 416 417 atomic_inc(&ctx->pending); 418 419 r = crypt_convert_block(cc, ctx, cc->req); 420 421 switch (r) { 422 /* async */ 423 case -EBUSY: 424 wait_for_completion(&ctx->restart); 425 INIT_COMPLETION(ctx->restart); 426 /* fall through*/ 427 case -EINPROGRESS: 428 cc->req = NULL; 429 ctx->sector++; 430 continue; 431 432 /* sync */ 433 case 0: 434 atomic_dec(&ctx->pending); 435 ctx->sector++; 436 cond_resched(); 437 continue; 438 439 /* error */ 440 default: 441 atomic_dec(&ctx->pending); 442 return r; 443 } 444 } 445 446 return 0; 447 } 448 449 static void dm_crypt_bio_destructor(struct bio *bio) 450 { 451 struct dm_crypt_io *io = bio->bi_private; 452 struct crypt_config *cc = io->target->private; 453 454 bio_free(bio, cc->bs); 455 } 456 457 /* 458 * Generate a new unfragmented bio with the given size 459 * This should never violate the device limitations 460 * May return a smaller bio when running out of pages, indicated by 461 * *out_of_pages set to 1. 462 */ 463 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size, 464 unsigned *out_of_pages) 465 { 466 struct crypt_config *cc = io->target->private; 467 struct bio *clone; 468 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 469 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM; 470 unsigned i, len; 471 struct page *page; 472 473 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs); 474 if (!clone) 475 return NULL; 476 477 clone_init(io, clone); 478 *out_of_pages = 0; 479 480 for (i = 0; i < nr_iovecs; i++) { 481 page = mempool_alloc(cc->page_pool, gfp_mask); 482 if (!page) { 483 *out_of_pages = 1; 484 break; 485 } 486 487 /* 488 * if additional pages cannot be allocated without waiting, 489 * return a partially allocated bio, the caller will then try 490 * to allocate additional bios while submitting this partial bio 491 */ 492 if (i == (MIN_BIO_PAGES - 1)) 493 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT; 494 495 len = (size > PAGE_SIZE) ? PAGE_SIZE : size; 496 497 if (!bio_add_page(clone, page, len, 0)) { 498 mempool_free(page, cc->page_pool); 499 break; 500 } 501 502 size -= len; 503 } 504 505 if (!clone->bi_size) { 506 bio_put(clone); 507 return NULL; 508 } 509 510 return clone; 511 } 512 513 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 514 { 515 unsigned int i; 516 struct bio_vec *bv; 517 518 for (i = 0; i < clone->bi_vcnt; i++) { 519 bv = bio_iovec_idx(clone, i); 520 BUG_ON(!bv->bv_page); 521 mempool_free(bv->bv_page, cc->page_pool); 522 bv->bv_page = NULL; 523 } 524 } 525 526 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti, 527 struct bio *bio, sector_t sector) 528 { 529 struct crypt_config *cc = ti->private; 530 struct dm_crypt_io *io; 531 532 io = mempool_alloc(cc->io_pool, GFP_NOIO); 533 io->target = ti; 534 io->base_bio = bio; 535 io->sector = sector; 536 io->error = 0; 537 atomic_set(&io->pending, 0); 538 539 return io; 540 } 541 542 static void crypt_inc_pending(struct dm_crypt_io *io) 543 { 544 atomic_inc(&io->pending); 545 } 546 547 /* 548 * One of the bios was finished. Check for completion of 549 * the whole request and correctly clean up the buffer. 550 */ 551 static void crypt_dec_pending(struct dm_crypt_io *io) 552 { 553 struct crypt_config *cc = io->target->private; 554 555 if (!atomic_dec_and_test(&io->pending)) 556 return; 557 558 bio_endio(io->base_bio, io->error); 559 mempool_free(io, cc->io_pool); 560 } 561 562 /* 563 * kcryptd/kcryptd_io: 564 * 565 * Needed because it would be very unwise to do decryption in an 566 * interrupt context. 567 * 568 * kcryptd performs the actual encryption or decryption. 569 * 570 * kcryptd_io performs the IO submission. 571 * 572 * They must be separated as otherwise the final stages could be 573 * starved by new requests which can block in the first stages due 574 * to memory allocation. 575 */ 576 static void crypt_endio(struct bio *clone, int error) 577 { 578 struct dm_crypt_io *io = clone->bi_private; 579 struct crypt_config *cc = io->target->private; 580 unsigned rw = bio_data_dir(clone); 581 582 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error)) 583 error = -EIO; 584 585 /* 586 * free the processed pages 587 */ 588 if (rw == WRITE) 589 crypt_free_buffer_pages(cc, clone); 590 591 bio_put(clone); 592 593 if (rw == READ && !error) { 594 kcryptd_queue_crypt(io); 595 return; 596 } 597 598 if (unlikely(error)) 599 io->error = error; 600 601 crypt_dec_pending(io); 602 } 603 604 static void clone_init(struct dm_crypt_io *io, struct bio *clone) 605 { 606 struct crypt_config *cc = io->target->private; 607 608 clone->bi_private = io; 609 clone->bi_end_io = crypt_endio; 610 clone->bi_bdev = cc->dev->bdev; 611 clone->bi_rw = io->base_bio->bi_rw; 612 clone->bi_destructor = dm_crypt_bio_destructor; 613 } 614 615 static void kcryptd_io_read(struct dm_crypt_io *io) 616 { 617 struct crypt_config *cc = io->target->private; 618 struct bio *base_bio = io->base_bio; 619 struct bio *clone; 620 621 crypt_inc_pending(io); 622 623 /* 624 * The block layer might modify the bvec array, so always 625 * copy the required bvecs because we need the original 626 * one in order to decrypt the whole bio data *afterwards*. 627 */ 628 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs); 629 if (unlikely(!clone)) { 630 io->error = -ENOMEM; 631 crypt_dec_pending(io); 632 return; 633 } 634 635 clone_init(io, clone); 636 clone->bi_idx = 0; 637 clone->bi_vcnt = bio_segments(base_bio); 638 clone->bi_size = base_bio->bi_size; 639 clone->bi_sector = cc->start + io->sector; 640 memcpy(clone->bi_io_vec, bio_iovec(base_bio), 641 sizeof(struct bio_vec) * clone->bi_vcnt); 642 643 generic_make_request(clone); 644 } 645 646 static void kcryptd_io_write(struct dm_crypt_io *io) 647 { 648 struct bio *clone = io->ctx.bio_out; 649 struct crypt_config *cc = io->target->private; 650 651 generic_make_request(clone); 652 wake_up(&cc->writeq); 653 } 654 655 static void kcryptd_io(struct work_struct *work) 656 { 657 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 658 659 if (bio_data_dir(io->base_bio) == READ) 660 kcryptd_io_read(io); 661 else 662 kcryptd_io_write(io); 663 } 664 665 static void kcryptd_queue_io(struct dm_crypt_io *io) 666 { 667 struct crypt_config *cc = io->target->private; 668 669 INIT_WORK(&io->work, kcryptd_io); 670 queue_work(cc->io_queue, &io->work); 671 } 672 673 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, 674 int error, int async) 675 { 676 struct bio *clone = io->ctx.bio_out; 677 struct crypt_config *cc = io->target->private; 678 679 if (unlikely(error < 0)) { 680 crypt_free_buffer_pages(cc, clone); 681 bio_put(clone); 682 io->error = -EIO; 683 crypt_dec_pending(io); 684 return; 685 } 686 687 /* crypt_convert should have filled the clone bio */ 688 BUG_ON(io->ctx.idx_out < clone->bi_vcnt); 689 690 clone->bi_sector = cc->start + io->sector; 691 io->sector += bio_sectors(clone); 692 693 if (async) 694 kcryptd_queue_io(io); 695 else 696 generic_make_request(clone); 697 } 698 699 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 700 { 701 struct crypt_config *cc = io->target->private; 702 struct bio *clone; 703 int crypt_finished; 704 unsigned out_of_pages = 0; 705 unsigned remaining = io->base_bio->bi_size; 706 int r; 707 708 /* 709 * Prevent io from disappearing until this function completes. 710 */ 711 crypt_inc_pending(io); 712 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, io->sector); 713 714 /* 715 * The allocated buffers can be smaller than the whole bio, 716 * so repeat the whole process until all the data can be handled. 717 */ 718 while (remaining) { 719 clone = crypt_alloc_buffer(io, remaining, &out_of_pages); 720 if (unlikely(!clone)) { 721 io->error = -ENOMEM; 722 break; 723 } 724 725 io->ctx.bio_out = clone; 726 io->ctx.idx_out = 0; 727 728 remaining -= clone->bi_size; 729 730 crypt_inc_pending(io); 731 r = crypt_convert(cc, &io->ctx); 732 crypt_finished = atomic_dec_and_test(&io->ctx.pending); 733 734 /* Encryption was already finished, submit io now */ 735 if (crypt_finished) { 736 kcryptd_crypt_write_io_submit(io, r, 0); 737 738 /* 739 * If there was an error, do not try next fragments. 740 * For async, error is processed in async handler. 741 */ 742 if (unlikely(r < 0)) 743 break; 744 } 745 746 /* 747 * Out of memory -> run queues 748 * But don't wait if split was due to the io size restriction 749 */ 750 if (unlikely(out_of_pages)) 751 congestion_wait(WRITE, HZ/100); 752 753 if (unlikely(remaining)) 754 wait_event(cc->writeq, !atomic_read(&io->ctx.pending)); 755 } 756 757 crypt_dec_pending(io); 758 } 759 760 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error) 761 { 762 if (unlikely(error < 0)) 763 io->error = -EIO; 764 765 crypt_dec_pending(io); 766 } 767 768 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 769 { 770 struct crypt_config *cc = io->target->private; 771 int r = 0; 772 773 crypt_inc_pending(io); 774 775 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 776 io->sector); 777 778 r = crypt_convert(cc, &io->ctx); 779 780 if (atomic_dec_and_test(&io->ctx.pending)) 781 kcryptd_crypt_read_done(io, r); 782 783 crypt_dec_pending(io); 784 } 785 786 static void kcryptd_async_done(struct crypto_async_request *async_req, 787 int error) 788 { 789 struct convert_context *ctx = async_req->data; 790 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 791 struct crypt_config *cc = io->target->private; 792 793 if (error == -EINPROGRESS) { 794 complete(&ctx->restart); 795 return; 796 } 797 798 mempool_free(ablkcipher_request_cast(async_req), cc->req_pool); 799 800 if (!atomic_dec_and_test(&ctx->pending)) 801 return; 802 803 if (bio_data_dir(io->base_bio) == READ) 804 kcryptd_crypt_read_done(io, error); 805 else 806 kcryptd_crypt_write_io_submit(io, error, 1); 807 } 808 809 static void kcryptd_crypt(struct work_struct *work) 810 { 811 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 812 813 if (bio_data_dir(io->base_bio) == READ) 814 kcryptd_crypt_read_convert(io); 815 else 816 kcryptd_crypt_write_convert(io); 817 } 818 819 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 820 { 821 struct crypt_config *cc = io->target->private; 822 823 INIT_WORK(&io->work, kcryptd_crypt); 824 queue_work(cc->crypt_queue, &io->work); 825 } 826 827 /* 828 * Decode key from its hex representation 829 */ 830 static int crypt_decode_key(u8 *key, char *hex, unsigned int size) 831 { 832 char buffer[3]; 833 char *endp; 834 unsigned int i; 835 836 buffer[2] = '\0'; 837 838 for (i = 0; i < size; i++) { 839 buffer[0] = *hex++; 840 buffer[1] = *hex++; 841 842 key[i] = (u8)simple_strtoul(buffer, &endp, 16); 843 844 if (endp != &buffer[2]) 845 return -EINVAL; 846 } 847 848 if (*hex != '\0') 849 return -EINVAL; 850 851 return 0; 852 } 853 854 /* 855 * Encode key into its hex representation 856 */ 857 static void crypt_encode_key(char *hex, u8 *key, unsigned int size) 858 { 859 unsigned int i; 860 861 for (i = 0; i < size; i++) { 862 sprintf(hex, "%02x", *key); 863 hex += 2; 864 key++; 865 } 866 } 867 868 static int crypt_set_key(struct crypt_config *cc, char *key) 869 { 870 unsigned key_size = strlen(key) >> 1; 871 872 if (cc->key_size && cc->key_size != key_size) 873 return -EINVAL; 874 875 cc->key_size = key_size; /* initial settings */ 876 877 if ((!key_size && strcmp(key, "-")) || 878 (key_size && crypt_decode_key(cc->key, key, key_size) < 0)) 879 return -EINVAL; 880 881 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 882 883 return 0; 884 } 885 886 static int crypt_wipe_key(struct crypt_config *cc) 887 { 888 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 889 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 890 return 0; 891 } 892 893 /* 894 * Construct an encryption mapping: 895 * <cipher> <key> <iv_offset> <dev_path> <start> 896 */ 897 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 898 { 899 struct crypt_config *cc; 900 struct crypto_ablkcipher *tfm; 901 char *tmp; 902 char *cipher; 903 char *chainmode; 904 char *ivmode; 905 char *ivopts; 906 unsigned int key_size; 907 unsigned long long tmpll; 908 909 if (argc != 5) { 910 ti->error = "Not enough arguments"; 911 return -EINVAL; 912 } 913 914 tmp = argv[0]; 915 cipher = strsep(&tmp, "-"); 916 chainmode = strsep(&tmp, "-"); 917 ivopts = strsep(&tmp, "-"); 918 ivmode = strsep(&ivopts, ":"); 919 920 if (tmp) 921 DMWARN("Unexpected additional cipher options"); 922 923 key_size = strlen(argv[1]) >> 1; 924 925 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); 926 if (cc == NULL) { 927 ti->error = 928 "Cannot allocate transparent encryption context"; 929 return -ENOMEM; 930 } 931 932 if (crypt_set_key(cc, argv[1])) { 933 ti->error = "Error decoding key"; 934 goto bad_cipher; 935 } 936 937 /* Compatiblity mode for old dm-crypt cipher strings */ 938 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) { 939 chainmode = "cbc"; 940 ivmode = "plain"; 941 } 942 943 if (strcmp(chainmode, "ecb") && !ivmode) { 944 ti->error = "This chaining mode requires an IV mechanism"; 945 goto bad_cipher; 946 } 947 948 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", 949 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) { 950 ti->error = "Chain mode + cipher name is too long"; 951 goto bad_cipher; 952 } 953 954 tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0); 955 if (IS_ERR(tfm)) { 956 ti->error = "Error allocating crypto tfm"; 957 goto bad_cipher; 958 } 959 960 strcpy(cc->cipher, cipher); 961 strcpy(cc->chainmode, chainmode); 962 cc->tfm = tfm; 963 964 /* 965 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi". 966 * See comments at iv code 967 */ 968 969 if (ivmode == NULL) 970 cc->iv_gen_ops = NULL; 971 else if (strcmp(ivmode, "plain") == 0) 972 cc->iv_gen_ops = &crypt_iv_plain_ops; 973 else if (strcmp(ivmode, "essiv") == 0) 974 cc->iv_gen_ops = &crypt_iv_essiv_ops; 975 else if (strcmp(ivmode, "benbi") == 0) 976 cc->iv_gen_ops = &crypt_iv_benbi_ops; 977 else if (strcmp(ivmode, "null") == 0) 978 cc->iv_gen_ops = &crypt_iv_null_ops; 979 else { 980 ti->error = "Invalid IV mode"; 981 goto bad_ivmode; 982 } 983 984 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr && 985 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0) 986 goto bad_ivmode; 987 988 cc->iv_size = crypto_ablkcipher_ivsize(tfm); 989 if (cc->iv_size) 990 /* at least a 64 bit sector number should fit in our buffer */ 991 cc->iv_size = max(cc->iv_size, 992 (unsigned int)(sizeof(u64) / sizeof(u8))); 993 else { 994 if (cc->iv_gen_ops) { 995 DMWARN("Selected cipher does not support IVs"); 996 if (cc->iv_gen_ops->dtr) 997 cc->iv_gen_ops->dtr(cc); 998 cc->iv_gen_ops = NULL; 999 } 1000 } 1001 1002 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool); 1003 if (!cc->io_pool) { 1004 ti->error = "Cannot allocate crypt io mempool"; 1005 goto bad_slab_pool; 1006 } 1007 1008 cc->dmreq_start = sizeof(struct ablkcipher_request); 1009 cc->dmreq_start += crypto_ablkcipher_reqsize(tfm); 1010 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment()); 1011 cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) & 1012 ~(crypto_tfm_ctx_alignment() - 1); 1013 1014 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + 1015 sizeof(struct dm_crypt_request) + cc->iv_size); 1016 if (!cc->req_pool) { 1017 ti->error = "Cannot allocate crypt request mempool"; 1018 goto bad_req_pool; 1019 } 1020 cc->req = NULL; 1021 1022 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0); 1023 if (!cc->page_pool) { 1024 ti->error = "Cannot allocate page mempool"; 1025 goto bad_page_pool; 1026 } 1027 1028 cc->bs = bioset_create(MIN_IOS, MIN_IOS); 1029 if (!cc->bs) { 1030 ti->error = "Cannot allocate crypt bioset"; 1031 goto bad_bs; 1032 } 1033 1034 if (crypto_ablkcipher_setkey(tfm, cc->key, key_size) < 0) { 1035 ti->error = "Error setting key"; 1036 goto bad_device; 1037 } 1038 1039 if (sscanf(argv[2], "%llu", &tmpll) != 1) { 1040 ti->error = "Invalid iv_offset sector"; 1041 goto bad_device; 1042 } 1043 cc->iv_offset = tmpll; 1044 1045 if (sscanf(argv[4], "%llu", &tmpll) != 1) { 1046 ti->error = "Invalid device sector"; 1047 goto bad_device; 1048 } 1049 cc->start = tmpll; 1050 1051 if (dm_get_device(ti, argv[3], cc->start, ti->len, 1052 dm_table_get_mode(ti->table), &cc->dev)) { 1053 ti->error = "Device lookup failed"; 1054 goto bad_device; 1055 } 1056 1057 if (ivmode && cc->iv_gen_ops) { 1058 if (ivopts) 1059 *(ivopts - 1) = ':'; 1060 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL); 1061 if (!cc->iv_mode) { 1062 ti->error = "Error kmallocing iv_mode string"; 1063 goto bad_ivmode_string; 1064 } 1065 strcpy(cc->iv_mode, ivmode); 1066 } else 1067 cc->iv_mode = NULL; 1068 1069 cc->io_queue = create_singlethread_workqueue("kcryptd_io"); 1070 if (!cc->io_queue) { 1071 ti->error = "Couldn't create kcryptd io queue"; 1072 goto bad_io_queue; 1073 } 1074 1075 cc->crypt_queue = create_singlethread_workqueue("kcryptd"); 1076 if (!cc->crypt_queue) { 1077 ti->error = "Couldn't create kcryptd queue"; 1078 goto bad_crypt_queue; 1079 } 1080 1081 init_waitqueue_head(&cc->writeq); 1082 ti->private = cc; 1083 return 0; 1084 1085 bad_crypt_queue: 1086 destroy_workqueue(cc->io_queue); 1087 bad_io_queue: 1088 kfree(cc->iv_mode); 1089 bad_ivmode_string: 1090 dm_put_device(ti, cc->dev); 1091 bad_device: 1092 bioset_free(cc->bs); 1093 bad_bs: 1094 mempool_destroy(cc->page_pool); 1095 bad_page_pool: 1096 mempool_destroy(cc->req_pool); 1097 bad_req_pool: 1098 mempool_destroy(cc->io_pool); 1099 bad_slab_pool: 1100 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 1101 cc->iv_gen_ops->dtr(cc); 1102 bad_ivmode: 1103 crypto_free_ablkcipher(tfm); 1104 bad_cipher: 1105 /* Must zero key material before freeing */ 1106 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8)); 1107 kfree(cc); 1108 return -EINVAL; 1109 } 1110 1111 static void crypt_dtr(struct dm_target *ti) 1112 { 1113 struct crypt_config *cc = (struct crypt_config *) ti->private; 1114 1115 destroy_workqueue(cc->io_queue); 1116 destroy_workqueue(cc->crypt_queue); 1117 1118 if (cc->req) 1119 mempool_free(cc->req, cc->req_pool); 1120 1121 bioset_free(cc->bs); 1122 mempool_destroy(cc->page_pool); 1123 mempool_destroy(cc->req_pool); 1124 mempool_destroy(cc->io_pool); 1125 1126 kfree(cc->iv_mode); 1127 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 1128 cc->iv_gen_ops->dtr(cc); 1129 crypto_free_ablkcipher(cc->tfm); 1130 dm_put_device(ti, cc->dev); 1131 1132 /* Must zero key material before freeing */ 1133 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8)); 1134 kfree(cc); 1135 } 1136 1137 static int crypt_map(struct dm_target *ti, struct bio *bio, 1138 union map_info *map_context) 1139 { 1140 struct dm_crypt_io *io; 1141 1142 io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin); 1143 1144 if (bio_data_dir(io->base_bio) == READ) 1145 kcryptd_queue_io(io); 1146 else 1147 kcryptd_queue_crypt(io); 1148 1149 return DM_MAPIO_SUBMITTED; 1150 } 1151 1152 static int crypt_status(struct dm_target *ti, status_type_t type, 1153 char *result, unsigned int maxlen) 1154 { 1155 struct crypt_config *cc = (struct crypt_config *) ti->private; 1156 unsigned int sz = 0; 1157 1158 switch (type) { 1159 case STATUSTYPE_INFO: 1160 result[0] = '\0'; 1161 break; 1162 1163 case STATUSTYPE_TABLE: 1164 if (cc->iv_mode) 1165 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode, 1166 cc->iv_mode); 1167 else 1168 DMEMIT("%s-%s ", cc->cipher, cc->chainmode); 1169 1170 if (cc->key_size > 0) { 1171 if ((maxlen - sz) < ((cc->key_size << 1) + 1)) 1172 return -ENOMEM; 1173 1174 crypt_encode_key(result + sz, cc->key, cc->key_size); 1175 sz += cc->key_size << 1; 1176 } else { 1177 if (sz >= maxlen) 1178 return -ENOMEM; 1179 result[sz++] = '-'; 1180 } 1181 1182 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 1183 cc->dev->name, (unsigned long long)cc->start); 1184 break; 1185 } 1186 return 0; 1187 } 1188 1189 static void crypt_postsuspend(struct dm_target *ti) 1190 { 1191 struct crypt_config *cc = ti->private; 1192 1193 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 1194 } 1195 1196 static int crypt_preresume(struct dm_target *ti) 1197 { 1198 struct crypt_config *cc = ti->private; 1199 1200 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 1201 DMERR("aborting resume - crypt key is not set."); 1202 return -EAGAIN; 1203 } 1204 1205 return 0; 1206 } 1207 1208 static void crypt_resume(struct dm_target *ti) 1209 { 1210 struct crypt_config *cc = ti->private; 1211 1212 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 1213 } 1214 1215 /* Message interface 1216 * key set <key> 1217 * key wipe 1218 */ 1219 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv) 1220 { 1221 struct crypt_config *cc = ti->private; 1222 1223 if (argc < 2) 1224 goto error; 1225 1226 if (!strnicmp(argv[0], MESG_STR("key"))) { 1227 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 1228 DMWARN("not suspended during key manipulation."); 1229 return -EINVAL; 1230 } 1231 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set"))) 1232 return crypt_set_key(cc, argv[2]); 1233 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe"))) 1234 return crypt_wipe_key(cc); 1235 } 1236 1237 error: 1238 DMWARN("unrecognised message received."); 1239 return -EINVAL; 1240 } 1241 1242 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 1243 struct bio_vec *biovec, int max_size) 1244 { 1245 struct crypt_config *cc = ti->private; 1246 struct request_queue *q = bdev_get_queue(cc->dev->bdev); 1247 1248 if (!q->merge_bvec_fn) 1249 return max_size; 1250 1251 bvm->bi_bdev = cc->dev->bdev; 1252 bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin; 1253 1254 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 1255 } 1256 1257 static struct target_type crypt_target = { 1258 .name = "crypt", 1259 .version= {1, 6, 0}, 1260 .module = THIS_MODULE, 1261 .ctr = crypt_ctr, 1262 .dtr = crypt_dtr, 1263 .map = crypt_map, 1264 .status = crypt_status, 1265 .postsuspend = crypt_postsuspend, 1266 .preresume = crypt_preresume, 1267 .resume = crypt_resume, 1268 .message = crypt_message, 1269 .merge = crypt_merge, 1270 }; 1271 1272 static int __init dm_crypt_init(void) 1273 { 1274 int r; 1275 1276 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0); 1277 if (!_crypt_io_pool) 1278 return -ENOMEM; 1279 1280 r = dm_register_target(&crypt_target); 1281 if (r < 0) { 1282 DMERR("register failed %d", r); 1283 kmem_cache_destroy(_crypt_io_pool); 1284 } 1285 1286 return r; 1287 } 1288 1289 static void __exit dm_crypt_exit(void) 1290 { 1291 int r = dm_unregister_target(&crypt_target); 1292 1293 if (r < 0) 1294 DMERR("unregister failed %d", r); 1295 1296 kmem_cache_destroy(_crypt_io_pool); 1297 } 1298 1299 module_init(dm_crypt_init); 1300 module_exit(dm_crypt_exit); 1301 1302 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>"); 1303 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 1304 MODULE_LICENSE("GPL"); 1305