xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 29a36d4d)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
29 
30 #include <linux/device-mapper.h>
31 
32 #define DM_MSG_PREFIX "crypt"
33 
34 /*
35  * context holding the current state of a multi-part conversion
36  */
37 struct convert_context {
38 	struct completion restart;
39 	struct bio *bio_in;
40 	struct bio *bio_out;
41 	unsigned int offset_in;
42 	unsigned int offset_out;
43 	unsigned int idx_in;
44 	unsigned int idx_out;
45 	sector_t sector;
46 	atomic_t pending;
47 };
48 
49 /*
50  * per bio private data
51  */
52 struct dm_crypt_io {
53 	struct dm_target *target;
54 	struct bio *base_bio;
55 	struct work_struct work;
56 
57 	struct convert_context ctx;
58 
59 	atomic_t pending;
60 	int error;
61 	sector_t sector;
62 	struct dm_crypt_io *base_io;
63 };
64 
65 struct dm_crypt_request {
66 	struct convert_context *ctx;
67 	struct scatterlist sg_in;
68 	struct scatterlist sg_out;
69 	sector_t iv_sector;
70 };
71 
72 struct crypt_config;
73 
74 struct crypt_iv_operations {
75 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
76 		   const char *opts);
77 	void (*dtr)(struct crypt_config *cc);
78 	int (*init)(struct crypt_config *cc);
79 	int (*wipe)(struct crypt_config *cc);
80 	int (*generator)(struct crypt_config *cc, u8 *iv,
81 			 struct dm_crypt_request *dmreq);
82 	int (*post)(struct crypt_config *cc, u8 *iv,
83 		    struct dm_crypt_request *dmreq);
84 };
85 
86 struct iv_essiv_private {
87 	struct crypto_hash *hash_tfm;
88 	u8 *salt;
89 };
90 
91 struct iv_benbi_private {
92 	int shift;
93 };
94 
95 #define LMK_SEED_SIZE 64 /* hash + 0 */
96 struct iv_lmk_private {
97 	struct crypto_shash *hash_tfm;
98 	u8 *seed;
99 };
100 
101 /*
102  * Crypt: maps a linear range of a block device
103  * and encrypts / decrypts at the same time.
104  */
105 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
106 
107 /*
108  * Duplicated per-CPU state for cipher.
109  */
110 struct crypt_cpu {
111 	struct ablkcipher_request *req;
112 	/* ESSIV: struct crypto_cipher *essiv_tfm */
113 	void *iv_private;
114 	struct crypto_ablkcipher *tfms[0];
115 };
116 
117 /*
118  * The fields in here must be read only after initialization,
119  * changing state should be in crypt_cpu.
120  */
121 struct crypt_config {
122 	struct dm_dev *dev;
123 	sector_t start;
124 
125 	/*
126 	 * pool for per bio private data, crypto requests and
127 	 * encryption requeusts/buffer pages
128 	 */
129 	mempool_t *io_pool;
130 	mempool_t *req_pool;
131 	mempool_t *page_pool;
132 	struct bio_set *bs;
133 
134 	struct workqueue_struct *io_queue;
135 	struct workqueue_struct *crypt_queue;
136 
137 	char *cipher;
138 	char *cipher_string;
139 
140 	struct crypt_iv_operations *iv_gen_ops;
141 	union {
142 		struct iv_essiv_private essiv;
143 		struct iv_benbi_private benbi;
144 		struct iv_lmk_private lmk;
145 	} iv_gen_private;
146 	sector_t iv_offset;
147 	unsigned int iv_size;
148 
149 	/*
150 	 * Duplicated per cpu state. Access through
151 	 * per_cpu_ptr() only.
152 	 */
153 	struct crypt_cpu __percpu *cpu;
154 	unsigned tfms_count;
155 
156 	/*
157 	 * Layout of each crypto request:
158 	 *
159 	 *   struct ablkcipher_request
160 	 *      context
161 	 *      padding
162 	 *   struct dm_crypt_request
163 	 *      padding
164 	 *   IV
165 	 *
166 	 * The padding is added so that dm_crypt_request and the IV are
167 	 * correctly aligned.
168 	 */
169 	unsigned int dmreq_start;
170 
171 	unsigned long flags;
172 	unsigned int key_size;
173 	unsigned int key_parts;
174 	u8 key[0];
175 };
176 
177 #define MIN_IOS        16
178 #define MIN_POOL_PAGES 32
179 #define MIN_BIO_PAGES  8
180 
181 static struct kmem_cache *_crypt_io_pool;
182 
183 static void clone_init(struct dm_crypt_io *, struct bio *);
184 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
185 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
186 
187 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
188 {
189 	return this_cpu_ptr(cc->cpu);
190 }
191 
192 /*
193  * Use this to access cipher attributes that are the same for each CPU.
194  */
195 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
196 {
197 	return __this_cpu_ptr(cc->cpu)->tfms[0];
198 }
199 
200 /*
201  * Different IV generation algorithms:
202  *
203  * plain: the initial vector is the 32-bit little-endian version of the sector
204  *        number, padded with zeros if necessary.
205  *
206  * plain64: the initial vector is the 64-bit little-endian version of the sector
207  *        number, padded with zeros if necessary.
208  *
209  * essiv: "encrypted sector|salt initial vector", the sector number is
210  *        encrypted with the bulk cipher using a salt as key. The salt
211  *        should be derived from the bulk cipher's key via hashing.
212  *
213  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
214  *        (needed for LRW-32-AES and possible other narrow block modes)
215  *
216  * null: the initial vector is always zero.  Provides compatibility with
217  *       obsolete loop_fish2 devices.  Do not use for new devices.
218  *
219  * lmk:  Compatible implementation of the block chaining mode used
220  *       by the Loop-AES block device encryption system
221  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
222  *       It operates on full 512 byte sectors and uses CBC
223  *       with an IV derived from the sector number, the data and
224  *       optionally extra IV seed.
225  *       This means that after decryption the first block
226  *       of sector must be tweaked according to decrypted data.
227  *       Loop-AES can use three encryption schemes:
228  *         version 1: is plain aes-cbc mode
229  *         version 2: uses 64 multikey scheme with lmk IV generator
230  *         version 3: the same as version 2 with additional IV seed
231  *                   (it uses 65 keys, last key is used as IV seed)
232  *
233  * plumb: unimplemented, see:
234  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
235  */
236 
237 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
238 			      struct dm_crypt_request *dmreq)
239 {
240 	memset(iv, 0, cc->iv_size);
241 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
242 
243 	return 0;
244 }
245 
246 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
247 				struct dm_crypt_request *dmreq)
248 {
249 	memset(iv, 0, cc->iv_size);
250 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
251 
252 	return 0;
253 }
254 
255 /* Initialise ESSIV - compute salt but no local memory allocations */
256 static int crypt_iv_essiv_init(struct crypt_config *cc)
257 {
258 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
259 	struct hash_desc desc;
260 	struct scatterlist sg;
261 	struct crypto_cipher *essiv_tfm;
262 	int err, cpu;
263 
264 	sg_init_one(&sg, cc->key, cc->key_size);
265 	desc.tfm = essiv->hash_tfm;
266 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
267 
268 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
269 	if (err)
270 		return err;
271 
272 	for_each_possible_cpu(cpu) {
273 		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,
274 
275 		err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
276 				    crypto_hash_digestsize(essiv->hash_tfm));
277 		if (err)
278 			return err;
279 	}
280 
281 	return 0;
282 }
283 
284 /* Wipe salt and reset key derived from volume key */
285 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
286 {
287 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
288 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
289 	struct crypto_cipher *essiv_tfm;
290 	int cpu, r, err = 0;
291 
292 	memset(essiv->salt, 0, salt_size);
293 
294 	for_each_possible_cpu(cpu) {
295 		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
296 		r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
297 		if (r)
298 			err = r;
299 	}
300 
301 	return err;
302 }
303 
304 /* Set up per cpu cipher state */
305 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
306 					     struct dm_target *ti,
307 					     u8 *salt, unsigned saltsize)
308 {
309 	struct crypto_cipher *essiv_tfm;
310 	int err;
311 
312 	/* Setup the essiv_tfm with the given salt */
313 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
314 	if (IS_ERR(essiv_tfm)) {
315 		ti->error = "Error allocating crypto tfm for ESSIV";
316 		return essiv_tfm;
317 	}
318 
319 	if (crypto_cipher_blocksize(essiv_tfm) !=
320 	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
321 		ti->error = "Block size of ESSIV cipher does "
322 			    "not match IV size of block cipher";
323 		crypto_free_cipher(essiv_tfm);
324 		return ERR_PTR(-EINVAL);
325 	}
326 
327 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
328 	if (err) {
329 		ti->error = "Failed to set key for ESSIV cipher";
330 		crypto_free_cipher(essiv_tfm);
331 		return ERR_PTR(err);
332 	}
333 
334 	return essiv_tfm;
335 }
336 
337 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
338 {
339 	int cpu;
340 	struct crypt_cpu *cpu_cc;
341 	struct crypto_cipher *essiv_tfm;
342 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
343 
344 	crypto_free_hash(essiv->hash_tfm);
345 	essiv->hash_tfm = NULL;
346 
347 	kzfree(essiv->salt);
348 	essiv->salt = NULL;
349 
350 	for_each_possible_cpu(cpu) {
351 		cpu_cc = per_cpu_ptr(cc->cpu, cpu);
352 		essiv_tfm = cpu_cc->iv_private;
353 
354 		if (essiv_tfm)
355 			crypto_free_cipher(essiv_tfm);
356 
357 		cpu_cc->iv_private = NULL;
358 	}
359 }
360 
361 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
362 			      const char *opts)
363 {
364 	struct crypto_cipher *essiv_tfm = NULL;
365 	struct crypto_hash *hash_tfm = NULL;
366 	u8 *salt = NULL;
367 	int err, cpu;
368 
369 	if (!opts) {
370 		ti->error = "Digest algorithm missing for ESSIV mode";
371 		return -EINVAL;
372 	}
373 
374 	/* Allocate hash algorithm */
375 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
376 	if (IS_ERR(hash_tfm)) {
377 		ti->error = "Error initializing ESSIV hash";
378 		err = PTR_ERR(hash_tfm);
379 		goto bad;
380 	}
381 
382 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
383 	if (!salt) {
384 		ti->error = "Error kmallocing salt storage in ESSIV";
385 		err = -ENOMEM;
386 		goto bad;
387 	}
388 
389 	cc->iv_gen_private.essiv.salt = salt;
390 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
391 
392 	for_each_possible_cpu(cpu) {
393 		essiv_tfm = setup_essiv_cpu(cc, ti, salt,
394 					crypto_hash_digestsize(hash_tfm));
395 		if (IS_ERR(essiv_tfm)) {
396 			crypt_iv_essiv_dtr(cc);
397 			return PTR_ERR(essiv_tfm);
398 		}
399 		per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
400 	}
401 
402 	return 0;
403 
404 bad:
405 	if (hash_tfm && !IS_ERR(hash_tfm))
406 		crypto_free_hash(hash_tfm);
407 	kfree(salt);
408 	return err;
409 }
410 
411 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
412 			      struct dm_crypt_request *dmreq)
413 {
414 	struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;
415 
416 	memset(iv, 0, cc->iv_size);
417 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
418 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
419 
420 	return 0;
421 }
422 
423 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
424 			      const char *opts)
425 {
426 	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
427 	int log = ilog2(bs);
428 
429 	/* we need to calculate how far we must shift the sector count
430 	 * to get the cipher block count, we use this shift in _gen */
431 
432 	if (1 << log != bs) {
433 		ti->error = "cypher blocksize is not a power of 2";
434 		return -EINVAL;
435 	}
436 
437 	if (log > 9) {
438 		ti->error = "cypher blocksize is > 512";
439 		return -EINVAL;
440 	}
441 
442 	cc->iv_gen_private.benbi.shift = 9 - log;
443 
444 	return 0;
445 }
446 
447 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
448 {
449 }
450 
451 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
452 			      struct dm_crypt_request *dmreq)
453 {
454 	__be64 val;
455 
456 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
457 
458 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
459 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
460 
461 	return 0;
462 }
463 
464 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
465 			     struct dm_crypt_request *dmreq)
466 {
467 	memset(iv, 0, cc->iv_size);
468 
469 	return 0;
470 }
471 
472 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
473 {
474 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
475 
476 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
477 		crypto_free_shash(lmk->hash_tfm);
478 	lmk->hash_tfm = NULL;
479 
480 	kzfree(lmk->seed);
481 	lmk->seed = NULL;
482 }
483 
484 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
485 			    const char *opts)
486 {
487 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
488 
489 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
490 	if (IS_ERR(lmk->hash_tfm)) {
491 		ti->error = "Error initializing LMK hash";
492 		return PTR_ERR(lmk->hash_tfm);
493 	}
494 
495 	/* No seed in LMK version 2 */
496 	if (cc->key_parts == cc->tfms_count) {
497 		lmk->seed = NULL;
498 		return 0;
499 	}
500 
501 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
502 	if (!lmk->seed) {
503 		crypt_iv_lmk_dtr(cc);
504 		ti->error = "Error kmallocing seed storage in LMK";
505 		return -ENOMEM;
506 	}
507 
508 	return 0;
509 }
510 
511 static int crypt_iv_lmk_init(struct crypt_config *cc)
512 {
513 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
514 	int subkey_size = cc->key_size / cc->key_parts;
515 
516 	/* LMK seed is on the position of LMK_KEYS + 1 key */
517 	if (lmk->seed)
518 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
519 		       crypto_shash_digestsize(lmk->hash_tfm));
520 
521 	return 0;
522 }
523 
524 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
525 {
526 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
527 
528 	if (lmk->seed)
529 		memset(lmk->seed, 0, LMK_SEED_SIZE);
530 
531 	return 0;
532 }
533 
534 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
535 			    struct dm_crypt_request *dmreq,
536 			    u8 *data)
537 {
538 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
539 	struct {
540 		struct shash_desc desc;
541 		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
542 	} sdesc;
543 	struct md5_state md5state;
544 	u32 buf[4];
545 	int i, r;
546 
547 	sdesc.desc.tfm = lmk->hash_tfm;
548 	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
549 
550 	r = crypto_shash_init(&sdesc.desc);
551 	if (r)
552 		return r;
553 
554 	if (lmk->seed) {
555 		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
556 		if (r)
557 			return r;
558 	}
559 
560 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
561 	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
562 	if (r)
563 		return r;
564 
565 	/* Sector is cropped to 56 bits here */
566 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
567 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
568 	buf[2] = cpu_to_le32(4024);
569 	buf[3] = 0;
570 	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
571 	if (r)
572 		return r;
573 
574 	/* No MD5 padding here */
575 	r = crypto_shash_export(&sdesc.desc, &md5state);
576 	if (r)
577 		return r;
578 
579 	for (i = 0; i < MD5_HASH_WORDS; i++)
580 		__cpu_to_le32s(&md5state.hash[i]);
581 	memcpy(iv, &md5state.hash, cc->iv_size);
582 
583 	return 0;
584 }
585 
586 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
587 			    struct dm_crypt_request *dmreq)
588 {
589 	u8 *src;
590 	int r = 0;
591 
592 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
593 		src = kmap_atomic(sg_page(&dmreq->sg_in), KM_USER0);
594 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
595 		kunmap_atomic(src, KM_USER0);
596 	} else
597 		memset(iv, 0, cc->iv_size);
598 
599 	return r;
600 }
601 
602 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
603 			     struct dm_crypt_request *dmreq)
604 {
605 	u8 *dst;
606 	int r;
607 
608 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
609 		return 0;
610 
611 	dst = kmap_atomic(sg_page(&dmreq->sg_out), KM_USER0);
612 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
613 
614 	/* Tweak the first block of plaintext sector */
615 	if (!r)
616 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
617 
618 	kunmap_atomic(dst, KM_USER0);
619 	return r;
620 }
621 
622 static struct crypt_iv_operations crypt_iv_plain_ops = {
623 	.generator = crypt_iv_plain_gen
624 };
625 
626 static struct crypt_iv_operations crypt_iv_plain64_ops = {
627 	.generator = crypt_iv_plain64_gen
628 };
629 
630 static struct crypt_iv_operations crypt_iv_essiv_ops = {
631 	.ctr       = crypt_iv_essiv_ctr,
632 	.dtr       = crypt_iv_essiv_dtr,
633 	.init      = crypt_iv_essiv_init,
634 	.wipe      = crypt_iv_essiv_wipe,
635 	.generator = crypt_iv_essiv_gen
636 };
637 
638 static struct crypt_iv_operations crypt_iv_benbi_ops = {
639 	.ctr	   = crypt_iv_benbi_ctr,
640 	.dtr	   = crypt_iv_benbi_dtr,
641 	.generator = crypt_iv_benbi_gen
642 };
643 
644 static struct crypt_iv_operations crypt_iv_null_ops = {
645 	.generator = crypt_iv_null_gen
646 };
647 
648 static struct crypt_iv_operations crypt_iv_lmk_ops = {
649 	.ctr	   = crypt_iv_lmk_ctr,
650 	.dtr	   = crypt_iv_lmk_dtr,
651 	.init	   = crypt_iv_lmk_init,
652 	.wipe	   = crypt_iv_lmk_wipe,
653 	.generator = crypt_iv_lmk_gen,
654 	.post	   = crypt_iv_lmk_post
655 };
656 
657 static void crypt_convert_init(struct crypt_config *cc,
658 			       struct convert_context *ctx,
659 			       struct bio *bio_out, struct bio *bio_in,
660 			       sector_t sector)
661 {
662 	ctx->bio_in = bio_in;
663 	ctx->bio_out = bio_out;
664 	ctx->offset_in = 0;
665 	ctx->offset_out = 0;
666 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
667 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
668 	ctx->sector = sector + cc->iv_offset;
669 	init_completion(&ctx->restart);
670 }
671 
672 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
673 					     struct ablkcipher_request *req)
674 {
675 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
676 }
677 
678 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
679 					       struct dm_crypt_request *dmreq)
680 {
681 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
682 }
683 
684 static u8 *iv_of_dmreq(struct crypt_config *cc,
685 		       struct dm_crypt_request *dmreq)
686 {
687 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
688 		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
689 }
690 
691 static int crypt_convert_block(struct crypt_config *cc,
692 			       struct convert_context *ctx,
693 			       struct ablkcipher_request *req)
694 {
695 	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
696 	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
697 	struct dm_crypt_request *dmreq;
698 	u8 *iv;
699 	int r = 0;
700 
701 	dmreq = dmreq_of_req(cc, req);
702 	iv = iv_of_dmreq(cc, dmreq);
703 
704 	dmreq->iv_sector = ctx->sector;
705 	dmreq->ctx = ctx;
706 	sg_init_table(&dmreq->sg_in, 1);
707 	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
708 		    bv_in->bv_offset + ctx->offset_in);
709 
710 	sg_init_table(&dmreq->sg_out, 1);
711 	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
712 		    bv_out->bv_offset + ctx->offset_out);
713 
714 	ctx->offset_in += 1 << SECTOR_SHIFT;
715 	if (ctx->offset_in >= bv_in->bv_len) {
716 		ctx->offset_in = 0;
717 		ctx->idx_in++;
718 	}
719 
720 	ctx->offset_out += 1 << SECTOR_SHIFT;
721 	if (ctx->offset_out >= bv_out->bv_len) {
722 		ctx->offset_out = 0;
723 		ctx->idx_out++;
724 	}
725 
726 	if (cc->iv_gen_ops) {
727 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
728 		if (r < 0)
729 			return r;
730 	}
731 
732 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
733 				     1 << SECTOR_SHIFT, iv);
734 
735 	if (bio_data_dir(ctx->bio_in) == WRITE)
736 		r = crypto_ablkcipher_encrypt(req);
737 	else
738 		r = crypto_ablkcipher_decrypt(req);
739 
740 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
741 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
742 
743 	return r;
744 }
745 
746 static void kcryptd_async_done(struct crypto_async_request *async_req,
747 			       int error);
748 
749 static void crypt_alloc_req(struct crypt_config *cc,
750 			    struct convert_context *ctx)
751 {
752 	struct crypt_cpu *this_cc = this_crypt_config(cc);
753 	unsigned key_index = ctx->sector & (cc->tfms_count - 1);
754 
755 	if (!this_cc->req)
756 		this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
757 
758 	ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
759 	ablkcipher_request_set_callback(this_cc->req,
760 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
761 	    kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
762 }
763 
764 /*
765  * Encrypt / decrypt data from one bio to another one (can be the same one)
766  */
767 static int crypt_convert(struct crypt_config *cc,
768 			 struct convert_context *ctx)
769 {
770 	struct crypt_cpu *this_cc = this_crypt_config(cc);
771 	int r;
772 
773 	atomic_set(&ctx->pending, 1);
774 
775 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
776 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
777 
778 		crypt_alloc_req(cc, ctx);
779 
780 		atomic_inc(&ctx->pending);
781 
782 		r = crypt_convert_block(cc, ctx, this_cc->req);
783 
784 		switch (r) {
785 		/* async */
786 		case -EBUSY:
787 			wait_for_completion(&ctx->restart);
788 			INIT_COMPLETION(ctx->restart);
789 			/* fall through*/
790 		case -EINPROGRESS:
791 			this_cc->req = NULL;
792 			ctx->sector++;
793 			continue;
794 
795 		/* sync */
796 		case 0:
797 			atomic_dec(&ctx->pending);
798 			ctx->sector++;
799 			cond_resched();
800 			continue;
801 
802 		/* error */
803 		default:
804 			atomic_dec(&ctx->pending);
805 			return r;
806 		}
807 	}
808 
809 	return 0;
810 }
811 
812 static void dm_crypt_bio_destructor(struct bio *bio)
813 {
814 	struct dm_crypt_io *io = bio->bi_private;
815 	struct crypt_config *cc = io->target->private;
816 
817 	bio_free(bio, cc->bs);
818 }
819 
820 /*
821  * Generate a new unfragmented bio with the given size
822  * This should never violate the device limitations
823  * May return a smaller bio when running out of pages, indicated by
824  * *out_of_pages set to 1.
825  */
826 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
827 				      unsigned *out_of_pages)
828 {
829 	struct crypt_config *cc = io->target->private;
830 	struct bio *clone;
831 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
832 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
833 	unsigned i, len;
834 	struct page *page;
835 
836 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
837 	if (!clone)
838 		return NULL;
839 
840 	clone_init(io, clone);
841 	*out_of_pages = 0;
842 
843 	for (i = 0; i < nr_iovecs; i++) {
844 		page = mempool_alloc(cc->page_pool, gfp_mask);
845 		if (!page) {
846 			*out_of_pages = 1;
847 			break;
848 		}
849 
850 		/*
851 		 * if additional pages cannot be allocated without waiting,
852 		 * return a partially allocated bio, the caller will then try
853 		 * to allocate additional bios while submitting this partial bio
854 		 */
855 		if (i == (MIN_BIO_PAGES - 1))
856 			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
857 
858 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
859 
860 		if (!bio_add_page(clone, page, len, 0)) {
861 			mempool_free(page, cc->page_pool);
862 			break;
863 		}
864 
865 		size -= len;
866 	}
867 
868 	if (!clone->bi_size) {
869 		bio_put(clone);
870 		return NULL;
871 	}
872 
873 	return clone;
874 }
875 
876 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
877 {
878 	unsigned int i;
879 	struct bio_vec *bv;
880 
881 	for (i = 0; i < clone->bi_vcnt; i++) {
882 		bv = bio_iovec_idx(clone, i);
883 		BUG_ON(!bv->bv_page);
884 		mempool_free(bv->bv_page, cc->page_pool);
885 		bv->bv_page = NULL;
886 	}
887 }
888 
889 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
890 					  struct bio *bio, sector_t sector)
891 {
892 	struct crypt_config *cc = ti->private;
893 	struct dm_crypt_io *io;
894 
895 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
896 	io->target = ti;
897 	io->base_bio = bio;
898 	io->sector = sector;
899 	io->error = 0;
900 	io->base_io = NULL;
901 	atomic_set(&io->pending, 0);
902 
903 	return io;
904 }
905 
906 static void crypt_inc_pending(struct dm_crypt_io *io)
907 {
908 	atomic_inc(&io->pending);
909 }
910 
911 /*
912  * One of the bios was finished. Check for completion of
913  * the whole request and correctly clean up the buffer.
914  * If base_io is set, wait for the last fragment to complete.
915  */
916 static void crypt_dec_pending(struct dm_crypt_io *io)
917 {
918 	struct crypt_config *cc = io->target->private;
919 	struct bio *base_bio = io->base_bio;
920 	struct dm_crypt_io *base_io = io->base_io;
921 	int error = io->error;
922 
923 	if (!atomic_dec_and_test(&io->pending))
924 		return;
925 
926 	mempool_free(io, cc->io_pool);
927 
928 	if (likely(!base_io))
929 		bio_endio(base_bio, error);
930 	else {
931 		if (error && !base_io->error)
932 			base_io->error = error;
933 		crypt_dec_pending(base_io);
934 	}
935 }
936 
937 /*
938  * kcryptd/kcryptd_io:
939  *
940  * Needed because it would be very unwise to do decryption in an
941  * interrupt context.
942  *
943  * kcryptd performs the actual encryption or decryption.
944  *
945  * kcryptd_io performs the IO submission.
946  *
947  * They must be separated as otherwise the final stages could be
948  * starved by new requests which can block in the first stages due
949  * to memory allocation.
950  *
951  * The work is done per CPU global for all dm-crypt instances.
952  * They should not depend on each other and do not block.
953  */
954 static void crypt_endio(struct bio *clone, int error)
955 {
956 	struct dm_crypt_io *io = clone->bi_private;
957 	struct crypt_config *cc = io->target->private;
958 	unsigned rw = bio_data_dir(clone);
959 
960 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
961 		error = -EIO;
962 
963 	/*
964 	 * free the processed pages
965 	 */
966 	if (rw == WRITE)
967 		crypt_free_buffer_pages(cc, clone);
968 
969 	bio_put(clone);
970 
971 	if (rw == READ && !error) {
972 		kcryptd_queue_crypt(io);
973 		return;
974 	}
975 
976 	if (unlikely(error))
977 		io->error = error;
978 
979 	crypt_dec_pending(io);
980 }
981 
982 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
983 {
984 	struct crypt_config *cc = io->target->private;
985 
986 	clone->bi_private = io;
987 	clone->bi_end_io  = crypt_endio;
988 	clone->bi_bdev    = cc->dev->bdev;
989 	clone->bi_rw      = io->base_bio->bi_rw;
990 	clone->bi_destructor = dm_crypt_bio_destructor;
991 }
992 
993 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
994 {
995 	struct crypt_config *cc = io->target->private;
996 	struct bio *base_bio = io->base_bio;
997 	struct bio *clone;
998 
999 	/*
1000 	 * The block layer might modify the bvec array, so always
1001 	 * copy the required bvecs because we need the original
1002 	 * one in order to decrypt the whole bio data *afterwards*.
1003 	 */
1004 	clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
1005 	if (!clone)
1006 		return 1;
1007 
1008 	crypt_inc_pending(io);
1009 
1010 	clone_init(io, clone);
1011 	clone->bi_idx = 0;
1012 	clone->bi_vcnt = bio_segments(base_bio);
1013 	clone->bi_size = base_bio->bi_size;
1014 	clone->bi_sector = cc->start + io->sector;
1015 	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
1016 	       sizeof(struct bio_vec) * clone->bi_vcnt);
1017 
1018 	generic_make_request(clone);
1019 	return 0;
1020 }
1021 
1022 static void kcryptd_io_write(struct dm_crypt_io *io)
1023 {
1024 	struct bio *clone = io->ctx.bio_out;
1025 	generic_make_request(clone);
1026 }
1027 
1028 static void kcryptd_io(struct work_struct *work)
1029 {
1030 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1031 
1032 	if (bio_data_dir(io->base_bio) == READ) {
1033 		crypt_inc_pending(io);
1034 		if (kcryptd_io_read(io, GFP_NOIO))
1035 			io->error = -ENOMEM;
1036 		crypt_dec_pending(io);
1037 	} else
1038 		kcryptd_io_write(io);
1039 }
1040 
1041 static void kcryptd_queue_io(struct dm_crypt_io *io)
1042 {
1043 	struct crypt_config *cc = io->target->private;
1044 
1045 	INIT_WORK(&io->work, kcryptd_io);
1046 	queue_work(cc->io_queue, &io->work);
1047 }
1048 
1049 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
1050 					  int error, int async)
1051 {
1052 	struct bio *clone = io->ctx.bio_out;
1053 	struct crypt_config *cc = io->target->private;
1054 
1055 	if (unlikely(error < 0)) {
1056 		crypt_free_buffer_pages(cc, clone);
1057 		bio_put(clone);
1058 		io->error = -EIO;
1059 		crypt_dec_pending(io);
1060 		return;
1061 	}
1062 
1063 	/* crypt_convert should have filled the clone bio */
1064 	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1065 
1066 	clone->bi_sector = cc->start + io->sector;
1067 
1068 	if (async)
1069 		kcryptd_queue_io(io);
1070 	else
1071 		generic_make_request(clone);
1072 }
1073 
1074 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1075 {
1076 	struct crypt_config *cc = io->target->private;
1077 	struct bio *clone;
1078 	struct dm_crypt_io *new_io;
1079 	int crypt_finished;
1080 	unsigned out_of_pages = 0;
1081 	unsigned remaining = io->base_bio->bi_size;
1082 	sector_t sector = io->sector;
1083 	int r;
1084 
1085 	/*
1086 	 * Prevent io from disappearing until this function completes.
1087 	 */
1088 	crypt_inc_pending(io);
1089 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1090 
1091 	/*
1092 	 * The allocated buffers can be smaller than the whole bio,
1093 	 * so repeat the whole process until all the data can be handled.
1094 	 */
1095 	while (remaining) {
1096 		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1097 		if (unlikely(!clone)) {
1098 			io->error = -ENOMEM;
1099 			break;
1100 		}
1101 
1102 		io->ctx.bio_out = clone;
1103 		io->ctx.idx_out = 0;
1104 
1105 		remaining -= clone->bi_size;
1106 		sector += bio_sectors(clone);
1107 
1108 		crypt_inc_pending(io);
1109 		r = crypt_convert(cc, &io->ctx);
1110 		crypt_finished = atomic_dec_and_test(&io->ctx.pending);
1111 
1112 		/* Encryption was already finished, submit io now */
1113 		if (crypt_finished) {
1114 			kcryptd_crypt_write_io_submit(io, r, 0);
1115 
1116 			/*
1117 			 * If there was an error, do not try next fragments.
1118 			 * For async, error is processed in async handler.
1119 			 */
1120 			if (unlikely(r < 0))
1121 				break;
1122 
1123 			io->sector = sector;
1124 		}
1125 
1126 		/*
1127 		 * Out of memory -> run queues
1128 		 * But don't wait if split was due to the io size restriction
1129 		 */
1130 		if (unlikely(out_of_pages))
1131 			congestion_wait(BLK_RW_ASYNC, HZ/100);
1132 
1133 		/*
1134 		 * With async crypto it is unsafe to share the crypto context
1135 		 * between fragments, so switch to a new dm_crypt_io structure.
1136 		 */
1137 		if (unlikely(!crypt_finished && remaining)) {
1138 			new_io = crypt_io_alloc(io->target, io->base_bio,
1139 						sector);
1140 			crypt_inc_pending(new_io);
1141 			crypt_convert_init(cc, &new_io->ctx, NULL,
1142 					   io->base_bio, sector);
1143 			new_io->ctx.idx_in = io->ctx.idx_in;
1144 			new_io->ctx.offset_in = io->ctx.offset_in;
1145 
1146 			/*
1147 			 * Fragments after the first use the base_io
1148 			 * pending count.
1149 			 */
1150 			if (!io->base_io)
1151 				new_io->base_io = io;
1152 			else {
1153 				new_io->base_io = io->base_io;
1154 				crypt_inc_pending(io->base_io);
1155 				crypt_dec_pending(io);
1156 			}
1157 
1158 			io = new_io;
1159 		}
1160 	}
1161 
1162 	crypt_dec_pending(io);
1163 }
1164 
1165 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
1166 {
1167 	if (unlikely(error < 0))
1168 		io->error = -EIO;
1169 
1170 	crypt_dec_pending(io);
1171 }
1172 
1173 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1174 {
1175 	struct crypt_config *cc = io->target->private;
1176 	int r = 0;
1177 
1178 	crypt_inc_pending(io);
1179 
1180 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1181 			   io->sector);
1182 
1183 	r = crypt_convert(cc, &io->ctx);
1184 
1185 	if (atomic_dec_and_test(&io->ctx.pending))
1186 		kcryptd_crypt_read_done(io, r);
1187 
1188 	crypt_dec_pending(io);
1189 }
1190 
1191 static void kcryptd_async_done(struct crypto_async_request *async_req,
1192 			       int error)
1193 {
1194 	struct dm_crypt_request *dmreq = async_req->data;
1195 	struct convert_context *ctx = dmreq->ctx;
1196 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1197 	struct crypt_config *cc = io->target->private;
1198 
1199 	if (error == -EINPROGRESS) {
1200 		complete(&ctx->restart);
1201 		return;
1202 	}
1203 
1204 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1205 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1206 
1207 	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1208 
1209 	if (!atomic_dec_and_test(&ctx->pending))
1210 		return;
1211 
1212 	if (bio_data_dir(io->base_bio) == READ)
1213 		kcryptd_crypt_read_done(io, error);
1214 	else
1215 		kcryptd_crypt_write_io_submit(io, error, 1);
1216 }
1217 
1218 static void kcryptd_crypt(struct work_struct *work)
1219 {
1220 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1221 
1222 	if (bio_data_dir(io->base_bio) == READ)
1223 		kcryptd_crypt_read_convert(io);
1224 	else
1225 		kcryptd_crypt_write_convert(io);
1226 }
1227 
1228 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1229 {
1230 	struct crypt_config *cc = io->target->private;
1231 
1232 	INIT_WORK(&io->work, kcryptd_crypt);
1233 	queue_work(cc->crypt_queue, &io->work);
1234 }
1235 
1236 /*
1237  * Decode key from its hex representation
1238  */
1239 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1240 {
1241 	char buffer[3];
1242 	char *endp;
1243 	unsigned int i;
1244 
1245 	buffer[2] = '\0';
1246 
1247 	for (i = 0; i < size; i++) {
1248 		buffer[0] = *hex++;
1249 		buffer[1] = *hex++;
1250 
1251 		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
1252 
1253 		if (endp != &buffer[2])
1254 			return -EINVAL;
1255 	}
1256 
1257 	if (*hex != '\0')
1258 		return -EINVAL;
1259 
1260 	return 0;
1261 }
1262 
1263 /*
1264  * Encode key into its hex representation
1265  */
1266 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
1267 {
1268 	unsigned int i;
1269 
1270 	for (i = 0; i < size; i++) {
1271 		sprintf(hex, "%02x", *key);
1272 		hex += 2;
1273 		key++;
1274 	}
1275 }
1276 
1277 static void crypt_free_tfms(struct crypt_config *cc, int cpu)
1278 {
1279 	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1280 	unsigned i;
1281 
1282 	for (i = 0; i < cc->tfms_count; i++)
1283 		if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
1284 			crypto_free_ablkcipher(cpu_cc->tfms[i]);
1285 			cpu_cc->tfms[i] = NULL;
1286 		}
1287 }
1288 
1289 static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
1290 {
1291 	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1292 	unsigned i;
1293 	int err;
1294 
1295 	for (i = 0; i < cc->tfms_count; i++) {
1296 		cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1297 		if (IS_ERR(cpu_cc->tfms[i])) {
1298 			err = PTR_ERR(cpu_cc->tfms[i]);
1299 			crypt_free_tfms(cc, cpu);
1300 			return err;
1301 		}
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 static int crypt_setkey_allcpus(struct crypt_config *cc)
1308 {
1309 	unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1310 	int cpu, err = 0, i, r;
1311 
1312 	for_each_possible_cpu(cpu) {
1313 		for (i = 0; i < cc->tfms_count; i++) {
1314 			r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
1315 						     cc->key + (i * subkey_size), subkey_size);
1316 			if (r)
1317 				err = r;
1318 		}
1319 	}
1320 
1321 	return err;
1322 }
1323 
1324 static int crypt_set_key(struct crypt_config *cc, char *key)
1325 {
1326 	int r = -EINVAL;
1327 	int key_string_len = strlen(key);
1328 
1329 	/* The key size may not be changed. */
1330 	if (cc->key_size != (key_string_len >> 1))
1331 		goto out;
1332 
1333 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1334 	if (!cc->key_size && strcmp(key, "-"))
1335 		goto out;
1336 
1337 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1338 		goto out;
1339 
1340 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1341 
1342 	r = crypt_setkey_allcpus(cc);
1343 
1344 out:
1345 	/* Hex key string not needed after here, so wipe it. */
1346 	memset(key, '0', key_string_len);
1347 
1348 	return r;
1349 }
1350 
1351 static int crypt_wipe_key(struct crypt_config *cc)
1352 {
1353 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1354 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1355 
1356 	return crypt_setkey_allcpus(cc);
1357 }
1358 
1359 static void crypt_dtr(struct dm_target *ti)
1360 {
1361 	struct crypt_config *cc = ti->private;
1362 	struct crypt_cpu *cpu_cc;
1363 	int cpu;
1364 
1365 	ti->private = NULL;
1366 
1367 	if (!cc)
1368 		return;
1369 
1370 	if (cc->io_queue)
1371 		destroy_workqueue(cc->io_queue);
1372 	if (cc->crypt_queue)
1373 		destroy_workqueue(cc->crypt_queue);
1374 
1375 	if (cc->cpu)
1376 		for_each_possible_cpu(cpu) {
1377 			cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1378 			if (cpu_cc->req)
1379 				mempool_free(cpu_cc->req, cc->req_pool);
1380 			crypt_free_tfms(cc, cpu);
1381 		}
1382 
1383 	if (cc->bs)
1384 		bioset_free(cc->bs);
1385 
1386 	if (cc->page_pool)
1387 		mempool_destroy(cc->page_pool);
1388 	if (cc->req_pool)
1389 		mempool_destroy(cc->req_pool);
1390 	if (cc->io_pool)
1391 		mempool_destroy(cc->io_pool);
1392 
1393 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1394 		cc->iv_gen_ops->dtr(cc);
1395 
1396 	if (cc->dev)
1397 		dm_put_device(ti, cc->dev);
1398 
1399 	if (cc->cpu)
1400 		free_percpu(cc->cpu);
1401 
1402 	kzfree(cc->cipher);
1403 	kzfree(cc->cipher_string);
1404 
1405 	/* Must zero key material before freeing */
1406 	kzfree(cc);
1407 }
1408 
1409 static int crypt_ctr_cipher(struct dm_target *ti,
1410 			    char *cipher_in, char *key)
1411 {
1412 	struct crypt_config *cc = ti->private;
1413 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1414 	char *cipher_api = NULL;
1415 	int cpu, ret = -EINVAL;
1416 
1417 	/* Convert to crypto api definition? */
1418 	if (strchr(cipher_in, '(')) {
1419 		ti->error = "Bad cipher specification";
1420 		return -EINVAL;
1421 	}
1422 
1423 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1424 	if (!cc->cipher_string)
1425 		goto bad_mem;
1426 
1427 	/*
1428 	 * Legacy dm-crypt cipher specification
1429 	 * cipher[:keycount]-mode-iv:ivopts
1430 	 */
1431 	tmp = cipher_in;
1432 	keycount = strsep(&tmp, "-");
1433 	cipher = strsep(&keycount, ":");
1434 
1435 	if (!keycount)
1436 		cc->tfms_count = 1;
1437 	else if (sscanf(keycount, "%u", &cc->tfms_count) != 1 ||
1438 		 !is_power_of_2(cc->tfms_count)) {
1439 		ti->error = "Bad cipher key count specification";
1440 		return -EINVAL;
1441 	}
1442 	cc->key_parts = cc->tfms_count;
1443 
1444 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1445 	if (!cc->cipher)
1446 		goto bad_mem;
1447 
1448 	chainmode = strsep(&tmp, "-");
1449 	ivopts = strsep(&tmp, "-");
1450 	ivmode = strsep(&ivopts, ":");
1451 
1452 	if (tmp)
1453 		DMWARN("Ignoring unexpected additional cipher options");
1454 
1455 	cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
1456 				 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
1457 				 __alignof__(struct crypt_cpu));
1458 	if (!cc->cpu) {
1459 		ti->error = "Cannot allocate per cpu state";
1460 		goto bad_mem;
1461 	}
1462 
1463 	/*
1464 	 * For compatibility with the original dm-crypt mapping format, if
1465 	 * only the cipher name is supplied, use cbc-plain.
1466 	 */
1467 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1468 		chainmode = "cbc";
1469 		ivmode = "plain";
1470 	}
1471 
1472 	if (strcmp(chainmode, "ecb") && !ivmode) {
1473 		ti->error = "IV mechanism required";
1474 		return -EINVAL;
1475 	}
1476 
1477 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1478 	if (!cipher_api)
1479 		goto bad_mem;
1480 
1481 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1482 		       "%s(%s)", chainmode, cipher);
1483 	if (ret < 0) {
1484 		kfree(cipher_api);
1485 		goto bad_mem;
1486 	}
1487 
1488 	/* Allocate cipher */
1489 	for_each_possible_cpu(cpu) {
1490 		ret = crypt_alloc_tfms(cc, cpu, cipher_api);
1491 		if (ret < 0) {
1492 			ti->error = "Error allocating crypto tfm";
1493 			goto bad;
1494 		}
1495 	}
1496 
1497 	/* Initialize and set key */
1498 	ret = crypt_set_key(cc, key);
1499 	if (ret < 0) {
1500 		ti->error = "Error decoding and setting key";
1501 		goto bad;
1502 	}
1503 
1504 	/* Initialize IV */
1505 	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1506 	if (cc->iv_size)
1507 		/* at least a 64 bit sector number should fit in our buffer */
1508 		cc->iv_size = max(cc->iv_size,
1509 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1510 	else if (ivmode) {
1511 		DMWARN("Selected cipher does not support IVs");
1512 		ivmode = NULL;
1513 	}
1514 
1515 	/* Choose ivmode, see comments at iv code. */
1516 	if (ivmode == NULL)
1517 		cc->iv_gen_ops = NULL;
1518 	else if (strcmp(ivmode, "plain") == 0)
1519 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1520 	else if (strcmp(ivmode, "plain64") == 0)
1521 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1522 	else if (strcmp(ivmode, "essiv") == 0)
1523 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1524 	else if (strcmp(ivmode, "benbi") == 0)
1525 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1526 	else if (strcmp(ivmode, "null") == 0)
1527 		cc->iv_gen_ops = &crypt_iv_null_ops;
1528 	else if (strcmp(ivmode, "lmk") == 0) {
1529 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1530 		/* Version 2 and 3 is recognised according
1531 		 * to length of provided multi-key string.
1532 		 * If present (version 3), last key is used as IV seed.
1533 		 */
1534 		if (cc->key_size % cc->key_parts)
1535 			cc->key_parts++;
1536 	} else {
1537 		ret = -EINVAL;
1538 		ti->error = "Invalid IV mode";
1539 		goto bad;
1540 	}
1541 
1542 	/* Allocate IV */
1543 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1544 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1545 		if (ret < 0) {
1546 			ti->error = "Error creating IV";
1547 			goto bad;
1548 		}
1549 	}
1550 
1551 	/* Initialize IV (set keys for ESSIV etc) */
1552 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1553 		ret = cc->iv_gen_ops->init(cc);
1554 		if (ret < 0) {
1555 			ti->error = "Error initialising IV";
1556 			goto bad;
1557 		}
1558 	}
1559 
1560 	ret = 0;
1561 bad:
1562 	kfree(cipher_api);
1563 	return ret;
1564 
1565 bad_mem:
1566 	ti->error = "Cannot allocate cipher strings";
1567 	return -ENOMEM;
1568 }
1569 
1570 /*
1571  * Construct an encryption mapping:
1572  * <cipher> <key> <iv_offset> <dev_path> <start>
1573  */
1574 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1575 {
1576 	struct crypt_config *cc;
1577 	unsigned int key_size, opt_params;
1578 	unsigned long long tmpll;
1579 	int ret;
1580 	struct dm_arg_set as;
1581 	const char *opt_string;
1582 
1583 	static struct dm_arg _args[] = {
1584 		{0, 1, "Invalid number of feature args"},
1585 	};
1586 
1587 	if (argc < 5) {
1588 		ti->error = "Not enough arguments";
1589 		return -EINVAL;
1590 	}
1591 
1592 	key_size = strlen(argv[1]) >> 1;
1593 
1594 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1595 	if (!cc) {
1596 		ti->error = "Cannot allocate encryption context";
1597 		return -ENOMEM;
1598 	}
1599 	cc->key_size = key_size;
1600 
1601 	ti->private = cc;
1602 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1603 	if (ret < 0)
1604 		goto bad;
1605 
1606 	ret = -ENOMEM;
1607 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1608 	if (!cc->io_pool) {
1609 		ti->error = "Cannot allocate crypt io mempool";
1610 		goto bad;
1611 	}
1612 
1613 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1614 	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1615 	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1616 	cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1617 			   ~(crypto_tfm_ctx_alignment() - 1);
1618 
1619 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1620 			sizeof(struct dm_crypt_request) + cc->iv_size);
1621 	if (!cc->req_pool) {
1622 		ti->error = "Cannot allocate crypt request mempool";
1623 		goto bad;
1624 	}
1625 
1626 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1627 	if (!cc->page_pool) {
1628 		ti->error = "Cannot allocate page mempool";
1629 		goto bad;
1630 	}
1631 
1632 	cc->bs = bioset_create(MIN_IOS, 0);
1633 	if (!cc->bs) {
1634 		ti->error = "Cannot allocate crypt bioset";
1635 		goto bad;
1636 	}
1637 
1638 	ret = -EINVAL;
1639 	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1640 		ti->error = "Invalid iv_offset sector";
1641 		goto bad;
1642 	}
1643 	cc->iv_offset = tmpll;
1644 
1645 	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1646 		ti->error = "Device lookup failed";
1647 		goto bad;
1648 	}
1649 
1650 	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1651 		ti->error = "Invalid device sector";
1652 		goto bad;
1653 	}
1654 	cc->start = tmpll;
1655 
1656 	argv += 5;
1657 	argc -= 5;
1658 
1659 	/* Optional parameters */
1660 	if (argc) {
1661 		as.argc = argc;
1662 		as.argv = argv;
1663 
1664 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1665 		if (ret)
1666 			goto bad;
1667 
1668 		opt_string = dm_shift_arg(&as);
1669 
1670 		if (opt_params == 1 && opt_string &&
1671 		    !strcasecmp(opt_string, "allow_discards"))
1672 			ti->num_discard_requests = 1;
1673 		else if (opt_params) {
1674 			ret = -EINVAL;
1675 			ti->error = "Invalid feature arguments";
1676 			goto bad;
1677 		}
1678 	}
1679 
1680 	ret = -ENOMEM;
1681 	cc->io_queue = alloc_workqueue("kcryptd_io",
1682 				       WQ_NON_REENTRANT|
1683 				       WQ_MEM_RECLAIM,
1684 				       1);
1685 	if (!cc->io_queue) {
1686 		ti->error = "Couldn't create kcryptd io queue";
1687 		goto bad;
1688 	}
1689 
1690 	cc->crypt_queue = alloc_workqueue("kcryptd",
1691 					  WQ_NON_REENTRANT|
1692 					  WQ_CPU_INTENSIVE|
1693 					  WQ_MEM_RECLAIM,
1694 					  1);
1695 	if (!cc->crypt_queue) {
1696 		ti->error = "Couldn't create kcryptd queue";
1697 		goto bad;
1698 	}
1699 
1700 	ti->num_flush_requests = 1;
1701 	ti->discard_zeroes_data_unsupported = 1;
1702 
1703 	return 0;
1704 
1705 bad:
1706 	crypt_dtr(ti);
1707 	return ret;
1708 }
1709 
1710 static int crypt_map(struct dm_target *ti, struct bio *bio,
1711 		     union map_info *map_context)
1712 {
1713 	struct dm_crypt_io *io;
1714 	struct crypt_config *cc;
1715 
1716 	/*
1717 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1718 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1719 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1720 	 */
1721 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1722 		cc = ti->private;
1723 		bio->bi_bdev = cc->dev->bdev;
1724 		if (bio_sectors(bio))
1725 			bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1726 		return DM_MAPIO_REMAPPED;
1727 	}
1728 
1729 	io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
1730 
1731 	if (bio_data_dir(io->base_bio) == READ) {
1732 		if (kcryptd_io_read(io, GFP_NOWAIT))
1733 			kcryptd_queue_io(io);
1734 	} else
1735 		kcryptd_queue_crypt(io);
1736 
1737 	return DM_MAPIO_SUBMITTED;
1738 }
1739 
1740 static int crypt_status(struct dm_target *ti, status_type_t type,
1741 			char *result, unsigned int maxlen)
1742 {
1743 	struct crypt_config *cc = ti->private;
1744 	unsigned int sz = 0;
1745 
1746 	switch (type) {
1747 	case STATUSTYPE_INFO:
1748 		result[0] = '\0';
1749 		break;
1750 
1751 	case STATUSTYPE_TABLE:
1752 		DMEMIT("%s ", cc->cipher_string);
1753 
1754 		if (cc->key_size > 0) {
1755 			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1756 				return -ENOMEM;
1757 
1758 			crypt_encode_key(result + sz, cc->key, cc->key_size);
1759 			sz += cc->key_size << 1;
1760 		} else {
1761 			if (sz >= maxlen)
1762 				return -ENOMEM;
1763 			result[sz++] = '-';
1764 		}
1765 
1766 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1767 				cc->dev->name, (unsigned long long)cc->start);
1768 
1769 		if (ti->num_discard_requests)
1770 			DMEMIT(" 1 allow_discards");
1771 
1772 		break;
1773 	}
1774 	return 0;
1775 }
1776 
1777 static void crypt_postsuspend(struct dm_target *ti)
1778 {
1779 	struct crypt_config *cc = ti->private;
1780 
1781 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1782 }
1783 
1784 static int crypt_preresume(struct dm_target *ti)
1785 {
1786 	struct crypt_config *cc = ti->private;
1787 
1788 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1789 		DMERR("aborting resume - crypt key is not set.");
1790 		return -EAGAIN;
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 static void crypt_resume(struct dm_target *ti)
1797 {
1798 	struct crypt_config *cc = ti->private;
1799 
1800 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1801 }
1802 
1803 /* Message interface
1804  *	key set <key>
1805  *	key wipe
1806  */
1807 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1808 {
1809 	struct crypt_config *cc = ti->private;
1810 	int ret = -EINVAL;
1811 
1812 	if (argc < 2)
1813 		goto error;
1814 
1815 	if (!strcasecmp(argv[0], "key")) {
1816 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1817 			DMWARN("not suspended during key manipulation.");
1818 			return -EINVAL;
1819 		}
1820 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1821 			ret = crypt_set_key(cc, argv[2]);
1822 			if (ret)
1823 				return ret;
1824 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1825 				ret = cc->iv_gen_ops->init(cc);
1826 			return ret;
1827 		}
1828 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1829 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1830 				ret = cc->iv_gen_ops->wipe(cc);
1831 				if (ret)
1832 					return ret;
1833 			}
1834 			return crypt_wipe_key(cc);
1835 		}
1836 	}
1837 
1838 error:
1839 	DMWARN("unrecognised message received.");
1840 	return -EINVAL;
1841 }
1842 
1843 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1844 		       struct bio_vec *biovec, int max_size)
1845 {
1846 	struct crypt_config *cc = ti->private;
1847 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1848 
1849 	if (!q->merge_bvec_fn)
1850 		return max_size;
1851 
1852 	bvm->bi_bdev = cc->dev->bdev;
1853 	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1854 
1855 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1856 }
1857 
1858 static int crypt_iterate_devices(struct dm_target *ti,
1859 				 iterate_devices_callout_fn fn, void *data)
1860 {
1861 	struct crypt_config *cc = ti->private;
1862 
1863 	return fn(ti, cc->dev, cc->start, ti->len, data);
1864 }
1865 
1866 static struct target_type crypt_target = {
1867 	.name   = "crypt",
1868 	.version = {1, 11, 0},
1869 	.module = THIS_MODULE,
1870 	.ctr    = crypt_ctr,
1871 	.dtr    = crypt_dtr,
1872 	.map    = crypt_map,
1873 	.status = crypt_status,
1874 	.postsuspend = crypt_postsuspend,
1875 	.preresume = crypt_preresume,
1876 	.resume = crypt_resume,
1877 	.message = crypt_message,
1878 	.merge  = crypt_merge,
1879 	.iterate_devices = crypt_iterate_devices,
1880 };
1881 
1882 static int __init dm_crypt_init(void)
1883 {
1884 	int r;
1885 
1886 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1887 	if (!_crypt_io_pool)
1888 		return -ENOMEM;
1889 
1890 	r = dm_register_target(&crypt_target);
1891 	if (r < 0) {
1892 		DMERR("register failed %d", r);
1893 		kmem_cache_destroy(_crypt_io_pool);
1894 	}
1895 
1896 	return r;
1897 }
1898 
1899 static void __exit dm_crypt_exit(void)
1900 {
1901 	dm_unregister_target(&crypt_target);
1902 	kmem_cache_destroy(_crypt_io_pool);
1903 }
1904 
1905 module_init(dm_crypt_init);
1906 module_exit(dm_crypt_exit);
1907 
1908 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1909 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1910 MODULE_LICENSE("GPL");
1911