1 /* 2 * Copyright (C) 2003 Jana Saout <jana@saout.de> 3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved. 5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com> 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/completion.h> 11 #include <linux/err.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/bio.h> 16 #include <linux/blkdev.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/crypto.h> 20 #include <linux/workqueue.h> 21 #include <linux/kthread.h> 22 #include <linux/backing-dev.h> 23 #include <linux/atomic.h> 24 #include <linux/scatterlist.h> 25 #include <linux/rbtree.h> 26 #include <asm/page.h> 27 #include <asm/unaligned.h> 28 #include <crypto/hash.h> 29 #include <crypto/md5.h> 30 #include <crypto/algapi.h> 31 #include <crypto/skcipher.h> 32 33 #include <linux/device-mapper.h> 34 35 #define DM_MSG_PREFIX "crypt" 36 37 /* 38 * context holding the current state of a multi-part conversion 39 */ 40 struct convert_context { 41 struct completion restart; 42 struct bio *bio_in; 43 struct bio *bio_out; 44 struct bvec_iter iter_in; 45 struct bvec_iter iter_out; 46 sector_t cc_sector; 47 atomic_t cc_pending; 48 struct skcipher_request *req; 49 }; 50 51 /* 52 * per bio private data 53 */ 54 struct dm_crypt_io { 55 struct crypt_config *cc; 56 struct bio *base_bio; 57 struct work_struct work; 58 59 struct convert_context ctx; 60 61 atomic_t io_pending; 62 int error; 63 sector_t sector; 64 65 struct rb_node rb_node; 66 } CRYPTO_MINALIGN_ATTR; 67 68 struct dm_crypt_request { 69 struct convert_context *ctx; 70 struct scatterlist sg_in; 71 struct scatterlist sg_out; 72 sector_t iv_sector; 73 }; 74 75 struct crypt_config; 76 77 struct crypt_iv_operations { 78 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 79 const char *opts); 80 void (*dtr)(struct crypt_config *cc); 81 int (*init)(struct crypt_config *cc); 82 int (*wipe)(struct crypt_config *cc); 83 int (*generator)(struct crypt_config *cc, u8 *iv, 84 struct dm_crypt_request *dmreq); 85 int (*post)(struct crypt_config *cc, u8 *iv, 86 struct dm_crypt_request *dmreq); 87 }; 88 89 struct iv_essiv_private { 90 struct crypto_ahash *hash_tfm; 91 u8 *salt; 92 }; 93 94 struct iv_benbi_private { 95 int shift; 96 }; 97 98 #define LMK_SEED_SIZE 64 /* hash + 0 */ 99 struct iv_lmk_private { 100 struct crypto_shash *hash_tfm; 101 u8 *seed; 102 }; 103 104 #define TCW_WHITENING_SIZE 16 105 struct iv_tcw_private { 106 struct crypto_shash *crc32_tfm; 107 u8 *iv_seed; 108 u8 *whitening; 109 }; 110 111 /* 112 * Crypt: maps a linear range of a block device 113 * and encrypts / decrypts at the same time. 114 */ 115 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, 116 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD }; 117 118 /* 119 * The fields in here must be read only after initialization. 120 */ 121 struct crypt_config { 122 struct dm_dev *dev; 123 sector_t start; 124 125 /* 126 * pool for per bio private data, crypto requests and 127 * encryption requeusts/buffer pages 128 */ 129 mempool_t *req_pool; 130 mempool_t *page_pool; 131 struct bio_set *bs; 132 struct mutex bio_alloc_lock; 133 134 struct workqueue_struct *io_queue; 135 struct workqueue_struct *crypt_queue; 136 137 struct task_struct *write_thread; 138 wait_queue_head_t write_thread_wait; 139 struct rb_root write_tree; 140 141 char *cipher; 142 char *cipher_string; 143 144 struct crypt_iv_operations *iv_gen_ops; 145 union { 146 struct iv_essiv_private essiv; 147 struct iv_benbi_private benbi; 148 struct iv_lmk_private lmk; 149 struct iv_tcw_private tcw; 150 } iv_gen_private; 151 sector_t iv_offset; 152 unsigned int iv_size; 153 154 /* ESSIV: struct crypto_cipher *essiv_tfm */ 155 void *iv_private; 156 struct crypto_skcipher **tfms; 157 unsigned tfms_count; 158 159 /* 160 * Layout of each crypto request: 161 * 162 * struct skcipher_request 163 * context 164 * padding 165 * struct dm_crypt_request 166 * padding 167 * IV 168 * 169 * The padding is added so that dm_crypt_request and the IV are 170 * correctly aligned. 171 */ 172 unsigned int dmreq_start; 173 174 unsigned int per_bio_data_size; 175 176 unsigned long flags; 177 unsigned int key_size; 178 unsigned int key_parts; /* independent parts in key buffer */ 179 unsigned int key_extra_size; /* additional keys length */ 180 u8 key[0]; 181 }; 182 183 #define MIN_IOS 64 184 185 static void clone_init(struct dm_crypt_io *, struct bio *); 186 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 187 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq); 188 189 /* 190 * Use this to access cipher attributes that are the same for each CPU. 191 */ 192 static struct crypto_skcipher *any_tfm(struct crypt_config *cc) 193 { 194 return cc->tfms[0]; 195 } 196 197 /* 198 * Different IV generation algorithms: 199 * 200 * plain: the initial vector is the 32-bit little-endian version of the sector 201 * number, padded with zeros if necessary. 202 * 203 * plain64: the initial vector is the 64-bit little-endian version of the sector 204 * number, padded with zeros if necessary. 205 * 206 * essiv: "encrypted sector|salt initial vector", the sector number is 207 * encrypted with the bulk cipher using a salt as key. The salt 208 * should be derived from the bulk cipher's key via hashing. 209 * 210 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 211 * (needed for LRW-32-AES and possible other narrow block modes) 212 * 213 * null: the initial vector is always zero. Provides compatibility with 214 * obsolete loop_fish2 devices. Do not use for new devices. 215 * 216 * lmk: Compatible implementation of the block chaining mode used 217 * by the Loop-AES block device encryption system 218 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 219 * It operates on full 512 byte sectors and uses CBC 220 * with an IV derived from the sector number, the data and 221 * optionally extra IV seed. 222 * This means that after decryption the first block 223 * of sector must be tweaked according to decrypted data. 224 * Loop-AES can use three encryption schemes: 225 * version 1: is plain aes-cbc mode 226 * version 2: uses 64 multikey scheme with lmk IV generator 227 * version 3: the same as version 2 with additional IV seed 228 * (it uses 65 keys, last key is used as IV seed) 229 * 230 * tcw: Compatible implementation of the block chaining mode used 231 * by the TrueCrypt device encryption system (prior to version 4.1). 232 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat 233 * It operates on full 512 byte sectors and uses CBC 234 * with an IV derived from initial key and the sector number. 235 * In addition, whitening value is applied on every sector, whitening 236 * is calculated from initial key, sector number and mixed using CRC32. 237 * Note that this encryption scheme is vulnerable to watermarking attacks 238 * and should be used for old compatible containers access only. 239 * 240 * plumb: unimplemented, see: 241 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 242 */ 243 244 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 245 struct dm_crypt_request *dmreq) 246 { 247 memset(iv, 0, cc->iv_size); 248 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 249 250 return 0; 251 } 252 253 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 254 struct dm_crypt_request *dmreq) 255 { 256 memset(iv, 0, cc->iv_size); 257 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 258 259 return 0; 260 } 261 262 /* Initialise ESSIV - compute salt but no local memory allocations */ 263 static int crypt_iv_essiv_init(struct crypt_config *cc) 264 { 265 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 266 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm); 267 struct scatterlist sg; 268 struct crypto_cipher *essiv_tfm; 269 int err; 270 271 sg_init_one(&sg, cc->key, cc->key_size); 272 ahash_request_set_tfm(req, essiv->hash_tfm); 273 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); 274 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size); 275 276 err = crypto_ahash_digest(req); 277 ahash_request_zero(req); 278 if (err) 279 return err; 280 281 essiv_tfm = cc->iv_private; 282 283 err = crypto_cipher_setkey(essiv_tfm, essiv->salt, 284 crypto_ahash_digestsize(essiv->hash_tfm)); 285 if (err) 286 return err; 287 288 return 0; 289 } 290 291 /* Wipe salt and reset key derived from volume key */ 292 static int crypt_iv_essiv_wipe(struct crypt_config *cc) 293 { 294 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 295 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm); 296 struct crypto_cipher *essiv_tfm; 297 int r, err = 0; 298 299 memset(essiv->salt, 0, salt_size); 300 301 essiv_tfm = cc->iv_private; 302 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size); 303 if (r) 304 err = r; 305 306 return err; 307 } 308 309 /* Set up per cpu cipher state */ 310 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc, 311 struct dm_target *ti, 312 u8 *salt, unsigned saltsize) 313 { 314 struct crypto_cipher *essiv_tfm; 315 int err; 316 317 /* Setup the essiv_tfm with the given salt */ 318 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC); 319 if (IS_ERR(essiv_tfm)) { 320 ti->error = "Error allocating crypto tfm for ESSIV"; 321 return essiv_tfm; 322 } 323 324 if (crypto_cipher_blocksize(essiv_tfm) != 325 crypto_skcipher_ivsize(any_tfm(cc))) { 326 ti->error = "Block size of ESSIV cipher does " 327 "not match IV size of block cipher"; 328 crypto_free_cipher(essiv_tfm); 329 return ERR_PTR(-EINVAL); 330 } 331 332 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize); 333 if (err) { 334 ti->error = "Failed to set key for ESSIV cipher"; 335 crypto_free_cipher(essiv_tfm); 336 return ERR_PTR(err); 337 } 338 339 return essiv_tfm; 340 } 341 342 static void crypt_iv_essiv_dtr(struct crypt_config *cc) 343 { 344 struct crypto_cipher *essiv_tfm; 345 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 346 347 crypto_free_ahash(essiv->hash_tfm); 348 essiv->hash_tfm = NULL; 349 350 kzfree(essiv->salt); 351 essiv->salt = NULL; 352 353 essiv_tfm = cc->iv_private; 354 355 if (essiv_tfm) 356 crypto_free_cipher(essiv_tfm); 357 358 cc->iv_private = NULL; 359 } 360 361 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, 362 const char *opts) 363 { 364 struct crypto_cipher *essiv_tfm = NULL; 365 struct crypto_ahash *hash_tfm = NULL; 366 u8 *salt = NULL; 367 int err; 368 369 if (!opts) { 370 ti->error = "Digest algorithm missing for ESSIV mode"; 371 return -EINVAL; 372 } 373 374 /* Allocate hash algorithm */ 375 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC); 376 if (IS_ERR(hash_tfm)) { 377 ti->error = "Error initializing ESSIV hash"; 378 err = PTR_ERR(hash_tfm); 379 goto bad; 380 } 381 382 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL); 383 if (!salt) { 384 ti->error = "Error kmallocing salt storage in ESSIV"; 385 err = -ENOMEM; 386 goto bad; 387 } 388 389 cc->iv_gen_private.essiv.salt = salt; 390 cc->iv_gen_private.essiv.hash_tfm = hash_tfm; 391 392 essiv_tfm = setup_essiv_cpu(cc, ti, salt, 393 crypto_ahash_digestsize(hash_tfm)); 394 if (IS_ERR(essiv_tfm)) { 395 crypt_iv_essiv_dtr(cc); 396 return PTR_ERR(essiv_tfm); 397 } 398 cc->iv_private = essiv_tfm; 399 400 return 0; 401 402 bad: 403 if (hash_tfm && !IS_ERR(hash_tfm)) 404 crypto_free_ahash(hash_tfm); 405 kfree(salt); 406 return err; 407 } 408 409 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 410 struct dm_crypt_request *dmreq) 411 { 412 struct crypto_cipher *essiv_tfm = cc->iv_private; 413 414 memset(iv, 0, cc->iv_size); 415 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 416 crypto_cipher_encrypt_one(essiv_tfm, iv, iv); 417 418 return 0; 419 } 420 421 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 422 const char *opts) 423 { 424 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc)); 425 int log = ilog2(bs); 426 427 /* we need to calculate how far we must shift the sector count 428 * to get the cipher block count, we use this shift in _gen */ 429 430 if (1 << log != bs) { 431 ti->error = "cypher blocksize is not a power of 2"; 432 return -EINVAL; 433 } 434 435 if (log > 9) { 436 ti->error = "cypher blocksize is > 512"; 437 return -EINVAL; 438 } 439 440 cc->iv_gen_private.benbi.shift = 9 - log; 441 442 return 0; 443 } 444 445 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 446 { 447 } 448 449 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 450 struct dm_crypt_request *dmreq) 451 { 452 __be64 val; 453 454 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 455 456 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 457 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 458 459 return 0; 460 } 461 462 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 463 struct dm_crypt_request *dmreq) 464 { 465 memset(iv, 0, cc->iv_size); 466 467 return 0; 468 } 469 470 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 471 { 472 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 473 474 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) 475 crypto_free_shash(lmk->hash_tfm); 476 lmk->hash_tfm = NULL; 477 478 kzfree(lmk->seed); 479 lmk->seed = NULL; 480 } 481 482 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 483 const char *opts) 484 { 485 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 486 487 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0); 488 if (IS_ERR(lmk->hash_tfm)) { 489 ti->error = "Error initializing LMK hash"; 490 return PTR_ERR(lmk->hash_tfm); 491 } 492 493 /* No seed in LMK version 2 */ 494 if (cc->key_parts == cc->tfms_count) { 495 lmk->seed = NULL; 496 return 0; 497 } 498 499 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 500 if (!lmk->seed) { 501 crypt_iv_lmk_dtr(cc); 502 ti->error = "Error kmallocing seed storage in LMK"; 503 return -ENOMEM; 504 } 505 506 return 0; 507 } 508 509 static int crypt_iv_lmk_init(struct crypt_config *cc) 510 { 511 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 512 int subkey_size = cc->key_size / cc->key_parts; 513 514 /* LMK seed is on the position of LMK_KEYS + 1 key */ 515 if (lmk->seed) 516 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 517 crypto_shash_digestsize(lmk->hash_tfm)); 518 519 return 0; 520 } 521 522 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 523 { 524 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 525 526 if (lmk->seed) 527 memset(lmk->seed, 0, LMK_SEED_SIZE); 528 529 return 0; 530 } 531 532 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 533 struct dm_crypt_request *dmreq, 534 u8 *data) 535 { 536 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 537 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); 538 struct md5_state md5state; 539 __le32 buf[4]; 540 int i, r; 541 542 desc->tfm = lmk->hash_tfm; 543 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 544 545 r = crypto_shash_init(desc); 546 if (r) 547 return r; 548 549 if (lmk->seed) { 550 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); 551 if (r) 552 return r; 553 } 554 555 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 556 r = crypto_shash_update(desc, data + 16, 16 * 31); 557 if (r) 558 return r; 559 560 /* Sector is cropped to 56 bits here */ 561 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 562 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 563 buf[2] = cpu_to_le32(4024); 564 buf[3] = 0; 565 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); 566 if (r) 567 return r; 568 569 /* No MD5 padding here */ 570 r = crypto_shash_export(desc, &md5state); 571 if (r) 572 return r; 573 574 for (i = 0; i < MD5_HASH_WORDS; i++) 575 __cpu_to_le32s(&md5state.hash[i]); 576 memcpy(iv, &md5state.hash, cc->iv_size); 577 578 return 0; 579 } 580 581 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 582 struct dm_crypt_request *dmreq) 583 { 584 u8 *src; 585 int r = 0; 586 587 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 588 src = kmap_atomic(sg_page(&dmreq->sg_in)); 589 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset); 590 kunmap_atomic(src); 591 } else 592 memset(iv, 0, cc->iv_size); 593 594 return r; 595 } 596 597 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 598 struct dm_crypt_request *dmreq) 599 { 600 u8 *dst; 601 int r; 602 603 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 604 return 0; 605 606 dst = kmap_atomic(sg_page(&dmreq->sg_out)); 607 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset); 608 609 /* Tweak the first block of plaintext sector */ 610 if (!r) 611 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size); 612 613 kunmap_atomic(dst); 614 return r; 615 } 616 617 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 618 { 619 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 620 621 kzfree(tcw->iv_seed); 622 tcw->iv_seed = NULL; 623 kzfree(tcw->whitening); 624 tcw->whitening = NULL; 625 626 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) 627 crypto_free_shash(tcw->crc32_tfm); 628 tcw->crc32_tfm = NULL; 629 } 630 631 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 632 const char *opts) 633 { 634 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 635 636 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 637 ti->error = "Wrong key size for TCW"; 638 return -EINVAL; 639 } 640 641 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0); 642 if (IS_ERR(tcw->crc32_tfm)) { 643 ti->error = "Error initializing CRC32 in TCW"; 644 return PTR_ERR(tcw->crc32_tfm); 645 } 646 647 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 648 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 649 if (!tcw->iv_seed || !tcw->whitening) { 650 crypt_iv_tcw_dtr(cc); 651 ti->error = "Error allocating seed storage in TCW"; 652 return -ENOMEM; 653 } 654 655 return 0; 656 } 657 658 static int crypt_iv_tcw_init(struct crypt_config *cc) 659 { 660 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 661 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 662 663 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 664 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 665 TCW_WHITENING_SIZE); 666 667 return 0; 668 } 669 670 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 671 { 672 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 673 674 memset(tcw->iv_seed, 0, cc->iv_size); 675 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 676 677 return 0; 678 } 679 680 static int crypt_iv_tcw_whitening(struct crypt_config *cc, 681 struct dm_crypt_request *dmreq, 682 u8 *data) 683 { 684 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 685 __le64 sector = cpu_to_le64(dmreq->iv_sector); 686 u8 buf[TCW_WHITENING_SIZE]; 687 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm); 688 int i, r; 689 690 /* xor whitening with sector number */ 691 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE); 692 crypto_xor(buf, (u8 *)§or, 8); 693 crypto_xor(&buf[8], (u8 *)§or, 8); 694 695 /* calculate crc32 for every 32bit part and xor it */ 696 desc->tfm = tcw->crc32_tfm; 697 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 698 for (i = 0; i < 4; i++) { 699 r = crypto_shash_init(desc); 700 if (r) 701 goto out; 702 r = crypto_shash_update(desc, &buf[i * 4], 4); 703 if (r) 704 goto out; 705 r = crypto_shash_final(desc, &buf[i * 4]); 706 if (r) 707 goto out; 708 } 709 crypto_xor(&buf[0], &buf[12], 4); 710 crypto_xor(&buf[4], &buf[8], 4); 711 712 /* apply whitening (8 bytes) to whole sector */ 713 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 714 crypto_xor(data + i * 8, buf, 8); 715 out: 716 memzero_explicit(buf, sizeof(buf)); 717 return r; 718 } 719 720 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 721 struct dm_crypt_request *dmreq) 722 { 723 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 724 __le64 sector = cpu_to_le64(dmreq->iv_sector); 725 u8 *src; 726 int r = 0; 727 728 /* Remove whitening from ciphertext */ 729 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 730 src = kmap_atomic(sg_page(&dmreq->sg_in)); 731 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset); 732 kunmap_atomic(src); 733 } 734 735 /* Calculate IV */ 736 memcpy(iv, tcw->iv_seed, cc->iv_size); 737 crypto_xor(iv, (u8 *)§or, 8); 738 if (cc->iv_size > 8) 739 crypto_xor(&iv[8], (u8 *)§or, cc->iv_size - 8); 740 741 return r; 742 } 743 744 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 745 struct dm_crypt_request *dmreq) 746 { 747 u8 *dst; 748 int r; 749 750 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 751 return 0; 752 753 /* Apply whitening on ciphertext */ 754 dst = kmap_atomic(sg_page(&dmreq->sg_out)); 755 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset); 756 kunmap_atomic(dst); 757 758 return r; 759 } 760 761 static struct crypt_iv_operations crypt_iv_plain_ops = { 762 .generator = crypt_iv_plain_gen 763 }; 764 765 static struct crypt_iv_operations crypt_iv_plain64_ops = { 766 .generator = crypt_iv_plain64_gen 767 }; 768 769 static struct crypt_iv_operations crypt_iv_essiv_ops = { 770 .ctr = crypt_iv_essiv_ctr, 771 .dtr = crypt_iv_essiv_dtr, 772 .init = crypt_iv_essiv_init, 773 .wipe = crypt_iv_essiv_wipe, 774 .generator = crypt_iv_essiv_gen 775 }; 776 777 static struct crypt_iv_operations crypt_iv_benbi_ops = { 778 .ctr = crypt_iv_benbi_ctr, 779 .dtr = crypt_iv_benbi_dtr, 780 .generator = crypt_iv_benbi_gen 781 }; 782 783 static struct crypt_iv_operations crypt_iv_null_ops = { 784 .generator = crypt_iv_null_gen 785 }; 786 787 static struct crypt_iv_operations crypt_iv_lmk_ops = { 788 .ctr = crypt_iv_lmk_ctr, 789 .dtr = crypt_iv_lmk_dtr, 790 .init = crypt_iv_lmk_init, 791 .wipe = crypt_iv_lmk_wipe, 792 .generator = crypt_iv_lmk_gen, 793 .post = crypt_iv_lmk_post 794 }; 795 796 static struct crypt_iv_operations crypt_iv_tcw_ops = { 797 .ctr = crypt_iv_tcw_ctr, 798 .dtr = crypt_iv_tcw_dtr, 799 .init = crypt_iv_tcw_init, 800 .wipe = crypt_iv_tcw_wipe, 801 .generator = crypt_iv_tcw_gen, 802 .post = crypt_iv_tcw_post 803 }; 804 805 static void crypt_convert_init(struct crypt_config *cc, 806 struct convert_context *ctx, 807 struct bio *bio_out, struct bio *bio_in, 808 sector_t sector) 809 { 810 ctx->bio_in = bio_in; 811 ctx->bio_out = bio_out; 812 if (bio_in) 813 ctx->iter_in = bio_in->bi_iter; 814 if (bio_out) 815 ctx->iter_out = bio_out->bi_iter; 816 ctx->cc_sector = sector + cc->iv_offset; 817 init_completion(&ctx->restart); 818 } 819 820 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 821 struct skcipher_request *req) 822 { 823 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 824 } 825 826 static struct skcipher_request *req_of_dmreq(struct crypt_config *cc, 827 struct dm_crypt_request *dmreq) 828 { 829 return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start); 830 } 831 832 static u8 *iv_of_dmreq(struct crypt_config *cc, 833 struct dm_crypt_request *dmreq) 834 { 835 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 836 crypto_skcipher_alignmask(any_tfm(cc)) + 1); 837 } 838 839 static int crypt_convert_block(struct crypt_config *cc, 840 struct convert_context *ctx, 841 struct skcipher_request *req) 842 { 843 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 844 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 845 struct dm_crypt_request *dmreq; 846 u8 *iv; 847 int r; 848 849 dmreq = dmreq_of_req(cc, req); 850 iv = iv_of_dmreq(cc, dmreq); 851 852 dmreq->iv_sector = ctx->cc_sector; 853 dmreq->ctx = ctx; 854 sg_init_table(&dmreq->sg_in, 1); 855 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT, 856 bv_in.bv_offset); 857 858 sg_init_table(&dmreq->sg_out, 1); 859 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT, 860 bv_out.bv_offset); 861 862 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT); 863 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT); 864 865 if (cc->iv_gen_ops) { 866 r = cc->iv_gen_ops->generator(cc, iv, dmreq); 867 if (r < 0) 868 return r; 869 } 870 871 skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out, 872 1 << SECTOR_SHIFT, iv); 873 874 if (bio_data_dir(ctx->bio_in) == WRITE) 875 r = crypto_skcipher_encrypt(req); 876 else 877 r = crypto_skcipher_decrypt(req); 878 879 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 880 r = cc->iv_gen_ops->post(cc, iv, dmreq); 881 882 return r; 883 } 884 885 static void kcryptd_async_done(struct crypto_async_request *async_req, 886 int error); 887 888 static void crypt_alloc_req(struct crypt_config *cc, 889 struct convert_context *ctx) 890 { 891 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1); 892 893 if (!ctx->req) 894 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO); 895 896 skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]); 897 898 /* 899 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 900 * requests if driver request queue is full. 901 */ 902 skcipher_request_set_callback(ctx->req, 903 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 904 kcryptd_async_done, dmreq_of_req(cc, ctx->req)); 905 } 906 907 static void crypt_free_req(struct crypt_config *cc, 908 struct skcipher_request *req, struct bio *base_bio) 909 { 910 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 911 912 if ((struct skcipher_request *)(io + 1) != req) 913 mempool_free(req, cc->req_pool); 914 } 915 916 /* 917 * Encrypt / decrypt data from one bio to another one (can be the same one) 918 */ 919 static int crypt_convert(struct crypt_config *cc, 920 struct convert_context *ctx) 921 { 922 int r; 923 924 atomic_set(&ctx->cc_pending, 1); 925 926 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 927 928 crypt_alloc_req(cc, ctx); 929 930 atomic_inc(&ctx->cc_pending); 931 932 r = crypt_convert_block(cc, ctx, ctx->req); 933 934 switch (r) { 935 /* 936 * The request was queued by a crypto driver 937 * but the driver request queue is full, let's wait. 938 */ 939 case -EBUSY: 940 wait_for_completion(&ctx->restart); 941 reinit_completion(&ctx->restart); 942 /* fall through */ 943 /* 944 * The request is queued and processed asynchronously, 945 * completion function kcryptd_async_done() will be called. 946 */ 947 case -EINPROGRESS: 948 ctx->req = NULL; 949 ctx->cc_sector++; 950 continue; 951 /* 952 * The request was already processed (synchronously). 953 */ 954 case 0: 955 atomic_dec(&ctx->cc_pending); 956 ctx->cc_sector++; 957 cond_resched(); 958 continue; 959 960 /* There was an error while processing the request. */ 961 default: 962 atomic_dec(&ctx->cc_pending); 963 return r; 964 } 965 } 966 967 return 0; 968 } 969 970 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); 971 972 /* 973 * Generate a new unfragmented bio with the given size 974 * This should never violate the device limitations (but only because 975 * max_segment_size is being constrained to PAGE_SIZE). 976 * 977 * This function may be called concurrently. If we allocate from the mempool 978 * concurrently, there is a possibility of deadlock. For example, if we have 979 * mempool of 256 pages, two processes, each wanting 256, pages allocate from 980 * the mempool concurrently, it may deadlock in a situation where both processes 981 * have allocated 128 pages and the mempool is exhausted. 982 * 983 * In order to avoid this scenario we allocate the pages under a mutex. 984 * 985 * In order to not degrade performance with excessive locking, we try 986 * non-blocking allocations without a mutex first but on failure we fallback 987 * to blocking allocations with a mutex. 988 */ 989 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size) 990 { 991 struct crypt_config *cc = io->cc; 992 struct bio *clone; 993 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 994 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; 995 unsigned i, len, remaining_size; 996 struct page *page; 997 998 retry: 999 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1000 mutex_lock(&cc->bio_alloc_lock); 1001 1002 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs); 1003 if (!clone) 1004 goto return_clone; 1005 1006 clone_init(io, clone); 1007 1008 remaining_size = size; 1009 1010 for (i = 0; i < nr_iovecs; i++) { 1011 page = mempool_alloc(cc->page_pool, gfp_mask); 1012 if (!page) { 1013 crypt_free_buffer_pages(cc, clone); 1014 bio_put(clone); 1015 gfp_mask |= __GFP_DIRECT_RECLAIM; 1016 goto retry; 1017 } 1018 1019 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size; 1020 1021 bio_add_page(clone, page, len, 0); 1022 1023 remaining_size -= len; 1024 } 1025 1026 return_clone: 1027 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1028 mutex_unlock(&cc->bio_alloc_lock); 1029 1030 return clone; 1031 } 1032 1033 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1034 { 1035 unsigned int i; 1036 struct bio_vec *bv; 1037 1038 bio_for_each_segment_all(bv, clone, i) { 1039 BUG_ON(!bv->bv_page); 1040 mempool_free(bv->bv_page, cc->page_pool); 1041 bv->bv_page = NULL; 1042 } 1043 } 1044 1045 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, 1046 struct bio *bio, sector_t sector) 1047 { 1048 io->cc = cc; 1049 io->base_bio = bio; 1050 io->sector = sector; 1051 io->error = 0; 1052 io->ctx.req = NULL; 1053 atomic_set(&io->io_pending, 0); 1054 } 1055 1056 static void crypt_inc_pending(struct dm_crypt_io *io) 1057 { 1058 atomic_inc(&io->io_pending); 1059 } 1060 1061 /* 1062 * One of the bios was finished. Check for completion of 1063 * the whole request and correctly clean up the buffer. 1064 */ 1065 static void crypt_dec_pending(struct dm_crypt_io *io) 1066 { 1067 struct crypt_config *cc = io->cc; 1068 struct bio *base_bio = io->base_bio; 1069 int error = io->error; 1070 1071 if (!atomic_dec_and_test(&io->io_pending)) 1072 return; 1073 1074 if (io->ctx.req) 1075 crypt_free_req(cc, io->ctx.req, base_bio); 1076 1077 base_bio->bi_error = error; 1078 bio_endio(base_bio); 1079 } 1080 1081 /* 1082 * kcryptd/kcryptd_io: 1083 * 1084 * Needed because it would be very unwise to do decryption in an 1085 * interrupt context. 1086 * 1087 * kcryptd performs the actual encryption or decryption. 1088 * 1089 * kcryptd_io performs the IO submission. 1090 * 1091 * They must be separated as otherwise the final stages could be 1092 * starved by new requests which can block in the first stages due 1093 * to memory allocation. 1094 * 1095 * The work is done per CPU global for all dm-crypt instances. 1096 * They should not depend on each other and do not block. 1097 */ 1098 static void crypt_endio(struct bio *clone) 1099 { 1100 struct dm_crypt_io *io = clone->bi_private; 1101 struct crypt_config *cc = io->cc; 1102 unsigned rw = bio_data_dir(clone); 1103 int error; 1104 1105 /* 1106 * free the processed pages 1107 */ 1108 if (rw == WRITE) 1109 crypt_free_buffer_pages(cc, clone); 1110 1111 error = clone->bi_error; 1112 bio_put(clone); 1113 1114 if (rw == READ && !error) { 1115 kcryptd_queue_crypt(io); 1116 return; 1117 } 1118 1119 if (unlikely(error)) 1120 io->error = error; 1121 1122 crypt_dec_pending(io); 1123 } 1124 1125 static void clone_init(struct dm_crypt_io *io, struct bio *clone) 1126 { 1127 struct crypt_config *cc = io->cc; 1128 1129 clone->bi_private = io; 1130 clone->bi_end_io = crypt_endio; 1131 clone->bi_bdev = cc->dev->bdev; 1132 bio_set_op_attrs(clone, bio_op(io->base_bio), bio_flags(io->base_bio)); 1133 } 1134 1135 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1136 { 1137 struct crypt_config *cc = io->cc; 1138 struct bio *clone; 1139 1140 /* 1141 * We need the original biovec array in order to decrypt 1142 * the whole bio data *afterwards* -- thanks to immutable 1143 * biovecs we don't need to worry about the block layer 1144 * modifying the biovec array; so leverage bio_clone_fast(). 1145 */ 1146 clone = bio_clone_fast(io->base_bio, gfp, cc->bs); 1147 if (!clone) 1148 return 1; 1149 1150 crypt_inc_pending(io); 1151 1152 clone_init(io, clone); 1153 clone->bi_iter.bi_sector = cc->start + io->sector; 1154 1155 generic_make_request(clone); 1156 return 0; 1157 } 1158 1159 static void kcryptd_io_read_work(struct work_struct *work) 1160 { 1161 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1162 1163 crypt_inc_pending(io); 1164 if (kcryptd_io_read(io, GFP_NOIO)) 1165 io->error = -ENOMEM; 1166 crypt_dec_pending(io); 1167 } 1168 1169 static void kcryptd_queue_read(struct dm_crypt_io *io) 1170 { 1171 struct crypt_config *cc = io->cc; 1172 1173 INIT_WORK(&io->work, kcryptd_io_read_work); 1174 queue_work(cc->io_queue, &io->work); 1175 } 1176 1177 static void kcryptd_io_write(struct dm_crypt_io *io) 1178 { 1179 struct bio *clone = io->ctx.bio_out; 1180 1181 generic_make_request(clone); 1182 } 1183 1184 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) 1185 1186 static int dmcrypt_write(void *data) 1187 { 1188 struct crypt_config *cc = data; 1189 struct dm_crypt_io *io; 1190 1191 while (1) { 1192 struct rb_root write_tree; 1193 struct blk_plug plug; 1194 1195 DECLARE_WAITQUEUE(wait, current); 1196 1197 spin_lock_irq(&cc->write_thread_wait.lock); 1198 continue_locked: 1199 1200 if (!RB_EMPTY_ROOT(&cc->write_tree)) 1201 goto pop_from_list; 1202 1203 set_current_state(TASK_INTERRUPTIBLE); 1204 __add_wait_queue(&cc->write_thread_wait, &wait); 1205 1206 spin_unlock_irq(&cc->write_thread_wait.lock); 1207 1208 if (unlikely(kthread_should_stop())) { 1209 set_task_state(current, TASK_RUNNING); 1210 remove_wait_queue(&cc->write_thread_wait, &wait); 1211 break; 1212 } 1213 1214 schedule(); 1215 1216 set_task_state(current, TASK_RUNNING); 1217 spin_lock_irq(&cc->write_thread_wait.lock); 1218 __remove_wait_queue(&cc->write_thread_wait, &wait); 1219 goto continue_locked; 1220 1221 pop_from_list: 1222 write_tree = cc->write_tree; 1223 cc->write_tree = RB_ROOT; 1224 spin_unlock_irq(&cc->write_thread_wait.lock); 1225 1226 BUG_ON(rb_parent(write_tree.rb_node)); 1227 1228 /* 1229 * Note: we cannot walk the tree here with rb_next because 1230 * the structures may be freed when kcryptd_io_write is called. 1231 */ 1232 blk_start_plug(&plug); 1233 do { 1234 io = crypt_io_from_node(rb_first(&write_tree)); 1235 rb_erase(&io->rb_node, &write_tree); 1236 kcryptd_io_write(io); 1237 } while (!RB_EMPTY_ROOT(&write_tree)); 1238 blk_finish_plug(&plug); 1239 } 1240 return 0; 1241 } 1242 1243 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 1244 { 1245 struct bio *clone = io->ctx.bio_out; 1246 struct crypt_config *cc = io->cc; 1247 unsigned long flags; 1248 sector_t sector; 1249 struct rb_node **rbp, *parent; 1250 1251 if (unlikely(io->error < 0)) { 1252 crypt_free_buffer_pages(cc, clone); 1253 bio_put(clone); 1254 crypt_dec_pending(io); 1255 return; 1256 } 1257 1258 /* crypt_convert should have filled the clone bio */ 1259 BUG_ON(io->ctx.iter_out.bi_size); 1260 1261 clone->bi_iter.bi_sector = cc->start + io->sector; 1262 1263 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) { 1264 generic_make_request(clone); 1265 return; 1266 } 1267 1268 spin_lock_irqsave(&cc->write_thread_wait.lock, flags); 1269 rbp = &cc->write_tree.rb_node; 1270 parent = NULL; 1271 sector = io->sector; 1272 while (*rbp) { 1273 parent = *rbp; 1274 if (sector < crypt_io_from_node(parent)->sector) 1275 rbp = &(*rbp)->rb_left; 1276 else 1277 rbp = &(*rbp)->rb_right; 1278 } 1279 rb_link_node(&io->rb_node, parent, rbp); 1280 rb_insert_color(&io->rb_node, &cc->write_tree); 1281 1282 wake_up_locked(&cc->write_thread_wait); 1283 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags); 1284 } 1285 1286 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 1287 { 1288 struct crypt_config *cc = io->cc; 1289 struct bio *clone; 1290 int crypt_finished; 1291 sector_t sector = io->sector; 1292 int r; 1293 1294 /* 1295 * Prevent io from disappearing until this function completes. 1296 */ 1297 crypt_inc_pending(io); 1298 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector); 1299 1300 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 1301 if (unlikely(!clone)) { 1302 io->error = -EIO; 1303 goto dec; 1304 } 1305 1306 io->ctx.bio_out = clone; 1307 io->ctx.iter_out = clone->bi_iter; 1308 1309 sector += bio_sectors(clone); 1310 1311 crypt_inc_pending(io); 1312 r = crypt_convert(cc, &io->ctx); 1313 if (r) 1314 io->error = -EIO; 1315 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending); 1316 1317 /* Encryption was already finished, submit io now */ 1318 if (crypt_finished) { 1319 kcryptd_crypt_write_io_submit(io, 0); 1320 io->sector = sector; 1321 } 1322 1323 dec: 1324 crypt_dec_pending(io); 1325 } 1326 1327 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 1328 { 1329 crypt_dec_pending(io); 1330 } 1331 1332 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 1333 { 1334 struct crypt_config *cc = io->cc; 1335 int r = 0; 1336 1337 crypt_inc_pending(io); 1338 1339 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 1340 io->sector); 1341 1342 r = crypt_convert(cc, &io->ctx); 1343 if (r < 0) 1344 io->error = -EIO; 1345 1346 if (atomic_dec_and_test(&io->ctx.cc_pending)) 1347 kcryptd_crypt_read_done(io); 1348 1349 crypt_dec_pending(io); 1350 } 1351 1352 static void kcryptd_async_done(struct crypto_async_request *async_req, 1353 int error) 1354 { 1355 struct dm_crypt_request *dmreq = async_req->data; 1356 struct convert_context *ctx = dmreq->ctx; 1357 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1358 struct crypt_config *cc = io->cc; 1359 1360 /* 1361 * A request from crypto driver backlog is going to be processed now, 1362 * finish the completion and continue in crypt_convert(). 1363 * (Callback will be called for the second time for this request.) 1364 */ 1365 if (error == -EINPROGRESS) { 1366 complete(&ctx->restart); 1367 return; 1368 } 1369 1370 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 1371 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq); 1372 1373 if (error < 0) 1374 io->error = -EIO; 1375 1376 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); 1377 1378 if (!atomic_dec_and_test(&ctx->cc_pending)) 1379 return; 1380 1381 if (bio_data_dir(io->base_bio) == READ) 1382 kcryptd_crypt_read_done(io); 1383 else 1384 kcryptd_crypt_write_io_submit(io, 1); 1385 } 1386 1387 static void kcryptd_crypt(struct work_struct *work) 1388 { 1389 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1390 1391 if (bio_data_dir(io->base_bio) == READ) 1392 kcryptd_crypt_read_convert(io); 1393 else 1394 kcryptd_crypt_write_convert(io); 1395 } 1396 1397 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 1398 { 1399 struct crypt_config *cc = io->cc; 1400 1401 INIT_WORK(&io->work, kcryptd_crypt); 1402 queue_work(cc->crypt_queue, &io->work); 1403 } 1404 1405 /* 1406 * Decode key from its hex representation 1407 */ 1408 static int crypt_decode_key(u8 *key, char *hex, unsigned int size) 1409 { 1410 char buffer[3]; 1411 unsigned int i; 1412 1413 buffer[2] = '\0'; 1414 1415 for (i = 0; i < size; i++) { 1416 buffer[0] = *hex++; 1417 buffer[1] = *hex++; 1418 1419 if (kstrtou8(buffer, 16, &key[i])) 1420 return -EINVAL; 1421 } 1422 1423 if (*hex != '\0') 1424 return -EINVAL; 1425 1426 return 0; 1427 } 1428 1429 static void crypt_free_tfms(struct crypt_config *cc) 1430 { 1431 unsigned i; 1432 1433 if (!cc->tfms) 1434 return; 1435 1436 for (i = 0; i < cc->tfms_count; i++) 1437 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) { 1438 crypto_free_skcipher(cc->tfms[i]); 1439 cc->tfms[i] = NULL; 1440 } 1441 1442 kfree(cc->tfms); 1443 cc->tfms = NULL; 1444 } 1445 1446 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 1447 { 1448 unsigned i; 1449 int err; 1450 1451 cc->tfms = kzalloc(cc->tfms_count * sizeof(struct crypto_skcipher *), 1452 GFP_KERNEL); 1453 if (!cc->tfms) 1454 return -ENOMEM; 1455 1456 for (i = 0; i < cc->tfms_count; i++) { 1457 cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0); 1458 if (IS_ERR(cc->tfms[i])) { 1459 err = PTR_ERR(cc->tfms[i]); 1460 crypt_free_tfms(cc); 1461 return err; 1462 } 1463 } 1464 1465 return 0; 1466 } 1467 1468 static int crypt_setkey_allcpus(struct crypt_config *cc) 1469 { 1470 unsigned subkey_size; 1471 int err = 0, i, r; 1472 1473 /* Ignore extra keys (which are used for IV etc) */ 1474 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 1475 1476 for (i = 0; i < cc->tfms_count; i++) { 1477 r = crypto_skcipher_setkey(cc->tfms[i], 1478 cc->key + (i * subkey_size), 1479 subkey_size); 1480 if (r) 1481 err = r; 1482 } 1483 1484 return err; 1485 } 1486 1487 static int crypt_set_key(struct crypt_config *cc, char *key) 1488 { 1489 int r = -EINVAL; 1490 int key_string_len = strlen(key); 1491 1492 /* The key size may not be changed. */ 1493 if (cc->key_size != (key_string_len >> 1)) 1494 goto out; 1495 1496 /* Hyphen (which gives a key_size of zero) means there is no key. */ 1497 if (!cc->key_size && strcmp(key, "-")) 1498 goto out; 1499 1500 /* clear the flag since following operations may invalidate previously valid key */ 1501 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1502 1503 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0) 1504 goto out; 1505 1506 r = crypt_setkey_allcpus(cc); 1507 if (!r) 1508 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1509 1510 out: 1511 /* Hex key string not needed after here, so wipe it. */ 1512 memset(key, '0', key_string_len); 1513 1514 return r; 1515 } 1516 1517 static int crypt_wipe_key(struct crypt_config *cc) 1518 { 1519 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 1520 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 1521 1522 return crypt_setkey_allcpus(cc); 1523 } 1524 1525 static void crypt_dtr(struct dm_target *ti) 1526 { 1527 struct crypt_config *cc = ti->private; 1528 1529 ti->private = NULL; 1530 1531 if (!cc) 1532 return; 1533 1534 if (cc->write_thread) 1535 kthread_stop(cc->write_thread); 1536 1537 if (cc->io_queue) 1538 destroy_workqueue(cc->io_queue); 1539 if (cc->crypt_queue) 1540 destroy_workqueue(cc->crypt_queue); 1541 1542 crypt_free_tfms(cc); 1543 1544 if (cc->bs) 1545 bioset_free(cc->bs); 1546 1547 mempool_destroy(cc->page_pool); 1548 mempool_destroy(cc->req_pool); 1549 1550 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 1551 cc->iv_gen_ops->dtr(cc); 1552 1553 if (cc->dev) 1554 dm_put_device(ti, cc->dev); 1555 1556 kzfree(cc->cipher); 1557 kzfree(cc->cipher_string); 1558 1559 /* Must zero key material before freeing */ 1560 kzfree(cc); 1561 } 1562 1563 static int crypt_ctr_cipher(struct dm_target *ti, 1564 char *cipher_in, char *key) 1565 { 1566 struct crypt_config *cc = ti->private; 1567 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount; 1568 char *cipher_api = NULL; 1569 int ret = -EINVAL; 1570 char dummy; 1571 1572 /* Convert to crypto api definition? */ 1573 if (strchr(cipher_in, '(')) { 1574 ti->error = "Bad cipher specification"; 1575 return -EINVAL; 1576 } 1577 1578 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 1579 if (!cc->cipher_string) 1580 goto bad_mem; 1581 1582 /* 1583 * Legacy dm-crypt cipher specification 1584 * cipher[:keycount]-mode-iv:ivopts 1585 */ 1586 tmp = cipher_in; 1587 keycount = strsep(&tmp, "-"); 1588 cipher = strsep(&keycount, ":"); 1589 1590 if (!keycount) 1591 cc->tfms_count = 1; 1592 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 1593 !is_power_of_2(cc->tfms_count)) { 1594 ti->error = "Bad cipher key count specification"; 1595 return -EINVAL; 1596 } 1597 cc->key_parts = cc->tfms_count; 1598 cc->key_extra_size = 0; 1599 1600 cc->cipher = kstrdup(cipher, GFP_KERNEL); 1601 if (!cc->cipher) 1602 goto bad_mem; 1603 1604 chainmode = strsep(&tmp, "-"); 1605 ivopts = strsep(&tmp, "-"); 1606 ivmode = strsep(&ivopts, ":"); 1607 1608 if (tmp) 1609 DMWARN("Ignoring unexpected additional cipher options"); 1610 1611 /* 1612 * For compatibility with the original dm-crypt mapping format, if 1613 * only the cipher name is supplied, use cbc-plain. 1614 */ 1615 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) { 1616 chainmode = "cbc"; 1617 ivmode = "plain"; 1618 } 1619 1620 if (strcmp(chainmode, "ecb") && !ivmode) { 1621 ti->error = "IV mechanism required"; 1622 return -EINVAL; 1623 } 1624 1625 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 1626 if (!cipher_api) 1627 goto bad_mem; 1628 1629 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 1630 "%s(%s)", chainmode, cipher); 1631 if (ret < 0) { 1632 kfree(cipher_api); 1633 goto bad_mem; 1634 } 1635 1636 /* Allocate cipher */ 1637 ret = crypt_alloc_tfms(cc, cipher_api); 1638 if (ret < 0) { 1639 ti->error = "Error allocating crypto tfm"; 1640 goto bad; 1641 } 1642 1643 /* Initialize IV */ 1644 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 1645 if (cc->iv_size) 1646 /* at least a 64 bit sector number should fit in our buffer */ 1647 cc->iv_size = max(cc->iv_size, 1648 (unsigned int)(sizeof(u64) / sizeof(u8))); 1649 else if (ivmode) { 1650 DMWARN("Selected cipher does not support IVs"); 1651 ivmode = NULL; 1652 } 1653 1654 /* Choose ivmode, see comments at iv code. */ 1655 if (ivmode == NULL) 1656 cc->iv_gen_ops = NULL; 1657 else if (strcmp(ivmode, "plain") == 0) 1658 cc->iv_gen_ops = &crypt_iv_plain_ops; 1659 else if (strcmp(ivmode, "plain64") == 0) 1660 cc->iv_gen_ops = &crypt_iv_plain64_ops; 1661 else if (strcmp(ivmode, "essiv") == 0) 1662 cc->iv_gen_ops = &crypt_iv_essiv_ops; 1663 else if (strcmp(ivmode, "benbi") == 0) 1664 cc->iv_gen_ops = &crypt_iv_benbi_ops; 1665 else if (strcmp(ivmode, "null") == 0) 1666 cc->iv_gen_ops = &crypt_iv_null_ops; 1667 else if (strcmp(ivmode, "lmk") == 0) { 1668 cc->iv_gen_ops = &crypt_iv_lmk_ops; 1669 /* 1670 * Version 2 and 3 is recognised according 1671 * to length of provided multi-key string. 1672 * If present (version 3), last key is used as IV seed. 1673 * All keys (including IV seed) are always the same size. 1674 */ 1675 if (cc->key_size % cc->key_parts) { 1676 cc->key_parts++; 1677 cc->key_extra_size = cc->key_size / cc->key_parts; 1678 } 1679 } else if (strcmp(ivmode, "tcw") == 0) { 1680 cc->iv_gen_ops = &crypt_iv_tcw_ops; 1681 cc->key_parts += 2; /* IV + whitening */ 1682 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 1683 } else { 1684 ret = -EINVAL; 1685 ti->error = "Invalid IV mode"; 1686 goto bad; 1687 } 1688 1689 /* Initialize and set key */ 1690 ret = crypt_set_key(cc, key); 1691 if (ret < 0) { 1692 ti->error = "Error decoding and setting key"; 1693 goto bad; 1694 } 1695 1696 /* Allocate IV */ 1697 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 1698 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 1699 if (ret < 0) { 1700 ti->error = "Error creating IV"; 1701 goto bad; 1702 } 1703 } 1704 1705 /* Initialize IV (set keys for ESSIV etc) */ 1706 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 1707 ret = cc->iv_gen_ops->init(cc); 1708 if (ret < 0) { 1709 ti->error = "Error initialising IV"; 1710 goto bad; 1711 } 1712 } 1713 1714 ret = 0; 1715 bad: 1716 kfree(cipher_api); 1717 return ret; 1718 1719 bad_mem: 1720 ti->error = "Cannot allocate cipher strings"; 1721 return -ENOMEM; 1722 } 1723 1724 /* 1725 * Construct an encryption mapping: 1726 * <cipher> <key> <iv_offset> <dev_path> <start> 1727 */ 1728 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1729 { 1730 struct crypt_config *cc; 1731 unsigned int key_size, opt_params; 1732 unsigned long long tmpll; 1733 int ret; 1734 size_t iv_size_padding; 1735 struct dm_arg_set as; 1736 const char *opt_string; 1737 char dummy; 1738 1739 static struct dm_arg _args[] = { 1740 {0, 3, "Invalid number of feature args"}, 1741 }; 1742 1743 if (argc < 5) { 1744 ti->error = "Not enough arguments"; 1745 return -EINVAL; 1746 } 1747 1748 key_size = strlen(argv[1]) >> 1; 1749 1750 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); 1751 if (!cc) { 1752 ti->error = "Cannot allocate encryption context"; 1753 return -ENOMEM; 1754 } 1755 cc->key_size = key_size; 1756 1757 ti->private = cc; 1758 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 1759 if (ret < 0) 1760 goto bad; 1761 1762 cc->dmreq_start = sizeof(struct skcipher_request); 1763 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); 1764 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); 1765 1766 if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) { 1767 /* Allocate the padding exactly */ 1768 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) 1769 & crypto_skcipher_alignmask(any_tfm(cc)); 1770 } else { 1771 /* 1772 * If the cipher requires greater alignment than kmalloc 1773 * alignment, we don't know the exact position of the 1774 * initialization vector. We must assume worst case. 1775 */ 1776 iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc)); 1777 } 1778 1779 ret = -ENOMEM; 1780 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + 1781 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size); 1782 if (!cc->req_pool) { 1783 ti->error = "Cannot allocate crypt request mempool"; 1784 goto bad; 1785 } 1786 1787 cc->per_bio_data_size = ti->per_io_data_size = 1788 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + 1789 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size, 1790 ARCH_KMALLOC_MINALIGN); 1791 1792 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0); 1793 if (!cc->page_pool) { 1794 ti->error = "Cannot allocate page mempool"; 1795 goto bad; 1796 } 1797 1798 cc->bs = bioset_create(MIN_IOS, 0); 1799 if (!cc->bs) { 1800 ti->error = "Cannot allocate crypt bioset"; 1801 goto bad; 1802 } 1803 1804 mutex_init(&cc->bio_alloc_lock); 1805 1806 ret = -EINVAL; 1807 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) { 1808 ti->error = "Invalid iv_offset sector"; 1809 goto bad; 1810 } 1811 cc->iv_offset = tmpll; 1812 1813 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); 1814 if (ret) { 1815 ti->error = "Device lookup failed"; 1816 goto bad; 1817 } 1818 1819 ret = -EINVAL; 1820 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) { 1821 ti->error = "Invalid device sector"; 1822 goto bad; 1823 } 1824 cc->start = tmpll; 1825 1826 argv += 5; 1827 argc -= 5; 1828 1829 /* Optional parameters */ 1830 if (argc) { 1831 as.argc = argc; 1832 as.argv = argv; 1833 1834 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 1835 if (ret) 1836 goto bad; 1837 1838 ret = -EINVAL; 1839 while (opt_params--) { 1840 opt_string = dm_shift_arg(&as); 1841 if (!opt_string) { 1842 ti->error = "Not enough feature arguments"; 1843 goto bad; 1844 } 1845 1846 if (!strcasecmp(opt_string, "allow_discards")) 1847 ti->num_discard_bios = 1; 1848 1849 else if (!strcasecmp(opt_string, "same_cpu_crypt")) 1850 set_bit(DM_CRYPT_SAME_CPU, &cc->flags); 1851 1852 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) 1853 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 1854 1855 else { 1856 ti->error = "Invalid feature arguments"; 1857 goto bad; 1858 } 1859 } 1860 } 1861 1862 ret = -ENOMEM; 1863 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1); 1864 if (!cc->io_queue) { 1865 ti->error = "Couldn't create kcryptd io queue"; 1866 goto bad; 1867 } 1868 1869 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 1870 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1); 1871 else 1872 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, 1873 num_online_cpus()); 1874 if (!cc->crypt_queue) { 1875 ti->error = "Couldn't create kcryptd queue"; 1876 goto bad; 1877 } 1878 1879 init_waitqueue_head(&cc->write_thread_wait); 1880 cc->write_tree = RB_ROOT; 1881 1882 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write"); 1883 if (IS_ERR(cc->write_thread)) { 1884 ret = PTR_ERR(cc->write_thread); 1885 cc->write_thread = NULL; 1886 ti->error = "Couldn't spawn write thread"; 1887 goto bad; 1888 } 1889 wake_up_process(cc->write_thread); 1890 1891 ti->num_flush_bios = 1; 1892 ti->discard_zeroes_data_unsupported = true; 1893 1894 return 0; 1895 1896 bad: 1897 crypt_dtr(ti); 1898 return ret; 1899 } 1900 1901 static int crypt_map(struct dm_target *ti, struct bio *bio) 1902 { 1903 struct dm_crypt_io *io; 1904 struct crypt_config *cc = ti->private; 1905 1906 /* 1907 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. 1908 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight 1909 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters 1910 */ 1911 if (unlikely(bio->bi_opf & REQ_PREFLUSH || 1912 bio_op(bio) == REQ_OP_DISCARD)) { 1913 bio->bi_bdev = cc->dev->bdev; 1914 if (bio_sectors(bio)) 1915 bio->bi_iter.bi_sector = cc->start + 1916 dm_target_offset(ti, bio->bi_iter.bi_sector); 1917 return DM_MAPIO_REMAPPED; 1918 } 1919 1920 /* 1921 * Check if bio is too large, split as needed. 1922 */ 1923 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) && 1924 bio_data_dir(bio) == WRITE) 1925 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT)); 1926 1927 io = dm_per_bio_data(bio, cc->per_bio_data_size); 1928 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 1929 io->ctx.req = (struct skcipher_request *)(io + 1); 1930 1931 if (bio_data_dir(io->base_bio) == READ) { 1932 if (kcryptd_io_read(io, GFP_NOWAIT)) 1933 kcryptd_queue_read(io); 1934 } else 1935 kcryptd_queue_crypt(io); 1936 1937 return DM_MAPIO_SUBMITTED; 1938 } 1939 1940 static void crypt_status(struct dm_target *ti, status_type_t type, 1941 unsigned status_flags, char *result, unsigned maxlen) 1942 { 1943 struct crypt_config *cc = ti->private; 1944 unsigned i, sz = 0; 1945 int num_feature_args = 0; 1946 1947 switch (type) { 1948 case STATUSTYPE_INFO: 1949 result[0] = '\0'; 1950 break; 1951 1952 case STATUSTYPE_TABLE: 1953 DMEMIT("%s ", cc->cipher_string); 1954 1955 if (cc->key_size > 0) 1956 for (i = 0; i < cc->key_size; i++) 1957 DMEMIT("%02x", cc->key[i]); 1958 else 1959 DMEMIT("-"); 1960 1961 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 1962 cc->dev->name, (unsigned long long)cc->start); 1963 1964 num_feature_args += !!ti->num_discard_bios; 1965 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); 1966 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 1967 if (num_feature_args) { 1968 DMEMIT(" %d", num_feature_args); 1969 if (ti->num_discard_bios) 1970 DMEMIT(" allow_discards"); 1971 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 1972 DMEMIT(" same_cpu_crypt"); 1973 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) 1974 DMEMIT(" submit_from_crypt_cpus"); 1975 } 1976 1977 break; 1978 } 1979 } 1980 1981 static void crypt_postsuspend(struct dm_target *ti) 1982 { 1983 struct crypt_config *cc = ti->private; 1984 1985 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 1986 } 1987 1988 static int crypt_preresume(struct dm_target *ti) 1989 { 1990 struct crypt_config *cc = ti->private; 1991 1992 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 1993 DMERR("aborting resume - crypt key is not set."); 1994 return -EAGAIN; 1995 } 1996 1997 return 0; 1998 } 1999 2000 static void crypt_resume(struct dm_target *ti) 2001 { 2002 struct crypt_config *cc = ti->private; 2003 2004 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 2005 } 2006 2007 /* Message interface 2008 * key set <key> 2009 * key wipe 2010 */ 2011 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv) 2012 { 2013 struct crypt_config *cc = ti->private; 2014 int ret = -EINVAL; 2015 2016 if (argc < 2) 2017 goto error; 2018 2019 if (!strcasecmp(argv[0], "key")) { 2020 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 2021 DMWARN("not suspended during key manipulation."); 2022 return -EINVAL; 2023 } 2024 if (argc == 3 && !strcasecmp(argv[1], "set")) { 2025 ret = crypt_set_key(cc, argv[2]); 2026 if (ret) 2027 return ret; 2028 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 2029 ret = cc->iv_gen_ops->init(cc); 2030 return ret; 2031 } 2032 if (argc == 2 && !strcasecmp(argv[1], "wipe")) { 2033 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 2034 ret = cc->iv_gen_ops->wipe(cc); 2035 if (ret) 2036 return ret; 2037 } 2038 return crypt_wipe_key(cc); 2039 } 2040 } 2041 2042 error: 2043 DMWARN("unrecognised message received."); 2044 return -EINVAL; 2045 } 2046 2047 static int crypt_iterate_devices(struct dm_target *ti, 2048 iterate_devices_callout_fn fn, void *data) 2049 { 2050 struct crypt_config *cc = ti->private; 2051 2052 return fn(ti, cc->dev, cc->start, ti->len, data); 2053 } 2054 2055 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) 2056 { 2057 /* 2058 * Unfortunate constraint that is required to avoid the potential 2059 * for exceeding underlying device's max_segments limits -- due to 2060 * crypt_alloc_buffer() possibly allocating pages for the encryption 2061 * bio that are not as physically contiguous as the original bio. 2062 */ 2063 limits->max_segment_size = PAGE_SIZE; 2064 } 2065 2066 static struct target_type crypt_target = { 2067 .name = "crypt", 2068 .version = {1, 14, 1}, 2069 .module = THIS_MODULE, 2070 .ctr = crypt_ctr, 2071 .dtr = crypt_dtr, 2072 .map = crypt_map, 2073 .status = crypt_status, 2074 .postsuspend = crypt_postsuspend, 2075 .preresume = crypt_preresume, 2076 .resume = crypt_resume, 2077 .message = crypt_message, 2078 .iterate_devices = crypt_iterate_devices, 2079 .io_hints = crypt_io_hints, 2080 }; 2081 2082 static int __init dm_crypt_init(void) 2083 { 2084 int r; 2085 2086 r = dm_register_target(&crypt_target); 2087 if (r < 0) 2088 DMERR("register failed %d", r); 2089 2090 return r; 2091 } 2092 2093 static void __exit dm_crypt_exit(void) 2094 { 2095 dm_unregister_target(&crypt_target); 2096 } 2097 2098 module_init(dm_crypt_init); 2099 module_exit(dm_crypt_exit); 2100 2101 MODULE_AUTHOR("Jana Saout <jana@saout.de>"); 2102 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 2103 MODULE_LICENSE("GPL"); 2104